This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145290.77 16598.89 998.28 5596.24 198.35 20495.76 6399.58 2199.59 20
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2994.78 3498.93 798.87 896.04 299.86 897.45 1699.58 2199.59 20
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5696.04 299.24 11495.36 7999.59 1799.56 26
test_0728_THIRD94.78 3498.73 1198.87 895.87 499.84 2297.45 1699.72 299.77 1
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3295.13 1999.19 298.89 695.54 599.85 1797.52 1299.66 1099.56 26
test_241102_ONE99.42 795.30 1798.27 3295.09 2299.19 298.81 1295.54 599.65 52
test_one_060199.32 2295.20 2098.25 3795.13 1998.48 1798.87 895.16 7
DVP-MVScopyleft97.91 397.81 498.22 1299.45 395.36 1398.21 4397.85 10894.92 2598.73 1198.87 895.08 899.84 2297.52 1299.67 699.48 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 2794.92 2598.99 598.92 395.08 8
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 14998.35 2195.16 1898.71 1398.80 1395.05 1099.89 396.70 3199.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 3295.13 1998.93 798.89 694.99 1199.85 1797.52 1299.65 1299.74 7
SteuartSystems-ACMMP97.62 797.53 897.87 2398.39 7794.25 3798.43 2498.27 3295.34 1398.11 2098.56 2194.53 1299.71 4096.57 3599.62 1599.65 13
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 697.44 1098.37 798.90 5095.86 697.27 14198.08 6695.81 797.87 2898.31 5094.26 1399.68 4897.02 2399.49 3699.57 23
SD-MVS97.41 1197.53 897.06 6198.57 6994.46 3097.92 6898.14 5694.82 3199.01 498.55 2394.18 1497.41 30996.94 2499.64 1399.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 897.54 797.73 3599.40 1193.77 5398.53 1598.29 2795.55 998.56 1597.81 8993.90 1599.65 5296.62 3299.21 6699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1796.84 2698.20 1399.30 2495.35 1597.12 15698.07 7193.54 7396.08 8497.69 9693.86 1699.71 4096.50 3699.39 5099.55 29
APDe-MVS97.82 597.73 598.08 1799.15 3394.82 2698.81 798.30 2594.76 3698.30 1898.90 593.77 1799.68 4897.93 499.69 399.75 5
TSAR-MVS + MP.97.42 1097.33 1297.69 3999.25 2794.24 3898.07 5297.85 10893.72 6598.57 1498.35 4193.69 1899.40 10097.06 2299.46 3999.44 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
patch_mono-296.83 3597.44 1095.01 16299.05 3985.39 28796.98 16598.77 694.70 3897.99 2498.66 1793.61 1999.91 197.67 899.50 3399.72 10
DeepPCF-MVS93.97 196.61 4597.09 1495.15 15398.09 9986.63 26796.00 24298.15 5495.43 1097.95 2598.56 2193.40 2099.36 10496.77 2899.48 3799.45 42
SF-MVS97.39 1297.13 1398.17 1499.02 4295.28 1998.23 4098.27 3292.37 11998.27 1998.65 1993.33 2199.72 3996.49 3799.52 2899.51 34
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 3895.42 1097.94 6698.18 4990.57 18098.85 1098.94 293.33 2199.83 2596.72 3099.68 499.63 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1597.03 1998.11 1698.77 5395.06 2497.34 13498.04 8195.96 597.09 4597.88 8293.18 2399.71 4095.84 6199.17 6999.56 26
9.1496.75 3398.93 4797.73 8598.23 4291.28 15197.88 2798.44 3493.00 2499.65 5295.76 6399.47 38
segment_acmp92.89 25
TSAR-MVS + GP.96.69 4296.49 4497.27 5398.31 8193.39 5996.79 17996.72 22594.17 5397.44 3397.66 10092.76 2699.33 10596.86 2797.76 12199.08 77
dcpmvs_296.37 5197.05 1794.31 20198.96 4684.11 30597.56 10997.51 14493.92 5997.43 3598.52 2592.75 2799.32 10797.32 2099.50 3399.51 34
TEST998.70 5694.19 3996.41 21298.02 8688.17 24596.03 8597.56 11192.74 2899.59 64
train_agg96.30 5395.83 5997.72 3698.70 5694.19 3996.41 21298.02 8688.58 23496.03 8597.56 11192.73 2999.59 6495.04 8599.37 5499.39 50
test_898.67 5894.06 4696.37 21998.01 8988.58 23495.98 8997.55 11392.73 2999.58 67
CSCG96.05 5795.91 5796.46 8399.24 2890.47 15698.30 3098.57 1389.01 21793.97 13597.57 10992.62 3199.76 3394.66 9799.27 5999.15 69
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 3696.16 497.55 11297.97 9395.59 896.61 6297.89 8092.57 3299.84 2295.95 5699.51 3199.40 49
ZD-MVS99.05 3994.59 2898.08 6689.22 21197.03 4798.10 6392.52 3399.65 5294.58 10199.31 57
PHI-MVS96.77 3896.46 4797.71 3898.40 7594.07 4598.21 4398.45 1789.86 19297.11 4498.01 7392.52 3399.69 4696.03 5499.53 2799.36 54
test_fmvsm_n_192097.55 997.89 396.53 7398.41 7491.73 10198.01 5699.02 196.37 399.30 198.92 392.39 3599.79 3199.16 299.46 3998.08 155
APD-MVScopyleft96.95 2796.60 3998.01 1899.03 4194.93 2597.72 8898.10 6491.50 14198.01 2398.32 4992.33 3699.58 6794.85 9099.51 3199.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4496.58 4196.99 6298.46 7092.31 8796.20 23398.90 394.30 5195.86 9297.74 9492.33 3699.38 10396.04 5399.42 4599.28 59
MSLP-MVS++96.94 2897.06 1596.59 7198.72 5591.86 10097.67 9398.49 1494.66 4197.24 3998.41 3792.31 3898.94 14996.61 3399.46 3998.96 88
旧先验198.38 7893.38 6097.75 11498.09 6592.30 3999.01 8099.16 67
HFP-MVS97.14 1996.92 2397.83 2599.42 794.12 4398.52 1698.32 2393.21 8697.18 4098.29 5392.08 4099.83 2595.63 7099.59 1799.54 30
test_prior296.35 22092.80 10996.03 8597.59 10892.01 4195.01 8799.38 51
CDPH-MVS95.97 6095.38 6897.77 3298.93 4794.44 3196.35 22097.88 10186.98 27696.65 6097.89 8091.99 4299.47 9292.26 13999.46 3999.39 50
CP-MVS97.02 2496.81 3097.64 4299.33 2193.54 5698.80 898.28 2992.99 9796.45 7298.30 5291.90 4399.85 1795.61 7299.68 499.54 30
CS-MVS96.86 3297.06 1596.26 10098.16 9691.16 13499.09 397.87 10395.30 1497.06 4698.03 7091.72 4498.71 17297.10 2199.17 6998.90 96
DPM-MVS95.69 6594.92 7898.01 1898.08 10295.71 995.27 27497.62 13290.43 18395.55 10397.07 13491.72 4499.50 8989.62 19498.94 8398.82 105
XVS97.18 1796.96 2297.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6498.29 5391.70 4699.80 2995.66 6599.40 4899.62 16
X-MVStestdata91.71 20489.67 26397.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6432.69 38191.70 4699.80 2995.66 6599.40 4899.62 16
ZNCC-MVS96.96 2696.67 3797.85 2499.37 1694.12 4398.49 2098.18 4992.64 11496.39 7498.18 6091.61 4899.88 495.59 7599.55 2499.57 23
ACMMP_NAP97.20 1696.86 2498.23 1199.09 3495.16 2297.60 10598.19 4792.82 10897.93 2698.74 1691.60 4999.86 896.26 4099.52 2899.67 11
region2R97.07 2196.84 2697.77 3299.46 293.79 5198.52 1698.24 3993.19 8997.14 4298.34 4491.59 5099.87 795.46 7799.59 1799.64 14
DELS-MVS96.61 4596.38 5097.30 5097.79 11693.19 6695.96 24498.18 4995.23 1595.87 9197.65 10191.45 5199.70 4595.87 5799.44 4499.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2596.86 2497.47 4599.09 3493.27 6597.98 5998.07 7193.75 6497.45 3298.48 3191.43 5299.59 6496.22 4399.27 5999.54 30
SR-MVS-dyc-post96.88 3196.80 3197.11 6099.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2691.40 5399.56 7596.05 5199.26 6199.43 46
GST-MVS96.85 3496.52 4397.82 2699.36 1894.14 4298.29 3198.13 5792.72 11196.70 5698.06 6791.35 5499.86 894.83 9199.28 5899.47 41
ACMMPR97.07 2196.84 2697.79 2999.44 693.88 4998.52 1698.31 2493.21 8697.15 4198.33 4791.35 5499.86 895.63 7099.59 1799.62 16
CS-MVS-test96.89 3097.04 1896.45 8498.29 8291.66 10799.03 497.85 10895.84 696.90 4997.97 7691.24 5698.75 16696.92 2599.33 5598.94 91
DeepC-MVS_fast93.89 296.93 2996.64 3897.78 3098.64 6494.30 3497.41 12498.04 8194.81 3296.59 6498.37 3991.24 5699.64 5995.16 8399.52 2899.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 5895.89 5896.40 8797.16 14292.44 8397.47 12197.77 11394.55 4396.48 6994.51 26391.23 5898.92 15195.65 6898.19 10897.82 167
PGM-MVS96.81 3696.53 4297.65 4099.35 2093.53 5797.65 9698.98 292.22 12197.14 4298.44 3491.17 5999.85 1794.35 10399.46 3999.57 23
MP-MVS-pluss96.70 4096.27 5297.98 2099.23 3094.71 2796.96 16798.06 7490.67 17195.55 10398.78 1591.07 6099.86 896.58 3499.55 2499.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3296.60 3997.64 4299.40 1193.44 5898.50 1998.09 6593.27 8595.95 9098.33 4791.04 6199.88 495.20 8299.57 2399.60 19
HPM-MVScopyleft96.69 4296.45 4897.40 4799.36 1893.11 6898.87 698.06 7491.17 15696.40 7397.99 7490.99 6299.58 6795.61 7299.61 1699.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 3696.71 3697.12 5999.01 4592.31 8797.98 5998.06 7493.11 9497.44 3398.55 2390.93 6399.55 7796.06 5099.25 6399.51 34
test1297.65 4098.46 7094.26 3697.66 12595.52 10690.89 6499.46 9399.25 6399.22 64
MTAPA97.08 2096.78 3297.97 2199.37 1694.42 3297.24 14398.08 6695.07 2396.11 8298.59 2090.88 6599.90 296.18 4999.50 3399.58 22
EI-MVSNet-Vis-set96.51 4796.47 4596.63 6898.24 8691.20 12996.89 17197.73 11794.74 3796.49 6898.49 2890.88 6599.58 6796.44 3898.32 10499.13 71
RE-MVS-def96.72 3599.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2690.71 6796.05 5199.26 6199.43 46
EIA-MVS95.53 7195.47 6495.71 12897.06 15189.63 17697.82 7797.87 10393.57 6993.92 13695.04 24090.61 6898.95 14894.62 9998.68 9198.54 119
MP-MVScopyleft96.77 3896.45 4897.72 3699.39 1393.80 5098.41 2598.06 7493.37 8195.54 10598.34 4490.59 6999.88 494.83 9199.54 2699.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5296.30 5196.47 8198.20 9190.93 14196.86 17397.72 11994.67 4096.16 8198.46 3290.43 7099.58 6796.23 4297.96 11598.90 96
原ACMM196.38 9098.59 6691.09 13697.89 9987.41 26895.22 11097.68 9790.25 7199.54 7987.95 22599.12 7498.49 126
HPM-MVS_fast96.51 4796.27 5297.22 5599.32 2292.74 7598.74 998.06 7490.57 18096.77 5398.35 4190.21 7299.53 8194.80 9499.63 1499.38 52
testdata95.46 14598.18 9588.90 20897.66 12582.73 33497.03 4798.07 6690.06 7398.85 15689.67 19298.98 8198.64 116
新几何197.32 4998.60 6593.59 5597.75 11481.58 34195.75 9697.85 8690.04 7499.67 5086.50 25799.13 7398.69 113
DP-MVS Recon95.68 6695.12 7697.37 4899.19 3194.19 3997.03 15898.08 6688.35 24195.09 11397.65 10189.97 7599.48 9192.08 14898.59 9498.44 134
MVS_111021_LR96.24 5596.19 5496.39 8998.23 9091.35 12196.24 23198.79 593.99 5795.80 9497.65 10189.92 7699.24 11495.87 5799.20 6798.58 117
EPP-MVSNet95.22 7995.04 7795.76 12197.49 13489.56 18098.67 1097.00 20390.69 16994.24 12797.62 10689.79 7798.81 15993.39 12496.49 15498.92 94
MVS_030497.04 2396.73 3497.96 2297.60 12994.36 3398.01 5694.09 33497.33 196.29 7698.79 1489.73 7899.86 899.36 199.42 4599.67 11
test_fmvsmvis_n_192096.70 4096.84 2696.31 9496.62 17691.73 10197.98 5998.30 2596.19 496.10 8398.95 189.42 7999.76 3398.90 399.08 7697.43 184
EC-MVSNet96.42 4996.47 4596.26 10097.01 15691.52 11398.89 597.75 11494.42 4696.64 6197.68 9789.32 8098.60 18297.45 1699.11 7598.67 115
PAPR94.18 10393.42 12396.48 8097.64 12591.42 11995.55 26097.71 12388.99 21892.34 17095.82 20489.19 8199.11 12886.14 26397.38 13098.90 96
MG-MVS95.61 6895.38 6896.31 9498.42 7390.53 15496.04 23997.48 14793.47 7795.67 10098.10 6389.17 8299.25 11391.27 16698.77 8899.13 71
PAPM_NR95.01 8394.59 8696.26 10098.89 5190.68 15197.24 14397.73 11791.80 13592.93 16196.62 16789.13 8399.14 12589.21 20697.78 11998.97 87
mvsany_test193.93 11893.98 10193.78 23194.94 26786.80 26094.62 28692.55 35188.77 23196.85 5098.49 2888.98 8498.08 23395.03 8695.62 17096.46 215
ACMMPcopyleft96.27 5495.93 5697.28 5299.24 2892.62 7898.25 3698.81 492.99 9794.56 12198.39 3888.96 8599.85 1794.57 10297.63 12299.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6195.53 6297.20 5797.67 12192.98 7197.65 9698.13 5794.81 3296.61 6298.35 4188.87 8699.51 8690.36 17997.35 13299.11 75
API-MVS94.84 9294.49 9395.90 11697.90 11192.00 9797.80 7997.48 14789.19 21294.81 11696.71 15088.84 8799.17 12188.91 21398.76 8996.53 210
test22298.24 8692.21 9095.33 26997.60 13379.22 35495.25 10897.84 8888.80 8899.15 7198.72 110
Test By Simon88.73 89
pcd_1.5k_mvsjas7.39 3559.85 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38788.65 900.00 3880.00 3860.00 3860.00 384
PS-MVSNAJss93.74 12693.51 11694.44 19393.91 30789.28 19797.75 8297.56 14092.50 11689.94 22996.54 17088.65 9098.18 21893.83 11690.90 24595.86 231
PS-MVSNAJ95.37 7395.33 7095.49 14197.35 13690.66 15295.31 27197.48 14793.85 6296.51 6795.70 21488.65 9099.65 5294.80 9498.27 10596.17 221
xiu_mvs_v2_base95.32 7595.29 7195.40 14697.22 13890.50 15595.44 26597.44 16193.70 6796.46 7196.18 18688.59 9399.53 8194.79 9697.81 11896.17 221
PLCcopyleft91.00 694.11 11093.43 12196.13 10698.58 6891.15 13596.69 19097.39 16787.29 27191.37 19296.71 15088.39 9499.52 8587.33 24497.13 14197.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13892.67 14895.47 14495.34 24292.83 7397.17 15298.58 1292.98 10290.13 22095.80 20588.37 9597.85 26991.71 15683.93 32295.73 247
PVSNet_BlendedMVS94.06 11293.92 10294.47 19298.27 8389.46 18796.73 18498.36 1890.17 18694.36 12495.24 23488.02 9699.58 6793.44 12190.72 24894.36 317
PVSNet_Blended94.87 9194.56 8895.81 12098.27 8389.46 18795.47 26498.36 1888.84 22594.36 12496.09 19488.02 9699.58 6793.44 12198.18 10998.40 137
TAPA-MVS90.10 792.30 18591.22 20295.56 13598.33 8089.60 17896.79 17997.65 12781.83 33991.52 18897.23 12687.94 9898.91 15371.31 36198.37 10398.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
casdiffmvs_mvgpermissive95.81 6495.57 6196.51 7796.87 16191.49 11497.50 11597.56 14093.99 5795.13 11297.92 7987.89 9998.78 16195.97 5597.33 13399.26 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 9094.62 8595.68 12996.83 16589.55 18196.70 18897.17 18491.17 15695.60 10296.11 19387.87 10098.76 16593.01 13497.17 14098.72 110
UniMVSNet (Re)93.31 14092.55 15495.61 13395.39 23693.34 6397.39 12998.71 793.14 9390.10 22494.83 25087.71 10198.03 24491.67 15983.99 32195.46 258
FC-MVSNet-test93.94 11793.57 11095.04 15995.48 23291.45 11898.12 4898.71 793.37 8190.23 21596.70 15287.66 10297.85 26991.49 16190.39 25395.83 235
canonicalmvs96.02 5895.45 6597.75 3497.59 13095.15 2398.28 3297.60 13394.52 4496.27 7896.12 19087.65 10399.18 12096.20 4894.82 18398.91 95
FIs94.09 11193.70 10695.27 14995.70 22392.03 9698.10 4998.68 993.36 8390.39 21296.70 15287.63 10497.94 25992.25 14190.50 25295.84 234
CDS-MVSNet94.14 10993.54 11295.93 11596.18 20491.46 11796.33 22297.04 19988.97 22093.56 14196.51 17187.55 10597.89 26789.80 18895.95 16198.44 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 8894.45 9596.36 9296.61 17791.47 11696.41 21297.41 16691.02 16194.50 12295.92 19887.53 10698.78 16193.89 11396.81 14598.84 104
casdiffmvspermissive95.64 6795.49 6396.08 10796.76 17390.45 15797.29 14097.44 16194.00 5695.46 10797.98 7587.52 10798.73 16895.64 6997.33 13399.08 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu95.27 7694.91 7996.38 9098.20 9190.86 14397.27 14198.25 3790.21 18594.18 12997.27 12387.48 10899.73 3693.53 11897.77 12098.55 118
mvs_anonymous93.82 12393.74 10594.06 21196.44 19285.41 28595.81 25097.05 19789.85 19490.09 22596.36 17987.44 10997.75 27993.97 10996.69 15099.02 80
CANet96.39 5096.02 5597.50 4497.62 12693.38 6097.02 16097.96 9495.42 1194.86 11597.81 8987.38 11099.82 2796.88 2699.20 6799.29 57
baseline95.58 6995.42 6796.08 10796.78 16890.41 15997.16 15397.45 15793.69 6895.65 10197.85 8687.29 11198.68 17495.66 6597.25 13799.13 71
TAMVS94.01 11593.46 11895.64 13096.16 20690.45 15796.71 18796.89 21589.27 21093.46 14696.92 14387.29 11197.94 25988.70 21795.74 16698.53 120
nrg03094.05 11393.31 12596.27 9995.22 25394.59 2898.34 2797.46 15292.93 10591.21 20296.64 15887.23 11398.22 21394.99 8885.80 29495.98 230
CPTT-MVS95.57 7095.19 7396.70 6599.27 2691.48 11598.33 2898.11 6287.79 25795.17 11198.03 7087.09 11499.61 6093.51 11999.42 4599.02 80
OMC-MVS95.09 8294.70 8496.25 10398.46 7091.28 12396.43 21097.57 13792.04 13094.77 11797.96 7787.01 11599.09 13291.31 16596.77 14698.36 141
DeepC-MVS93.07 396.06 5695.66 6097.29 5197.96 10593.17 6797.30 13998.06 7493.92 5993.38 14898.66 1786.83 11699.73 3695.60 7499.22 6598.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 18691.94 17493.34 25096.25 20086.97 25896.57 20697.05 19790.67 17189.50 24594.80 25286.59 11797.64 28789.91 18586.11 29295.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 15592.88 13793.48 24595.77 22186.98 25796.44 20897.12 18790.66 17391.30 19697.64 10486.56 11898.05 24089.91 18590.55 25095.41 260
miper_enhance_ethall91.54 21491.01 20793.15 25795.35 24187.07 25693.97 30996.90 21386.79 28089.17 25593.43 31386.55 11997.64 28789.97 18486.93 28494.74 306
1112_ss93.37 13892.42 16196.21 10497.05 15390.99 13796.31 22496.72 22586.87 27989.83 23396.69 15486.51 12099.14 12588.12 22293.67 19898.50 124
diffmvspermissive95.25 7795.13 7595.63 13196.43 19389.34 19295.99 24397.35 17392.83 10796.31 7597.37 11886.44 12198.67 17596.26 4097.19 13998.87 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 9694.02 10096.79 6497.71 12092.05 9596.59 20397.35 17390.61 17794.64 11996.93 14086.41 12299.39 10191.20 16894.71 18798.94 91
EPNet95.20 8094.56 8897.14 5892.80 33592.68 7797.85 7494.87 31996.64 292.46 16497.80 9186.23 12399.65 5293.72 11798.62 9399.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 20991.13 20592.97 26395.55 22986.57 26894.47 29196.88 21687.77 25888.88 26094.01 29086.22 12497.54 29689.49 19686.93 28494.79 302
Fast-Effi-MVS+93.46 13592.75 14495.59 13496.77 17090.03 16396.81 17897.13 18688.19 24491.30 19694.27 27986.21 12598.63 17987.66 23696.46 15698.12 150
MVSFormer95.37 7395.16 7495.99 11496.34 19791.21 12798.22 4197.57 13791.42 14596.22 7997.32 11986.20 12697.92 26394.07 10799.05 7798.85 102
lupinMVS94.99 8794.56 8896.29 9896.34 19791.21 12795.83 24996.27 25288.93 22296.22 7996.88 14586.20 12698.85 15695.27 8199.05 7798.82 105
114514_t93.95 11693.06 13196.63 6899.07 3791.61 10897.46 12397.96 9477.99 35893.00 15697.57 10986.14 12899.33 10589.22 20599.15 7198.94 91
alignmvs95.87 6395.23 7297.78 3097.56 13395.19 2197.86 7197.17 18494.39 4896.47 7096.40 17785.89 12999.20 11796.21 4795.11 17998.95 90
WR-MVS_H92.00 19791.35 19393.95 22095.09 26089.47 18598.04 5498.68 991.46 14388.34 27294.68 25785.86 13097.56 29485.77 27184.24 31994.82 297
Test_1112_low_res92.84 16691.84 17795.85 11997.04 15489.97 16995.53 26296.64 23385.38 30189.65 23995.18 23585.86 13099.10 12987.70 23293.58 20398.49 126
HY-MVS89.66 993.87 12092.95 13496.63 6897.10 14792.49 8295.64 25896.64 23389.05 21693.00 15695.79 20885.77 13299.45 9589.16 20994.35 18997.96 157
c3_l91.38 22190.89 20992.88 26795.58 22786.30 27294.68 28596.84 22088.17 24588.83 26394.23 28285.65 13397.47 30389.36 19984.63 31294.89 292
IS-MVSNet94.90 8994.52 9296.05 11097.67 12190.56 15398.44 2396.22 25593.21 8693.99 13397.74 9485.55 13498.45 19489.98 18397.86 11699.14 70
MVS91.71 20490.44 22895.51 13995.20 25591.59 11096.04 23997.45 15773.44 36687.36 29495.60 21985.42 13599.10 12985.97 26897.46 12595.83 235
VNet95.89 6295.45 6597.21 5698.07 10392.94 7297.50 11598.15 5493.87 6197.52 3197.61 10785.29 13699.53 8195.81 6295.27 17599.16 67
CNLPA94.28 10193.53 11396.52 7498.38 7892.55 8096.59 20396.88 21690.13 18891.91 17997.24 12585.21 13799.09 13287.64 23797.83 11797.92 159
F-COLMAP93.58 13192.98 13395.37 14798.40 7588.98 20697.18 15197.29 17887.75 26090.49 20997.10 13385.21 13799.50 8986.70 25496.72 14997.63 173
LCM-MVSNet-Re92.50 17392.52 15792.44 27796.82 16781.89 32696.92 16993.71 34092.41 11884.30 32594.60 26185.08 13997.03 32291.51 16097.36 13198.40 137
NR-MVSNet92.34 18291.27 19995.53 13894.95 26593.05 6997.39 12998.07 7192.65 11384.46 32395.71 21285.00 14097.77 27889.71 19083.52 32895.78 240
PAPM91.52 21590.30 23495.20 15195.30 24889.83 17293.38 32996.85 21986.26 28988.59 26795.80 20584.88 14198.15 22075.67 34795.93 16297.63 173
MAR-MVS94.22 10293.46 11896.51 7798.00 10492.19 9297.67 9397.47 15088.13 24893.00 15695.84 20284.86 14299.51 8687.99 22498.17 11097.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 9294.39 9796.18 10595.52 23090.93 14196.09 23796.52 24189.28 20996.01 8897.32 11984.70 14398.77 16495.15 8498.91 8598.85 102
jason: jason.
sss94.51 9793.80 10496.64 6697.07 14891.97 9896.32 22398.06 7488.94 22194.50 12296.78 14784.60 14499.27 11291.90 14996.02 15998.68 114
LS3D93.57 13292.61 15296.47 8197.59 13091.61 10897.67 9397.72 11985.17 30690.29 21498.34 4484.60 14499.73 3683.85 29698.27 10598.06 156
Vis-MVSNet (Re-imp)94.15 10693.88 10394.95 16897.61 12787.92 23798.10 4995.80 27192.22 12193.02 15597.45 11484.53 14697.91 26688.24 22197.97 11499.02 80
GeoE93.89 11993.28 12695.72 12796.96 15989.75 17498.24 3996.92 21289.47 20492.12 17597.21 12784.42 14798.39 20187.71 23196.50 15399.01 83
cdsmvs_eth3d_5k23.24 35130.99 3530.00 3690.00 3920.00 3930.00 38097.63 1310.00 3870.00 38896.88 14584.38 1480.00 3880.00 3860.00 3860.00 384
test_yl94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
DCV-MVSNet94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
CHOSEN 280x42093.12 14992.72 14794.34 19996.71 17487.27 24890.29 35797.72 11986.61 28391.34 19395.29 23084.29 15198.41 19693.25 12598.94 8397.35 188
baseline192.82 16791.90 17595.55 13797.20 14090.77 14897.19 15094.58 32492.20 12392.36 16896.34 18084.16 15298.21 21489.20 20783.90 32597.68 172
eth_miper_zixun_eth91.02 24090.59 22492.34 28195.33 24584.35 30194.10 30696.90 21388.56 23688.84 26294.33 27484.08 15397.60 29288.77 21684.37 31895.06 281
PCF-MVS89.48 1191.56 21289.95 25196.36 9296.60 17892.52 8192.51 34397.26 17979.41 35388.90 25896.56 16984.04 15499.55 7777.01 34397.30 13597.01 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16892.03 17095.14 15495.33 24589.52 18496.04 23997.44 16187.72 26186.25 30995.33 22983.84 15598.79 16089.26 20397.05 14297.11 196
DP-MVS92.76 16991.51 19196.52 7498.77 5390.99 13797.38 13196.08 26182.38 33589.29 25197.87 8383.77 15699.69 4681.37 31796.69 15098.89 99
3Dnovator+91.43 495.40 7294.48 9498.16 1596.90 16095.34 1698.48 2197.87 10394.65 4288.53 26998.02 7283.69 15799.71 4093.18 12698.96 8299.44 44
h-mvs3394.15 10693.52 11596.04 11197.81 11590.22 16197.62 10497.58 13695.19 1696.74 5497.45 11483.67 15899.61 6095.85 5979.73 34598.29 144
hse-mvs293.45 13692.99 13294.81 17697.02 15588.59 21496.69 19096.47 24495.19 1696.74 5496.16 18983.67 15898.48 19395.85 5979.13 34997.35 188
AdaColmapbinary94.34 10093.68 10796.31 9498.59 6691.68 10696.59 20397.81 11289.87 19192.15 17397.06 13583.62 16099.54 7989.34 20098.07 11297.70 171
DU-MVS92.90 16292.04 16995.49 14194.95 26592.83 7397.16 15398.24 3993.02 9690.13 22095.71 21283.47 16197.85 26991.71 15683.93 32295.78 240
Baseline_NR-MVSNet91.20 23290.62 22292.95 26493.83 31088.03 23497.01 16395.12 30588.42 23989.70 23695.13 23883.47 16197.44 30689.66 19383.24 33093.37 334
miper_lstm_enhance90.50 25990.06 24991.83 29395.33 24583.74 30993.86 31596.70 22987.56 26587.79 28593.81 29883.45 16396.92 32787.39 24284.62 31394.82 297
EPNet_dtu91.71 20491.28 19892.99 26293.76 31283.71 31196.69 19095.28 29693.15 9287.02 30195.95 19783.37 16497.38 31179.46 32996.84 14497.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)93.52 13492.92 13595.31 14896.77 17088.54 21794.82 28296.21 25789.61 19994.20 12895.25 23383.24 16599.14 12590.01 18296.16 15898.25 145
BH-untuned92.94 16092.62 15193.92 22597.22 13886.16 27796.40 21696.25 25490.06 18989.79 23496.17 18883.19 16698.35 20487.19 24797.27 13697.24 193
TranMVSNet+NR-MVSNet92.50 17391.63 18495.14 15494.76 27792.07 9497.53 11398.11 6292.90 10689.56 24296.12 19083.16 16797.60 29289.30 20183.20 33195.75 245
CHOSEN 1792x268894.15 10693.51 11696.06 10998.27 8389.38 19095.18 27898.48 1685.60 29893.76 13997.11 13283.15 16899.61 6091.33 16498.72 9099.19 65
PMMVS92.86 16492.34 16294.42 19594.92 26886.73 26394.53 29096.38 24884.78 31394.27 12695.12 23983.13 16998.40 19791.47 16296.49 15498.12 150
Effi-MVS+-dtu93.08 15293.21 12892.68 27596.02 21483.25 31597.14 15596.72 22593.85 6291.20 20393.44 31183.08 17098.30 20891.69 15895.73 16796.50 212
v891.29 22990.53 22793.57 24294.15 30088.12 23297.34 13497.06 19688.99 21888.32 27394.26 28183.08 17098.01 24687.62 23883.92 32494.57 311
mvsmamba93.83 12293.46 11894.93 17194.88 27290.85 14498.55 1495.49 28794.24 5291.29 19996.97 13983.04 17298.14 22195.56 7691.17 23895.78 240
DIV-MVS_self_test90.97 24390.33 23192.88 26795.36 24086.19 27694.46 29396.63 23687.82 25488.18 27994.23 28282.99 17397.53 29887.72 22985.57 29694.93 288
cl____90.96 24490.32 23292.89 26695.37 23986.21 27594.46 29396.64 23387.82 25488.15 28094.18 28582.98 17497.54 29687.70 23285.59 29594.92 290
BH-w/o92.14 19491.75 17993.31 25196.99 15885.73 28095.67 25595.69 27688.73 23289.26 25394.82 25182.97 17598.07 23785.26 27896.32 15796.13 225
v14890.99 24190.38 23092.81 27093.83 31085.80 27996.78 18196.68 23089.45 20588.75 26593.93 29482.96 17697.82 27387.83 22783.25 32994.80 300
HyFIR lowres test93.66 12892.92 13595.87 11798.24 8689.88 17194.58 28898.49 1485.06 30893.78 13895.78 20982.86 17798.67 17591.77 15495.71 16899.07 79
test_djsdf93.07 15392.76 14294.00 21593.49 32188.70 21298.22 4197.57 13791.42 14590.08 22695.55 22282.85 17897.92 26394.07 10791.58 22895.40 263
PatchmatchNetpermissive91.91 19991.35 19393.59 24095.38 23784.11 30593.15 33395.39 28989.54 20192.10 17693.68 30382.82 17998.13 22284.81 28295.32 17498.52 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 18098.45 131
xiu_mvs_v1_base_debu95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base_debi95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
patchmatchnet-post90.45 34482.65 18498.10 229
V4291.58 21190.87 21093.73 23294.05 30488.50 21997.32 13796.97 20488.80 23089.71 23594.33 27482.54 18598.05 24089.01 21085.07 30694.64 310
WR-MVS92.34 18291.53 18894.77 18195.13 25890.83 14596.40 21697.98 9291.88 13489.29 25195.54 22382.50 18697.80 27489.79 18985.27 30295.69 249
tpmrst91.44 21891.32 19591.79 29695.15 25679.20 35293.42 32895.37 29188.55 23793.49 14593.67 30482.49 18798.27 21090.41 17789.34 26397.90 160
MDTV_nov1_ep13_2view70.35 36893.10 33583.88 32393.55 14282.47 18886.25 26098.38 139
XVG-OURS-SEG-HR93.86 12193.55 11194.81 17697.06 15188.53 21895.28 27297.45 15791.68 13894.08 13297.68 9782.41 18998.90 15493.84 11592.47 21396.98 198
QAPM93.45 13692.27 16496.98 6396.77 17092.62 7898.39 2698.12 5984.50 31688.27 27697.77 9282.39 19099.81 2885.40 27698.81 8798.51 123
Patchmatch-test89.42 27987.99 28693.70 23595.27 24985.11 29288.98 36494.37 32981.11 34287.10 29993.69 30182.28 19197.50 30174.37 35194.76 18498.48 128
Vis-MVSNetpermissive95.23 7894.81 8096.51 7797.18 14191.58 11198.26 3598.12 5994.38 4994.90 11498.15 6282.28 19198.92 15191.45 16398.58 9599.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8194.44 9697.44 4696.56 18393.36 6298.65 1198.36 1894.12 5489.25 25498.06 6782.20 19399.77 3293.41 12399.32 5699.18 66
v1091.04 23990.23 23993.49 24494.12 30188.16 23197.32 13797.08 19288.26 24388.29 27594.22 28482.17 19497.97 25186.45 25884.12 32094.33 318
v114491.37 22390.60 22393.68 23793.89 30888.23 22796.84 17697.03 20188.37 24089.69 23794.39 27082.04 19597.98 24887.80 22885.37 29994.84 294
MVSTER93.20 14492.81 14194.37 19796.56 18389.59 17997.06 15797.12 18791.24 15291.30 19695.96 19682.02 19698.05 24093.48 12090.55 25095.47 257
CP-MVSNet91.89 20091.24 20093.82 22895.05 26188.57 21597.82 7798.19 4791.70 13788.21 27895.76 21081.96 19797.52 30087.86 22684.65 31195.37 266
Patchmatch-RL test87.38 29986.24 30090.81 31588.74 36578.40 35688.12 36893.17 34587.11 27582.17 34289.29 35381.95 19895.60 34888.64 21877.02 35398.41 136
sam_mvs81.94 199
pmmvs490.93 24589.85 25594.17 20693.34 32690.79 14794.60 28796.02 26284.62 31487.45 29095.15 23681.88 20097.45 30587.70 23287.87 27694.27 322
test_post17.58 38481.76 20198.08 233
XVG-OURS93.72 12793.35 12494.80 17997.07 14888.61 21394.79 28397.46 15291.97 13393.99 13397.86 8581.74 20298.88 15592.64 13892.67 21296.92 202
v2v48291.59 20990.85 21393.80 22993.87 30988.17 23096.94 16896.88 21689.54 20189.53 24394.90 24681.70 20398.02 24589.25 20485.04 30895.20 277
baseline291.63 20790.86 21193.94 22294.33 29586.32 27195.92 24691.64 35889.37 20786.94 30294.69 25681.62 20498.69 17388.64 21894.57 18896.81 205
v14419291.06 23890.28 23593.39 24893.66 31687.23 25196.83 17797.07 19487.43 26789.69 23794.28 27881.48 20598.00 24787.18 24884.92 31094.93 288
MDTV_nov1_ep1390.76 21795.22 25380.33 34193.03 33695.28 29688.14 24792.84 16293.83 29581.34 20698.08 23382.86 30194.34 190
HQP_MVS93.78 12593.43 12194.82 17496.21 20189.99 16697.74 8397.51 14494.85 2791.34 19396.64 15881.32 20798.60 18293.02 13292.23 21695.86 231
plane_prior696.10 21190.00 16481.32 207
v7n90.76 24989.86 25493.45 24793.54 31887.60 24597.70 9297.37 17088.85 22487.65 28894.08 28981.08 20998.10 22984.68 28483.79 32694.66 309
HQP2-MVS80.95 210
HQP-MVS93.19 14592.74 14594.54 19195.86 21689.33 19396.65 19497.39 16793.55 7090.14 21695.87 20080.95 21098.50 19092.13 14592.10 22195.78 240
CR-MVSNet90.82 24889.77 25993.95 22094.45 29187.19 25290.23 35895.68 27886.89 27892.40 16592.36 32880.91 21297.05 32181.09 31993.95 19697.60 178
Patchmtry88.64 28987.25 29292.78 27194.09 30286.64 26489.82 36195.68 27880.81 34687.63 28992.36 32880.91 21297.03 32278.86 33285.12 30594.67 308
v119291.07 23790.23 23993.58 24193.70 31387.82 24196.73 18497.07 19487.77 25889.58 24094.32 27680.90 21497.97 25186.52 25685.48 29794.95 284
cl2291.21 23190.56 22693.14 25896.09 21286.80 26094.41 29596.58 23987.80 25688.58 26893.99 29280.85 21597.62 29089.87 18786.93 28494.99 283
anonymousdsp92.16 19291.55 18793.97 21892.58 33989.55 18197.51 11497.42 16589.42 20688.40 27194.84 24980.66 21697.88 26891.87 15191.28 23694.48 312
RRT_MVS93.10 15092.83 13993.93 22494.76 27788.04 23398.47 2296.55 24093.44 7890.01 22897.04 13680.64 21797.93 26294.33 10490.21 25595.83 235
CLD-MVS92.98 15792.53 15694.32 20096.12 21089.20 20095.28 27297.47 15092.66 11289.90 23095.62 21880.58 21898.40 19792.73 13792.40 21495.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 34016.58 38580.53 21997.68 28386.20 261
VPA-MVSNet93.24 14292.48 15995.51 13995.70 22392.39 8497.86 7198.66 1192.30 12092.09 17795.37 22880.49 22098.40 19793.95 11085.86 29395.75 245
tpmvs89.83 27589.15 27491.89 29194.92 26880.30 34293.11 33495.46 28886.28 28888.08 28192.65 31980.44 22198.52 18981.47 31389.92 25796.84 204
PatchMatch-RL92.90 16292.02 17195.56 13598.19 9390.80 14695.27 27497.18 18287.96 25091.86 18195.68 21580.44 22198.99 14684.01 29297.54 12496.89 203
PEN-MVS91.20 23290.44 22893.48 24594.49 28987.91 23997.76 8198.18 4991.29 14887.78 28695.74 21180.35 22397.33 31385.46 27582.96 33295.19 278
Fast-Effi-MVS+-dtu92.29 18691.99 17293.21 25695.27 24985.52 28397.03 15896.63 23692.09 12889.11 25795.14 23780.33 22498.08 23387.54 24094.74 18696.03 229
MSDG91.42 21990.24 23894.96 16797.15 14488.91 20793.69 32196.32 25085.72 29786.93 30396.47 17380.24 22598.98 14780.57 32095.05 18096.98 198
v192192090.85 24790.03 25093.29 25293.55 31786.96 25996.74 18397.04 19987.36 26989.52 24494.34 27380.23 22697.97 25186.27 25985.21 30394.94 286
RPMNet88.98 28287.05 29694.77 18194.45 29187.19 25290.23 35898.03 8377.87 36092.40 16587.55 36380.17 22799.51 8668.84 36693.95 19697.60 178
ET-MVSNet_ETH3D91.49 21690.11 24495.63 13196.40 19491.57 11295.34 26893.48 34390.60 17975.58 36295.49 22580.08 22896.79 33094.25 10589.76 25998.52 121
PatchT88.87 28687.42 29093.22 25594.08 30385.10 29389.51 36294.64 32381.92 33892.36 16888.15 35980.05 22997.01 32472.43 35793.65 19997.54 181
our_test_388.78 28787.98 28791.20 31092.45 34282.53 31993.61 32595.69 27685.77 29684.88 32093.71 30079.99 23096.78 33179.47 32886.24 28994.28 321
DTE-MVSNet90.56 25689.75 26193.01 26193.95 30587.25 24997.64 10097.65 12790.74 16687.12 29795.68 21579.97 23197.00 32583.33 29781.66 33894.78 304
D2MVS91.30 22890.95 20892.35 27994.71 28285.52 28396.18 23498.21 4388.89 22386.60 30693.82 29779.92 23297.95 25889.29 20290.95 24493.56 330
TransMVSNet (Re)88.94 28387.56 28993.08 26094.35 29488.45 22197.73 8595.23 30087.47 26684.26 32695.29 23079.86 23397.33 31379.44 33074.44 36093.45 333
ACMM89.79 892.96 15892.50 15894.35 19896.30 19988.71 21197.58 10797.36 17291.40 14790.53 20896.65 15779.77 23498.75 16691.24 16791.64 22695.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 19291.23 20194.95 16894.75 27990.94 14097.47 12197.43 16489.14 21388.90 25896.43 17579.71 23598.24 21189.56 19587.68 27795.67 251
PS-CasMVS91.55 21390.84 21493.69 23694.96 26488.28 22497.84 7598.24 3991.46 14388.04 28295.80 20579.67 23697.48 30287.02 25184.54 31695.31 269
ab-mvs93.57 13292.55 15496.64 6697.28 13791.96 9995.40 26697.45 15789.81 19693.22 15496.28 18279.62 23799.46 9390.74 17493.11 20498.50 124
v124090.70 25389.85 25593.23 25493.51 32086.80 26096.61 20097.02 20287.16 27489.58 24094.31 27779.55 23897.98 24885.52 27485.44 29894.90 291
CostFormer91.18 23590.70 22092.62 27694.84 27481.76 32794.09 30794.43 32684.15 31992.72 16393.77 29979.43 23998.20 21590.70 17592.18 21997.90 160
CANet_DTU94.37 9993.65 10896.55 7296.46 19192.13 9396.21 23296.67 23294.38 4993.53 14497.03 13779.34 24099.71 4090.76 17398.45 10197.82 167
OPM-MVS93.28 14192.76 14294.82 17494.63 28590.77 14896.65 19497.18 18293.72 6591.68 18497.26 12479.33 24198.63 17992.13 14592.28 21595.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final93.60 12993.11 12995.04 15997.13 14591.30 12297.92 6895.65 28092.98 10291.60 18596.64 15879.28 24298.13 22295.34 8091.49 23095.70 248
JIA-IIPM88.26 29387.04 29791.91 29093.52 31981.42 32989.38 36394.38 32880.84 34590.93 20580.74 37079.22 24397.92 26382.76 30491.62 22796.38 216
SDMVSNet94.17 10493.61 10995.86 11898.09 9991.37 12097.35 13398.20 4493.18 9091.79 18297.28 12179.13 24498.93 15094.61 10092.84 20797.28 191
CVMVSNet91.23 23091.75 17989.67 32995.77 22174.69 36296.44 20894.88 31685.81 29592.18 17297.64 10479.07 24595.58 34988.06 22395.86 16498.74 109
LPG-MVS_test92.94 16092.56 15394.10 20996.16 20688.26 22597.65 9697.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
LGP-MVS_train94.10 20996.16 20688.26 22597.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
test-LLR91.42 21991.19 20392.12 28694.59 28680.66 33594.29 30192.98 34691.11 15890.76 20692.37 32579.02 24898.07 23788.81 21496.74 14797.63 173
test0.0.03 189.37 28088.70 27891.41 30692.47 34185.63 28195.22 27792.70 34991.11 15886.91 30493.65 30579.02 24893.19 36678.00 33689.18 26495.41 260
ADS-MVSNet289.45 27888.59 28092.03 28895.86 21682.26 32390.93 35394.32 33283.23 33191.28 20091.81 33579.01 25095.99 33879.52 32691.39 23497.84 164
ADS-MVSNet89.89 27288.68 27993.53 24395.86 21684.89 29790.93 35395.07 30783.23 33191.28 20091.81 33579.01 25097.85 26979.52 32691.39 23497.84 164
ppachtmachnet_test88.35 29287.29 29191.53 30292.45 34283.57 31393.75 31895.97 26384.28 31785.32 31894.18 28579.00 25296.93 32675.71 34684.99 30994.10 323
OpenMVScopyleft89.19 1292.86 16491.68 18396.40 8795.34 24292.73 7698.27 3398.12 5984.86 31185.78 31297.75 9378.89 25399.74 3587.50 24198.65 9296.73 207
LTVRE_ROB88.41 1390.99 24189.92 25394.19 20596.18 20489.55 18196.31 22497.09 19187.88 25385.67 31395.91 19978.79 25498.57 18681.50 31289.98 25694.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 20390.75 21894.81 17697.00 15788.57 21596.65 19496.49 24389.63 19892.15 17396.12 19078.66 25598.50 19090.83 17179.18 34897.36 186
pm-mvs190.72 25289.65 26593.96 21994.29 29889.63 17697.79 8096.82 22189.07 21486.12 31195.48 22678.61 25697.78 27686.97 25281.67 33794.46 313
PVSNet86.66 1892.24 18991.74 18193.73 23297.77 11783.69 31292.88 33896.72 22587.91 25293.00 15694.86 24878.51 25799.05 14186.53 25597.45 12998.47 129
ACMP89.59 1092.62 17292.14 16794.05 21296.40 19488.20 22897.36 13297.25 18191.52 14088.30 27496.64 15878.46 25898.72 17191.86 15291.48 23195.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 17191.97 17394.97 16697.16 14287.99 23596.15 23595.60 28190.62 17691.87 18097.15 13178.41 25998.57 18683.16 29897.60 12398.36 141
thres20092.23 19091.39 19294.75 18397.61 12789.03 20596.60 20295.09 30692.08 12993.28 15194.00 29178.39 26099.04 14481.26 31894.18 19196.19 220
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31792.38 34482.57 31893.17 33195.15 30382.15 33667.65 36792.33 33178.20 26195.51 35077.33 33879.74 34494.31 320
tfpn200view992.38 17991.52 18994.95 16897.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.48 213
thres40092.42 17791.52 18995.12 15697.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.98 198
YYNet185.87 31484.23 31890.78 31892.38 34482.46 32193.17 33195.14 30482.12 33767.69 36692.36 32878.16 26495.50 35177.31 33979.73 34594.39 316
CL-MVSNet_self_test86.31 30885.15 31089.80 32888.83 36481.74 32893.93 31296.22 25586.67 28185.03 31990.80 34278.09 26594.50 35674.92 34871.86 36593.15 336
thres100view90092.43 17691.58 18694.98 16597.92 10989.37 19197.71 9094.66 32192.20 12393.31 15094.90 24678.06 26699.08 13481.40 31494.08 19296.48 213
thres600view792.49 17591.60 18595.18 15297.91 11089.47 18597.65 9694.66 32192.18 12793.33 14994.91 24578.06 26699.10 12981.61 31194.06 19596.98 198
tpm cat188.36 29187.21 29491.81 29595.13 25880.55 33892.58 34295.70 27474.97 36387.45 29091.96 33378.01 26898.17 21980.39 32288.74 26996.72 208
MVP-Stereo90.74 25190.08 24592.71 27393.19 32988.20 22895.86 24896.27 25286.07 29284.86 32194.76 25377.84 26997.75 27983.88 29598.01 11392.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 25389.81 25793.37 24994.73 28184.21 30393.67 32288.02 37089.50 20392.38 16793.49 30977.82 27097.78 27686.03 26792.68 21198.11 153
tfpnnormal89.70 27788.40 28293.60 23995.15 25690.10 16297.56 10998.16 5387.28 27286.16 31094.63 26077.57 27198.05 24074.48 34984.59 31492.65 343
tpm90.25 26389.74 26291.76 29993.92 30679.73 34893.98 30893.54 34288.28 24291.99 17893.25 31477.51 27297.44 30687.30 24587.94 27598.12 150
thisisatest051592.29 18691.30 19795.25 15096.60 17888.90 20894.36 29792.32 35287.92 25193.43 14794.57 26277.28 27399.00 14589.42 19895.86 16497.86 163
FMVSNet391.78 20290.69 22195.03 16196.53 18692.27 8997.02 16096.93 20889.79 19789.35 24894.65 25977.01 27497.47 30386.12 26488.82 26695.35 267
dmvs_testset81.38 33082.60 32677.73 35391.74 34851.49 38393.03 33684.21 37989.07 21478.28 35891.25 34076.97 27588.53 37456.57 37582.24 33693.16 335
TR-MVS91.48 21790.59 22494.16 20796.40 19487.33 24695.67 25595.34 29587.68 26291.46 19095.52 22476.77 27698.35 20482.85 30293.61 20196.79 206
FE-MVS92.05 19691.05 20695.08 15796.83 16587.93 23693.91 31495.70 27486.30 28794.15 13094.97 24176.59 27799.21 11684.10 29096.86 14398.09 154
tttt051792.96 15892.33 16394.87 17297.11 14687.16 25497.97 6592.09 35490.63 17593.88 13797.01 13876.50 27899.06 14090.29 18195.45 17298.38 139
RPSCF90.75 25090.86 21190.42 32296.84 16376.29 36095.61 25996.34 24983.89 32291.38 19197.87 8376.45 27998.78 16187.16 24992.23 21696.20 219
tpm289.96 27089.21 27292.23 28594.91 27081.25 33093.78 31794.42 32780.62 34891.56 18793.44 31176.44 28097.94 25985.60 27392.08 22397.49 182
thisisatest053093.03 15592.21 16695.49 14197.07 14889.11 20497.49 12092.19 35390.16 18794.09 13196.41 17676.43 28199.05 14190.38 17895.68 16998.31 143
iter_conf0593.18 14892.63 14994.83 17396.64 17590.69 15097.60 10595.53 28692.52 11591.58 18696.64 15876.35 28298.13 22295.43 7891.42 23395.68 250
EU-MVSNet88.72 28888.90 27688.20 33693.15 33074.21 36396.63 19994.22 33385.18 30587.32 29595.97 19576.16 28394.98 35485.27 27786.17 29095.41 260
bld_raw_dy_0_6492.37 18091.69 18294.39 19694.28 29989.73 17597.71 9093.65 34192.78 11090.46 21096.67 15675.88 28497.97 25192.92 13690.89 24695.48 254
dp88.90 28588.26 28590.81 31594.58 28876.62 35892.85 33994.93 31385.12 30790.07 22793.07 31575.81 28598.12 22780.53 32187.42 28197.71 170
IterMVS-SCA-FT90.31 26189.81 25791.82 29495.52 23084.20 30494.30 30096.15 25990.61 17787.39 29394.27 27975.80 28696.44 33387.34 24386.88 28894.82 297
SCA91.84 20191.18 20493.83 22795.59 22684.95 29694.72 28495.58 28390.82 16392.25 17193.69 30175.80 28698.10 22986.20 26195.98 16098.45 131
IterMVS90.15 26889.67 26391.61 30195.48 23283.72 31094.33 29996.12 26089.99 19087.31 29694.15 28775.78 28896.27 33686.97 25286.89 28794.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 17791.89 17694.03 21493.33 32788.50 21997.73 8597.53 14292.00 13288.85 26196.50 17275.62 28998.11 22893.88 11491.56 22995.48 254
cascas91.20 23290.08 24594.58 18994.97 26389.16 20393.65 32397.59 13579.90 35189.40 24692.92 31775.36 29098.36 20392.14 14494.75 18596.23 217
sd_testset93.10 15092.45 16095.05 15898.09 9989.21 19996.89 17197.64 12993.18 9091.79 18297.28 12175.35 29198.65 17788.99 21192.84 20797.28 191
VPNet92.23 19091.31 19694.99 16395.56 22890.96 13997.22 14897.86 10792.96 10490.96 20496.62 16775.06 29298.20 21591.90 14983.65 32795.80 238
N_pmnet78.73 33478.71 33578.79 35292.80 33546.50 38694.14 30543.71 38978.61 35680.83 34591.66 33774.94 29396.36 33467.24 36784.45 31793.50 331
dmvs_re90.21 26589.50 26792.35 27995.47 23485.15 29195.70 25494.37 32990.94 16288.42 27093.57 30774.63 29495.67 34682.80 30389.57 26196.22 218
mvs_tets92.31 18491.76 17893.94 22293.41 32488.29 22397.63 10297.53 14292.04 13088.76 26496.45 17474.62 29598.09 23293.91 11291.48 23195.45 259
DSMNet-mixed86.34 30786.12 30387.00 34289.88 35870.43 36794.93 28190.08 36677.97 35985.42 31792.78 31874.44 29693.96 36174.43 35095.14 17696.62 209
pmmvs589.86 27488.87 27792.82 26992.86 33386.23 27496.26 22795.39 28984.24 31887.12 29794.51 26374.27 29797.36 31287.61 23987.57 27894.86 293
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32481.25 33096.98 16596.28 25191.68 13886.55 30796.30 18174.20 29897.98 24888.96 21287.40 28295.09 279
GBi-Net91.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
test191.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
FMVSNet291.31 22790.08 24594.99 16396.51 18792.21 9097.41 12496.95 20688.82 22788.62 26694.75 25473.87 29997.42 30885.20 27988.55 27195.35 267
COLMAP_ROBcopyleft87.81 1590.40 26089.28 27193.79 23097.95 10687.13 25596.92 16995.89 26882.83 33386.88 30597.18 12873.77 30299.29 11178.44 33493.62 20094.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_cas_vis1_n_192094.48 9894.55 9194.28 20396.78 16886.45 26997.63 10297.64 12993.32 8497.68 3098.36 4073.75 30399.08 13496.73 2999.05 7797.31 190
Anonymous2023120687.09 30186.14 30289.93 32791.22 35080.35 34096.11 23695.35 29283.57 32884.16 32793.02 31673.54 30495.61 34772.16 35886.14 29193.84 328
UGNet94.04 11493.28 12696.31 9496.85 16291.19 13097.88 7097.68 12494.40 4793.00 15696.18 18673.39 30599.61 6091.72 15598.46 10098.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111193.19 14592.82 14094.30 20297.58 13284.56 30098.21 4389.02 36893.53 7494.58 12098.21 5772.69 30699.05 14193.06 13098.48 9999.28 59
ECVR-MVScopyleft93.19 14592.73 14694.57 19097.66 12385.41 28598.21 4388.23 36993.43 7994.70 11898.21 5772.57 30799.07 13893.05 13198.49 9799.25 62
Anonymous2023121190.63 25589.42 26894.27 20498.24 8689.19 20298.05 5397.89 9979.95 35088.25 27794.96 24272.56 30898.13 22289.70 19185.14 30495.49 253
ACMH87.59 1690.53 25789.42 26893.87 22696.21 20187.92 23797.24 14396.94 20788.45 23883.91 33396.27 18371.92 30998.62 18184.43 28789.43 26295.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 22190.31 23394.59 18594.65 28487.62 24494.34 29896.19 25890.73 16790.35 21393.83 29571.84 31097.96 25687.22 24693.61 20198.21 147
SixPastTwentyTwo89.15 28188.54 28190.98 31293.49 32180.28 34396.70 18894.70 32090.78 16484.15 32895.57 22071.78 31197.71 28284.63 28585.07 30694.94 286
gg-mvs-nofinetune87.82 29685.61 30594.44 19394.46 29089.27 19891.21 35284.61 37880.88 34489.89 23274.98 37271.50 31297.53 29885.75 27297.21 13896.51 211
test20.0386.14 31185.40 30888.35 33490.12 35580.06 34595.90 24795.20 30188.59 23381.29 34493.62 30671.43 31392.65 36771.26 36281.17 34092.34 347
MS-PatchMatch90.27 26289.77 25991.78 29794.33 29584.72 29995.55 26096.73 22486.17 29186.36 30895.28 23271.28 31497.80 27484.09 29198.14 11192.81 340
PVSNet_082.17 1985.46 31783.64 32090.92 31395.27 24979.49 34990.55 35695.60 28183.76 32583.00 33989.95 34871.09 31597.97 25182.75 30560.79 37695.31 269
GG-mvs-BLEND93.62 23893.69 31489.20 20092.39 34583.33 38087.98 28489.84 35071.00 31696.87 32882.08 31095.40 17394.80 300
ITE_SJBPF92.43 27895.34 24285.37 28895.92 26491.47 14287.75 28796.39 17871.00 31697.96 25682.36 30889.86 25893.97 326
IB-MVS87.33 1789.91 27188.28 28494.79 18095.26 25287.70 24395.12 28093.95 33889.35 20887.03 30092.49 32370.74 31899.19 11889.18 20881.37 33997.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 31882.95 32391.17 31193.13 33183.33 31494.56 28995.00 30984.57 31565.13 37192.65 31970.45 31995.85 34173.57 35477.49 35294.33 318
AllTest90.23 26488.98 27593.98 21697.94 10786.64 26496.51 20795.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
TestCases93.98 21697.94 10786.64 26495.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
ACMH+87.92 1490.20 26689.18 27393.25 25396.48 19086.45 26996.99 16496.68 23088.83 22684.79 32296.22 18570.16 32298.53 18884.42 28888.04 27494.77 305
test_vis1_n_192094.17 10494.58 8792.91 26597.42 13582.02 32597.83 7697.85 10894.68 3998.10 2198.49 2870.15 32399.32 10797.91 598.82 8697.40 185
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36179.11 35395.13 27996.42 24685.91 29484.07 33190.48 34370.03 32494.82 35580.04 32372.94 36392.94 338
Anonymous2024052991.98 19890.73 21995.73 12698.14 9789.40 18997.99 5897.72 11979.63 35293.54 14397.41 11769.94 32599.56 7591.04 17091.11 24098.22 146
pmmvs-eth3d86.22 30984.45 31691.53 30288.34 36687.25 24994.47 29195.01 30883.47 32979.51 35489.61 35169.75 32695.71 34483.13 29976.73 35691.64 352
test_fmvs193.21 14393.53 11392.25 28496.55 18581.20 33297.40 12896.96 20590.68 17096.80 5198.04 6969.25 32798.40 19797.58 1198.50 9697.16 195
LFMVS93.60 12992.63 14996.52 7498.13 9891.27 12497.94 6693.39 34490.57 18096.29 7698.31 5069.00 32899.16 12294.18 10695.87 16399.12 74
TESTMET0.1,190.06 26989.42 26891.97 28994.41 29380.62 33794.29 30191.97 35687.28 27290.44 21192.47 32468.79 32997.67 28488.50 22096.60 15297.61 177
XVG-ACMP-BASELINE90.93 24590.21 24293.09 25994.31 29785.89 27895.33 26997.26 17991.06 16089.38 24795.44 22768.61 33098.60 18289.46 19791.05 24194.79 302
MVS-HIRNet82.47 32881.21 33186.26 34495.38 23769.21 37088.96 36589.49 36766.28 36980.79 34674.08 37468.48 33197.39 31071.93 35995.47 17192.18 350
VDD-MVS93.82 12393.08 13096.02 11297.88 11289.96 17097.72 8895.85 26992.43 11795.86 9298.44 3468.42 33299.39 10196.31 3994.85 18198.71 112
test_040286.46 30584.79 31491.45 30495.02 26285.55 28296.29 22694.89 31580.90 34382.21 34193.97 29368.21 33397.29 31562.98 37088.68 27091.51 355
test-mter90.19 26789.54 26692.12 28694.59 28680.66 33594.29 30192.98 34687.68 26290.76 20692.37 32567.67 33498.07 23788.81 21496.74 14797.63 173
VDDNet93.05 15492.07 16896.02 11296.84 16390.39 16098.08 5195.85 26986.22 29095.79 9598.46 3267.59 33599.19 11894.92 8994.85 18198.47 129
USDC88.94 28387.83 28892.27 28394.66 28384.96 29593.86 31595.90 26687.34 27083.40 33595.56 22167.43 33698.19 21782.64 30789.67 26093.66 329
pmmvs687.81 29786.19 30192.69 27491.32 34986.30 27297.34 13496.41 24780.59 34984.05 33294.37 27267.37 33797.67 28484.75 28379.51 34794.09 325
test250691.60 20890.78 21694.04 21397.66 12383.81 30898.27 3375.53 38493.43 7995.23 10998.21 5767.21 33899.07 13893.01 13498.49 9799.25 62
KD-MVS_2432*160084.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
miper_refine_blended84.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
K. test v387.64 29886.75 29990.32 32393.02 33279.48 35096.61 20092.08 35590.66 17380.25 35194.09 28867.21 33896.65 33285.96 26980.83 34194.83 295
tt080591.09 23690.07 24894.16 20795.61 22588.31 22297.56 10996.51 24289.56 20089.17 25595.64 21767.08 34298.38 20291.07 16988.44 27295.80 238
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36273.12 36694.17 30496.80 22273.98 36473.65 36594.93 24466.36 34397.61 29183.95 29491.28 23692.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 22690.22 24194.68 18494.86 27387.86 24097.23 14797.46 15287.99 24989.90 23096.92 14366.35 34498.23 21290.30 18090.99 24397.96 157
lessismore_v090.45 32191.96 34779.09 35487.19 37380.32 35094.39 27066.31 34597.55 29584.00 29376.84 35494.70 307
Anonymous20240521192.07 19590.83 21595.76 12198.19 9388.75 21097.58 10795.00 30986.00 29393.64 14097.45 11466.24 34699.53 8190.68 17692.71 21099.01 83
new-patchmatchnet83.18 32681.87 32987.11 34086.88 36975.99 36193.70 31995.18 30285.02 30977.30 36088.40 35665.99 34793.88 36274.19 35370.18 36791.47 357
FMVSNet189.88 27388.31 28394.59 18595.41 23591.18 13197.50 11596.93 20886.62 28287.41 29294.51 26365.94 34897.29 31583.04 30087.43 28095.31 269
TDRefinement86.53 30484.76 31591.85 29282.23 37584.25 30296.38 21895.35 29284.97 31084.09 33094.94 24365.76 34998.34 20784.60 28674.52 35992.97 337
UnsupCasMVSNet_eth85.99 31284.45 31690.62 31989.97 35782.40 32293.62 32497.37 17089.86 19278.59 35792.37 32565.25 35095.35 35382.27 30970.75 36694.10 323
LF4IMVS87.94 29587.25 29289.98 32692.38 34480.05 34694.38 29695.25 29987.59 26484.34 32494.74 25564.31 35197.66 28684.83 28187.45 27992.23 348
Anonymous2024052186.42 30685.44 30689.34 33190.33 35479.79 34796.73 18495.92 26483.71 32683.25 33691.36 33963.92 35296.01 33778.39 33585.36 30092.22 349
MIMVSNet88.50 29086.76 29893.72 23494.84 27487.77 24291.39 34894.05 33586.41 28687.99 28392.59 32263.27 35395.82 34377.44 33792.84 20797.57 180
test_fmvs1_n92.73 17092.88 13792.29 28296.08 21381.05 33397.98 5997.08 19290.72 16896.79 5298.18 6063.07 35498.45 19497.62 1098.42 10297.36 186
FMVSNet587.29 30085.79 30491.78 29794.80 27687.28 24795.49 26395.28 29684.09 32083.85 33491.82 33462.95 35594.17 36078.48 33385.34 30193.91 327
testgi87.97 29487.21 29490.24 32492.86 33380.76 33496.67 19394.97 31191.74 13685.52 31495.83 20362.66 35694.47 35876.25 34488.36 27395.48 254
TinyColmap86.82 30385.35 30991.21 30994.91 27082.99 31693.94 31194.02 33783.58 32781.56 34394.68 25762.34 35798.13 22275.78 34587.35 28392.52 345
new_pmnet82.89 32781.12 33288.18 33789.63 35980.18 34491.77 34792.57 35076.79 36275.56 36388.23 35861.22 35894.48 35771.43 36082.92 33389.87 364
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32890.83 31490.06 35684.05 30795.73 25394.04 33673.89 36580.17 35291.53 33859.15 35997.64 28766.92 36889.05 26590.80 361
test_fmvs289.77 27689.93 25289.31 33293.68 31576.37 35997.64 10095.90 26689.84 19591.49 18996.26 18458.77 36097.10 31994.65 9891.13 23994.46 313
test_vis1_n92.37 18092.26 16592.72 27294.75 27982.64 31798.02 5596.80 22291.18 15597.77 2997.93 7858.02 36198.29 20997.63 998.21 10797.23 194
MIMVSNet184.93 31983.05 32190.56 32089.56 36084.84 29895.40 26695.35 29283.91 32180.38 34992.21 33257.23 36293.34 36570.69 36482.75 33593.50 331
EG-PatchMatch MVS87.02 30285.44 30691.76 29992.67 33785.00 29496.08 23896.45 24583.41 33079.52 35393.49 30957.10 36397.72 28179.34 33190.87 24792.56 344
UnsupCasMVSNet_bld82.13 32979.46 33490.14 32588.00 36782.47 32090.89 35596.62 23878.94 35575.61 36184.40 36856.63 36496.31 33577.30 34066.77 37291.63 353
EGC-MVSNET68.77 34163.01 34686.07 34592.49 34082.24 32493.96 31090.96 3630.71 3862.62 38790.89 34153.66 36593.46 36357.25 37484.55 31582.51 369
tmp_tt51.94 34953.82 34946.29 36533.73 38945.30 38878.32 37567.24 38818.02 38250.93 37887.05 36552.99 36653.11 38470.76 36325.29 38240.46 380
test_vis1_rt86.16 31085.06 31189.46 33093.47 32380.46 33996.41 21286.61 37585.22 30479.15 35588.64 35452.41 36797.06 32093.08 12990.57 24990.87 360
pmmvs379.97 33277.50 33787.39 33982.80 37479.38 35192.70 34190.75 36570.69 36778.66 35687.47 36451.34 36893.40 36473.39 35569.65 36889.38 365
DeepMVS_CXcopyleft74.68 35990.84 35364.34 37881.61 38265.34 37067.47 36888.01 36148.60 36980.13 38062.33 37173.68 36279.58 371
mvsany_test383.59 32382.44 32787.03 34183.80 37173.82 36493.70 31990.92 36486.42 28582.51 34090.26 34546.76 37095.71 34490.82 17276.76 35591.57 354
PM-MVS83.48 32481.86 33088.31 33587.83 36877.59 35793.43 32791.75 35786.91 27780.63 34789.91 34944.42 37195.84 34285.17 28076.73 35691.50 356
test_method66.11 34364.89 34569.79 36072.62 38335.23 39065.19 37892.83 34820.35 38165.20 37088.08 36043.14 37282.70 37873.12 35663.46 37391.45 358
APD_test179.31 33377.70 33684.14 34689.11 36369.07 37192.36 34691.50 35969.07 36873.87 36492.63 32139.93 37394.32 35970.54 36580.25 34389.02 366
ambc86.56 34383.60 37270.00 36985.69 37094.97 31180.60 34888.45 35537.42 37496.84 32982.69 30675.44 35892.86 339
test_fmvs383.21 32583.02 32283.78 34786.77 37068.34 37296.76 18294.91 31486.49 28484.14 32989.48 35236.04 37591.73 36991.86 15280.77 34291.26 359
test_f80.57 33179.62 33383.41 34883.38 37367.80 37493.57 32693.72 33980.80 34777.91 35987.63 36233.40 37692.08 36887.14 25079.04 35090.34 363
Gipumacopyleft67.86 34265.41 34475.18 35892.66 33873.45 36566.50 37794.52 32553.33 37657.80 37766.07 37730.81 37789.20 37348.15 37878.88 35162.90 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 34851.31 35154.39 36472.62 38345.39 38783.84 37275.51 38541.13 37940.77 38159.65 38030.08 37873.60 38228.31 38229.90 38144.18 379
FPMVS71.27 33769.85 33975.50 35774.64 38059.03 38191.30 34991.50 35958.80 37257.92 37688.28 35729.98 37985.53 37753.43 37682.84 33481.95 370
E-PMN53.28 34652.56 35055.43 36374.43 38147.13 38583.63 37376.30 38342.23 37842.59 38062.22 37928.57 38074.40 38131.53 38131.51 37944.78 378
PMMVS270.19 33866.92 34180.01 35076.35 37965.67 37686.22 36987.58 37264.83 37162.38 37280.29 37126.78 38188.49 37563.79 36954.07 37785.88 367
ANet_high63.94 34459.58 34777.02 35461.24 38766.06 37585.66 37187.93 37178.53 35742.94 37971.04 37625.42 38280.71 37952.60 37730.83 38084.28 368
LCM-MVSNet72.55 33669.39 34082.03 34970.81 38565.42 37790.12 36094.36 33155.02 37565.88 36981.72 36924.16 38389.96 37074.32 35268.10 37190.71 362
test_vis3_rt72.73 33570.55 33879.27 35180.02 37668.13 37393.92 31374.30 38676.90 36158.99 37573.58 37520.29 38495.37 35284.16 28972.80 36474.31 374
testf169.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
APD_test269.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
PMVScopyleft53.92 2258.58 34555.40 34868.12 36151.00 38848.64 38478.86 37487.10 37446.77 37735.84 38374.28 3738.76 38786.34 37642.07 37973.91 36169.38 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 35024.57 35426.74 36673.98 38239.89 38957.88 3799.80 39012.27 38310.39 3846.97 3867.03 38836.44 38525.43 38317.39 3833.89 383
MVEpermissive50.73 2353.25 34748.81 35266.58 36265.34 38657.50 38272.49 37670.94 38740.15 38039.28 38263.51 3786.89 38973.48 38338.29 38042.38 37868.76 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 35315.66 3565.18 3674.51 3913.45 39192.50 3441.81 3922.50 3857.58 38620.15 3833.67 3902.18 3877.13 3851.07 3859.90 381
testmvs13.36 35216.33 3554.48 3685.04 3902.26 39293.18 3303.28 3912.70 3848.24 38521.66 3822.29 3912.19 3867.58 3842.96 3849.00 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.06 35410.74 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38896.69 1540.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.55 193.34 6399.29 198.35 2194.98 2498.49 16
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
eth-test20.00 392
eth-test0.00 392
IU-MVS99.42 795.39 1197.94 9690.40 18498.94 697.41 1999.66 1099.74 7
save fliter98.91 4994.28 3597.02 16098.02 8695.35 12
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2999.86 897.52 1299.67 699.75 5
GSMVS98.45 131
test_part299.28 2595.74 898.10 21
MTGPAbinary98.08 66
MTMP97.86 7182.03 381
gm-plane-assit93.22 32878.89 35584.82 31293.52 30898.64 17887.72 229
test9_res94.81 9399.38 5199.45 42
agg_prior293.94 11199.38 5199.50 37
agg_prior98.67 5893.79 5198.00 9095.68 9999.57 74
test_prior493.66 5496.42 211
test_prior97.23 5498.67 5892.99 7098.00 9099.41 9999.29 57
旧先验295.94 24581.66 34097.34 3898.82 15892.26 139
新几何295.79 251
无先验95.79 25197.87 10383.87 32499.65 5287.68 23598.89 99
原ACMM295.67 255
testdata299.67 5085.96 269
testdata195.26 27693.10 95
plane_prior796.21 20189.98 168
plane_prior597.51 14498.60 18293.02 13292.23 21695.86 231
plane_prior496.64 158
plane_prior390.00 16494.46 4591.34 193
plane_prior297.74 8394.85 27
plane_prior196.14 209
plane_prior89.99 16697.24 14394.06 5592.16 220
n20.00 393
nn0.00 393
door-mid91.06 362
test1197.88 101
door91.13 361
HQP5-MVS89.33 193
HQP-NCC95.86 21696.65 19493.55 7090.14 216
ACMP_Plane95.86 21696.65 19493.55 7090.14 216
BP-MVS92.13 145
HQP4-MVS90.14 21698.50 19095.78 240
HQP3-MVS97.39 16792.10 221
NP-MVS95.99 21589.81 17395.87 200
ACMMP++_ref90.30 254
ACMMP++91.02 242