| MG-MVS | | | 78.42 23 | 76.99 38 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 43 | 64.83 82 | 73.52 57 | 88.09 128 | 48.07 67 | 92.19 48 | 62.24 150 | 84.53 50 | 91.53 55 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 7 | 75.95 3 | 77.10 36 | 93.09 27 | 54.15 29 | 95.57 12 | 85.80 10 | 85.87 36 | 93.31 11 |
|
| OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| DVP-MVS++ | | | 82.44 2 | 82.38 4 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 130 | 88.88 27 | 58.00 208 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 30 | 91.98 4 | 93.98 5 |
|
| MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 7 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 7 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| MAR-MVS | | | 76.76 47 | 75.60 53 | 80.21 26 | 90.87 7 | 54.68 79 | 89.14 41 | 89.11 21 | 62.95 115 | 70.54 95 | 92.33 39 | 41.05 158 | 94.95 17 | 57.90 194 | 86.55 31 | 91.00 70 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS Recon | | | 71.99 117 | 70.31 127 | 77.01 97 | 90.65 8 | 53.44 106 | 89.37 37 | 82.97 161 | 56.33 244 | 63.56 164 | 89.47 100 | 34.02 246 | 92.15 51 | 54.05 223 | 72.41 152 | 85.43 195 |
|
| patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 58 | 90.34 9 | 53.77 96 | 88.08 52 | 88.36 45 | 76.17 2 | 79.40 27 | 91.09 62 | 55.43 19 | 90.09 104 | 85.01 12 | 80.40 80 | 91.99 43 |
|
| CNVR-MVS | | | 81.76 7 | 81.90 7 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 10 | 88.87 29 | 70.31 20 | 77.64 35 | 93.87 7 | 52.58 36 | 93.91 26 | 84.17 14 | 87.92 15 | 92.39 30 |
|
| API-MVS | | | 74.17 81 | 72.07 101 | 80.49 22 | 90.02 11 | 58.55 8 | 87.30 70 | 84.27 131 | 57.51 221 | 65.77 130 | 87.77 134 | 41.61 154 | 95.97 11 | 51.71 240 | 82.63 59 | 86.94 160 |
|
| dcpmvs_2 | | | 79.33 19 | 78.94 19 | 80.49 22 | 89.75 12 | 56.54 31 | 84.83 137 | 83.68 144 | 67.85 39 | 69.36 98 | 90.24 82 | 60.20 7 | 92.10 52 | 84.14 15 | 80.40 80 | 92.82 21 |
|
| LFMVS | | | 78.52 21 | 77.14 36 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 18 | 88.05 49 | 63.22 111 | 74.63 46 | 90.83 71 | 41.38 157 | 94.40 20 | 75.42 70 | 79.90 89 | 94.72 2 |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 103 | | 84.38 128 | 57.02 230 | 73.97 53 | 91.03 63 | 44.57 115 | 91.17 71 | 75.41 71 | 81.78 69 | |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 27 | | | | | 96.39 4 | 81.68 28 | 87.13 20 | 92.47 28 |
|
| NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 15 | 56.99 23 | 91.38 15 | 88.17 47 | 67.71 42 | 73.81 54 | 92.75 32 | 46.88 80 | 93.28 29 | 78.79 46 | 84.07 53 | 91.50 57 |
|
| SED-MVS | | | 81.92 6 | 81.75 8 | 82.44 7 | 89.48 17 | 56.89 25 | 92.48 3 | 88.94 25 | 57.50 222 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 25 | 87.60 17 | 94.06 3 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 6 | 66.22 61 | 88.26 1 | | | | 82.83 21 | 87.60 17 | 92.44 29 |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 25 | | 88.94 25 | 57.53 220 | 84.61 4 | 93.29 22 | 58.81 11 | 96.45 1 | | | |
|
| DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 14 | 57.71 216 | 81.91 13 | 93.64 11 | 55.17 21 | 96.44 2 | 81.68 28 | 87.13 20 | 92.72 24 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 38 | 57.71 216 | 83.14 9 | 93.96 6 | 55.17 21 | | | | |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 48 | 57.21 228 | 82.06 12 | 93.39 18 | 54.94 25 | | | | |
|
| test_part2 | | | | | | 89.33 23 | 55.48 50 | | | | 82.27 11 | | | | | | |
|
| DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 25 | 89.27 24 | 55.08 66 | 88.70 46 | 87.92 51 | 55.55 252 | 81.21 18 | 93.69 10 | 56.51 16 | 94.27 22 | 78.36 50 | 85.70 38 | 91.51 56 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CSCG | | | 80.41 14 | 79.72 14 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 40 | 91.54 4 | 59.19 184 | 71.82 79 | 90.05 90 | 59.72 9 | 96.04 10 | 78.37 49 | 88.40 13 | 93.75 7 |
|
| APDe-MVS |  | | 78.44 22 | 78.20 23 | 79.19 40 | 88.56 26 | 54.55 83 | 89.76 33 | 87.77 55 | 55.91 247 | 78.56 30 | 92.49 37 | 48.20 66 | 92.65 40 | 79.49 38 | 83.04 57 | 90.39 81 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS |  | | 76.15 54 | 75.68 51 | 77.54 82 | 88.52 27 | 53.44 106 | 87.26 73 | 85.03 112 | 53.79 269 | 74.91 44 | 91.68 54 | 43.80 121 | 90.31 97 | 74.36 77 | 81.82 67 | 88.87 122 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 44 | 88.52 27 | 55.12 63 | 89.95 28 | 85.98 84 | 68.31 31 | 71.33 86 | 92.75 32 | 45.52 98 | 90.37 94 | 71.15 94 | 85.14 44 | 91.91 44 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 114514_t | | | 69.87 156 | 67.88 163 | 75.85 126 | 88.38 29 | 52.35 135 | 86.94 80 | 83.68 144 | 53.70 270 | 55.68 266 | 85.60 162 | 30.07 281 | 91.20 70 | 55.84 213 | 71.02 165 | 83.99 216 |
|
| WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 88 | 88.33 30 | 46.25 272 | 88.46 49 | 90.32 12 | 71.40 14 | 72.32 75 | 91.72 52 | 53.44 31 | 92.37 45 | 66.28 121 | 75.42 127 | 93.28 13 |
|
| PAPR | | | 75.20 70 | 74.13 71 | 78.41 65 | 88.31 31 | 55.10 65 | 84.31 152 | 85.66 89 | 63.76 98 | 67.55 109 | 90.73 72 | 43.48 130 | 89.40 120 | 66.36 120 | 77.03 109 | 90.73 75 |
|
| DP-MVS | | | 59.24 278 | 56.12 290 | 68.63 277 | 88.24 32 | 50.35 177 | 82.51 205 | 64.43 351 | 41.10 345 | 46.70 328 | 78.77 250 | 24.75 317 | 88.57 151 | 22.26 371 | 56.29 293 | 66.96 364 |
|
| AdaColmap |  | | 67.86 191 | 65.48 214 | 75.00 153 | 88.15 33 | 54.99 68 | 86.10 95 | 76.63 278 | 49.30 301 | 57.80 237 | 86.65 152 | 29.39 285 | 88.94 138 | 45.10 282 | 70.21 174 | 81.06 270 |
|
| test_yl | | | 75.85 60 | 74.83 66 | 78.91 47 | 88.08 34 | 51.94 141 | 91.30 16 | 89.28 18 | 57.91 210 | 71.19 88 | 89.20 106 | 42.03 148 | 92.77 36 | 69.41 101 | 75.07 133 | 92.01 41 |
|
| DCV-MVSNet | | | 75.85 60 | 74.83 66 | 78.91 47 | 88.08 34 | 51.94 141 | 91.30 16 | 89.28 18 | 57.91 210 | 71.19 88 | 89.20 106 | 42.03 148 | 92.77 36 | 69.41 101 | 75.07 133 | 92.01 41 |
|
| iter_conf05 | | | 73.51 94 | 72.24 96 | 77.33 86 | 87.93 36 | 55.97 43 | 87.90 57 | 70.81 327 | 68.72 29 | 64.04 154 | 84.36 175 | 47.54 73 | 90.87 81 | 71.11 95 | 67.75 192 | 85.13 198 |
|
| CANet | | | 80.90 10 | 81.17 11 | 80.09 32 | 87.62 37 | 54.21 89 | 91.60 13 | 86.47 75 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 59 | 92.98 32 | 84.09 16 | 84.75 48 | 93.08 17 |
|
| VNet | | | 77.99 30 | 77.92 27 | 78.19 70 | 87.43 38 | 50.12 182 | 90.93 22 | 91.41 5 | 67.48 45 | 75.12 42 | 90.15 88 | 46.77 82 | 91.00 76 | 73.52 84 | 78.46 101 | 93.44 9 |
|
| HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 34 | 87.34 39 | 55.20 61 | 89.93 29 | 87.55 60 | 66.04 68 | 79.46 26 | 93.00 30 | 53.10 33 | 91.76 57 | 80.40 36 | 89.56 8 | 92.68 25 |
|
| Anonymous202405211 | | | 70.11 147 | 67.88 163 | 76.79 107 | 87.20 40 | 47.24 258 | 89.49 35 | 77.38 264 | 54.88 261 | 66.14 123 | 86.84 148 | 20.93 341 | 91.54 61 | 56.45 210 | 71.62 159 | 91.59 51 |
|
| testing222 | | | 77.70 33 | 77.22 35 | 79.14 43 | 86.95 41 | 54.89 72 | 87.18 74 | 91.96 1 | 72.29 10 | 71.17 90 | 88.70 115 | 55.19 20 | 91.24 68 | 65.18 135 | 76.32 120 | 91.29 64 |
|
| test12 | | | | | 79.24 39 | 86.89 42 | 56.08 40 | | 85.16 108 | | 72.27 76 | | 47.15 77 | 91.10 74 | | 85.93 35 | 90.54 79 |
|
| DELS-MVS | | | 82.32 4 | 82.50 3 | 81.79 11 | 86.80 43 | 56.89 25 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 6 | 94.78 19 | 78.97 43 | 89.61 7 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| GG-mvs-BLEND | | | | | 77.77 77 | 86.68 44 | 50.61 166 | 68.67 332 | 88.45 44 | | 68.73 102 | 87.45 139 | 59.15 10 | 90.67 86 | 54.83 217 | 87.67 16 | 92.03 40 |
|
| CDPH-MVS | | | 76.05 56 | 75.19 59 | 78.62 58 | 86.51 45 | 54.98 69 | 87.32 68 | 84.59 125 | 58.62 199 | 70.75 92 | 90.85 70 | 43.10 136 | 90.63 89 | 70.50 98 | 84.51 51 | 90.24 86 |
|
| test_prior | | | | | 78.39 66 | 86.35 46 | 54.91 71 | | 85.45 93 | | | | | 89.70 114 | | | 90.55 77 |
|
| iter_conf_final | | | 71.46 127 | 69.68 138 | 76.81 103 | 86.03 47 | 53.49 101 | 84.73 139 | 74.37 296 | 60.27 163 | 66.28 122 | 84.36 175 | 35.14 234 | 90.87 81 | 65.41 132 | 70.51 171 | 86.05 179 |
|
| gg-mvs-nofinetune | | | 67.43 203 | 64.53 229 | 76.13 119 | 85.95 48 | 47.79 249 | 64.38 344 | 88.28 46 | 39.34 347 | 66.62 116 | 41.27 381 | 58.69 13 | 89.00 132 | 49.64 253 | 86.62 29 | 91.59 51 |
|
| PVSNet_BlendedMVS | | | 73.42 95 | 73.30 78 | 73.76 183 | 85.91 49 | 51.83 145 | 86.18 93 | 84.24 134 | 65.40 74 | 69.09 100 | 80.86 231 | 46.70 83 | 88.13 167 | 75.43 68 | 65.92 209 | 81.33 265 |
|
| PVSNet_Blended | | | 76.53 49 | 76.54 42 | 76.50 109 | 85.91 49 | 51.83 145 | 88.89 44 | 84.24 134 | 67.82 40 | 69.09 100 | 89.33 105 | 46.70 83 | 88.13 167 | 75.43 68 | 81.48 71 | 89.55 105 |
|
| test_8 | | | | | | 85.72 51 | 55.31 56 | 87.60 61 | 83.88 141 | 57.84 213 | 72.84 67 | 90.99 64 | 44.99 105 | 88.34 159 | | | |
|
| TEST9 | | | | | | 85.68 52 | 55.42 51 | 87.59 62 | 84.00 138 | 57.72 215 | 72.99 63 | 90.98 65 | 44.87 109 | 88.58 148 | | | |
|
| train_agg | | | 76.91 42 | 76.40 44 | 78.45 64 | 85.68 52 | 55.42 51 | 87.59 62 | 84.00 138 | 57.84 213 | 72.99 63 | 90.98 65 | 44.99 105 | 88.58 148 | 78.19 51 | 85.32 42 | 91.34 63 |
|
| 9.14 | | | | 78.19 24 | | 85.67 54 | | 88.32 50 | 88.84 31 | 59.89 167 | 74.58 48 | 92.62 35 | 46.80 81 | 92.66 39 | 81.40 34 | 85.62 39 | |
|
| agg_prior | | | | | | 85.64 55 | 54.92 70 | | 83.61 148 | | 72.53 72 | | | 88.10 169 | | | |
|
| PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 65 | 70.62 17 | 80.75 20 | 93.22 24 | 37.77 190 | 92.50 42 | 82.75 22 | 86.25 33 | 91.57 53 |
|
| MVSTER | | | 73.25 97 | 72.33 92 | 76.01 123 | 85.54 57 | 53.76 97 | 83.52 171 | 87.16 63 | 67.06 48 | 63.88 159 | 81.66 223 | 52.77 34 | 90.44 92 | 64.66 137 | 64.69 216 | 83.84 223 |
|
| EPNet | | | 78.36 25 | 78.49 21 | 77.97 74 | 85.49 58 | 52.04 139 | 89.36 38 | 84.07 137 | 73.22 7 | 77.03 37 | 91.72 52 | 49.32 63 | 90.17 103 | 73.46 85 | 82.77 58 | 91.69 48 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 76 | 85.46 59 | 49.56 194 | 90.99 21 | 86.66 73 | 70.58 18 | 80.07 23 | 95.30 1 | 56.18 17 | 90.97 79 | 82.57 24 | 86.22 34 | 93.28 13 |
|
| SD-MVS | | | 76.18 53 | 74.85 65 | 80.18 28 | 85.39 60 | 56.90 24 | 85.75 103 | 82.45 168 | 56.79 236 | 74.48 49 | 91.81 50 | 43.72 125 | 90.75 85 | 74.61 75 | 78.65 99 | 92.91 19 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| save fliter | | | | | | 85.35 61 | 56.34 36 | 89.31 39 | 81.46 184 | 61.55 138 | | | | | | | |
|
| MVS_111021_HR | | | 76.39 51 | 75.38 57 | 79.42 37 | 85.33 62 | 56.47 33 | 88.15 51 | 84.97 113 | 65.15 80 | 66.06 125 | 89.88 93 | 43.79 122 | 92.16 49 | 75.03 72 | 80.03 87 | 89.64 103 |
|
| PHI-MVS | | | 77.49 35 | 77.00 37 | 78.95 46 | 85.33 62 | 50.69 165 | 88.57 48 | 88.59 41 | 58.14 205 | 73.60 55 | 93.31 21 | 43.14 134 | 93.79 27 | 73.81 82 | 88.53 12 | 92.37 31 |
|
| TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 61 | 85.25 64 | 50.27 181 | 90.02 26 | 90.57 11 | 56.58 241 | 74.26 51 | 91.60 57 | 54.26 27 | 92.16 49 | 75.87 64 | 79.91 88 | 93.05 18 |
|
| EIA-MVS | | | 75.92 58 | 75.18 60 | 78.13 71 | 85.14 65 | 51.60 150 | 87.17 75 | 85.32 99 | 64.69 83 | 68.56 103 | 90.53 75 | 45.79 94 | 91.58 60 | 67.21 114 | 82.18 64 | 91.20 66 |
|
| baseline1 | | | 72.51 109 | 72.12 100 | 73.69 186 | 85.05 66 | 44.46 291 | 83.51 175 | 86.13 82 | 71.61 13 | 64.64 142 | 87.97 131 | 55.00 24 | 89.48 118 | 59.07 176 | 56.05 296 | 87.13 159 |
|
| FMVSNet3 | | | 68.84 172 | 67.40 175 | 73.19 195 | 85.05 66 | 48.53 222 | 85.71 107 | 85.36 96 | 60.90 154 | 57.58 243 | 79.15 247 | 42.16 144 | 86.77 212 | 47.25 270 | 63.40 228 | 84.27 210 |
|
| xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 14 | 85.03 68 | 60.73 4 | 91.65 12 | 86.86 68 | 70.30 21 | 80.77 19 | 93.07 29 | 37.63 195 | 92.28 47 | 82.73 23 | 85.71 37 | 91.57 53 |
|
| EPMVS | | | 68.45 181 | 65.44 217 | 77.47 84 | 84.91 69 | 56.17 38 | 71.89 318 | 81.91 177 | 61.72 136 | 60.85 190 | 72.49 318 | 36.21 221 | 87.06 204 | 47.32 269 | 71.62 159 | 89.17 115 |
|
| 原ACMM1 | | | | | 76.13 119 | 84.89 70 | 54.59 82 | | 85.26 103 | 51.98 283 | 66.70 114 | 87.07 146 | 40.15 169 | 89.70 114 | 51.23 244 | 85.06 46 | 84.10 212 |
|
| thres200 | | | 68.71 177 | 67.27 178 | 73.02 197 | 84.73 71 | 46.76 262 | 85.03 128 | 87.73 56 | 62.34 127 | 59.87 197 | 83.45 190 | 43.15 133 | 88.32 161 | 31.25 340 | 67.91 190 | 83.98 218 |
|
| HY-MVS | | 67.03 5 | 73.90 84 | 73.14 82 | 76.18 118 | 84.70 72 | 47.36 254 | 75.56 286 | 86.36 78 | 66.27 60 | 70.66 94 | 83.91 181 | 51.05 46 | 89.31 121 | 67.10 115 | 72.61 151 | 91.88 45 |
|
| CS-MVS-test | | | 77.20 38 | 77.25 34 | 77.05 94 | 84.60 73 | 49.04 207 | 89.42 36 | 85.83 87 | 65.90 69 | 72.85 66 | 91.98 49 | 45.10 103 | 91.27 66 | 75.02 73 | 84.56 49 | 90.84 73 |
|
| MVS | | | 76.91 42 | 75.48 55 | 81.23 18 | 84.56 74 | 55.21 60 | 80.23 255 | 91.64 3 | 58.65 198 | 65.37 133 | 91.48 60 | 45.72 95 | 95.05 16 | 72.11 92 | 89.52 9 | 93.44 9 |
|
| ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 73 | 78.67 56 | 84.52 75 | 55.59 47 | 88.92 43 | 89.21 20 | 68.06 37 | 53.13 288 | 90.22 84 | 49.71 60 | 87.62 190 | 72.12 91 | 70.82 167 | 92.82 21 |
|
| SMA-MVS |  | | 79.10 20 | 78.76 20 | 80.12 30 | 84.42 76 | 55.87 45 | 87.58 64 | 86.76 70 | 61.48 141 | 80.26 22 | 93.10 25 | 46.53 85 | 92.41 44 | 79.97 37 | 88.77 10 | 92.08 38 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PVSNet | | 62.49 8 | 69.27 166 | 67.81 167 | 73.64 187 | 84.41 77 | 51.85 144 | 84.63 145 | 77.80 255 | 66.42 57 | 59.80 199 | 84.95 170 | 22.14 336 | 80.44 296 | 55.03 216 | 75.11 132 | 88.62 129 |
|
| canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 45 | 84.30 78 | 54.22 88 | 87.71 59 | 84.57 126 | 67.70 43 | 77.70 34 | 92.11 44 | 50.90 48 | 89.95 107 | 78.18 53 | 77.54 107 | 93.20 15 |
|
| HFP-MVS | | | 74.37 78 | 73.13 84 | 78.10 72 | 84.30 78 | 53.68 98 | 85.58 109 | 84.36 129 | 56.82 234 | 65.78 129 | 90.56 73 | 40.70 164 | 90.90 80 | 69.18 103 | 80.88 73 | 89.71 101 |
|
| VDD-MVS | | | 76.08 55 | 74.97 63 | 79.44 36 | 84.27 80 | 53.33 112 | 91.13 19 | 85.88 85 | 65.33 77 | 72.37 74 | 89.34 103 | 32.52 260 | 92.76 38 | 77.90 55 | 75.96 121 | 92.22 36 |
|
| BH-RMVSNet | | | 70.08 149 | 68.01 160 | 76.27 112 | 84.21 81 | 51.22 161 | 87.29 71 | 79.33 229 | 58.96 193 | 63.63 162 | 86.77 149 | 33.29 254 | 90.30 99 | 44.63 285 | 73.96 139 | 87.30 157 |
|
| MVS_Test | | | 75.85 60 | 74.93 64 | 78.62 58 | 84.08 82 | 55.20 61 | 83.99 162 | 85.17 107 | 68.07 36 | 73.38 59 | 82.76 199 | 50.44 52 | 89.00 132 | 65.90 123 | 80.61 76 | 91.64 49 |
|
| tfpn200view9 | | | 67.57 199 | 66.13 198 | 71.89 230 | 84.05 83 | 45.07 286 | 83.40 180 | 87.71 58 | 60.79 155 | 57.79 238 | 82.76 199 | 43.53 128 | 87.80 178 | 28.80 347 | 66.36 204 | 82.78 243 |
|
| thres400 | | | 67.40 206 | 66.13 198 | 71.19 241 | 84.05 83 | 45.07 286 | 83.40 180 | 87.71 58 | 60.79 155 | 57.79 238 | 82.76 199 | 43.53 128 | 87.80 178 | 28.80 347 | 66.36 204 | 80.71 275 |
|
| tpmvs | | | 62.45 260 | 59.42 267 | 71.53 236 | 83.93 85 | 54.32 86 | 70.03 325 | 77.61 259 | 51.91 284 | 53.48 287 | 68.29 342 | 37.91 188 | 86.66 216 | 33.36 330 | 58.27 271 | 73.62 343 |
|
| ACMMPR | | | 73.76 87 | 72.61 86 | 77.24 92 | 83.92 86 | 52.96 124 | 85.58 109 | 84.29 130 | 56.82 234 | 65.12 134 | 90.45 77 | 37.24 206 | 90.18 102 | 69.18 103 | 80.84 74 | 88.58 130 |
|
| region2R | | | 73.75 88 | 72.55 88 | 77.33 86 | 83.90 87 | 52.98 123 | 85.54 112 | 84.09 136 | 56.83 233 | 65.10 135 | 90.45 77 | 37.34 204 | 90.24 100 | 68.89 105 | 80.83 75 | 88.77 126 |
|
| ZNCC-MVS | | | 75.82 63 | 75.02 62 | 78.23 69 | 83.88 88 | 53.80 95 | 86.91 82 | 86.05 83 | 59.71 170 | 67.85 108 | 90.55 74 | 42.23 143 | 91.02 75 | 72.66 90 | 85.29 43 | 89.87 100 |
|
| Anonymous20240529 | | | 69.71 158 | 67.28 177 | 77.00 98 | 83.78 89 | 50.36 176 | 88.87 45 | 85.10 111 | 47.22 312 | 64.03 155 | 83.37 191 | 27.93 292 | 92.10 52 | 57.78 197 | 67.44 194 | 88.53 133 |
|
| SF-MVS | | | 77.64 34 | 77.42 32 | 78.32 68 | 83.75 90 | 52.47 132 | 86.63 86 | 87.80 52 | 58.78 196 | 74.63 46 | 92.38 38 | 47.75 71 | 91.35 65 | 78.18 53 | 86.85 25 | 91.15 67 |
|
| PMMVS | | | 72.98 99 | 72.05 102 | 75.78 127 | 83.57 91 | 48.60 219 | 84.08 158 | 82.85 163 | 61.62 137 | 68.24 105 | 90.33 81 | 28.35 288 | 87.78 181 | 72.71 89 | 76.69 114 | 90.95 71 |
|
| CS-MVS | | | 76.77 46 | 76.70 41 | 76.99 99 | 83.55 92 | 48.75 216 | 88.60 47 | 85.18 106 | 66.38 58 | 72.47 73 | 91.62 56 | 45.53 97 | 90.99 78 | 74.48 76 | 82.51 60 | 91.23 65 |
|
| alignmvs | | | 78.08 28 | 77.98 26 | 78.39 66 | 83.53 93 | 53.22 115 | 89.77 32 | 85.45 93 | 66.11 63 | 76.59 40 | 91.99 47 | 54.07 30 | 89.05 129 | 77.34 58 | 77.00 110 | 92.89 20 |
|
| FA-MVS(test-final) | | | 69.00 170 | 66.60 189 | 76.19 117 | 83.48 94 | 47.96 245 | 74.73 293 | 82.07 172 | 57.27 226 | 62.18 178 | 78.47 253 | 36.09 223 | 92.89 33 | 53.76 226 | 71.32 163 | 87.73 147 |
|
| XVS | | | 72.92 100 | 71.62 106 | 76.81 103 | 83.41 95 | 52.48 130 | 84.88 135 | 83.20 156 | 58.03 206 | 63.91 157 | 89.63 98 | 35.50 229 | 89.78 110 | 65.50 125 | 80.50 78 | 88.16 136 |
|
| X-MVStestdata | | | 65.85 233 | 62.20 241 | 76.81 103 | 83.41 95 | 52.48 130 | 84.88 135 | 83.20 156 | 58.03 206 | 63.91 157 | 4.82 400 | 35.50 229 | 89.78 110 | 65.50 125 | 80.50 78 | 88.16 136 |
|
| thres600view7 | | | 66.46 225 | 65.12 222 | 70.47 250 | 83.41 95 | 43.80 300 | 82.15 211 | 87.78 53 | 59.37 178 | 56.02 263 | 82.21 216 | 43.73 123 | 86.90 210 | 26.51 359 | 64.94 213 | 80.71 275 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 113 | 70.50 122 | 77.65 80 | 83.40 98 | 51.29 159 | 87.32 68 | 86.40 77 | 59.01 191 | 58.49 228 | 88.32 124 | 32.40 261 | 91.27 66 | 57.04 203 | 82.15 65 | 90.38 82 |
|
| SR-MVS | | | 70.92 137 | 69.73 137 | 74.50 159 | 83.38 99 | 50.48 171 | 84.27 153 | 79.35 227 | 48.96 304 | 66.57 119 | 90.45 77 | 33.65 251 | 87.11 202 | 66.42 118 | 74.56 136 | 85.91 185 |
|
| GST-MVS | | | 74.87 74 | 73.90 76 | 77.77 77 | 83.30 100 | 53.45 105 | 85.75 103 | 85.29 101 | 59.22 183 | 66.50 120 | 89.85 94 | 40.94 159 | 90.76 84 | 70.94 96 | 83.35 56 | 89.10 117 |
|
| thres100view900 | | | 66.87 220 | 65.42 218 | 71.24 239 | 83.29 101 | 43.15 307 | 81.67 225 | 87.78 53 | 59.04 190 | 55.92 264 | 82.18 217 | 43.73 123 | 87.80 178 | 28.80 347 | 66.36 204 | 82.78 243 |
|
| FOURS1 | | | | | | 83.24 102 | 49.90 187 | 84.98 130 | 78.76 238 | 47.71 309 | 73.42 58 | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 102 | 54.21 89 | | | 70.91 16 | | 88.23 126 | | 95.25 14 | 66.37 119 | | |
|
| tpmrst | | | 71.04 134 | 69.77 136 | 74.86 155 | 83.19 104 | 55.86 46 | 75.64 285 | 78.73 240 | 67.88 38 | 64.99 139 | 73.73 304 | 49.96 58 | 79.56 307 | 65.92 122 | 67.85 191 | 89.14 116 |
|
| 新几何1 | | | | | 73.30 194 | 83.10 105 | 53.48 102 | | 71.43 322 | 45.55 324 | 66.14 123 | 87.17 144 | 33.88 249 | 80.54 294 | 48.50 262 | 80.33 82 | 85.88 187 |
|
| PatchmatchNet |  | | 67.07 215 | 63.63 235 | 77.40 85 | 83.10 105 | 58.03 9 | 72.11 316 | 77.77 256 | 58.85 194 | 59.37 208 | 70.83 331 | 37.84 189 | 84.93 257 | 42.96 293 | 69.83 177 | 89.26 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CHOSEN 1792x2688 | | | 76.24 52 | 74.03 75 | 82.88 1 | 83.09 107 | 62.84 2 | 85.73 105 | 85.39 95 | 69.79 23 | 64.87 140 | 83.49 189 | 41.52 156 | 93.69 28 | 70.55 97 | 81.82 67 | 92.12 37 |
|
| Anonymous20231211 | | | 66.08 231 | 63.67 234 | 73.31 193 | 83.07 108 | 48.75 216 | 86.01 98 | 84.67 124 | 45.27 326 | 56.54 258 | 76.67 278 | 28.06 291 | 88.95 136 | 52.78 234 | 59.95 252 | 82.23 246 |
|
| IB-MVS | | 68.87 2 | 74.01 82 | 72.03 104 | 79.94 33 | 83.04 109 | 55.50 49 | 90.24 25 | 88.65 36 | 67.14 47 | 61.38 186 | 81.74 222 | 53.21 32 | 94.28 21 | 60.45 169 | 62.41 242 | 90.03 95 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVSFormer | | | 73.53 93 | 72.19 98 | 77.57 81 | 83.02 110 | 55.24 58 | 81.63 226 | 81.44 185 | 50.28 294 | 76.67 38 | 90.91 68 | 44.82 111 | 86.11 230 | 60.83 161 | 80.09 84 | 91.36 61 |
|
| lupinMVS | | | 78.38 24 | 78.11 25 | 79.19 40 | 83.02 110 | 55.24 58 | 91.57 14 | 84.82 117 | 69.12 28 | 76.67 38 | 92.02 45 | 44.82 111 | 90.23 101 | 80.83 35 | 80.09 84 | 92.08 38 |
|
| MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 51 | 82.99 112 | 52.71 127 | 85.04 127 | 88.63 38 | 66.08 65 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 63 | 83.35 19 | 93.53 1 | 92.23 34 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 72.60 106 | 71.20 114 | 76.80 106 | 82.95 113 | 52.82 126 | 83.07 192 | 82.14 170 | 56.51 242 | 63.18 166 | 89.81 95 | 35.68 228 | 89.76 112 | 67.30 113 | 80.19 83 | 87.83 144 |
|
| TR-MVS | | | 69.71 158 | 67.85 166 | 75.27 147 | 82.94 114 | 48.48 225 | 87.40 67 | 80.86 195 | 57.15 229 | 64.61 144 | 87.08 145 | 32.67 259 | 89.64 116 | 46.38 276 | 71.55 161 | 87.68 149 |
|
| CP-MVS | | | 72.59 108 | 71.46 109 | 76.00 124 | 82.93 115 | 52.32 136 | 86.93 81 | 82.48 167 | 55.15 256 | 63.65 161 | 90.44 80 | 35.03 237 | 88.53 152 | 68.69 106 | 77.83 105 | 87.15 158 |
|
| MP-MVS |  | | 74.99 73 | 74.33 70 | 76.95 101 | 82.89 116 | 53.05 121 | 85.63 108 | 83.50 149 | 57.86 212 | 67.25 111 | 90.24 82 | 43.38 131 | 88.85 142 | 76.03 62 | 82.23 63 | 88.96 119 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mvs_anonymous | | | 72.29 113 | 70.74 118 | 76.94 102 | 82.85 117 | 54.72 76 | 78.43 272 | 81.54 183 | 63.77 97 | 61.69 183 | 79.32 243 | 51.11 45 | 85.31 248 | 62.15 152 | 75.79 123 | 90.79 74 |
|
| 3Dnovator | | 64.70 6 | 74.46 76 | 72.48 89 | 80.41 24 | 82.84 118 | 55.40 54 | 83.08 191 | 88.61 40 | 67.61 44 | 59.85 198 | 88.66 116 | 34.57 241 | 93.97 24 | 58.42 184 | 88.70 11 | 91.85 46 |
|
| BH-w/o | | | 70.02 151 | 68.51 152 | 74.56 158 | 82.77 119 | 50.39 174 | 86.60 87 | 78.14 251 | 59.77 169 | 59.65 201 | 85.57 163 | 39.27 178 | 87.30 198 | 49.86 251 | 74.94 135 | 85.99 182 |
|
| Fast-Effi-MVS+ | | | 72.73 104 | 71.15 115 | 77.48 83 | 82.75 120 | 54.76 73 | 86.77 84 | 80.64 198 | 63.05 114 | 65.93 127 | 84.01 179 | 44.42 116 | 89.03 130 | 56.45 210 | 76.36 119 | 88.64 128 |
|
| GBi-Net | | | 67.09 213 | 65.47 215 | 71.96 223 | 82.71 121 | 46.36 267 | 83.52 171 | 83.31 151 | 58.55 200 | 57.58 243 | 76.23 284 | 36.72 216 | 86.20 226 | 47.25 270 | 63.40 228 | 83.32 229 |
|
| test1 | | | 67.09 213 | 65.47 215 | 71.96 223 | 82.71 121 | 46.36 267 | 83.52 171 | 83.31 151 | 58.55 200 | 57.58 243 | 76.23 284 | 36.72 216 | 86.20 226 | 47.25 270 | 63.40 228 | 83.32 229 |
|
| FMVSNet2 | | | 67.57 199 | 65.79 207 | 72.90 200 | 82.71 121 | 47.97 243 | 85.15 121 | 84.93 114 | 58.55 200 | 56.71 256 | 78.26 254 | 36.72 216 | 86.67 215 | 46.15 278 | 62.94 239 | 84.07 213 |
|
| mPP-MVS | | | 71.79 123 | 70.38 125 | 76.04 122 | 82.65 124 | 52.06 138 | 84.45 148 | 81.78 180 | 55.59 251 | 62.05 181 | 89.68 97 | 33.48 252 | 88.28 164 | 65.45 130 | 78.24 104 | 87.77 146 |
|
| CANet_DTU | | | 73.71 89 | 73.14 82 | 75.40 138 | 82.61 125 | 50.05 183 | 84.67 144 | 79.36 226 | 69.72 24 | 75.39 41 | 90.03 91 | 29.41 284 | 85.93 241 | 67.99 110 | 79.11 96 | 90.22 87 |
|
| EI-MVSNet-Vis-set | | | 73.19 98 | 72.60 87 | 74.99 154 | 82.56 126 | 49.80 190 | 82.55 204 | 89.00 23 | 66.17 62 | 65.89 128 | 88.98 109 | 43.83 120 | 92.29 46 | 65.38 134 | 69.01 182 | 82.87 241 |
|
| dp | | | 64.41 237 | 61.58 245 | 72.90 200 | 82.40 127 | 54.09 92 | 72.53 308 | 76.59 279 | 60.39 161 | 55.68 266 | 70.39 335 | 35.18 233 | 76.90 330 | 39.34 303 | 61.71 246 | 87.73 147 |
|
| MS-PatchMatch | | | 72.34 111 | 71.26 112 | 75.61 130 | 82.38 128 | 55.55 48 | 88.00 53 | 89.95 15 | 65.38 75 | 56.51 260 | 80.74 233 | 32.28 263 | 92.89 33 | 57.95 193 | 88.10 14 | 78.39 301 |
|
| MVS_0304 | | | 81.58 8 | 82.05 6 | 80.20 27 | 82.36 129 | 54.70 77 | 91.13 19 | 88.95 24 | 74.49 5 | 80.04 24 | 93.64 11 | 52.40 37 | 93.27 30 | 88.85 4 | 86.56 30 | 92.61 26 |
|
| CostFormer | | | 73.89 85 | 72.30 94 | 78.66 57 | 82.36 129 | 56.58 28 | 75.56 286 | 85.30 100 | 66.06 66 | 70.50 96 | 76.88 275 | 57.02 14 | 89.06 128 | 68.27 109 | 68.74 184 | 90.33 83 |
|
| QAPM | | | 71.88 120 | 69.33 144 | 79.52 35 | 82.20 131 | 54.30 87 | 86.30 91 | 88.77 33 | 56.61 240 | 59.72 200 | 87.48 138 | 33.90 248 | 95.36 13 | 47.48 268 | 81.49 70 | 88.90 120 |
|
| HPM-MVS |  | | 72.60 106 | 71.50 108 | 75.89 125 | 82.02 132 | 51.42 155 | 80.70 248 | 83.05 158 | 56.12 246 | 64.03 155 | 89.53 99 | 37.55 198 | 88.37 156 | 70.48 99 | 80.04 86 | 87.88 143 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TESTMET0.1,1 | | | 72.86 102 | 72.33 92 | 74.46 160 | 81.98 133 | 50.77 163 | 85.13 122 | 85.47 91 | 66.09 64 | 67.30 110 | 83.69 186 | 37.27 205 | 83.57 270 | 65.06 136 | 78.97 98 | 89.05 118 |
|
| ACMMP_NAP | | | 76.43 50 | 75.66 52 | 78.73 53 | 81.92 134 | 54.67 80 | 84.06 160 | 85.35 97 | 61.10 147 | 72.99 63 | 91.50 59 | 40.25 166 | 91.00 76 | 76.84 60 | 86.98 23 | 90.51 80 |
|
| Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 29 | 81.92 134 | 57.42 19 | 85.21 119 | 76.71 276 | 60.68 158 | 73.32 60 | 89.34 103 | 47.30 75 | 91.63 59 | 68.28 108 | 79.72 91 | 91.42 58 |
|
| dmvs_re | | | 67.61 197 | 66.00 201 | 72.42 212 | 81.86 136 | 43.45 303 | 64.67 343 | 80.00 208 | 69.56 26 | 60.07 196 | 85.00 169 | 34.71 239 | 87.63 188 | 51.48 242 | 66.68 198 | 86.17 178 |
|
| ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 62 | 81.80 137 | 54.55 83 | 86.13 94 | 85.33 98 | 68.20 33 | 73.10 62 | 90.52 76 | 45.23 102 | 90.66 87 | 79.37 39 | 80.95 72 | 90.22 87 |
|
| PLC |  | 52.38 18 | 60.89 268 | 58.97 272 | 66.68 297 | 81.77 138 | 45.70 280 | 78.96 268 | 74.04 301 | 43.66 337 | 47.63 320 | 83.19 195 | 23.52 325 | 77.78 324 | 37.47 306 | 60.46 251 | 76.55 322 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Syy-MVS | | | 61.51 265 | 61.35 249 | 62.00 323 | 81.73 139 | 30.09 366 | 80.97 242 | 81.02 192 | 60.93 152 | 55.06 270 | 82.64 204 | 35.09 235 | 80.81 289 | 16.40 384 | 58.32 269 | 75.10 333 |
|
| myMVS_eth3d | | | 63.52 246 | 63.56 236 | 63.40 316 | 81.73 139 | 34.28 349 | 80.97 242 | 81.02 192 | 60.93 152 | 55.06 270 | 82.64 204 | 48.00 70 | 80.81 289 | 23.42 369 | 58.32 269 | 75.10 333 |
|
| SDMVSNet | | | 71.89 119 | 70.62 121 | 75.70 128 | 81.70 141 | 51.61 149 | 73.89 298 | 88.72 35 | 66.58 53 | 61.64 184 | 82.38 212 | 37.63 195 | 89.48 118 | 77.44 57 | 65.60 210 | 86.01 180 |
|
| sd_testset | | | 67.79 194 | 65.95 203 | 73.32 192 | 81.70 141 | 46.33 270 | 68.99 330 | 80.30 204 | 66.58 53 | 61.64 184 | 82.38 212 | 30.45 278 | 87.63 188 | 55.86 212 | 65.60 210 | 86.01 180 |
|
| MDTV_nov1_ep13 | | | | 61.56 246 | | 81.68 143 | 55.12 63 | 72.41 310 | 78.18 250 | 59.19 184 | 58.85 221 | 69.29 339 | 34.69 240 | 86.16 229 | 36.76 315 | 62.96 238 | |
|
| baseline2 | | | 75.15 71 | 74.54 69 | 76.98 100 | 81.67 144 | 51.74 147 | 83.84 166 | 91.94 2 | 69.97 22 | 58.98 215 | 86.02 157 | 59.73 8 | 91.73 58 | 68.37 107 | 70.40 173 | 87.48 152 |
|
| thisisatest0515 | | | 73.64 92 | 72.20 97 | 77.97 74 | 81.63 145 | 53.01 122 | 86.69 85 | 88.81 32 | 62.53 123 | 64.06 153 | 85.65 161 | 52.15 40 | 92.50 42 | 58.43 182 | 69.84 176 | 88.39 135 |
|
| BH-untuned | | | 68.28 185 | 66.40 191 | 73.91 177 | 81.62 146 | 50.01 184 | 85.56 111 | 77.39 263 | 57.63 218 | 57.47 248 | 83.69 186 | 36.36 220 | 87.08 203 | 44.81 283 | 73.08 148 | 84.65 205 |
|
| EI-MVSNet-UG-set | | | 72.37 110 | 71.73 105 | 74.29 167 | 81.60 147 | 49.29 202 | 81.85 219 | 88.64 37 | 65.29 79 | 65.05 136 | 88.29 125 | 43.18 132 | 91.83 56 | 63.74 140 | 67.97 189 | 81.75 252 |
|
| sss | | | 70.49 143 | 70.13 132 | 71.58 235 | 81.59 148 | 39.02 334 | 80.78 247 | 84.71 122 | 59.34 179 | 66.61 117 | 88.09 128 | 37.17 207 | 85.52 244 | 61.82 155 | 71.02 165 | 90.20 89 |
|
| APD-MVS_3200maxsize | | | 69.62 162 | 68.23 158 | 73.80 182 | 81.58 149 | 48.22 234 | 81.91 217 | 79.50 221 | 48.21 307 | 64.24 152 | 89.75 96 | 31.91 269 | 87.55 192 | 63.08 144 | 73.85 141 | 85.64 191 |
|
| 旧先验1 | | | | | | 81.57 150 | 47.48 251 | | 71.83 316 | | | 88.66 116 | 36.94 210 | | | 78.34 103 | 88.67 127 |
|
| MTAPA | | | 72.73 104 | 71.22 113 | 77.27 90 | 81.54 151 | 53.57 100 | 67.06 338 | 81.31 187 | 59.41 177 | 68.39 104 | 90.96 67 | 36.07 224 | 89.01 131 | 73.80 83 | 82.45 62 | 89.23 112 |
|
| PAPM_NR | | | 71.80 122 | 69.98 134 | 77.26 91 | 81.54 151 | 53.34 111 | 78.60 271 | 85.25 104 | 53.46 272 | 60.53 194 | 88.66 116 | 45.69 96 | 89.24 123 | 56.49 207 | 79.62 94 | 89.19 114 |
|
| ACMMP |  | | 70.81 139 | 69.29 145 | 75.39 139 | 81.52 153 | 51.92 143 | 83.43 178 | 83.03 159 | 56.67 239 | 58.80 222 | 88.91 111 | 31.92 268 | 88.58 148 | 65.89 124 | 73.39 143 | 85.67 189 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MSLP-MVS++ | | | 74.21 80 | 72.25 95 | 80.11 31 | 81.45 154 | 56.47 33 | 86.32 90 | 79.65 218 | 58.19 204 | 66.36 121 | 92.29 40 | 36.11 222 | 90.66 87 | 67.39 112 | 82.49 61 | 93.18 16 |
|
| tpm cat1 | | | 66.28 227 | 62.78 237 | 76.77 108 | 81.40 155 | 57.14 22 | 70.03 325 | 77.19 266 | 53.00 276 | 58.76 223 | 70.73 334 | 46.17 87 | 86.73 214 | 43.27 291 | 64.46 218 | 86.44 173 |
|
| MP-MVS-pluss | | | 75.54 66 | 75.03 61 | 77.04 95 | 81.37 156 | 52.65 129 | 84.34 151 | 84.46 127 | 61.16 145 | 69.14 99 | 91.76 51 | 39.98 173 | 88.99 134 | 78.19 51 | 84.89 47 | 89.48 108 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 78.31 26 | 78.26 22 | 78.48 62 | 81.33 157 | 56.31 37 | 81.59 229 | 86.41 76 | 69.61 25 | 81.72 15 | 88.16 127 | 55.09 23 | 88.04 171 | 74.12 80 | 86.31 32 | 91.09 68 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PVSNet_Blended_VisFu | | | 73.40 96 | 72.44 90 | 76.30 111 | 81.32 158 | 54.70 77 | 85.81 99 | 78.82 236 | 63.70 99 | 64.53 146 | 85.38 165 | 47.11 78 | 87.38 197 | 67.75 111 | 77.55 106 | 86.81 168 |
|
| LS3D | | | 56.40 302 | 53.82 302 | 64.12 311 | 81.12 159 | 45.69 281 | 73.42 303 | 66.14 346 | 35.30 363 | 43.24 341 | 79.88 237 | 22.18 335 | 79.62 306 | 19.10 379 | 64.00 222 | 67.05 363 |
|
| GeoE | | | 69.96 154 | 67.88 163 | 76.22 114 | 81.11 160 | 51.71 148 | 84.15 156 | 76.74 275 | 59.83 168 | 60.91 189 | 84.38 173 | 41.56 155 | 88.10 169 | 51.67 241 | 70.57 170 | 88.84 123 |
|
| SteuartSystems-ACMMP | | | 77.08 40 | 76.33 45 | 79.34 38 | 80.98 161 | 55.31 56 | 89.76 33 | 86.91 67 | 62.94 116 | 71.65 80 | 91.56 58 | 42.33 141 | 92.56 41 | 77.14 59 | 83.69 55 | 90.15 91 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EC-MVSNet | | | 75.30 67 | 75.20 58 | 75.62 129 | 80.98 161 | 49.00 208 | 87.43 65 | 84.68 123 | 63.49 106 | 70.97 91 | 90.15 88 | 42.86 138 | 91.14 73 | 74.33 78 | 81.90 66 | 86.71 169 |
|
| SR-MVS-dyc-post | | | 68.27 186 | 66.87 181 | 72.48 211 | 80.96 163 | 48.14 237 | 81.54 230 | 76.98 270 | 46.42 319 | 62.75 172 | 89.42 101 | 31.17 274 | 86.09 234 | 60.52 167 | 72.06 156 | 83.19 234 |
|
| RE-MVS-def | | | | 66.66 187 | | 80.96 163 | 48.14 237 | 81.54 230 | 76.98 270 | 46.42 319 | 62.75 172 | 89.42 101 | 29.28 286 | | 60.52 167 | 72.06 156 | 83.19 234 |
|
| CPTT-MVS | | | 67.15 211 | 65.84 206 | 71.07 243 | 80.96 163 | 50.32 178 | 81.94 216 | 74.10 298 | 46.18 322 | 57.91 235 | 87.64 137 | 29.57 283 | 81.31 284 | 64.10 138 | 70.18 175 | 81.56 255 |
|
| Vis-MVSNet |  | | 70.61 142 | 69.34 143 | 74.42 162 | 80.95 166 | 48.49 224 | 86.03 97 | 77.51 261 | 58.74 197 | 65.55 132 | 87.78 133 | 34.37 243 | 85.95 240 | 52.53 238 | 80.61 76 | 88.80 124 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ab-mvs | | | 70.65 141 | 69.11 147 | 75.29 145 | 80.87 167 | 46.23 273 | 73.48 302 | 85.24 105 | 59.99 166 | 66.65 115 | 80.94 230 | 43.13 135 | 88.69 144 | 63.58 141 | 68.07 187 | 90.95 71 |
|
| FE-MVS | | | 64.15 239 | 60.43 260 | 75.30 144 | 80.85 168 | 49.86 188 | 68.28 334 | 78.37 248 | 50.26 297 | 59.31 210 | 73.79 303 | 26.19 305 | 91.92 55 | 40.19 300 | 66.67 199 | 84.12 211 |
|
| tpm2 | | | 70.82 138 | 68.44 153 | 77.98 73 | 80.78 169 | 56.11 39 | 74.21 297 | 81.28 189 | 60.24 164 | 68.04 106 | 75.27 293 | 52.26 39 | 88.50 153 | 55.82 214 | 68.03 188 | 89.33 109 |
|
| 1112_ss | | | 70.05 150 | 69.37 142 | 72.10 217 | 80.77 170 | 42.78 311 | 85.12 125 | 76.75 274 | 59.69 171 | 61.19 188 | 92.12 42 | 47.48 74 | 83.84 265 | 53.04 230 | 68.21 186 | 89.66 102 |
|
| DeepC-MVS | | 67.15 4 | 76.90 44 | 76.27 46 | 78.80 51 | 80.70 171 | 55.02 67 | 86.39 88 | 86.71 71 | 66.96 50 | 67.91 107 | 89.97 92 | 48.03 68 | 91.41 64 | 75.60 67 | 84.14 52 | 89.96 97 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CLD-MVS | | | 75.60 64 | 75.39 56 | 76.24 113 | 80.69 172 | 52.40 133 | 90.69 23 | 86.20 81 | 74.40 6 | 65.01 138 | 88.93 110 | 42.05 147 | 90.58 90 | 76.57 61 | 73.96 139 | 85.73 188 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HPM-MVS_fast | | | 67.86 191 | 66.28 195 | 72.61 206 | 80.67 173 | 48.34 230 | 81.18 238 | 75.95 285 | 50.81 292 | 59.55 205 | 88.05 130 | 27.86 293 | 85.98 237 | 58.83 178 | 73.58 142 | 83.51 227 |
|
| ADS-MVSNet2 | | | 55.21 309 | 51.44 314 | 66.51 298 | 80.60 174 | 49.56 194 | 55.03 368 | 65.44 347 | 44.72 329 | 51.00 302 | 61.19 360 | 22.83 327 | 75.41 337 | 28.54 350 | 53.63 315 | 74.57 337 |
|
| ADS-MVSNet | | | 56.17 303 | 51.95 313 | 68.84 271 | 80.60 174 | 53.07 120 | 55.03 368 | 70.02 333 | 44.72 329 | 51.00 302 | 61.19 360 | 22.83 327 | 78.88 310 | 28.54 350 | 53.63 315 | 74.57 337 |
|
| UGNet | | | 68.71 177 | 67.11 180 | 73.50 191 | 80.55 176 | 47.61 250 | 84.08 158 | 78.51 245 | 59.45 175 | 65.68 131 | 82.73 202 | 23.78 322 | 85.08 255 | 52.80 233 | 76.40 115 | 87.80 145 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| baseline | | | 76.86 45 | 76.24 47 | 78.71 54 | 80.47 177 | 54.20 91 | 83.90 164 | 84.88 116 | 71.38 15 | 71.51 83 | 89.15 108 | 50.51 51 | 90.55 91 | 75.71 65 | 78.65 99 | 91.39 59 |
|
| casdiffmvs_mvg |  | | 77.75 32 | 77.28 33 | 79.16 42 | 80.42 178 | 54.44 85 | 87.76 58 | 85.46 92 | 71.67 12 | 71.38 85 | 88.35 122 | 51.58 41 | 91.22 69 | 79.02 42 | 79.89 90 | 91.83 47 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 77.36 37 | 76.85 39 | 78.88 49 | 80.40 179 | 54.66 81 | 87.06 77 | 85.88 85 | 72.11 11 | 71.57 82 | 88.63 120 | 50.89 50 | 90.35 95 | 76.00 63 | 79.11 96 | 91.63 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PAPM | | | 76.76 47 | 76.07 49 | 78.81 50 | 80.20 180 | 59.11 6 | 86.86 83 | 86.23 80 | 68.60 30 | 70.18 97 | 88.84 113 | 51.57 42 | 87.16 201 | 65.48 127 | 86.68 28 | 90.15 91 |
|
| h-mvs33 | | | 73.95 83 | 72.89 85 | 77.15 93 | 80.17 181 | 50.37 175 | 84.68 142 | 83.33 150 | 68.08 34 | 71.97 77 | 88.65 119 | 42.50 139 | 91.15 72 | 78.82 44 | 57.78 283 | 89.91 99 |
|
| test2506 | | | 72.91 101 | 72.43 91 | 74.32 166 | 80.12 182 | 44.18 297 | 83.19 188 | 84.77 120 | 64.02 91 | 65.97 126 | 87.43 140 | 47.67 72 | 88.72 143 | 59.08 175 | 79.66 92 | 90.08 93 |
|
| ECVR-MVS |  | | 71.81 121 | 71.00 116 | 74.26 168 | 80.12 182 | 43.49 302 | 84.69 141 | 82.16 169 | 64.02 91 | 64.64 142 | 87.43 140 | 35.04 236 | 89.21 125 | 61.24 158 | 79.66 92 | 90.08 93 |
|
| DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 182 | 59.50 5 | 92.24 8 | 90.72 10 | 69.37 27 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 31 | 74.02 81 | 93.25 2 | 94.80 1 |
|
| tpm | | | 68.36 182 | 67.48 174 | 70.97 245 | 79.93 185 | 51.34 157 | 76.58 283 | 78.75 239 | 67.73 41 | 63.54 165 | 74.86 295 | 48.33 65 | 72.36 352 | 53.93 224 | 63.71 224 | 89.21 113 |
|
| thisisatest0530 | | | 70.47 145 | 68.56 151 | 76.20 116 | 79.78 186 | 51.52 153 | 83.49 177 | 88.58 42 | 57.62 219 | 58.60 224 | 82.79 198 | 51.03 47 | 91.48 62 | 52.84 232 | 62.36 244 | 85.59 193 |
|
| jason | | | 77.01 41 | 76.45 43 | 78.69 55 | 79.69 187 | 54.74 74 | 90.56 24 | 83.99 140 | 68.26 32 | 74.10 52 | 90.91 68 | 42.14 145 | 89.99 106 | 79.30 40 | 79.12 95 | 91.36 61 |
| jason: jason. |
| VDDNet | | | 74.37 78 | 72.13 99 | 81.09 19 | 79.58 188 | 56.52 32 | 90.02 26 | 86.70 72 | 52.61 279 | 71.23 87 | 87.20 143 | 31.75 270 | 93.96 25 | 74.30 79 | 75.77 124 | 92.79 23 |
|
| test1111 | | | 71.06 133 | 70.42 124 | 72.97 199 | 79.48 189 | 41.49 323 | 84.82 138 | 82.74 164 | 64.20 88 | 62.98 169 | 87.43 140 | 35.20 232 | 87.92 173 | 58.54 181 | 78.42 102 | 89.49 107 |
|
| test222 | | | | | | 79.36 190 | 50.97 162 | 77.99 274 | 67.84 343 | 42.54 342 | 62.84 171 | 86.53 153 | 30.26 279 | | | 76.91 111 | 85.23 196 |
|
| cascas | | | 69.01 169 | 66.13 198 | 77.66 79 | 79.36 190 | 55.41 53 | 86.99 78 | 83.75 143 | 56.69 238 | 58.92 218 | 81.35 227 | 24.31 320 | 92.10 52 | 53.23 227 | 70.61 169 | 85.46 194 |
|
| 1314 | | | 71.11 132 | 69.41 141 | 76.22 114 | 79.32 192 | 50.49 170 | 80.23 255 | 85.14 110 | 59.44 176 | 58.93 217 | 88.89 112 | 33.83 250 | 89.60 117 | 61.49 156 | 77.42 108 | 88.57 131 |
|
| LCM-MVSNet-Re | | | 58.82 286 | 56.54 285 | 65.68 301 | 79.31 193 | 29.09 374 | 61.39 356 | 45.79 372 | 60.73 157 | 37.65 360 | 72.47 319 | 31.42 272 | 81.08 286 | 49.66 252 | 70.41 172 | 86.87 162 |
|
| WB-MVSnew | | | 69.36 165 | 68.24 157 | 72.72 204 | 79.26 194 | 49.40 199 | 85.72 106 | 88.85 30 | 61.33 142 | 64.59 145 | 82.38 212 | 34.57 241 | 87.53 193 | 46.82 274 | 70.63 168 | 81.22 269 |
|
| CNLPA | | | 60.59 270 | 58.44 274 | 67.05 292 | 79.21 195 | 47.26 256 | 79.75 260 | 64.34 352 | 42.46 343 | 51.90 298 | 83.94 180 | 27.79 295 | 75.41 337 | 37.12 309 | 59.49 259 | 78.47 298 |
|
| EPP-MVSNet | | | 71.14 130 | 70.07 133 | 74.33 165 | 79.18 196 | 46.52 265 | 83.81 167 | 86.49 74 | 56.32 245 | 57.95 234 | 84.90 171 | 54.23 28 | 89.14 127 | 58.14 189 | 69.65 179 | 87.33 155 |
|
| KD-MVS_2432*1600 | | | 59.04 283 | 56.44 287 | 66.86 293 | 79.07 197 | 45.87 277 | 72.13 314 | 80.42 202 | 55.03 258 | 48.15 316 | 71.01 329 | 36.73 214 | 78.05 317 | 35.21 321 | 30.18 378 | 76.67 317 |
|
| miper_refine_blended | | | 59.04 283 | 56.44 287 | 66.86 293 | 79.07 197 | 45.87 277 | 72.13 314 | 80.42 202 | 55.03 258 | 48.15 316 | 71.01 329 | 36.73 214 | 78.05 317 | 35.21 321 | 30.18 378 | 76.67 317 |
|
| HQP-NCC | | | | | | 79.02 199 | | 88.00 53 | | 65.45 71 | 64.48 147 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 199 | | 88.00 53 | | 65.45 71 | 64.48 147 | | | | | | |
|
| HQP-MVS | | | 72.34 111 | 71.44 110 | 75.03 152 | 79.02 199 | 51.56 151 | 88.00 53 | 83.68 144 | 65.45 71 | 64.48 147 | 85.13 166 | 37.35 202 | 88.62 146 | 66.70 116 | 73.12 145 | 84.91 202 |
|
| miper_enhance_ethall | | | 69.77 157 | 68.90 149 | 72.38 213 | 78.93 202 | 49.91 186 | 83.29 185 | 78.85 234 | 64.90 81 | 59.37 208 | 79.46 241 | 52.77 34 | 85.16 253 | 63.78 139 | 58.72 265 | 82.08 247 |
|
| UA-Net | | | 67.32 207 | 66.23 196 | 70.59 249 | 78.85 203 | 41.23 326 | 73.60 300 | 75.45 289 | 61.54 139 | 66.61 117 | 84.53 172 | 38.73 183 | 86.57 221 | 42.48 297 | 74.24 137 | 83.98 218 |
|
| NP-MVS | | | | | | 78.76 204 | 50.43 172 | | | | | 85.12 167 | | | | | |
|
| VPA-MVSNet | | | 71.12 131 | 70.66 120 | 72.49 210 | 78.75 205 | 44.43 293 | 87.64 60 | 90.02 13 | 63.97 94 | 65.02 137 | 81.58 225 | 42.14 145 | 87.42 195 | 63.42 142 | 63.38 231 | 85.63 192 |
|
| Test_1112_low_res | | | 67.18 210 | 66.23 196 | 70.02 261 | 78.75 205 | 41.02 327 | 83.43 178 | 73.69 304 | 57.29 225 | 58.45 230 | 82.39 211 | 45.30 101 | 80.88 288 | 50.50 247 | 66.26 208 | 88.16 136 |
|
| test-LLR | | | 69.65 161 | 69.01 148 | 71.60 233 | 78.67 207 | 48.17 235 | 85.13 122 | 79.72 215 | 59.18 186 | 63.13 167 | 82.58 206 | 36.91 211 | 80.24 298 | 60.56 165 | 75.17 130 | 86.39 175 |
|
| test-mter | | | 68.36 182 | 67.29 176 | 71.60 233 | 78.67 207 | 48.17 235 | 85.13 122 | 79.72 215 | 53.38 273 | 63.13 167 | 82.58 206 | 27.23 298 | 80.24 298 | 60.56 165 | 75.17 130 | 86.39 175 |
|
| EPNet_dtu | | | 66.25 228 | 66.71 185 | 64.87 309 | 78.66 209 | 34.12 351 | 82.80 197 | 75.51 287 | 61.75 135 | 64.47 150 | 86.90 147 | 37.06 208 | 72.46 351 | 43.65 290 | 69.63 180 | 88.02 142 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| VPNet | | | 72.07 116 | 71.42 111 | 74.04 173 | 78.64 210 | 47.17 259 | 89.91 31 | 87.97 50 | 72.56 9 | 64.66 141 | 85.04 168 | 41.83 152 | 88.33 160 | 61.17 159 | 60.97 249 | 86.62 170 |
|
| SCA | | | 63.84 242 | 60.01 264 | 75.32 141 | 78.58 211 | 57.92 10 | 61.61 354 | 77.53 260 | 56.71 237 | 57.75 240 | 70.77 332 | 31.97 266 | 79.91 304 | 48.80 259 | 56.36 289 | 88.13 139 |
|
| diffmvs |  | | 75.11 72 | 74.65 68 | 76.46 110 | 78.52 212 | 53.35 110 | 83.28 186 | 79.94 210 | 70.51 19 | 71.64 81 | 88.72 114 | 46.02 91 | 86.08 235 | 77.52 56 | 75.75 125 | 89.96 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IS-MVSNet | | | 68.80 175 | 67.55 172 | 72.54 208 | 78.50 213 | 43.43 304 | 81.03 240 | 79.35 227 | 59.12 189 | 57.27 251 | 86.71 150 | 46.05 90 | 87.70 184 | 44.32 287 | 75.60 126 | 86.49 172 |
|
| TAPA-MVS | | 56.12 14 | 61.82 264 | 60.18 263 | 66.71 295 | 78.48 214 | 37.97 340 | 75.19 291 | 76.41 281 | 46.82 315 | 57.04 252 | 86.52 154 | 27.67 296 | 77.03 327 | 26.50 360 | 67.02 197 | 85.14 197 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| plane_prior6 | | | | | | 78.42 215 | 49.39 200 | | | | | | 36.04 225 | | | | |
|
| OpenMVS |  | 61.00 11 | 69.99 153 | 67.55 172 | 77.30 88 | 78.37 216 | 54.07 93 | 84.36 150 | 85.76 88 | 57.22 227 | 56.71 256 | 87.67 136 | 30.79 276 | 92.83 35 | 43.04 292 | 84.06 54 | 85.01 200 |
|
| plane_prior1 | | | | | | 78.31 217 | | | | | | | | | | | |
|
| tttt0517 | | | 68.33 184 | 66.29 194 | 74.46 160 | 78.08 218 | 49.06 204 | 80.88 245 | 89.08 22 | 54.40 266 | 54.75 274 | 80.77 232 | 51.31 44 | 90.33 96 | 49.35 255 | 58.01 277 | 83.99 216 |
|
| cl22 | | | 68.85 171 | 67.69 168 | 72.35 214 | 78.07 219 | 49.98 185 | 82.45 207 | 78.48 246 | 62.50 125 | 58.46 229 | 77.95 255 | 49.99 56 | 85.17 252 | 62.55 147 | 58.72 265 | 81.90 250 |
|
| HQP_MVS | | | 70.96 136 | 69.91 135 | 74.12 171 | 77.95 220 | 49.57 192 | 85.76 101 | 82.59 165 | 63.60 102 | 62.15 179 | 83.28 193 | 36.04 225 | 88.30 162 | 65.46 128 | 72.34 153 | 84.49 206 |
|
| plane_prior7 | | | | | | 77.95 220 | 48.46 226 | | | | | | | | | | |
|
| FIs | | | 70.00 152 | 70.24 131 | 69.30 267 | 77.93 222 | 38.55 337 | 83.99 162 | 87.72 57 | 66.86 51 | 57.66 241 | 84.17 178 | 52.28 38 | 85.31 248 | 52.72 237 | 68.80 183 | 84.02 214 |
|
| PatchMatch-RL | | | 56.66 298 | 53.75 303 | 65.37 306 | 77.91 223 | 45.28 284 | 69.78 327 | 60.38 358 | 41.35 344 | 47.57 321 | 73.73 304 | 16.83 358 | 76.91 328 | 36.99 312 | 59.21 262 | 73.92 341 |
|
| XXY-MVS | | | 70.18 146 | 69.28 146 | 72.89 202 | 77.64 224 | 42.88 310 | 85.06 126 | 87.50 61 | 62.58 122 | 62.66 174 | 82.34 215 | 43.64 127 | 89.83 109 | 58.42 184 | 63.70 225 | 85.96 184 |
|
| testing3 | | | 59.97 272 | 60.19 262 | 59.32 335 | 77.60 225 | 30.01 368 | 81.75 223 | 81.79 179 | 53.54 271 | 50.34 307 | 79.94 236 | 48.99 64 | 76.91 328 | 17.19 382 | 50.59 328 | 71.03 358 |
|
| testdata | | | | | 67.08 291 | 77.59 226 | 45.46 282 | | 69.20 339 | 44.47 331 | 71.50 84 | 88.34 123 | 31.21 273 | 70.76 357 | 52.20 239 | 75.88 122 | 85.03 199 |
|
| CDS-MVSNet | | | 70.48 144 | 69.43 140 | 73.64 187 | 77.56 227 | 48.83 214 | 83.51 175 | 77.45 262 | 63.27 110 | 62.33 176 | 85.54 164 | 43.85 119 | 83.29 274 | 57.38 202 | 74.00 138 | 88.79 125 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Vis-MVSNet (Re-imp) | | | 65.52 234 | 65.63 211 | 65.17 307 | 77.49 228 | 30.54 363 | 75.49 289 | 77.73 257 | 59.34 179 | 52.26 296 | 86.69 151 | 49.38 62 | 80.53 295 | 37.07 311 | 75.28 129 | 84.42 208 |
|
| PVSNet_0 | | 57.04 13 | 61.19 267 | 57.24 280 | 73.02 197 | 77.45 229 | 50.31 179 | 79.43 265 | 77.36 265 | 63.96 95 | 47.51 323 | 72.45 320 | 25.03 314 | 83.78 267 | 52.76 236 | 19.22 390 | 84.96 201 |
|
| FMVSNet1 | | | 64.57 236 | 62.11 242 | 71.96 223 | 77.32 230 | 46.36 267 | 83.52 171 | 83.31 151 | 52.43 281 | 54.42 277 | 76.23 284 | 27.80 294 | 86.20 226 | 42.59 296 | 61.34 248 | 83.32 229 |
|
| MVS_111021_LR | | | 69.07 167 | 67.91 161 | 72.54 208 | 77.27 231 | 49.56 194 | 79.77 259 | 73.96 302 | 59.33 181 | 60.73 192 | 87.82 132 | 30.19 280 | 81.53 282 | 69.94 100 | 72.19 155 | 86.53 171 |
|
| xiu_mvs_v1_base_debu | | | 71.60 124 | 70.29 128 | 75.55 133 | 77.26 232 | 53.15 116 | 85.34 113 | 79.37 223 | 55.83 248 | 72.54 69 | 90.19 85 | 22.38 331 | 86.66 216 | 73.28 86 | 76.39 116 | 86.85 164 |
|
| xiu_mvs_v1_base | | | 71.60 124 | 70.29 128 | 75.55 133 | 77.26 232 | 53.15 116 | 85.34 113 | 79.37 223 | 55.83 248 | 72.54 69 | 90.19 85 | 22.38 331 | 86.66 216 | 73.28 86 | 76.39 116 | 86.85 164 |
|
| xiu_mvs_v1_base_debi | | | 71.60 124 | 70.29 128 | 75.55 133 | 77.26 232 | 53.15 116 | 85.34 113 | 79.37 223 | 55.83 248 | 72.54 69 | 90.19 85 | 22.38 331 | 86.66 216 | 73.28 86 | 76.39 116 | 86.85 164 |
|
| FMVSNet5 | | | 58.61 288 | 56.45 286 | 65.10 308 | 77.20 235 | 39.74 331 | 74.77 292 | 77.12 268 | 50.27 296 | 43.28 340 | 67.71 343 | 26.15 306 | 76.90 330 | 36.78 314 | 54.78 308 | 78.65 296 |
|
| PCF-MVS | | 61.03 10 | 70.10 148 | 68.40 154 | 75.22 149 | 77.15 236 | 51.99 140 | 79.30 266 | 82.12 171 | 56.47 243 | 61.88 182 | 86.48 155 | 43.98 118 | 87.24 199 | 55.37 215 | 72.79 150 | 86.43 174 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HyFIR lowres test | | | 69.94 155 | 67.58 170 | 77.04 95 | 77.11 237 | 57.29 20 | 81.49 234 | 79.11 232 | 58.27 203 | 58.86 220 | 80.41 234 | 42.33 141 | 86.96 207 | 61.91 153 | 68.68 185 | 86.87 162 |
|
| fmvsm_s_conf0.5_n | | | 74.48 75 | 74.12 72 | 75.56 132 | 76.96 238 | 47.85 247 | 85.32 116 | 69.80 335 | 64.16 89 | 78.74 28 | 93.48 16 | 45.51 99 | 89.29 122 | 86.48 8 | 66.62 200 | 89.55 105 |
|
| miper_ehance_all_eth | | | 68.70 179 | 67.58 170 | 72.08 218 | 76.91 239 | 49.48 198 | 82.47 206 | 78.45 247 | 62.68 120 | 58.28 233 | 77.88 257 | 50.90 48 | 85.01 256 | 61.91 153 | 58.72 265 | 81.75 252 |
|
| test_0402 | | | 56.45 301 | 53.03 305 | 66.69 296 | 76.78 240 | 50.31 179 | 81.76 222 | 69.61 336 | 42.79 341 | 43.88 335 | 72.13 324 | 22.82 329 | 86.46 222 | 16.57 383 | 50.94 327 | 63.31 372 |
|
| ACMH | | 53.70 16 | 59.78 273 | 55.94 292 | 71.28 238 | 76.59 241 | 48.35 229 | 80.15 257 | 76.11 282 | 49.74 299 | 41.91 345 | 73.45 311 | 16.50 361 | 90.31 97 | 31.42 338 | 57.63 284 | 75.17 331 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| AUN-MVS | | | 68.20 188 | 66.35 192 | 73.76 183 | 76.37 242 | 47.45 252 | 79.52 263 | 79.52 220 | 60.98 150 | 62.34 175 | 86.02 157 | 36.59 219 | 86.94 208 | 62.32 149 | 53.47 319 | 86.89 161 |
|
| hse-mvs2 | | | 71.44 128 | 70.68 119 | 73.73 185 | 76.34 243 | 47.44 253 | 79.45 264 | 79.47 222 | 68.08 34 | 71.97 77 | 86.01 159 | 42.50 139 | 86.93 209 | 78.82 44 | 53.46 320 | 86.83 167 |
|
| cl____ | | | 67.43 203 | 65.93 204 | 71.95 226 | 76.33 244 | 48.02 241 | 82.58 201 | 79.12 231 | 61.30 144 | 56.72 255 | 76.92 273 | 46.12 88 | 86.44 223 | 57.98 191 | 56.31 291 | 81.38 264 |
|
| DIV-MVS_self_test | | | 67.43 203 | 65.93 204 | 71.94 227 | 76.33 244 | 48.01 242 | 82.57 202 | 79.11 232 | 61.31 143 | 56.73 254 | 76.92 273 | 46.09 89 | 86.43 224 | 57.98 191 | 56.31 291 | 81.39 263 |
|
| TAMVS | | | 69.51 164 | 68.16 159 | 73.56 190 | 76.30 246 | 48.71 218 | 82.57 202 | 77.17 267 | 62.10 129 | 61.32 187 | 84.23 177 | 41.90 150 | 83.46 272 | 54.80 219 | 73.09 147 | 88.50 134 |
|
| tfpnnormal | | | 61.47 266 | 59.09 270 | 68.62 278 | 76.29 247 | 41.69 319 | 81.14 239 | 85.16 108 | 54.48 265 | 51.32 300 | 73.63 308 | 32.32 262 | 86.89 211 | 21.78 373 | 55.71 301 | 77.29 313 |
|
| c3_l | | | 67.97 189 | 66.66 187 | 71.91 229 | 76.20 248 | 49.31 201 | 82.13 213 | 78.00 253 | 61.99 131 | 57.64 242 | 76.94 272 | 49.41 61 | 84.93 257 | 60.62 164 | 57.01 287 | 81.49 256 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 59 | 76.07 49 | 75.31 142 | 76.08 249 | 48.34 230 | 85.24 118 | 70.62 328 | 63.13 113 | 81.45 17 | 93.62 14 | 49.98 57 | 87.40 196 | 87.76 6 | 76.77 113 | 90.20 89 |
|
| FC-MVSNet-test | | | 67.49 201 | 67.91 161 | 66.21 299 | 76.06 250 | 33.06 356 | 80.82 246 | 87.18 62 | 64.44 85 | 54.81 272 | 82.87 196 | 50.40 53 | 82.60 276 | 48.05 265 | 66.55 202 | 82.98 239 |
|
| MVS-HIRNet | | | 49.01 330 | 44.71 334 | 61.92 325 | 76.06 250 | 46.61 264 | 63.23 348 | 54.90 365 | 24.77 377 | 33.56 370 | 36.60 385 | 21.28 340 | 75.88 335 | 29.49 344 | 62.54 241 | 63.26 373 |
|
| MVP-Stereo | | | 70.97 135 | 70.44 123 | 72.59 207 | 76.03 252 | 51.36 156 | 85.02 129 | 86.99 66 | 60.31 162 | 56.53 259 | 78.92 249 | 40.11 170 | 90.00 105 | 60.00 173 | 90.01 6 | 76.41 323 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| fmvsm_l_conf0.5_n | | | 75.95 57 | 76.16 48 | 75.31 142 | 76.01 253 | 48.44 227 | 84.98 130 | 71.08 324 | 63.50 105 | 81.70 16 | 93.52 15 | 50.00 55 | 87.18 200 | 87.80 5 | 76.87 112 | 90.32 84 |
|
| nrg030 | | | 72.27 115 | 71.56 107 | 74.42 162 | 75.93 254 | 50.60 167 | 86.97 79 | 83.21 155 | 62.75 118 | 67.15 112 | 84.38 173 | 50.07 54 | 86.66 216 | 71.19 93 | 62.37 243 | 85.99 182 |
|
| WR-MVS | | | 67.58 198 | 66.76 184 | 70.04 260 | 75.92 255 | 45.06 289 | 86.23 92 | 85.28 102 | 64.31 86 | 58.50 227 | 81.00 228 | 44.80 113 | 82.00 281 | 49.21 257 | 55.57 302 | 83.06 237 |
|
| MIMVSNet | | | 63.12 251 | 60.29 261 | 71.61 232 | 75.92 255 | 46.65 263 | 65.15 340 | 81.94 174 | 59.14 188 | 54.65 275 | 69.47 338 | 25.74 308 | 80.63 292 | 41.03 299 | 69.56 181 | 87.55 151 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 173 | 68.29 156 | 70.40 253 | 75.71 257 | 42.59 313 | 84.23 154 | 86.78 69 | 66.31 59 | 58.51 225 | 82.45 209 | 51.57 42 | 84.64 261 | 53.11 228 | 55.96 297 | 83.96 220 |
|
| eth_miper_zixun_eth | | | 66.98 217 | 65.28 220 | 72.06 219 | 75.61 258 | 50.40 173 | 81.00 241 | 76.97 273 | 62.00 130 | 56.99 253 | 76.97 271 | 44.84 110 | 85.58 243 | 58.75 179 | 54.42 311 | 80.21 281 |
|
| OPM-MVS | | | 70.75 140 | 69.58 139 | 74.26 168 | 75.55 259 | 51.34 157 | 86.05 96 | 83.29 154 | 61.94 133 | 62.95 170 | 85.77 160 | 34.15 245 | 88.44 154 | 65.44 131 | 71.07 164 | 82.99 238 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| fmvsm_s_conf0.5_n_a | | | 73.68 91 | 73.15 80 | 75.29 145 | 75.45 260 | 48.05 240 | 83.88 165 | 68.84 340 | 63.43 107 | 78.60 29 | 93.37 20 | 45.32 100 | 88.92 139 | 85.39 11 | 64.04 220 | 88.89 121 |
|
| Effi-MVS+-dtu | | | 66.24 229 | 64.96 225 | 70.08 258 | 75.17 261 | 49.64 191 | 82.01 214 | 74.48 295 | 62.15 128 | 57.83 236 | 76.08 288 | 30.59 277 | 83.79 266 | 65.40 133 | 60.93 250 | 76.81 316 |
|
| GA-MVS | | | 69.04 168 | 66.70 186 | 76.06 121 | 75.11 262 | 52.36 134 | 83.12 190 | 80.23 205 | 63.32 109 | 60.65 193 | 79.22 246 | 30.98 275 | 88.37 156 | 61.25 157 | 66.41 203 | 87.46 153 |
|
| IterMVS-LS | | | 66.63 222 | 65.36 219 | 70.42 252 | 75.10 263 | 48.90 212 | 81.45 235 | 76.69 277 | 61.05 148 | 55.71 265 | 77.10 269 | 45.86 93 | 83.65 269 | 57.44 200 | 57.88 281 | 78.70 294 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| miper_lstm_enhance | | | 63.91 241 | 62.30 240 | 68.75 275 | 75.06 264 | 46.78 261 | 69.02 329 | 81.14 190 | 59.68 172 | 52.76 291 | 72.39 321 | 40.71 163 | 77.99 319 | 56.81 206 | 53.09 321 | 81.48 258 |
|
| mvsmamba | | | 66.93 219 | 64.88 226 | 73.09 196 | 75.06 264 | 47.26 256 | 83.36 184 | 69.21 338 | 62.64 121 | 55.68 266 | 81.43 226 | 29.72 282 | 89.20 126 | 63.35 143 | 63.50 227 | 82.79 242 |
|
| EI-MVSNet | | | 69.70 160 | 68.70 150 | 72.68 205 | 75.00 266 | 48.90 212 | 79.54 261 | 87.16 63 | 61.05 148 | 63.88 159 | 83.74 184 | 45.87 92 | 90.44 92 | 57.42 201 | 64.68 217 | 78.70 294 |
|
| CVMVSNet | | | 60.85 269 | 60.44 259 | 62.07 321 | 75.00 266 | 32.73 358 | 79.54 261 | 73.49 307 | 36.98 355 | 56.28 262 | 83.74 184 | 29.28 286 | 69.53 360 | 46.48 275 | 63.23 233 | 83.94 221 |
|
| ACMP | | 61.11 9 | 66.24 229 | 64.33 230 | 72.00 222 | 74.89 268 | 49.12 203 | 83.18 189 | 79.83 213 | 55.41 254 | 52.29 294 | 82.68 203 | 25.83 307 | 86.10 232 | 60.89 160 | 63.94 223 | 80.78 273 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MSDG | | | 59.44 276 | 55.14 296 | 72.32 215 | 74.69 269 | 50.71 164 | 74.39 296 | 73.58 305 | 44.44 332 | 43.40 339 | 77.52 261 | 19.45 345 | 90.87 81 | 31.31 339 | 57.49 285 | 75.38 329 |
|
| ACMH+ | | 54.58 15 | 58.55 290 | 55.24 294 | 68.50 281 | 74.68 270 | 45.80 279 | 80.27 253 | 70.21 331 | 47.15 313 | 42.77 342 | 75.48 292 | 16.73 360 | 85.98 237 | 35.10 325 | 54.78 308 | 73.72 342 |
|
| dmvs_testset | | | 57.65 294 | 58.21 275 | 55.97 346 | 74.62 271 | 9.82 402 | 63.75 345 | 63.34 354 | 67.23 46 | 48.89 313 | 83.68 188 | 39.12 179 | 76.14 333 | 23.43 368 | 59.80 255 | 81.96 249 |
|
| test_fmvsm_n_1920 | | | 75.56 65 | 75.54 54 | 75.61 130 | 74.60 272 | 49.51 197 | 81.82 221 | 74.08 299 | 66.52 56 | 80.40 21 | 93.46 17 | 46.95 79 | 89.72 113 | 86.69 7 | 75.30 128 | 87.61 150 |
|
| UniMVSNet (Re) | | | 67.71 195 | 66.80 183 | 70.45 251 | 74.44 273 | 42.93 309 | 82.42 208 | 84.90 115 | 63.69 100 | 59.63 202 | 80.99 229 | 47.18 76 | 85.23 251 | 51.17 245 | 56.75 288 | 83.19 234 |
|
| LPG-MVS_test | | | 66.44 226 | 64.58 228 | 72.02 220 | 74.42 274 | 48.60 219 | 83.07 192 | 80.64 198 | 54.69 263 | 53.75 284 | 83.83 182 | 25.73 309 | 86.98 205 | 60.33 171 | 64.71 214 | 80.48 277 |
|
| LGP-MVS_train | | | | | 72.02 220 | 74.42 274 | 48.60 219 | | 80.64 198 | 54.69 263 | 53.75 284 | 83.83 182 | 25.73 309 | 86.98 205 | 60.33 171 | 64.71 214 | 80.48 277 |
|
| Baseline_NR-MVSNet | | | 65.49 235 | 64.27 231 | 69.13 268 | 74.37 276 | 41.65 320 | 83.39 182 | 78.85 234 | 59.56 173 | 59.62 203 | 76.88 275 | 40.75 161 | 87.44 194 | 49.99 249 | 55.05 305 | 78.28 303 |
|
| ACMM | | 58.35 12 | 64.35 238 | 62.01 243 | 71.38 237 | 74.21 277 | 48.51 223 | 82.25 210 | 79.66 217 | 47.61 310 | 54.54 276 | 80.11 235 | 25.26 312 | 86.00 236 | 51.26 243 | 63.16 235 | 79.64 286 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_fmvsmconf_n | | | 74.41 77 | 74.05 74 | 75.49 136 | 74.16 278 | 48.38 228 | 82.66 199 | 72.57 312 | 67.05 49 | 75.11 43 | 92.88 31 | 46.35 86 | 87.81 176 | 83.93 17 | 71.71 158 | 90.28 85 |
|
| CHOSEN 280x420 | | | 57.53 296 | 56.38 289 | 60.97 331 | 74.01 279 | 48.10 239 | 46.30 375 | 54.31 366 | 48.18 308 | 50.88 305 | 77.43 264 | 38.37 186 | 59.16 373 | 54.83 217 | 63.14 236 | 75.66 327 |
|
| TransMVSNet (Re) | | | 62.82 254 | 60.76 256 | 69.02 269 | 73.98 280 | 41.61 321 | 86.36 89 | 79.30 230 | 56.90 231 | 52.53 292 | 76.44 280 | 41.85 151 | 87.60 191 | 38.83 304 | 40.61 359 | 77.86 307 |
|
| CR-MVSNet | | | 62.47 259 | 59.04 271 | 72.77 203 | 73.97 281 | 56.57 29 | 60.52 357 | 71.72 318 | 60.04 165 | 57.49 246 | 65.86 348 | 38.94 180 | 80.31 297 | 42.86 294 | 59.93 253 | 81.42 260 |
|
| RPMNet | | | 59.29 277 | 54.25 300 | 74.42 162 | 73.97 281 | 56.57 29 | 60.52 357 | 76.98 270 | 35.72 359 | 57.49 246 | 58.87 367 | 37.73 193 | 85.26 250 | 27.01 358 | 59.93 253 | 81.42 260 |
|
| RRT_MVS | | | 63.68 245 | 61.01 254 | 71.70 231 | 73.48 283 | 45.98 275 | 81.19 237 | 76.08 283 | 54.33 267 | 52.84 290 | 79.27 244 | 22.21 334 | 87.65 186 | 54.13 222 | 55.54 303 | 81.46 259 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 218 | 65.61 212 | 70.93 246 | 73.45 284 | 43.38 305 | 83.02 194 | 84.25 132 | 65.31 78 | 58.33 232 | 81.90 221 | 39.92 174 | 85.52 244 | 49.43 254 | 54.89 307 | 83.89 222 |
|
| Patchmatch-test | | | 53.33 318 | 48.17 327 | 68.81 273 | 73.31 285 | 42.38 317 | 42.98 378 | 58.23 361 | 32.53 365 | 38.79 357 | 70.77 332 | 39.66 175 | 73.51 346 | 25.18 362 | 52.06 325 | 90.55 77 |
|
| EG-PatchMatch MVS | | | 62.40 261 | 59.59 265 | 70.81 247 | 73.29 286 | 49.05 205 | 85.81 99 | 84.78 119 | 51.85 286 | 44.19 334 | 73.48 310 | 15.52 364 | 89.85 108 | 40.16 301 | 67.24 195 | 73.54 344 |
|
| fmvsm_s_conf0.1_n | | | 73.80 86 | 73.26 79 | 75.43 137 | 73.28 287 | 47.80 248 | 84.57 147 | 69.43 337 | 63.34 108 | 78.40 31 | 93.29 22 | 44.73 114 | 89.22 124 | 85.99 9 | 66.28 207 | 89.26 110 |
|
| DU-MVS | | | 66.84 221 | 65.74 209 | 70.16 256 | 73.27 288 | 42.59 313 | 81.50 232 | 82.92 162 | 63.53 104 | 58.51 225 | 82.11 218 | 40.75 161 | 84.64 261 | 53.11 228 | 55.96 297 | 83.24 232 |
|
| NR-MVSNet | | | 67.25 208 | 65.99 202 | 71.04 244 | 73.27 288 | 43.91 298 | 85.32 116 | 84.75 121 | 66.05 67 | 53.65 286 | 82.11 218 | 45.05 104 | 85.97 239 | 47.55 267 | 56.18 294 | 83.24 232 |
|
| PS-MVSNAJss | | | 68.78 176 | 67.17 179 | 73.62 189 | 73.01 290 | 48.33 232 | 84.95 133 | 84.81 118 | 59.30 182 | 58.91 219 | 79.84 239 | 37.77 190 | 88.86 140 | 62.83 146 | 63.12 237 | 83.67 226 |
|
| OMC-MVS | | | 65.97 232 | 65.06 223 | 68.71 276 | 72.97 291 | 42.58 315 | 78.61 270 | 75.35 290 | 54.72 262 | 59.31 210 | 86.25 156 | 33.30 253 | 77.88 321 | 57.99 190 | 67.05 196 | 85.66 190 |
|
| PatchT | | | 56.60 299 | 52.97 306 | 67.48 287 | 72.94 292 | 46.16 274 | 57.30 365 | 73.78 303 | 38.77 349 | 54.37 278 | 57.26 370 | 37.52 199 | 78.06 316 | 32.02 335 | 52.79 322 | 78.23 305 |
|
| v8 | | | 67.25 208 | 64.99 224 | 74.04 173 | 72.89 293 | 53.31 113 | 82.37 209 | 80.11 207 | 61.54 139 | 54.29 279 | 76.02 289 | 42.89 137 | 88.41 155 | 58.43 182 | 56.36 289 | 80.39 279 |
|
| F-COLMAP | | | 55.96 306 | 53.65 304 | 62.87 319 | 72.76 294 | 42.77 312 | 74.70 295 | 70.37 330 | 40.03 346 | 41.11 350 | 79.36 242 | 17.77 354 | 73.70 345 | 32.80 334 | 53.96 314 | 72.15 350 |
|
| IterMVS | | | 63.77 244 | 61.67 244 | 70.08 258 | 72.68 295 | 51.24 160 | 80.44 250 | 75.51 287 | 60.51 160 | 51.41 299 | 73.70 307 | 32.08 265 | 78.91 309 | 54.30 221 | 54.35 312 | 80.08 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v10 | | | 66.61 223 | 64.20 232 | 73.83 181 | 72.59 296 | 53.37 109 | 81.88 218 | 79.91 212 | 61.11 146 | 54.09 281 | 75.60 291 | 40.06 171 | 88.26 165 | 56.47 208 | 56.10 295 | 79.86 285 |
|
| Patchmtry | | | 56.56 300 | 52.95 307 | 67.42 288 | 72.53 297 | 50.59 168 | 59.05 361 | 71.72 318 | 37.86 353 | 46.92 326 | 65.86 348 | 38.94 180 | 80.06 301 | 36.94 313 | 46.72 345 | 71.60 354 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 224 | 64.10 233 | 73.84 180 | 72.41 298 | 52.30 137 | 84.73 139 | 75.66 286 | 59.51 174 | 56.34 261 | 79.11 248 | 28.11 290 | 85.85 242 | 57.74 198 | 63.29 232 | 83.35 228 |
|
| v1144 | | | 68.81 174 | 66.82 182 | 74.80 156 | 72.34 299 | 53.46 103 | 84.68 142 | 81.77 181 | 64.25 87 | 60.28 195 | 77.91 256 | 40.23 167 | 88.95 136 | 60.37 170 | 59.52 257 | 81.97 248 |
|
| v2v482 | | | 69.55 163 | 67.64 169 | 75.26 148 | 72.32 300 | 53.83 94 | 84.93 134 | 81.94 174 | 65.37 76 | 60.80 191 | 79.25 245 | 41.62 153 | 88.98 135 | 63.03 145 | 59.51 258 | 82.98 239 |
|
| test0.0.03 1 | | | 62.54 256 | 62.44 239 | 62.86 320 | 72.28 301 | 29.51 371 | 82.93 195 | 78.78 237 | 59.18 186 | 53.07 289 | 82.41 210 | 36.91 211 | 77.39 325 | 37.45 307 | 58.96 263 | 81.66 254 |
|
| v1192 | | | 67.96 190 | 65.74 209 | 74.63 157 | 71.79 302 | 53.43 108 | 84.06 160 | 80.99 194 | 63.19 112 | 59.56 204 | 77.46 263 | 37.50 201 | 88.65 145 | 58.20 188 | 58.93 264 | 81.79 251 |
|
| v148 | | | 68.24 187 | 66.35 192 | 73.88 178 | 71.76 303 | 51.47 154 | 84.23 154 | 81.90 178 | 63.69 100 | 58.94 216 | 76.44 280 | 43.72 125 | 87.78 181 | 60.63 163 | 55.86 299 | 82.39 245 |
|
| v144192 | | | 67.86 191 | 65.76 208 | 74.16 170 | 71.68 304 | 53.09 119 | 84.14 157 | 80.83 196 | 62.85 117 | 59.21 213 | 77.28 266 | 39.30 177 | 88.00 172 | 58.67 180 | 57.88 281 | 81.40 262 |
|
| pm-mvs1 | | | 64.12 240 | 62.56 238 | 68.78 274 | 71.68 304 | 38.87 335 | 82.89 196 | 81.57 182 | 55.54 253 | 53.89 283 | 77.82 258 | 37.73 193 | 86.74 213 | 48.46 263 | 53.49 318 | 80.72 274 |
|
| MDA-MVSNet-bldmvs | | | 51.56 325 | 47.75 331 | 63.00 318 | 71.60 306 | 47.32 255 | 69.70 328 | 72.12 315 | 43.81 336 | 27.65 382 | 63.38 354 | 21.97 337 | 75.96 334 | 27.30 357 | 32.19 375 | 65.70 369 |
|
| v1921920 | | | 67.45 202 | 65.23 221 | 74.10 172 | 71.51 307 | 52.90 125 | 83.75 169 | 80.44 201 | 62.48 126 | 59.12 214 | 77.13 267 | 36.98 209 | 87.90 174 | 57.53 199 | 58.14 275 | 81.49 256 |
|
| our_test_3 | | | 59.11 281 | 55.08 297 | 71.18 242 | 71.42 308 | 53.29 114 | 81.96 215 | 74.52 294 | 48.32 306 | 42.08 343 | 69.28 340 | 28.14 289 | 82.15 278 | 34.35 327 | 45.68 349 | 78.11 306 |
|
| ppachtmachnet_test | | | 58.56 289 | 54.34 298 | 71.24 239 | 71.42 308 | 54.74 74 | 81.84 220 | 72.27 314 | 49.02 303 | 45.86 333 | 68.99 341 | 26.27 303 | 83.30 273 | 30.12 342 | 43.23 354 | 75.69 326 |
|
| v1240 | | | 66.99 216 | 64.68 227 | 73.93 176 | 71.38 310 | 52.66 128 | 83.39 182 | 79.98 209 | 61.97 132 | 58.44 231 | 77.11 268 | 35.25 231 | 87.81 176 | 56.46 209 | 58.15 273 | 81.33 265 |
|
| JIA-IIPM | | | 52.33 323 | 47.77 330 | 66.03 300 | 71.20 311 | 46.92 260 | 40.00 383 | 76.48 280 | 37.10 354 | 46.73 327 | 37.02 383 | 32.96 255 | 77.88 321 | 35.97 316 | 52.45 324 | 73.29 346 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 279 | 56.00 291 | 68.83 272 | 71.13 312 | 44.30 294 | 83.64 170 | 75.02 292 | 46.42 319 | 46.48 330 | 73.03 313 | 18.69 349 | 88.14 166 | 27.74 355 | 61.80 245 | 74.05 340 |
|
| test_fmvsmvis_n_1920 | | | 71.29 129 | 70.38 125 | 74.00 175 | 71.04 313 | 48.79 215 | 79.19 267 | 64.62 350 | 62.75 118 | 66.73 113 | 91.99 47 | 40.94 159 | 88.35 158 | 83.00 20 | 73.18 144 | 84.85 204 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 103 | 72.05 102 | 75.12 150 | 70.95 314 | 47.97 243 | 82.72 198 | 68.43 342 | 62.52 124 | 78.17 32 | 93.08 28 | 44.21 117 | 88.86 140 | 84.82 13 | 63.54 226 | 88.54 132 |
|
| test_fmvsmconf0.1_n | | | 73.69 90 | 73.15 80 | 75.34 140 | 70.71 315 | 48.26 233 | 82.15 211 | 71.83 316 | 66.75 52 | 74.47 50 | 92.59 36 | 44.89 108 | 87.78 181 | 83.59 18 | 71.35 162 | 89.97 96 |
|
| SixPastTwentyTwo | | | 54.37 310 | 50.10 319 | 67.21 289 | 70.70 316 | 41.46 324 | 74.73 293 | 64.69 349 | 47.56 311 | 39.12 355 | 69.49 337 | 18.49 352 | 84.69 260 | 31.87 336 | 34.20 373 | 75.48 328 |
|
| V42 | | | 67.66 196 | 65.60 213 | 73.86 179 | 70.69 317 | 53.63 99 | 81.50 232 | 78.61 243 | 63.85 96 | 59.49 207 | 77.49 262 | 37.98 187 | 87.65 186 | 62.33 148 | 58.43 268 | 80.29 280 |
|
| IterMVS-SCA-FT | | | 59.12 280 | 58.81 273 | 60.08 333 | 70.68 318 | 45.07 286 | 80.42 251 | 74.25 297 | 43.54 338 | 50.02 308 | 73.73 304 | 31.97 266 | 56.74 375 | 51.06 246 | 53.60 317 | 78.42 300 |
|
| pmmvs4 | | | 63.34 249 | 61.07 253 | 70.16 256 | 70.14 319 | 50.53 169 | 79.97 258 | 71.41 323 | 55.08 257 | 54.12 280 | 78.58 251 | 32.79 258 | 82.09 280 | 50.33 248 | 57.22 286 | 77.86 307 |
|
| MDA-MVSNet_test_wron | | | 53.82 315 | 49.95 321 | 65.43 304 | 70.13 320 | 49.05 205 | 72.30 311 | 71.65 321 | 44.23 335 | 31.85 375 | 63.13 355 | 23.68 324 | 74.01 341 | 33.25 332 | 39.35 362 | 73.23 347 |
|
| YYNet1 | | | 53.82 315 | 49.96 320 | 65.41 305 | 70.09 321 | 48.95 209 | 72.30 311 | 71.66 320 | 44.25 334 | 31.89 374 | 63.07 356 | 23.73 323 | 73.95 342 | 33.26 331 | 39.40 361 | 73.34 345 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 319 | 49.74 322 | 61.69 326 | 69.78 322 | 34.99 346 | 44.52 376 | 67.60 345 | 43.11 340 | 43.79 336 | 74.03 301 | 18.54 351 | 81.45 283 | 28.39 352 | 57.94 278 | 68.62 361 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| pmmvs5 | | | 62.80 255 | 61.18 251 | 67.66 286 | 69.53 323 | 42.37 318 | 82.65 200 | 75.19 291 | 54.30 268 | 52.03 297 | 78.51 252 | 31.64 271 | 80.67 291 | 48.60 261 | 58.15 273 | 79.95 284 |
|
| tt0805 | | | 63.39 248 | 61.31 250 | 69.64 263 | 69.36 324 | 38.87 335 | 78.00 273 | 85.48 90 | 48.82 305 | 55.66 269 | 81.66 223 | 24.38 319 | 86.37 225 | 49.04 258 | 59.36 261 | 83.68 225 |
|
| D2MVS | | | 63.49 247 | 61.39 248 | 69.77 262 | 69.29 325 | 48.93 211 | 78.89 269 | 77.71 258 | 60.64 159 | 49.70 309 | 72.10 326 | 27.08 299 | 83.48 271 | 54.48 220 | 62.65 240 | 76.90 315 |
|
| test_vis1_n_1920 | | | 68.59 180 | 68.31 155 | 69.44 266 | 69.16 326 | 41.51 322 | 84.63 145 | 68.58 341 | 58.80 195 | 73.26 61 | 88.37 121 | 25.30 311 | 80.60 293 | 79.10 41 | 67.55 193 | 86.23 177 |
|
| WR-MVS_H | | | 58.91 285 | 58.04 276 | 61.54 327 | 69.07 327 | 33.83 353 | 76.91 280 | 81.99 173 | 51.40 289 | 48.17 315 | 74.67 296 | 40.23 167 | 74.15 340 | 31.78 337 | 48.10 333 | 76.64 320 |
|
| test_djsdf | | | 63.84 242 | 61.56 246 | 70.70 248 | 68.78 328 | 44.69 290 | 81.63 226 | 81.44 185 | 50.28 294 | 52.27 295 | 76.26 283 | 26.72 301 | 86.11 230 | 60.83 161 | 55.84 300 | 81.29 268 |
|
| Anonymous20231206 | | | 59.08 282 | 57.59 278 | 63.55 314 | 68.77 329 | 32.14 361 | 80.26 254 | 79.78 214 | 50.00 298 | 49.39 310 | 72.39 321 | 26.64 302 | 78.36 312 | 33.12 333 | 57.94 278 | 80.14 282 |
|
| K. test v3 | | | 54.04 313 | 49.42 324 | 67.92 285 | 68.55 330 | 42.57 316 | 75.51 288 | 63.07 355 | 52.07 282 | 39.21 354 | 64.59 352 | 19.34 346 | 82.21 277 | 37.11 310 | 25.31 383 | 78.97 291 |
|
| CP-MVSNet | | | 58.54 291 | 57.57 279 | 61.46 328 | 68.50 331 | 33.96 352 | 76.90 281 | 78.60 244 | 51.67 288 | 47.83 318 | 76.60 279 | 34.99 238 | 72.79 349 | 35.45 318 | 47.58 337 | 77.64 311 |
|
| N_pmnet | | | 41.25 339 | 39.77 342 | 45.66 358 | 68.50 331 | 0.82 408 | 72.51 309 | 0.38 407 | 35.61 360 | 35.26 366 | 61.51 359 | 20.07 344 | 67.74 361 | 23.51 367 | 40.63 358 | 68.42 362 |
|
| jajsoiax | | | 63.21 250 | 60.84 255 | 70.32 254 | 68.33 333 | 44.45 292 | 81.23 236 | 81.05 191 | 53.37 274 | 50.96 304 | 77.81 259 | 17.49 355 | 85.49 246 | 59.31 174 | 58.05 276 | 81.02 271 |
|
| UniMVSNet_ETH3D | | | 62.51 257 | 60.49 258 | 68.57 280 | 68.30 334 | 40.88 329 | 73.89 298 | 79.93 211 | 51.81 287 | 54.77 273 | 79.61 240 | 24.80 316 | 81.10 285 | 49.93 250 | 61.35 247 | 83.73 224 |
|
| PS-CasMVS | | | 58.12 293 | 57.03 283 | 61.37 329 | 68.24 335 | 33.80 354 | 76.73 282 | 78.01 252 | 51.20 290 | 47.54 322 | 76.20 287 | 32.85 256 | 72.76 350 | 35.17 323 | 47.37 339 | 77.55 312 |
|
| mvs_tets | | | 62.96 253 | 60.55 257 | 70.19 255 | 68.22 336 | 44.24 296 | 80.90 244 | 80.74 197 | 52.99 277 | 50.82 306 | 77.56 260 | 16.74 359 | 85.44 247 | 59.04 177 | 57.94 278 | 80.89 272 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 327 | 48.05 328 | 59.47 334 | 67.81 337 | 40.57 330 | 71.25 320 | 62.72 357 | 36.49 358 | 36.19 363 | 73.51 309 | 13.48 366 | 73.92 343 | 20.71 375 | 50.26 329 | 63.92 371 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PEN-MVS | | | 58.35 292 | 57.15 281 | 61.94 324 | 67.55 338 | 34.39 348 | 77.01 279 | 78.35 249 | 51.87 285 | 47.72 319 | 76.73 277 | 33.91 247 | 73.75 344 | 34.03 328 | 47.17 341 | 77.68 309 |
|
| v7n | | | 62.50 258 | 59.27 269 | 72.20 216 | 67.25 339 | 49.83 189 | 77.87 275 | 80.12 206 | 52.50 280 | 48.80 314 | 73.07 312 | 32.10 264 | 87.90 174 | 46.83 273 | 54.92 306 | 78.86 292 |
|
| bld_raw_dy_0_64 | | | 59.75 274 | 57.01 284 | 67.96 284 | 66.73 340 | 45.30 283 | 77.59 277 | 59.97 360 | 50.49 293 | 47.15 325 | 77.03 270 | 17.45 356 | 79.06 308 | 56.92 205 | 59.76 256 | 79.51 287 |
|
| test_fmvsmconf0.01_n | | | 71.97 118 | 70.95 117 | 75.04 151 | 66.21 341 | 47.87 246 | 80.35 252 | 70.08 332 | 65.85 70 | 72.69 68 | 91.68 54 | 39.99 172 | 87.67 185 | 82.03 27 | 69.66 178 | 89.58 104 |
|
| pmmvs6 | | | 59.64 275 | 57.15 281 | 67.09 290 | 66.01 342 | 36.86 344 | 80.50 249 | 78.64 241 | 45.05 328 | 49.05 312 | 73.94 302 | 27.28 297 | 86.10 232 | 43.96 289 | 49.94 330 | 78.31 302 |
|
| DTE-MVSNet | | | 57.03 297 | 55.73 293 | 60.95 332 | 65.94 343 | 32.57 359 | 75.71 284 | 77.09 269 | 51.16 291 | 46.65 329 | 76.34 282 | 32.84 257 | 73.22 348 | 30.94 341 | 44.87 350 | 77.06 314 |
|
| CL-MVSNet_self_test | | | 62.98 252 | 61.14 252 | 68.50 281 | 65.86 344 | 42.96 308 | 84.37 149 | 82.98 160 | 60.98 150 | 53.95 282 | 72.70 317 | 40.43 165 | 83.71 268 | 41.10 298 | 47.93 335 | 78.83 293 |
|
| TinyColmap | | | 48.15 332 | 44.49 336 | 59.13 337 | 65.73 345 | 38.04 339 | 63.34 347 | 62.86 356 | 38.78 348 | 29.48 377 | 67.23 346 | 6.46 385 | 73.30 347 | 24.59 364 | 41.90 357 | 66.04 367 |
|
| XVG-OURS | | | 61.88 263 | 59.34 268 | 69.49 264 | 65.37 346 | 46.27 271 | 64.80 342 | 73.49 307 | 47.04 314 | 57.41 250 | 82.85 197 | 25.15 313 | 78.18 313 | 53.00 231 | 64.98 212 | 84.01 215 |
|
| XVG-OURS-SEG-HR | | | 62.02 262 | 59.54 266 | 69.46 265 | 65.30 347 | 45.88 276 | 65.06 341 | 73.57 306 | 46.45 318 | 57.42 249 | 83.35 192 | 26.95 300 | 78.09 315 | 53.77 225 | 64.03 221 | 84.42 208 |
|
| OurMVSNet-221017-0 | | | 52.39 322 | 48.73 325 | 63.35 317 | 65.21 348 | 38.42 338 | 68.54 333 | 64.95 348 | 38.19 350 | 39.57 353 | 71.43 328 | 13.23 367 | 79.92 302 | 37.16 308 | 40.32 360 | 71.72 353 |
|
| test_cas_vis1_n_1920 | | | 67.10 212 | 66.60 189 | 68.59 279 | 65.17 349 | 43.23 306 | 83.23 187 | 69.84 334 | 55.34 255 | 70.67 93 | 87.71 135 | 24.70 318 | 76.66 332 | 78.57 48 | 64.20 219 | 85.89 186 |
|
| AllTest | | | 47.32 333 | 44.66 335 | 55.32 348 | 65.08 350 | 37.50 342 | 62.96 350 | 54.25 367 | 35.45 361 | 33.42 371 | 72.82 314 | 9.98 372 | 59.33 370 | 24.13 365 | 43.84 352 | 69.13 359 |
|
| TestCases | | | | | 55.32 348 | 65.08 350 | 37.50 342 | | 54.25 367 | 35.45 361 | 33.42 371 | 72.82 314 | 9.98 372 | 59.33 370 | 24.13 365 | 43.84 352 | 69.13 359 |
|
| EGC-MVSNET | | | 33.75 348 | 30.42 352 | 43.75 361 | 64.94 352 | 36.21 345 | 60.47 359 | 40.70 381 | 0.02 401 | 0.10 402 | 53.79 373 | 7.39 379 | 60.26 368 | 11.09 389 | 35.23 369 | 34.79 387 |
|
| lessismore_v0 | | | | | 67.98 283 | 64.76 353 | 41.25 325 | | 45.75 373 | | 36.03 364 | 65.63 350 | 19.29 347 | 84.11 263 | 35.67 317 | 21.24 388 | 78.59 297 |
|
| UnsupCasMVSNet_eth | | | 57.56 295 | 55.15 295 | 64.79 310 | 64.57 354 | 33.12 355 | 73.17 305 | 83.87 142 | 58.98 192 | 41.75 346 | 70.03 336 | 22.54 330 | 79.92 302 | 46.12 279 | 35.31 367 | 81.32 267 |
|
| USDC | | | 54.36 311 | 51.23 315 | 63.76 313 | 64.29 355 | 37.71 341 | 62.84 351 | 73.48 309 | 56.85 232 | 35.47 365 | 71.94 327 | 9.23 374 | 78.43 311 | 38.43 305 | 48.57 332 | 75.13 332 |
|
| Patchmatch-RL test | | | 58.72 287 | 54.32 299 | 71.92 228 | 63.91 356 | 44.25 295 | 61.73 353 | 55.19 364 | 57.38 224 | 49.31 311 | 54.24 372 | 37.60 197 | 80.89 287 | 62.19 151 | 47.28 340 | 90.63 76 |
|
| anonymousdsp | | | 60.46 271 | 57.65 277 | 68.88 270 | 63.63 357 | 45.09 285 | 72.93 306 | 78.63 242 | 46.52 317 | 51.12 301 | 72.80 316 | 21.46 339 | 83.07 275 | 57.79 196 | 53.97 313 | 78.47 298 |
|
| UnsupCasMVSNet_bld | | | 53.86 314 | 50.53 318 | 63.84 312 | 63.52 358 | 34.75 347 | 71.38 319 | 81.92 176 | 46.53 316 | 38.95 356 | 57.93 368 | 20.55 342 | 80.20 300 | 39.91 302 | 34.09 374 | 76.57 321 |
|
| test20.03 | | | 55.22 308 | 54.07 301 | 58.68 338 | 63.14 359 | 25.00 379 | 77.69 276 | 74.78 293 | 52.64 278 | 43.43 338 | 72.39 321 | 26.21 304 | 74.76 339 | 29.31 345 | 47.05 343 | 76.28 324 |
|
| testgi | | | 54.25 312 | 52.57 311 | 59.29 336 | 62.76 360 | 21.65 386 | 72.21 313 | 70.47 329 | 53.25 275 | 41.94 344 | 77.33 265 | 14.28 365 | 77.95 320 | 29.18 346 | 51.72 326 | 78.28 303 |
|
| EU-MVSNet | | | 52.63 320 | 50.72 317 | 58.37 339 | 62.69 361 | 28.13 376 | 72.60 307 | 75.97 284 | 30.94 370 | 40.76 352 | 72.11 325 | 20.16 343 | 70.80 356 | 35.11 324 | 46.11 347 | 76.19 325 |
|
| XVG-ACMP-BASELINE | | | 56.03 304 | 52.85 308 | 65.58 302 | 61.91 362 | 40.95 328 | 63.36 346 | 72.43 313 | 45.20 327 | 46.02 331 | 74.09 300 | 9.20 375 | 78.12 314 | 45.13 281 | 58.27 271 | 77.66 310 |
|
| MIMVSNet1 | | | 50.35 328 | 47.81 329 | 57.96 340 | 61.53 363 | 27.80 377 | 67.40 336 | 74.06 300 | 43.25 339 | 33.31 373 | 65.38 351 | 16.03 362 | 71.34 354 | 21.80 372 | 47.55 338 | 74.75 335 |
|
| pmmvs-eth3d | | | 55.97 305 | 52.78 309 | 65.54 303 | 61.02 364 | 46.44 266 | 75.36 290 | 67.72 344 | 49.61 300 | 43.65 337 | 67.58 344 | 21.63 338 | 77.04 326 | 44.11 288 | 44.33 351 | 73.15 348 |
|
| CMPMVS |  | 40.41 21 | 55.34 307 | 52.64 310 | 63.46 315 | 60.88 365 | 43.84 299 | 61.58 355 | 71.06 325 | 30.43 371 | 36.33 362 | 74.63 297 | 24.14 321 | 75.44 336 | 48.05 265 | 66.62 200 | 71.12 357 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Gipuma |  | | 27.47 353 | 24.26 358 | 37.12 368 | 60.55 366 | 29.17 373 | 11.68 395 | 60.00 359 | 14.18 387 | 10.52 396 | 15.12 397 | 2.20 397 | 63.01 365 | 8.39 391 | 35.65 366 | 19.18 393 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvs1 | | | 53.60 317 | 52.54 312 | 56.78 342 | 58.07 367 | 30.26 364 | 68.95 331 | 42.19 378 | 32.46 366 | 63.59 163 | 82.56 208 | 11.55 368 | 60.81 367 | 58.25 187 | 55.27 304 | 79.28 288 |
|
| ITE_SJBPF | | | | | 51.84 351 | 58.03 368 | 31.94 362 | | 53.57 369 | 36.67 356 | 41.32 348 | 75.23 294 | 11.17 370 | 51.57 380 | 25.81 361 | 48.04 334 | 72.02 352 |
|
| new-patchmatchnet | | | 48.21 331 | 46.55 333 | 53.18 350 | 57.73 369 | 18.19 394 | 70.24 323 | 71.02 326 | 45.70 323 | 33.70 369 | 60.23 362 | 18.00 353 | 69.86 359 | 27.97 354 | 34.35 371 | 71.49 356 |
|
| RPSCF | | | 45.77 336 | 44.13 338 | 50.68 352 | 57.67 370 | 29.66 370 | 54.92 370 | 45.25 374 | 26.69 375 | 45.92 332 | 75.92 290 | 17.43 357 | 45.70 386 | 27.44 356 | 45.95 348 | 76.67 317 |
|
| Anonymous20240521 | | | 51.65 324 | 48.42 326 | 61.34 330 | 56.43 371 | 39.65 333 | 73.57 301 | 73.47 310 | 36.64 357 | 36.59 361 | 63.98 353 | 10.75 371 | 72.25 353 | 35.35 319 | 49.01 331 | 72.11 351 |
|
| KD-MVS_self_test | | | 49.24 329 | 46.85 332 | 56.44 344 | 54.32 372 | 22.87 382 | 57.39 364 | 73.36 311 | 44.36 333 | 37.98 359 | 59.30 366 | 18.97 348 | 71.17 355 | 33.48 329 | 42.44 355 | 75.26 330 |
|
| WB-MVS | | | 37.41 344 | 36.37 345 | 40.54 364 | 54.23 373 | 10.43 401 | 65.29 339 | 43.75 375 | 34.86 364 | 27.81 381 | 54.63 371 | 24.94 315 | 63.21 364 | 6.81 396 | 15.00 391 | 47.98 383 |
|
| ambc | | | | | 62.06 322 | 53.98 374 | 29.38 372 | 35.08 386 | 79.65 218 | | 41.37 347 | 59.96 363 | 6.27 386 | 82.15 278 | 35.34 320 | 38.22 363 | 74.65 336 |
|
| SSC-MVS | | | 35.20 346 | 34.30 348 | 37.90 366 | 52.58 375 | 8.65 404 | 61.86 352 | 41.64 379 | 31.81 369 | 25.54 383 | 52.94 376 | 23.39 326 | 59.28 372 | 6.10 397 | 12.86 392 | 45.78 385 |
|
| PM-MVS | | | 46.92 334 | 43.76 339 | 56.41 345 | 52.18 376 | 32.26 360 | 63.21 349 | 38.18 383 | 37.99 352 | 40.78 351 | 66.20 347 | 5.09 388 | 65.42 363 | 48.19 264 | 41.99 356 | 71.54 355 |
|
| test_fmvs1_n | | | 52.55 321 | 51.19 316 | 56.65 343 | 51.90 377 | 30.14 365 | 67.66 335 | 42.84 377 | 32.27 367 | 62.30 177 | 82.02 220 | 9.12 376 | 60.84 366 | 57.82 195 | 54.75 310 | 78.99 290 |
|
| test_vis1_n | | | 51.19 326 | 49.66 323 | 55.76 347 | 51.26 378 | 29.85 369 | 67.20 337 | 38.86 382 | 32.12 368 | 59.50 206 | 79.86 238 | 8.78 377 | 58.23 374 | 56.95 204 | 52.46 323 | 79.19 289 |
|
| mvsany_test1 | | | 43.38 338 | 42.57 340 | 45.82 357 | 50.96 379 | 26.10 378 | 55.80 366 | 27.74 395 | 27.15 374 | 47.41 324 | 74.39 299 | 18.67 350 | 44.95 387 | 44.66 284 | 36.31 365 | 66.40 366 |
|
| TDRefinement | | | 40.91 340 | 38.37 344 | 48.55 355 | 50.45 380 | 33.03 357 | 58.98 362 | 50.97 370 | 28.50 372 | 29.89 376 | 67.39 345 | 6.21 387 | 54.51 377 | 17.67 381 | 35.25 368 | 58.11 374 |
|
| new_pmnet | | | 33.56 349 | 31.89 351 | 38.59 365 | 49.01 381 | 20.42 387 | 51.01 371 | 37.92 384 | 20.58 379 | 23.45 384 | 46.79 379 | 6.66 384 | 49.28 383 | 20.00 378 | 31.57 377 | 46.09 384 |
|
| pmmvs3 | | | 45.53 337 | 41.55 341 | 57.44 341 | 48.97 382 | 39.68 332 | 70.06 324 | 57.66 362 | 28.32 373 | 34.06 368 | 57.29 369 | 8.50 378 | 66.85 362 | 34.86 326 | 34.26 372 | 65.80 368 |
|
| test_vis1_rt | | | 40.29 341 | 38.64 343 | 45.25 359 | 48.91 383 | 30.09 366 | 59.44 360 | 27.07 396 | 24.52 378 | 38.48 358 | 51.67 377 | 6.71 383 | 49.44 381 | 44.33 286 | 46.59 346 | 56.23 375 |
|
| DSMNet-mixed | | | 38.35 342 | 35.36 347 | 47.33 356 | 48.11 384 | 14.91 398 | 37.87 384 | 36.60 386 | 19.18 382 | 34.37 367 | 59.56 365 | 15.53 363 | 53.01 379 | 20.14 377 | 46.89 344 | 74.07 339 |
|
| FPMVS | | | 35.40 345 | 33.67 349 | 40.57 363 | 46.34 385 | 28.74 375 | 41.05 380 | 57.05 363 | 20.37 381 | 22.27 385 | 53.38 374 | 6.87 382 | 44.94 388 | 8.62 390 | 47.11 342 | 48.01 382 |
|
| test_fmvs2 | | | 45.89 335 | 44.32 337 | 50.62 353 | 45.85 386 | 24.70 380 | 58.87 363 | 37.84 385 | 25.22 376 | 52.46 293 | 74.56 298 | 7.07 380 | 54.69 376 | 49.28 256 | 47.70 336 | 72.48 349 |
|
| LF4IMVS | | | 33.04 350 | 32.55 350 | 34.52 369 | 40.96 387 | 22.03 384 | 44.45 377 | 35.62 387 | 20.42 380 | 28.12 380 | 62.35 357 | 5.03 389 | 31.88 399 | 21.61 374 | 34.42 370 | 49.63 381 |
|
| wuyk23d | | | 9.11 367 | 8.77 371 | 10.15 382 | 40.18 388 | 16.76 395 | 20.28 393 | 1.01 406 | 2.58 399 | 2.66 401 | 0.98 401 | 0.23 406 | 12.49 401 | 4.08 401 | 6.90 398 | 1.19 398 |
|
| APD_test1 | | | 26.46 356 | 24.41 357 | 32.62 374 | 37.58 389 | 21.74 385 | 40.50 382 | 30.39 392 | 11.45 391 | 16.33 388 | 43.76 380 | 1.63 400 | 41.62 389 | 11.24 388 | 26.82 382 | 34.51 388 |
|
| PMMVS2 | | | 26.71 355 | 22.98 360 | 37.87 367 | 36.89 390 | 8.51 405 | 42.51 379 | 29.32 394 | 19.09 383 | 13.01 391 | 37.54 382 | 2.23 396 | 53.11 378 | 14.54 385 | 11.71 393 | 51.99 380 |
|
| E-PMN | | | 19.16 362 | 18.40 366 | 21.44 379 | 36.19 391 | 13.63 399 | 47.59 373 | 30.89 391 | 10.73 392 | 5.91 399 | 16.59 395 | 3.66 391 | 39.77 390 | 5.95 398 | 8.14 395 | 10.92 395 |
|
| test_fmvs3 | | | 37.95 343 | 35.75 346 | 44.55 360 | 35.50 392 | 18.92 390 | 48.32 372 | 34.00 390 | 18.36 384 | 41.31 349 | 61.58 358 | 2.29 395 | 48.06 385 | 42.72 295 | 37.71 364 | 66.66 365 |
|
| EMVS | | | 18.42 363 | 17.66 367 | 20.71 380 | 34.13 393 | 12.64 400 | 46.94 374 | 29.94 393 | 10.46 394 | 5.58 400 | 14.93 398 | 4.23 390 | 38.83 391 | 5.24 400 | 7.51 397 | 10.67 396 |
|
| testf1 | | | 21.11 360 | 19.08 364 | 27.18 377 | 30.56 394 | 18.28 392 | 33.43 388 | 24.48 397 | 8.02 395 | 12.02 393 | 33.50 389 | 0.75 404 | 35.09 395 | 7.68 392 | 21.32 386 | 28.17 390 |
|
| APD_test2 | | | 21.11 360 | 19.08 364 | 27.18 377 | 30.56 394 | 18.28 392 | 33.43 388 | 24.48 397 | 8.02 395 | 12.02 393 | 33.50 389 | 0.75 404 | 35.09 395 | 7.68 392 | 21.32 386 | 28.17 390 |
|
| ANet_high | | | 34.39 347 | 29.59 353 | 48.78 354 | 30.34 396 | 22.28 383 | 55.53 367 | 63.79 353 | 38.11 351 | 15.47 389 | 36.56 386 | 6.94 381 | 59.98 369 | 13.93 386 | 5.64 400 | 64.08 370 |
|
| mvsany_test3 | | | 28.00 352 | 25.98 354 | 34.05 370 | 28.97 397 | 15.31 396 | 34.54 387 | 18.17 401 | 16.24 385 | 29.30 378 | 53.37 375 | 2.79 393 | 33.38 398 | 30.01 343 | 20.41 389 | 53.45 378 |
|
| test_vis3_rt | | | 24.79 358 | 22.95 361 | 30.31 375 | 28.59 398 | 18.92 390 | 37.43 385 | 17.27 403 | 12.90 388 | 21.28 386 | 29.92 392 | 1.02 402 | 36.35 392 | 28.28 353 | 29.82 380 | 35.65 386 |
|
| MVE |  | 16.60 23 | 17.34 365 | 13.39 368 | 29.16 376 | 28.43 399 | 19.72 388 | 13.73 394 | 23.63 399 | 7.23 397 | 7.96 397 | 21.41 393 | 0.80 403 | 36.08 393 | 6.97 394 | 10.39 394 | 31.69 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 24.09 359 | 21.07 363 | 33.16 372 | 27.67 400 | 8.35 406 | 26.63 392 | 35.11 389 | 3.40 398 | 14.35 390 | 36.98 384 | 3.46 392 | 35.31 394 | 19.08 380 | 22.95 385 | 55.81 376 |
|
| LCM-MVSNet | | | 28.07 351 | 23.85 359 | 40.71 362 | 27.46 401 | 18.93 389 | 30.82 390 | 46.19 371 | 12.76 389 | 16.40 387 | 34.70 388 | 1.90 398 | 48.69 384 | 20.25 376 | 24.22 384 | 54.51 377 |
|
| test_f | | | 27.12 354 | 24.85 355 | 33.93 371 | 26.17 402 | 15.25 397 | 30.24 391 | 22.38 400 | 12.53 390 | 28.23 379 | 49.43 378 | 2.59 394 | 34.34 397 | 25.12 363 | 26.99 381 | 52.20 379 |
|
| PMVS |  | 19.57 22 | 25.07 357 | 22.43 362 | 32.99 373 | 23.12 403 | 22.98 381 | 40.98 381 | 35.19 388 | 15.99 386 | 11.95 395 | 35.87 387 | 1.47 401 | 49.29 382 | 5.41 399 | 31.90 376 | 26.70 392 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DeepMVS_CX |  | | | | 13.10 381 | 21.34 404 | 8.99 403 | | 10.02 405 | 10.59 393 | 7.53 398 | 30.55 391 | 1.82 399 | 14.55 400 | 6.83 395 | 7.52 396 | 15.75 394 |
|
| tmp_tt | | | 9.44 366 | 10.68 369 | 5.73 383 | 2.49 405 | 4.21 407 | 10.48 396 | 18.04 402 | 0.34 400 | 12.59 392 | 20.49 394 | 11.39 369 | 7.03 402 | 13.84 387 | 6.46 399 | 5.95 397 |
|
| testmvs | | | 6.14 369 | 8.18 372 | 0.01 384 | 0.01 406 | 0.00 410 | 73.40 304 | 0.00 408 | 0.00 402 | 0.02 403 | 0.15 402 | 0.00 407 | 0.00 403 | 0.02 402 | 0.00 401 | 0.02 399 |
|
| test_blank | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| eth-test2 | | | | | | 0.00 407 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 407 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| DCPMVS | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| cdsmvs_eth3d_5k | | | 18.33 364 | 24.44 356 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 89.40 17 | 0.00 402 | 0.00 405 | 92.02 45 | 38.55 184 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| pcd_1.5k_mvsjas | | | 3.15 371 | 4.20 374 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 37.77 190 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| sosnet-low-res | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| sosnet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| uncertanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| Regformer | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| test123 | | | 6.01 370 | 8.01 373 | 0.01 384 | 0.00 407 | 0.01 409 | 71.93 317 | 0.00 408 | 0.00 402 | 0.02 403 | 0.11 403 | 0.00 407 | 0.00 403 | 0.02 402 | 0.00 401 | 0.02 399 |
|
| ab-mvs-re | | | 7.68 368 | 10.24 370 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 92.12 42 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| uanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 407 | 0.00 410 | 0.00 397 | 0.00 408 | 0.00 402 | 0.00 405 | 0.00 404 | 0.00 407 | 0.00 403 | 0.00 404 | 0.00 401 | 0.00 401 |
|
| MM | | | | | 80.89 20 | | 55.40 54 | 92.16 9 | 89.85 16 | 75.28 4 | 82.41 10 | 93.86 8 | 54.30 26 | 93.98 23 | 90.29 1 | 87.13 20 | 93.30 12 |
|
| WAC-MVS | | | | | | | 34.28 349 | | | | | | | | 22.56 370 | | |
|
| PC_three_1452 | | | | | | | | | | 66.58 53 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 222 | 83.60 6 | 94.09 3 | 56.14 18 | 96.37 6 | 82.28 25 | 87.43 19 | 92.55 27 |
|
| test_0728_THIRD | | | | | | | | | | 58.00 208 | 81.91 13 | 93.64 11 | 56.54 15 | 96.44 2 | 81.64 30 | 86.86 24 | 92.23 34 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 139 |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 182 | | | | 88.13 139 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 227 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 187 | | | | | | | | |
|
| test_post1 | | | | | | | | 70.84 322 | | | | 14.72 399 | 34.33 244 | 83.86 264 | 48.80 259 | | |
|
| test_post | | | | | | | | | | | | 16.22 396 | 37.52 199 | 84.72 259 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 364 | 38.41 185 | 79.91 304 | | | |
|
| MTMP | | | | | | | | 87.27 72 | 15.34 404 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 47 | 85.44 41 | 91.39 59 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 66 | 85.11 45 | 91.01 69 |
|
| test_prior4 | | | | | | | 56.39 35 | 87.15 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 89.04 42 | | 61.88 134 | 73.55 56 | 91.46 61 | 48.01 69 | | 74.73 74 | 85.46 40 | |
|
| 旧先验2 | | | | | | | | 81.73 224 | | 45.53 325 | 74.66 45 | | | 70.48 358 | 58.31 186 | | |
|
| 新几何2 | | | | | | | | 81.61 228 | | | | | | | | | |
|
| 无先验 | | | | | | | | 85.19 120 | 78.00 253 | 49.08 302 | | | | 85.13 254 | 52.78 234 | | 87.45 154 |
|
| 原ACMM2 | | | | | | | | 83.77 168 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 77.81 323 | 45.64 280 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 107 | | | | |
|
| testdata1 | | | | | | | | 77.55 278 | | 64.14 90 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 82.59 165 | | | | | 88.30 162 | 65.46 128 | 72.34 153 | 84.49 206 |
|
| plane_prior4 | | | | | | | | | | | | 83.28 193 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 209 | | | 64.01 93 | 62.15 179 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 101 | | 63.60 102 | | | | | | | |
|
| plane_prior | | | | | | | 49.57 192 | 87.43 65 | | 64.57 84 | | | | | | 72.84 149 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 380 | | | | | | | | |
|
| test11 | | | | | | | | | 84.25 132 | | | | | | | | |
|
| door | | | | | | | | | 43.27 376 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 151 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 116 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 150 | | | 88.61 147 | | | 84.91 202 |
|
| HQP3-MVS | | | | | | | | | 83.68 144 | | | | | | | 73.12 145 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 202 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 301 | 71.13 321 | | 54.95 260 | 59.29 212 | | 36.76 213 | | 46.33 277 | | 87.32 156 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 234 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 260 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 176 | | | | |
|