This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145290.77 17898.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2999.58 2399.59 22
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2999.72 299.77 2
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2599.66 1099.56 29
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2599.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4499.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2599.65 1299.74 8
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4899.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3699.49 3999.57 26
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7698.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3799.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4599.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1799.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5597.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3599.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2199.50 3699.72 11
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4199.48 4099.45 47
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12898.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7498.18 5790.57 19398.85 1598.94 993.33 2399.83 2696.72 4399.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14498.04 8995.96 697.09 5797.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
9.1496.75 4198.93 4797.73 9798.23 5091.28 16297.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
mamv494.66 11296.10 6690.37 34298.01 10973.41 38896.82 19097.78 12489.95 20794.52 13797.43 12992.91 2799.09 14798.28 1499.16 7898.60 126
segment_acmp92.89 28
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 4097.76 13699.08 83
dcpmvs_296.37 6197.05 2294.31 21998.96 4684.11 32297.56 11997.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3399.50 3699.51 37
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
train_agg96.30 6395.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5998.10 7392.52 3699.65 5894.58 11699.31 63
PHI-MVS96.77 4496.46 5797.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5698.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
test_fmvsm_n_192097.55 1197.89 396.53 8298.41 7491.73 11098.01 6099.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15298.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10498.49 1994.66 4897.24 5198.41 4792.31 4198.94 16696.61 4699.46 4298.96 94
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5298.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5898.03 8091.72 4798.71 19297.10 3499.17 7698.90 104
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19695.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5498.34 5491.59 5399.87 795.46 9499.59 1999.64 16
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14792.37 9097.91 7798.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
DELS-MVS96.61 5296.38 6097.30 5497.79 12393.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6498.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6498.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5398.33 5791.35 5899.86 895.63 8799.59 1999.62 18
MVSMamba_PlusPlus96.51 5596.48 5396.59 7998.07 10591.97 10598.14 4997.79 12390.43 19697.34 4897.52 12491.29 6099.19 12898.12 1599.64 1398.60 126
iter_conf0596.12 6896.06 6796.29 10798.07 10591.48 12497.25 15397.65 13990.43 19694.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6197.97 8691.24 6298.75 18696.92 3899.33 6198.94 97
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13498.04 8994.81 3996.59 7698.37 4991.24 6299.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 7195.89 7196.40 9697.16 15592.44 8897.47 13197.77 12594.55 5096.48 8194.51 27891.23 6498.92 16895.65 8598.19 12397.82 187
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13097.14 5498.44 4491.17 6599.85 1894.35 11899.46 4299.57 26
MP-MVS-pluss96.70 4796.27 6297.98 2199.23 3094.71 2996.96 17998.06 8290.67 18495.55 11798.78 2591.07 6699.86 896.58 4799.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6799.88 495.20 9799.57 2599.60 21
HPM-MVScopyleft96.69 4996.45 5897.40 5099.36 1893.11 7198.87 698.06 8291.17 16796.40 8597.99 8490.99 6899.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6498.06 8293.11 10597.44 4398.55 3390.93 6999.55 8796.06 6799.25 6999.51 37
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 7099.46 10399.25 6999.22 70
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7199.90 296.18 6699.50 3699.58 25
EI-MVSNet-Vis-set96.51 5596.47 5496.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7199.58 7796.44 5198.32 11899.13 77
RE-MVS-def96.72 4399.02 4292.34 9197.98 6498.03 9193.52 8797.43 4598.51 3690.71 7396.05 6899.26 6799.43 51
EIA-MVS95.53 8695.47 7895.71 14397.06 16389.63 18997.82 8897.87 11193.57 8193.92 15295.04 25390.61 7498.95 16594.62 11498.68 10298.54 130
MP-MVScopyleft96.77 4496.45 5897.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7599.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 6296.30 6196.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7699.58 7796.23 5797.96 13098.90 104
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7799.54 8987.95 24199.12 8398.49 137
HPM-MVS_fast96.51 5596.27 6297.22 6199.32 2292.74 7998.74 998.06 8290.57 19396.77 6598.35 5190.21 7899.53 9194.80 10999.63 1699.38 58
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5998.07 7690.06 7998.85 17589.67 20898.98 9298.64 125
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 8099.67 5686.50 27399.13 8198.69 122
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7398.27 3995.78 1098.40 2599.00 689.99 8199.78 3599.06 799.41 5299.59 22
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8299.48 10192.08 16198.59 10798.44 145
MVS_111021_LR96.24 6596.19 6496.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8399.24 12495.87 7499.20 7498.58 128
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14589.56 19398.67 1097.00 21990.69 18294.24 14397.62 11689.79 8498.81 17993.39 13896.49 16998.92 100
MVS_030497.04 2896.73 4297.96 2397.60 13894.36 3698.01 6094.09 35197.33 296.29 8898.79 2489.73 8599.86 899.36 299.42 4999.67 13
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6498.30 3296.19 596.10 9798.95 889.42 8699.76 3898.90 1099.08 8597.43 205
EC-MVSNet96.42 5896.47 5496.26 11097.01 16891.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8798.60 20297.45 2999.11 8498.67 124
PAPR94.18 12093.42 14096.48 8997.64 13291.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8899.11 14286.14 27997.38 14598.90 104
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8999.25 12391.27 17998.77 9999.13 77
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14492.93 17796.62 17889.13 9099.14 13989.21 22297.78 13498.97 93
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13290.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9199.04 16096.27 5499.00 9196.85 226
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6298.49 3888.98 9298.08 25195.03 10195.62 18596.46 238
ACMMPcopyleft96.27 6495.93 6997.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9399.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 7595.53 7697.20 6397.67 12892.98 7497.65 10798.13 6594.81 3996.61 7498.35 5188.87 9499.51 9690.36 19497.35 14799.11 81
API-MVS94.84 10794.49 10995.90 13197.90 11892.00 10497.80 9197.48 16289.19 23094.81 13096.71 16488.84 9599.17 13488.91 22998.76 10096.53 233
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 7098.76 894.93 3098.84 1699.06 488.80 9699.65 5899.06 798.63 10498.18 162
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9699.15 7998.72 119
Test By Simon88.73 98
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 990.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9497.56 15592.50 12589.94 24996.54 18188.65 9998.18 23893.83 13090.90 27095.86 254
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14990.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9999.65 5894.80 10998.27 12096.17 244
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15190.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10299.53 9194.79 11197.81 13396.17 244
iter_conf05_1196.17 6696.16 6596.21 11497.48 14690.74 16098.14 4997.80 12292.80 11997.34 4897.29 13488.54 10399.10 14396.40 5299.64 1398.80 115
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13290.72 16198.00 6298.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
MM97.29 1996.98 2698.23 1198.01 10995.03 2698.07 5595.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7798.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 14087.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17391.49 12397.50 12597.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16795.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13998.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5198.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
sasdasda96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 19998.91 101
canonicalmvs96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 19998.91 101
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5298.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MGCFI-Net95.94 7695.40 8397.56 4697.59 13994.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13496.19 6594.73 20498.91 101
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17394.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13787.48 12399.73 4293.53 13297.77 13598.55 129
fmvsm_s_conf0.1_n_a96.40 5996.47 5496.16 11895.48 25290.69 16297.91 7798.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
CANet96.39 6096.02 6897.50 4797.62 13593.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3999.20 7499.29 63
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 13994.77 13197.96 8787.01 13199.09 14791.31 17896.77 16198.36 152
DeepC-MVS93.07 396.06 6995.66 7497.29 5597.96 11293.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18489.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18691.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
1112_ss93.37 15492.42 17596.21 11497.05 16590.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13988.12 23893.67 22598.50 135
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13186.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 11194.02 11696.79 7297.71 12792.05 10296.59 21697.35 18990.61 19094.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8494.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15696.22 9297.32 13286.20 14297.92 28294.07 12199.05 8798.85 110
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13397.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
alignmvs95.87 7895.23 8897.78 3197.56 14495.19 2197.86 8197.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5898.68 1391.46 15488.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16689.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14387.70 24893.58 23098.49 137
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15992.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
IS-MVSNet94.90 10494.52 10896.05 12397.67 12890.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14385.97 28497.46 14095.83 258
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12598.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
CNLPA94.28 11893.53 13096.52 8398.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13985.21 15399.09 14787.64 25397.83 13297.92 179
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12784.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13998.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
MAR-MVS94.22 11993.46 13596.51 8698.00 11192.19 9997.67 10497.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13284.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
sss94.51 11393.80 12196.64 7497.07 16091.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
LS3D93.57 14892.61 16696.47 9097.59 13991.61 11797.67 10497.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13687.92 24998.10 5295.80 28692.22 13093.02 17197.45 12684.53 16297.91 28588.24 23797.97 12999.02 86
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14184.42 16398.39 22187.71 24796.50 16899.01 89
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
test_yl94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
test_fmvsmconf0.01_n96.15 6795.85 7297.03 6992.66 36091.83 10997.97 7097.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
baseline192.82 18191.90 18995.55 15397.20 15390.77 15897.19 16194.58 34092.20 13292.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14196.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
h-mvs3394.15 12393.52 13296.04 12497.81 12290.22 17597.62 11597.58 15095.19 2096.74 6697.45 12683.67 17599.61 6995.85 7679.73 36898.29 155
hse-mvs293.45 15292.99 14894.81 19097.02 16788.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13990.01 19896.16 17398.25 156
BH-untuned92.94 17492.62 16593.92 24297.22 15186.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12398.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14497.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15690.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 19798.45 142
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
patchmatchnet-post90.45 36782.65 20198.10 247
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14389.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16388.53 23195.28 29197.45 17391.68 14894.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
Vis-MVSNetpermissive95.23 9394.81 9696.51 8697.18 15491.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16391.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8898.19 5591.70 14788.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
sam_mvs81.94 216
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
test_post17.58 41181.76 21898.08 251
XVG-OURS93.72 14493.35 14194.80 19397.07 16088.61 22694.79 30697.46 16891.97 14293.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9597.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior696.10 22990.00 17881.32 224
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10397.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
HQP2-MVS80.95 227
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12497.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8198.66 1692.30 12992.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9398.18 5791.29 15987.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13789.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
MSDG91.42 23590.24 25494.96 18297.15 15788.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19275.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11197.65 13990.74 17987.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9795.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11797.36 18891.40 15890.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13197.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8598.24 4791.46 15488.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
ab-mvs93.57 14892.55 16896.64 7497.28 15091.96 10795.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
CANet_DTU94.37 11593.65 12596.55 8196.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13879.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14398.20 5293.18 10191.79 20197.28 13579.13 26098.93 16794.61 11592.84 23497.28 213
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10797.46 16891.29 15990.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 15990.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 16990.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 16986.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 21790.75 23294.81 19097.00 16988.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9296.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12483.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14297.25 19791.52 15188.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15587.99 24796.15 24895.60 29790.62 18991.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
thres20092.23 20391.39 20594.75 19797.61 13689.03 21896.60 21595.09 32192.08 13893.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
tfpn200view992.38 19391.52 20294.95 18397.85 12089.29 20897.41 13494.88 33192.19 13493.27 16894.46 28378.17 27899.08 15081.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 12089.29 20897.41 13494.88 33192.19 13493.27 16894.46 28378.17 27899.08 15081.40 33294.08 21696.98 220
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
thres100view90092.43 19091.58 19994.98 18097.92 11689.37 20497.71 10294.66 33792.20 13293.31 16694.90 25978.06 28299.08 15081.40 33294.08 21696.48 236
thres600view792.49 18991.60 19895.18 16897.91 11789.47 19897.65 10794.66 33792.18 13693.33 16594.91 25878.06 28299.10 14381.61 32994.06 22096.98 220
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11998.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
tttt051792.96 17292.33 17794.87 18797.11 15887.16 26897.97 7092.09 37690.63 18893.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
thisisatest053093.03 16992.21 18095.49 15797.07 16089.11 21797.49 13092.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19087.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17692.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9797.53 15792.00 14188.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13575.35 30698.65 19788.99 22792.84 23497.28 213
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17588.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11397.53 15792.04 13988.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14886.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13496.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11387.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11397.64 14293.32 9597.68 3898.36 5073.75 32099.08 15096.73 4299.05 8797.31 212
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 8097.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111193.19 16192.82 15594.30 22097.58 14384.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 13085.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15493.05 14598.49 11099.25 68
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5797.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18090.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17784.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15387.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
AllTest90.23 28288.98 29493.98 23497.94 11486.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23296.15 246
TestCases93.98 23497.94 11486.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23296.15 246
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14882.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1898.82 9797.40 207
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14591.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6397.72 13179.63 37793.54 15997.41 13069.94 34299.56 8591.04 18491.11 26598.22 158
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13896.96 22190.68 18396.80 6398.04 7969.25 34598.40 21797.58 2498.50 10997.16 217
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7493.39 36490.57 19396.29 8898.31 6069.00 34699.16 13694.18 12095.87 17899.12 80
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17289.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17191.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15091.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
VDD-MVS93.82 14093.08 14696.02 12697.88 11989.96 18497.72 10095.85 28492.43 12695.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5495.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14496.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
test250691.60 22490.78 23094.04 23197.66 13083.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15493.01 14898.49 11099.25 68
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18680.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11996.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11795.00 32486.00 31593.64 15697.45 12666.24 36799.53 9190.68 19092.71 23799.01 89
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12596.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6497.08 20890.72 18196.79 6498.18 7063.07 37698.45 21497.62 2398.42 11597.36 208
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14685.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17491.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11195.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5996.80 23891.18 16697.77 3797.93 8858.02 38498.29 22997.63 2298.21 12297.23 216
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36875.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
eth-test20.00 419
eth-test0.00 419
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3299.66 1099.74 8
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2599.67 699.75 6
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
MTGPAbinary98.08 74
MTMP97.86 8182.03 406
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
新几何295.79 267
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
testdata299.67 5685.96 285
testdata195.26 29593.10 106
plane_prior796.21 21889.98 182
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9594.85 34
plane_prior196.14 226
plane_prior89.99 18097.24 15494.06 6792.16 247
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 21095.78 262
HQP3-MVS97.39 18392.10 248
NP-MVS95.99 23389.81 18795.87 213
ACMMP++_ref90.30 278
ACMMP++91.02 267