This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19199.98 1100.00 199.98 3
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33298.41 18299.95 8499.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32399.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39499.78 7099.88 6299.88 4293.66 32999.97 3499.61 4999.95 8499.64 123
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30299.94 7899.42 7899.92 10699.67 96
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20599.54 6099.92 10699.63 128
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20599.59 5199.74 21899.71 77
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24699.87 20599.03 13599.86 15399.76 67
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30499.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19198.93 15099.95 8499.60 153
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25597.85 23199.70 23499.10 308
EGC-MVSNET89.05 36685.52 36999.64 12999.89 4099.78 4999.56 8199.52 23624.19 40149.96 40299.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29699.97 3499.59 5199.98 4199.55 175
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20599.51 6599.97 5699.86 32
EU-MVSNet99.39 11699.62 5698.72 31799.88 4596.44 36099.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 27099.58 5499.95 8499.90 20
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25699.93 9599.34 9099.99 1699.78 57
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29499.81 3699.53 28799.73 72
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28499.78 20399.15 297
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25299.57 18699.67 16799.03 9999.94 7897.01 29499.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28299.99 899.83 3299.51 29199.86 32
lessismore_v099.64 12999.86 5599.38 17690.66 40299.89 5499.83 6694.56 31999.97 3499.56 5799.92 10699.57 170
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30797.77 23699.88 13499.60 153
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 24098.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33299.83 6198.64 24399.89 5499.60 21492.57 339100.00 199.33 9399.97 5699.72 74
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 24099.37 8499.93 10299.83 40
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31599.73 11398.39 27099.63 16099.43 27299.70 2499.90 15997.34 27398.64 36499.44 230
PMVScopyleft92.94 2198.82 23598.81 22698.85 30599.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38793.88 38399.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35599.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27899.51 21299.50 25399.31 6299.88 19198.18 20299.84 16299.69 84
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28399.50 21499.78 10197.90 22999.65 36596.78 30799.83 17099.44 230
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22397.32 27499.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19197.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 12699.57 7298.71 31999.82 7396.62 35898.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19199.43 73100.00 199.62 139
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 25099.86 22399.17 11899.44 30199.67 96
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35299.74 10998.36 27399.66 15399.68 16399.71 2299.90 15996.84 30599.88 13499.43 236
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27399.60 17899.71 13998.92 11099.91 14197.08 29299.84 16299.40 241
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32499.64 15699.69 15299.37 5699.89 17796.66 31499.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32499.64 15699.69 15299.37 5699.89 17796.66 31499.87 14599.69 84
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28699.98 2199.75 3999.23 33199.82 46
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22399.90 2599.99 1699.73 72
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31999.35 24799.25 31499.23 7399.92 11797.21 28799.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25599.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19199.90 2599.96 7199.67 96
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 77
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32498.89 24899.72 12299.29 15699.63 16099.70 14696.47 29199.89 17798.17 20499.82 17999.50 207
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 27099.32 9599.94 9599.53 189
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31799.81 29497.70 24799.88 13499.58 165
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31499.93 9598.72 16799.89 12599.63 128
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22398.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25599.86 3199.98 4199.64 123
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27999.79 3799.95 8499.60 153
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17799.43 7399.86 15399.47 220
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27999.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27996.01 34299.96 7199.11 306
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29899.52 20799.69 15298.57 15799.92 11797.18 28999.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25599.54 20098.99 35096.81 28199.93 9596.97 29699.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20599.88 2999.97 5699.66 105
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 32196.38 32999.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 32196.38 32999.83 17099.51 202
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25599.83 3299.97 5699.64 123
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33799.78 30797.43 26899.89 12599.35 254
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 35099.47 21999.60 21499.07 9499.89 17796.18 33799.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31798.98 14099.99 1699.36 251
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31299.87 4598.91 21399.74 12399.72 13190.57 36499.79 30498.55 17699.85 15799.11 306
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 24099.89 2899.98 4199.66 105
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20599.15 12199.91 11599.66 105
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29299.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
tttt051797.62 31797.20 32698.90 30399.76 11897.40 34099.48 9694.36 39699.06 19799.70 13799.49 25784.55 39299.94 7898.73 16699.65 25499.36 251
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28799.82 27999.32 9599.95 8499.56 172
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30799.45 7199.96 7199.83 40
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 34099.32 9599.94 9599.53 189
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26799.32 25599.36 29098.73 13699.93 9597.29 27699.74 21899.67 96
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27898.97 30299.48 26098.37 18899.92 11795.95 34899.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32999.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28299.01 30099.50 25398.53 16699.93 9597.18 28999.78 20399.66 105
IterMVS-SCA-FT99.00 21199.16 14698.51 32699.75 12995.90 37098.07 33299.84 5999.84 5499.89 5499.73 12496.01 30599.99 899.33 93100.00 199.63 128
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28799.53 20599.73 12498.75 13299.87 20597.70 24799.83 17099.68 90
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20599.90 2599.97 5699.66 105
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 27199.75 11599.04 34399.36 5999.86 22399.08 13299.25 32799.45 225
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30299.42 23199.60 21498.81 12099.93 9596.91 29999.74 21899.66 105
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31499.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25299.88 19199.11 12999.84 16299.48 216
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27399.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
IterMVS98.97 21599.16 14698.42 33099.74 13595.64 37398.06 33499.83 6199.83 5799.85 7399.74 12096.10 30499.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28999.32 25599.35 29598.65 14799.91 14196.86 30299.74 21899.62 139
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27399.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
114514_t98.49 27098.11 28899.64 12999.73 13899.58 13399.24 15799.76 9989.94 39399.42 23199.56 23597.76 24199.86 22397.74 24199.82 17999.47 220
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30794.65 39598.35 27899.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25599.82 3599.82 17999.77 61
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32999.47 26498.47 17399.88 19197.62 25599.73 22399.67 96
X-MVStestdata96.09 35294.87 36199.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32961.30 40898.47 17399.88 19197.62 25599.73 22399.67 96
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32199.85 24098.79 15999.32 31899.59 160
DSMNet-mixed99.48 8899.65 5098.95 29099.71 14497.27 34399.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28499.39 24399.41 27498.62 14999.84 25596.62 31899.84 16298.69 354
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25999.52 20799.63 19099.14 8499.76 31797.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 23098.89 21698.84 30799.70 15297.62 33298.15 32199.50 24497.98 30399.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 336
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
IU-MVS99.69 15699.77 5499.22 31597.50 33099.69 14097.75 24099.70 23499.77 61
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 384
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25299.68 14399.69 15298.13 21399.87 20598.82 15599.98 4199.24 275
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
wuyk23d97.58 31999.13 15292.93 38299.69 15699.49 14699.52 8699.77 9497.97 30499.96 2399.79 9399.84 1299.94 7895.85 35199.82 17979.36 398
DeepMVS_CXcopyleft97.98 34599.69 15696.95 35199.26 30575.51 39895.74 39698.28 38696.47 29199.62 36991.23 38997.89 38497.38 390
thisisatest053097.45 32296.95 33298.94 29199.68 16497.73 32999.09 20994.19 39898.61 24899.56 19399.30 30384.30 39399.93 9598.27 19299.54 28599.16 295
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31399.86 22398.95 14896.57 39399.45 225
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32999.80 7997.14 34899.46 22399.40 27896.11 30399.89 17799.01 13799.84 16299.84 36
MVEpermissive92.54 2296.66 34196.11 34598.31 33899.68 16497.55 33497.94 34695.60 39299.37 14890.68 40198.70 37396.56 28798.61 39986.94 39999.55 28098.77 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22398.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_398.85 23399.09 16898.13 34399.66 17094.90 38097.72 35799.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
ppachtmachnet_test98.89 22999.12 15698.20 34199.66 17095.24 37797.63 36199.68 14099.08 19399.78 10199.62 19798.65 14799.88 19198.02 21199.96 7199.48 216
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 27199.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29599.82 6697.65 32299.43 22999.16 32796.42 29399.91 14199.07 13399.84 16299.80 47
YYNet198.95 22198.99 20098.84 30799.64 17497.14 34898.22 31799.32 29098.92 21299.59 18199.66 17297.40 25899.83 27098.27 19299.90 11699.55 175
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30599.64 17497.16 34698.23 31699.33 28898.93 21099.56 19399.66 17297.39 26099.83 27098.29 19099.88 13499.55 175
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
thres100view90096.39 34696.03 34797.47 35899.63 17695.93 36999.18 17297.57 37898.75 23698.70 33597.31 40087.04 38299.67 35587.62 39598.51 36996.81 393
thres600view796.60 34296.16 34497.93 34799.63 17696.09 36899.18 17297.57 37898.77 23298.72 33297.32 39987.04 38299.72 32888.57 39298.62 36597.98 384
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25199.33 25299.53 24698.88 11699.68 35096.01 34299.65 25499.02 331
test_part299.62 18099.67 10099.55 198
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22399.42 7899.96 7199.80 47
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35999.27 26699.37 28697.11 27399.92 11795.74 35599.67 24999.62 139
test111197.74 31198.16 28596.49 37599.60 18389.86 40599.71 3491.21 40199.89 3699.88 6299.87 4793.73 32899.90 15999.56 5799.99 1699.70 80
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 342100.00 199.24 10696.51 39499.65 113
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36599.74 10998.84 22399.53 20599.55 24299.10 8799.79 30497.07 29399.86 15399.18 291
FPMVS96.32 34895.50 35598.79 31399.60 18398.17 30298.46 30398.80 34397.16 34796.28 39199.63 19082.19 39499.09 39488.45 39398.89 35099.10 308
test250694.73 36494.59 36595.15 38199.59 18785.90 40799.75 2274.01 40799.89 3699.71 13399.86 5479.00 40299.90 15999.52 6499.99 1699.65 113
ECVR-MVScopyleft97.73 31298.04 29196.78 36999.59 18790.81 40199.72 3090.43 40399.89 3699.86 7199.86 5493.60 33099.89 17799.46 7099.99 1699.65 113
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29799.59 18798.23 29598.47 29999.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 364
xiu_mvs_v1_base99.23 15199.34 11298.91 29799.59 18798.23 29598.47 29999.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 364
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29799.59 18798.23 29598.47 29999.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 364
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30499.42 23199.61 20698.86 11799.87 20596.45 32699.68 24399.49 212
tfpn200view996.30 34995.89 34897.53 35699.58 19296.11 36699.00 23197.54 38198.43 26498.52 34696.98 40286.85 38499.67 35587.62 39598.51 36996.81 393
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 24099.15 12199.92 10699.68 90
CVMVSNet98.61 25398.88 21797.80 35199.58 19293.60 38799.26 14999.64 16399.66 10099.72 12899.67 16793.26 33299.93 9599.30 9999.81 18899.87 30
thres40096.40 34595.89 34897.92 34899.58 19296.11 36699.00 23197.54 38198.43 26498.52 34696.98 40286.85 38499.67 35587.62 39598.51 36997.98 384
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26999.04 29999.25 31498.51 17199.80 30197.31 27599.51 29199.65 113
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26599.82 27995.84 35299.78 20399.60 153
plane_prior799.58 19299.38 176
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 35099.73 11398.68 24099.31 25999.48 26099.09 8999.66 35997.70 24799.77 20799.29 270
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25299.76 10899.69 15298.23 20699.92 11796.39 32899.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17799.19 11399.90 11699.72 74
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17799.15 12199.89 12599.71 77
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33799.25 30898.78 23099.58 18399.44 27198.24 20299.76 31798.74 16599.93 10299.22 280
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32599.18 32298.28 28699.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20598.69 17099.73 22399.15 297
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20598.20 19899.80 19399.75 70
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36398.93 30699.19 32697.68 24599.87 20596.52 32199.37 31199.53 189
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36799.55 21696.41 36099.27 26699.13 32999.07 9499.78 30796.73 31099.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34499.68 14097.49 33199.08 29499.35 29595.41 31299.82 27997.70 24798.19 37799.01 332
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33298.71 37296.76 28399.21 39296.01 34299.35 31499.31 265
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34699.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27999.61 26699.54 183
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27999.61 26699.54 183
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32399.34 25099.71 13998.52 16999.77 31597.98 21699.97 5699.52 200
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36499.82 6695.70 37199.34 25098.98 35398.52 16999.77 31597.98 21699.83 17099.30 267
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38599.80 7998.21 29099.75 11599.77 10898.43 17999.64 36797.90 22399.88 13499.51 202
save fliter99.53 22299.25 20498.29 31199.38 28099.07 195
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 334
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22398.70 16899.68 24399.49 212
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27699.62 25999.56 172
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35799.81 29497.38 27199.76 20999.15 297
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26398.59 34299.06 34098.08 21799.91 14196.94 29799.60 26999.60 153
GA-MVS97.99 30597.68 31598.93 29499.52 22798.04 31297.19 38199.05 33398.32 28498.81 32298.97 35589.89 37299.41 39098.33 18899.05 33899.34 257
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29899.54 28599.57 170
test22299.51 22999.08 23197.83 35499.29 29895.21 37798.68 33699.31 30197.28 26499.38 30999.43 236
testdata99.42 20299.51 22998.93 24599.30 29796.20 36498.87 31699.40 27898.33 19599.89 17796.29 33299.28 32399.44 230
plane_prior199.51 229
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24299.88 19199.20 11299.87 14599.59 160
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32599.53 23199.36 15099.41 23799.61 20699.22 7499.87 20599.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 17799.50 23599.22 21199.26 30595.66 37298.60 34199.28 30797.67 24699.89 17795.95 34899.32 31899.45 225
SD-MVS99.01 20999.30 12498.15 34299.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40297.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30999.41 26695.22 37699.21 27799.10 33798.34 19399.82 27995.09 36899.66 25299.56 172
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35799.54 20099.63 19098.29 19899.91 14195.24 36499.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34899.71 12598.76 23599.08 29499.47 26499.17 7999.54 38097.85 23199.76 20999.54 183
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24699.36 31299.46 224
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26799.87 20599.03 13599.94 9599.44 230
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38298.85 31899.37 28697.81 23699.59 37596.08 33999.44 30198.88 342
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33899.63 16099.80 8393.07 33599.84 25597.92 22199.30 32098.78 351
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30798.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 35295.68 35397.33 36399.48 24596.22 36598.53 29497.57 37898.06 29998.37 35296.73 40486.84 38699.61 37386.99 39898.57 36696.16 396
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30899.37 24599.35 29596.31 29899.91 14198.85 15299.63 25899.47 220
PAPM_NR98.36 28298.04 29199.33 23199.48 24598.93 24598.79 26799.28 30197.54 32798.56 34598.57 37797.12 27299.69 34094.09 37998.90 34999.38 245
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22399.44 7299.96 7199.61 149
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35898.26 35499.32 29997.93 22899.82 27995.96 34799.38 30999.43 236
plane_prior699.47 25199.26 20197.24 265
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
TAPA-MVS97.92 1398.03 30297.55 31899.46 19099.47 25199.44 15998.50 29799.62 16886.79 39499.07 29799.26 31298.26 20199.62 36997.28 27899.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_testset97.27 32796.83 33798.59 32399.46 25597.55 33499.25 15696.84 38698.78 23097.24 38497.67 39597.11 27398.97 39686.59 40098.54 36899.27 271
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33599.57 18699.64 17998.93 10999.83 27097.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 27798.44 25898.35 33399.46 25596.26 36496.70 39099.34 28797.68 32199.00 30199.13 32997.40 25899.72 32897.59 25999.68 24399.08 318
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35699.75 10498.79 22899.54 20099.70 14698.97 10699.62 36996.63 31799.83 17099.41 240
9.1498.64 23799.45 25998.81 26199.60 18797.52 32999.28 26599.56 23598.53 16699.83 27095.36 36399.64 256
FE-MVS97.85 30797.42 32099.15 26599.44 26098.75 26099.77 1598.20 36895.85 36899.33 25299.80 8388.86 37599.88 19196.40 32799.12 33498.81 348
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39399.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32399.54 22297.12 34999.11 29199.25 31497.80 23799.70 33496.51 32299.30 32098.93 338
PCF-MVS96.03 1896.73 33995.86 35099.33 23199.44 26099.16 21996.87 38899.44 26086.58 39598.95 30499.40 27894.38 32099.88 19187.93 39499.80 19398.95 336
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 26499.61 12499.43 26396.38 36199.11 29199.07 33997.86 23299.92 11794.04 38099.49 296
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27799.85 24098.99 13899.73 22399.50 207
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24699.95 6499.17 11899.81 18899.63 128
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25399.87 20598.97 14299.87 14599.63 128
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29599.21 27799.24 31994.82 31599.90 15997.86 22998.77 35499.49 212
thisisatest051596.98 33396.42 34098.66 32099.42 26997.47 33697.27 37894.30 39797.24 34299.15 28598.86 36585.01 39099.87 20597.10 29199.39 30898.63 355
pmmvs398.08 30097.80 30998.91 29799.41 27097.69 33197.87 35299.66 14895.87 36799.50 21499.51 25090.35 36699.97 3498.55 17699.47 29899.08 318
NP-MVS99.40 27199.13 22298.83 366
QAPM98.40 28097.99 29499.65 12299.39 27299.47 14899.67 4999.52 23691.70 39098.78 32899.80 8398.55 16099.95 6494.71 37299.75 21199.53 189
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 34099.44 22599.62 19798.59 15499.69 34096.17 33899.79 19899.22 280
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34698.62 33998.74 37199.34 6099.95 6498.32 18999.41 30698.92 339
BH-untuned98.22 29498.09 28998.58 32599.38 27597.24 34498.55 28998.98 33797.81 31799.20 28298.76 37097.01 27699.65 36594.83 36998.33 37298.86 344
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 35199.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
xiu_mvs_v2_base99.02 20599.11 15998.77 31499.37 27798.09 30898.13 32499.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 376
PS-MVSNAJ99.00 21199.08 17098.76 31599.37 27798.10 30798.00 33999.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 380
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26798.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 341
DPM-MVS98.28 28897.94 30299.32 23599.36 28099.11 22497.31 37798.78 34496.88 35398.84 31999.11 33697.77 23999.61 37394.03 38199.36 31299.23 278
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33497.92 22199.70 23499.38 245
TEST999.35 28299.35 18698.11 32799.41 26694.83 38397.92 36998.99 35098.02 22199.85 240
train_agg98.35 28597.95 29899.57 16399.35 28299.35 18698.11 32799.41 26694.90 38097.92 36998.99 35098.02 22199.85 24095.38 36299.44 30199.50 207
agg_prior99.35 28299.36 18399.39 27697.76 37999.85 240
test_prior99.46 19099.35 28299.22 21199.39 27699.69 34099.48 216
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35999.09 13199.66 25299.10 308
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29899.83 27099.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 374
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37799.28 15999.56 19399.50 25393.15 33399.84 25598.62 17399.58 27499.40 241
CHOSEN 280x42098.41 27898.41 26198.40 33199.34 29095.89 37196.94 38799.44 26098.80 22799.25 26899.52 24893.51 33199.98 2198.94 14999.98 4199.32 261
test_899.34 29099.31 19298.08 33199.40 27394.90 38097.87 37398.97 35598.02 22199.84 255
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 32199.29 29898.18 29399.63 16099.62 19799.18 7899.68 35098.20 19899.74 21899.30 267
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36899.92 11799.37 8499.97 5699.54 183
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30699.56 27699.30 267
PLCcopyleft97.35 1698.36 28297.99 29499.48 18699.32 29799.24 20898.50 29799.51 24095.19 37898.58 34398.96 35796.95 27899.83 27095.63 35699.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 31099.91 3298.81 22598.79 32698.94 35999.14 8499.84 25598.79 15998.74 35899.20 286
HQP-NCC99.31 29897.98 34197.45 33298.15 359
ACMP_Plane99.31 29897.98 34197.45 33298.15 359
HQP-MVS98.36 28298.02 29399.39 21599.31 29898.94 24297.98 34199.37 28197.45 33298.15 35998.83 36696.67 28499.70 33494.73 37099.67 24999.53 189
baseline197.73 31297.33 32298.96 28899.30 30297.73 32999.40 10998.42 36199.33 15399.46 22399.21 32391.18 35399.82 27998.35 18691.26 39999.32 261
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30499.37 28199.04 19899.57 18699.20 32596.89 27999.86 22398.66 17299.87 14599.70 80
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34299.85 24099.24 10697.87 38599.03 327
test1299.54 17499.29 30499.33 18999.16 32498.43 35097.54 25399.82 27999.47 29899.48 216
OpenMVS_ROBcopyleft97.31 1797.36 32696.84 33698.89 30499.29 30499.45 15798.87 25099.48 24986.54 39699.44 22599.74 12097.34 26299.86 22391.61 38799.28 32397.37 391
MVS-HIRNet97.86 30698.22 27896.76 37099.28 30791.53 39798.38 30692.60 40099.13 18899.31 25999.96 1297.18 27199.68 35098.34 18799.83 17099.07 323
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 27097.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 30897.38 32199.14 26999.27 30998.53 27798.72 27399.02 33498.10 29597.18 38699.03 34789.26 37499.85 24097.94 22097.91 38399.03 327
Patchmatch-test98.10 29997.98 29698.48 32899.27 30996.48 35999.40 10999.07 33098.81 22599.23 27299.57 23190.11 36999.87 20596.69 31199.64 25699.09 312
ET-MVSNet_ETH3D96.78 33796.07 34698.91 29799.26 31197.92 32197.70 35996.05 39097.96 30792.37 40098.43 38387.06 38199.90 15998.27 19297.56 38898.91 340
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 356
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 25098.80 32499.43 27298.53 16699.70 33497.22 28699.59 27399.54 183
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38599.87 4299.31 25999.58 22291.04 35599.81 29498.68 17199.42 30599.45 225
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 29099.84 25599.15 12199.30 32099.47 220
testing396.48 34495.63 35499.01 28499.23 31697.81 32598.90 24799.10 32998.72 23797.84 37597.92 39272.44 40499.85 24097.21 28799.33 31699.35 254
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38299.51 24098.09 29799.54 20099.27 30996.87 28099.74 32398.43 18198.96 34499.03 327
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37999.47 25298.72 23799.66 15399.70 14699.29 6499.63 36898.07 21099.81 18899.62 139
MSLP-MVS++99.05 19999.09 16898.91 29799.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39498.57 17599.68 24399.26 272
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 35099.26 31297.86 23299.81 29496.55 31999.27 32699.61 149
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27898.93 30699.31 30197.20 27099.66 35994.32 37599.10 33699.51 202
miper_lstm_enhance98.65 25298.60 24098.82 31299.20 32297.33 34297.78 35599.66 14899.01 20099.59 18199.50 25394.62 31899.85 24098.12 20799.90 11699.26 272
SCA98.11 29898.36 26697.36 36199.20 32292.99 38998.17 32098.49 35998.24 28899.10 29399.57 23196.01 30599.94 7896.86 30299.62 25999.14 302
mvs_anonymous99.28 14099.39 10298.94 29199.19 32497.81 32599.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22399.57 5699.50 29499.15 297
OpenMVScopyleft98.12 1098.23 29397.89 30799.26 25099.19 32499.26 20199.65 5999.69 13791.33 39198.14 36399.77 10898.28 19999.96 5595.41 36199.55 28098.58 360
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30799.41 26698.48 26298.52 34698.98 35397.05 27599.78 30795.59 35799.50 29498.96 334
test_yl98.25 29097.95 29899.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34097.26 28198.93 34599.24 275
DCV-MVSNet98.25 29097.95 29899.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34097.26 28198.93 34599.24 275
MG-MVS98.52 26598.39 26398.94 29199.15 32997.39 34198.18 31899.21 31898.89 21799.23 27299.63 19097.37 26199.74 32394.22 37799.61 26699.69 84
ADS-MVSNet297.78 31097.66 31798.12 34499.14 33095.36 37599.22 16498.75 34596.97 35198.25 35599.64 17990.90 35899.94 7896.51 32299.56 27699.08 318
ADS-MVSNet97.72 31597.67 31697.86 34999.14 33094.65 38199.22 16498.86 33996.97 35198.25 35599.64 17990.90 35899.84 25596.51 32299.56 27699.08 318
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33999.86 22398.96 14499.90 11699.39 243
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31299.25 26899.46 26798.97 10699.80 30197.26 28199.82 17999.37 248
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39796.54 32099.60 26999.58 165
c3_l98.72 24698.71 23398.72 31799.12 33497.22 34597.68 36099.56 21098.90 21499.54 20099.48 26096.37 29799.73 32697.88 22599.88 13499.21 282
alignmvs98.28 28897.96 29799.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33297.85 39390.86 36099.62 36998.88 15199.13 33399.19 289
PAPM95.61 36194.71 36398.31 33899.12 33496.63 35796.66 39198.46 36090.77 39296.25 39298.68 37493.01 33699.69 34081.60 40197.86 38698.62 356
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31698.81 32299.27 30997.32 26399.81 29495.14 36699.53 28799.10 308
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 26199.44 22599.58 22298.21 20799.69 34098.20 19899.62 25999.39 243
eth_miper_zixun_eth98.68 25098.71 23398.60 32299.10 34096.84 35597.52 36999.54 22298.94 20799.58 18399.48 26096.25 30199.76 31798.01 21499.93 10299.21 282
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33897.65 39699.04 9899.54 38098.79 15998.92 34799.04 326
baseline296.83 33696.28 34298.46 32999.09 34296.91 35398.83 25693.87 39997.23 34396.23 39498.36 38488.12 37799.90 15996.68 31298.14 38098.57 361
BH-w/o97.20 32897.01 33097.76 35299.08 34395.69 37298.03 33698.52 35695.76 37097.96 36898.02 38995.62 30999.47 38792.82 38597.25 39098.12 382
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37699.85 24099.14 12799.92 10699.52 200
CR-MVSNet98.35 28598.20 28098.83 30999.05 34598.12 30499.30 13599.67 14497.39 33699.16 28399.79 9391.87 34799.91 14198.78 16298.77 35498.44 369
RPMNet98.60 25598.53 25298.83 30999.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34199.92 11798.75 16498.77 35498.44 369
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37899.92 11799.31 9899.97 5699.53 189
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
cl____98.54 26398.41 26198.92 29599.03 34897.80 32797.46 37199.59 19398.90 21499.60 17899.46 26793.85 32599.78 30797.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34897.80 32797.46 37199.59 19398.90 21499.60 17899.46 26793.87 32499.78 30797.97 21899.89 12599.18 291
HY-MVS98.23 998.21 29597.95 29898.99 28599.03 34898.24 29499.61 6898.72 34696.81 35698.73 33199.51 25094.06 32299.86 22396.91 29998.20 37598.86 344
miper_ehance_all_eth98.59 25898.59 24298.59 32398.98 35497.07 34997.49 37099.52 23698.50 25999.52 20799.37 28696.41 29599.71 33297.86 22999.62 25999.00 333
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36599.32 29097.53 32898.47 34998.15 38897.88 23199.82 27997.46 26699.24 32999.09 312
PatchT98.45 27598.32 27198.83 30998.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 35099.94 7898.82 15599.00 34298.26 375
tpm97.15 32996.95 33297.75 35398.91 35794.24 38399.32 12797.96 37197.71 32098.29 35399.32 29986.72 38799.92 11798.10 20996.24 39699.09 312
131498.00 30497.90 30698.27 34098.90 35897.45 33899.30 13599.06 33294.98 37997.21 38599.12 33398.43 17999.67 35595.58 35898.56 36797.71 387
CostFormer96.71 34096.79 33996.46 37698.90 35890.71 40299.41 10898.68 34894.69 38498.14 36399.34 29886.32 38999.80 30197.60 25898.07 38298.88 342
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34499.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24499.98 2198.11 20899.28 32398.81 348
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34799.95 6498.00 21599.97 5699.33 258
tpm296.35 34796.22 34396.73 37298.88 36391.75 39599.21 16698.51 35793.27 38797.89 37199.21 32384.83 39199.70 33496.04 34198.18 37898.75 353
tpm cat196.78 33796.98 33196.16 37998.85 36490.59 40399.08 21299.32 29092.37 38897.73 38099.46 26791.15 35499.69 34096.07 34098.80 35198.21 378
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 25099.94 7899.19 11399.97 5699.33 258
FMVSNet597.80 30997.25 32599.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39799.91 14198.96 14499.90 11699.38 245
API-MVS98.38 28198.39 26398.35 33398.83 36599.26 20199.14 18799.18 32298.59 24998.66 33798.78 36998.61 15199.57 37794.14 37899.56 27696.21 395
PatchmatchNetpermissive97.65 31697.80 30997.18 36698.82 36892.49 39199.17 17798.39 36398.12 29498.79 32699.58 22290.71 36299.89 17797.23 28599.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR97.56 32097.07 32899.04 28298.80 36998.11 30697.63 36199.25 30894.56 38598.02 36798.25 38797.43 25799.68 35090.90 39098.74 35899.33 258
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31899.31 29499.48 12698.86 31799.51 25096.56 28799.95 6499.05 13499.95 8499.19 289
E-PMN97.14 33197.43 31996.27 37798.79 37091.62 39695.54 39499.01 33699.44 13698.88 31399.12 33392.78 33899.68 35094.30 37699.03 34097.50 388
PVSNet_095.53 1995.85 35795.31 35997.47 35898.78 37293.48 38895.72 39399.40 27396.18 36597.37 38197.73 39495.73 30799.58 37695.49 35981.40 40099.36 251
MAR-MVS98.24 29297.92 30499.19 26098.78 37299.65 10899.17 17799.14 32695.36 37498.04 36698.81 36897.47 25599.72 32895.47 36099.06 33798.21 378
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EMVS96.96 33497.28 32395.99 38098.76 37491.03 39995.26 39598.61 35299.34 15198.92 30998.88 36493.79 32699.66 35992.87 38499.05 33897.30 392
IB-MVS95.41 2095.30 36394.46 36797.84 35098.76 37495.33 37697.33 37696.07 38996.02 36695.37 39897.41 39876.17 40399.96 5597.54 26195.44 39898.22 377
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 31298.07 29096.73 37298.71 37692.00 39399.10 20498.86 33998.52 25798.92 30999.54 24491.90 34599.82 27998.02 21199.03 34098.37 371
MDTV_nov1_ep1397.73 31398.70 37790.83 40099.15 18598.02 37098.51 25898.82 32199.61 20690.98 35699.66 35996.89 30198.92 347
dp96.86 33597.07 32896.24 37898.68 37890.30 40499.19 17198.38 36497.35 33898.23 35799.59 21987.23 38099.82 27996.27 33398.73 36098.59 358
testing22295.60 36294.59 36598.61 32198.66 37997.45 33898.54 29297.90 37498.53 25696.54 39096.47 40570.62 40699.81 29495.91 35098.15 37998.56 362
JIA-IIPM98.06 30197.92 30498.50 32798.59 38097.02 35098.80 26498.51 35799.88 4197.89 37199.87 4791.89 34699.90 15998.16 20597.68 38798.59 358
MVS95.72 35994.63 36498.99 28598.56 38197.98 31999.30 13598.86 33972.71 39997.30 38299.08 33898.34 19399.74 32389.21 39198.33 37299.26 272
TR-MVS97.44 32397.15 32798.32 33698.53 38297.46 33798.47 29997.91 37396.85 35498.21 35898.51 38196.42 29399.51 38592.16 38697.29 38997.98 384
Syy-MVS98.17 29697.85 30899.15 26598.50 38398.79 25798.60 27999.21 31897.89 31096.76 38896.37 40695.47 31199.57 37799.10 13098.73 36099.09 312
myMVS_eth3d95.63 36094.73 36298.34 33598.50 38396.36 36298.60 27999.21 31897.89 31096.76 38896.37 40672.10 40599.57 37794.38 37498.73 36099.09 312
tpmvs97.39 32497.69 31496.52 37498.41 38591.76 39499.30 13598.94 33897.74 31897.85 37499.55 24292.40 34499.73 32696.25 33498.73 36098.06 383
LS3D99.24 15099.11 15999.61 14898.38 38699.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
cl2297.56 32097.28 32398.40 33198.37 38796.75 35697.24 38099.37 28197.31 34099.41 23799.22 32187.30 37999.37 39197.70 24799.62 25999.08 318
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38899.56 13699.01 22899.59 19395.44 37399.57 18699.80 8395.64 30899.46 38996.47 32599.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 30297.94 30298.32 33698.27 38996.43 36196.95 38699.41 26696.37 36299.43 22998.96 35794.74 31699.69 34097.71 24499.62 25998.83 347
TESTMET0.1,196.24 35095.84 35197.41 36098.24 39093.84 38697.38 37395.84 39198.43 26497.81 37698.56 37879.77 39899.89 17797.77 23698.77 35498.52 363
gg-mvs-nofinetune95.87 35695.17 36097.97 34698.19 39196.95 35199.69 4289.23 40599.89 3696.24 39399.94 1681.19 39599.51 38593.99 38298.20 37597.44 389
test-LLR97.15 32996.95 33297.74 35498.18 39295.02 37897.38 37396.10 38798.00 30097.81 37698.58 37590.04 37099.91 14197.69 25398.78 35298.31 372
test-mter96.23 35195.73 35297.74 35498.18 39295.02 37897.38 37396.10 38797.90 30997.81 37698.58 37579.12 40199.91 14197.69 25398.78 35298.31 372
EPMVS96.53 34396.32 34197.17 36798.18 39292.97 39099.39 11189.95 40498.21 29098.61 34099.59 21986.69 38899.72 32896.99 29599.23 33198.81 348
WB-MVSnew98.34 28798.14 28698.96 28898.14 39597.90 32298.27 31297.26 38498.63 24498.80 32498.00 39197.77 23999.90 15997.37 27298.98 34399.09 312
test0.0.03 197.37 32596.91 33598.74 31697.72 39697.57 33397.60 36397.36 38398.00 30099.21 27798.02 38990.04 37099.79 30498.37 18495.89 39798.86 344
GG-mvs-BLEND97.36 36197.59 39796.87 35499.70 3588.49 40694.64 39997.26 40180.66 39699.12 39391.50 38896.50 39596.08 397
gm-plane-assit97.59 39789.02 40693.47 38698.30 38599.84 25596.38 329
cascas96.99 33296.82 33897.48 35797.57 39995.64 37396.43 39299.56 21091.75 38997.13 38797.61 39795.58 31098.63 39896.68 31299.11 33598.18 381
EPNet_dtu97.62 31797.79 31197.11 36896.67 40092.31 39298.51 29698.04 36999.24 16695.77 39599.47 26493.78 32799.66 35998.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 35495.41 35797.31 36494.96 40193.89 38497.09 38399.22 31597.23 34398.88 31399.04 34379.23 39999.54 38096.24 33596.81 39198.50 367
miper_refine_blended95.89 35495.41 35797.31 36494.96 40193.89 38497.09 38399.22 31597.23 34398.88 31399.04 34379.23 39999.54 38096.24 33596.81 39198.50 367
EPNet98.13 29797.77 31299.18 26294.57 40397.99 31399.24 15797.96 37199.74 7597.29 38399.62 19793.13 33499.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 36592.32 36889.91 38393.49 40470.18 40890.28 39699.56 21061.71 40095.39 39799.52 24893.90 32399.94 7898.76 16398.27 37499.62 139
tmp_tt95.75 35895.42 35696.76 37089.90 40594.42 38298.86 25197.87 37578.01 39799.30 26499.69 15297.70 24295.89 40199.29 10298.14 38099.95 11
testmvs28.94 36833.33 37015.79 38526.03 4069.81 41096.77 38915.67 40811.55 40323.87 40450.74 41119.03 4088.53 40423.21 40333.07 40129.03 400
test12329.31 36733.05 37218.08 38425.93 40712.24 40997.53 36710.93 40911.78 40224.21 40350.08 41221.04 4078.60 40323.51 40232.43 40233.39 399
test_blank8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
eth-test20.00 408
eth-test0.00 408
uanet_test8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k24.88 36933.17 3710.00 3860.00 4080.00 4110.00 39799.62 1680.00 4040.00 40599.13 32999.82 130.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas16.61 37022.14 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 199.28 660.00 4050.00 4040.00 4030.00 401
sosnet-low-res8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
sosnet8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
Regformer8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.26 37911.02 3820.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40599.16 3270.00 4090.00 4050.00 4040.00 4030.00 401
uanet8.33 37111.11 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 405100.00 10.00 4090.00 4050.00 4040.00 4030.00 401
MM99.55 16998.81 25499.05 21697.79 37699.99 299.48 21799.59 21996.29 30099.95 6499.94 1699.98 4199.88 25
WAC-MVS96.36 36295.20 365
PC_three_145297.56 32499.68 14399.41 27499.09 8997.09 40096.66 31499.60 26999.62 139
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
GSMVS99.14 302
sam_mvs190.81 36199.14 302
sam_mvs90.52 365
MTGPAbinary99.53 231
test_post199.14 18751.63 41089.54 37399.82 27996.86 302
test_post52.41 40990.25 36799.86 223
patchmatchnet-post99.62 19790.58 36399.94 78
MTMP99.09 20998.59 355
test9_res95.10 36799.44 30199.50 207
agg_prior294.58 37399.46 30099.50 207
test_prior499.19 21798.00 339
test_prior297.95 34597.87 31398.05 36599.05 34197.90 22995.99 34599.49 296
旧先验297.94 34695.33 37598.94 30599.88 19196.75 308
新几何298.04 335
无先验98.01 33799.23 31295.83 36999.85 24095.79 35499.44 230
原ACMM297.92 348
testdata299.89 17795.99 345
segment_acmp98.37 188
testdata197.72 35797.86 315
plane_prior599.54 22299.82 27995.84 35299.78 20399.60 153
plane_prior499.25 314
plane_prior399.31 19298.36 27399.14 287
plane_prior298.80 26498.94 207
plane_prior99.24 20898.42 30497.87 31399.71 232
n20.00 410
nn0.00 410
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
BP-MVS94.73 370
HQP4-MVS98.15 35999.70 33499.53 189
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
MDTV_nov1_ep13_2view91.44 39899.14 18797.37 33799.21 27791.78 34996.75 30899.03 327
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182