This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 268
FOURS199.73 3699.67 399.43 1299.54 8199.43 4199.26 116
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35499.49 698.02 18099.16 22398.29 14897.64 29697.99 31496.44 20299.95 2496.66 22498.93 31798.60 329
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11498.28 15098.98 15499.19 12497.76 11699.58 31796.57 23199.55 22098.97 277
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 16099.47 10799.12 7599.52 6399.32 9998.31 7199.90 6897.78 14399.73 14599.66 60
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6697.72 19298.90 17399.26 11096.12 21599.52 33795.72 28399.71 15899.32 210
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.49 14499.86 11696.56 23599.39 25099.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.75 11796.56 23599.39 25099.45 157
LS3D98.63 12598.38 14899.36 6697.25 39299.38 1299.12 5799.32 16499.21 6398.44 23798.88 20497.31 15199.80 19496.58 22999.34 25898.92 286
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20898.83 11398.89 17598.90 19796.98 17399.92 5397.16 17699.70 16599.56 102
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18598.29 14898.88 17898.85 21097.53 13799.87 10896.14 26499.31 26299.48 144
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27899.38 13894.87 33698.97 15898.99 17698.01 9899.88 9197.29 16999.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 9097.33 23198.94 16998.86 20798.75 3699.82 17397.53 15999.71 15899.56 102
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5999.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19498.24 11199.84 8599.52 124
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36198.86 10998.87 18297.62 33798.63 4698.96 39799.41 3898.29 34998.45 340
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8899.64 1999.56 5399.46 7098.23 7799.97 598.78 7899.93 4399.72 48
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20999.25 19796.94 26398.78 19299.12 14398.02 9799.84 14697.13 18199.67 17999.59 85
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12496.74 27498.61 21598.38 28398.62 4799.87 10896.47 24399.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10899.36 3999.92 5499.64 66
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16298.64 11899.03 15098.98 18097.89 10699.85 12896.54 23999.42 24799.46 153
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15197.55 20899.31 10897.71 33094.61 26799.88 9196.14 26499.19 28599.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7799.46 3699.50 6999.34 9397.30 15299.93 4498.90 7099.93 4399.77 37
test_0728_SECOND99.60 1499.50 10899.23 3098.02 18099.32 16499.88 9196.99 19199.63 19099.68 56
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21297.61 20197.58 30198.66 24497.40 14899.88 9194.72 30999.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18597.28 23798.11 26498.39 28198.00 9999.87 10896.86 20799.64 18799.55 109
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 18098.84 28197.97 17299.08 13899.02 16397.61 12999.88 9196.99 19199.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 3298.17 15899.35 15197.97 17299.26 11699.06 15197.61 129
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17599.22 20594.16 35298.98 15499.10 14797.52 13999.79 20796.45 24599.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30598.63 25197.50 14199.83 16396.79 21099.53 22699.56 102
X-MVStestdata94.32 34692.59 36499.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30545.85 42197.50 14199.83 16396.79 21099.53 22699.56 102
EGC-MVSNET85.24 38580.54 38899.34 7599.77 2699.20 3899.08 5899.29 18512.08 42320.84 42499.42 7797.55 13499.85 12897.08 18499.72 15398.96 279
test_one_060199.39 13999.20 3899.31 16998.49 13498.66 20899.02 16397.64 126
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19797.44 22398.67 20698.39 28197.68 12099.85 12896.00 26899.51 23199.52 124
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5799.59 2799.71 3499.57 4597.12 16399.90 6899.21 5199.87 7699.54 113
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9797.01 26098.69 20398.88 20498.00 9999.89 7995.87 27699.59 20499.58 91
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16899.31 16998.03 16899.66 4399.02 16398.36 6599.88 9196.91 19799.62 19399.41 171
test_241102_ONE99.49 11599.17 4399.31 16997.98 17199.66 4398.90 19798.36 6599.48 349
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16997.46 22098.44 23798.51 26797.83 10999.88 9196.46 24499.58 20999.58 91
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20297.47 21598.09 26698.68 23997.62 12899.89 7996.22 25899.62 19399.57 96
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16997.47 21598.58 22198.50 27197.97 10399.85 12896.57 23199.59 20499.53 121
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16997.92 17898.90 17398.90 19798.00 9999.88 9196.15 26399.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14297.16 25298.82 18999.01 17297.71 11999.87 10896.29 25599.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS98.29 17397.95 19899.34 7598.44 32799.16 4798.12 16599.38 13896.01 30498.06 26898.43 27897.80 11499.67 27595.69 28599.58 20999.20 236
DVP-MVS++98.90 7998.70 9899.51 4698.43 32899.15 5199.43 1299.32 16498.17 16199.26 11699.02 16398.18 8499.88 9197.07 18599.45 24399.49 134
IU-MVS99.49 11599.15 5198.87 27292.97 36999.41 8596.76 21499.62 19399.66 60
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25498.46 27598.68 4299.93 4499.03 6299.85 8198.64 326
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28399.39 13697.67 19499.44 7998.99 17697.53 13799.89 7995.40 29499.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9997.57 20499.35 9799.24 11597.83 10999.89 7997.88 13799.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16997.47 21598.56 22498.54 26297.75 11799.88 9196.57 23199.59 20499.58 91
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8199.62 2499.56 5399.42 7798.16 8899.96 1298.78 7899.93 4399.77 37
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17299.37 14297.62 19899.04 14798.96 18598.84 3099.79 20797.43 16399.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9999.68 1599.46 7599.26 11098.62 4799.73 24799.17 5499.92 5499.76 42
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24898.75 29697.46 22096.90 34197.83 32596.01 21999.84 14695.82 28099.35 25699.46 153
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14697.54 20998.30 24698.40 28097.86 10899.89 7996.53 24099.72 15399.56 102
MAR-MVS96.47 30095.70 30998.79 16697.92 35899.12 6198.28 14698.60 30892.16 38095.54 38196.17 37494.77 26599.52 33789.62 39598.23 35097.72 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18799.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part299.36 14799.10 6499.05 145
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8499.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7399.09 8699.33 10099.19 12498.40 6399.72 25495.98 27099.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4098.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8199.31 5399.62 5299.53 5897.36 15099.86 11699.24 5099.71 15899.39 181
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5999.44 3999.78 2799.76 1296.39 20399.92 5399.44 3799.92 5499.68 56
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25898.51 26798.64 4499.93 4498.91 6999.85 8198.88 294
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33398.97 7095.03 37699.18 21696.88 26699.33 10098.78 22398.16 8899.28 38296.74 21699.62 19399.44 161
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15799.42 4299.33 10099.26 11097.01 17199.94 3798.74 8399.93 4399.79 32
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21999.28 18894.97 33398.72 20198.77 22597.04 16799.85 12893.79 33899.54 22299.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26398.37 28498.72 3899.90 6899.05 6099.77 12698.77 311
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12799.42 4299.36 9599.06 15198.38 6499.95 2498.34 10799.90 6799.57 96
ZD-MVS99.01 22798.84 7899.07 23794.10 35498.05 27098.12 30496.36 20799.86 11692.70 36399.19 285
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30799.48 9997.32 23399.11 13398.61 25599.33 1399.30 37896.23 25798.38 34599.28 221
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5999.11 7699.53 6199.18 12898.81 3299.67 27596.71 22199.77 12699.50 130
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33999.50 9097.30 23599.05 14598.98 18099.35 1299.32 37595.72 28399.68 17399.18 244
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22799.38 13895.76 31298.81 19198.82 21698.36 6599.82 17394.75 30699.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13196.77 27398.83 18698.90 19797.80 11499.82 17395.68 28699.52 22999.38 188
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22799.40 13499.14 7499.06 14098.59 25896.71 19199.93 4498.57 9599.77 12699.53 121
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24699.25 19798.84 11299.06 14098.76 22796.76 18799.93 4498.57 9599.77 12699.50 130
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7399.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 28099.18 21697.10 25598.75 19898.92 19398.18 8499.65 29196.68 22399.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22399.38 13898.93 10499.12 13298.73 23096.77 18599.86 11698.63 9299.80 11099.46 153
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20899.10 8399.72 3298.76 22796.38 20599.86 11698.00 12999.82 9599.50 130
CMPMVSbinary75.91 2396.29 30495.44 32198.84 15796.25 41398.69 9097.02 28299.12 23088.90 40397.83 28598.86 20789.51 33398.90 40191.92 36999.51 23198.92 286
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5199.30 5599.65 4699.60 4199.16 2099.82 17399.07 5899.83 9299.56 102
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6697.87 18298.85 18398.04 31297.66 12299.84 14696.72 21999.81 9999.13 253
OMC-MVS97.88 20797.49 23299.04 13198.89 25298.63 9196.94 28799.25 19795.02 33198.53 22998.51 26797.27 15599.47 35293.50 34699.51 23199.01 268
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4899.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22499.46 11097.25 24098.98 15498.99 17697.54 13599.84 14695.88 27399.74 14299.23 231
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6699.39 4499.75 3199.62 3699.17 1899.83 16399.06 5999.62 19399.66 60
wuyk23d96.06 31097.62 22591.38 40098.65 30398.57 9898.85 8796.95 36396.86 26899.90 1299.16 13499.18 1798.40 40889.23 39799.77 12677.18 420
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25499.57 6699.37 4699.21 12499.61 3996.76 18799.83 16398.06 12499.83 9299.71 49
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5599.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18999.68 4597.62 19899.34 9999.18 12897.54 13599.77 22497.79 14299.74 14299.04 264
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25898.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5394.13 32899.30 26598.91 289
Gipumacopyleft99.03 6399.16 4898.64 18699.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34297.70 14999.73 14597.89 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15197.50 21298.28 25098.60 25797.64 12699.35 37193.86 33699.27 26998.79 309
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19194.90 33597.83 28598.37 28494.90 25699.84 14693.85 33799.54 22299.51 127
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16299.63 2199.48 7099.15 13897.23 15899.75 23797.17 17599.66 18499.63 69
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26698.40 10999.02 6699.19 21298.99 9798.07 26799.28 10497.11 16599.84 14696.84 20899.32 26099.47 151
F-COLMAP97.30 25596.68 28299.14 11099.19 18598.39 11097.27 26999.30 17792.93 37096.62 35398.00 31395.73 23599.68 27292.62 36498.46 34499.35 201
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18799.91 1199.67 2797.15 16298.91 40099.76 1599.56 21699.92 11
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7798.30 14599.65 4699.45 7499.22 1599.76 23098.44 10299.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
No_MVS99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6699.61 2699.40 8899.50 6297.12 16399.85 12899.02 6399.94 3899.80 31
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11499.63 2199.52 6399.44 7598.25 7599.88 9199.09 5799.84 8599.62 70
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7398.42 13798.91 17298.81 21898.94 2599.91 6298.35 10699.73 14599.49 134
OPU-MVS98.82 15998.59 30998.30 11898.10 16898.52 26698.18 8498.75 40494.62 31099.48 24099.41 171
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8799.48 3399.24 12199.41 8196.79 18499.82 17398.69 8899.88 7399.76 42
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521197.90 20397.50 23199.08 12098.90 24798.25 12198.53 11796.16 37698.87 10899.11 13398.86 20790.40 32899.78 21897.36 16699.31 26299.19 241
CNVR-MVS98.17 18797.87 20699.07 12298.67 29498.24 12297.01 28398.93 26097.25 24097.62 29798.34 28897.27 15599.57 31996.42 24699.33 25999.39 181
GBi-Net98.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
test198.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11899.21 6399.43 8099.55 5297.82 11299.86 11698.42 10499.89 7199.41 171
API-MVS97.04 27596.91 26797.42 30797.88 36098.23 12698.18 15598.50 31397.57 20497.39 31996.75 36396.77 18599.15 39190.16 39399.02 30694.88 414
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25599.25 5999.54 5799.37 8497.04 16799.80 19497.89 13499.52 22999.35 201
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8899.70 1299.80 2599.68 2296.84 17899.83 16399.21 5199.91 6199.77 37
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29298.73 29995.66 31397.92 27697.70 33297.17 16199.66 28696.18 26299.23 27799.47 151
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4999.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
CDPH-MVS97.26 25896.66 28599.07 12299.00 22898.15 13096.03 33799.01 25291.21 39097.79 28897.85 32496.89 17699.69 26392.75 36199.38 25399.39 181
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15799.28 5798.95 16298.91 19498.34 6999.79 20795.63 28799.91 6198.86 296
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32898.11 13497.61 23899.50 9098.64 11897.39 31997.52 34298.12 9299.95 2496.90 20298.71 32998.38 350
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22799.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
EIA-MVS98.00 19797.74 21398.80 16398.72 27798.09 13798.05 17599.60 5697.39 22696.63 35295.55 38597.68 12099.80 19496.73 21899.27 26998.52 335
alignmvs97.35 25196.88 26898.78 16998.54 31698.09 13797.71 22497.69 34199.20 6597.59 30095.90 37988.12 34699.55 32698.18 11598.96 31498.70 320
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 42100.00 199.82 27
TAPA-MVS96.21 1196.63 29395.95 30498.65 18598.93 23998.09 13796.93 28999.28 18883.58 41398.13 26297.78 32696.13 21499.40 36393.52 34499.29 26798.45 340
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST998.71 28098.08 14195.96 34199.03 24691.40 38795.85 37297.53 34096.52 19899.76 230
train_agg97.10 27096.45 29599.07 12298.71 28098.08 14195.96 34199.03 24691.64 38295.85 37297.53 34096.47 20099.76 23093.67 34099.16 28899.36 197
ETV-MVS98.03 19497.86 20798.56 20598.69 28998.07 14397.51 25099.50 9098.10 16697.50 30995.51 38698.41 6299.88 9196.27 25699.24 27497.71 384
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35999.59 2799.11 13399.27 10694.82 26099.79 20798.34 10799.63 19099.34 203
NCCC97.86 21097.47 23599.05 12998.61 30498.07 14396.98 28598.90 26697.63 19797.04 33197.93 32095.99 22499.66 28695.31 29598.82 32399.43 165
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17799.69 1399.63 4999.68 2299.25 1499.96 1297.25 17299.92 5499.57 96
CNLPA97.17 26796.71 28098.55 20698.56 31498.05 14796.33 32098.93 26096.91 26597.06 33097.39 34994.38 27399.45 35691.66 37399.18 28798.14 361
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33599.30 17797.58 20398.10 26598.24 29598.25 7599.34 37296.69 22299.65 18599.12 254
test_898.67 29498.01 14995.91 34799.02 24991.64 38295.79 37497.50 34396.47 20099.76 230
agg_prior98.68 29397.99 15099.01 25295.59 37599.77 224
SD-MVS98.40 15698.68 10197.54 29798.96 23597.99 15097.88 20199.36 14698.20 15899.63 4999.04 16098.76 3595.33 42096.56 23599.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon97.33 25396.92 26598.57 20199.09 20997.99 15096.79 29599.35 15193.18 36697.71 29298.07 31095.00 25599.31 37693.97 33199.13 29398.42 347
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18399.46 11097.56 20699.54 5799.50 6298.97 2399.84 14698.06 12499.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.11 20497.97 15496.53 30999.02 24998.24 151
test_prior497.97 15495.86 348
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32199.01 9698.98 15499.03 16291.59 31799.79 20795.49 29299.80 11099.48 144
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32699.37 4699.70 3699.65 3392.65 30699.93 4499.04 6199.84 8599.60 79
test_prior98.95 14398.69 28997.95 15899.03 24699.59 31199.30 217
PMVScopyleft91.26 2097.86 21097.94 20097.65 28499.71 4597.94 15998.52 11898.68 30298.99 9797.52 30799.35 8997.41 14798.18 41191.59 37699.67 17996.82 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft94.65 1696.51 29695.73 30898.85 15698.75 27397.91 16096.42 31599.06 23890.94 39395.59 37597.38 35094.41 27199.59 31190.93 38798.04 36699.05 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25796.96 26199.24 12198.89 20397.83 10999.81 18796.88 20499.49 23999.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 28097.88 16296.32 32198.66 30396.33 29099.23 12398.51 26797.48 14599.40 36397.16 17699.46 24199.02 267
plane_prior799.19 18597.87 163
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33893.41 40395.25 32799.47 7498.90 19795.63 23799.85 12896.91 19799.73 14599.27 222
FPMVS93.44 36292.23 36897.08 32199.25 17097.86 16495.61 35797.16 35692.90 37193.76 40598.65 24675.94 40295.66 41879.30 41897.49 37497.73 382
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30999.11 7698.58 22199.02 16388.65 34199.96 1298.11 11996.34 39799.49 134
test1298.93 14698.58 31197.83 16798.66 30396.53 35695.51 24299.69 26399.13 29399.27 222
PatchMatch-RL97.24 26196.78 27698.61 19499.03 22597.83 16796.36 31899.06 23893.49 36497.36 32197.78 32695.75 23499.49 34693.44 34798.77 32498.52 335
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33299.03 9498.59 21999.13 14292.16 31199.90 6896.87 20599.68 17399.49 134
sasdasda98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11899.45 3799.51 6899.24 11598.20 8399.86 11695.92 27299.69 16899.04 264
canonicalmvs98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27197.81 17399.25 4099.30 17798.57 12898.55 22699.33 9597.95 10499.90 6897.16 17699.67 17999.44 161
AdaColmapbinary97.14 26996.71 28098.46 21998.34 33597.80 17496.95 28698.93 26095.58 31796.92 33697.66 33395.87 23199.53 33390.97 38699.14 29198.04 366
plane_prior397.78 17597.41 22497.79 288
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27899.28 18895.54 31899.42 8399.19 12497.27 15599.63 29797.89 13499.97 1999.20 236
新几何198.91 15098.94 23797.76 17698.76 29387.58 40796.75 34998.10 30694.80 26399.78 21892.73 36299.00 30899.20 236
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35299.67 1698.97 15899.50 6290.45 32799.80 19497.88 13799.20 28299.48 144
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5298.48 13599.37 9399.49 6798.75 3699.86 11698.20 11499.80 11099.71 49
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19399.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18499.62 5299.22 6199.55 5699.22 12098.93 2699.75 23798.66 8999.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
plane_prior698.99 23197.70 18294.90 256
LF4IMVS97.90 20397.69 21798.52 21199.17 19397.66 18397.19 27799.47 10796.31 29297.85 28498.20 29996.71 19199.52 33794.62 31099.72 15398.38 350
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21699.27 19198.20 15897.79 28897.98 31594.90 25699.70 25994.42 31899.51 23199.45 157
plane_prior97.65 18497.07 28196.72 27599.36 254
WR-MVS98.40 15698.19 17299.03 13299.00 22897.65 18496.85 29398.94 25798.57 12898.89 17598.50 27195.60 23899.85 12897.54 15899.85 8199.59 85
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15199.47 3599.28 11099.05 15896.72 19099.82 17398.09 12199.36 25499.59 85
MGCFI-Net98.34 16398.28 16098.51 21298.47 32297.59 18898.96 7499.48 9999.18 7197.40 31795.50 38798.66 4399.50 34398.18 11598.71 32998.44 343
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40699.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
PCF-MVS92.86 1894.36 34593.00 36298.42 22498.70 28497.56 18993.16 40899.11 23279.59 41797.55 30497.43 34792.19 31099.73 24779.85 41799.45 24397.97 371
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lessismore_v098.97 14099.73 3697.53 19186.71 42099.37 9399.52 6189.93 33099.92 5398.99 6599.72 15399.44 161
QAPM97.31 25496.81 27598.82 15998.80 26997.49 19299.06 6299.19 21290.22 39697.69 29499.16 13496.91 17599.90 6890.89 38999.41 24899.07 258
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17799.59 5798.15 16599.40 8899.36 8898.58 5399.76 23098.78 7899.68 17399.59 85
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33999.27 19197.60 20297.99 27498.25 29498.15 9099.38 36796.87 20599.57 21399.42 168
dmvs_re95.98 31495.39 32497.74 27898.86 25597.45 19598.37 14095.69 38797.95 17496.56 35595.95 37790.70 32597.68 41488.32 39996.13 40198.11 362
旧先验198.82 26497.45 19598.76 29398.34 28895.50 24399.01 30799.23 231
Fast-Effi-MVS+97.67 22697.38 23898.57 20198.71 28097.43 19797.23 27099.45 11494.82 33796.13 36696.51 36698.52 5699.91 6296.19 26098.83 32198.37 352
114514_t96.50 29895.77 30698.69 18299.48 12297.43 19797.84 20899.55 7781.42 41696.51 35898.58 25995.53 24099.67 27593.41 34899.58 20998.98 274
NP-MVS98.84 25997.39 19996.84 361
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9999.69 1399.63 4999.68 2299.03 2199.96 1297.97 13199.92 5499.57 96
hse-mvs297.46 24197.07 25698.64 18698.73 27597.33 20197.45 25597.64 34599.11 7698.58 22197.98 31588.65 34199.79 20798.11 11997.39 38098.81 303
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20999.57 6699.17 7299.35 9799.17 13298.35 6899.69 26398.46 10199.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VNet98.42 15398.30 15898.79 16698.79 27097.29 20398.23 15098.66 30399.31 5398.85 18398.80 21994.80 26399.78 21898.13 11899.13 29399.31 214
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20999.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
HyFIR lowres test97.19 26596.60 28998.96 14199.62 7597.28 20495.17 37299.50 9094.21 35199.01 15198.32 29186.61 35099.99 297.10 18399.84 8599.60 79
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 9098.86 10999.19 12699.06 15198.23 7799.69 26398.71 8699.76 13899.33 208
ab-mvs98.41 15498.36 15098.59 19799.19 18597.23 20799.32 2398.81 28697.66 19598.62 21399.40 8396.82 18199.80 19495.88 27399.51 23198.75 314
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30497.23 20797.76 21999.09 23597.31 23498.75 19898.66 24497.56 13399.64 29496.10 26799.55 22099.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS96.24 30895.45 32098.60 19698.70 28497.22 20997.38 25897.65 34395.95 30795.53 38297.96 31982.11 38599.79 20796.31 25397.44 37798.80 308
DPM-MVS96.32 30395.59 31598.51 21298.76 27197.21 21094.54 39298.26 32391.94 38196.37 36297.25 35493.06 29799.43 35991.42 37998.74 32598.89 291
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21499.24 20299.04 9399.41 8598.90 19797.65 12399.76 23097.70 14999.79 11599.39 181
Effi-MVS+98.02 19597.82 20998.62 19198.53 31897.19 21297.33 26299.68 4597.30 23596.68 35097.46 34698.56 5499.80 19496.63 22598.20 35298.86 296
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20198.81 28696.66 27899.17 13199.21 12194.81 26299.77 22496.96 19599.88 7399.44 161
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23699.35 15198.72 11698.76 19798.68 23992.57 30799.74 24297.76 14895.60 40599.34 203
OpenMVScopyleft96.65 797.09 27196.68 28298.32 23498.32 33697.16 21598.86 8699.37 14289.48 40096.29 36499.15 13896.56 19699.90 6892.90 35599.20 28297.89 372
OpenMVS_ROBcopyleft95.38 1495.84 31995.18 33297.81 26998.41 33297.15 21697.37 25998.62 30783.86 41298.65 20998.37 28494.29 27699.68 27288.41 39898.62 33996.60 403
FMVSNet298.49 14798.40 14398.75 17598.90 24797.14 21798.61 10899.13 22998.59 12499.19 12699.28 10494.14 27899.82 17397.97 13199.80 11099.29 219
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21299.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21297.87 18299.25 12099.16 13496.84 17899.78 21899.21 5199.84 8599.46 153
CLD-MVS97.49 23997.16 25198.48 21799.07 21397.03 22094.71 38399.21 20694.46 34498.06 26897.16 35697.57 13299.48 34994.46 31599.78 12098.95 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27597.02 22196.92 29198.75 29695.89 30998.59 21998.67 24192.08 31399.74 24296.72 21999.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MM98.22 18097.99 19498.91 15098.66 29996.97 22297.89 20094.44 39499.54 3098.95 16299.14 14193.50 29099.92 5399.80 1199.96 2399.85 22
test_fmvsmvis_n_192099.26 3599.49 1398.54 20999.66 6296.97 22298.00 18499.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 317
UGNet98.53 14298.45 13698.79 16697.94 35796.96 22499.08 5898.54 31099.10 8396.82 34699.47 6996.55 19799.84 14698.56 9899.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS97.20 26496.72 27998.64 18698.72 27796.95 22598.93 7894.14 40099.74 1098.78 19299.01 17284.45 36899.73 24797.44 16299.27 26999.25 226
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23396.49 28499.96 499.81 698.18 8499.45 35698.97 6699.79 11599.83 24
test22298.92 24396.93 22795.54 35998.78 29185.72 41096.86 34498.11 30594.43 27099.10 29899.23 231
pmmvs497.58 23397.28 24498.51 21298.84 25996.93 22795.40 36798.52 31293.60 36198.61 21598.65 24695.10 25299.60 30796.97 19499.79 11598.99 273
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25299.80 998.33 7099.91 6299.56 2999.95 3099.97 4
GDP-MVS97.50 23697.11 25598.67 18499.02 22696.85 23098.16 15999.71 3698.32 14398.52 23198.54 26283.39 37799.95 2498.79 7799.56 21699.19 241
MSDG97.71 22397.52 23098.28 23998.91 24696.82 23194.42 39399.37 14297.65 19698.37 24598.29 29397.40 14899.33 37494.09 32999.22 27898.68 324
BP-MVS197.40 24896.97 26198.71 18199.07 21396.81 23298.34 14497.18 35498.58 12798.17 25598.61 25584.01 37399.94 3798.97 6699.78 12099.37 190
MVP-Stereo98.08 19297.92 20298.57 20198.96 23596.79 23397.90 19999.18 21696.41 28898.46 23598.95 18995.93 22999.60 30796.51 24198.98 31299.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP5-MVS96.79 233
HQP-MVS97.00 27996.49 29498.55 20698.67 29496.79 23396.29 32399.04 24496.05 30095.55 37896.84 36193.84 28499.54 33192.82 35899.26 27299.32 210
UnsupCasMVSNet_bld97.30 25596.92 26598.45 22099.28 16296.78 23696.20 32899.27 19195.42 32298.28 25098.30 29293.16 29399.71 25594.99 30097.37 38198.87 295
MVS_030497.44 24497.01 26098.72 18096.42 41096.74 23797.20 27491.97 41098.46 13698.30 24698.79 22192.74 30499.91 6299.30 4399.94 3899.52 124
mvsmamba97.57 23497.26 24598.51 21298.69 28996.73 23898.74 9297.25 35397.03 25997.88 28099.23 11990.95 32299.87 10896.61 22799.00 30898.91 289
DELS-MVS98.27 17498.20 17098.48 21798.86 25596.70 23995.60 35899.20 20897.73 19198.45 23698.71 23397.50 14199.82 17398.21 11399.59 20498.93 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR96.82 28796.32 29898.30 23799.07 21396.69 24097.48 25298.76 29395.81 31196.61 35496.47 36994.12 28199.17 38990.82 39097.78 36999.06 259
balanced_conf0398.63 12598.72 9298.38 22898.66 29996.68 24198.90 8099.42 12798.99 9798.97 15899.19 12495.81 23399.85 12898.77 8199.77 12698.60 329
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24297.97 19299.86 1598.22 15399.88 1799.71 1998.59 5099.84 14699.73 1899.98 1299.98 3
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24297.79 21399.82 2498.21 15499.81 2499.53 5898.46 6099.84 14699.70 2199.97 1999.90 13
MVSMamba_PlusPlus98.83 8798.98 6798.36 23199.32 15596.58 24498.90 8099.41 13199.75 898.72 20199.50 6296.17 21299.94 3799.27 4599.78 12098.57 333
Patchmtry97.35 25196.97 26198.50 21697.31 39196.47 24598.18 15598.92 26398.95 10398.78 19299.37 8485.44 36299.85 12895.96 27199.83 9299.17 248
EI-MVSNet-Vis-set98.68 11698.70 9898.63 19099.09 20996.40 24697.23 27098.86 27799.20 6599.18 13098.97 18297.29 15499.85 12898.72 8599.78 12099.64 66
EI-MVSNet-UG-set98.69 11198.71 9598.62 19199.10 20696.37 24797.23 27098.87 27299.20 6599.19 12698.99 17697.30 15299.85 12898.77 8199.79 11599.65 65
test_vis1_rt97.75 22097.72 21697.83 26798.81 26696.35 24897.30 26599.69 4094.61 34097.87 28198.05 31196.26 21098.32 40998.74 8398.18 35398.82 299
1112_ss97.29 25796.86 26998.58 19899.34 15396.32 24996.75 29999.58 5993.14 36796.89 34297.48 34492.11 31299.86 11696.91 19799.54 22299.57 96
v899.01 6499.16 4898.57 20199.47 12496.31 25098.90 8099.47 10799.03 9499.52 6399.57 4596.93 17499.81 18799.60 2599.98 1299.60 79
原ACMM198.35 23298.90 24796.25 25198.83 28592.48 37696.07 36998.10 30695.39 24699.71 25592.61 36598.99 31099.08 256
v1098.97 7099.11 5498.55 20699.44 12996.21 25298.90 8099.55 7798.73 11499.48 7099.60 4196.63 19499.83 16399.70 2199.99 599.61 78
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18699.71 4596.10 25397.87 20499.85 1798.56 13199.90 1299.68 2298.69 4199.85 12899.72 2099.98 1299.97 4
FMVSNet596.01 31295.20 33198.41 22597.53 38096.10 25398.74 9299.50 9097.22 24998.03 27299.04 16069.80 40899.88 9197.27 17099.71 15899.25 226
Vis-MVSNet (Re-imp)97.46 24197.16 25198.34 23399.55 9396.10 25398.94 7798.44 31598.32 14398.16 25898.62 25388.76 33799.73 24793.88 33599.79 11599.18 244
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19499.55 9396.09 25697.74 22199.81 2598.55 13299.85 1999.55 5298.60 4999.84 14699.69 2399.98 1299.89 14
CHOSEN 1792x268897.49 23997.14 25498.54 20999.68 5696.09 25696.50 31099.62 5291.58 38498.84 18598.97 18292.36 30899.88 9196.76 21499.95 3099.67 59
SSC-MVS98.71 10498.74 8898.62 19199.72 4296.08 25898.74 9298.64 30699.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27499.82 27
v14419298.54 14098.57 11898.45 22099.21 17895.98 25997.63 23599.36 14697.15 25499.32 10699.18 12895.84 23299.84 14699.50 3499.91 6199.54 113
ambc98.24 24298.82 26495.97 26098.62 10799.00 25499.27 11299.21 12196.99 17299.50 34396.55 23899.50 23899.26 225
v114498.60 13098.66 10498.41 22599.36 14795.90 26197.58 24299.34 15797.51 21199.27 11299.15 13896.34 20899.80 19499.47 3699.93 4399.51 127
v119298.60 13098.66 10498.41 22599.27 16495.88 26297.52 24899.36 14697.41 22499.33 10099.20 12396.37 20699.82 17399.57 2799.92 5499.55 109
PMMVS96.51 29695.98 30398.09 25097.53 38095.84 26394.92 37998.84 28191.58 38496.05 37095.58 38495.68 23699.66 28695.59 28998.09 36098.76 313
FMVSNet397.50 23697.24 24798.29 23898.08 35295.83 26497.86 20598.91 26597.89 18198.95 16298.95 18987.06 34799.81 18797.77 14499.69 16899.23 231
v2v48298.56 13498.62 11098.37 23099.42 13595.81 26597.58 24299.16 22397.90 18099.28 11099.01 17295.98 22599.79 20799.33 4199.90 6799.51 127
CL-MVSNet_self_test97.44 24497.22 24898.08 25398.57 31395.78 26694.30 39698.79 28996.58 28198.60 21798.19 30094.74 26699.64 29496.41 24798.84 32098.82 299
v192192098.54 14098.60 11598.38 22899.20 18295.76 26797.56 24499.36 14697.23 24699.38 9199.17 13296.02 21899.84 14699.57 2799.90 6799.54 113
WB-MVS98.52 14598.55 11998.43 22399.65 6395.59 26898.52 11898.77 29299.65 1899.52 6399.00 17594.34 27499.93 4498.65 9098.83 32199.76 42
test_f98.67 11998.87 7698.05 25799.72 4295.59 26898.51 12399.81 2596.30 29499.78 2799.82 596.14 21398.63 40699.82 799.93 4399.95 8
v124098.55 13898.62 11098.32 23499.22 17695.58 27097.51 25099.45 11497.16 25299.45 7899.24 11596.12 21599.85 12899.60 2599.88 7399.55 109
testgi98.32 16798.39 14698.13 24999.57 8195.54 27197.78 21499.49 9797.37 22899.19 12697.65 33498.96 2499.49 34696.50 24298.99 31099.34 203
Patchmatch-RL test97.26 25897.02 25997.99 26199.52 10395.53 27296.13 33399.71 3697.47 21599.27 11299.16 13484.30 37199.62 30097.89 13499.77 12698.81 303
CANet97.87 20997.76 21198.19 24597.75 36495.51 27396.76 29899.05 24197.74 19096.93 33598.21 29895.59 23999.89 7997.86 13999.93 4399.19 241
EPNet96.14 30995.44 32198.25 24090.76 42595.50 27497.92 19694.65 39298.97 10092.98 40898.85 21089.12 33699.87 10895.99 26999.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res96.99 28096.55 29198.31 23699.35 15195.47 27595.84 35199.53 8491.51 38696.80 34798.48 27491.36 31999.83 16396.58 22999.53 22699.62 70
diffmvspermissive98.22 18098.24 16798.17 24699.00 22895.44 27696.38 31799.58 5997.79 18898.53 22998.50 27196.76 18799.74 24297.95 13399.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 18298.21 16998.20 24499.51 10595.43 27798.13 16299.32 16496.16 29798.93 17098.82 21696.00 22099.83 16397.32 16899.73 14599.36 197
testdata98.09 25098.93 23995.40 27898.80 28890.08 39897.45 31498.37 28495.26 24899.70 25993.58 34398.95 31599.17 248
mvs5depth99.30 2999.59 998.44 22299.65 6395.35 27999.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
mvsany_test197.60 23097.54 22897.77 27297.72 36595.35 27995.36 36897.13 35794.13 35399.71 3499.33 9597.93 10599.30 37897.60 15598.94 31698.67 325
PatchT96.65 29296.35 29697.54 29797.40 38895.32 28197.98 18996.64 37099.33 5196.89 34299.42 7784.32 37099.81 18797.69 15197.49 37497.48 390
FE-MVS95.66 32494.95 33797.77 27298.53 31895.28 28299.40 1696.09 37893.11 36897.96 27599.26 11079.10 39599.77 22492.40 36798.71 32998.27 356
test_yl96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
DCV-MVSNet96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
sss97.21 26396.93 26398.06 25598.83 26195.22 28596.75 29998.48 31494.49 34297.27 32397.90 32192.77 30399.80 19496.57 23199.32 26099.16 251
MSLP-MVS++98.02 19598.14 18097.64 28698.58 31195.19 28697.48 25299.23 20497.47 21597.90 27898.62 25397.04 16798.81 40397.55 15699.41 24898.94 284
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24399.73 3695.15 28797.36 26099.68 4594.45 34698.99 15399.27 10696.87 17799.94 3797.13 18199.91 6199.57 96
PAPR95.29 33194.47 34297.75 27697.50 38695.14 28894.89 38098.71 30191.39 38895.35 38595.48 38994.57 26899.14 39284.95 40897.37 38198.97 277
pmmvs597.64 22897.49 23298.08 25399.14 20095.12 28996.70 30299.05 24193.77 35998.62 21398.83 21393.23 29199.75 23798.33 10999.76 13899.36 197
Anonymous2024052198.69 11198.87 7698.16 24899.77 2695.11 29099.08 5899.44 11899.34 5099.33 10099.55 5294.10 28299.94 3799.25 4899.96 2399.42 168
test_fmvs399.12 5499.41 2198.25 24099.76 2995.07 29199.05 6499.94 297.78 18999.82 2199.84 398.56 5499.71 25599.96 199.96 2399.97 4
v14898.45 15198.60 11598.00 26099.44 12994.98 29297.44 25699.06 23898.30 14599.32 10698.97 18296.65 19399.62 30098.37 10599.85 8199.39 181
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25599.44 12994.96 29396.63 30599.15 22898.35 13998.83 18699.11 14494.31 27599.85 12896.60 22898.72 32799.37 190
new_pmnet96.99 28096.76 27797.67 28298.72 27794.89 29495.95 34398.20 32692.62 37598.55 22698.54 26294.88 25999.52 33793.96 33299.44 24698.59 332
HY-MVS95.94 1395.90 31695.35 32697.55 29697.95 35694.79 29598.81 9196.94 36492.28 37995.17 38698.57 26089.90 33199.75 23791.20 38397.33 38598.10 363
FA-MVS(test-final)96.99 28096.82 27397.50 30198.70 28494.78 29699.34 2096.99 36095.07 33098.48 23499.33 9588.41 34499.65 29196.13 26698.92 31898.07 365
patch_mono-298.51 14698.63 10898.17 24699.38 14094.78 29697.36 26099.69 4098.16 16498.49 23399.29 10397.06 16699.97 598.29 11099.91 6199.76 42
D2MVS97.84 21697.84 20897.83 26799.14 20094.74 29896.94 28798.88 27095.84 31098.89 17598.96 18594.40 27299.69 26397.55 15699.95 3099.05 260
EI-MVSNet98.40 15698.51 12498.04 25899.10 20694.73 29997.20 27498.87 27298.97 10099.06 14099.02 16396.00 22099.80 19498.58 9399.82 9599.60 79
MVS_Test98.18 18598.36 15097.67 28298.48 32194.73 29998.18 15599.02 24997.69 19398.04 27199.11 14497.22 15999.56 32298.57 9598.90 31998.71 317
IterMVS-LS98.55 13898.70 9898.09 25099.48 12294.73 29997.22 27399.39 13698.97 10099.38 9199.31 10096.00 22099.93 4498.58 9399.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet96.62 29496.25 30297.71 28199.04 22294.66 30299.16 5196.92 36597.23 24697.87 28199.10 14786.11 35699.65 29191.65 37499.21 28198.82 299
CANet_DTU97.26 25897.06 25797.84 26697.57 37594.65 30396.19 32998.79 28997.23 24695.14 38798.24 29593.22 29299.84 14697.34 16799.84 8599.04 264
WTY-MVS96.67 29196.27 30197.87 26598.81 26694.61 30496.77 29797.92 33694.94 33497.12 32697.74 32991.11 32199.82 17393.89 33498.15 35799.18 244
PMMVS298.07 19398.08 18698.04 25899.41 13794.59 30594.59 39099.40 13497.50 21298.82 18998.83 21396.83 18099.84 14697.50 16199.81 9999.71 49
Syy-MVS96.04 31195.56 31797.49 30297.10 39694.48 30696.18 33096.58 37195.65 31494.77 39092.29 41791.27 32099.36 36898.17 11798.05 36498.63 327
ET-MVSNet_ETH3D94.30 34893.21 35897.58 29198.14 34894.47 30794.78 38293.24 40594.72 33889.56 41695.87 38078.57 39899.81 18796.91 19797.11 38998.46 337
testing393.51 36092.09 37097.75 27698.60 30694.40 30897.32 26395.26 38997.56 20696.79 34895.50 38753.57 42699.77 22495.26 29698.97 31399.08 256
thisisatest053095.27 33294.45 34397.74 27899.19 18594.37 30997.86 20590.20 41597.17 25198.22 25397.65 33473.53 40599.90 6896.90 20299.35 25698.95 280
TinyColmap97.89 20597.98 19597.60 28998.86 25594.35 31096.21 32799.44 11897.45 22299.06 14098.88 20497.99 10299.28 38294.38 32299.58 20999.18 244
CR-MVSNet96.28 30595.95 30497.28 31297.71 36894.22 31198.11 16698.92 26392.31 37896.91 33899.37 8485.44 36299.81 18797.39 16597.36 38397.81 377
RPMNet97.02 27696.93 26397.30 31197.71 36894.22 31198.11 16699.30 17799.37 4696.91 33899.34 9386.72 34999.87 10897.53 15997.36 38397.81 377
MVSTER96.86 28496.55 29197.79 27097.91 35994.21 31397.56 24498.87 27297.49 21499.06 14099.05 15880.72 38699.80 19498.44 10299.82 9599.37 190
DeepMVS_CXcopyleft93.44 39698.24 34194.21 31394.34 39564.28 42091.34 41494.87 40289.45 33592.77 42177.54 41993.14 41493.35 416
test_vis1_n98.31 16998.50 12697.73 28099.76 2994.17 31598.68 10299.91 996.31 29299.79 2699.57 4592.85 30299.42 36199.79 1299.84 8599.60 79
GA-MVS95.86 31795.32 32797.49 30298.60 30694.15 31693.83 40397.93 33595.49 32096.68 35097.42 34883.21 37899.30 37896.22 25898.55 34299.01 268
ttmdpeth97.91 20298.02 19197.58 29198.69 28994.10 31798.13 16298.90 26697.95 17497.32 32299.58 4395.95 22898.75 40496.41 24799.22 27899.87 18
test_fmvs298.70 10898.97 6897.89 26499.54 9894.05 31898.55 11499.92 796.78 27299.72 3299.78 1096.60 19599.67 27599.91 299.90 6799.94 9
BH-RMVSNet96.83 28596.58 29097.58 29198.47 32294.05 31896.67 30397.36 34896.70 27797.87 28197.98 31595.14 25199.44 35890.47 39298.58 34199.25 226
cl____97.02 27696.83 27297.58 29197.82 36294.04 32094.66 38699.16 22397.04 25798.63 21198.71 23388.68 34099.69 26397.00 18999.81 9999.00 272
DIV-MVS_self_test97.02 27696.84 27197.58 29197.82 36294.03 32194.66 38699.16 22397.04 25798.63 21198.71 23388.69 33899.69 26397.00 18999.81 9999.01 268
MVS93.19 36692.09 37096.50 34496.91 39994.03 32198.07 17298.06 33368.01 41994.56 39596.48 36895.96 22799.30 37883.84 41096.89 39296.17 406
JIA-IIPM95.52 32895.03 33497.00 32496.85 40194.03 32196.93 28995.82 38399.20 6594.63 39499.71 1983.09 37999.60 30794.42 31894.64 40997.36 394
baseline195.96 31595.44 32197.52 29998.51 32093.99 32498.39 13896.09 37898.21 15498.40 24497.76 32886.88 34899.63 29795.42 29389.27 41898.95 280
TR-MVS95.55 32795.12 33396.86 33597.54 37893.94 32596.49 31196.53 37394.36 34997.03 33396.61 36594.26 27799.16 39086.91 40596.31 39897.47 391
jason97.45 24397.35 24197.76 27599.24 17193.93 32695.86 34898.42 31794.24 35098.50 23298.13 30294.82 26099.91 6297.22 17399.73 14599.43 165
jason: jason.
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
MVSFormer98.26 17698.43 13997.77 27298.88 25393.89 33099.39 1799.56 7399.11 7698.16 25898.13 30293.81 28699.97 599.26 4699.57 21399.43 165
lupinMVS97.06 27396.86 26997.65 28498.88 25393.89 33095.48 36397.97 33493.53 36298.16 25897.58 33893.81 28699.91 6296.77 21399.57 21399.17 248
tttt051795.64 32594.98 33597.64 28699.36 14793.81 33298.72 9790.47 41498.08 16798.67 20698.34 28873.88 40499.92 5397.77 14499.51 23199.20 236
MS-PatchMatch97.68 22597.75 21297.45 30598.23 34393.78 33397.29 26698.84 28196.10 29998.64 21098.65 24696.04 21799.36 36896.84 20899.14 29199.20 236
RRT-MVS97.88 20797.98 19597.61 28898.15 34793.77 33498.97 7399.64 5099.16 7398.69 20399.42 7791.60 31699.89 7997.63 15298.52 34399.16 251
PVSNet_BlendedMVS97.55 23597.53 22997.60 28998.92 24393.77 33496.64 30499.43 12494.49 34297.62 29799.18 12896.82 18199.67 27594.73 30799.93 4399.36 197
PVSNet_Blended96.88 28396.68 28297.47 30498.92 24393.77 33494.71 38399.43 12490.98 39297.62 29797.36 35296.82 18199.67 27594.73 30799.56 21698.98 274
dcpmvs_298.78 9599.11 5497.78 27199.56 8993.67 33799.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12999.91 6199.68 56
USDC97.41 24797.40 23697.44 30698.94 23793.67 33795.17 37299.53 8494.03 35698.97 15899.10 14795.29 24799.34 37295.84 27999.73 14599.30 217
ETVMVS92.60 37391.08 38297.18 31697.70 37093.65 33996.54 30795.70 38596.51 28294.68 39292.39 41661.80 42399.50 34386.97 40397.41 37998.40 348
test0.0.03 194.51 34393.69 35296.99 32596.05 41493.61 34094.97 37893.49 40296.17 29597.57 30394.88 40082.30 38399.01 39693.60 34294.17 41298.37 352
test_fmvs1_n98.09 19198.28 16097.52 29999.68 5693.47 34198.63 10599.93 595.41 32599.68 4099.64 3491.88 31599.48 34999.82 799.87 7699.62 70
BH-untuned96.83 28596.75 27897.08 32198.74 27493.33 34296.71 30198.26 32396.72 27598.44 23797.37 35195.20 24999.47 35291.89 37097.43 37898.44 343
c3_l97.36 25097.37 23997.31 31098.09 35193.25 34395.01 37799.16 22397.05 25698.77 19598.72 23292.88 30099.64 29496.93 19699.76 13899.05 260
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30899.04 22293.09 34495.27 36998.42 31797.26 23998.88 17898.95 18995.43 24599.73 24797.02 18898.72 32799.41 171
miper_ehance_all_eth97.06 27397.03 25897.16 32097.83 36193.06 34594.66 38699.09 23595.99 30598.69 20398.45 27692.73 30599.61 30696.79 21099.03 30398.82 299
Patchmatch-test96.55 29596.34 29797.17 31898.35 33493.06 34598.40 13797.79 33797.33 23198.41 24098.67 24183.68 37699.69 26395.16 29899.31 26298.77 311
MG-MVS96.77 28896.61 28797.26 31498.31 33793.06 34595.93 34498.12 33196.45 28797.92 27698.73 23093.77 28899.39 36591.19 38499.04 30299.33 208
YYNet197.60 23097.67 21897.39 30999.04 22293.04 34895.27 36998.38 32097.25 24098.92 17198.95 18995.48 24499.73 24796.99 19198.74 32599.41 171
thisisatest051594.12 35293.16 35996.97 32798.60 30692.90 34993.77 40490.61 41394.10 35496.91 33895.87 38074.99 40399.80 19494.52 31399.12 29698.20 358
miper_lstm_enhance97.18 26697.16 25197.25 31598.16 34692.85 35095.15 37499.31 16997.25 24098.74 20098.78 22390.07 32999.78 21897.19 17499.80 11099.11 255
cl2295.79 32095.39 32496.98 32696.77 40392.79 35194.40 39498.53 31194.59 34197.89 27998.17 30182.82 38299.24 38496.37 24999.03 30398.92 286
eth_miper_zixun_eth97.23 26297.25 24697.17 31898.00 35592.77 35294.71 38399.18 21697.27 23898.56 22498.74 22991.89 31499.69 26397.06 18799.81 9999.05 260
131495.74 32195.60 31396.17 35797.53 38092.75 35398.07 17298.31 32291.22 38994.25 39696.68 36495.53 24099.03 39391.64 37597.18 38796.74 401
testing22291.96 38190.37 38596.72 34097.47 38792.59 35496.11 33494.76 39196.83 26992.90 40992.87 41457.92 42499.55 32686.93 40497.52 37398.00 370
PAPM91.88 38390.34 38696.51 34398.06 35392.56 35592.44 41197.17 35586.35 40890.38 41596.01 37586.61 35099.21 38770.65 42195.43 40697.75 381
pmmvs395.03 33794.40 34496.93 32897.70 37092.53 35695.08 37597.71 34088.57 40497.71 29298.08 30979.39 39399.82 17396.19 26099.11 29798.43 345
xiu_mvs_v2_base97.16 26897.49 23296.17 35798.54 31692.46 35795.45 36498.84 28197.25 24097.48 31196.49 36798.31 7199.90 6896.34 25298.68 33496.15 408
PS-MVSNAJ97.08 27297.39 23796.16 35998.56 31492.46 35795.24 37198.85 28097.25 24097.49 31095.99 37698.07 9399.90 6896.37 24998.67 33596.12 409
test_fmvs197.72 22297.94 20097.07 32398.66 29992.39 35997.68 22799.81 2595.20 32999.54 5799.44 7591.56 31899.41 36299.78 1499.77 12699.40 180
gg-mvs-nofinetune92.37 37791.20 38195.85 36395.80 41892.38 36099.31 2781.84 42499.75 891.83 41399.74 1568.29 41099.02 39487.15 40297.12 38896.16 407
cascas94.79 34194.33 34796.15 36096.02 41692.36 36192.34 41299.26 19685.34 41195.08 38894.96 39992.96 29998.53 40794.41 32198.59 34097.56 389
test_cas_vis1_n_192098.33 16698.68 10197.27 31399.69 5492.29 36298.03 17899.85 1797.62 19899.96 499.62 3693.98 28399.74 24299.52 3399.86 8099.79 32
miper_enhance_ethall96.01 31295.74 30796.81 33696.41 41192.27 36393.69 40598.89 26991.14 39198.30 24697.35 35390.58 32699.58 31796.31 25399.03 30398.60 329
new-patchmatchnet98.35 16298.74 8897.18 31699.24 17192.23 36496.42 31599.48 9998.30 14599.69 3899.53 5897.44 14699.82 17398.84 7599.77 12699.49 134
GG-mvs-BLEND94.76 38194.54 42092.13 36599.31 2780.47 42588.73 41991.01 41967.59 41498.16 41282.30 41594.53 41193.98 415
mvs_anonymous97.83 21898.16 17796.87 33298.18 34591.89 36697.31 26498.90 26697.37 22898.83 18699.46 7096.28 20999.79 20798.90 7098.16 35698.95 280
ADS-MVSNet295.43 33094.98 33596.76 33998.14 34891.74 36797.92 19697.76 33890.23 39496.51 35898.91 19485.61 35999.85 12892.88 35696.90 39098.69 321
MVStest195.86 31795.60 31396.63 34195.87 41791.70 36897.93 19398.94 25798.03 16899.56 5399.66 2971.83 40698.26 41099.35 4099.24 27499.91 12
MVEpermissive83.40 2292.50 37491.92 37694.25 38598.83 26191.64 36992.71 40983.52 42395.92 30886.46 42195.46 39095.20 24995.40 41980.51 41698.64 33695.73 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view794.45 34493.83 35096.29 35099.06 21891.53 37097.99 18894.24 39898.34 14097.44 31595.01 39679.84 38999.67 27584.33 40998.23 35097.66 385
DSMNet-mixed97.42 24697.60 22696.87 33299.15 19991.46 37198.54 11699.12 23092.87 37297.58 30199.63 3596.21 21199.90 6895.74 28299.54 22299.27 222
tfpn200view994.03 35393.44 35595.78 36598.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36196.29 404
thres40094.14 35193.44 35596.24 35398.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36197.66 385
thres100view90094.19 34993.67 35395.75 36699.06 21891.35 37498.03 17894.24 39898.33 14197.40 31794.98 39879.84 38999.62 30083.05 41198.08 36196.29 404
BH-w/o95.13 33594.89 33995.86 36298.20 34491.31 37595.65 35697.37 34793.64 36096.52 35795.70 38393.04 29899.02 39488.10 40095.82 40497.24 395
thres20093.72 35893.14 36095.46 37498.66 29991.29 37696.61 30694.63 39397.39 22696.83 34593.71 40879.88 38899.56 32282.40 41498.13 35895.54 413
baseline293.73 35792.83 36396.42 34697.70 37091.28 37796.84 29489.77 41693.96 35892.44 41195.93 37879.14 39499.77 22492.94 35496.76 39498.21 357
testing9193.32 36392.27 36796.47 34597.54 37891.25 37896.17 33296.76 36897.18 25093.65 40693.50 41065.11 42099.63 29793.04 35397.45 37698.53 334
IB-MVS91.63 1992.24 37990.90 38396.27 35197.22 39391.24 37994.36 39593.33 40492.37 37792.24 41294.58 40466.20 41899.89 7993.16 35294.63 41097.66 385
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test97.50 23697.74 21396.78 33898.70 28491.23 38094.55 39199.05 24196.36 28999.21 12498.79 22196.39 20399.78 21896.74 21699.82 9599.34 203
IterMVS-SCA-FT97.85 21598.18 17396.87 33299.27 16491.16 38195.53 36099.25 19799.10 8399.41 8599.35 8993.10 29599.96 1298.65 9099.94 3899.49 134
MonoMVSNet96.25 30696.53 29395.39 37596.57 40691.01 38298.82 9097.68 34298.57 12898.03 27299.37 8490.92 32397.78 41394.99 30093.88 41397.38 393
dmvs_testset92.94 37092.21 36995.13 37898.59 30990.99 38397.65 23392.09 40996.95 26294.00 40193.55 40992.34 30996.97 41772.20 42092.52 41597.43 392
WAC-MVS90.90 38491.37 380
myMVS_eth3d91.92 38290.45 38496.30 34997.10 39690.90 38496.18 33096.58 37195.65 31494.77 39092.29 41753.88 42599.36 36889.59 39698.05 36498.63 327
testing1193.08 36892.02 37296.26 35297.56 37690.83 38696.32 32195.70 38596.47 28692.66 41093.73 40764.36 42199.59 31193.77 33997.57 37298.37 352
test_vis1_n_192098.40 15698.92 7196.81 33699.74 3590.76 38798.15 16099.91 998.33 14199.89 1599.55 5295.07 25399.88 9199.76 1599.93 4399.79 32
testing9993.04 36991.98 37596.23 35497.53 38090.70 38896.35 31995.94 38196.87 26793.41 40793.43 41163.84 42299.59 31193.24 35197.19 38698.40 348
WB-MVSnew95.73 32295.57 31696.23 35496.70 40490.70 38896.07 33693.86 40195.60 31697.04 33195.45 39396.00 22099.55 32691.04 38598.31 34898.43 345
IterMVS97.73 22198.11 18296.57 34299.24 17190.28 39095.52 36299.21 20698.86 10999.33 10099.33 9593.11 29499.94 3798.49 10099.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UBG93.25 36592.32 36696.04 36197.72 36590.16 39195.92 34695.91 38296.03 30393.95 40393.04 41369.60 40999.52 33790.72 39197.98 36798.45 340
ADS-MVSNet95.24 33394.93 33896.18 35698.14 34890.10 39297.92 19697.32 35190.23 39496.51 35898.91 19485.61 35999.74 24292.88 35696.90 39098.69 321
our_test_397.39 24997.73 21596.34 34898.70 28489.78 39394.61 38998.97 25696.50 28399.04 14798.85 21095.98 22599.84 14697.26 17199.67 17999.41 171
WBMVS95.18 33494.78 34096.37 34797.68 37389.74 39495.80 35298.73 29997.54 20998.30 24698.44 27770.06 40799.82 17396.62 22699.87 7699.54 113
KD-MVS_2432*160092.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
miper_refine_blended92.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
PVSNet93.40 1795.67 32395.70 30995.57 37098.83 26188.57 39792.50 41097.72 33992.69 37496.49 36196.44 37093.72 28999.43 35993.61 34199.28 26898.71 317
tpm94.67 34294.34 34695.66 36897.68 37388.42 39897.88 20194.90 39094.46 34496.03 37198.56 26178.66 39699.79 20795.88 27395.01 40898.78 310
SCA96.41 30296.66 28595.67 36798.24 34188.35 39995.85 35096.88 36696.11 29897.67 29598.67 24193.10 29599.85 12894.16 32499.22 27898.81 303
CHOSEN 280x42095.51 32995.47 31895.65 36998.25 34088.27 40093.25 40798.88 27093.53 36294.65 39397.15 35786.17 35499.93 4497.41 16499.93 4398.73 316
ECVR-MVScopyleft96.42 30196.61 28795.85 36399.38 14088.18 40199.22 4286.00 42199.08 8899.36 9599.57 4588.47 34399.82 17398.52 9999.95 3099.54 113
EPMVS93.72 35893.27 35795.09 38096.04 41587.76 40298.13 16285.01 42294.69 33996.92 33698.64 24978.47 40099.31 37695.04 29996.46 39698.20 358
EPNet_dtu94.93 34094.78 34095.38 37693.58 42187.68 40396.78 29695.69 38797.35 23089.14 41898.09 30888.15 34599.49 34694.95 30399.30 26598.98 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 32695.67 31195.30 37797.34 39087.32 40497.65 23396.65 36995.30 32697.07 32998.69 23784.77 36599.75 23794.97 30298.64 33698.83 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111196.49 29996.82 27395.52 37199.42 13587.08 40599.22 4287.14 41999.11 7699.46 7599.58 4388.69 33899.86 11698.80 7699.95 3099.62 70
tpm293.09 36792.58 36594.62 38297.56 37686.53 40697.66 23195.79 38486.15 40994.07 40098.23 29775.95 40199.53 33390.91 38896.86 39397.81 377
tpmvs95.02 33895.25 32894.33 38496.39 41285.87 40798.08 17096.83 36795.46 32195.51 38398.69 23785.91 35799.53 33394.16 32496.23 39997.58 388
EU-MVSNet97.66 22798.50 12695.13 37899.63 7385.84 40898.35 14298.21 32598.23 15299.54 5799.46 7095.02 25499.68 27298.24 11199.87 7699.87 18
CostFormer93.97 35493.78 35194.51 38397.53 38085.83 40997.98 18995.96 38089.29 40294.99 38998.63 25178.63 39799.62 30094.54 31296.50 39598.09 364
E-PMN94.17 35094.37 34593.58 39496.86 40085.71 41090.11 41697.07 35898.17 16197.82 28797.19 35584.62 36798.94 39889.77 39497.68 37196.09 410
EMVS93.83 35694.02 34893.23 39896.83 40284.96 41189.77 41796.32 37597.92 17897.43 31696.36 37386.17 35498.93 39987.68 40197.73 37095.81 411
tpm cat193.29 36493.13 36193.75 39297.39 38984.74 41297.39 25797.65 34383.39 41494.16 39798.41 27982.86 38199.39 36591.56 37795.35 40797.14 396
UWE-MVS92.38 37691.76 37994.21 38797.16 39484.65 41395.42 36688.45 41895.96 30696.17 36595.84 38266.36 41699.71 25591.87 37198.64 33698.28 355
test-LLR93.90 35593.85 34994.04 38896.53 40784.62 41494.05 40092.39 40796.17 29594.12 39895.07 39482.30 38399.67 27595.87 27698.18 35397.82 375
test-mter92.33 37891.76 37994.04 38896.53 40784.62 41494.05 40092.39 40794.00 35794.12 39895.07 39465.63 41999.67 27595.87 27698.18 35397.82 375
tpmrst95.07 33695.46 31993.91 39097.11 39584.36 41697.62 23696.96 36294.98 33296.35 36398.80 21985.46 36199.59 31195.60 28896.23 39997.79 380
PVSNet_089.98 2191.15 38490.30 38793.70 39397.72 36584.34 41790.24 41497.42 34690.20 39793.79 40493.09 41290.90 32498.89 40286.57 40672.76 42197.87 374
reproduce_monomvs95.00 33995.25 32894.22 38697.51 38583.34 41897.86 20598.44 31598.51 13399.29 10999.30 10167.68 41399.56 32298.89 7299.81 9999.77 37
MDTV_nov1_ep1395.22 33097.06 39883.20 41997.74 22196.16 37694.37 34896.99 33498.83 21383.95 37499.53 33393.90 33397.95 368
TESTMET0.1,192.19 38091.77 37893.46 39596.48 40982.80 42094.05 40091.52 41294.45 34694.00 40194.88 40066.65 41599.56 32295.78 28198.11 35998.02 367
test250692.39 37591.89 37793.89 39199.38 14082.28 42199.32 2366.03 42799.08 8898.77 19599.57 4566.26 41799.84 14698.71 8699.95 3099.54 113
gm-plane-assit94.83 41981.97 42288.07 40694.99 39799.60 30791.76 372
dp93.47 36193.59 35493.13 39996.64 40581.62 42397.66 23196.42 37492.80 37396.11 36798.64 24978.55 39999.59 31193.31 34992.18 41798.16 360
CVMVSNet96.25 30697.21 24993.38 39799.10 20680.56 42497.20 27498.19 32896.94 26399.00 15299.02 16389.50 33499.80 19496.36 25199.59 20499.78 35
MVS-HIRNet94.32 34695.62 31290.42 40198.46 32475.36 42596.29 32389.13 41795.25 32795.38 38499.75 1392.88 30099.19 38894.07 33099.39 25096.72 402
MDTV_nov1_ep13_2view74.92 42697.69 22690.06 39997.75 29185.78 35893.52 34498.69 321
tmp_tt78.77 38778.73 39078.90 40358.45 42874.76 42794.20 39778.26 42639.16 42186.71 42092.82 41580.50 38775.19 42386.16 40792.29 41686.74 417
dongtai76.24 38875.95 39177.12 40492.39 42267.91 42890.16 41559.44 42982.04 41589.42 41794.67 40349.68 42781.74 42248.06 42277.66 42081.72 418
kuosan69.30 38968.95 39270.34 40587.68 42665.00 42991.11 41359.90 42869.02 41874.46 42388.89 42048.58 42868.03 42428.61 42372.33 42277.99 419
test_method79.78 38679.50 38980.62 40280.21 42745.76 43070.82 41898.41 31931.08 42280.89 42297.71 33084.85 36497.37 41591.51 37880.03 41998.75 314
test12317.04 39220.11 3957.82 40610.25 4304.91 43194.80 3814.47 4314.93 42410.00 42624.28 4239.69 4293.64 42510.14 42412.43 42414.92 421
testmvs17.12 39120.53 3946.87 40712.05 4294.20 43293.62 4066.73 4304.62 42510.41 42524.33 4228.28 4303.56 4269.69 42515.07 42312.86 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.66 39032.88 3930.00 4080.00 4310.00 4330.00 41999.10 2330.00 4260.00 42797.58 33899.21 160.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.17 39310.90 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42698.07 930.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.12 39410.83 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.48 3440.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145293.27 36599.40 8898.54 26298.22 8097.00 41695.17 29799.45 24399.49 134
eth-test20.00 431
eth-test0.00 431
test_241102_TWO99.30 17798.03 16899.26 11699.02 16397.51 14099.88 9196.91 19799.60 20099.66 60
9.1497.78 21099.07 21397.53 24799.32 16495.53 31998.54 22898.70 23697.58 13199.76 23094.32 32399.46 241
test_0728_THIRD98.17 16199.08 13899.02 16397.89 10699.88 9197.07 18599.71 15899.70 54
GSMVS98.81 303
sam_mvs184.74 36698.81 303
sam_mvs84.29 372
MTGPAbinary99.20 208
test_post197.59 24120.48 42583.07 38099.66 28694.16 324
test_post21.25 42483.86 37599.70 259
patchmatchnet-post98.77 22584.37 36999.85 128
MTMP97.93 19391.91 411
test9_res93.28 35099.15 29099.38 188
agg_prior292.50 36699.16 28899.37 190
test_prior295.74 35496.48 28596.11 36797.63 33695.92 23094.16 32499.20 282
旧先验295.76 35388.56 40597.52 30799.66 28694.48 314
新几何295.93 344
无先验95.74 35498.74 29889.38 40199.73 24792.38 36899.22 235
原ACMM295.53 360
testdata299.79 20792.80 360
segment_acmp97.02 170
testdata195.44 36596.32 291
plane_prior599.27 19199.70 25994.42 31899.51 23199.45 157
plane_prior497.98 315
plane_prior297.77 21698.20 158
plane_prior199.05 221
n20.00 432
nn0.00 432
door-mid99.57 66
test1198.87 272
door99.41 131
HQP-NCC98.67 29496.29 32396.05 30095.55 378
ACMP_Plane98.67 29496.29 32396.05 30095.55 378
BP-MVS92.82 358
HQP4-MVS95.56 37799.54 33199.32 210
HQP3-MVS99.04 24499.26 272
HQP2-MVS93.84 284
ACMMP++_ref99.77 126
ACMMP++99.68 173
Test By Simon96.52 198