This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 23697.09 1097.07 5192.72 198.04 16592.70 5799.02 1298.86 11
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2999.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2798.04 6999.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8880.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3598.71 3298.50 27
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 3198.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2598.85 1998.66 20
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8796.30 8389.24 1799.34 3493.46 4198.62 4598.73 17
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 3098.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3398.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2899.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 25993.40 21997.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3498.09 6699.23 1
9.1494.47 2097.79 4996.08 6197.44 1586.13 15495.10 3397.40 3388.34 2299.22 4493.25 4698.70 34
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3798.78 2598.48 30
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4498.94 1698.28 50
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29194.25 17396.29 10988.33 9094.46 3896.88 5888.07 2598.64 10293.62 4098.09 6698.73 17
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19690.05 13395.66 11287.77 2699.15 5089.91 11298.27 5998.07 68
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5298.40 5598.62 21
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7896.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7896.20 8787.63 2999.12 5192.14 7398.69 3697.94 77
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8296.20 8787.63 2999.02 61
ZD-MVS98.15 3486.62 3397.07 4583.63 20894.19 4296.91 5787.57 3199.26 4291.99 7998.44 54
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 14085.43 6895.68 8696.43 9886.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9997.16 117
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13984.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9297.07 119
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16393.93 25689.77 4794.21 4195.59 11587.35 3498.61 10792.72 5596.15 11397.83 86
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3497.18 4587.31 3599.07 5391.90 8598.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp87.16 36
旧先验196.79 7681.81 16995.67 16796.81 6386.69 3797.66 8296.97 128
test_prior294.12 18187.67 11592.63 8396.39 8286.62 3891.50 9198.67 40
CDPH-MVS92.83 7392.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7896.63 7386.62 3899.04 5787.40 13998.66 4198.17 62
DPM-MVS92.58 7891.74 8795.08 1596.19 9689.31 592.66 25096.56 9383.44 21491.68 11095.04 13786.60 4098.99 7085.60 16397.92 7396.93 130
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17684.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7697.96 75
DELS-MVS93.43 5893.25 5993.97 5695.42 13585.04 7293.06 23897.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5397.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6897.17 113
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 6198.81 2298.52 26
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6498.77 2798.30 47
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11195.85 10386.07 4698.66 10091.91 8398.16 6298.03 72
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3698.95 1598.60 23
mamv490.92 10391.78 8688.33 28395.67 12470.75 36092.92 24396.02 13981.90 25188.11 15795.34 12285.88 4896.97 25095.22 2495.01 13497.26 108
CS-MVS94.12 3794.44 2293.17 7896.55 8583.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4998.24 14293.64 3998.17 6198.19 60
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 5896.28 8485.60 5099.31 3992.45 5898.79 2398.12 66
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3298.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5299.59 891.43 9398.40 5598.30 47
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9797.19 4485.43 5399.56 1292.06 7898.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7696.97 5485.37 5499.24 4390.87 10398.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5599.54 2092.21 6998.74 3198.56 25
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8197.23 4185.20 5699.32 3892.15 7298.83 2198.25 57
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5798.99 7097.38 497.75 8097.86 83
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6497.86 83
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5999.54 2092.35 6498.78 2598.50 27
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13793.03 4998.62 4598.13 64
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 4998.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 40885.02 6099.49 2691.99 7998.56 4998.47 33
iter_conf0592.85 7292.89 6892.73 10696.58 8482.47 15394.20 17796.16 12384.42 19390.65 12395.56 11685.01 6398.69 9894.96 2698.47 5297.03 123
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6497.76 18092.19 7198.66 4196.76 138
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8496.80 6584.85 6599.17 4792.43 5998.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6699.03 5893.35 4597.99 7098.48 30
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6799.51 2490.75 10598.57 4898.32 46
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15383.51 11594.48 15595.77 15890.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 104
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17096.97 5091.07 1393.14 6697.56 2784.30 6999.56 1293.43 4298.75 3098.47 33
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 7099.01 6392.73 5397.80 7797.88 81
ETV-MVS92.74 7692.66 7392.97 9295.20 14684.04 10095.07 12096.51 9490.73 2292.96 7091.19 27684.06 7198.34 13591.72 8796.54 10596.54 149
EI-MVSNet-UG-set92.74 7692.62 7693.12 8094.86 16483.20 12394.40 16395.74 16190.71 2392.05 9596.60 7584.00 7298.99 7091.55 9093.63 15997.17 113
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10697.17 4683.96 7399.55 1691.44 9298.64 4498.43 38
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7498.96 7792.71 5697.87 7498.26 56
EIA-MVS91.95 8591.94 8391.98 13995.16 14780.01 22195.36 9996.73 7988.44 8789.34 14192.16 24283.82 7598.45 12589.35 11697.06 9097.48 101
MVS_030494.60 1894.38 2595.23 1195.41 13687.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7699.59 897.61 298.76 2898.61 22
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12883.17 12496.14 5796.12 12888.13 10095.82 2698.04 1683.43 7798.48 11696.97 996.23 11196.92 131
casdiffmvs_mvgpermissive92.96 7192.83 7093.35 7294.59 17783.40 11895.00 12496.34 10690.30 3092.05 9596.05 9583.43 7798.15 14992.07 7595.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet91.70 9191.56 8992.13 13495.88 11480.50 20597.33 795.25 19786.15 15189.76 13695.60 11483.42 7998.32 13987.37 14193.25 17197.56 99
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22484.26 9595.83 7996.14 12589.00 7292.43 8997.50 2883.37 8098.72 9696.61 1297.44 8496.32 153
UA-Net92.83 7392.54 7793.68 6896.10 10184.71 7995.66 8996.39 10291.92 793.22 6496.49 7983.16 8198.87 8284.47 17795.47 12397.45 103
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23283.72 10694.43 16197.12 4189.80 4386.46 19593.32 20383.16 8197.23 23384.92 16981.02 32894.49 236
EC-MVSNet93.44 5593.71 5192.63 11295.21 14582.43 15497.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14893.68 3898.14 6397.31 105
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15283.67 10896.19 5096.10 13087.27 12195.98 2498.05 1383.07 8498.45 12596.68 1195.51 12096.88 134
MM95.10 1194.91 1395.68 596.09 10288.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8599.64 197.85 198.76 2899.06 7
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8592.73 5397.80 7797.88 81
新几何193.10 8197.30 6684.35 9495.56 17571.09 37691.26 11796.24 8582.87 8798.86 8479.19 26498.10 6596.07 167
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 22083.13 12696.02 6995.74 16187.68 11495.89 2598.17 282.78 8898.46 12196.71 1096.17 11296.98 127
原ACMM192.01 13597.34 6481.05 18996.81 7078.89 29990.45 12595.92 10082.65 8998.84 8880.68 24398.26 6096.14 161
bld_raw_dy_0_6490.17 12189.64 12291.79 15595.65 12582.00 16390.56 30595.93 14475.32 34085.34 23694.26 17282.58 9098.48 11690.30 11096.78 10094.88 214
casdiffmvspermissive92.51 7992.43 7992.74 10594.41 19081.98 16594.54 15396.23 11889.57 5191.96 9996.17 9182.58 9098.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10485.83 6194.89 13096.99 4889.02 7189.56 13797.37 3582.51 9299.38 3192.20 7098.30 5897.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9399.07 5390.51 10898.40 5597.92 80
baseline92.39 8292.29 8192.69 11094.46 18681.77 17094.14 18096.27 11389.22 6191.88 10296.00 9682.35 9497.99 16991.05 9695.27 13198.30 47
sasdasda93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
canonicalmvs93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6995.72 16486.78 13496.04 2298.19 182.30 9798.43 12996.38 1395.42 12696.86 135
DP-MVS Recon91.95 8591.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23490.03 13495.82 10582.30 9799.03 5884.57 17596.48 10896.91 132
PAPR90.02 12589.27 13692.29 13095.78 11880.95 19392.68 24996.22 11981.91 25086.66 19293.75 19582.23 9998.44 12779.40 26394.79 13797.48 101
MVS_Test91.31 9791.11 9591.93 14394.37 19180.14 21393.46 21895.80 15686.46 14291.35 11693.77 19382.21 10098.09 16087.57 13794.95 13597.55 100
nrg03091.08 10290.39 10593.17 7893.07 24086.91 2296.41 3996.26 11488.30 9288.37 15694.85 14682.19 10197.64 19191.09 9582.95 29994.96 209
MGCFI-Net93.03 6892.63 7594.23 5395.62 12885.92 5796.08 6196.33 10789.86 4193.89 5194.66 15582.11 10298.50 11492.33 6792.82 18198.27 52
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22684.52 8594.78 13897.47 1189.26 6086.44 19892.32 23782.10 10397.39 22184.81 17280.84 33294.12 249
testdata90.49 20696.40 9077.89 27195.37 19372.51 36893.63 5596.69 6682.08 10497.65 18883.08 19397.39 8595.94 172
PAPM_NR91.22 9990.78 10392.52 11897.60 5681.46 17894.37 16996.24 11786.39 14487.41 17494.80 14982.06 10598.48 11682.80 20195.37 12797.61 95
MG-MVS91.77 8891.70 8892.00 13897.08 7180.03 22093.60 21395.18 20187.85 11090.89 12096.47 8082.06 10598.36 13285.07 16797.04 9197.62 94
CANet93.54 5193.20 6194.55 4395.65 12585.73 6594.94 12796.69 8491.89 890.69 12295.88 10281.99 10799.54 2093.14 4897.95 7298.39 39
MVSMamba_pp92.75 7592.66 7393.02 8895.09 15082.85 13994.72 14396.46 9686.35 14593.33 6194.96 13981.98 10898.55 11392.35 6498.70 3497.67 92
iter_conf05_1192.98 7092.96 6693.03 8695.91 11382.49 15296.06 6596.37 10486.94 12994.09 4495.16 13281.94 10998.67 9991.65 8998.56 4997.95 76
FC-MVSNet-test90.27 11890.18 11090.53 20293.71 22179.85 22795.77 8297.59 389.31 5886.27 20294.67 15481.93 11097.01 24884.26 17988.09 25194.71 221
FIs90.51 11690.35 10690.99 19093.99 21080.98 19195.73 8397.54 489.15 6486.72 19194.68 15381.83 11197.24 23285.18 16688.31 24894.76 220
ACMMPcopyleft93.24 6392.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13297.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 9391.11 9593.01 8994.35 19583.39 11994.60 14995.10 20587.10 12490.57 12493.10 21481.43 11398.07 16389.29 11794.48 14797.59 97
MVS_111021_LR92.47 8092.29 8192.98 9195.99 11084.43 9193.08 23696.09 13188.20 9791.12 11895.72 11181.33 11497.76 18091.74 8697.37 8696.75 139
mvs_anonymous89.37 15089.32 13389.51 25393.47 22974.22 32291.65 28294.83 22382.91 22985.45 22593.79 19181.23 11596.36 28886.47 15394.09 15297.94 77
PVSNet_BlendedMVS89.98 12689.70 12190.82 19596.12 9881.25 18393.92 20096.83 6683.49 21389.10 14492.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9881.25 18392.55 25496.83 6682.04 24689.10 14492.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
alignmvs93.08 6792.50 7894.81 3295.62 12887.61 1495.99 7196.07 13389.77 4794.12 4394.87 14380.56 11898.66 10092.42 6093.10 17498.15 63
API-MVS90.66 11190.07 11392.45 12196.36 9284.57 8296.06 6595.22 20082.39 23789.13 14394.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
PVSNet_Blended_VisFu91.38 9590.91 10092.80 10196.39 9183.17 12494.87 13296.66 8583.29 21989.27 14294.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
test22296.55 8581.70 17192.22 26695.01 20868.36 38290.20 12996.14 9280.26 12197.80 7796.05 170
diffmvspermissive91.37 9691.23 9391.77 15693.09 23980.27 20992.36 25995.52 18087.03 12691.40 11594.93 14080.08 12297.44 20992.13 7494.56 14497.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test By Simon80.02 123
IterMVS-LS88.36 17787.91 17189.70 24493.80 21778.29 26293.73 20795.08 20785.73 16084.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 15488.86 14689.80 24091.84 27878.30 26193.70 21095.01 20885.73 16087.15 17895.28 12479.87 12597.21 23583.81 18687.36 26393.88 261
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 20094.39 16596.21 12276.38 32886.19 20595.44 11879.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16880.81 19793.54 21495.10 20583.11 22386.82 19090.67 29579.74 12797.75 18380.51 24693.55 16196.57 147
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19695.26 10995.98 14086.26 14886.21 20494.29 16879.70 12897.65 18888.87 12388.10 24994.57 227
PS-MVSNAJ91.18 10090.92 9991.96 14195.26 14382.60 15192.09 27195.70 16586.27 14791.84 10492.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
xiu_mvs_v2_base91.13 10190.89 10191.86 14994.97 15682.42 15592.24 26595.64 17286.11 15591.74 10993.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
WR-MVS_H87.80 19187.37 18289.10 26293.23 23578.12 26595.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
EPNet91.79 8791.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17795.78 10779.39 13399.01 6388.13 13097.48 8398.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 22186.62 20689.02 26592.13 26777.40 28490.91 30094.81 22581.28 26984.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 10989.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8797.74 90
miper_enhance_ethall86.90 23386.18 22289.06 26391.66 28777.58 28290.22 31594.82 22479.16 29584.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11689.05 6780.04 32693.29 20679.02 13797.05 24681.71 22780.05 34294.59 225
TAMVS89.21 15288.29 16291.96 14193.71 22182.62 15093.30 22694.19 24782.22 24187.78 16893.94 18378.83 13896.95 25277.70 27792.98 17696.32 153
c3_l87.14 22686.50 21189.04 26492.20 26477.26 28591.22 29494.70 23182.01 24784.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
1112_ss88.42 17487.33 18391.72 15794.92 16080.98 19192.97 24194.54 23478.16 31583.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22583.61 11393.01 23994.68 23281.95 24887.82 16793.24 20878.69 14196.99 24980.34 24893.23 17296.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 13888.92 14291.67 15995.47 13481.15 18792.38 25894.78 22783.11 22389.06 14694.32 16678.67 14296.61 26881.57 22890.89 20497.24 109
CPTT-MVS91.99 8491.80 8592.55 11698.24 3181.98 16596.76 3096.49 9581.89 25390.24 12896.44 8178.59 14398.61 10789.68 11397.85 7597.06 120
IS-MVSNet91.43 9491.09 9792.46 12095.87 11681.38 18196.95 1993.69 26689.72 4989.50 13995.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
OMC-MVS91.23 9890.62 10493.08 8396.27 9484.07 9893.52 21595.93 14486.95 12889.51 13896.13 9378.50 14598.35 13485.84 16192.90 17796.83 137
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20584.43 9189.27 33295.87 15273.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14894.81 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17172.41 34493.15 23290.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16482.77 14092.08 27294.49 23581.52 26586.93 18292.79 22578.32 14898.23 14379.93 25390.55 20795.88 175
GeoE90.05 12489.43 12991.90 14895.16 14780.37 20895.80 8094.65 23383.90 20187.55 17394.75 15078.18 14997.62 19381.28 23193.63 15997.71 91
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25195.66 16967.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
MVSFormer91.68 9291.30 9192.80 10193.86 21483.88 10395.96 7395.90 14984.66 18991.76 10794.91 14177.92 15197.30 22489.64 11497.11 8897.24 109
lupinMVS90.92 10390.21 10893.03 8693.86 21483.88 10392.81 24793.86 26079.84 28691.76 10794.29 16877.92 15198.04 16590.48 10997.11 8897.17 113
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15979.28 24291.77 27794.30 24376.04 33383.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13496.44 9789.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16898.13 64
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31087.61 35880.97 39276.82 32588.68 15095.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15896.59 9089.50 5286.46 19593.29 20677.25 15697.23 23384.92 16981.02 32894.59 225
Baseline_NR-MVSNet87.07 22886.63 20588.40 27991.44 29177.87 27294.23 17692.57 28884.12 19785.74 21392.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
jason90.80 10590.10 11292.90 9693.04 24383.53 11493.08 23694.15 24980.22 28091.41 11494.91 14176.87 15897.93 17490.28 11196.90 9597.24 109
jason: jason.
PAPM86.68 24185.39 25090.53 20293.05 24279.33 24189.79 32394.77 22878.82 30181.95 30193.24 20876.81 15997.30 22466.94 35593.16 17394.95 212
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22795.74 11975.85 30595.61 9390.80 33887.66 11687.83 16695.40 12176.79 16096.46 28178.37 26896.73 10197.80 87
baseline188.10 18387.28 18590.57 20094.96 15780.07 21694.27 17291.29 32586.74 13587.41 17494.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16495.16 11696.36 10570.19 37985.81 21095.25 12676.70 16298.63 10482.07 21696.86 9897.00 126
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14794.29 17195.44 18779.71 28884.01 26994.18 17476.68 16398.75 9377.28 28193.41 16795.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13494.92 12996.31 10889.88 4085.53 21993.85 19076.63 16496.96 25181.91 22079.87 34594.50 234
MAR-MVS90.30 11789.37 13193.07 8596.61 8184.48 8795.68 8695.67 16782.36 23987.85 16592.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 17587.67 17590.52 20493.30 23480.18 21193.26 22995.96 14388.57 8585.47 22492.81 22376.12 16696.91 25581.24 23282.29 30894.47 239
v887.50 20886.71 20089.89 23491.37 29679.40 23594.50 15495.38 19184.81 18483.60 27991.33 27176.05 16797.42 21182.84 19980.51 33992.84 309
v14887.04 22986.32 21789.21 25890.94 31577.26 28593.71 20994.43 23784.84 18384.36 26090.80 29176.04 16897.05 24682.12 21379.60 34793.31 289
eth_miper_zixun_eth86.50 24885.77 24188.68 27491.94 27375.81 30690.47 30794.89 21782.05 24484.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12788.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8198.59 24
h-mvs3390.80 10590.15 11192.75 10496.01 10682.66 14895.43 9895.53 17989.80 4393.08 6795.64 11375.77 17199.00 6892.07 7578.05 35496.60 144
hse-mvs289.88 13389.34 13291.51 16494.83 16681.12 18893.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7577.07 36195.74 182
BH-untuned88.60 17188.13 16690.01 23095.24 14478.50 25593.29 22794.15 24984.75 18684.46 25493.40 20075.76 17397.40 21877.59 27894.52 14694.12 249
DIV-MVS_self_test86.53 24685.78 23988.75 27192.02 27276.45 29790.74 30294.30 24381.83 25683.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
BH-w/o87.57 20487.05 19089.12 26194.90 16277.90 27092.41 25693.51 26882.89 23083.70 27591.34 27075.75 17497.07 24475.49 29793.49 16492.39 322
cl____86.52 24785.78 23988.75 27192.03 27176.46 29690.74 30294.30 24381.83 25683.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1590.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26684.46 25495.13 13575.57 17896.62 26577.21 28293.84 15795.61 189
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9781.42 18090.01 32095.86 15374.52 34987.41 17493.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
CP-MVSNet87.63 19987.26 18788.74 27393.12 23876.59 29595.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
v1087.25 21886.38 21389.85 23591.19 30279.50 23294.48 15595.45 18583.79 20583.62 27891.19 27675.13 18197.42 21181.94 21980.60 33492.63 314
Vis-MVSNetpermissive91.75 8991.23 9393.29 7395.32 13883.78 10596.14 5795.98 14089.89 3990.45 12596.58 7675.09 18298.31 14084.75 17396.90 9597.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 16288.26 16490.94 19394.05 20480.78 19891.71 27995.38 19181.55 26488.63 15193.91 18775.04 18395.47 32782.47 20591.61 19296.57 147
v114487.61 20286.79 19890.06 22691.01 31079.34 23893.95 19795.42 19083.36 21885.66 21591.31 27474.98 18497.42 21183.37 19082.06 31093.42 287
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31787.69 35594.09 25381.20 27381.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
test_yl90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
DCV-MVSNet90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
V4287.68 19486.86 19490.15 22190.58 33080.14 21394.24 17595.28 19683.66 20785.67 21491.33 27174.73 18897.41 21684.43 17881.83 31492.89 307
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 18080.27 20991.36 28794.74 22984.87 18189.82 13592.61 22974.72 18998.47 12083.97 18393.53 16297.04 122
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20981.21 18691.87 27596.06 13585.78 15888.55 15295.73 11074.67 19097.27 22888.71 12489.64 22595.91 173
v2v48287.84 18987.06 18990.17 21990.99 31179.23 24594.00 19595.13 20284.87 18185.53 21992.07 25174.45 19197.45 20684.71 17481.75 31693.85 265
CLD-MVS89.47 14388.90 14491.18 17894.22 19882.07 16292.13 26996.09 13187.90 10685.37 23492.45 23374.38 19297.56 19687.15 14490.43 20993.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 19686.85 19590.03 22792.14 26680.60 20393.76 20695.23 19882.94 22884.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
HQP_MVS90.60 11590.19 10991.82 15294.70 17282.73 14495.85 7796.22 11990.81 1786.91 18494.86 14474.23 19498.12 15088.15 12889.99 21494.63 222
plane_prior694.52 18282.75 14174.23 194
v14419287.19 22486.35 21589.74 24190.64 32878.24 26393.92 20095.43 18881.93 24985.51 22191.05 28474.21 19697.45 20682.86 19881.56 31893.53 281
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21482.89 13895.46 9797.33 2587.91 10588.43 15593.31 20474.17 19797.40 21887.32 14282.86 30494.52 230
ab-mvs89.41 14688.35 15892.60 11395.15 14982.65 14992.20 26795.60 17483.97 20088.55 15293.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
131487.51 20686.57 20890.34 21692.42 26079.74 22992.63 25195.35 19578.35 31080.14 32391.62 26574.05 19997.15 23781.05 23393.53 16294.12 249
test_djsdf89.03 15988.64 14990.21 21890.74 32579.28 24295.96 7395.90 14984.66 18985.33 23792.94 21874.02 20097.30 22489.64 11488.53 24194.05 255
cl2286.78 23685.98 23289.18 26092.34 26177.62 28190.84 30194.13 25181.33 26883.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13294.42 16295.92 14682.81 23186.34 20194.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10780.63 20190.01 32095.79 15773.42 36087.68 17092.10 24873.86 20397.96 17180.75 24191.70 19197.19 112
HQP2-MVS73.83 204
HQP-MVS89.80 13489.28 13591.34 17294.17 19981.56 17294.39 16596.04 13688.81 7485.43 22893.97 18273.83 20497.96 17187.11 14689.77 22394.50 234
3Dnovator86.66 591.73 9090.82 10294.44 4594.59 17786.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7197.79 88
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33494.11 18292.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15895.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 28583.06 29288.54 27791.72 28378.44 25695.18 11492.82 28182.73 23379.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
Effi-MVS+-dtu88.65 16988.35 15889.54 25093.33 23376.39 29894.47 15894.36 24187.70 11385.43 22889.56 32173.45 20997.26 23085.57 16491.28 19694.97 206
baseline286.50 24885.39 25089.84 23691.12 30776.70 29391.88 27488.58 36482.35 24079.95 32790.95 28673.42 21097.63 19280.27 25089.95 21795.19 200
PEN-MVS86.80 23586.27 22088.40 27992.32 26275.71 30795.18 11496.38 10387.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
v119287.25 21886.33 21690.00 23190.76 32479.04 24693.80 20495.48 18182.57 23585.48 22391.18 27873.38 21297.42 21182.30 20982.06 31093.53 281
QAPM89.51 14188.15 16593.59 7094.92 16084.58 8196.82 2996.70 8378.43 30983.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16896.68 3392.37 29189.03 6987.00 18094.85 14673.05 21497.65 18891.03 9788.63 23994.51 232
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28286.08 20788.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
PS-CasMVS87.32 21586.88 19388.63 27692.99 24676.33 30095.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31494.93 12895.75 16087.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
MVSTER88.84 16388.29 16290.51 20592.95 24880.44 20693.73 20795.01 20884.66 18987.15 17893.12 21372.79 21897.21 23587.86 13387.36 26393.87 262
v192192086.97 23186.06 22989.69 24590.53 33378.11 26693.80 20495.43 18881.90 25185.33 23791.05 28472.66 21997.41 21682.05 21781.80 31593.53 281
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13872.66 21999.05 5566.92 35792.33 18896.40 151
v7n86.81 23485.76 24289.95 23290.72 32679.25 24495.07 12095.92 14684.45 19282.29 29590.86 28772.60 22197.53 19879.42 26280.52 33893.08 301
OPM-MVS90.12 12289.56 12591.82 15293.14 23783.90 10294.16 17995.74 16188.96 7387.86 16495.43 12072.48 22297.91 17588.10 13290.18 21393.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 18886.32 21792.59 11496.07 10482.92 13795.23 11094.92 21675.66 33582.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
pm-mvs186.61 24285.54 24689.82 23791.44 29180.18 21195.28 10894.85 22183.84 20381.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28788.68 34290.06 35072.32 37086.47 19490.76 29372.15 22594.40 33981.78 22493.49 16492.36 323
SDMVSNet90.19 12089.61 12491.93 14396.00 10783.09 13092.89 24495.98 14088.73 7886.85 18895.20 13072.09 22697.08 24288.90 12189.85 22095.63 187
PatchmatchNetpermissive85.85 26084.70 26789.29 25791.76 28275.54 30888.49 34491.30 32481.63 26285.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 22896.12 163
patchmatchnet-post83.76 37571.53 22996.48 278
v124086.78 23685.85 23789.56 24990.45 33477.79 27693.61 21295.37 19381.65 26085.43 22891.15 28071.50 23097.43 21081.47 23082.05 31293.47 285
anonymousdsp87.84 18987.09 18890.12 22389.13 35280.54 20494.67 14695.55 17682.05 24483.82 27292.12 24571.47 23197.15 23787.15 14487.80 25892.67 312
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32480.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
F-COLMAP87.95 18786.80 19791.40 16996.35 9380.88 19594.73 14195.45 18579.65 28982.04 30094.61 15771.13 23398.50 11476.24 29391.05 20294.80 219
pmmvs485.43 26683.86 27990.16 22090.02 34282.97 13690.27 30992.67 28675.93 33480.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
CR-MVSNet85.35 26983.76 28090.12 22390.58 33079.34 23885.24 37491.96 30878.27 31285.55 21787.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 29984.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34390.25 31193.07 27581.24 27179.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23885.24 37496.76 7571.44 37485.55 21782.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35382.17 38987.50 37278.47 30777.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34289.47 33091.04 33176.26 33186.45 19789.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
sam_mvs70.60 241
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
test_post10.29 40970.57 24595.91 307
CANet_DTU90.26 11989.41 13092.81 10093.46 23083.01 13493.48 21694.47 23689.43 5487.76 16994.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
BH-RMVSNet88.37 17687.48 17991.02 18795.28 14079.45 23492.89 24493.07 27585.45 16886.91 18494.84 14870.35 24797.76 18073.97 31194.59 14395.85 176
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24892.04 27077.68 28094.03 19193.94 25585.81 15782.42 29491.32 27370.33 24897.06 24580.33 24990.23 21294.14 248
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
ACMM84.12 989.14 15388.48 15791.12 17994.65 17581.22 18595.31 10296.12 12885.31 17185.92 20994.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22383.93 10192.33 26290.94 33484.16 19572.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18481.49 17695.30 10496.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18481.49 17696.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
CHOSEN 280x42085.15 27483.99 27788.65 27592.47 25778.40 25879.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21694.44 18881.50 17492.31 26494.89 21783.03 22579.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8392.70 25385.39 6996.57 3696.43 9878.74 30480.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 217
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30684.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
AUN-MVS87.78 19286.54 20991.48 16694.82 16781.05 18993.91 20293.93 25683.00 22686.93 18293.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
PatchT82.68 30381.27 30586.89 32090.09 34070.94 35984.06 38190.15 34774.91 34585.63 21683.57 37669.37 25994.87 33665.19 36288.50 24394.84 216
VPNet88.20 18187.47 18090.39 21293.56 22779.46 23394.04 19095.54 17888.67 8186.96 18194.58 16169.33 26097.15 23784.05 18280.53 33794.56 228
ACMP84.23 889.01 16188.35 15890.99 19094.73 16981.27 18295.07 12095.89 15186.48 14083.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35888.31 34791.70 31278.91 29780.49 31987.18 35769.30 26397.08 24268.12 34983.56 29493.51 284
thres20087.21 22286.24 22190.12 22395.36 13778.53 25393.26 22992.10 30086.42 14388.00 16391.11 28269.24 26498.00 16869.58 33991.04 20393.83 266
tfpn200view987.58 20386.64 20390.41 21195.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.48 237
thres40087.62 20186.64 20390.57 20095.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.96 209
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35691.89 27387.98 36778.91 29784.78 24590.22 30369.11 26794.02 34664.70 36690.44 20890.71 355
tfpnnormal84.72 28283.23 28889.20 25992.79 25280.05 21894.48 15595.81 15582.38 23881.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
thres100view90087.63 19986.71 20090.38 21496.12 9878.55 25295.03 12391.58 31687.15 12288.06 16192.29 23968.91 26998.10 15270.13 33591.10 19794.48 237
thres600view787.65 19686.67 20290.59 19996.08 10378.72 24894.88 13191.58 31687.06 12588.08 16092.30 23868.91 26998.10 15270.05 33891.10 19794.96 209
PatchMatch-RL86.77 23985.54 24690.47 21095.88 11482.71 14690.54 30692.31 29479.82 28784.32 26291.57 26968.77 27196.39 28573.16 31693.48 16692.32 325
XVG-OURS89.40 14888.70 14891.52 16394.06 20381.46 17891.27 29196.07 13386.14 15288.89 14895.77 10868.73 27297.26 23087.39 14089.96 21695.83 178
TR-MVS86.78 23685.76 24289.82 23794.37 19178.41 25792.47 25592.83 28081.11 27486.36 19992.40 23468.73 27297.48 20273.75 31489.85 22093.57 280
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27685.75 21289.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
FMVSNet387.40 21186.11 22691.30 17493.79 21983.64 11094.20 17794.81 22583.89 20284.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
MVP-Stereo85.97 25784.86 26489.32 25690.92 31782.19 16092.11 27094.19 24778.76 30378.77 34091.63 26468.38 27696.56 27375.01 30493.95 15489.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35787.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23271.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
sd_testset88.59 17287.85 17290.83 19496.00 10780.42 20792.35 26094.71 23088.73 7886.85 18895.20 13067.31 27996.43 28379.64 25789.85 22095.63 187
tpm284.08 28982.94 29387.48 30391.39 29571.27 35289.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 222
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35089.55 32689.88 35683.41 21584.54 25187.95 34567.25 28195.11 33281.82 22293.37 16994.97 206
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33390.24 31387.83 36983.41 21579.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20695.28 12467.18 28393.33 35780.89 23990.42 21094.88 214
thisisatest051587.33 21485.99 23191.37 17193.49 22879.55 23190.63 30489.56 36180.17 28187.56 17290.86 28767.07 28498.28 14181.50 22993.02 17596.29 155
tttt051788.61 17087.78 17391.11 18294.96 15777.81 27495.35 10089.69 35885.09 17788.05 16294.59 16066.93 28598.48 11683.27 19292.13 19097.03 123
our_test_381.93 30880.46 31186.33 32888.46 36073.48 32988.46 34591.11 32776.46 32676.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
thisisatest053088.67 16887.61 17691.86 14994.87 16380.07 21694.63 14889.90 35584.00 19988.46 15493.78 19266.88 28798.46 12183.30 19192.65 18297.06 120
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29090.19 31692.65 28785.40 16981.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
SCA86.32 25385.18 25689.73 24392.15 26576.60 29491.12 29591.69 31383.53 21285.50 22288.81 33166.79 28896.48 27876.65 28790.35 21196.12 163
D2MVS85.90 25885.09 25888.35 28190.79 32277.42 28391.83 27695.70 16580.77 27780.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30290.18 31792.41 29083.24 22181.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet287.19 22485.82 23891.30 17494.01 20683.67 10894.79 13794.94 21183.57 20983.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33788.62 34381.96 39081.37 26785.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25878.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32189.04 33892.16 29975.33 33977.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33585.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33885.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 32981.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
MSDG84.86 27983.09 29090.14 22293.80 21780.05 21889.18 33593.09 27478.89 29978.19 34191.91 25565.86 30197.27 22868.47 34488.45 24493.11 299
FE-MVS87.40 21186.02 23091.57 16294.56 18179.69 23090.27 30993.72 26580.57 27888.80 14991.62 26565.32 30298.59 10974.97 30594.33 15196.44 150
jajsoiax88.24 18087.50 17890.48 20790.89 31980.14 21395.31 10295.65 17184.97 17984.24 26594.02 17865.31 30397.42 21188.56 12588.52 24293.89 259
cascas86.43 25284.98 26090.80 19692.10 26980.92 19490.24 31395.91 14873.10 36383.57 28088.39 33865.15 30497.46 20584.90 17191.43 19494.03 256
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32383.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34783.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
pmmvs584.21 28782.84 29788.34 28288.95 35476.94 28992.41 25691.91 31075.63 33680.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 17071.93 34587.12 36192.75 28378.80 30284.95 24390.53 29764.43 30896.71 26274.74 30693.86 15696.06 169
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27490.04 31990.19 34684.70 18881.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
UGNet89.95 12988.95 14192.95 9494.51 18383.31 12095.70 8595.23 19889.37 5687.58 17193.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28192.46 28976.20 33282.67 29395.22 12763.94 31197.29 22777.51 28085.80 27494.53 229
mvs_tets88.06 18687.28 18590.38 21490.94 31579.88 22595.22 11195.66 16985.10 17684.21 26693.94 18363.53 31397.40 21888.50 12688.40 24693.87 262
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
test111189.10 15488.64 14990.48 20795.53 13374.97 31396.08 6184.89 38288.13 10090.16 13196.65 7063.29 31598.10 15286.14 15496.90 9598.39 39
Anonymous2023121186.59 24485.13 25790.98 19296.52 8881.50 17496.14 5796.16 12373.78 35683.65 27792.15 24363.26 31697.37 22282.82 20081.74 31794.06 254
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12875.89 30496.16 5384.22 38487.89 10890.20 12996.65 7063.19 31798.10 15285.90 15996.94 9398.33 43
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33081.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13392.15 9496.81 6362.60 31998.34 13587.18 14393.90 15598.19 60
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28692.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
VDD-MVS90.74 10789.92 11993.20 7796.27 9483.02 13395.73 8393.86 26088.42 8992.53 8596.84 6062.09 32198.64 10290.95 10192.62 18397.93 79
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25491.25 29293.53 26777.50 31880.15 32291.58 26761.99 32295.51 32375.69 29694.35 15089.16 371
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34194.01 19394.40 23984.72 18779.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
test_vis1_n_192089.39 14989.84 12088.04 29192.97 24772.64 33994.71 14496.03 13886.18 15091.94 10196.56 7861.63 32495.74 31693.42 4395.11 13395.74 182
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29691.08 32881.23 27274.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
Anonymous2024052988.09 18486.59 20792.58 11596.53 8781.92 16795.99 7195.84 15474.11 35389.06 14695.21 12961.44 32798.81 8983.67 18987.47 26097.01 125
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27891.29 32583.28 22080.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 24285.27 25590.66 19891.33 29978.71 24990.40 30893.81 26385.34 17085.12 23989.57 32061.25 32997.11 24180.99 23789.59 22696.15 160
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22291.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
testing9187.11 22786.18 22289.92 23394.43 18975.38 31291.53 28492.27 29686.48 14086.50 19390.24 30261.19 33297.53 19882.10 21490.88 20596.84 136
test_cas_vis1_n_192088.83 16688.85 14788.78 26991.15 30676.72 29293.85 20394.93 21583.23 22292.81 7696.00 9661.17 33394.45 33791.67 8894.84 13695.17 201
VDDNet89.56 14088.49 15692.76 10395.07 15182.09 16196.30 4393.19 27381.05 27591.88 10296.86 5961.16 33498.33 13788.43 12792.49 18797.84 85
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35583.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16677.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
gg-mvs-nofinetune81.77 31079.37 32588.99 26690.85 32177.73 27986.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14293.11 299
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32588.79 34090.42 34279.16 29559.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
pmmvs683.42 29881.60 30288.87 26888.01 36677.87 27294.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
ACMH80.38 1785.36 26883.68 28190.39 21294.45 18780.63 20194.73 14194.85 22182.09 24377.24 34892.65 22760.01 34097.58 19472.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 29489.73 34877.91 26987.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18990.60 359
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24794.74 14095.61 17384.07 19885.36 23594.52 16259.78 34297.34 22382.93 19687.88 25496.71 141
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33873.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
testing9986.72 24085.73 24589.69 24594.23 19774.91 31591.35 28890.97 33386.14 15286.36 19990.22 30359.41 34497.48 20282.24 21190.66 20696.69 142
test_040281.30 32079.17 33087.67 29793.19 23678.17 26492.98 24091.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29893.93 25678.71 30576.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26182.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
testing1186.44 25185.35 25389.69 24594.29 19675.40 31191.30 28990.53 34184.76 18585.06 24090.13 30858.95 34897.45 20682.08 21591.09 20196.21 159
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24195.28 14079.75 22894.25 17392.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 27683.46 28489.82 23794.66 17479.37 23694.44 16094.12 25282.19 24278.04 34392.82 22258.23 35097.54 19773.77 31382.90 30392.54 315
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tt080586.92 23285.74 24490.48 20792.22 26379.98 22395.63 9294.88 21983.83 20484.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
ITE_SJBPF88.24 28691.88 27777.05 28892.92 27785.54 16680.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 29986.14 37579.90 28586.26 20390.72 29457.17 35495.81 31271.03 32992.62 18395.35 196
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35489.55 32687.88 36877.41 31983.37 28487.31 35356.71 35593.65 35480.62 24492.85 18094.40 240
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34088.45 34694.87 22082.99 22771.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34894.01 19394.04 25478.30 31191.97 9895.22 12756.28 35793.71 35292.89 5194.71 13894.52 230
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25387.71 37085.56 16573.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35089.55 32689.88 35679.17 29484.54 25187.95 34555.56 35995.11 33281.82 22293.37 16994.97 206
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
ETVMVS84.43 28582.92 29488.97 26794.37 19174.67 31691.23 29388.35 36683.37 21786.06 20889.04 32755.38 36195.67 31867.12 35391.34 19596.58 146
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
test250687.21 22286.28 21990.02 22995.62 12873.64 32796.25 4871.38 40687.89 10890.45 12596.65 7055.29 36398.09 16086.03 15896.94 9398.33 43
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31469.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19994.87 13291.49 32080.47 27989.46 14095.44 11854.72 36598.23 14382.19 21289.89 21897.97 74
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25491.20 30178.00 26791.70 28095.55 17685.05 17882.97 28992.25 24154.49 36697.48 20282.93 19687.45 26292.89 307
USDC82.76 30181.26 30687.26 30791.17 30374.55 31889.27 33293.39 27078.26 31375.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
AllTest83.42 29881.39 30489.52 25195.01 15377.79 27693.12 23390.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
TestCases89.52 25195.01 15377.79 27690.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
MIMVSNet82.59 30480.53 30988.76 27091.51 28978.32 26086.57 36590.13 34879.32 29180.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
testing22284.84 28083.32 28589.43 25594.15 20275.94 30391.09 29689.41 36284.90 18085.78 21189.44 32252.70 37396.28 29270.80 33091.57 19396.07 167
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26891.49 28592.26 29776.87 32476.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29090.70 34083.70 20678.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34694.55 15294.43 23778.47 30791.95 10095.50 11751.16 37693.81 35093.02 5094.56 14495.26 198
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33775.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33285.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30192.33 26290.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 30993.12 23392.03 30376.45 32775.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33694.68 14593.78 26479.55 29090.70 12195.31 12348.75 38193.28 35893.15 4793.99 15394.38 241
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32691.61 28392.75 28378.11 31672.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32874.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
EG-PatchMatch MVS82.37 30680.34 31288.46 27890.27 33679.35 23792.80 24894.33 24277.14 32373.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31786.89 18793.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33189.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25878.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
testing380.46 32679.59 32483.06 35593.44 23164.64 38493.33 22185.47 37984.34 19479.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 34990.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32889.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28474.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26191.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 419
eth-test0.00 419
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
MTGPAbinary96.97 50
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32288.99 32897.57 19579.44 260
test9_res91.91 8398.71 3298.07 68
agg_prior290.54 10698.68 3898.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22071.25 37594.37 3997.13 24086.74 149
新几何293.11 235
无先验93.28 22896.26 11473.95 35599.05 5580.56 24596.59 145
原ACMM292.94 242
testdata298.75 9378.30 271
testdata192.15 26887.94 104
plane_prior794.70 17282.74 143
plane_prior596.22 11998.12 15088.15 12889.99 21494.63 222
plane_prior494.86 144
plane_prior382.75 14190.26 3386.91 184
plane_prior295.85 7790.81 17
plane_prior194.59 177
plane_prior82.73 14495.21 11289.66 5089.88 219
n20.00 420
nn0.00 420
door-mid85.49 378
test1196.57 92
door85.33 380
HQP5-MVS81.56 172
HQP-NCC94.17 19994.39 16588.81 7485.43 228
ACMP_Plane94.17 19994.39 16588.81 7485.43 228
BP-MVS87.11 146
HQP4-MVS85.43 22897.96 17194.51 232
HQP3-MVS96.04 13689.77 223
NP-MVS94.37 19182.42 15593.98 181
ACMMP++_ref87.47 260
ACMMP++88.01 252