This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39873.86 5286.31 1978.84 1994.03 5384.64 104
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
新几何169.99 18988.37 3471.34 5162.08 30443.85 29374.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 334
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3769.15 7367.85 23559.59 31441.06 31573.05 21685.72 17248.03 26580.65 26466.92 339
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 4001.13 40291.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14580.38 12945.49 28281.31 10175.64 4194.39 4184.65 103
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
test_part285.90 5766.44 9184.61 62
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 290
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25962.31 32454.46 21481.26 25866.74 343
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior785.18 6666.21 94
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31369.91 27270.73 7391.60 8984.56 111
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 305
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 323
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 81
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
plane_prior684.18 8565.31 10360.83 170
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29672.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25680.98 12763.62 13590.77 11678.58 239
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
NP-MVS83.34 9563.07 12285.97 167
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25679.23 15563.62 13589.13 15180.92 200
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 36169.00 26775.63 29638.69 31676.93 19736.60 34275.45 30880.81 205
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32479.21 15661.81 14689.15 14980.82 203
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 295
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28669.79 25979.37 26047.42 26872.17 25034.48 35585.15 21077.99 250
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 287
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 28072.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33941.77 30889.58 14079.95 220
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29167.30 29175.54 29743.27 28671.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 35065.59 27928.56 37761.53 32674.33 30941.09 30066.52 30733.91 35867.69 36272.92 291
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26778.74 16564.39 12586.49 19482.69 168
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 289
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32966.98 27034.74 35459.62 34277.56 28442.92 28963.65 31938.66 32670.73 34475.35 273
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29956.42 35678.37 27439.57 31176.46 20434.86 35460.16 37968.86 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32674.29 22846.83 27889.94 13184.58 110
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
test250661.23 26960.85 27062.38 27678.80 15827.88 38367.33 24537.42 39554.23 19167.55 28888.68 10717.87 39974.39 22646.33 28189.41 14384.86 97
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32574.81 22145.28 29189.41 14384.86 97
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28479.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28375.22 21446.35 28089.63 13780.21 218
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 316
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33859.93 33967.46 36045.11 27665.07 31240.89 31471.81 33775.41 271
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28861.60 32568.04 35862.39 14973.95 23249.07 25473.87 32472.34 298
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28961.70 32469.66 34562.56 14573.93 23349.06 25573.91 32372.31 299
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35657.40 15569.40 26380.00 25039.14 31461.92 32637.47 33766.36 36439.09 394
testing358.28 29158.38 28958.00 30977.45 17726.12 38860.78 30943.00 38156.02 16770.18 25375.76 29413.27 40667.24 29748.02 26780.89 26080.65 210
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
SSC-MVS61.79 26566.08 21948.89 35076.91 18410.00 40453.56 35247.37 37068.20 5876.56 16389.21 9054.13 22657.59 34054.75 20974.07 32279.08 234
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 35165.16 30276.74 29044.67 27870.68 26554.74 21079.28 27978.14 246
jason: jason.
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38251.17 23377.85 13980.51 23945.76 27066.31 30852.83 22976.35 30059.96 371
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36447.30 26961.08 32968.97 35050.16 24859.01 33336.06 34968.84 35552.10 381
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
WB-MVS60.04 27964.19 24147.59 35276.09 19610.22 40352.44 35746.74 37165.17 8474.07 20287.48 12553.48 22955.28 34349.36 25272.84 32977.28 255
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32353.80 36879.62 25644.38 28082.92 9429.64 37473.11 32873.36 288
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30265.36 349
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33474.13 20082.23 21943.76 28468.65 28242.53 30280.63 26674.63 277
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30473.89 284
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37781.15 12063.95 13087.93 16889.51 25
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30663.68 31668.89 35349.33 25480.35 13847.82 27084.05 22779.78 223
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 310
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30180.75 206
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28780.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35663.53 31974.25 31143.19 28770.62 26653.88 22278.67 28577.10 259
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35757.01 21277.79 18846.68 27981.92 24674.42 280
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 35081.49 11548.43 26281.85 24881.04 195
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38360.34 33570.44 33636.24 33067.65 29053.57 22468.66 35669.12 329
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38683.73 7865.40 11886.33 19585.22 87
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27478.84 16261.20 15377.89 29480.44 215
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 33067.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26274.60 22347.98 26886.11 19882.35 175
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37680.25 14159.43 17486.50 19387.37 54
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34565.96 29677.27 28639.66 31068.54 28338.87 32474.89 31271.80 304
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32554.41 21584.67 21677.28 255
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33165.44 28151.42 22768.93 27182.72 21363.76 13858.11 33841.05 31284.67 21677.28 255
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 30956.12 30549.20 34672.57 25030.91 37259.98 31448.43 36641.66 30955.94 35883.86 19341.19 29950.42 35126.05 38475.38 30966.27 344
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36941.05 31674.58 19374.30 31031.06 35965.31 31051.61 23379.85 27267.39 336
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33564.84 28651.21 23267.46 28981.01 23350.75 24463.51 32038.47 32988.12 16382.75 166
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30470.98 26441.40 31086.78 18981.48 190
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34872.09 25135.61 35081.73 25177.08 260
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34872.42 24838.61 32783.46 23582.02 181
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30675.11 275
WB-MVSnew53.94 31554.76 31351.49 33571.53 25828.05 38158.22 32650.36 35937.94 33959.16 34370.17 34149.21 25551.94 34824.49 39171.80 33874.47 279
baseline73.10 12273.96 11270.51 17771.46 25946.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 26046.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26164.06 11472.79 16281.82 9640.23 32581.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
Anonymous2023120654.13 31055.82 30749.04 34970.89 26235.96 34451.73 35850.87 35734.86 35262.49 32279.22 26242.52 29344.29 37727.95 38181.88 24766.88 340
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26361.17 13974.00 15557.18 32540.77 32068.83 27680.88 23463.11 14167.61 29266.94 10774.72 31382.33 178
tfpn200view960.35 27759.97 27661.51 28370.78 26435.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26435.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35081.73 25182.02 181
MSDG67.47 20567.48 20467.46 22870.70 26654.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29874.49 278
test_yl65.11 22765.09 23565.18 24870.59 26740.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26740.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26965.86 9870.26 20278.35 16737.69 34074.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26953.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
DELS-MVS68.83 18268.31 18970.38 17870.55 27148.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testing22253.37 31652.50 32555.98 31770.51 27229.68 37656.20 33851.85 35446.19 27556.76 35468.94 35119.18 39665.39 30925.87 38776.98 29772.87 292
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27334.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
patch_mono-262.73 25864.08 24258.68 30470.36 27455.87 18260.84 30864.11 29441.23 31364.04 31078.22 27660.00 17648.80 35654.17 21983.71 23271.37 307
SCA58.57 29058.04 29160.17 29570.17 27541.07 30565.19 27353.38 34843.34 30361.00 33273.48 31745.20 27469.38 27640.34 31770.31 34770.05 319
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27655.66 18465.02 27564.32 29143.28 30468.99 26872.05 32825.46 38378.19 18254.16 22082.80 23979.74 224
APD_test175.04 9775.38 9874.02 11769.89 27770.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
iter_conf0567.34 20865.62 22472.50 15469.82 27847.06 25872.19 16776.86 18745.32 28572.86 21782.85 21020.53 39383.73 7861.13 15589.02 15486.70 65
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27949.36 23065.60 26978.96 15345.50 28059.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27949.36 23061.23 30578.96 15342.04 30759.98 33668.86 35451.82 23778.20 18044.30 29277.77 29572.52 296
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27945.34 27268.52 22867.14 26843.74 29770.61 24879.22 26247.90 26672.66 24248.75 25773.84 32571.21 311
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28266.25 9375.90 13079.90 13846.03 27776.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28361.16 14073.34 15856.83 32840.96 31768.36 27980.08 24962.84 14267.57 29366.90 10974.50 31781.78 186
FMVSNet365.00 23065.16 23164.52 25369.47 28437.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32274.44 22547.12 27385.37 20381.57 189
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28549.05 23361.00 30762.93 30035.98 34858.36 34668.93 35236.71 32866.59 30637.62 33663.30 37157.39 377
baseline157.82 29458.36 29056.19 31569.17 28630.76 37362.94 29755.21 33646.04 27663.83 31478.47 27241.20 29863.68 31839.44 31968.99 35474.13 281
v14869.38 17769.39 17369.36 19769.14 28744.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28866.18 9574.65 14879.34 14845.58 27975.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28959.15 16272.12 16856.74 33040.72 32268.25 28280.14 24861.18 16666.92 29967.34 10474.40 31883.23 152
Syy-MVS54.13 31055.45 31050.18 34068.77 29023.59 39255.02 34544.55 37643.80 29458.05 34864.07 36946.22 26958.83 33446.16 28272.36 33268.12 332
myMVS_eth3d50.36 33550.52 34049.88 34168.77 29022.69 39455.02 34544.55 37643.80 29458.05 34864.07 36914.16 40558.83 33433.90 35972.36 33268.12 332
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29266.12 9674.21 15378.80 15845.64 27874.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CANet_DTU64.04 24463.83 24464.66 25168.39 29342.97 29273.45 15774.50 20952.05 21854.78 36375.44 30043.99 28270.42 27053.49 22578.41 28880.59 212
EU-MVSNet60.82 27260.80 27160.86 29168.37 29441.16 30372.27 16468.27 26526.96 38169.08 26675.71 29532.09 34767.44 29455.59 20378.90 28273.97 282
PVSNet43.83 2151.56 32951.17 33252.73 32968.34 29538.27 32748.22 36653.56 34636.41 34654.29 36664.94 36834.60 33454.20 34730.34 36969.87 35065.71 347
EPNet69.10 18067.32 20574.46 10768.33 29661.27 13877.56 10363.57 29760.95 12256.62 35582.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29759.14 16471.66 18056.48 33140.92 31867.78 28479.46 25761.23 16366.90 30067.39 10074.32 32182.66 169
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29850.30 21861.42 30365.18 28347.57 26755.83 35967.15 36423.77 38979.60 15143.56 29879.97 27173.79 285
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 27559.97 27662.58 27468.13 29947.28 25568.59 22673.96 21132.19 36559.94 33868.86 35450.48 24677.64 19141.85 30775.74 30362.83 360
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 30046.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
TinyColmap67.98 19669.28 17464.08 25667.98 30146.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 293
EPNet_dtu58.93 28758.52 28660.16 29667.91 30247.70 25069.97 20558.02 31749.73 24847.28 38473.02 32238.14 31862.34 32336.57 34385.99 19970.43 317
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 29557.02 29759.17 30067.89 30334.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34471.39 26131.31 36679.57 27771.19 312
our_test_356.46 29856.51 30156.30 31467.70 30439.66 31655.36 34452.34 35340.57 32463.85 31369.91 34440.04 30758.22 33743.49 29975.29 31171.03 314
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30444.33 27958.18 32760.96 30940.75 32165.80 29872.57 32441.23 29763.92 31746.87 27782.42 24278.33 241
MVS_Test69.84 16870.71 16567.24 23067.49 30643.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30762.04 12770.69 19769.85 25439.46 32869.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
thisisatest051560.48 27657.86 29268.34 21867.25 30846.42 26360.58 31162.14 30240.82 31963.58 31869.12 34826.28 37978.34 17648.83 25682.13 24480.26 217
V4271.06 15370.83 16471.72 16467.25 30847.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31061.38 13570.03 20469.15 25938.59 33568.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
GA-MVS62.91 25461.66 26066.66 23967.09 31044.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32774.94 21850.60 24274.72 31380.57 213
testf175.66 8776.57 8172.95 13967.07 31267.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31267.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31436.17 34265.13 27465.39 28239.24 33154.69 36578.14 27844.28 28167.18 29833.75 36070.79 34373.95 283
CR-MVSNet58.96 28658.49 28760.36 29466.37 31548.24 23970.93 19356.40 33332.87 36461.35 32786.66 14333.19 33963.22 32148.50 26170.17 34869.62 324
RPMNet65.77 22365.08 23767.84 22566.37 31548.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33885.67 4755.93 19870.17 34869.62 324
IterMVS63.12 25262.48 25865.02 25066.34 31752.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27966.82 30451.38 23675.47 30775.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 16969.89 17069.61 19466.24 31843.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
tpm256.12 29954.64 31460.55 29366.24 31836.01 34368.14 23256.77 32933.60 36258.25 34775.52 29930.25 36574.33 22733.27 36169.76 35271.32 308
Anonymous2024052163.55 24666.07 22055.99 31666.18 32044.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30850.22 35253.40 22892.23 8173.71 286
Patchmtry60.91 27163.01 25454.62 32266.10 32126.27 38767.47 24056.40 33354.05 19772.04 23086.66 14333.19 33960.17 33043.69 29687.45 17477.42 253
FMVSNet555.08 30655.54 30953.71 32465.80 32233.50 36156.22 33752.50 35243.72 29861.06 33083.38 19925.46 38354.87 34430.11 37181.64 25672.75 294
131459.83 28158.86 28462.74 27365.71 32344.78 27668.59 22672.63 22333.54 36361.05 33167.29 36343.62 28571.26 26249.49 25167.84 36172.19 301
MDTV_nov1_ep1354.05 31765.54 32429.30 37859.00 31955.22 33535.96 34952.44 37075.98 29330.77 36259.62 33138.21 33073.33 327
baseline255.57 30452.74 32264.05 25765.26 32544.11 28062.38 29854.43 34039.03 33251.21 37467.35 36233.66 33772.45 24737.14 33964.22 36975.60 268
USDC62.80 25663.10 25361.89 27965.19 32643.30 28967.42 24174.20 21035.80 35072.25 22784.48 18445.67 27171.95 25537.95 33384.97 21170.42 318
tpm50.60 33352.42 32645.14 36365.18 32726.29 38660.30 31243.50 37837.41 34257.01 35179.09 26630.20 36742.32 38232.77 36366.36 36466.81 342
PatchmatchNetpermissive54.60 30854.27 31555.59 31865.17 32839.08 31866.92 25151.80 35539.89 32658.39 34573.12 32131.69 35358.33 33643.01 30158.38 38569.38 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32943.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
cl____68.26 19568.26 19168.29 21964.98 33043.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 26075.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 33043.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 26075.38 21160.94 15789.81 13385.81 76
tpm cat154.02 31352.63 32358.19 30764.85 33239.86 31566.26 25957.28 32232.16 36656.90 35270.39 33832.75 34365.30 31134.29 35658.79 38269.41 326
XXY-MVS55.19 30557.40 29648.56 35164.45 33334.84 35451.54 35953.59 34438.99 33363.79 31579.43 25856.59 21445.57 36736.92 34171.29 34065.25 350
PatchT53.35 31756.47 30243.99 36864.19 33417.46 39959.15 31743.10 38052.11 21754.74 36486.95 13229.97 36849.98 35343.62 29774.40 31864.53 357
D2MVS62.58 25961.05 26867.20 23163.85 33547.92 24556.29 33669.58 25639.32 32970.07 25578.19 27734.93 33372.68 24153.44 22683.74 23081.00 198
mvs_anonymous65.08 22965.49 22663.83 25963.79 33637.60 33566.52 25769.82 25543.44 30073.46 21086.08 16558.79 19071.75 25851.90 23275.63 30582.15 180
CostFormer57.35 29656.14 30460.97 28963.76 33738.43 32567.50 23960.22 31137.14 34459.12 34476.34 29232.78 34271.99 25439.12 32369.27 35372.47 297
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33853.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32259.75 17291.55 9162.67 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 20966.51 21569.03 20563.20 33943.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27377.40 19360.64 16084.59 22086.24 69
gg-mvs-nofinetune55.75 30156.75 30052.72 33062.87 34028.04 38268.92 21841.36 39071.09 4150.80 37692.63 1220.74 39266.86 30229.97 37272.41 33163.25 359
gm-plane-assit62.51 34133.91 35937.25 34362.71 37472.74 24038.70 325
MVS-HIRNet45.53 34847.29 34840.24 37462.29 34226.82 38556.02 34037.41 39629.74 37643.69 39481.27 22833.96 33555.48 34224.46 39256.79 38638.43 395
diffmvspermissive67.42 20667.50 20367.20 23162.26 34345.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 35939.89 36446.80 35661.81 34451.59 20733.56 39235.74 39727.48 38037.64 39853.53 38823.24 39042.09 38327.39 38258.64 38346.72 387
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34534.39 35658.11 32875.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34649.90 22448.11 36757.24 32453.31 20780.95 10679.39 25949.00 25861.55 32745.92 28480.05 27081.03 196
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34742.62 29564.74 27777.97 17542.52 30573.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
WTY-MVS49.39 33950.31 34246.62 35761.22 34832.00 36746.61 37249.77 36133.87 35954.12 36769.55 34741.96 29445.40 36931.28 36764.42 36862.47 364
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34951.55 20868.07 23468.00 26633.88 35865.87 29781.25 22937.91 32167.71 28949.32 25382.60 24171.31 309
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 33450.69 33949.64 34460.76 35041.87 29953.18 35345.48 37443.41 30149.41 38160.47 38229.22 37144.73 37442.09 30572.14 33562.33 366
test-mter48.56 34148.20 34649.64 34460.76 35041.87 29953.18 35345.48 37431.91 37049.41 38160.47 38218.34 39744.73 37442.09 30572.14 33562.33 366
GG-mvs-BLEND52.24 33160.64 35229.21 37969.73 20942.41 38345.47 38752.33 39120.43 39468.16 28625.52 38965.42 36659.36 373
tpmvs55.84 30055.45 31057.01 31260.33 35333.20 36265.89 26259.29 31547.52 26856.04 35773.60 31631.05 36068.06 28840.64 31564.64 36769.77 322
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35445.74 27047.53 36970.95 24644.04 29273.06 21578.84 27039.72 30960.33 32955.82 20084.64 21982.88 161
dmvs_re49.91 33850.77 33847.34 35359.98 35538.86 32253.18 35353.58 34539.75 32755.06 36261.58 37836.42 32944.40 37629.15 37968.23 35758.75 374
PVSNet_036.71 2241.12 36040.78 36342.14 37059.97 35640.13 31340.97 38142.24 38730.81 37444.86 39049.41 39440.70 30345.12 37123.15 39334.96 39741.16 393
dmvs_testset45.26 34947.51 34738.49 37759.96 35714.71 40158.50 32443.39 37941.30 31251.79 37356.48 38639.44 31249.91 35521.42 39555.35 39150.85 382
new-patchmatchnet52.89 31955.76 30844.26 36759.94 3586.31 40537.36 38950.76 35841.10 31464.28 30879.82 25244.77 27748.43 36036.24 34687.61 16978.03 248
test20.0355.74 30257.51 29550.42 33959.89 35932.09 36650.63 36149.01 36350.11 24465.07 30383.23 20745.61 27248.11 36130.22 37083.82 22971.07 313
MVSTER63.29 25061.60 26368.36 21759.77 36046.21 26660.62 31071.32 23841.83 30875.40 18179.12 26530.25 36575.85 20556.30 19579.81 27383.03 158
N_pmnet52.06 32551.11 33354.92 31959.64 36171.03 5337.42 38861.62 30833.68 36057.12 35072.10 32537.94 32031.03 39529.13 38071.35 33962.70 361
test_vis1_n_192052.96 31853.50 31851.32 33659.15 36244.90 27556.13 33964.29 29230.56 37559.87 34060.68 38040.16 30647.47 36248.25 26562.46 37361.58 368
JIA-IIPM54.03 31251.62 32861.25 28759.14 36355.21 18759.10 31847.72 36750.85 23550.31 38085.81 17120.10 39563.97 31636.16 34755.41 39064.55 356
LF4IMVS67.50 20267.31 20668.08 22258.86 36461.93 12871.43 18375.90 19744.67 29072.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 303
UnsupCasMVSNet_bld50.01 33751.03 33546.95 35458.61 36532.64 36348.31 36553.27 34934.27 35760.47 33471.53 33141.40 29647.07 36430.68 36860.78 37861.13 369
dp44.09 35544.88 35741.72 37358.53 36623.18 39354.70 34842.38 38534.80 35344.25 39265.61 36624.48 38844.80 37329.77 37349.42 39357.18 378
testgi54.00 31456.86 29945.45 36158.20 36725.81 38949.05 36349.50 36245.43 28367.84 28381.17 23051.81 23943.20 38129.30 37579.41 27867.34 338
wuyk23d61.97 26266.25 21749.12 34858.19 36860.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39320.63 39791.63 8750.62 383
ANet_high67.08 21069.94 16958.51 30657.55 36927.09 38458.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31350.10 24688.86 15683.46 143
Patchmatch-test47.93 34249.96 34341.84 37157.42 37024.26 39148.75 36441.49 38939.30 33056.79 35373.48 31730.48 36433.87 39429.29 37672.61 33067.39 336
test_vis1_n51.27 33150.41 34153.83 32356.99 37150.01 22256.75 33360.53 31025.68 38559.74 34157.86 38529.40 37047.41 36343.10 30063.66 37064.08 358
new_pmnet37.55 36339.80 36530.79 37956.83 37216.46 40039.35 38530.65 39925.59 38645.26 38861.60 37724.54 38728.02 39821.60 39452.80 39247.90 386
pmmvs346.71 34545.09 35551.55 33456.76 37348.25 23855.78 34239.53 39424.13 39050.35 37963.40 37115.90 40251.08 35029.29 37670.69 34555.33 380
sss47.59 34448.32 34445.40 36256.73 37433.96 35845.17 37548.51 36532.11 36952.37 37165.79 36540.39 30541.91 38531.85 36461.97 37560.35 370
tpmrst50.15 33651.38 33146.45 35856.05 37524.77 39064.40 28349.98 36036.14 34753.32 36969.59 34635.16 33248.69 35739.24 32158.51 38465.89 345
TESTMET0.1,145.17 35044.93 35645.89 36056.02 37638.31 32653.18 35341.94 38827.85 37844.86 39056.47 38717.93 39841.50 38638.08 33268.06 35857.85 375
ADS-MVSNet248.76 34047.25 34953.29 32855.90 37740.54 31147.34 37054.99 33831.41 37250.48 37772.06 32631.23 35654.26 34625.93 38555.93 38765.07 351
ADS-MVSNet44.62 35345.58 35241.73 37255.90 37720.83 39747.34 37039.94 39331.41 37250.48 37772.06 32631.23 35639.31 38925.93 38555.93 38765.07 351
test0.0.03 147.72 34348.31 34545.93 35955.53 37929.39 37746.40 37341.21 39143.41 30155.81 36067.65 35929.22 37143.77 38025.73 38869.87 35064.62 355
UnsupCasMVSNet_eth52.26 32453.29 32149.16 34755.08 38033.67 36050.03 36258.79 31637.67 34163.43 32174.75 30441.82 29545.83 36638.59 32859.42 38167.98 335
pmmvs552.49 32352.58 32452.21 33254.99 38132.38 36455.45 34353.84 34332.15 36755.49 36174.81 30238.08 31957.37 34134.02 35774.40 31866.88 340
DSMNet-mixed43.18 35844.66 35838.75 37654.75 38228.88 38057.06 33227.42 40113.47 39747.27 38577.67 28338.83 31539.29 39025.32 39060.12 38048.08 385
MDA-MVSNet_test_wron52.57 32253.49 32049.81 34354.24 38336.47 34040.48 38346.58 37238.13 33675.47 18073.32 31941.05 30243.85 37940.98 31371.20 34169.10 330
YYNet152.58 32153.50 31849.85 34254.15 38436.45 34140.53 38246.55 37338.09 33775.52 17973.31 32041.08 30143.88 37841.10 31171.14 34269.21 328
EPMVS45.74 34746.53 35043.39 36954.14 38522.33 39655.02 34535.00 39834.69 35551.09 37570.20 34025.92 38142.04 38437.19 33855.50 38965.78 346
test_cas_vis1_n_192050.90 33250.92 33650.83 33854.12 38647.80 24751.44 36054.61 33926.95 38263.95 31260.85 37937.86 32344.97 37245.53 28762.97 37259.72 372
test_fmvs356.78 29755.99 30659.12 30153.96 38748.09 24258.76 32266.22 27327.54 37976.66 16068.69 35625.32 38551.31 34953.42 22773.38 32677.97 251
test_fmvs1_n52.70 32052.01 32754.76 32053.83 38850.36 21655.80 34165.90 27524.96 38765.39 30060.64 38127.69 37448.46 35845.88 28567.99 35965.46 348
KD-MVS_2432*160052.05 32651.58 32953.44 32652.11 38931.20 36944.88 37664.83 28741.53 31064.37 30670.03 34215.61 40364.20 31436.25 34474.61 31564.93 353
miper_refine_blended52.05 32651.58 32953.44 32652.11 38931.20 36944.88 37664.83 28741.53 31064.37 30670.03 34215.61 40364.20 31436.25 34474.61 31564.93 353
test_fmvs254.80 30754.11 31656.88 31351.76 39149.95 22356.70 33465.80 27626.22 38469.42 26265.25 36731.82 35149.98 35349.63 25070.36 34670.71 315
E-PMN45.17 35045.36 35344.60 36550.07 39242.75 29338.66 38642.29 38646.39 27439.55 39551.15 39226.00 38045.37 37037.68 33476.41 29945.69 389
PMMVS44.69 35243.95 36046.92 35550.05 39353.47 19948.08 36842.40 38422.36 39344.01 39353.05 39042.60 29245.49 36831.69 36561.36 37741.79 392
test_fmvs151.51 33050.86 33753.48 32549.72 39449.35 23254.11 34964.96 28524.64 38963.66 31759.61 38428.33 37348.45 35945.38 29067.30 36362.66 363
EMVS44.61 35444.45 35945.10 36448.91 39543.00 29137.92 38741.10 39246.75 27238.00 39748.43 39526.42 37846.27 36537.11 34075.38 30946.03 388
mvsany_test343.76 35741.01 36152.01 33348.09 39657.74 17342.47 38023.85 40423.30 39264.80 30462.17 37627.12 37540.59 38729.17 37848.11 39457.69 376
mvsany_test137.88 36135.74 36644.28 36647.28 39749.90 22436.54 39024.37 40319.56 39645.76 38653.46 38932.99 34137.97 39226.17 38335.52 39644.99 391
test_vis3_rt51.94 32851.04 33454.65 32146.32 39850.13 22044.34 37878.17 17123.62 39168.95 27062.81 37321.41 39138.52 39141.49 30972.22 33475.30 274
test_vis1_rt46.70 34645.24 35451.06 33744.58 39951.04 21139.91 38467.56 26721.84 39551.94 37250.79 39333.83 33639.77 38835.25 35361.50 37662.38 365
MVEpermissive27.91 2336.69 36435.64 36739.84 37543.37 40035.85 34619.49 39424.61 40224.68 38839.05 39662.63 37538.67 31727.10 39921.04 39647.25 39556.56 379
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 36240.87 36228.36 38042.41 4015.35 40624.61 39327.75 40032.15 36747.85 38370.27 33935.85 33129.51 39719.08 39867.85 36050.22 384
test_f43.79 35645.63 35138.24 37842.29 40238.58 32434.76 39147.68 36822.22 39467.34 29063.15 37231.82 35130.60 39639.19 32262.28 37445.53 390
DeepMVS_CXcopyleft11.83 38215.51 40313.86 40211.25 4075.76 39820.85 40026.46 39717.06 4019.22 4019.69 40113.82 40012.42 397
test_method19.26 36519.12 36919.71 3819.09 4041.91 4087.79 39653.44 3471.42 39910.27 40135.80 39617.42 40025.11 40012.44 39924.38 39932.10 396
tmp_tt11.98 36714.73 3703.72 3832.28 4054.62 40719.44 39514.50 4060.47 40121.55 3999.58 39925.78 3824.57 40211.61 40027.37 3981.96 398
test1234.43 3705.78 3730.39 3850.97 4060.28 40946.33 3740.45 4080.31 4020.62 4031.50 4020.61 4080.11 4040.56 4020.63 4010.77 400
testmvs4.06 3715.28 3740.41 3840.64 4070.16 41042.54 3790.31 4090.26 4030.50 4041.40 4030.77 4070.17 4030.56 4020.55 4020.90 399
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
eth-test20.00 408
eth-test0.00 408
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k17.71 36623.62 3680.00 3860.00 4080.00 4110.00 39770.17 2530.00 4040.00 40574.25 31168.16 950.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas5.20 3696.93 3720.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40462.39 1490.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re5.62 3687.50 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40567.46 3600.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 39436.10 348
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
GSMVS70.05 319
sam_mvs131.41 35470.05 319
sam_mvs31.21 358
MTGPAbinary80.63 123
test_post166.63 2552.08 40030.66 36359.33 33240.34 317
test_post1.99 40130.91 36154.76 345
patchmatchnet-post68.99 34931.32 35569.38 276
MTMP84.83 3119.26 405
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
旧先验271.17 19045.11 28778.54 13161.28 32859.19 176
新几何271.33 186
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 302
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23157.24 156
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 410
nn0.00 410
door-mid55.02 337
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
MDTV_nov1_ep13_2view18.41 39853.74 35131.57 37144.89 38929.90 36932.93 36271.48 306
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145