This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 3399.45 1899.46 1697.88 199.94 598.47 2899.86 199.85 5
PC_three_145295.08 14899.60 1299.16 6797.86 298.47 26597.52 8899.72 4799.74 31
DVP-MVS++99.08 298.89 399.64 399.17 9199.23 799.69 198.88 5497.32 3399.53 1699.47 1397.81 399.94 598.47 2899.72 4799.74 31
OPU-MVS99.37 2099.24 8499.05 1499.02 7499.16 6797.81 399.37 16097.24 9799.73 4499.70 47
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8698.43 3399.10 5898.87 6197.38 3099.35 2499.40 2197.78 599.87 4897.77 6799.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.66 2699.25 298.86 6797.55 2099.20 3099.47 1397.57 6
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6197.65 1499.73 499.48 1197.53 799.94 598.43 3299.81 1299.70 47
test_241102_ONE99.71 1999.24 598.87 6197.62 1699.73 499.39 2297.53 799.74 101
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8498.58 14097.62 1699.45 1899.46 1697.42 999.94 598.47 2899.81 1299.69 50
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 5497.62 1699.56 1399.50 897.42 9
test_241102_TWO98.87 6197.65 1499.53 1699.48 1197.34 1199.94 598.43 3299.80 1999.83 8
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 19298.91 4897.58 1999.54 1599.46 1697.10 1299.94 597.64 7799.84 1099.83 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 18498.81 7897.72 1098.76 5899.16 6797.05 1399.78 9198.06 4799.66 5699.69 50
segment_acmp96.85 14
patch_mono-298.36 4398.87 496.82 20299.53 3690.68 30498.64 15999.29 997.88 899.19 3299.52 496.80 1599.97 199.11 699.86 199.82 11
MCST-MVS98.65 1298.37 2399.48 1399.60 3198.87 1998.41 19398.68 11597.04 5398.52 7598.80 11896.78 1699.83 5997.93 5499.61 6799.74 31
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 4297.38 3099.41 2099.54 296.66 1799.84 5798.86 1199.85 599.87 2
NCCC98.61 1598.35 2699.38 1899.28 7498.61 2698.45 18598.76 9697.82 998.45 7998.93 10496.65 1899.83 5997.38 9499.41 9799.71 43
SD-MVS98.64 1398.68 898.53 7999.33 5798.36 4098.90 9798.85 7097.28 3699.72 699.39 2296.63 1997.60 33398.17 4299.85 599.64 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 4698.06 5099.18 4199.15 9798.12 5499.04 6899.09 2493.32 22798.83 5499.10 7696.54 2099.83 5997.70 7499.76 3499.59 73
SMA-MVScopyleft98.58 2098.25 3899.56 899.51 3999.04 1598.95 9098.80 8593.67 21399.37 2399.52 496.52 2199.89 3998.06 4799.81 1299.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2598.57 1298.55 7599.26 7796.80 9998.71 14599.05 2997.28 3698.84 5299.28 4496.47 2299.40 15898.52 2699.70 5099.47 93
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4998.66 12396.84 6199.56 1399.31 4196.34 2399.70 10998.32 3899.73 4499.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS98.59 1898.32 3499.41 1799.54 3598.71 2299.04 6898.81 7895.12 14399.32 2599.39 2296.22 2499.84 5797.72 7099.73 4499.67 59
TSAR-MVS + GP.98.38 4198.24 4098.81 6299.22 8697.25 8598.11 22898.29 20297.19 4498.99 4399.02 8896.22 2499.67 11698.52 2698.56 13999.51 83
TEST999.31 6298.50 2997.92 24398.73 10392.63 25297.74 12098.68 13296.20 2699.80 78
train_agg97.97 5497.52 6999.33 2699.31 6298.50 2997.92 24398.73 10392.98 24197.74 12098.68 13296.20 2699.80 7896.59 12799.57 7499.68 55
test_899.29 7098.44 3197.89 24998.72 10592.98 24197.70 12498.66 13596.20 2699.80 78
DeepPCF-MVS96.37 297.93 5898.48 1996.30 25299.00 10989.54 32397.43 28298.87 6198.16 599.26 2899.38 2796.12 2999.64 12198.30 3999.77 2899.72 39
HFP-MVS98.63 1498.40 2099.32 2799.72 1298.29 4499.23 3198.96 3796.10 9498.94 4499.17 6496.06 3099.92 2697.62 7899.78 2699.75 29
9.1498.06 5099.47 4798.71 14598.82 7394.36 17699.16 3599.29 4396.05 3199.81 7197.00 10499.71 49
CP-MVS98.57 2398.36 2499.19 3999.66 2697.86 6199.34 1898.87 6195.96 9998.60 7199.13 7296.05 3199.94 597.77 6799.86 199.77 22
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5497.52 2199.41 2098.78 12096.00 3399.79 8897.79 6699.59 7099.85 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_111021_HR98.47 3398.34 2998.88 6199.22 8697.32 7897.91 24599.58 397.20 4398.33 8799.00 9395.99 3499.64 12198.05 4999.76 3499.69 50
test_prior297.80 25796.12 9397.89 11498.69 13195.96 3596.89 11399.60 68
CDPH-MVS97.94 5797.49 7099.28 3199.47 4798.44 3197.91 24598.67 12092.57 25698.77 5798.85 11295.93 3699.72 10395.56 16399.69 5299.68 55
test_fmvsm_n_192098.87 799.01 198.45 8799.42 5496.43 12098.96 8999.36 798.63 299.86 299.51 695.91 3799.97 199.72 299.75 3898.94 164
region2R98.61 1598.38 2299.29 2899.74 798.16 5199.23 3198.93 4296.15 9198.94 4499.17 6495.91 3799.94 597.55 8599.79 2399.78 16
XVS98.70 1198.49 1799.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7699.20 5795.90 3999.89 3997.85 6199.74 4299.78 16
X-MVStestdata94.06 27292.30 29399.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7643.50 38195.90 3999.89 3997.85 6199.74 4299.78 16
dcpmvs_298.08 5298.59 1196.56 22699.57 3390.34 31199.15 4798.38 18496.82 6399.29 2699.49 1095.78 4199.57 13298.94 999.86 199.77 22
CS-MVS98.44 3698.49 1798.31 9999.08 10296.73 10399.67 398.47 16697.17 4598.94 4499.10 7695.73 4299.13 18498.71 1499.49 8899.09 147
ZD-MVS99.46 4998.70 2398.79 9093.21 23298.67 6398.97 9595.70 4399.83 5996.07 14299.58 73
HPM-MVS++copyleft98.58 2098.25 3899.55 999.50 4199.08 1198.72 14498.66 12397.51 2298.15 9098.83 11595.70 4399.92 2697.53 8799.67 5499.66 62
ACMMPR98.59 1898.36 2499.29 2899.74 798.15 5299.23 3198.95 3896.10 9498.93 4899.19 6295.70 4399.94 597.62 7899.79 2399.78 16
旧先验199.29 7097.48 7498.70 11199.09 8295.56 4699.47 9199.61 69
PGM-MVS98.49 3098.23 4199.27 3399.72 1298.08 5598.99 8199.49 595.43 12599.03 3899.32 3995.56 4699.94 596.80 12399.77 2899.78 16
APD-MVScopyleft98.35 4598.00 5399.42 1699.51 3998.72 2198.80 12598.82 7394.52 17199.23 2999.25 5195.54 4899.80 7896.52 13199.77 2899.74 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS98.49 3098.20 4499.35 2299.73 1198.39 3499.19 4298.86 6795.77 10998.31 8999.10 7695.46 4999.93 2197.57 8499.81 1299.74 31
mPP-MVS98.51 2998.26 3799.25 3499.75 398.04 5699.28 2498.81 7896.24 8798.35 8699.23 5295.46 4999.94 597.42 9299.81 1299.77 22
EI-MVSNet-Vis-set98.47 3398.39 2198.69 6699.46 4996.49 11798.30 20498.69 11297.21 4298.84 5299.36 3295.41 5199.78 9198.62 1699.65 5999.80 13
ETV-MVS97.96 5597.81 5698.40 9498.42 15897.27 8098.73 14098.55 14696.84 6198.38 8397.44 25195.39 5299.35 16197.62 7898.89 12198.58 193
SR-MVS98.57 2398.35 2699.24 3599.53 3698.18 4999.09 5998.82 7396.58 7399.10 3799.32 3995.39 5299.82 6697.70 7499.63 6499.72 39
ACMMP_NAP98.61 1598.30 3599.55 999.62 3098.95 1798.82 11798.81 7895.80 10899.16 3599.47 1395.37 5499.92 2697.89 5899.75 3899.79 14
CSCG97.85 6197.74 5998.20 10899.67 2595.16 18199.22 3599.32 893.04 23997.02 15098.92 10695.36 5599.91 3497.43 9199.64 6399.52 80
SR-MVS-dyc-post98.54 2798.35 2699.13 4699.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.34 5699.82 6697.72 7099.65 5999.71 43
DP-MVS Recon97.86 6097.46 7399.06 5199.53 3698.35 4198.33 19798.89 5192.62 25398.05 9698.94 10395.34 5699.65 11996.04 14699.42 9699.19 133
APD-MVS_3200maxsize98.53 2898.33 3399.15 4599.50 4197.92 6099.15 4798.81 7896.24 8799.20 3099.37 2895.30 5899.80 7897.73 6999.67 5499.72 39
RE-MVS-def98.34 2999.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.29 5997.72 7099.65 5999.71 43
GST-MVS98.43 3898.12 4799.34 2399.72 1298.38 3599.09 5998.82 7395.71 11398.73 6199.06 8695.27 6099.93 2197.07 10399.63 6499.72 39
DeepC-MVS_fast96.70 198.55 2698.34 2999.18 4199.25 7898.04 5698.50 18198.78 9297.72 1098.92 4999.28 4495.27 6099.82 6697.55 8599.77 2899.69 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 4997.92 5599.49 1299.72 1298.88 1898.43 19098.78 9294.10 18297.69 12599.42 2095.25 6299.92 2698.09 4699.80 1999.67 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CS-MVS-test98.49 3098.50 1698.46 8699.20 8997.05 9099.64 498.50 16097.45 2698.88 5099.14 7195.25 6299.15 18198.83 1299.56 8099.20 129
EI-MVSNet-UG-set98.41 3998.34 2998.61 7199.45 5296.32 12898.28 20798.68 11597.17 4598.74 5999.37 2895.25 6299.79 8898.57 1799.54 8399.73 36
原ACMM198.65 6999.32 6096.62 10698.67 12093.27 23197.81 11598.97 9595.18 6599.83 5993.84 21799.46 9499.50 85
HPM-MVS_fast98.38 4198.13 4699.12 4899.75 397.86 6199.44 1198.82 7394.46 17498.94 4499.20 5795.16 6699.74 10197.58 8199.85 599.77 22
test1299.18 4199.16 9598.19 4898.53 15098.07 9595.13 6799.72 10399.56 8099.63 67
HPM-MVScopyleft98.36 4398.10 4999.13 4699.74 797.82 6599.53 898.80 8594.63 16698.61 7098.97 9595.13 6799.77 9697.65 7699.83 1199.79 14
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 8096.99 9499.23 3799.04 10498.55 2797.17 30698.35 18894.85 15897.93 11198.58 14395.07 6999.71 10892.60 25199.34 10399.43 102
MVS_111021_LR98.34 4698.23 4198.67 6899.27 7596.90 9697.95 24199.58 397.14 4898.44 8199.01 9295.03 7099.62 12797.91 5699.75 3899.50 85
EIA-MVS97.75 6497.58 6498.27 10198.38 16196.44 11999.01 7698.60 13395.88 10597.26 13997.53 24594.97 7199.33 16397.38 9499.20 10899.05 153
DELS-MVS98.40 4098.20 4498.99 5399.00 10997.66 6797.75 26198.89 5197.71 1298.33 8798.97 9594.97 7199.88 4798.42 3499.76 3499.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 10096.78 10498.44 8999.29 7096.31 13098.14 22398.76 9692.41 26296.39 18098.31 17594.92 7399.78 9194.06 21198.77 12999.23 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA98.58 2098.29 3699.46 1499.76 298.64 2598.90 9798.74 10097.27 4098.02 10199.39 2294.81 7499.96 497.91 5699.79 2399.77 22
Test By Simon94.64 75
新几何199.16 4499.34 5598.01 5898.69 11290.06 32198.13 9198.95 10294.60 7699.89 3991.97 27199.47 9199.59 73
MP-MVScopyleft98.33 4898.01 5299.28 3199.75 398.18 4999.22 3598.79 9096.13 9297.92 11299.23 5294.54 7799.94 596.74 12699.78 2699.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 35510.50 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38794.51 780.00 3880.00 3860.00 3860.00 384
PS-MVSNAJss96.43 13096.26 12796.92 19795.84 32795.08 18699.16 4698.50 16095.87 10693.84 25798.34 17294.51 7898.61 24896.88 11593.45 25697.06 237
PS-MVSNAJ97.73 6597.77 5797.62 15398.68 14095.58 16497.34 29198.51 15597.29 3598.66 6797.88 21294.51 7899.90 3797.87 6099.17 11097.39 229
API-MVS97.41 8997.25 8397.91 12798.70 13796.80 9998.82 11798.69 11294.53 16998.11 9298.28 17794.50 8199.57 13294.12 20899.49 8897.37 231
ACMMPcopyleft98.23 5097.95 5499.09 4999.74 797.62 7099.03 7199.41 695.98 9797.60 13399.36 3294.45 8299.93 2197.14 10098.85 12599.70 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 10399.20 8995.36 17398.68 11591.89 27898.60 7199.10 7694.44 8399.82 6694.27 20399.44 9599.58 77
MVS_030498.47 3398.22 4399.21 3899.00 10997.80 6698.88 10495.32 35398.86 198.53 7499.44 1994.38 8499.94 599.86 199.70 5099.90 1
xiu_mvs_v2_base97.66 7197.70 6097.56 15798.61 14795.46 17097.44 28098.46 16797.15 4798.65 6898.15 18994.33 8599.80 7897.84 6398.66 13497.41 227
mvsany_test197.69 6997.70 6097.66 15198.24 17794.18 23097.53 27797.53 28895.52 12199.66 899.51 694.30 8699.56 13598.38 3598.62 13599.23 126
PAPR96.84 11596.24 12898.65 6998.72 13696.92 9597.36 28998.57 14293.33 22696.67 16597.57 24294.30 8699.56 13591.05 28898.59 13799.47 93
test_fmvsmvis_n_192098.44 3698.51 1598.23 10698.33 17196.15 13598.97 8499.15 2198.55 398.45 7999.55 194.26 8899.97 199.65 399.66 5698.57 194
PAPM_NR97.46 8297.11 8898.50 8199.50 4196.41 12398.63 16198.60 13395.18 14097.06 14898.06 19594.26 8899.57 13293.80 21998.87 12499.52 80
test22299.23 8597.17 8897.40 28398.66 12388.68 33898.05 9698.96 10094.14 9099.53 8499.61 69
EPP-MVSNet97.46 8297.28 8297.99 12398.64 14495.38 17299.33 2198.31 19493.61 21797.19 14199.07 8594.05 9199.23 17196.89 11398.43 14799.37 107
F-COLMAP97.09 10696.80 10197.97 12499.45 5294.95 19498.55 17498.62 13293.02 24096.17 18598.58 14394.01 9299.81 7193.95 21398.90 12099.14 142
TAPA-MVS93.98 795.35 19194.56 20697.74 14199.13 9894.83 20098.33 19798.64 12886.62 34696.29 18298.61 13894.00 9399.29 16680.00 36299.41 9799.09 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6297.60 6398.44 8999.12 9995.97 14597.75 26198.78 9296.89 6098.46 7699.22 5493.90 9499.68 11594.81 18499.52 8599.67 59
EC-MVSNet98.21 5198.11 4898.49 8398.34 16997.26 8499.61 598.43 17596.78 6498.87 5198.84 11393.72 9599.01 20598.91 1099.50 8699.19 133
CDS-MVSNet96.99 10896.69 10997.90 12898.05 19895.98 14098.20 21598.33 19193.67 21396.95 15198.49 15193.54 9698.42 27195.24 17597.74 17299.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 10796.79 10397.70 14598.06 19795.31 17798.52 17698.31 19493.95 19197.05 14998.61 13893.49 9798.52 25995.33 16997.81 16899.29 119
CNLPA97.45 8597.03 9298.73 6499.05 10397.44 7798.07 23098.53 15095.32 13396.80 16298.53 14793.32 9899.72 10394.31 20299.31 10599.02 155
OMC-MVS97.55 8097.34 8098.20 10899.33 5795.92 15298.28 20798.59 13595.52 12197.97 10699.10 7693.28 9999.49 14895.09 17798.88 12299.19 133
UA-Net97.96 5597.62 6298.98 5498.86 12397.47 7598.89 10199.08 2596.67 7098.72 6299.54 293.15 10099.81 7194.87 18098.83 12699.65 63
CPTT-MVS97.72 6697.32 8198.92 5899.64 2897.10 8999.12 5398.81 7892.34 26498.09 9499.08 8493.01 10199.92 2696.06 14599.77 2899.75 29
114514_t96.93 11096.27 12698.92 5899.50 4197.63 6998.85 11198.90 4984.80 35897.77 11699.11 7492.84 10299.66 11894.85 18199.77 2899.47 93
PVSNet_Blended_VisFu97.70 6897.46 7398.44 8999.27 7595.91 15398.63 16199.16 2094.48 17397.67 12698.88 10992.80 10399.91 3497.11 10199.12 11199.50 85
PVSNet_BlendedMVS96.73 11896.60 11397.12 18199.25 7895.35 17598.26 21099.26 1094.28 17797.94 10997.46 24892.74 10499.81 7196.88 11593.32 25996.20 324
PVSNet_Blended97.38 9197.12 8798.14 11199.25 7895.35 17597.28 29699.26 1093.13 23597.94 10998.21 18592.74 10499.81 7196.88 11599.40 9999.27 121
MVS_Test97.28 9597.00 9398.13 11498.33 17195.97 14598.74 13698.07 24394.27 17898.44 8198.07 19492.48 10699.26 16796.43 13498.19 15699.16 139
miper_enhance_ethall95.10 20594.75 19896.12 25997.53 23493.73 24496.61 33898.08 24192.20 27293.89 25396.65 31092.44 10798.30 29294.21 20591.16 28696.34 318
MVSFormer97.57 7897.49 7097.84 13098.07 19595.76 15999.47 998.40 17994.98 15198.79 5598.83 11592.34 10898.41 27996.91 10999.59 7099.34 108
lupinMVS97.44 8697.22 8598.12 11698.07 19595.76 15997.68 26697.76 26994.50 17298.79 5598.61 13892.34 10899.30 16597.58 8199.59 7099.31 114
CHOSEN 280x42097.18 10197.18 8697.20 17498.81 12893.27 26195.78 35199.15 2195.25 13796.79 16398.11 19292.29 11099.07 19598.56 1999.85 599.25 125
canonicalmvs97.67 7097.23 8498.98 5498.70 13798.38 3599.34 1898.39 18196.76 6697.67 12697.40 25492.26 11199.49 14898.28 4096.28 20999.08 151
IterMVS-LS95.46 18095.21 17696.22 25598.12 19293.72 24598.32 20198.13 22993.71 20694.26 23597.31 25892.24 11298.10 30694.63 18890.12 29796.84 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15295.83 14396.36 24797.93 20593.70 24698.12 22698.27 20393.70 20895.07 20499.02 8892.23 11398.54 25794.68 18693.46 25496.84 263
WTY-MVS97.37 9396.92 9798.72 6598.86 12396.89 9898.31 20298.71 10895.26 13697.67 12698.56 14692.21 11499.78 9195.89 15096.85 18899.48 91
Effi-MVS+97.12 10496.69 10998.39 9598.19 18596.72 10497.37 28798.43 17593.71 20697.65 12998.02 19892.20 11599.25 16896.87 11897.79 16999.19 133
1112_ss96.63 12196.00 13798.50 8198.56 14996.37 12598.18 22198.10 23692.92 24494.84 20998.43 15892.14 11699.58 13194.35 19996.51 19999.56 79
LS3D97.16 10296.66 11298.68 6798.53 15297.19 8798.93 9498.90 4992.83 24895.99 19099.37 2892.12 11799.87 4893.67 22399.57 7498.97 160
nrg03096.28 14095.72 14997.96 12696.90 27798.15 5299.39 1298.31 19495.47 12394.42 22798.35 16892.09 11898.69 24197.50 8989.05 31497.04 238
mvs_anonymous96.70 12096.53 11797.18 17698.19 18593.78 23998.31 20298.19 21594.01 18794.47 22198.27 18092.08 11998.46 26697.39 9397.91 16499.31 114
FC-MVSNet-test96.42 13196.05 13497.53 15896.95 27297.27 8099.36 1599.23 1495.83 10793.93 25198.37 16692.00 12098.32 28896.02 14792.72 26997.00 241
FIs96.51 12896.12 13197.67 14897.13 26397.54 7399.36 1599.22 1795.89 10394.03 24898.35 16891.98 12198.44 26996.40 13592.76 26897.01 240
sss97.39 9096.98 9598.61 7198.60 14896.61 10898.22 21298.93 4293.97 19098.01 10498.48 15291.98 12199.85 5396.45 13398.15 15799.39 105
miper_ehance_all_eth95.01 20994.69 20195.97 26497.70 21993.31 26097.02 31498.07 24392.23 26993.51 26996.96 29291.85 12398.15 30293.68 22191.16 28696.44 315
DP-MVS96.59 12395.93 14098.57 7399.34 5596.19 13498.70 14998.39 18189.45 33194.52 21999.35 3491.85 12399.85 5392.89 24798.88 12299.68 55
Test_1112_low_res96.34 13795.66 15798.36 9698.56 14995.94 14897.71 26498.07 24392.10 27394.79 21397.29 25991.75 12599.56 13594.17 20696.50 20099.58 77
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 16696.84 28096.97 9298.74 13699.24 1295.16 14193.88 25497.72 22791.68 12698.31 29095.81 15387.25 33596.92 247
UniMVSNet (Re)95.78 16495.19 17797.58 15596.99 27097.47 7598.79 13099.18 1995.60 11793.92 25297.04 28391.68 12698.48 26295.80 15587.66 32996.79 267
casdiffmvs_mvgpermissive97.72 6697.48 7298.44 8998.42 15896.59 11198.92 9598.44 17196.20 8997.76 11799.20 5791.66 12899.23 17198.27 4198.41 14899.49 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS93.96 896.82 11696.23 12998.57 7398.46 15697.00 9198.14 22398.21 21193.95 19196.72 16497.99 20291.58 12999.76 9794.51 19596.54 19898.95 163
xiu_mvs_v1_base_debu97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base_debi97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
MAR-MVS96.91 11196.40 12198.45 8798.69 13996.90 9698.66 15798.68 11592.40 26397.07 14797.96 20591.54 13399.75 9993.68 22198.92 11998.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 5397.76 5898.90 6098.73 13297.27 8098.35 19598.78 9297.37 3297.72 12398.96 10091.53 13499.92 2698.79 1399.65 5999.51 83
c3_l94.79 22194.43 21695.89 26997.75 21493.12 26897.16 30898.03 25192.23 26993.46 27297.05 28291.39 13598.01 31393.58 22689.21 31296.53 301
EPNet97.28 9596.87 9998.51 8094.98 34496.14 13698.90 9797.02 32198.28 495.99 19099.11 7491.36 13699.89 3996.98 10599.19 10999.50 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 7297.44 7598.25 10498.35 16496.20 13299.00 7898.32 19296.33 8698.03 9999.17 6491.35 13799.16 17898.10 4598.29 15599.39 105
131496.25 14295.73 14897.79 13597.13 26395.55 16798.19 21898.59 13593.47 22192.03 31197.82 22091.33 13899.49 14894.62 19098.44 14598.32 204
diffmvspermissive97.58 7797.40 7798.13 11498.32 17495.81 15898.06 23198.37 18596.20 8998.74 5998.89 10891.31 13999.25 16898.16 4398.52 14099.34 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM94.95 21594.00 23797.78 13697.04 26795.65 16296.03 34798.25 20891.23 30194.19 24097.80 22291.27 14098.86 22882.61 35697.61 17698.84 171
casdiffmvspermissive97.63 7397.41 7698.28 10098.33 17196.14 13698.82 11798.32 19296.38 8497.95 10799.21 5591.23 14199.23 17198.12 4498.37 14999.48 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.32 9497.08 9098.06 12097.45 24195.59 16397.87 25197.91 26394.79 15998.55 7398.83 11591.12 14299.23 17197.58 8199.60 6899.34 108
jason: jason.
IS-MVSNet97.22 9796.88 9898.25 10498.85 12596.36 12699.19 4297.97 25695.39 12797.23 14098.99 9491.11 14398.93 21794.60 19198.59 13799.47 93
PMMVS96.60 12296.33 12397.41 16497.90 20793.93 23597.35 29098.41 17792.84 24797.76 11797.45 25091.10 14499.20 17596.26 13897.91 16499.11 145
MVS94.67 22993.54 26998.08 11896.88 27896.56 11398.19 21898.50 16078.05 36892.69 29498.02 19891.07 14599.63 12490.09 29998.36 15198.04 212
Fast-Effi-MVS+96.28 14095.70 15498.03 12198.29 17695.97 14598.58 16798.25 20891.74 28195.29 20197.23 26491.03 14699.15 18192.90 24597.96 16398.97 160
mvsmamba96.57 12696.32 12497.32 17096.60 29296.43 12099.54 797.98 25496.49 7695.20 20298.64 13690.82 14798.55 25597.97 5193.65 24996.98 242
Effi-MVS+-dtu96.29 13896.56 11495.51 28197.89 20890.22 31298.80 12598.10 23696.57 7596.45 17996.66 30890.81 14898.91 21995.72 15797.99 16197.40 228
test_yl97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
DCV-MVSNet97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
alignmvs97.56 7997.07 9199.01 5298.66 14298.37 3998.83 11598.06 24896.74 6798.00 10597.65 23490.80 14999.48 15298.37 3696.56 19799.19 133
AdaColmapbinary97.15 10396.70 10898.48 8499.16 9596.69 10598.01 23698.89 5194.44 17596.83 15898.68 13290.69 15299.76 9794.36 19899.29 10698.98 159
cdsmvs_eth3d_5k23.98 35131.98 3530.00 3690.00 3920.00 3930.00 38098.59 1350.00 3870.00 38898.61 13890.60 1530.00 3880.00 3860.00 3860.00 384
eth_miper_zixun_eth94.68 22694.41 21795.47 28397.64 22391.71 28796.73 33598.07 24392.71 25193.64 26297.21 26690.54 15498.17 30193.38 22989.76 30196.54 299
DeepC-MVS95.98 397.88 5997.58 6498.77 6399.25 7896.93 9498.83 11598.75 9896.96 5796.89 15799.50 890.46 15599.87 4897.84 6399.76 3499.52 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 20894.46 21296.81 20396.86 27995.82 15799.24 3099.24 1293.87 19592.53 29996.84 30290.37 15698.24 29893.24 23387.93 32696.38 317
EPNet_dtu95.21 19994.95 19095.99 26296.17 31390.45 30898.16 22297.27 30896.77 6593.14 28298.33 17390.34 15798.42 27185.57 34198.81 12899.09 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 6397.40 7798.96 5698.88 12197.55 7298.63 16198.93 4296.74 6799.02 3998.84 11390.33 15899.83 5998.53 2096.66 19399.50 85
MSDG95.93 15695.30 17397.83 13198.90 11995.36 17396.83 33198.37 18591.32 29694.43 22698.73 12890.27 15999.60 12990.05 30298.82 12798.52 195
LCM-MVSNet-Re95.22 19895.32 17094.91 29998.18 18787.85 35098.75 13395.66 35095.11 14488.96 33796.85 30190.26 16097.65 33195.65 16198.44 14599.22 128
Vis-MVSNet (Re-imp)96.87 11396.55 11597.83 13198.73 13295.46 17099.20 4098.30 20094.96 15396.60 16998.87 11090.05 16198.59 25193.67 22398.60 13699.46 97
miper_lstm_enhance94.33 25294.07 23295.11 29497.75 21490.97 29897.22 29998.03 25191.67 28592.76 29196.97 29090.03 16297.78 32892.51 25889.64 30396.56 296
baseline195.84 16195.12 18198.01 12298.49 15595.98 14098.73 14097.03 31995.37 13096.22 18398.19 18789.96 16399.16 17894.60 19187.48 33098.90 167
MDTV_nov1_ep13_2view84.26 35996.89 32690.97 30697.90 11389.89 16493.91 21599.18 138
h-mvs3396.17 14395.62 15897.81 13499.03 10594.45 21698.64 15998.75 9897.48 2398.67 6398.72 12989.76 16599.86 5297.95 5281.59 35799.11 145
hse-mvs295.71 16895.30 17396.93 19498.50 15393.53 25198.36 19498.10 23697.48 2398.67 6397.99 20289.76 16599.02 20397.95 5280.91 36198.22 207
GeoE96.58 12596.07 13398.10 11798.35 16495.89 15599.34 1898.12 23093.12 23696.09 18698.87 11089.71 16798.97 20792.95 24398.08 16099.43 102
our_test_393.65 27993.30 27694.69 30795.45 33889.68 32196.91 32197.65 27491.97 27691.66 31596.88 29889.67 16897.93 32088.02 32791.49 28196.48 312
tpmrst95.63 17395.69 15595.44 28597.54 23288.54 33996.97 31697.56 28193.50 22097.52 13596.93 29689.49 16999.16 17895.25 17496.42 20298.64 187
D2MVS95.18 20195.08 18395.48 28297.10 26592.07 27998.30 20499.13 2394.02 18692.90 28796.73 30589.48 17098.73 23994.48 19693.60 25295.65 337
FA-MVS(test-final)96.41 13595.94 13997.82 13398.21 18195.20 18097.80 25797.58 27993.21 23297.36 13797.70 22889.47 17199.56 13594.12 20897.99 16198.71 180
sam_mvs189.45 17299.20 129
patchmatchnet-post95.10 34489.42 17398.89 223
3Dnovator+94.38 697.43 8796.78 10499.38 1897.83 21098.52 2899.37 1498.71 10897.09 5292.99 28699.13 7289.36 17499.89 3996.97 10699.57 7499.71 43
NR-MVSNet94.98 21394.16 22797.44 16196.53 29697.22 8698.74 13698.95 3894.96 15389.25 33697.69 23089.32 17598.18 30094.59 19387.40 33296.92 247
HyFIR lowres test96.90 11296.49 11898.14 11199.33 5795.56 16597.38 28599.65 292.34 26497.61 13298.20 18689.29 17699.10 19296.97 10697.60 17799.77 22
RRT_MVS95.98 15195.78 14596.56 22696.48 30094.22 22999.57 697.92 26195.89 10393.95 25098.70 13089.27 17798.42 27197.23 9893.02 26397.04 238
3Dnovator94.51 597.46 8296.93 9699.07 5097.78 21297.64 6899.35 1799.06 2797.02 5493.75 26199.16 6789.25 17899.92 2697.22 9999.75 3899.64 65
PatchmatchNetpermissive95.71 16895.52 15996.29 25397.58 22790.72 30396.84 33097.52 28994.06 18397.08 14596.96 29289.24 17998.90 22292.03 26998.37 14999.26 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 16197.48 23688.34 34396.85 32997.29 30693.74 20397.48 13697.26 26089.18 18099.05 19691.92 27297.43 180
test_djsdf96.00 15095.69 15596.93 19495.72 32995.49 16999.47 998.40 17994.98 15194.58 21797.86 21389.16 18198.41 27996.91 10994.12 23596.88 256
DIV-MVS_self_test94.52 24094.03 23395.99 26297.57 23193.38 25897.05 31297.94 25991.74 28192.81 28997.10 27089.12 18298.07 31092.60 25190.30 29496.53 301
QAPM96.29 13895.40 16198.96 5697.85 20997.60 7199.23 3198.93 4289.76 32693.11 28399.02 8889.11 18399.93 2191.99 27099.62 6699.34 108
pmmvs494.69 22493.99 23996.81 20395.74 32895.94 14897.40 28397.67 27390.42 31593.37 27397.59 24089.08 18498.20 29992.97 24291.67 27996.30 321
cl____94.51 24194.01 23696.02 26197.58 22793.40 25797.05 31297.96 25891.73 28392.76 29197.08 27689.06 18598.13 30492.61 25090.29 29596.52 304
sam_mvs88.99 186
Patchmatch-test94.42 24893.68 26396.63 21697.60 22691.76 28494.83 36197.49 29389.45 33194.14 24297.10 27088.99 18698.83 23185.37 34498.13 15899.29 119
Patchmatch-RL test91.49 30390.85 30493.41 32691.37 36684.40 35892.81 36995.93 34891.87 27987.25 34794.87 34688.99 18696.53 35692.54 25782.00 35499.30 117
Fast-Effi-MVS+-dtu95.87 15995.85 14295.91 26797.74 21791.74 28698.69 15198.15 22695.56 11994.92 20797.68 23388.98 18998.79 23593.19 23597.78 17097.20 235
BH-untuned95.95 15395.72 14996.65 21298.55 15192.26 27698.23 21197.79 26893.73 20494.62 21698.01 20088.97 19099.00 20693.04 24098.51 14198.68 182
XVG-OURS96.55 12796.41 12096.99 18898.75 13193.76 24097.50 27998.52 15395.67 11596.83 15899.30 4288.95 19199.53 14395.88 15196.26 21097.69 223
PVSNet91.96 1896.35 13696.15 13096.96 19299.17 9192.05 28096.08 34498.68 11593.69 20997.75 11997.80 22288.86 19299.69 11494.26 20499.01 11699.15 140
test_post31.83 38488.83 19398.91 219
v894.47 24593.77 25596.57 22596.36 30594.83 20099.05 6598.19 21591.92 27793.16 27996.97 29088.82 19498.48 26291.69 27787.79 32796.39 316
BH-w/o95.38 18795.08 18396.26 25498.34 16991.79 28397.70 26597.43 29892.87 24694.24 23797.22 26588.66 19598.84 22991.55 27997.70 17498.16 210
tpmvs94.60 23294.36 21995.33 28997.46 23888.60 33896.88 32797.68 27291.29 29893.80 25996.42 31888.58 19699.24 17091.06 28696.04 21698.17 209
DU-MVS95.42 18494.76 19797.40 16696.53 29696.97 9298.66 15798.99 3495.43 12593.88 25497.69 23088.57 19798.31 29095.81 15387.25 33596.92 247
Baseline_NR-MVSNet94.35 25193.81 25195.96 26596.20 31194.05 23398.61 16496.67 33891.44 29093.85 25697.60 23988.57 19798.14 30394.39 19786.93 33895.68 336
PCF-MVS93.45 1194.68 22693.43 27398.42 9398.62 14696.77 10195.48 35598.20 21384.63 35993.34 27498.32 17488.55 19999.81 7184.80 34898.96 11898.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 25593.76 25795.91 26796.10 31692.93 27198.58 16797.97 25692.59 25593.47 27196.95 29488.53 20098.32 28892.56 25587.06 33796.49 310
PatchMatch-RL96.59 12396.03 13698.27 10199.31 6296.51 11697.91 24599.06 2793.72 20596.92 15598.06 19588.50 20199.65 11991.77 27599.00 11798.66 185
V4294.78 22294.14 22996.70 20996.33 30895.22 17998.97 8498.09 24092.32 26694.31 23397.06 28088.39 20298.55 25592.90 24588.87 31896.34 318
v7n94.19 26193.43 27396.47 23895.90 32494.38 22199.26 2798.34 19091.99 27592.76 29197.13 26988.31 20398.52 25989.48 31487.70 32896.52 304
TranMVSNet+NR-MVSNet95.14 20394.48 21097.11 18296.45 30296.36 12699.03 7199.03 3095.04 14993.58 26497.93 20788.27 20498.03 31294.13 20786.90 34096.95 246
MVSTER96.06 14895.72 14997.08 18498.23 17995.93 15198.73 14098.27 20394.86 15795.07 20498.09 19388.21 20598.54 25796.59 12793.46 25496.79 267
CHOSEN 1792x268897.12 10496.80 10198.08 11899.30 6694.56 21498.05 23299.71 193.57 21897.09 14498.91 10788.17 20699.89 3996.87 11899.56 8099.81 12
CR-MVSNet94.76 22394.15 22896.59 22297.00 26893.43 25494.96 35797.56 28192.46 25796.93 15396.24 32188.15 20797.88 32587.38 33096.65 19498.46 197
Patchmtry93.22 28892.35 29295.84 27196.77 28293.09 26994.66 36497.56 28187.37 34492.90 28796.24 32188.15 20797.90 32187.37 33190.10 29896.53 301
v1094.29 25593.55 26896.51 23496.39 30494.80 20298.99 8198.19 21591.35 29493.02 28596.99 28888.09 20998.41 27990.50 29588.41 32296.33 320
ppachtmachnet_test93.22 28892.63 28894.97 29895.45 33890.84 30096.88 32797.88 26490.60 31092.08 31097.26 26088.08 21097.86 32685.12 34590.33 29396.22 323
Vis-MVSNetpermissive97.42 8897.11 8898.34 9798.66 14296.23 13199.22 3599.00 3296.63 7298.04 9899.21 5588.05 21199.35 16196.01 14899.21 10799.45 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 23493.92 24296.60 22196.21 31094.78 20498.59 16598.14 22891.86 28094.21 23997.02 28587.97 21298.41 27991.72 27689.57 30496.61 289
PatchT93.06 29291.97 29696.35 24896.69 28892.67 27394.48 36597.08 31486.62 34697.08 14592.23 36587.94 21397.90 32178.89 36696.69 19298.49 196
ADS-MVSNet294.58 23594.40 21895.11 29498.00 19988.74 33696.04 34597.30 30590.15 31996.47 17796.64 31187.89 21497.56 33690.08 30097.06 18499.02 155
ADS-MVSNet95.00 21094.45 21496.63 21698.00 19991.91 28296.04 34597.74 27190.15 31996.47 17796.64 31187.89 21498.96 21190.08 30097.06 18499.02 155
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18798.77 13093.76 24097.79 25998.50 16095.45 12496.94 15299.09 8287.87 21699.55 14296.76 12595.83 21897.74 220
test_post196.68 33630.43 38587.85 21798.69 24192.59 253
iter_conf_final96.42 13196.12 13197.34 16998.46 15696.55 11599.08 6198.06 24896.03 9695.63 19698.46 15687.72 21898.59 25197.84 6393.80 24496.87 258
test-LLR95.10 20594.87 19495.80 27296.77 28289.70 31996.91 32195.21 35495.11 14494.83 21195.72 33787.71 21998.97 20793.06 23898.50 14298.72 178
test0.0.03 194.08 27093.51 27095.80 27295.53 33592.89 27297.38 28595.97 34695.11 14492.51 30196.66 30887.71 21996.94 34787.03 33293.67 24797.57 225
JIA-IIPM93.35 28392.49 29095.92 26696.48 30090.65 30595.01 35696.96 32385.93 35296.08 18787.33 37187.70 22198.78 23691.35 28195.58 22198.34 202
v2v48294.69 22494.03 23396.65 21296.17 31394.79 20398.67 15598.08 24192.72 25094.00 24997.16 26887.69 22298.45 26792.91 24488.87 31896.72 275
CVMVSNet95.43 18396.04 13593.57 32497.93 20583.62 36198.12 22698.59 13595.68 11496.56 17099.02 8887.51 22397.51 33893.56 22797.44 17999.60 71
WR-MVS95.15 20294.46 21297.22 17396.67 29096.45 11898.21 21398.81 7894.15 18093.16 27997.69 23087.51 22398.30 29295.29 17288.62 32096.90 254
anonymousdsp95.42 18494.91 19196.94 19395.10 34395.90 15499.14 4998.41 17793.75 20193.16 27997.46 24887.50 22598.41 27995.63 16294.03 23796.50 309
v14419294.39 25093.70 26196.48 23796.06 31894.35 22298.58 16798.16 22591.45 28994.33 23297.02 28587.50 22598.45 26791.08 28589.11 31396.63 287
baseline295.11 20494.52 20896.87 19996.65 29193.56 24898.27 20994.10 36893.45 22292.02 31297.43 25287.45 22799.19 17693.88 21697.41 18197.87 216
EU-MVSNet93.66 27794.14 22992.25 33995.96 32383.38 36298.52 17698.12 23094.69 16292.61 29698.13 19187.36 22896.39 35891.82 27390.00 29996.98 242
CP-MVSNet94.94 21794.30 22096.83 20196.72 28795.56 16599.11 5598.95 3893.89 19392.42 30497.90 20987.19 22998.12 30594.32 20188.21 32396.82 266
HQP_MVS96.14 14595.90 14196.85 20097.42 24394.60 21298.80 12598.56 14497.28 3695.34 19998.28 17787.09 23099.03 20096.07 14294.27 22796.92 247
plane_prior697.35 24894.61 21087.09 230
RPSCF94.87 21995.40 16193.26 33098.89 12082.06 36698.33 19798.06 24890.30 31896.56 17099.26 4787.09 23099.49 14893.82 21896.32 20598.24 205
RPMNet92.81 29491.34 30197.24 17297.00 26893.43 25494.96 35798.80 8582.27 36396.93 15392.12 36686.98 23399.82 6676.32 37096.65 19498.46 197
v119294.32 25393.58 26696.53 23296.10 31694.45 21698.50 18198.17 22391.54 28794.19 24097.06 28086.95 23498.43 27090.14 29889.57 30496.70 279
CANet_DTU96.96 10996.55 11598.21 10798.17 18996.07 13897.98 23998.21 21197.24 4197.13 14398.93 10486.88 23599.91 3495.00 17999.37 10298.66 185
HQP2-MVS86.75 236
HQP-MVS95.72 16795.40 16196.69 21097.20 25694.25 22798.05 23298.46 16796.43 7994.45 22297.73 22586.75 23698.96 21195.30 17094.18 23196.86 261
OpenMVScopyleft93.04 1395.83 16295.00 18698.32 9897.18 26097.32 7899.21 3898.97 3589.96 32291.14 31999.05 8786.64 23899.92 2693.38 22999.47 9197.73 221
cl2294.68 22694.19 22496.13 25898.11 19393.60 24796.94 31898.31 19492.43 26193.32 27596.87 30086.51 23998.28 29694.10 21091.16 28696.51 307
ET-MVSNet_ETH3D94.13 26592.98 28197.58 15598.22 18096.20 13297.31 29495.37 35294.53 16979.56 36797.63 23886.51 23997.53 33796.91 10990.74 29099.02 155
YYNet190.70 31389.39 31694.62 31094.79 34990.65 30597.20 30197.46 29487.54 34372.54 37395.74 33386.51 23996.66 35486.00 33886.76 34296.54 299
MDA-MVSNet_test_wron90.71 31289.38 31794.68 30894.83 34790.78 30297.19 30397.46 29487.60 34272.41 37495.72 33786.51 23996.71 35385.92 33986.80 34196.56 296
v192192094.20 26093.47 27296.40 24695.98 32194.08 23298.52 17698.15 22691.33 29594.25 23697.20 26786.41 24398.42 27190.04 30389.39 31096.69 284
COLMAP_ROBcopyleft93.27 1295.33 19394.87 19496.71 20799.29 7093.24 26498.58 16798.11 23389.92 32393.57 26599.10 7686.37 24499.79 8890.78 29198.10 15997.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 25793.92 24295.35 28894.95 34592.60 27497.97 24097.65 27491.61 28690.68 32497.09 27486.32 24598.42 27189.70 30999.34 10395.02 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 17495.34 16796.46 24197.52 23593.75 24297.27 29798.46 16795.53 12094.42 22798.00 20186.21 24698.97 20796.25 14094.37 22596.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 28292.80 28495.07 29697.58 22787.97 34896.76 33397.86 26582.17 36493.53 26696.04 32986.13 24799.13 18489.24 31795.87 21798.10 211
PEN-MVS94.42 24893.73 25996.49 23596.28 30994.84 19899.17 4599.00 3293.51 21992.23 30797.83 21986.10 24897.90 32192.55 25686.92 33996.74 272
v124094.06 27293.29 27796.34 24996.03 32093.90 23698.44 18898.17 22391.18 30494.13 24397.01 28786.05 24998.42 27189.13 31989.50 30896.70 279
CostFormer94.95 21594.73 19995.60 28097.28 25089.06 33097.53 27796.89 32989.66 32896.82 16096.72 30686.05 24998.95 21695.53 16596.13 21598.79 173
ACMM93.85 995.69 17195.38 16596.61 21997.61 22593.84 23898.91 9698.44 17195.25 13794.28 23498.47 15486.04 25199.12 18695.50 16693.95 24096.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet96.85 11496.42 11998.14 11199.30 6696.38 12499.21 3899.23 1495.92 10095.96 19298.76 12685.88 25299.44 15797.93 5495.59 21998.60 189
DTE-MVSNet93.98 27493.26 27896.14 25796.06 31894.39 22099.20 4098.86 6793.06 23891.78 31397.81 22185.87 25397.58 33590.53 29486.17 34496.46 314
bld_raw_dy_0_6495.74 16695.31 17297.03 18696.35 30695.76 15999.12 5397.37 30395.97 9894.70 21598.48 15285.80 25498.49 26196.55 12993.48 25396.84 263
VPA-MVSNet95.75 16595.11 18297.69 14697.24 25297.27 8098.94 9299.23 1495.13 14295.51 19897.32 25785.73 25598.91 21997.33 9689.55 30696.89 255
EPMVS94.99 21194.48 21096.52 23397.22 25491.75 28597.23 29891.66 37694.11 18197.28 13896.81 30385.70 25698.84 22993.04 24097.28 18298.97 160
TransMVSNet (Re)92.67 29591.51 30096.15 25696.58 29494.65 20598.90 9796.73 33490.86 30889.46 33597.86 21385.62 25798.09 30886.45 33581.12 35895.71 335
AUN-MVS94.53 23993.73 25996.92 19798.50 15393.52 25298.34 19698.10 23693.83 19895.94 19497.98 20485.59 25899.03 20094.35 19980.94 36098.22 207
iter_conf0596.13 14695.79 14497.15 17898.16 19095.99 13998.88 10497.98 25495.91 10295.58 19798.46 15685.53 25998.59 25197.88 5993.75 24596.86 261
dp94.15 26493.90 24594.90 30097.31 24986.82 35596.97 31697.19 31291.22 30296.02 18996.61 31385.51 26099.02 20390.00 30494.30 22698.85 169
LPG-MVS_test95.62 17495.34 16796.47 23897.46 23893.54 24998.99 8198.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
LGP-MVS_train96.47 23897.46 23893.54 24998.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
PS-CasMVS94.67 22993.99 23996.71 20796.68 28995.26 17899.13 5299.03 3093.68 21192.33 30597.95 20685.35 26398.10 30693.59 22588.16 32596.79 267
ab-mvs96.42 13195.71 15298.55 7598.63 14596.75 10297.88 25098.74 10093.84 19696.54 17498.18 18885.34 26499.75 9995.93 14996.35 20399.15 140
N_pmnet87.12 33287.77 33085.17 35295.46 33761.92 38397.37 28770.66 38985.83 35388.73 34296.04 32985.33 26597.76 32980.02 36190.48 29295.84 332
FE-MVS95.62 17494.90 19297.78 13698.37 16394.92 19597.17 30697.38 30290.95 30797.73 12297.70 22885.32 26699.63 12491.18 28398.33 15298.79 173
dmvs_testset87.64 32988.93 32283.79 35495.25 34163.36 38297.20 30191.17 37793.07 23785.64 35895.98 33185.30 26791.52 37769.42 37587.33 33396.49 310
OPM-MVS95.69 17195.33 16996.76 20596.16 31594.63 20798.43 19098.39 18196.64 7195.02 20698.78 12085.15 26899.05 19695.21 17694.20 23096.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet95.92 15795.32 17097.69 14698.32 17494.64 20698.19 21897.45 29694.56 16796.03 18898.61 13885.02 26999.12 18690.68 29399.06 11299.30 117
DSMNet-mixed92.52 29792.58 28992.33 33794.15 35382.65 36498.30 20494.26 36589.08 33692.65 29595.73 33585.01 27095.76 36186.24 33697.76 17198.59 191
tfpnnormal93.66 27792.70 28796.55 23196.94 27395.94 14898.97 8499.19 1891.04 30591.38 31797.34 25584.94 27198.61 24885.45 34389.02 31695.11 345
LTVRE_ROB92.95 1594.60 23293.90 24596.68 21197.41 24694.42 21898.52 17698.59 13591.69 28491.21 31898.35 16884.87 27299.04 19991.06 28693.44 25796.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 20094.45 21497.46 15996.75 28596.56 11398.86 11098.65 12793.30 22993.27 27698.27 18084.85 27398.87 22694.82 18391.26 28596.96 244
thisisatest051595.61 17794.89 19397.76 13998.15 19195.15 18396.77 33294.41 36292.95 24397.18 14297.43 25284.78 27499.45 15694.63 18897.73 17398.68 182
CL-MVSNet_self_test90.11 31689.14 31993.02 33391.86 36588.23 34696.51 34198.07 24390.49 31190.49 32694.41 34884.75 27595.34 36480.79 36074.95 37195.50 338
test_cas_vis1_n_192097.38 9197.36 7997.45 16098.95 11693.25 26399.00 7898.53 15097.70 1399.77 399.35 3484.71 27699.85 5398.57 1799.66 5699.26 123
AllTest95.24 19794.65 20296.99 18899.25 7893.21 26598.59 16598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
TestCases96.99 18899.25 7893.21 26598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
thres20095.25 19694.57 20597.28 17198.81 12894.92 19598.20 21597.11 31395.24 13996.54 17496.22 32584.58 27999.53 14387.93 32896.50 20097.39 229
pm-mvs193.94 27593.06 28096.59 22296.49 29995.16 18198.95 9098.03 25192.32 26691.08 32097.84 21684.54 28098.41 27992.16 26386.13 34696.19 325
ACMP93.49 1095.34 19294.98 18896.43 24397.67 22193.48 25398.73 14098.44 17194.94 15692.53 29998.53 14784.50 28199.14 18395.48 16794.00 23896.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 18794.70 20097.41 16498.98 11494.92 19598.87 10896.90 32795.38 12896.61 16896.88 29884.29 28299.56 13588.11 32496.29 20697.76 218
thres600view795.49 17894.77 19697.67 14898.98 11495.02 18798.85 11196.90 32795.38 12896.63 16796.90 29784.29 28299.59 13088.65 32396.33 20498.40 199
dmvs_re94.48 24494.18 22695.37 28797.68 22090.11 31498.54 17597.08 31494.56 16794.42 22797.24 26384.25 28497.76 32991.02 28992.83 26798.24 205
FMVSNet394.97 21494.26 22197.11 18298.18 18796.62 10698.56 17398.26 20793.67 21394.09 24497.10 27084.25 28498.01 31392.08 26592.14 27296.70 279
tfpn200view995.32 19494.62 20397.43 16298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20697.76 218
thres40095.38 18794.62 20397.65 15298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20698.40 199
cascas94.63 23193.86 24896.93 19496.91 27694.27 22596.00 34898.51 15585.55 35594.54 21896.23 32384.20 28898.87 22695.80 15596.98 18797.66 224
tpm94.13 26593.80 25295.12 29396.50 29887.91 34997.44 28095.89 34992.62 25396.37 18196.30 32084.13 28998.30 29293.24 23391.66 28099.14 142
tttt051796.07 14795.51 16097.78 13698.41 16094.84 19899.28 2494.33 36494.26 17997.64 13098.64 13684.05 29099.47 15495.34 16897.60 17799.03 154
IterMVS94.09 26993.85 24994.80 30597.99 20190.35 31097.18 30498.12 23093.68 21192.46 30397.34 25584.05 29097.41 34092.51 25891.33 28296.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26793.87 24794.85 30297.98 20390.56 30797.18 30498.11 23393.75 20192.58 29797.48 24783.97 29297.41 34092.48 26091.30 28396.58 292
SCA95.46 18095.13 17996.46 24197.67 22191.29 29497.33 29297.60 27894.68 16396.92 15597.10 27083.97 29298.89 22392.59 25398.32 15499.20 129
TR-MVS94.94 21794.20 22397.17 17797.75 21494.14 23197.59 27497.02 32192.28 26895.75 19597.64 23683.88 29498.96 21189.77 30696.15 21498.40 199
jajsoiax95.45 18295.03 18596.73 20695.42 34094.63 20799.14 4998.52 15395.74 11093.22 27798.36 16783.87 29598.65 24696.95 10894.04 23696.91 252
Anonymous2023120691.66 30291.10 30293.33 32894.02 35787.35 35298.58 16797.26 30990.48 31290.16 32896.31 31983.83 29696.53 35679.36 36489.90 30096.12 326
thisisatest053096.01 14995.36 16697.97 12498.38 16195.52 16898.88 10494.19 36694.04 18497.64 13098.31 17583.82 29799.46 15595.29 17297.70 17498.93 165
tpm294.19 26193.76 25795.46 28497.23 25389.04 33197.31 29496.85 33387.08 34596.21 18496.79 30483.75 29898.74 23892.43 26196.23 21298.59 191
mvs_tets95.41 18695.00 18696.65 21295.58 33394.42 21899.00 7898.55 14695.73 11293.21 27898.38 16583.45 29998.63 24797.09 10294.00 23896.91 252
OurMVSNet-221017-094.21 25994.00 23794.85 30295.60 33289.22 32898.89 10197.43 29895.29 13492.18 30898.52 15082.86 30098.59 25193.46 22891.76 27796.74 272
sd_testset96.17 14395.76 14797.42 16399.30 6694.34 22398.82 11799.08 2595.92 10095.96 19298.76 12682.83 30199.32 16495.56 16395.59 21998.60 189
UGNet96.78 11796.30 12598.19 11098.24 17795.89 15598.88 10498.93 4297.39 2996.81 16197.84 21682.60 30299.90 3796.53 13099.49 8898.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 27992.97 28295.68 27695.49 33692.37 27598.20 21597.28 30789.66 32892.58 29797.26 26082.14 30398.09 30893.18 23690.95 28996.58 292
ACMH92.88 1694.55 23693.95 24196.34 24997.63 22493.26 26298.81 12498.49 16593.43 22389.74 33198.53 14781.91 30499.08 19493.69 22093.30 26096.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 28597.42 24391.32 29397.50 29195.09 14793.59 26398.35 16881.70 30598.88 22589.71 30893.39 25896.12 326
Anonymous2023121194.10 26893.26 27896.61 21999.11 10094.28 22499.01 7698.88 5486.43 34892.81 28997.57 24281.66 30698.68 24494.83 18289.02 31696.88 256
test111195.94 15595.78 14596.41 24498.99 11390.12 31399.04 6892.45 37496.99 5698.03 9999.27 4681.40 30799.48 15296.87 11899.04 11399.63 67
ECVR-MVScopyleft95.95 15395.71 15296.65 21299.02 10690.86 29999.03 7191.80 37596.96 5798.10 9399.26 4781.31 30899.51 14796.90 11299.04 11399.59 73
GBi-Net94.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
test194.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
FMVSNet294.47 24593.61 26597.04 18598.21 18196.43 12098.79 13098.27 20392.46 25793.50 27097.09 27481.16 30998.00 31591.09 28491.93 27596.70 279
GA-MVS94.81 22094.03 23397.14 17997.15 26293.86 23796.76 33397.58 27994.00 18894.76 21497.04 28380.91 31298.48 26291.79 27496.25 21199.09 147
SixPastTwentyTwo93.34 28492.86 28394.75 30695.67 33089.41 32698.75 13396.67 33893.89 19390.15 32998.25 18380.87 31398.27 29790.90 29090.64 29196.57 294
ACMH+92.99 1494.30 25493.77 25595.88 27097.81 21192.04 28198.71 14598.37 18593.99 18990.60 32598.47 15480.86 31499.05 19692.75 24992.40 27196.55 298
gg-mvs-nofinetune92.21 29990.58 30797.13 18096.75 28595.09 18595.85 34989.40 38185.43 35694.50 22081.98 37480.80 31598.40 28592.16 26398.33 15297.88 215
test20.0390.89 31190.38 30992.43 33693.48 35988.14 34798.33 19797.56 28193.40 22487.96 34496.71 30780.69 31694.13 37079.15 36586.17 34495.01 349
VPNet94.99 21194.19 22497.40 16697.16 26196.57 11298.71 14598.97 3595.67 11594.84 20998.24 18480.36 31798.67 24596.46 13287.32 33496.96 244
test_fmvs196.42 13196.67 11195.66 27798.82 12788.53 34098.80 12598.20 21396.39 8399.64 1099.20 5780.35 31899.67 11699.04 799.57 7498.78 176
GG-mvs-BLEND96.59 22296.34 30794.98 19196.51 34188.58 38293.10 28494.34 35280.34 31998.05 31189.53 31296.99 18696.74 272
KD-MVS_self_test90.38 31489.38 31793.40 32792.85 36288.94 33497.95 24197.94 25990.35 31790.25 32793.96 35379.82 32095.94 36084.62 35076.69 36995.33 340
PVSNet_088.72 1991.28 30690.03 31295.00 29797.99 20187.29 35394.84 36098.50 16092.06 27489.86 33095.19 34279.81 32199.39 15992.27 26269.79 37498.33 203
MS-PatchMatch93.84 27693.63 26494.46 31696.18 31289.45 32497.76 26098.27 20392.23 26992.13 30997.49 24679.50 32298.69 24189.75 30799.38 10195.25 341
MVS-HIRNet89.46 32388.40 32392.64 33597.58 22782.15 36594.16 36893.05 37375.73 37090.90 32182.52 37379.42 32398.33 28783.53 35398.68 13097.43 226
MDA-MVSNet-bldmvs89.97 31888.35 32494.83 30495.21 34291.34 29297.64 27097.51 29088.36 34071.17 37596.13 32779.22 32496.63 35583.65 35286.27 34396.52 304
XVG-ACMP-BASELINE94.54 23794.14 22995.75 27596.55 29591.65 28898.11 22898.44 17194.96 15394.22 23897.90 20979.18 32599.11 18894.05 21293.85 24296.48 312
Anonymous2024052995.10 20594.22 22297.75 14099.01 10894.26 22698.87 10898.83 7285.79 35496.64 16698.97 9578.73 32699.85 5396.27 13794.89 22499.12 144
TESTMET0.1,194.18 26393.69 26295.63 27896.92 27489.12 32996.91 32194.78 35993.17 23494.88 20896.45 31778.52 32798.92 21893.09 23798.50 14298.85 169
test_vis1_n_192096.71 11996.84 10096.31 25199.11 10089.74 31899.05 6598.58 14098.08 699.87 199.37 2878.48 32899.93 2199.29 499.69 5299.27 121
pmmvs-eth3d90.36 31589.05 32094.32 31891.10 36892.12 27797.63 27396.95 32488.86 33784.91 36193.13 36078.32 32996.74 35088.70 32281.81 35694.09 358
KD-MVS_2432*160089.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
miper_refine_blended89.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
Anonymous20240521195.28 19594.49 20997.67 14899.00 10993.75 24298.70 14997.04 31890.66 30996.49 17698.80 11878.13 33299.83 5996.21 14195.36 22399.44 100
IB-MVS91.98 1793.27 28691.97 29697.19 17597.47 23793.41 25697.09 31195.99 34593.32 22792.47 30295.73 33578.06 33399.53 14394.59 19382.98 35298.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 29192.79 28594.20 31995.88 32588.67 33797.66 26897.07 31693.81 19991.71 31497.65 23477.96 33498.81 23391.47 28091.92 27695.12 344
test-mter94.08 27093.51 27095.80 27296.77 28289.70 31996.91 32195.21 35492.89 24594.83 21195.72 33777.69 33598.97 20793.06 23898.50 14298.72 178
USDC93.33 28592.71 28695.21 29096.83 28190.83 30196.91 32197.50 29193.84 19690.72 32398.14 19077.69 33598.82 23289.51 31393.21 26295.97 330
test_040291.32 30490.27 31094.48 31496.60 29291.12 29698.50 18197.22 31186.10 35188.30 34396.98 28977.65 33797.99 31678.13 36892.94 26594.34 352
K. test v392.55 29691.91 29894.48 31495.64 33189.24 32799.07 6294.88 35894.04 18486.78 35097.59 24077.64 33897.64 33292.08 26589.43 30996.57 294
TDRefinement91.06 30989.68 31495.21 29085.35 37991.49 29198.51 18097.07 31691.47 28888.83 34197.84 21677.31 33999.09 19392.79 24877.98 36795.04 347
test250694.44 24793.91 24496.04 26099.02 10688.99 33399.06 6379.47 38896.96 5798.36 8499.26 4777.21 34099.52 14696.78 12499.04 11399.59 73
new_pmnet90.06 31789.00 32193.22 33194.18 35288.32 34496.42 34396.89 32986.19 34985.67 35793.62 35577.18 34197.10 34481.61 35889.29 31194.23 354
Anonymous2024052191.18 30790.44 30893.42 32593.70 35888.47 34198.94 9297.56 28188.46 33989.56 33495.08 34577.15 34296.97 34683.92 35189.55 30694.82 350
tt080594.54 23793.85 24996.63 21697.98 20393.06 27098.77 13297.84 26693.67 21393.80 25998.04 19776.88 34398.96 21194.79 18592.86 26697.86 217
new-patchmatchnet88.50 32687.45 33191.67 34190.31 37085.89 35797.16 30897.33 30489.47 33083.63 36392.77 36276.38 34495.06 36782.70 35577.29 36894.06 360
lessismore_v094.45 31794.93 34688.44 34291.03 37886.77 35197.64 23676.23 34598.42 27190.31 29785.64 34796.51 307
TinyColmap92.31 29891.53 29994.65 30996.92 27489.75 31796.92 31996.68 33790.45 31489.62 33297.85 21576.06 34698.81 23386.74 33392.51 27095.41 339
pmmvs691.77 30190.63 30695.17 29294.69 35191.24 29598.67 15597.92 26186.14 35089.62 33297.56 24475.79 34798.34 28690.75 29284.56 34895.94 331
MIMVSNet93.26 28792.21 29496.41 24497.73 21893.13 26795.65 35297.03 31991.27 30094.04 24796.06 32875.33 34897.19 34386.56 33496.23 21298.92 166
UnsupCasMVSNet_eth90.99 31089.92 31394.19 32094.08 35489.83 31697.13 31098.67 12093.69 20985.83 35696.19 32675.15 34996.74 35089.14 31879.41 36396.00 329
LFMVS95.86 16094.98 18898.47 8598.87 12296.32 12898.84 11496.02 34493.40 22498.62 6999.20 5774.99 35099.63 12497.72 7097.20 18399.46 97
CMPMVSbinary66.06 2189.70 31989.67 31589.78 34493.19 36076.56 36997.00 31598.35 18880.97 36581.57 36597.75 22474.75 35198.61 24889.85 30593.63 25094.17 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 30090.92 30394.49 31397.21 25592.09 27898.00 23897.55 28689.31 33490.86 32295.61 34074.48 35295.32 36585.57 34189.70 30296.07 328
testgi93.06 29292.45 29194.88 30196.43 30389.90 31598.75 13397.54 28795.60 11791.63 31697.91 20874.46 35397.02 34586.10 33793.67 24797.72 222
VDD-MVS95.82 16395.23 17597.61 15498.84 12693.98 23498.68 15297.40 30095.02 15097.95 10799.34 3874.37 35499.78 9198.64 1596.80 18999.08 151
test_fmvs1_n95.90 15895.99 13895.63 27898.67 14188.32 34499.26 2798.22 21096.40 8299.67 799.26 4773.91 35599.70 10999.02 899.50 8698.87 168
FMVSNet193.19 29092.07 29596.56 22697.54 23295.00 18898.82 11798.18 21890.38 31692.27 30697.07 27773.68 35697.95 31789.36 31691.30 28396.72 275
VDDNet95.36 19094.53 20797.86 12998.10 19495.13 18498.85 11197.75 27090.46 31398.36 8499.39 2273.27 35799.64 12197.98 5096.58 19698.81 172
UniMVSNet_ETH3D94.24 25893.33 27596.97 19197.19 25993.38 25898.74 13698.57 14291.21 30393.81 25898.58 14372.85 35898.77 23795.05 17893.93 24198.77 177
DeepMVS_CXcopyleft86.78 34997.09 26672.30 37695.17 35775.92 36984.34 36295.19 34270.58 35995.35 36379.98 36389.04 31592.68 367
test_fmvs293.43 28193.58 26692.95 33496.97 27183.91 36099.19 4297.24 31095.74 11095.20 20298.27 18069.65 36098.72 24096.26 13893.73 24696.24 322
OpenMVS_ROBcopyleft86.42 2089.00 32487.43 33293.69 32393.08 36189.42 32597.91 24596.89 32978.58 36785.86 35594.69 34769.48 36198.29 29577.13 36993.29 26193.36 364
EGC-MVSNET75.22 34369.54 34692.28 33894.81 34889.58 32297.64 27096.50 3411.82 3865.57 38795.74 33368.21 36296.26 35973.80 37291.71 27890.99 368
EG-PatchMatch MVS91.13 30890.12 31194.17 32194.73 35089.00 33298.13 22597.81 26789.22 33585.32 36096.46 31667.71 36398.42 27187.89 32993.82 24395.08 346
MIMVSNet189.67 32088.28 32593.82 32292.81 36391.08 29798.01 23697.45 29687.95 34187.90 34595.87 33267.63 36494.56 36978.73 36788.18 32495.83 333
test_vis1_n95.47 17995.13 17996.49 23597.77 21390.41 30999.27 2698.11 23396.58 7399.66 899.18 6367.00 36599.62 12799.21 599.40 9999.44 100
pmmvs386.67 33384.86 33792.11 34088.16 37387.19 35496.63 33794.75 36079.88 36687.22 34892.75 36366.56 36695.20 36681.24 35976.56 37093.96 361
tmp_tt68.90 34566.97 34774.68 36250.78 38959.95 38587.13 37483.47 38538.80 38262.21 37896.23 32364.70 36776.91 38488.91 32130.49 38287.19 373
UnsupCasMVSNet_bld87.17 33085.12 33693.31 32991.94 36488.77 33594.92 35998.30 20084.30 36082.30 36490.04 36863.96 36897.25 34285.85 34074.47 37393.93 362
test_vis1_rt91.29 30590.65 30593.19 33297.45 24186.25 35698.57 17290.90 37993.30 22986.94 34993.59 35662.07 36999.11 18897.48 9095.58 22194.22 355
APD_test188.22 32788.01 32788.86 34695.98 32174.66 37597.21 30096.44 34283.96 36186.66 35297.90 20960.95 37097.84 32782.73 35490.23 29694.09 358
test_method79.03 33678.17 33881.63 35886.06 37854.40 38882.75 37796.89 32939.54 38180.98 36695.57 34158.37 37194.73 36884.74 34978.61 36495.75 334
mvsany_test388.80 32588.04 32691.09 34389.78 37181.57 36797.83 25695.49 35193.81 19987.53 34693.95 35456.14 37297.43 33994.68 18683.13 35194.26 353
PM-MVS87.77 32886.55 33491.40 34291.03 36983.36 36396.92 31995.18 35691.28 29986.48 35493.42 35753.27 37396.74 35089.43 31581.97 35594.11 357
ambc89.49 34586.66 37675.78 37092.66 37096.72 33586.55 35392.50 36446.01 37497.90 32190.32 29682.09 35394.80 351
Gipumacopyleft78.40 34076.75 34383.38 35595.54 33480.43 36879.42 37897.40 30064.67 37573.46 37280.82 37645.65 37593.14 37466.32 37787.43 33176.56 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs387.17 33087.06 33387.50 34891.21 36775.66 37199.05 6596.61 34092.79 24988.85 34092.78 36143.72 37693.49 37193.95 21384.56 34893.34 365
EMVS64.07 34863.26 35166.53 36581.73 38258.81 38791.85 37184.75 38451.93 38059.09 38075.13 37943.32 37779.09 38342.03 38239.47 38061.69 379
test_f86.07 33485.39 33588.10 34789.28 37275.57 37297.73 26396.33 34389.41 33385.35 35991.56 36743.31 37895.53 36291.32 28284.23 35093.21 366
E-PMN64.94 34764.25 34967.02 36482.28 38159.36 38691.83 37285.63 38352.69 37860.22 37977.28 37841.06 37980.12 38246.15 38141.14 37961.57 380
FPMVS77.62 34277.14 34279.05 36079.25 38360.97 38495.79 35095.94 34765.96 37467.93 37694.40 34937.73 38088.88 37968.83 37688.46 32187.29 372
PMMVS277.95 34175.44 34585.46 35182.54 38074.95 37394.23 36793.08 37272.80 37174.68 36987.38 37036.36 38191.56 37673.95 37163.94 37789.87 369
testf179.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
APD_test279.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
LCM-MVSNet78.70 33976.24 34486.08 35077.26 38571.99 37794.34 36696.72 33561.62 37676.53 36889.33 36933.91 38492.78 37581.85 35774.60 37293.46 363
ANet_high69.08 34465.37 34880.22 35965.99 38771.96 37890.91 37390.09 38082.62 36249.93 38278.39 37729.36 38581.75 38062.49 37838.52 38186.95 374
test_vis3_rt79.22 33577.40 34184.67 35386.44 37774.85 37497.66 26881.43 38684.98 35767.12 37781.91 37528.09 38697.60 33388.96 32080.04 36281.55 375
PMVScopyleft61.03 2365.95 34663.57 35073.09 36357.90 38851.22 38985.05 37693.93 36954.45 37744.32 38383.57 37213.22 38789.15 37858.68 37981.00 35978.91 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 35323.72 35612.64 36713.54 3918.19 39196.55 3406.13 3927.48 38516.74 38537.98 38312.97 3886.05 38616.69 3845.43 38523.68 381
wuyk23d30.17 35030.18 35430.16 36678.61 38443.29 39066.79 37914.21 39017.31 38314.82 38611.93 38611.55 38941.43 38537.08 38319.30 3835.76 383
MVEpermissive62.14 2263.28 34959.38 35274.99 36174.33 38665.47 38185.55 37580.50 38752.02 37951.10 38175.00 38010.91 39080.50 38151.60 38053.40 37878.99 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 35224.95 35511.09 36814.89 3906.47 39296.56 3399.87 3917.55 38417.93 38439.02 3829.43 3915.90 38716.56 38512.72 38420.91 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.20 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.43 1580.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.82 198.66 2499.69 198.95 3897.46 2599.39 22
MSC_two_6792asdad99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
No_MVS99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
eth-test20.00 392
eth-test0.00 392
IU-MVS99.71 1999.23 798.64 12895.28 13599.63 1198.35 3799.81 1299.83 8
save fliter99.46 4998.38 3598.21 21398.71 10897.95 7
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 5499.94 598.47 2899.81 1299.84 7
GSMVS99.20 129
test_part299.63 2999.18 1099.27 27
MTGPAbinary98.74 100
MTMP98.89 10194.14 367
gm-plane-assit95.88 32587.47 35189.74 32796.94 29599.19 17693.32 232
test9_res96.39 13699.57 7499.69 50
agg_prior295.87 15299.57 7499.68 55
agg_prior99.30 6698.38 3598.72 10597.57 13499.81 71
test_prior498.01 5897.86 252
test_prior99.19 3999.31 6298.22 4798.84 7199.70 10999.65 63
旧先验297.57 27691.30 29798.67 6399.80 7895.70 160
新几何297.64 270
无先验97.58 27598.72 10591.38 29199.87 4893.36 23199.60 71
原ACMM297.67 267
testdata299.89 3991.65 278
testdata197.32 29396.34 85
plane_prior797.42 24394.63 207
plane_prior598.56 14499.03 20096.07 14294.27 22796.92 247
plane_prior498.28 177
plane_prior394.61 21097.02 5495.34 199
plane_prior298.80 12597.28 36
plane_prior197.37 247
plane_prior94.60 21298.44 18896.74 6794.22 229
n20.00 393
nn0.00 393
door-mid94.37 363
test1198.66 123
door94.64 361
HQP5-MVS94.25 227
HQP-NCC97.20 25698.05 23296.43 7994.45 222
ACMP_Plane97.20 25698.05 23296.43 7994.45 222
BP-MVS95.30 170
HQP4-MVS94.45 22298.96 21196.87 258
HQP3-MVS98.46 16794.18 231
NP-MVS97.28 25094.51 21597.73 225
ACMMP++_ref92.97 264
ACMMP++93.61 251