| PGM-MVS | | | 98.86 31 | 99.35 27 | 98.29 34 | 99.77 1 | 99.63 29 | 99.67 5 | 95.63 45 | 98.66 119 | 95.27 53 | 99.11 28 | 99.82 42 | 99.67 4 | 99.33 24 | 99.19 21 | 99.73 58 | 99.74 74 |
|
| SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 9 | 99.76 2 | 99.62 33 | 99.39 29 | 98.23 18 | 99.52 16 | 98.03 17 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 95 | 99.76 62 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CSCG | | | 98.90 30 | 98.93 53 | 98.85 24 | 99.75 3 | 99.72 12 | 99.49 21 | 96.58 42 | 99.38 25 | 98.05 16 | 98.97 37 | 97.87 77 | 99.49 18 | 97.78 127 | 98.92 40 | 99.78 34 | 99.90 6 |
|
| APDe-MVS |  | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 11 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 6 | 99.57 7 | 99.97 8 | 99.53 15 | 99.65 2 | 99.25 15 | 99.84 12 | 99.77 57 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 99.05 25 | 99.45 14 | 98.58 30 | 99.73 5 | 99.60 43 | 99.64 8 | 98.28 13 | 99.23 45 | 94.57 65 | 99.35 16 | 99.97 8 | 99.55 13 | 99.63 3 | 98.66 57 | 99.70 84 | 99.74 74 |
|
| DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 6 | 99.76 6 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 39 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 29 | 99.74 50 | 99.79 44 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 99.41 4 | 99.64 1 | 99.14 7 | 99.69 7 | 99.75 9 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 13 | 99.66 4 | 99.99 1 | 99.33 30 | 99.62 5 | 98.86 45 | 99.74 50 | 99.90 6 |
|
| SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 7 | 99.76 6 | 99.62 14 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 37 | 99.61 6 | 98.83 50 | 99.70 84 | 99.77 57 |
|
| HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 13 | 99.69 7 | 99.59 45 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 26 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 22 | 99.24 17 | 99.71 76 | 99.76 62 |
|
| HPM-MVS++ |  | | 99.10 21 | 99.30 30 | 98.86 23 | 99.69 7 | 99.48 64 | 99.59 16 | 98.34 4 | 99.26 42 | 96.55 36 | 99.10 30 | 99.96 12 | 99.36 28 | 99.25 27 | 98.37 75 | 99.64 116 | 99.66 107 |
|
| APD-MVS |  | | 99.25 12 | 99.38 22 | 99.09 11 | 99.69 7 | 99.58 48 | 99.56 17 | 98.32 8 | 98.85 96 | 97.87 19 | 98.91 42 | 99.92 28 | 99.30 35 | 99.45 15 | 99.38 8 | 99.79 31 | 99.58 123 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 7 | 99.68 12 | 99.75 9 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 13 | 99.28 18 | 99.98 2 | 99.30 35 | 99.34 23 | 99.05 29 | 99.81 22 | 99.79 44 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
| X-MVS | | | 98.93 29 | 99.37 23 | 98.42 31 | 99.67 13 | 99.62 33 | 99.60 15 | 98.15 23 | 99.08 71 | 93.81 83 | 98.46 63 | 99.95 17 | 99.59 9 | 99.49 13 | 99.21 20 | 99.68 95 | 99.75 70 |
|
| MCST-MVS | | | 99.11 20 | 99.27 32 | 98.93 21 | 99.67 13 | 99.33 90 | 99.51 20 | 98.31 9 | 99.28 38 | 96.57 35 | 99.10 30 | 99.90 33 | 99.71 2 | 99.19 31 | 98.35 76 | 99.82 16 | 99.71 91 |
|
| ACMMPR | | | 99.30 9 | 99.54 7 | 99.03 16 | 99.66 16 | 99.64 26 | 99.68 4 | 98.25 14 | 99.56 11 | 97.12 30 | 99.19 21 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 15 | 99.72 66 | 99.77 57 |
|
| SteuartSystems-ACMMP | | | 99.20 15 | 99.51 11 | 98.83 26 | 99.66 16 | 99.66 21 | 99.71 3 | 98.12 27 | 99.14 62 | 96.62 33 | 99.16 23 | 99.98 2 | 99.12 49 | 99.63 3 | 99.19 21 | 99.78 34 | 99.83 28 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 99.18 16 | 99.32 28 | 99.03 16 | 99.65 18 | 99.41 76 | 98.87 54 | 98.24 17 | 99.14 62 | 98.73 5 | 99.11 28 | 99.92 28 | 98.92 61 | 99.22 28 | 98.84 49 | 99.76 41 | 99.56 129 |
|
| CNVR-MVS | | | 99.23 14 | 99.28 31 | 99.17 5 | 99.65 18 | 99.34 87 | 99.46 24 | 98.21 19 | 99.28 38 | 98.47 8 | 98.89 44 | 99.94 25 | 99.50 16 | 99.42 17 | 98.61 60 | 99.73 58 | 99.52 135 |
|
| DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 20 | 99.71 15 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 11 | 99.64 5 | 99.98 2 | 99.31 33 | 99.56 9 | 98.96 37 | 99.85 10 | 99.70 93 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MP-MVS |  | | 99.07 23 | 99.36 24 | 98.74 27 | 99.63 20 | 99.57 50 | 99.66 6 | 98.25 14 | 99.00 82 | 95.62 45 | 98.97 37 | 99.94 25 | 99.54 14 | 99.51 12 | 98.79 54 | 99.71 76 | 99.73 78 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| NCCC | | | 99.05 25 | 99.08 41 | 99.02 18 | 99.62 22 | 99.38 78 | 99.43 28 | 98.21 19 | 99.36 30 | 97.66 23 | 97.79 81 | 99.90 33 | 99.45 22 | 99.17 32 | 98.43 70 | 99.77 39 | 99.51 140 |
|
| CP-MVS | | | 99.27 10 | 99.44 17 | 99.08 12 | 99.62 22 | 99.58 48 | 99.53 18 | 98.16 21 | 99.21 49 | 97.79 20 | 99.15 24 | 99.96 12 | 99.59 9 | 99.54 11 | 98.86 45 | 99.78 34 | 99.74 74 |
|
| AdaColmap |  | | 99.06 24 | 98.98 51 | 99.15 6 | 99.60 24 | 99.30 93 | 99.38 30 | 98.16 21 | 99.02 80 | 98.55 7 | 98.71 53 | 99.57 56 | 99.58 12 | 99.09 37 | 97.84 105 | 99.64 116 | 99.36 153 |
|
| CPTT-MVS | | | 99.14 19 | 99.20 36 | 99.06 14 | 99.58 25 | 99.53 55 | 99.45 25 | 97.80 36 | 99.19 52 | 98.32 12 | 98.58 57 | 99.95 17 | 99.60 7 | 99.28 26 | 98.20 87 | 99.64 116 | 99.69 97 |
|
| TPM-MVS | | | | | | 99.57 26 | 98.90 116 | 98.79 58 | | | 96.52 37 | 98.62 56 | 99.91 31 | 97.56 113 | | | 99.44 167 | 99.28 156 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| QAPM | | | 98.62 40 | 99.04 47 | 98.13 38 | 99.57 26 | 99.48 64 | 99.17 38 | 94.78 54 | 99.57 10 | 96.16 39 | 96.73 105 | 99.80 43 | 99.33 30 | 98.79 61 | 99.29 13 | 99.75 45 | 99.64 114 |
|
| 3Dnovator | | 96.92 7 | 98.67 37 | 99.05 44 | 98.23 37 | 99.57 26 | 99.45 68 | 99.11 42 | 94.66 57 | 99.69 3 | 96.80 32 | 96.55 114 | 99.61 53 | 99.40 25 | 98.87 57 | 99.49 3 | 99.85 10 | 99.66 107 |
|
| DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 14 | 98.85 24 | 99.55 29 | 99.37 81 | 99.64 8 | 98.05 31 | 99.53 14 | 96.58 34 | 98.93 40 | 99.92 28 | 99.49 18 | 99.46 14 | 99.32 10 | 99.80 30 | 99.64 114 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| mPP-MVS | | | | | | 99.53 30 | | | | | | | 99.89 35 | | | | | |
|
| 3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 44 | 98.32 33 | 99.53 30 | 99.34 87 | 99.06 46 | 94.61 58 | 99.65 5 | 97.49 24 | 96.75 104 | 99.86 38 | 99.44 23 | 98.78 62 | 99.30 11 | 99.81 22 | 99.67 103 |
|
| MSLP-MVS++ | | | 99.15 18 | 99.24 34 | 99.04 15 | 99.52 32 | 99.49 63 | 99.09 44 | 98.07 29 | 99.37 27 | 98.47 8 | 97.79 81 | 99.89 35 | 99.50 16 | 98.93 49 | 99.45 4 | 99.61 124 | 99.76 62 |
|
| OpenMVS |  | 96.23 11 | 97.95 58 | 98.45 67 | 97.35 55 | 99.52 32 | 99.42 74 | 98.91 53 | 94.61 58 | 98.87 93 | 92.24 110 | 94.61 142 | 99.05 64 | 99.10 51 | 98.64 73 | 99.05 29 | 99.74 50 | 99.51 140 |
|
| PLC |  | 97.93 2 | 99.02 28 | 98.94 52 | 99.11 10 | 99.46 34 | 99.24 99 | 99.06 46 | 97.96 33 | 99.31 34 | 99.16 1 | 97.90 79 | 99.79 45 | 99.36 28 | 98.71 69 | 98.12 91 | 99.65 112 | 99.52 135 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS_111021_HR | | | 98.59 41 | 99.36 24 | 97.68 47 | 99.42 35 | 99.61 38 | 98.14 90 | 94.81 53 | 99.31 34 | 95.00 58 | 99.51 9 | 99.79 45 | 99.00 58 | 98.94 48 | 98.83 50 | 99.69 87 | 99.57 128 |
|
| OMC-MVS | | | 98.84 32 | 99.01 50 | 98.65 29 | 99.39 36 | 99.23 100 | 99.22 35 | 96.70 41 | 99.40 24 | 97.77 21 | 97.89 80 | 99.80 43 | 99.21 38 | 99.02 43 | 98.65 58 | 99.57 146 | 99.07 171 |
|
| TSAR-MVS + ACMM | | | 98.77 33 | 99.45 14 | 97.98 42 | 99.37 37 | 99.46 66 | 99.44 27 | 98.13 26 | 99.65 5 | 92.30 108 | 98.91 42 | 99.95 17 | 99.05 54 | 99.42 17 | 98.95 38 | 99.58 142 | 99.82 29 |
|
| MVS_111021_LR | | | 98.67 37 | 99.41 21 | 97.81 45 | 99.37 37 | 99.53 55 | 98.51 67 | 95.52 47 | 99.27 40 | 94.85 60 | 99.56 8 | 99.69 50 | 99.04 55 | 99.36 20 | 98.88 43 | 99.60 132 | 99.58 123 |
|
| train_agg | | | 98.73 35 | 99.11 39 | 98.28 35 | 99.36 39 | 99.35 85 | 99.48 23 | 97.96 33 | 98.83 101 | 93.86 82 | 98.70 54 | 99.86 38 | 99.44 23 | 99.08 39 | 98.38 73 | 99.61 124 | 99.58 123 |
|
| ACMMP |  | | 98.74 34 | 99.03 48 | 98.40 32 | 99.36 39 | 99.64 26 | 99.20 36 | 97.75 37 | 98.82 103 | 95.24 54 | 98.85 45 | 99.87 37 | 99.17 45 | 98.74 67 | 97.50 118 | 99.71 76 | 99.76 62 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MAR-MVS | | | 97.71 64 | 98.04 85 | 97.32 56 | 99.35 41 | 98.91 115 | 97.65 108 | 91.68 110 | 98.00 149 | 97.01 31 | 97.72 85 | 94.83 113 | 98.85 70 | 98.44 90 | 98.86 45 | 99.41 172 | 99.52 135 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CDPH-MVS | | | 98.41 45 | 99.10 40 | 97.61 50 | 99.32 42 | 99.36 82 | 99.49 21 | 96.15 44 | 98.82 103 | 91.82 112 | 98.41 64 | 99.66 51 | 99.10 51 | 98.93 49 | 98.97 36 | 99.75 45 | 99.58 123 |
|
| CNLPA | | | 99.03 27 | 99.05 44 | 99.01 19 | 99.27 43 | 99.22 101 | 99.03 48 | 97.98 32 | 99.34 32 | 99.00 4 | 98.25 70 | 99.71 49 | 99.31 33 | 98.80 60 | 98.82 52 | 99.48 161 | 99.17 164 |
|
| MSDG | | | 98.27 50 | 98.29 71 | 98.24 36 | 99.20 44 | 99.22 101 | 99.20 36 | 97.82 35 | 99.37 27 | 94.43 71 | 95.90 125 | 97.31 83 | 99.12 49 | 98.76 64 | 98.35 76 | 99.67 103 | 99.14 168 |
|
| PHI-MVS | | | 99.08 22 | 99.43 19 | 98.67 28 | 99.15 45 | 99.59 45 | 99.11 42 | 97.35 39 | 99.14 62 | 97.30 27 | 99.44 12 | 99.96 12 | 99.32 32 | 98.89 54 | 99.39 7 | 99.79 31 | 99.58 123 |
|
| PatchMatch-RL | | | 97.77 62 | 98.25 73 | 97.21 61 | 99.11 46 | 99.25 97 | 97.06 131 | 94.09 71 | 98.72 117 | 95.14 56 | 98.47 62 | 96.29 94 | 98.43 86 | 98.65 72 | 97.44 124 | 99.45 165 | 98.94 174 |
|
| TAPA-MVS | | 97.53 5 | 98.41 45 | 98.84 57 | 97.91 43 | 99.08 47 | 99.33 90 | 99.15 39 | 97.13 40 | 99.34 32 | 93.20 93 | 97.75 83 | 99.19 60 | 99.20 39 | 98.66 71 | 98.13 90 | 99.66 108 | 99.48 144 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| EPNet | | | 98.05 55 | 98.86 55 | 97.10 63 | 99.02 48 | 99.43 73 | 98.47 70 | 94.73 55 | 99.05 77 | 95.62 45 | 98.93 40 | 97.62 81 | 95.48 168 | 98.59 81 | 98.55 62 | 99.29 181 | 99.84 24 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EPNet_dtu | | | 96.30 112 | 98.53 64 | 93.70 134 | 98.97 49 | 98.24 160 | 97.36 114 | 94.23 70 | 98.85 96 | 79.18 186 | 99.19 21 | 98.47 70 | 94.09 190 | 97.89 122 | 98.21 86 | 98.39 196 | 98.85 180 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| COLMAP_ROB |  | 96.15 12 | 97.78 61 | 98.17 79 | 97.32 56 | 98.84 50 | 99.45 68 | 99.28 33 | 95.43 48 | 99.48 19 | 91.80 113 | 94.83 141 | 98.36 72 | 98.90 64 | 98.09 105 | 97.85 104 | 99.68 95 | 99.15 165 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepPCF-MVS | | 97.74 3 | 98.34 47 | 99.46 13 | 97.04 66 | 98.82 51 | 99.33 90 | 96.28 147 | 97.47 38 | 99.58 9 | 94.70 63 | 98.99 36 | 99.85 40 | 97.24 121 | 99.55 10 | 99.34 9 | 97.73 205 | 99.56 129 |
|
| SD-MVS | | | 99.25 12 | 99.50 12 | 98.96 20 | 98.79 52 | 99.55 53 | 99.33 32 | 98.29 12 | 99.75 1 | 97.96 18 | 99.15 24 | 99.95 17 | 99.61 6 | 99.17 32 | 99.06 28 | 99.81 22 | 99.84 24 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 99.27 10 | 99.57 5 | 98.92 22 | 98.78 53 | 99.53 55 | 99.72 2 | 98.11 28 | 99.73 2 | 97.43 25 | 99.15 24 | 99.96 12 | 99.59 9 | 99.73 1 | 99.07 26 | 99.88 4 | 99.82 29 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 98.31 49 | 98.53 64 | 98.05 39 | 98.76 54 | 98.77 123 | 99.13 40 | 98.07 29 | 99.10 68 | 94.27 76 | 96.70 106 | 99.84 41 | 98.70 73 | 97.90 121 | 98.11 92 | 99.40 174 | 99.28 156 |
|
| PCF-MVS | | 97.50 6 | 98.18 53 | 98.35 70 | 97.99 41 | 98.65 55 | 99.36 82 | 98.94 52 | 98.14 25 | 98.59 121 | 93.62 88 | 96.61 110 | 99.76 48 | 99.03 56 | 97.77 128 | 97.45 123 | 99.57 146 | 98.89 179 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| DeepC-MVS | | 97.63 4 | 98.33 48 | 98.57 62 | 98.04 40 | 98.62 56 | 99.65 22 | 99.45 25 | 98.15 23 | 99.51 17 | 92.80 100 | 95.74 129 | 96.44 92 | 99.46 21 | 99.37 19 | 99.50 2 | 99.78 34 | 99.81 34 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CS-MVS-test | | | 98.58 42 | 99.42 20 | 97.60 51 | 98.52 57 | 99.91 1 | 98.60 64 | 94.60 60 | 99.37 27 | 94.62 64 | 99.40 14 | 99.16 61 | 99.39 26 | 99.36 20 | 98.85 48 | 99.90 3 | 99.92 3 |
|
| CANet | | | 98.46 44 | 99.16 37 | 97.64 49 | 98.48 58 | 99.64 26 | 99.35 31 | 94.71 56 | 99.53 14 | 95.17 55 | 97.63 87 | 99.59 54 | 98.38 87 | 98.88 56 | 98.99 35 | 99.74 50 | 99.86 20 |
|
| LS3D | | | 97.79 60 | 98.25 73 | 97.26 60 | 98.40 59 | 99.63 29 | 99.53 18 | 98.63 1 | 99.25 44 | 88.13 130 | 96.93 101 | 94.14 123 | 99.19 40 | 99.14 35 | 99.23 18 | 99.69 87 | 99.42 148 |
|
| CHOSEN 280x420 | | | 97.99 57 | 99.24 34 | 96.53 84 | 98.34 60 | 99.61 38 | 98.36 79 | 89.80 145 | 99.27 40 | 95.08 57 | 99.81 1 | 98.58 68 | 98.64 77 | 99.02 43 | 98.92 40 | 98.93 190 | 99.48 144 |
|
| DELS-MVS | | | 98.19 52 | 98.77 59 | 97.52 52 | 98.29 61 | 99.71 15 | 99.12 41 | 94.58 62 | 98.80 106 | 95.38 52 | 96.24 119 | 98.24 74 | 97.92 102 | 99.06 40 | 99.52 1 | 99.82 16 | 99.79 44 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 98.56 43 | 99.32 28 | 97.68 47 | 98.28 62 | 99.89 2 | 98.71 61 | 94.53 63 | 99.41 23 | 95.43 49 | 99.05 35 | 98.66 66 | 99.19 40 | 99.21 29 | 99.07 26 | 99.93 1 | 99.94 1 |
|
| RPSCF | | | 97.61 67 | 98.16 80 | 96.96 74 | 98.10 63 | 99.00 108 | 98.84 56 | 93.76 79 | 99.45 20 | 94.78 62 | 99.39 15 | 99.31 58 | 98.53 84 | 96.61 165 | 95.43 174 | 97.74 203 | 97.93 197 |
|
| PVSNet_BlendedMVS | | | 97.51 71 | 97.71 97 | 97.28 58 | 98.06 64 | 99.61 38 | 97.31 116 | 95.02 51 | 99.08 71 | 95.51 47 | 98.05 74 | 90.11 145 | 98.07 97 | 98.91 52 | 98.40 71 | 99.72 66 | 99.78 50 |
|
| PVSNet_Blended | | | 97.51 71 | 97.71 97 | 97.28 58 | 98.06 64 | 99.61 38 | 97.31 116 | 95.02 51 | 99.08 71 | 95.51 47 | 98.05 74 | 90.11 145 | 98.07 97 | 98.91 52 | 98.40 71 | 99.72 66 | 99.78 50 |
|
| MVS_0304 | | | 98.14 54 | 99.03 48 | 97.10 63 | 98.05 66 | 99.63 29 | 99.27 34 | 94.33 68 | 99.63 7 | 93.06 96 | 97.32 91 | 99.05 64 | 98.09 96 | 98.82 59 | 98.87 44 | 99.81 22 | 99.89 11 |
|
| CHOSEN 1792x2688 | | | 96.41 109 | 96.99 125 | 95.74 103 | 98.01 67 | 99.72 12 | 97.70 106 | 90.78 130 | 99.13 66 | 90.03 123 | 87.35 199 | 95.36 106 | 98.33 88 | 98.59 81 | 98.91 42 | 99.59 138 | 99.87 17 |
|
| HyFIR lowres test | | | 95.99 120 | 96.56 135 | 95.32 109 | 97.99 68 | 99.65 22 | 96.54 140 | 88.86 154 | 98.44 130 | 89.77 126 | 84.14 209 | 97.05 87 | 99.03 56 | 98.55 83 | 98.19 88 | 99.73 58 | 99.86 20 |
|
| OPM-MVS | | | 96.22 114 | 95.85 156 | 96.65 80 | 97.75 69 | 98.54 142 | 99.00 51 | 95.53 46 | 96.88 183 | 89.88 124 | 95.95 124 | 86.46 169 | 98.07 97 | 97.65 137 | 96.63 141 | 99.67 103 | 98.83 181 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tmp_tt | | | | | 82.25 211 | 97.73 70 | 88.71 220 | 80.18 220 | 68.65 223 | 99.15 59 | 86.98 139 | 99.47 10 | 85.31 178 | 68.35 221 | 87.51 216 | 83.81 218 | 91.64 220 | |
|
| TSAR-MVS + COLMAP | | | 96.79 95 | 96.55 136 | 97.06 65 | 97.70 71 | 98.46 147 | 99.07 45 | 96.23 43 | 99.38 25 | 91.32 116 | 98.80 46 | 85.61 175 | 98.69 75 | 97.64 138 | 96.92 134 | 99.37 176 | 99.06 172 |
|
| PVSNet_Blended_VisFu | | | 97.41 74 | 98.49 66 | 96.15 93 | 97.49 72 | 99.76 6 | 96.02 151 | 93.75 81 | 99.26 42 | 93.38 92 | 93.73 150 | 99.35 57 | 96.47 143 | 98.96 46 | 98.46 66 | 99.77 39 | 99.90 6 |
|
| MS-PatchMatch | | | 95.99 120 | 97.26 117 | 94.51 118 | 97.46 73 | 98.76 126 | 97.27 118 | 86.97 174 | 99.09 69 | 89.83 125 | 93.51 154 | 97.78 78 | 96.18 149 | 97.53 142 | 95.71 171 | 99.35 177 | 98.41 187 |
|
| XVS | | | | | | 97.42 74 | 99.62 33 | 98.59 65 | | | 93.81 83 | | 99.95 17 | | | | 99.69 87 | |
|
| X-MVStestdata | | | | | | 97.42 74 | 99.62 33 | 98.59 65 | | | 93.81 83 | | 99.95 17 | | | | 99.69 87 | |
|
| LGP-MVS_train | | | 96.23 113 | 96.89 127 | 95.46 108 | 97.32 76 | 98.77 123 | 98.81 57 | 93.60 84 | 98.58 122 | 85.52 148 | 99.08 32 | 86.67 166 | 97.83 109 | 97.87 123 | 97.51 117 | 99.69 87 | 99.73 78 |
|
| CMPMVS |  | 70.31 18 | 90.74 199 | 91.06 207 | 90.36 190 | 97.32 76 | 97.43 196 | 92.97 195 | 87.82 170 | 93.50 214 | 75.34 202 | 83.27 211 | 84.90 181 | 92.19 205 | 92.64 209 | 91.21 213 | 96.50 216 | 94.46 214 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| HQP-MVS | | | 96.37 110 | 96.58 134 | 96.13 94 | 97.31 78 | 98.44 149 | 98.45 71 | 95.22 49 | 98.86 94 | 88.58 128 | 98.33 68 | 87.00 161 | 97.67 111 | 97.23 152 | 96.56 145 | 99.56 149 | 99.62 118 |
|
| ACMM | | 96.26 9 | 96.67 103 | 96.69 132 | 96.66 79 | 97.29 79 | 98.46 147 | 96.48 143 | 95.09 50 | 99.21 49 | 93.19 94 | 98.78 48 | 86.73 165 | 98.17 90 | 97.84 125 | 96.32 152 | 99.74 50 | 99.49 143 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 97.13 85 | 99.14 38 | 94.78 114 | 97.21 80 | 99.38 78 | 97.56 109 | 92.04 103 | 98.48 128 | 88.03 131 | 98.39 66 | 99.91 31 | 94.03 191 | 99.33 24 | 99.23 18 | 99.81 22 | 99.25 160 |
|
| UGNet | | | 97.66 66 | 99.07 43 | 96.01 98 | 97.19 81 | 99.65 22 | 97.09 129 | 93.39 87 | 99.35 31 | 94.40 73 | 98.79 47 | 99.59 54 | 94.24 188 | 98.04 113 | 98.29 83 | 99.73 58 | 99.80 36 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TSAR-MVS + GP. | | | 98.66 39 | 99.36 24 | 97.85 44 | 97.16 82 | 99.46 66 | 99.03 48 | 94.59 61 | 99.09 69 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 26 | 98.95 47 | 98.69 56 | 99.75 45 | 99.65 110 |
|
| CANet_DTU | | | 96.64 104 | 99.08 41 | 93.81 130 | 97.10 83 | 99.42 74 | 98.85 55 | 90.01 139 | 99.31 34 | 79.98 182 | 99.78 2 | 99.10 63 | 97.42 118 | 98.35 92 | 98.05 95 | 99.47 163 | 99.53 132 |
|
| IB-MVS | | 93.96 15 | 95.02 138 | 96.44 146 | 93.36 144 | 97.05 84 | 99.28 94 | 90.43 205 | 93.39 87 | 98.02 148 | 96.02 40 | 94.92 140 | 92.07 137 | 83.52 214 | 95.38 191 | 95.82 168 | 99.72 66 | 99.59 122 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ACMP | | 96.25 10 | 96.62 106 | 96.72 131 | 96.50 87 | 96.96 85 | 98.75 127 | 97.80 101 | 94.30 69 | 98.85 96 | 93.12 95 | 98.78 48 | 86.61 167 | 97.23 122 | 97.73 131 | 96.61 142 | 99.62 122 | 99.71 91 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test2506 | | | 97.16 83 | 96.68 133 | 97.73 46 | 96.95 86 | 99.79 4 | 98.48 68 | 94.42 65 | 99.17 54 | 97.74 22 | 99.15 24 | 80.93 203 | 98.89 67 | 99.03 41 | 99.09 24 | 99.88 4 | 99.62 118 |
|
| ECVR-MVS |  | | 97.27 79 | 97.09 120 | 97.48 53 | 96.95 86 | 99.79 4 | 98.48 68 | 94.42 65 | 99.17 54 | 96.28 38 | 93.54 152 | 89.39 151 | 98.89 67 | 99.03 41 | 99.09 24 | 99.88 4 | 99.61 121 |
|
| test1111 | | | 97.09 87 | 96.83 130 | 97.39 54 | 96.92 88 | 99.81 3 | 98.44 72 | 94.45 64 | 99.17 54 | 95.85 43 | 92.10 166 | 88.97 152 | 98.78 71 | 99.02 43 | 99.11 23 | 99.88 4 | 99.63 116 |
|
| ACMH | | 95.42 14 | 95.27 135 | 95.96 152 | 94.45 120 | 96.83 89 | 98.78 122 | 94.72 178 | 91.67 111 | 98.95 85 | 86.82 141 | 96.42 116 | 83.67 186 | 97.00 125 | 97.48 144 | 96.68 139 | 99.69 87 | 99.76 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CLD-MVS | | | 96.74 98 | 96.51 139 | 97.01 71 | 96.71 90 | 98.62 136 | 98.73 59 | 94.38 67 | 98.94 87 | 94.46 70 | 97.33 90 | 87.03 160 | 98.07 97 | 97.20 154 | 96.87 135 | 99.72 66 | 99.54 131 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TDRefinement | | | 93.04 174 | 93.57 191 | 92.41 153 | 96.58 91 | 98.77 123 | 97.78 103 | 91.96 106 | 98.12 145 | 80.84 175 | 89.13 186 | 79.87 211 | 87.78 210 | 96.44 170 | 94.50 196 | 99.54 155 | 98.15 192 |
|
| Anonymous202405211 | | | | 97.40 109 | | 96.45 92 | 99.54 54 | 98.08 95 | 93.79 78 | 98.24 141 | | 93.55 151 | 94.41 119 | 98.88 69 | 98.04 113 | 98.24 85 | 99.75 45 | 99.76 62 |
|
| DCV-MVSNet | | | 97.56 69 | 98.36 69 | 96.62 83 | 96.44 93 | 98.36 156 | 98.37 77 | 91.73 109 | 99.11 67 | 94.80 61 | 98.36 67 | 96.28 95 | 98.60 80 | 98.12 102 | 98.44 68 | 99.76 41 | 99.87 17 |
|
| ACMH+ | | 95.51 13 | 95.40 131 | 96.00 150 | 94.70 115 | 96.33 94 | 98.79 120 | 96.79 135 | 91.32 120 | 98.77 112 | 87.18 138 | 95.60 134 | 85.46 176 | 96.97 126 | 97.15 155 | 96.59 143 | 99.59 138 | 99.65 110 |
|
| Anonymous20231211 | | | 97.10 86 | 97.06 123 | 97.14 62 | 96.32 95 | 99.52 58 | 98.16 89 | 93.76 79 | 98.84 100 | 95.98 41 | 90.92 172 | 94.58 118 | 98.90 64 | 97.72 132 | 98.10 93 | 99.71 76 | 99.75 70 |
|
| thres100view900 | | | 96.72 99 | 96.47 143 | 97.00 72 | 96.31 96 | 99.52 58 | 98.28 83 | 94.01 72 | 97.35 170 | 94.52 66 | 95.90 125 | 86.93 162 | 99.09 53 | 98.07 108 | 97.87 103 | 99.81 22 | 99.63 116 |
|
| tfpn200view9 | | | 96.75 97 | 96.51 139 | 97.03 67 | 96.31 96 | 99.67 18 | 98.41 74 | 93.99 74 | 97.35 170 | 94.52 66 | 95.90 125 | 86.93 162 | 99.14 48 | 98.26 95 | 97.80 107 | 99.82 16 | 99.70 93 |
|
| thres200 | | | 96.76 96 | 96.53 137 | 97.03 67 | 96.31 96 | 99.67 18 | 98.37 77 | 93.99 74 | 97.68 165 | 94.49 69 | 95.83 128 | 86.77 164 | 99.18 43 | 98.26 95 | 97.82 106 | 99.82 16 | 99.66 107 |
|
| thres600view7 | | | 96.69 101 | 96.43 147 | 97.00 72 | 96.28 99 | 99.67 18 | 98.41 74 | 93.99 74 | 97.85 159 | 94.29 75 | 95.96 123 | 85.91 173 | 99.19 40 | 98.26 95 | 97.63 112 | 99.82 16 | 99.73 78 |
|
| thres400 | | | 96.71 100 | 96.45 145 | 97.02 69 | 96.28 99 | 99.63 29 | 98.41 74 | 94.00 73 | 97.82 160 | 94.42 72 | 95.74 129 | 86.26 170 | 99.18 43 | 98.20 99 | 97.79 108 | 99.81 22 | 99.70 93 |
|
| baseline1 | | | 97.58 68 | 98.05 84 | 97.02 69 | 96.21 101 | 99.45 68 | 97.71 105 | 93.71 83 | 98.47 129 | 95.75 44 | 98.78 48 | 93.20 133 | 98.91 62 | 98.52 85 | 98.44 68 | 99.81 22 | 99.53 132 |
|
| sasdasda | | | 97.31 76 | 97.81 95 | 96.72 76 | 96.20 102 | 99.45 68 | 98.21 86 | 91.60 112 | 99.22 46 | 95.39 50 | 98.48 60 | 90.95 141 | 99.16 46 | 97.66 134 | 99.05 29 | 99.76 41 | 99.90 6 |
|
| canonicalmvs | | | 97.31 76 | 97.81 95 | 96.72 76 | 96.20 102 | 99.45 68 | 98.21 86 | 91.60 112 | 99.22 46 | 95.39 50 | 98.48 60 | 90.95 141 | 99.16 46 | 97.66 134 | 99.05 29 | 99.76 41 | 99.90 6 |
|
| IS_MVSNet | | | 97.86 59 | 98.86 55 | 96.68 78 | 96.02 104 | 99.72 12 | 98.35 80 | 93.37 89 | 98.75 116 | 94.01 77 | 96.88 103 | 98.40 71 | 98.48 85 | 99.09 37 | 99.42 5 | 99.83 15 | 99.80 36 |
|
| USDC | | | 94.26 154 | 94.83 166 | 93.59 136 | 96.02 104 | 98.44 149 | 97.84 99 | 88.65 158 | 98.86 94 | 82.73 167 | 94.02 147 | 80.56 204 | 96.76 132 | 97.28 151 | 96.15 159 | 99.55 151 | 98.50 185 |
|
| FC-MVSNet-train | | | 97.04 88 | 97.91 92 | 96.03 97 | 96.00 106 | 98.41 152 | 96.53 142 | 93.42 86 | 99.04 79 | 93.02 97 | 98.03 76 | 94.32 121 | 97.47 117 | 97.93 119 | 97.77 109 | 99.75 45 | 99.88 15 |
|
| Vis-MVSNet (Re-imp) | | | 97.40 75 | 98.89 54 | 95.66 105 | 95.99 107 | 99.62 33 | 97.82 100 | 93.22 93 | 98.82 103 | 91.40 115 | 96.94 100 | 98.56 69 | 95.70 160 | 99.14 35 | 99.41 6 | 99.79 31 | 99.75 70 |
|
| MVSTER | | | 97.16 83 | 97.71 97 | 96.52 85 | 95.97 108 | 98.48 145 | 98.63 63 | 92.10 102 | 98.68 118 | 95.96 42 | 99.23 20 | 91.79 138 | 96.87 129 | 98.76 64 | 97.37 127 | 99.57 146 | 99.68 102 |
|
| baseline | | | 97.45 73 | 98.70 61 | 95.99 99 | 95.89 109 | 99.36 82 | 98.29 82 | 91.37 119 | 99.21 49 | 92.99 98 | 98.40 65 | 96.87 89 | 97.96 101 | 98.60 79 | 98.60 61 | 99.42 171 | 99.86 20 |
|
| TinyColmap | | | 94.00 158 | 94.35 175 | 93.60 135 | 95.89 109 | 98.26 158 | 97.49 111 | 88.82 155 | 98.56 124 | 83.21 161 | 91.28 171 | 80.48 206 | 96.68 135 | 97.34 148 | 96.26 155 | 99.53 157 | 98.24 191 |
|
| FA-MVS(training) | | | 96.52 108 | 98.29 71 | 94.45 120 | 95.88 111 | 99.52 58 | 97.66 107 | 81.47 197 | 98.94 87 | 93.79 86 | 95.54 136 | 99.11 62 | 98.29 89 | 98.89 54 | 96.49 147 | 99.63 121 | 99.52 135 |
|
| EPMVS | | | 95.05 137 | 96.86 129 | 92.94 150 | 95.84 112 | 98.96 113 | 96.68 136 | 79.87 203 | 99.05 77 | 90.15 121 | 97.12 97 | 95.99 101 | 97.49 116 | 95.17 195 | 94.75 193 | 97.59 207 | 96.96 207 |
|
| casdiffmvs_mvg |  | | 97.27 79 | 97.97 90 | 96.46 88 | 95.83 113 | 99.51 61 | 98.42 73 | 93.32 90 | 98.34 135 | 92.38 106 | 95.64 132 | 95.35 107 | 98.91 62 | 98.73 68 | 98.45 67 | 99.86 9 | 99.80 36 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PMMVS | | | 97.52 70 | 98.39 68 | 96.51 86 | 95.82 114 | 98.73 130 | 97.80 101 | 93.05 97 | 98.76 113 | 94.39 74 | 99.07 33 | 97.03 88 | 98.55 82 | 98.31 94 | 97.61 113 | 99.43 169 | 99.21 163 |
|
| diffmvs |  | | 96.83 94 | 97.33 112 | 96.25 91 | 95.76 115 | 99.34 87 | 98.06 96 | 93.22 93 | 99.43 22 | 92.30 108 | 96.90 102 | 89.83 150 | 98.55 82 | 98.00 116 | 98.14 89 | 99.64 116 | 99.70 93 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 97.30 78 | 98.54 63 | 95.87 100 | 95.74 116 | 99.28 94 | 98.19 88 | 91.40 118 | 99.18 53 | 91.59 114 | 98.17 72 | 96.18 97 | 98.63 78 | 98.61 76 | 98.55 62 | 99.66 108 | 99.78 50 |
|
| EIA-MVS | | | 97.70 65 | 98.78 58 | 96.44 89 | 95.72 117 | 99.65 22 | 98.14 90 | 93.72 82 | 98.30 137 | 92.31 107 | 98.63 55 | 97.90 76 | 98.97 59 | 98.92 51 | 98.30 82 | 99.78 34 | 99.80 36 |
|
| casdiffmvs |  | | 96.93 92 | 97.43 108 | 96.34 90 | 95.70 118 | 99.50 62 | 97.75 104 | 93.22 93 | 98.98 84 | 92.64 101 | 94.97 138 | 91.71 139 | 98.93 60 | 98.62 75 | 98.52 65 | 99.82 16 | 99.72 88 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpmrst | | | 93.86 163 | 95.88 154 | 91.50 172 | 95.69 119 | 98.62 136 | 95.64 157 | 79.41 206 | 98.80 106 | 83.76 157 | 95.63 133 | 96.13 98 | 97.25 120 | 92.92 207 | 92.31 206 | 97.27 210 | 96.74 208 |
|
| ADS-MVSNet | | | 94.65 146 | 97.04 124 | 91.88 168 | 95.68 120 | 98.99 110 | 95.89 152 | 79.03 210 | 99.15 59 | 85.81 146 | 96.96 99 | 98.21 75 | 97.10 123 | 94.48 203 | 94.24 197 | 97.74 203 | 97.21 203 |
|
| EPP-MVSNet | | | 97.75 63 | 98.71 60 | 96.63 82 | 95.68 120 | 99.56 51 | 97.51 110 | 93.10 96 | 99.22 46 | 94.99 59 | 97.18 96 | 97.30 84 | 98.65 76 | 98.83 58 | 98.93 39 | 99.84 12 | 99.92 3 |
|
| EC-MVSNet | | | 98.22 51 | 99.44 17 | 96.79 75 | 95.62 122 | 99.56 51 | 99.01 50 | 92.22 100 | 99.17 54 | 94.51 68 | 99.41 13 | 99.62 52 | 99.49 18 | 99.16 34 | 99.26 14 | 99.91 2 | 99.94 1 |
|
| ETV-MVS | | | 98.05 55 | 99.25 33 | 96.65 80 | 95.61 123 | 99.61 38 | 98.26 85 | 93.52 85 | 98.90 92 | 93.74 87 | 99.32 17 | 99.20 59 | 98.90 64 | 99.21 29 | 98.72 55 | 99.87 8 | 99.79 44 |
|
| DI_MVS_plusplus_trai | | | 96.90 93 | 97.49 103 | 96.21 92 | 95.61 123 | 99.40 77 | 98.72 60 | 92.11 101 | 99.14 62 | 92.98 99 | 93.08 162 | 95.14 109 | 98.13 94 | 98.05 112 | 97.91 101 | 99.74 50 | 99.73 78 |
|
| thisisatest0530 | | | 97.23 81 | 98.25 73 | 96.05 95 | 95.60 125 | 99.59 45 | 96.96 133 | 93.23 91 | 99.17 54 | 92.60 103 | 98.75 51 | 96.19 96 | 98.17 90 | 98.19 100 | 96.10 160 | 99.72 66 | 99.77 57 |
|
| tttt0517 | | | 97.23 81 | 98.24 76 | 96.04 96 | 95.60 125 | 99.60 43 | 96.94 134 | 93.23 91 | 99.15 59 | 92.56 104 | 98.74 52 | 96.12 99 | 98.17 90 | 98.21 98 | 96.10 160 | 99.73 58 | 99.78 50 |
|
| SCA | | | 94.95 139 | 97.44 107 | 92.04 160 | 95.55 127 | 99.16 103 | 96.26 148 | 79.30 207 | 99.02 80 | 85.73 147 | 98.18 71 | 97.13 86 | 97.69 110 | 96.03 184 | 94.91 188 | 97.69 206 | 97.65 199 |
|
| dps | | | 94.63 147 | 95.31 162 | 93.84 129 | 95.53 128 | 98.71 131 | 96.54 140 | 80.12 202 | 97.81 162 | 97.21 28 | 96.98 98 | 92.37 134 | 96.34 146 | 92.46 210 | 91.77 210 | 97.26 211 | 97.08 205 |
|
| PatchmatchNet |  | | 94.70 144 | 97.08 122 | 91.92 165 | 95.53 128 | 98.85 118 | 95.77 154 | 79.54 205 | 98.95 85 | 85.98 144 | 98.52 58 | 96.45 90 | 97.39 119 | 95.32 192 | 94.09 198 | 97.32 209 | 97.38 202 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test-LLR | | | 95.50 129 | 97.32 113 | 93.37 143 | 95.49 130 | 98.74 128 | 96.44 145 | 90.82 128 | 98.18 142 | 82.75 165 | 96.60 111 | 94.67 116 | 95.54 166 | 98.09 105 | 96.00 162 | 99.20 184 | 98.93 175 |
|
| test0.0.03 1 | | | 96.69 101 | 98.12 82 | 95.01 112 | 95.49 130 | 98.99 110 | 95.86 153 | 90.82 128 | 98.38 132 | 92.54 105 | 96.66 108 | 97.33 82 | 95.75 158 | 97.75 130 | 98.34 78 | 99.60 132 | 99.40 151 |
|
| CostFormer | | | 94.25 155 | 94.88 165 | 93.51 140 | 95.43 132 | 98.34 157 | 96.21 149 | 80.64 200 | 97.94 154 | 94.01 77 | 98.30 69 | 86.20 172 | 97.52 114 | 92.71 208 | 92.69 204 | 97.23 212 | 98.02 195 |
|
| MDTV_nov1_ep13 | | | 95.57 127 | 97.48 104 | 93.35 145 | 95.43 132 | 98.97 112 | 97.19 124 | 83.72 195 | 98.92 91 | 87.91 133 | 97.75 83 | 96.12 99 | 97.88 106 | 96.84 164 | 95.64 172 | 97.96 201 | 98.10 193 |
|
| tpm cat1 | | | 94.06 156 | 94.90 164 | 93.06 148 | 95.42 134 | 98.52 144 | 96.64 138 | 80.67 199 | 97.82 160 | 92.63 102 | 93.39 156 | 95.00 111 | 96.06 153 | 91.36 214 | 91.58 212 | 96.98 213 | 96.66 210 |
|
| Vis-MVSNet |  | | 96.16 116 | 98.22 77 | 93.75 131 | 95.33 135 | 99.70 17 | 97.27 118 | 90.85 127 | 98.30 137 | 85.51 149 | 95.72 131 | 96.45 90 | 93.69 197 | 98.70 70 | 99.00 34 | 99.84 12 | 99.69 97 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CVMVSNet | | | 95.33 134 | 97.09 120 | 93.27 146 | 95.23 136 | 98.39 154 | 95.49 160 | 92.58 99 | 97.71 164 | 83.00 164 | 94.44 145 | 93.28 131 | 93.92 194 | 97.79 126 | 98.54 64 | 99.41 172 | 99.45 146 |
|
| IterMVS-LS | | | 96.12 117 | 97.48 104 | 94.53 117 | 95.19 137 | 97.56 190 | 97.15 125 | 89.19 152 | 99.08 71 | 88.23 129 | 94.97 138 | 94.73 115 | 97.84 108 | 97.86 124 | 98.26 84 | 99.60 132 | 99.88 15 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+ | | | 95.81 123 | 97.31 116 | 94.06 126 | 95.09 138 | 99.35 85 | 97.24 121 | 88.22 163 | 98.54 125 | 85.38 150 | 98.52 58 | 88.68 153 | 98.70 73 | 98.32 93 | 97.93 98 | 99.74 50 | 99.84 24 |
|
| testgi | | | 95.67 126 | 97.48 104 | 93.56 137 | 95.07 139 | 99.00 108 | 95.33 164 | 88.47 160 | 98.80 106 | 86.90 140 | 97.30 92 | 92.33 135 | 95.97 155 | 97.66 134 | 97.91 101 | 99.60 132 | 99.38 152 |
|
| GeoE | | | 95.98 122 | 97.24 118 | 94.51 118 | 95.02 140 | 99.38 78 | 98.02 97 | 87.86 169 | 98.37 133 | 87.86 134 | 92.99 164 | 93.54 128 | 98.56 81 | 98.61 76 | 97.92 99 | 99.73 58 | 99.85 23 |
|
| RPMNet | | | 94.66 145 | 97.16 119 | 91.75 169 | 94.98 141 | 98.59 139 | 97.00 132 | 78.37 214 | 97.98 150 | 83.78 155 | 96.27 118 | 94.09 126 | 96.91 128 | 97.36 147 | 96.73 137 | 99.48 161 | 99.09 170 |
|
| CR-MVSNet | | | 94.57 151 | 97.34 111 | 91.33 176 | 94.90 142 | 98.59 139 | 97.15 125 | 79.14 208 | 97.98 150 | 80.42 178 | 96.59 113 | 93.50 130 | 96.85 130 | 98.10 103 | 97.49 119 | 99.50 160 | 99.15 165 |
|
| gg-mvs-nofinetune | | | 90.85 198 | 94.14 177 | 87.02 203 | 94.89 143 | 99.25 97 | 98.64 62 | 76.29 218 | 88.24 219 | 57.50 223 | 79.93 215 | 95.45 105 | 95.18 177 | 98.77 63 | 98.07 94 | 99.62 122 | 99.24 161 |
|
| IterMVS-SCA-FT | | | 94.89 141 | 97.87 93 | 91.42 173 | 94.86 144 | 97.70 176 | 97.24 121 | 84.88 189 | 98.93 89 | 75.74 198 | 94.26 146 | 98.25 73 | 96.69 134 | 98.52 85 | 97.68 111 | 99.10 188 | 99.73 78 |
|
| IterMVS | | | 94.81 143 | 97.71 97 | 91.42 173 | 94.83 145 | 97.63 183 | 97.38 113 | 85.08 186 | 98.93 89 | 75.67 199 | 94.02 147 | 97.64 79 | 96.66 137 | 98.45 88 | 97.60 114 | 98.90 191 | 99.72 88 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchT | | | 93.96 160 | 97.36 110 | 90.00 192 | 94.76 146 | 98.65 134 | 90.11 208 | 78.57 213 | 97.96 153 | 80.42 178 | 96.07 121 | 94.10 125 | 96.85 130 | 98.10 103 | 97.49 119 | 99.26 182 | 99.15 165 |
|
| baseline2 | | | 96.36 111 | 97.82 94 | 94.65 116 | 94.60 147 | 99.09 106 | 96.45 144 | 89.63 147 | 98.36 134 | 91.29 117 | 97.60 88 | 94.13 124 | 96.37 144 | 98.45 88 | 97.70 110 | 99.54 155 | 99.41 149 |
|
| CDS-MVSNet | | | 96.59 107 | 98.02 87 | 94.92 113 | 94.45 148 | 98.96 113 | 97.46 112 | 91.75 108 | 97.86 158 | 90.07 122 | 96.02 122 | 97.25 85 | 96.21 147 | 98.04 113 | 98.38 73 | 99.60 132 | 99.65 110 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm | | | 92.38 190 | 94.79 167 | 89.56 196 | 94.30 149 | 97.50 193 | 94.24 190 | 78.97 211 | 97.72 163 | 74.93 203 | 97.97 78 | 82.91 192 | 96.60 139 | 93.65 206 | 94.81 192 | 98.33 197 | 98.98 173 |
|
| Fast-Effi-MVS+ | | | 95.38 132 | 96.52 138 | 94.05 127 | 94.15 150 | 99.14 105 | 97.24 121 | 86.79 175 | 98.53 126 | 87.62 136 | 94.51 143 | 87.06 159 | 98.76 72 | 98.60 79 | 98.04 96 | 99.72 66 | 99.77 57 |
|
| Effi-MVS+-dtu | | | 95.74 125 | 98.04 85 | 93.06 148 | 93.92 151 | 99.16 103 | 97.90 98 | 88.16 165 | 99.07 76 | 82.02 170 | 98.02 77 | 94.32 121 | 96.74 133 | 98.53 84 | 97.56 115 | 99.61 124 | 99.62 118 |
|
| UniMVSNet_ETH3D | | | 93.15 171 | 92.33 204 | 94.11 125 | 93.91 152 | 98.61 138 | 94.81 175 | 90.98 125 | 97.06 179 | 87.51 137 | 82.27 213 | 76.33 219 | 97.87 107 | 94.79 201 | 97.47 122 | 99.56 149 | 99.81 34 |
|
| Fast-Effi-MVS+-dtu | | | 95.38 132 | 98.20 78 | 92.09 159 | 93.91 152 | 98.87 117 | 97.35 115 | 85.01 188 | 99.08 71 | 81.09 174 | 98.10 73 | 96.36 93 | 95.62 163 | 98.43 91 | 97.03 131 | 99.55 151 | 99.50 142 |
|
| TAMVS | | | 95.53 128 | 96.50 141 | 94.39 122 | 93.86 154 | 99.03 107 | 96.67 137 | 89.55 149 | 97.33 172 | 90.64 119 | 93.02 163 | 91.58 140 | 96.21 147 | 97.72 132 | 97.43 125 | 99.43 169 | 99.36 153 |
|
| GBi-Net | | | 96.98 90 | 98.00 88 | 95.78 101 | 93.81 155 | 97.98 165 | 98.09 92 | 91.32 120 | 98.80 106 | 93.92 79 | 97.21 93 | 95.94 102 | 97.89 103 | 98.07 108 | 98.34 78 | 99.68 95 | 99.67 103 |
|
| test1 | | | 96.98 90 | 98.00 88 | 95.78 101 | 93.81 155 | 97.98 165 | 98.09 92 | 91.32 120 | 98.80 106 | 93.92 79 | 97.21 93 | 95.94 102 | 97.89 103 | 98.07 108 | 98.34 78 | 99.68 95 | 99.67 103 |
|
| FMVSNet2 | | | 96.64 104 | 97.50 102 | 95.63 106 | 93.81 155 | 97.98 165 | 98.09 92 | 90.87 126 | 98.99 83 | 93.48 90 | 93.17 159 | 95.25 108 | 97.89 103 | 98.63 74 | 98.80 53 | 99.68 95 | 99.67 103 |
|
| MVS-HIRNet | | | 92.51 184 | 95.97 151 | 88.48 200 | 93.73 158 | 98.37 155 | 90.33 206 | 75.36 220 | 98.32 136 | 77.78 192 | 89.15 185 | 94.87 112 | 95.14 178 | 97.62 139 | 96.39 150 | 98.51 193 | 97.11 204 |
|
| GA-MVS | | | 93.93 161 | 96.31 149 | 91.16 180 | 93.61 159 | 98.79 120 | 95.39 163 | 90.69 133 | 98.25 140 | 73.28 207 | 96.15 120 | 88.42 154 | 94.39 186 | 97.76 129 | 95.35 176 | 99.58 142 | 99.45 146 |
|
| FC-MVSNet-test | | | 96.07 118 | 97.94 91 | 93.89 128 | 93.60 160 | 98.67 133 | 96.62 139 | 90.30 138 | 98.76 113 | 88.62 127 | 95.57 135 | 97.63 80 | 94.48 184 | 97.97 117 | 97.48 121 | 99.71 76 | 99.52 135 |
|
| FMVSNet3 | | | 97.02 89 | 98.12 82 | 95.73 104 | 93.59 161 | 97.98 165 | 98.34 81 | 91.32 120 | 98.80 106 | 93.92 79 | 97.21 93 | 95.94 102 | 97.63 112 | 98.61 76 | 98.62 59 | 99.61 124 | 99.65 110 |
|
| dmvs_re | | | 96.02 119 | 96.49 142 | 95.47 107 | 93.49 162 | 99.26 96 | 97.25 120 | 93.82 77 | 97.51 167 | 90.43 120 | 97.52 89 | 87.93 155 | 98.12 95 | 96.86 162 | 96.59 143 | 99.73 58 | 99.76 62 |
|
| FMVSNet1 | | | 95.77 124 | 96.41 148 | 95.03 111 | 93.42 163 | 97.86 172 | 97.11 128 | 89.89 142 | 98.53 126 | 92.00 111 | 89.17 184 | 93.23 132 | 98.15 93 | 98.07 108 | 98.34 78 | 99.61 124 | 99.69 97 |
|
| tfpnnormal | | | 93.85 164 | 94.12 179 | 93.54 139 | 93.22 164 | 98.24 160 | 95.45 161 | 91.96 106 | 94.61 210 | 83.91 153 | 90.74 174 | 81.75 200 | 97.04 124 | 97.49 143 | 96.16 158 | 99.68 95 | 99.84 24 |
|
| TransMVSNet (Re) | | | 93.45 167 | 94.08 180 | 92.72 152 | 92.83 165 | 97.62 186 | 94.94 169 | 91.54 116 | 95.65 207 | 83.06 163 | 88.93 187 | 83.53 187 | 94.25 187 | 97.41 145 | 97.03 131 | 99.67 103 | 98.40 190 |
|
| LTVRE_ROB | | 93.20 16 | 92.84 176 | 94.92 163 | 90.43 189 | 92.83 165 | 98.63 135 | 97.08 130 | 87.87 168 | 97.91 155 | 68.42 216 | 93.54 152 | 79.46 213 | 96.62 138 | 97.55 141 | 97.40 126 | 99.74 50 | 99.92 3 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TESTMET0.1,1 | | | 94.95 139 | 97.32 113 | 92.20 157 | 92.62 167 | 98.74 128 | 96.44 145 | 86.67 177 | 98.18 142 | 82.75 165 | 96.60 111 | 94.67 116 | 95.54 166 | 98.09 105 | 96.00 162 | 99.20 184 | 98.93 175 |
|
| pm-mvs1 | | | 94.27 153 | 95.57 158 | 92.75 151 | 92.58 168 | 98.13 163 | 94.87 173 | 90.71 132 | 96.70 189 | 83.78 155 | 89.94 180 | 89.85 149 | 94.96 181 | 97.58 140 | 97.07 130 | 99.61 124 | 99.72 88 |
|
| NR-MVSNet | | | 94.01 157 | 94.51 172 | 93.44 141 | 92.56 169 | 97.77 173 | 95.67 155 | 91.57 114 | 97.17 176 | 85.84 145 | 93.13 160 | 80.53 205 | 95.29 174 | 97.01 159 | 96.17 157 | 99.69 87 | 99.75 70 |
|
| EG-PatchMatch MVS | | | 92.45 185 | 93.92 186 | 90.72 186 | 92.56 169 | 98.43 151 | 94.88 172 | 84.54 191 | 97.18 175 | 79.55 184 | 86.12 206 | 83.23 190 | 93.15 201 | 97.22 153 | 96.00 162 | 99.67 103 | 99.27 159 |
|
| pmnet_mix02 | | | 92.44 186 | 94.68 169 | 89.83 195 | 92.46 171 | 97.65 182 | 89.92 210 | 90.49 135 | 98.76 113 | 73.05 209 | 91.78 167 | 90.08 147 | 94.86 182 | 94.53 202 | 91.94 209 | 98.21 199 | 98.01 196 |
|
| test-mter | | | 94.86 142 | 97.32 113 | 92.00 162 | 92.41 172 | 98.82 119 | 96.18 150 | 86.35 181 | 98.05 147 | 82.28 168 | 96.48 115 | 94.39 120 | 95.46 170 | 98.17 101 | 96.20 156 | 99.32 179 | 99.13 169 |
|
| our_test_3 | | | | | | 92.30 173 | 97.58 188 | 90.09 209 | | | | | | | | | | |
|
| pmmvs4 | | | 95.09 136 | 95.90 153 | 94.14 124 | 92.29 174 | 97.70 176 | 95.45 161 | 90.31 136 | 98.60 120 | 90.70 118 | 93.25 157 | 89.90 148 | 96.67 136 | 97.13 156 | 95.42 175 | 99.44 167 | 99.28 156 |
|
| FMVSNet5 | | | 95.42 130 | 96.47 143 | 94.20 123 | 92.26 175 | 95.99 211 | 95.66 156 | 87.15 173 | 97.87 157 | 93.46 91 | 96.68 107 | 93.79 127 | 97.52 114 | 97.10 158 | 97.21 129 | 99.11 187 | 96.62 211 |
|
| UniMVSNet (Re) | | | 94.58 150 | 95.34 160 | 93.71 133 | 92.25 176 | 98.08 164 | 94.97 168 | 91.29 124 | 97.03 181 | 87.94 132 | 93.97 149 | 86.25 171 | 96.07 152 | 96.27 178 | 95.97 165 | 99.72 66 | 99.79 44 |
|
| SixPastTwentyTwo | | | 93.44 168 | 95.32 161 | 91.24 178 | 92.11 177 | 98.40 153 | 92.77 196 | 88.64 159 | 98.09 146 | 77.83 191 | 93.51 154 | 85.74 174 | 96.52 142 | 96.91 161 | 94.89 191 | 99.59 138 | 99.73 78 |
|
| v8 | | | 92.87 175 | 93.87 188 | 91.72 171 | 92.05 178 | 97.50 193 | 94.79 176 | 88.20 164 | 96.85 185 | 80.11 181 | 90.01 179 | 82.86 194 | 95.48 168 | 95.15 196 | 94.90 189 | 99.66 108 | 99.80 36 |
|
| thisisatest0515 | | | 94.61 148 | 96.89 127 | 91.95 164 | 92.00 179 | 98.47 146 | 92.01 200 | 90.73 131 | 98.18 142 | 83.96 152 | 94.51 143 | 95.13 110 | 93.38 198 | 97.38 146 | 94.74 194 | 99.61 124 | 99.79 44 |
|
| WR-MVS_H | | | 93.54 166 | 94.67 170 | 92.22 155 | 91.95 180 | 97.91 170 | 94.58 184 | 88.75 156 | 96.64 190 | 83.88 154 | 90.66 176 | 85.13 179 | 94.40 185 | 96.54 169 | 95.91 167 | 99.73 58 | 99.89 11 |
|
| V42 | | | 93.05 173 | 93.90 187 | 92.04 160 | 91.91 181 | 97.66 180 | 94.91 170 | 89.91 141 | 96.85 185 | 80.58 177 | 89.66 181 | 83.43 189 | 95.37 172 | 95.03 199 | 94.90 189 | 99.59 138 | 99.78 50 |
|
| EU-MVSNet | | | 92.80 178 | 94.76 168 | 90.51 187 | 91.88 182 | 96.74 208 | 92.48 198 | 88.69 157 | 96.21 196 | 79.00 187 | 91.51 168 | 87.82 156 | 91.83 206 | 95.87 188 | 96.27 153 | 99.21 183 | 98.92 178 |
|
| N_pmnet | | | 92.21 194 | 94.60 171 | 89.42 197 | 91.88 182 | 97.38 199 | 89.15 212 | 89.74 146 | 97.89 156 | 73.75 205 | 87.94 196 | 92.23 136 | 93.85 195 | 96.10 182 | 93.20 203 | 98.15 200 | 97.43 201 |
|
| UniMVSNet_NR-MVSNet | | | 94.59 149 | 95.47 159 | 93.55 138 | 91.85 184 | 97.89 171 | 95.03 166 | 92.00 104 | 97.33 172 | 86.12 142 | 93.19 158 | 87.29 158 | 96.60 139 | 96.12 181 | 96.70 138 | 99.72 66 | 99.80 36 |
|
| pmmvs6 | | | 91.90 196 | 92.53 203 | 91.17 179 | 91.81 185 | 97.63 183 | 93.23 193 | 88.37 162 | 93.43 215 | 80.61 176 | 77.32 217 | 87.47 157 | 94.12 189 | 96.58 167 | 95.72 170 | 98.88 192 | 99.53 132 |
|
| v10 | | | 92.79 179 | 94.06 181 | 91.31 177 | 91.78 186 | 97.29 202 | 94.87 173 | 86.10 182 | 96.97 182 | 79.82 183 | 88.16 193 | 84.56 183 | 95.63 162 | 96.33 176 | 95.31 177 | 99.65 112 | 99.80 36 |
|
| MIMVSNet | | | 94.49 152 | 97.59 101 | 90.87 185 | 91.74 187 | 98.70 132 | 94.68 180 | 78.73 212 | 97.98 150 | 83.71 158 | 97.71 86 | 94.81 114 | 96.96 127 | 97.97 117 | 97.92 99 | 99.40 174 | 98.04 194 |
|
| v1144 | | | 92.81 177 | 94.03 182 | 91.40 175 | 91.68 188 | 97.60 187 | 94.73 177 | 88.40 161 | 96.71 188 | 78.48 189 | 88.14 194 | 84.46 184 | 95.45 171 | 96.31 177 | 95.22 180 | 99.65 112 | 99.76 62 |
|
| DU-MVS | | | 93.98 159 | 94.44 174 | 93.44 141 | 91.66 189 | 97.77 173 | 95.03 166 | 91.57 114 | 97.17 176 | 86.12 142 | 93.13 160 | 81.13 202 | 96.60 139 | 95.10 197 | 97.01 133 | 99.67 103 | 99.80 36 |
|
| Baseline_NR-MVSNet | | | 93.87 162 | 93.98 184 | 93.75 131 | 91.66 189 | 97.02 203 | 95.53 159 | 91.52 117 | 97.16 178 | 87.77 135 | 87.93 197 | 83.69 185 | 96.35 145 | 95.10 197 | 97.23 128 | 99.68 95 | 99.73 78 |
|
| CP-MVSNet | | | 93.25 170 | 94.00 183 | 92.38 154 | 91.65 191 | 97.56 190 | 94.38 187 | 89.20 151 | 96.05 201 | 83.16 162 | 89.51 182 | 81.97 198 | 96.16 151 | 96.43 171 | 96.56 145 | 99.71 76 | 99.89 11 |
|
| v148 | | | 92.36 192 | 92.88 199 | 91.75 169 | 91.63 192 | 97.66 180 | 92.64 197 | 90.55 134 | 96.09 199 | 83.34 160 | 88.19 192 | 80.00 208 | 92.74 202 | 93.98 205 | 94.58 195 | 99.58 142 | 99.69 97 |
|
| PS-CasMVS | | | 92.72 181 | 93.36 195 | 91.98 163 | 91.62 193 | 97.52 192 | 94.13 191 | 88.98 153 | 95.94 204 | 81.51 173 | 87.35 199 | 79.95 210 | 95.91 156 | 96.37 173 | 96.49 147 | 99.70 84 | 99.89 11 |
|
| v2v482 | | | 92.77 180 | 93.52 194 | 91.90 167 | 91.59 194 | 97.63 183 | 94.57 185 | 90.31 136 | 96.80 187 | 79.22 185 | 88.74 189 | 81.55 201 | 96.04 154 | 95.26 193 | 94.97 187 | 99.66 108 | 99.69 97 |
|
| v1192 | | | 92.43 188 | 93.61 190 | 91.05 181 | 91.53 195 | 97.43 196 | 94.61 183 | 87.99 167 | 96.60 191 | 76.72 194 | 87.11 201 | 82.74 195 | 95.85 157 | 96.35 175 | 95.30 178 | 99.60 132 | 99.74 74 |
|
| WR-MVS | | | 93.43 169 | 94.48 173 | 92.21 156 | 91.52 196 | 97.69 178 | 94.66 182 | 89.98 140 | 96.86 184 | 83.43 159 | 90.12 178 | 85.03 180 | 93.94 193 | 96.02 185 | 95.82 168 | 99.71 76 | 99.82 29 |
|
| v144192 | | | 92.38 190 | 93.55 193 | 91.00 182 | 91.44 197 | 97.47 195 | 94.27 188 | 87.41 172 | 96.52 193 | 78.03 190 | 87.50 198 | 82.65 196 | 95.32 173 | 95.82 189 | 95.15 182 | 99.55 151 | 99.78 50 |
|
| pmmvs5 | | | 92.71 183 | 94.27 176 | 90.90 184 | 91.42 198 | 97.74 175 | 93.23 193 | 86.66 178 | 95.99 203 | 78.96 188 | 91.45 169 | 83.44 188 | 95.55 165 | 97.30 150 | 95.05 185 | 99.58 142 | 98.93 175 |
|
| v1921920 | | | 92.36 192 | 93.57 191 | 90.94 183 | 91.39 199 | 97.39 198 | 94.70 179 | 87.63 171 | 96.60 191 | 76.63 195 | 86.98 202 | 82.89 193 | 95.75 158 | 96.26 179 | 95.14 183 | 99.55 151 | 99.73 78 |
|
| gm-plane-assit | | | 89.44 205 | 92.82 202 | 85.49 207 | 91.37 200 | 95.34 214 | 79.55 222 | 82.12 196 | 91.68 218 | 64.79 220 | 87.98 195 | 80.26 207 | 95.66 161 | 98.51 87 | 97.56 115 | 99.45 165 | 98.41 187 |
|
| v1240 | | | 91.99 195 | 93.33 196 | 90.44 188 | 91.29 201 | 97.30 201 | 94.25 189 | 86.79 175 | 96.43 194 | 75.49 201 | 86.34 205 | 81.85 199 | 95.29 174 | 96.42 172 | 95.22 180 | 99.52 158 | 99.73 78 |
|
| PEN-MVS | | | 92.72 181 | 93.20 197 | 92.15 158 | 91.29 201 | 97.31 200 | 94.67 181 | 89.81 143 | 96.19 197 | 81.83 171 | 88.58 190 | 79.06 214 | 95.61 164 | 95.21 194 | 96.27 153 | 99.72 66 | 99.82 29 |
|
| TranMVSNet+NR-MVSNet | | | 93.67 165 | 94.14 177 | 93.13 147 | 91.28 203 | 97.58 188 | 95.60 158 | 91.97 105 | 97.06 179 | 84.05 151 | 90.64 177 | 82.22 197 | 96.17 150 | 94.94 200 | 96.78 136 | 99.69 87 | 99.78 50 |
|
| anonymousdsp | | | 93.12 172 | 95.86 155 | 89.93 194 | 91.09 204 | 98.25 159 | 95.12 165 | 85.08 186 | 97.44 169 | 73.30 206 | 90.89 173 | 90.78 143 | 95.25 176 | 97.91 120 | 95.96 166 | 99.71 76 | 99.82 29 |
|
| MDTV_nov1_ep13_2view | | | 92.44 186 | 95.66 157 | 88.68 198 | 91.05 205 | 97.92 169 | 92.17 199 | 79.64 204 | 98.83 101 | 76.20 196 | 91.45 169 | 93.51 129 | 95.04 179 | 95.68 190 | 93.70 201 | 97.96 201 | 98.53 184 |
|
| DTE-MVSNet | | | 92.42 189 | 92.85 200 | 91.91 166 | 90.87 206 | 96.97 204 | 94.53 186 | 89.81 143 | 95.86 206 | 81.59 172 | 88.83 188 | 77.88 217 | 95.01 180 | 94.34 204 | 96.35 151 | 99.64 116 | 99.73 78 |
|
| v7n | | | 91.61 197 | 92.95 198 | 90.04 191 | 90.56 207 | 97.69 178 | 93.74 192 | 85.59 184 | 95.89 205 | 76.95 193 | 86.60 204 | 78.60 216 | 93.76 196 | 97.01 159 | 94.99 186 | 99.65 112 | 99.87 17 |
|
| test20.03 | | | 90.65 201 | 93.71 189 | 87.09 202 | 90.44 208 | 96.24 209 | 89.74 211 | 85.46 185 | 95.59 208 | 72.99 210 | 90.68 175 | 85.33 177 | 84.41 213 | 95.94 187 | 95.10 184 | 99.52 158 | 97.06 206 |
|
| FPMVS | | | 83.82 211 | 84.61 214 | 82.90 210 | 90.39 209 | 90.71 219 | 90.85 204 | 84.10 194 | 95.47 209 | 65.15 218 | 83.44 210 | 74.46 220 | 75.48 216 | 81.63 218 | 79.42 220 | 91.42 221 | 87.14 220 |
|
| Anonymous20231206 | | | 90.70 200 | 93.93 185 | 86.92 204 | 90.21 210 | 96.79 206 | 90.30 207 | 86.61 179 | 96.05 201 | 69.25 214 | 88.46 191 | 84.86 182 | 85.86 212 | 97.11 157 | 96.47 149 | 99.30 180 | 97.80 198 |
|
| new_pmnet | | | 90.45 202 | 92.84 201 | 87.66 201 | 88.96 211 | 96.16 210 | 88.71 213 | 84.66 190 | 97.56 166 | 71.91 213 | 85.60 207 | 86.58 168 | 93.28 199 | 96.07 183 | 93.54 202 | 98.46 194 | 94.39 215 |
|
| WB-MVS | | | 81.36 213 | 89.93 210 | 71.35 216 | 88.65 212 | 87.85 222 | 71.46 224 | 88.12 166 | 96.23 195 | 32.21 228 | 92.61 165 | 83.00 191 | 56.27 223 | 91.92 213 | 89.43 214 | 91.39 222 | 88.49 219 |
|
| ET-MVSNet_ETH3D | | | 96.17 115 | 96.99 125 | 95.21 110 | 88.53 213 | 98.54 142 | 98.28 83 | 92.61 98 | 98.85 96 | 93.60 89 | 99.06 34 | 90.39 144 | 98.63 78 | 95.98 186 | 96.68 139 | 99.61 124 | 99.41 149 |
|
| PM-MVS | | | 89.55 204 | 90.30 209 | 88.67 199 | 87.06 214 | 95.60 212 | 90.88 203 | 84.51 192 | 96.14 198 | 75.75 197 | 86.89 203 | 63.47 225 | 94.64 183 | 96.85 163 | 93.89 199 | 99.17 186 | 99.29 155 |
|
| pmmvs-eth3d | | | 89.81 203 | 89.65 211 | 90.00 192 | 86.94 215 | 95.38 213 | 91.08 201 | 86.39 180 | 94.57 211 | 82.27 169 | 83.03 212 | 64.94 222 | 93.96 192 | 96.57 168 | 93.82 200 | 99.35 177 | 99.24 161 |
|
| new-patchmatchnet | | | 86.12 210 | 87.30 213 | 84.74 208 | 86.92 216 | 95.19 216 | 83.57 219 | 84.42 193 | 92.67 216 | 65.66 217 | 80.32 214 | 64.72 223 | 89.41 208 | 92.33 212 | 89.21 215 | 98.43 195 | 96.69 209 |
|
| pmmvs3 | | | 88.19 207 | 91.27 206 | 84.60 209 | 85.60 217 | 93.66 217 | 85.68 217 | 81.13 198 | 92.36 217 | 63.66 222 | 89.51 182 | 77.10 218 | 93.22 200 | 96.37 173 | 92.40 205 | 98.30 198 | 97.46 200 |
|
| Gipuma |  | | 81.40 212 | 81.78 215 | 80.96 213 | 83.21 218 | 85.61 224 | 79.73 221 | 76.25 219 | 97.33 172 | 64.21 221 | 55.32 221 | 55.55 226 | 86.04 211 | 92.43 211 | 92.20 208 | 96.32 217 | 93.99 216 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MDA-MVSNet-bldmvs | | | 87.84 208 | 89.22 212 | 86.23 205 | 81.74 219 | 96.77 207 | 83.74 218 | 89.57 148 | 94.50 212 | 72.83 211 | 96.64 109 | 64.47 224 | 92.71 203 | 81.43 219 | 92.28 207 | 96.81 214 | 98.47 186 |
|
| MIMVSNet1 | | | 88.61 206 | 90.68 208 | 86.19 206 | 81.56 220 | 95.30 215 | 87.78 214 | 85.98 183 | 94.19 213 | 72.30 212 | 78.84 216 | 78.90 215 | 90.06 207 | 96.59 166 | 95.47 173 | 99.46 164 | 95.49 213 |
|
| PMVS |  | 72.60 17 | 76.39 215 | 77.66 218 | 74.92 214 | 81.04 221 | 69.37 228 | 68.47 225 | 80.54 201 | 85.39 220 | 65.07 219 | 73.52 218 | 72.91 221 | 65.67 222 | 80.35 220 | 76.81 221 | 88.71 223 | 85.25 223 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ambc | | | | 80.99 216 | | 80.04 222 | 90.84 218 | 90.91 202 | | 96.09 199 | 74.18 204 | 62.81 220 | 30.59 231 | 82.44 215 | 96.25 180 | 91.77 210 | 95.91 218 | 98.56 183 |
|
| PMMVS2 | | | 77.26 214 | 79.47 217 | 74.70 215 | 76.00 223 | 88.37 221 | 74.22 223 | 76.34 217 | 78.31 221 | 54.13 224 | 69.96 219 | 52.50 227 | 70.14 220 | 84.83 217 | 88.71 216 | 97.35 208 | 93.58 217 |
|
| test_method | | | 87.27 209 | 91.58 205 | 82.25 211 | 75.65 224 | 87.52 223 | 86.81 216 | 72.60 221 | 97.51 167 | 73.20 208 | 85.07 208 | 79.97 209 | 88.69 209 | 97.31 149 | 95.24 179 | 96.53 215 | 98.41 187 |
|
| EMVS | | | 68.12 218 | 68.11 220 | 68.14 218 | 75.51 225 | 71.76 226 | 55.38 228 | 77.20 216 | 77.78 222 | 37.79 227 | 53.59 222 | 43.61 228 | 74.72 217 | 67.05 223 | 76.70 222 | 88.27 225 | 86.24 221 |
|
| E-PMN | | | 68.30 217 | 68.43 219 | 68.15 217 | 74.70 226 | 71.56 227 | 55.64 227 | 77.24 215 | 77.48 223 | 39.46 226 | 51.95 224 | 41.68 229 | 73.28 218 | 70.65 222 | 79.51 219 | 88.61 224 | 86.20 222 |
|
| MVE |  | 67.97 19 | 65.53 219 | 67.43 221 | 63.31 219 | 59.33 227 | 74.20 225 | 53.09 229 | 70.43 222 | 66.27 224 | 43.13 225 | 45.98 225 | 30.62 230 | 70.65 219 | 79.34 221 | 86.30 217 | 83.25 226 | 89.33 218 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 31.24 220 | 40.15 222 | 20.86 221 | 12.61 228 | 17.99 229 | 25.16 230 | 13.30 224 | 48.42 225 | 24.82 229 | 53.07 223 | 30.13 232 | 28.47 224 | 42.73 224 | 37.65 223 | 20.79 227 | 51.04 224 |
|
| test123 | | | 26.75 221 | 34.25 223 | 18.01 222 | 7.93 229 | 17.18 230 | 24.85 231 | 12.36 225 | 44.83 226 | 16.52 230 | 41.80 226 | 18.10 233 | 28.29 225 | 33.08 225 | 34.79 224 | 18.10 228 | 49.95 225 |
|
| GG-mvs-BLEND | | | 69.11 216 | 98.13 81 | 35.26 220 | 3.49 230 | 98.20 162 | 94.89 171 | 2.38 226 | 98.42 131 | 5.82 231 | 96.37 117 | 98.60 67 | 5.97 226 | 98.75 66 | 97.98 97 | 99.01 189 | 98.61 182 |
|
| uanet_test | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet-low-res | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| RE-MVS-def | | | | | | | | | | | 69.05 215 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.79 45 | | | | | |
|
| MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 8 | | | | | |
|
| MTMP | | | | | | | | | | | 98.46 10 | | 99.96 12 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 66.86 226 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 98.57 123 | | | | | | | | |
|
| Patchmtry | | | | | | | 98.59 139 | 97.15 125 | 79.14 208 | | 80.42 178 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 96.85 205 | 87.43 215 | 89.27 150 | 98.30 137 | 75.55 200 | 95.05 137 | 79.47 212 | 92.62 204 | 89.48 215 | | 95.18 219 | 95.96 212 |
|