This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3796.77 5088.38 5997.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
PC_three_145291.12 2298.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1697.10 2695.17 292.11 6698.46 2287.33 2499.97 297.21 1799.31 499.63 7
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8896.78 4492.20 1597.11 1198.29 2693.46 199.10 8896.01 2599.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 1096.45 1898.79 890.17 1099.99 189.33 10899.25 699.70 3
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5696.93 3592.45 1395.69 2398.50 2085.38 3199.85 1094.75 4099.18 798.65 42
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 1097.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3299.10 999.00 26
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8196.77 5085.32 11897.92 398.70 1583.09 4799.84 1295.79 2999.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2196.93 3590.71 2793.08 5698.70 1579.98 6599.21 7594.12 4899.07 1198.63 43
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5896.74 5586.11 10396.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19296.42 9691.26 2197.49 1096.80 10386.50 2898.49 11795.54 3399.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test9_res96.00 2699.03 1398.31 60
test_241102_TWO96.78 4488.72 5297.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
agg_prior294.30 4499.00 1598.57 45
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5297.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
IU-MVS99.03 1585.34 4796.86 4092.05 1798.74 198.15 498.97 1799.42 13
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5496.65 6784.50 14095.16 2798.09 3784.33 3699.36 6895.91 2898.96 1998.16 69
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4798.09 889.99 3792.34 6296.97 9581.30 5598.99 9388.54 11498.88 2099.20 22
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 1096.46 9188.75 5096.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 1699.04 1486.14 3399.06 1096.77 5099.84 1297.90 998.85 2199.45 10
test_0728_THIRD88.38 5996.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
test_prior298.37 2886.08 10594.57 3998.02 4383.14 4695.05 3798.79 26
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4596.41 9785.79 11095.00 3298.28 2784.32 3999.18 8197.35 1698.77 2799.28 19
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4396.64 7093.64 991.74 7198.54 1880.17 6499.90 592.28 7098.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6796.26 11083.00 17993.22 5498.24 2881.31 5499.21 7589.12 10998.74 2998.14 71
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7397.08 9183.32 4599.69 3992.83 6598.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1596.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2197.13 2382.60 18894.09 4598.49 2180.35 5999.85 1094.74 4198.62 3298.83 31
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13496.65 6786.24 10194.27 4297.99 4477.94 8999.83 1693.39 5598.57 3398.39 55
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6296.43 9584.02 15295.07 3198.74 1482.93 4899.38 6595.42 3598.51 3498.32 58
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20791.28 7997.42 7677.92 9198.98 9479.85 19398.51 3496.59 154
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 6096.19 11789.59 4296.66 1598.17 3384.33 3699.60 4896.09 2498.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS99.09 883.22 9196.60 7682.88 18293.61 5098.06 4282.93 4899.14 8495.51 3498.49 37
新几何193.12 7397.44 7881.60 12396.71 5974.54 29491.22 8097.57 6779.13 7499.51 5877.40 21798.46 3898.26 65
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1496.59 7789.50 4394.18 4498.36 2583.68 4499.45 6294.77 3998.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
9.1494.26 2498.10 5798.14 3496.52 8484.74 13294.83 3698.80 782.80 5099.37 6795.95 2798.42 40
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7296.70 6085.20 12391.75 7097.97 4878.47 8299.71 3690.95 8198.41 4198.12 73
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7296.69 6285.20 12391.57 7297.92 4977.01 10599.67 4390.95 8198.41 4198.00 82
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15796.04 12784.68 13589.12 10798.37 2477.48 9899.74 3293.31 5998.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7696.51 8585.22 12191.94 6897.98 4677.26 10099.67 4390.83 8598.37 4498.18 67
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9796.09 12282.41 19094.65 3898.21 2981.96 5398.81 10594.65 4298.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6896.50 8785.00 12891.05 8297.74 5778.38 8399.80 2490.48 9098.34 4698.07 75
test1294.25 3598.34 4685.55 4496.35 10592.36 6180.84 5699.22 7498.31 4797.98 84
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9396.20 11585.63 11290.53 8997.66 6078.14 8799.70 3892.12 7298.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22296.15 10178.41 19995.87 19096.46 9171.97 31589.66 10097.45 7276.33 11798.24 4998.30 61
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2796.40 9984.75 13190.48 9198.09 3777.40 9999.21 7591.15 8098.23 5097.92 88
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27696.33 10687.92 6990.20 9498.18 3076.71 11199.76 2592.57 6998.09 5197.96 87
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7497.83 5477.24 10299.59 4990.46 9198.07 5298.02 77
X-MVStestdata86.26 17184.14 19092.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7420.73 37677.24 10299.59 4990.46 9198.07 5298.02 77
MVS90.60 8988.64 11396.50 594.25 15390.53 893.33 26497.21 2077.59 26878.88 21797.31 7971.52 18599.69 3989.60 10398.03 5499.27 20
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9496.09 12285.12 12588.45 11697.66 6075.53 13099.68 4189.83 10098.02 5597.88 89
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11895.73 14382.07 19689.50 10597.19 8675.59 12998.93 10090.91 8397.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7498.27 689.16 4789.71 9897.14 8779.77 6799.56 5493.65 5397.94 5698.02 77
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21197.27 1883.83 16090.89 8697.78 5676.12 12099.56 5488.82 11297.93 5897.66 107
3Dnovator82.32 1089.33 11187.64 13194.42 3193.73 16785.70 4197.73 6296.75 5486.73 9976.21 25095.93 11862.17 23999.68 4181.67 17797.81 5997.88 89
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1894.73 19490.36 3494.84 3597.89 5077.94 8997.15 18594.28 4797.80 6098.70 40
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 9096.38 10284.71 13490.90 8597.40 7777.55 9799.76 2589.75 10297.74 6197.72 102
PAPM92.87 4092.40 4894.30 3392.25 21287.85 1796.40 16196.38 10291.07 2388.72 11396.90 9682.11 5297.37 17190.05 9997.70 6297.67 106
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 1096.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2697.21 2092.58 1297.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23193.86 24186.91 9391.33 7796.76 10485.20 3298.06 13496.90 1997.60 6498.27 64
testdata90.13 17295.92 10774.17 27496.49 9073.49 30394.82 3797.99 4478.80 7997.93 13783.53 16497.52 6698.29 62
MVSFormer91.36 7390.57 7893.73 5193.00 18888.08 1594.80 23394.48 21080.74 21294.90 3397.13 8878.84 7795.10 28083.77 15697.46 6798.02 77
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2494.90 3397.66 6078.84 7797.56 15494.64 4397.46 6798.62 44
HPM-MVS_fast90.38 9590.17 8991.03 14697.61 7077.35 23297.15 10695.48 15579.51 24188.79 11196.90 9671.64 18498.81 10587.01 13297.44 6996.94 140
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34597.00 2988.32 11994.30 16391.23 596.21 22288.49 11697.43 7098.00 82
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3295.79 14092.42 1496.24 1998.18 3071.04 19099.17 8296.77 2097.39 7296.79 147
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8197.18 2277.06 27784.64 15497.98 4683.98 4199.52 5690.72 8797.33 7399.23 21
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2494.93 18189.32 4494.54 4097.67 5978.91 7697.02 18993.80 5097.32 7498.49 49
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14595.76 14182.19 19491.97 6798.07 4176.44 11398.64 10993.71 5297.27 7598.45 52
gg-mvs-nofinetune85.48 18582.90 20793.24 6994.51 14885.82 3979.22 34996.97 3161.19 34987.33 12853.01 36590.58 696.07 22486.07 13697.23 7697.81 97
MAR-MVS90.63 8890.22 8691.86 12098.47 4278.20 20997.18 10196.61 7383.87 15988.18 12198.18 3068.71 20299.75 3083.66 16197.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4294.40 21687.44 8092.99 5897.11 9074.59 15196.87 19893.75 5197.08 7897.11 136
3Dnovator+82.88 889.63 10687.85 12694.99 1994.49 14986.76 2997.84 5395.74 14286.10 10475.47 26296.02 11765.00 22599.51 5882.91 17197.07 7998.72 39
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18495.98 12990.76 2683.76 16596.76 10473.24 16799.71 3691.67 7796.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS89.72 10489.87 9789.29 19098.33 4773.30 28097.70 6495.35 16675.68 28587.40 12697.44 7570.43 19598.25 12989.56 10596.90 8196.33 163
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16795.52 15379.82 23591.03 8397.88 5174.70 14798.54 11492.11 7396.89 8297.77 99
MVP-Stereo82.65 23081.67 22485.59 26786.10 30778.29 20293.33 26492.82 28177.75 26669.17 30687.98 25459.28 26095.76 24471.77 26296.88 8382.73 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22796.13 11984.65 13686.10 13997.65 6479.24 7299.75 3083.20 16796.88 8398.56 46
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4395.34 16789.19 4688.90 11097.28 8377.56 9697.73 14790.77 8696.86 8598.20 66
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5275.76 12698.61 11091.99 7496.79 8697.75 100
RE-MVS-def91.18 7197.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5273.36 16691.99 7496.79 8697.75 100
jason92.73 4392.23 5394.21 3890.50 25087.30 2498.65 2095.09 17590.61 2892.76 6097.13 8875.28 14097.30 17493.32 5896.75 8898.02 77
jason: jason.
test_vis1_n_192089.95 10190.59 7788.03 21792.36 20468.98 31999.12 694.34 21893.86 893.64 4997.01 9451.54 30299.59 4996.76 2196.71 8995.53 179
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3395.68 14592.06 1696.01 2298.14 3470.83 19398.96 9596.74 2296.57 9096.76 150
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17696.77 5088.49 5788.64 11497.07 9272.33 17599.19 8093.13 6396.48 9196.43 158
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9996.20 11587.73 7488.40 11798.12 3578.71 8099.76 2587.99 12196.28 9298.74 34
Vis-MVSNetpermissive88.67 12787.82 12791.24 14092.68 19678.82 18796.95 12593.85 24287.55 7887.07 13295.13 14463.43 23397.21 17977.58 21396.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2997.64 1394.57 495.36 2596.88 9879.96 6699.12 8791.30 7896.11 9497.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS90.18 9788.97 10893.80 4798.66 2882.95 9597.50 8095.63 14875.16 28986.31 13697.69 5872.49 17399.90 581.26 17996.07 9598.56 46
QAPM86.88 16084.51 18193.98 4294.04 16085.89 3897.19 10096.05 12673.62 30075.12 26595.62 12862.02 24299.74 3270.88 27196.06 9696.30 165
131488.94 11887.20 14494.17 3993.21 18085.73 4093.33 26496.64 7082.89 18175.98 25396.36 11166.83 21399.39 6483.52 16596.02 9797.39 126
MS-PatchMatch83.05 22281.82 22286.72 24889.64 26579.10 18294.88 23094.59 20679.70 23870.67 29689.65 23250.43 30696.82 20170.82 27495.99 9884.25 335
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31896.17 11885.94 10787.27 12994.31 16290.27 995.65 25294.04 4995.86 9995.53 179
OpenMVScopyleft79.58 1486.09 17383.62 19793.50 6190.95 24186.71 3097.44 8495.83 13875.35 28672.64 28495.72 12357.42 27699.64 4571.41 26595.85 10094.13 203
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2589.53 10396.21 11376.42 11499.57 5294.29 4595.81 10197.29 131
CHOSEN 1792x268891.07 8090.21 8793.64 5395.18 12683.53 8596.26 16996.13 11988.92 4984.90 14993.10 18472.86 16999.62 4788.86 11195.67 10297.79 98
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4795.21 17289.77 4193.11 5596.83 10077.23 10497.50 16295.74 3095.38 10397.44 122
114514_t88.79 12587.57 13592.45 9798.21 5381.74 11996.99 11895.45 15875.16 28982.48 17695.69 12568.59 20398.50 11680.33 18595.18 10497.10 137
CANet_DTU90.98 8190.04 9193.83 4694.76 13986.23 3296.32 16693.12 27793.11 1193.71 4796.82 10263.08 23599.48 6084.29 14895.12 10595.77 174
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2595.96 13080.57 21688.08 12297.63 6676.84 10799.89 785.67 13894.88 10698.13 72
test250690.96 8290.39 8292.65 9193.54 17182.46 10396.37 16297.35 1686.78 9787.55 12595.25 13577.83 9397.50 16284.07 15094.80 10797.98 84
ECVR-MVScopyleft88.35 13787.25 14391.65 12793.54 17179.40 17296.56 15090.78 31386.78 9785.57 14295.25 13557.25 27797.56 15484.73 14694.80 10797.98 84
test111188.11 14287.04 14991.35 13593.15 18378.79 19096.57 14890.78 31386.88 9585.04 14695.20 13957.23 27897.39 16983.88 15394.59 10997.87 91
BH-w/o88.24 14087.47 13990.54 16195.03 13378.54 19497.41 8993.82 24384.08 15078.23 22494.51 16069.34 20197.21 17980.21 18994.58 11095.87 172
MVS_Test90.29 9689.18 10593.62 5595.23 12384.93 6294.41 23894.66 19984.31 14590.37 9391.02 21175.13 14297.82 14483.11 16994.42 11198.12 73
Vis-MVSNet (Re-imp)88.88 12188.87 11288.91 19693.89 16374.43 27296.93 12794.19 22584.39 14383.22 17095.67 12678.24 8594.70 29078.88 20294.40 11297.61 112
test_fmvs187.79 14988.52 11685.62 26692.98 19264.31 33397.88 5192.42 28687.95 6892.24 6395.82 12147.94 31598.44 12395.31 3694.09 11394.09 204
UGNet87.73 15086.55 15691.27 13995.16 12779.11 18196.35 16496.23 11288.14 6487.83 12490.48 22050.65 30499.09 8980.13 19094.03 11495.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet82.34 989.02 11687.79 12892.71 8995.49 11781.50 12497.70 6497.29 1787.76 7385.47 14395.12 14556.90 27998.90 10180.33 18594.02 11597.71 104
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3995.29 16991.57 1893.81 4697.45 7286.64 2799.43 6396.28 2394.01 11699.20 22
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5895.87 13788.26 6286.39 13593.94 17376.77 10999.27 7188.80 11394.00 11796.31 164
PMMVS89.46 10989.92 9588.06 21594.64 14069.57 31696.22 17194.95 18087.27 8591.37 7696.54 11065.88 21797.39 16988.54 11493.89 11897.23 132
BH-untuned86.95 15985.94 16089.99 17594.52 14577.46 22996.78 13793.37 26881.80 19976.62 24093.81 17766.64 21497.02 18976.06 23093.88 11995.48 181
BH-RMVSNet86.84 16185.28 16891.49 13395.35 12180.26 15196.95 12592.21 28982.86 18381.77 19195.46 13359.34 25997.64 14969.79 27893.81 12096.57 155
Effi-MVS+90.70 8789.90 9693.09 7593.61 16883.48 8695.20 21792.79 28283.22 17191.82 6995.70 12471.82 18197.48 16491.25 7993.67 12198.32 58
IS-MVSNet88.67 12788.16 12290.20 17193.61 16876.86 24096.77 13993.07 27884.02 15283.62 16695.60 12974.69 15096.24 22178.43 20693.66 12297.49 120
test_fmvs1_n86.34 16986.72 15485.17 27387.54 29163.64 33896.91 12892.37 28887.49 7991.33 7795.58 13040.81 34098.46 12095.00 3893.49 12393.41 217
AdaColmapbinary88.81 12387.61 13492.39 10099.33 479.95 15696.70 14495.58 14977.51 26983.05 17396.69 10861.90 24599.72 3584.29 14893.47 12497.50 119
xiu_mvs_v1_base_debu90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base_debi90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
mvs_anonymous88.68 12687.62 13391.86 12094.80 13881.69 12193.53 26094.92 18282.03 19778.87 21890.43 22275.77 12595.34 26685.04 14393.16 12898.55 48
test_vis1_n85.60 18285.70 16285.33 27084.79 32364.98 33196.83 13291.61 29987.36 8391.00 8494.84 15336.14 34697.18 18195.66 3193.03 12993.82 209
LCM-MVSNet-Re83.75 21083.54 19984.39 28893.54 17164.14 33592.51 27984.03 35383.90 15866.14 31986.59 27567.36 20892.68 31984.89 14592.87 13096.35 160
casdiffmvs_mvgpermissive91.13 7990.45 8193.17 7292.99 19183.58 8497.46 8394.56 20787.69 7587.19 13094.98 15174.50 15297.60 15191.88 7692.79 13198.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive90.95 8390.39 8292.63 9292.82 19582.53 10096.83 13294.47 21287.69 7588.47 11595.56 13174.04 15797.54 15890.90 8492.74 13297.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS81.61 1285.02 19183.67 19489.06 19296.79 9273.27 28295.92 18694.79 19274.81 29280.47 20296.83 10071.07 18998.19 13249.82 35392.57 13395.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 17093.62 25687.79 7290.40 9295.93 11873.44 16597.42 16693.62 5492.55 13497.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS87.47 15585.90 16192.18 10895.41 11982.26 10787.00 32596.28 10985.88 10984.23 15685.57 29275.07 14496.26 21971.14 27092.50 13598.03 76
LS3D82.22 23779.94 25089.06 19297.43 7974.06 27693.20 27092.05 29161.90 34473.33 27795.21 13859.35 25899.21 7554.54 34192.48 13693.90 208
ACMMPcopyleft90.39 9389.97 9291.64 12897.58 7378.21 20896.78 13796.72 5884.73 13384.72 15297.23 8471.22 18799.63 4688.37 11992.41 13797.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TESTMET0.1,189.83 10289.34 10391.31 13692.54 20280.19 15397.11 11096.57 7986.15 10286.85 13491.83 20079.32 6996.95 19281.30 17892.35 13896.77 149
PLCcopyleft83.97 788.00 14587.38 14189.83 18398.02 5976.46 24597.16 10594.43 21579.26 24881.98 18796.28 11269.36 20099.27 7177.71 21192.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline90.76 8690.10 9092.74 8792.90 19482.56 9994.60 23594.56 20787.69 7589.06 10995.67 12673.76 16097.51 16190.43 9492.23 14098.16 69
PatchMatch-RL85.00 19283.66 19589.02 19495.86 10874.55 27192.49 28093.60 25779.30 24679.29 21591.47 20258.53 26598.45 12170.22 27692.17 14194.07 205
test-LLR88.48 13287.98 12489.98 17692.26 21077.23 23497.11 11095.96 13083.76 16386.30 13791.38 20472.30 17696.78 20480.82 18191.92 14295.94 170
test-mter88.95 11788.60 11489.98 17692.26 21077.23 23497.11 11095.96 13085.32 11886.30 13791.38 20476.37 11696.78 20480.82 18191.92 14295.94 170
Fast-Effi-MVS+87.93 14786.94 15290.92 14994.04 16079.16 17998.26 3093.72 25281.29 20483.94 16292.90 18569.83 19996.68 20776.70 22391.74 14496.93 141
FE-MVS86.06 17484.15 18991.78 12494.33 15279.81 15984.58 33796.61 7376.69 27985.00 14787.38 26170.71 19498.37 12570.39 27591.70 14597.17 135
UA-Net88.92 11988.48 11790.24 16994.06 15977.18 23693.04 27294.66 19987.39 8291.09 8193.89 17474.92 14598.18 13375.83 23391.43 14695.35 184
PatchmatchNetpermissive86.83 16285.12 17391.95 11794.12 15782.27 10686.55 32995.64 14784.59 13882.98 17484.99 30477.26 10095.96 23368.61 28491.34 14797.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PCF-MVS84.09 586.77 16485.00 17592.08 11192.06 22283.07 9392.14 28494.47 21279.63 23976.90 23694.78 15471.15 18899.20 7972.87 25691.05 14893.98 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14696.87 3888.20 6389.19 10697.55 7178.69 8199.14 8490.29 9790.94 14995.80 173
CNLPA86.96 15885.37 16791.72 12697.59 7279.34 17597.21 9791.05 30874.22 29578.90 21696.75 10667.21 21098.95 9774.68 24290.77 15096.88 145
CVMVSNet84.83 19485.57 16382.63 30691.55 23260.38 34895.13 22195.03 17880.60 21582.10 18594.71 15566.40 21690.19 34574.30 24790.32 15197.31 129
EPNet_dtu87.65 15287.89 12586.93 24394.57 14271.37 30396.72 14096.50 8788.56 5687.12 13195.02 14875.91 12494.01 30466.62 29290.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)87.71 15186.23 15892.17 10994.19 15580.55 14287.16 32496.07 12582.12 19585.98 14088.35 24872.04 18098.49 11780.26 18789.87 15397.48 121
baseline290.39 9390.21 8790.93 14890.86 24480.99 13195.20 21797.41 1586.03 10680.07 21094.61 15790.58 697.47 16587.29 12889.86 15494.35 199
LFMVS89.27 11387.64 13194.16 4197.16 8885.52 4597.18 10194.66 19979.17 24989.63 10196.57 10955.35 29098.22 13089.52 10689.54 15598.74 34
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15496.83 4187.92 6988.30 12097.36 7877.84 9299.13 8689.43 10789.45 15695.37 183
GeoE86.36 16885.20 16989.83 18393.17 18276.13 25097.53 7692.11 29079.58 24080.99 19694.01 17166.60 21596.17 22373.48 25489.30 15797.20 134
sss90.87 8589.96 9393.60 5694.15 15683.84 7997.14 10798.13 785.93 10889.68 9996.09 11671.67 18299.30 7087.69 12489.16 15897.66 107
HY-MVS84.06 691.63 6690.37 8495.39 1596.12 10288.25 1390.22 30197.58 1488.33 6190.50 9091.96 19679.26 7199.06 9090.29 9789.07 15998.88 30
thisisatest051590.95 8390.26 8593.01 7894.03 16284.27 7397.91 4996.67 6483.18 17286.87 13395.51 13288.66 1697.85 14380.46 18489.01 16096.92 143
CDS-MVSNet89.50 10888.96 10991.14 14491.94 22780.93 13397.09 11495.81 13984.26 14884.72 15294.20 16780.31 6095.64 25383.37 16688.96 16196.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4997.96 986.38 10093.65 4895.74 12270.16 19898.95 9793.39 5588.87 16298.43 53
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1996.38 10288.04 6693.01 5797.45 7279.20 7398.60 11193.25 6088.76 16398.99 28
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3197.65 1288.57 5589.82 9797.22 8579.29 7099.06 9089.57 10488.73 16498.73 38
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11494.64 20288.49 5792.99 5897.31 7972.68 17198.57 11393.38 5788.58 16599.36 16
test_yl91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
DCV-MVSNet91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
HyFIR lowres test89.36 11088.60 11491.63 13094.91 13680.76 13795.60 20195.53 15182.56 18984.03 15891.24 20878.03 8896.81 20287.07 13188.41 16897.32 128
TAMVS88.48 13287.79 12890.56 16091.09 23979.18 17896.45 15695.88 13583.64 16683.12 17193.33 18075.94 12395.74 24882.40 17288.27 16996.75 151
EPP-MVSNet89.76 10389.72 9989.87 18193.78 16476.02 25597.22 9596.51 8579.35 24385.11 14595.01 14984.82 3497.10 18787.46 12788.21 17096.50 156
MVS-HIRNet71.36 31467.00 31984.46 28690.58 24969.74 31479.15 35087.74 33946.09 36261.96 33750.50 36645.14 32395.64 25353.74 34388.11 17188.00 291
TR-MVS86.30 17084.93 17790.42 16394.63 14177.58 22796.57 14893.82 24380.30 22582.42 17895.16 14258.74 26397.55 15674.88 24087.82 17296.13 168
cascas86.50 16684.48 18392.55 9592.64 20085.95 3597.04 11795.07 17775.32 28780.50 20191.02 21154.33 29797.98 13686.79 13487.62 17393.71 211
OMC-MVS88.80 12488.16 12290.72 15695.30 12277.92 21894.81 23294.51 20986.80 9684.97 14896.85 9967.53 20698.60 11185.08 14287.62 17395.63 176
SCA85.63 18183.64 19691.60 13192.30 20881.86 11492.88 27695.56 15084.85 12982.52 17585.12 30258.04 26895.39 26373.89 25087.58 17597.54 114
thisisatest053089.65 10589.02 10791.53 13293.46 17780.78 13696.52 15196.67 6481.69 20183.79 16494.90 15288.85 1597.68 14877.80 20787.49 17696.14 167
VDDNet86.44 16784.51 18192.22 10791.56 23181.83 11597.10 11394.64 20269.50 32787.84 12395.19 14048.01 31397.92 14289.82 10186.92 17796.89 144
VDD-MVS88.28 13987.02 15092.06 11395.09 12880.18 15497.55 7594.45 21483.09 17589.10 10895.92 12047.97 31498.49 11793.08 6486.91 17897.52 118
thres20088.92 11987.65 13092.73 8896.30 9685.62 4397.85 5298.86 184.38 14484.82 15093.99 17275.12 14398.01 13570.86 27286.67 17994.56 198
DP-MVS81.47 24678.28 26291.04 14598.14 5578.48 19595.09 22686.97 34061.14 35071.12 29392.78 18959.59 25599.38 6553.11 34586.61 18095.27 187
F-COLMAP84.50 20083.44 20187.67 22295.22 12472.22 28895.95 18493.78 24875.74 28476.30 24795.18 14159.50 25798.45 12172.67 25886.59 18192.35 221
mvsany_test187.58 15388.22 11985.67 26489.78 26167.18 32695.25 21487.93 33683.96 15588.79 11197.06 9372.52 17294.53 29592.21 7186.45 18295.30 186
tttt051788.57 13188.19 12189.71 18793.00 18875.99 25695.67 19796.67 6480.78 21181.82 19094.40 16188.97 1497.58 15376.05 23186.31 18395.57 178
CR-MVSNet83.53 21381.36 22990.06 17390.16 25679.75 16279.02 35191.12 30584.24 14982.27 18380.35 33175.45 13293.67 31063.37 31086.25 18496.75 151
RPMNet79.85 26175.92 28091.64 12890.16 25679.75 16279.02 35195.44 15958.43 35882.27 18372.55 35573.03 16898.41 12446.10 35986.25 18496.75 151
thres100view90088.30 13886.95 15192.33 10296.10 10384.90 6397.14 10798.85 282.69 18683.41 16793.66 17875.43 13497.93 13769.04 28086.24 18694.17 200
tfpn200view988.48 13287.15 14592.47 9696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18694.17 200
thres40088.42 13587.15 14592.23 10696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18693.45 215
CostFormer89.08 11588.39 11891.15 14393.13 18579.15 18088.61 31296.11 12183.14 17389.58 10286.93 27083.83 4396.87 19888.22 12085.92 18997.42 123
thres600view788.06 14386.70 15592.15 11096.10 10385.17 5697.14 10798.85 282.70 18583.41 16793.66 17875.43 13497.82 14467.13 29085.88 19093.45 215
Effi-MVS+-dtu84.61 19784.90 17883.72 29591.96 22563.14 34094.95 22893.34 26985.57 11379.79 21187.12 26761.99 24395.61 25683.55 16285.83 19192.41 220
JIA-IIPM79.00 27177.20 26984.40 28789.74 26464.06 33675.30 35995.44 15962.15 34381.90 18859.08 36378.92 7595.59 25766.51 29585.78 19293.54 212
tpm287.35 15686.26 15790.62 15892.93 19378.67 19288.06 31795.99 12879.33 24487.40 12686.43 28180.28 6196.40 21480.23 18885.73 19396.79 147
1112_ss88.60 13087.47 13992.00 11693.21 18080.97 13296.47 15492.46 28583.64 16680.86 19897.30 8180.24 6297.62 15077.60 21285.49 19497.40 125
Test_1112_low_res88.03 14486.73 15391.94 11893.15 18380.88 13496.44 15792.41 28783.59 16880.74 20091.16 20980.18 6397.59 15277.48 21585.40 19597.36 127
GA-MVS85.79 17984.04 19191.02 14789.47 26980.27 15096.90 12994.84 18885.57 11380.88 19789.08 23656.56 28396.47 21377.72 21085.35 19696.34 161
tpmrst88.36 13687.38 14191.31 13694.36 15179.92 15787.32 32295.26 17185.32 11888.34 11886.13 28680.60 5896.70 20683.78 15585.34 19797.30 130
MDTV_nov1_ep1383.69 19394.09 15881.01 13086.78 32796.09 12283.81 16184.75 15184.32 30974.44 15396.54 21063.88 30685.07 198
Fast-Effi-MVS+-dtu83.33 21682.60 21285.50 26889.55 26769.38 31796.09 18091.38 30082.30 19175.96 25491.41 20356.71 28095.58 25875.13 23984.90 19991.54 222
PatchT79.75 26276.85 27388.42 20489.55 26775.49 26277.37 35594.61 20463.07 34082.46 17773.32 35375.52 13193.41 31551.36 34884.43 20096.36 159
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25471.45 30291.29 29494.09 23181.37 20383.90 16395.22 13760.30 25297.53 16085.58 13984.42 20193.50 213
tpm cat183.63 21281.38 22890.39 16493.53 17678.19 21085.56 33595.09 17570.78 32178.51 22183.28 31774.80 14697.03 18866.77 29184.05 20295.95 169
DSMNet-mixed73.13 30672.45 30175.19 33677.51 35246.82 36585.09 33682.01 35967.61 33469.27 30581.33 32650.89 30386.28 35654.54 34183.80 20392.46 218
ADS-MVSNet279.57 26577.53 26785.71 26293.78 16472.13 29079.48 34786.11 34673.09 30680.14 20779.99 33462.15 24090.14 34659.49 32283.52 20494.85 190
ADS-MVSNet81.26 24978.36 26189.96 17893.78 16479.78 16079.48 34793.60 25773.09 30680.14 20779.99 33462.15 24095.24 27259.49 32283.52 20494.85 190
XVG-OURS85.18 18884.38 18587.59 22690.42 25271.73 29991.06 29794.07 23282.00 19883.29 16995.08 14756.42 28497.55 15683.70 16083.42 20693.49 214
dp84.30 20382.31 21590.28 16894.24 15477.97 21486.57 32895.53 15179.94 23480.75 19985.16 30071.49 18696.39 21563.73 30783.36 20796.48 157
MSDG80.62 25777.77 26689.14 19193.43 17877.24 23391.89 28790.18 31769.86 32668.02 30791.94 19852.21 30198.84 10359.32 32483.12 20891.35 223
MIMVSNet79.18 27075.99 27988.72 20187.37 29380.66 13979.96 34691.82 29477.38 27174.33 27081.87 32341.78 33490.74 34166.36 29783.10 20994.76 192
HQP3-MVS94.80 19083.01 210
HQP-MVS87.91 14887.55 13688.98 19592.08 21978.48 19597.63 6894.80 19090.52 2982.30 17994.56 15865.40 22197.32 17287.67 12583.01 21091.13 224
plane_prior77.96 21597.52 7990.36 3482.96 212
CLD-MVS87.97 14687.48 13889.44 18892.16 21780.54 14498.14 3494.92 18291.41 1979.43 21395.40 13462.34 23897.27 17790.60 8982.90 21390.50 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS87.50 15487.09 14888.74 20091.86 22877.96 21597.18 10194.69 19589.89 3981.33 19394.15 16864.77 22797.30 17487.08 12982.82 21490.96 226
plane_prior594.69 19597.30 17487.08 12982.82 21490.96 226
OPM-MVS85.84 17785.10 17488.06 21588.34 28077.83 22295.72 19594.20 22487.89 7180.45 20394.05 17058.57 26497.26 17883.88 15382.76 21689.09 264
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous20240521184.41 20181.93 22091.85 12296.78 9378.41 19997.44 8491.34 30370.29 32384.06 15794.26 16441.09 33898.96 9579.46 19582.65 21798.17 68
ab-mvs87.08 15784.94 17693.48 6393.34 17983.67 8288.82 30995.70 14481.18 20584.55 15590.14 22862.72 23698.94 9985.49 14082.54 21897.85 93
ET-MVSNet_ETH3D90.01 10089.03 10692.95 8094.38 15086.77 2898.14 3496.31 10889.30 4563.33 33096.72 10790.09 1193.63 31190.70 8882.29 21998.46 51
tpmvs83.04 22380.77 23489.84 18295.43 11877.96 21585.59 33495.32 16875.31 28876.27 24883.70 31473.89 15897.41 16759.53 32181.93 22094.14 202
CMPMVSbinary54.94 2175.71 29574.56 29079.17 32379.69 34555.98 35589.59 30393.30 27060.28 35253.85 35689.07 23747.68 31896.33 21776.55 22481.02 22185.22 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final89.51 10789.21 10490.39 16495.60 11484.44 6997.22 9589.09 32789.11 4882.07 18692.80 18687.03 2596.03 22589.10 11080.89 22290.70 229
LPG-MVS_test84.20 20483.49 20086.33 25090.88 24273.06 28395.28 21194.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
LGP-MVS_train86.33 25090.88 24273.06 28394.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
iter_conf0590.14 9889.79 9891.17 14295.85 10986.93 2697.68 6688.67 33489.93 3881.73 19292.80 18690.37 896.03 22590.44 9380.65 22590.56 231
ACMM80.70 1383.72 21182.85 20886.31 25391.19 23772.12 29195.88 18994.29 22180.44 22077.02 23491.96 19655.24 29197.14 18679.30 19780.38 22689.67 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_030478.43 27376.70 27483.60 29788.22 28269.81 31292.91 27595.10 17472.32 31378.71 21980.29 33333.78 35293.37 31668.77 28380.23 22787.63 297
mvsmamba85.17 18984.54 18087.05 24187.94 28575.11 26696.22 17187.79 33886.91 9378.55 22091.77 20164.93 22695.91 23686.94 13379.80 22890.12 240
jajsoiax82.12 23981.15 23185.03 27584.19 32970.70 30594.22 24893.95 23583.07 17673.48 27489.75 23149.66 30995.37 26582.24 17479.76 22989.02 268
test_djsdf83.00 22582.45 21484.64 28184.07 33169.78 31394.80 23394.48 21080.74 21275.41 26387.70 25761.32 24895.10 28083.77 15679.76 22989.04 267
ACMP81.66 1184.00 20583.22 20486.33 25091.53 23472.95 28695.91 18893.79 24783.70 16573.79 27292.22 19254.31 29896.89 19683.98 15179.74 23189.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS90.05 9989.96 9390.33 16797.47 7683.86 7798.02 4696.73 5687.98 6789.53 10389.61 23376.42 11499.57 5294.29 4579.59 23287.57 300
Patchmatch-test78.25 27574.72 28888.83 19891.20 23674.10 27573.91 36288.70 33359.89 35566.82 31485.12 30278.38 8394.54 29448.84 35579.58 23397.86 92
mvs_tets81.74 24280.71 23784.84 27684.22 32870.29 30893.91 25293.78 24882.77 18473.37 27589.46 23447.36 31995.31 26981.99 17579.55 23488.92 274
FIs86.73 16586.10 15988.61 20290.05 25880.21 15296.14 17796.95 3385.56 11578.37 22392.30 19176.73 11095.28 27079.51 19479.27 23590.35 235
D2MVS82.67 22981.55 22586.04 25887.77 28776.47 24495.21 21696.58 7882.66 18770.26 29985.46 29560.39 25195.80 24276.40 22779.18 23685.83 325
ACMMP++79.05 237
PS-MVSNAJss84.91 19384.30 18686.74 24485.89 31074.40 27394.95 22894.16 22783.93 15776.45 24390.11 22971.04 19095.77 24383.16 16879.02 23890.06 245
FC-MVSNet-test85.96 17585.39 16687.66 22389.38 27178.02 21295.65 19996.87 3885.12 12577.34 22991.94 19876.28 11894.74 28977.09 21878.82 23990.21 238
EG-PatchMatch MVS74.92 29772.02 30383.62 29683.76 33573.28 28193.62 25792.04 29268.57 32958.88 34683.80 31331.87 35695.57 25956.97 33478.67 24082.00 349
EI-MVSNet85.80 17885.20 16987.59 22691.55 23277.41 23095.13 22195.36 16480.43 22280.33 20594.71 15573.72 16195.97 23076.96 22178.64 24189.39 252
MVSTER89.25 11488.92 11190.24 16995.98 10684.66 6696.79 13695.36 16487.19 8980.33 20590.61 21990.02 1295.97 23085.38 14178.64 24190.09 243
anonymousdsp80.98 25479.97 24984.01 28981.73 33970.44 30792.49 28093.58 25977.10 27672.98 28186.31 28357.58 27294.90 28579.32 19678.63 24386.69 312
bld_raw_dy_0_6482.13 23880.76 23586.24 25585.78 31275.03 26794.40 24182.62 35883.12 17476.46 24290.96 21453.83 29994.55 29381.04 18078.60 24489.14 262
UniMVSNet_ETH3D80.86 25578.75 26087.22 23886.31 30172.02 29391.95 28593.76 25173.51 30175.06 26690.16 22743.04 33195.66 25076.37 22878.55 24593.98 206
ACMMP++_ref78.45 246
test_fmvs279.59 26479.90 25178.67 32482.86 33755.82 35795.20 21789.55 32181.09 20680.12 20989.80 23034.31 35193.51 31387.82 12278.36 24786.69 312
Anonymous2024052983.15 22080.60 23990.80 15395.74 11178.27 20396.81 13594.92 18260.10 35481.89 18992.54 19045.82 32298.82 10479.25 19878.32 24895.31 185
XVG-ACMP-BASELINE79.38 26877.90 26583.81 29184.98 32267.14 32889.03 30893.18 27480.26 22872.87 28288.15 25238.55 34296.26 21976.05 23178.05 24988.02 290
tpm85.55 18384.47 18488.80 19990.19 25575.39 26388.79 31094.69 19584.83 13083.96 16185.21 29878.22 8694.68 29176.32 22978.02 25096.34 161
test0.0.03 182.79 22782.48 21383.74 29486.81 29672.22 28896.52 15195.03 17883.76 16373.00 28093.20 18172.30 17688.88 34864.15 30577.52 25190.12 240
RPSCF77.73 28076.63 27581.06 31488.66 27855.76 35887.77 31987.88 33764.82 33974.14 27192.79 18849.22 31096.81 20267.47 28876.88 25290.62 230
RRT_MVS83.88 20783.27 20385.71 26287.53 29272.12 29195.35 21094.33 21983.81 16175.86 25691.28 20760.55 25095.09 28283.93 15276.76 25389.90 248
LTVRE_ROB73.68 1877.99 27775.74 28184.74 27790.45 25172.02 29386.41 33091.12 30572.57 31166.63 31687.27 26354.95 29496.98 19156.29 33675.98 25485.21 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_rt73.96 30072.40 30278.64 32583.91 33361.16 34795.63 20068.18 37176.32 28060.09 34474.77 34729.01 36097.54 15887.74 12375.94 25577.22 357
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 34371.82 29793.60 25888.22 33562.37 34261.98 33683.15 31835.31 35095.47 26145.08 36075.88 25682.82 341
USDC78.65 27276.25 27785.85 25987.58 28974.60 27089.58 30490.58 31684.05 15163.13 33188.23 25040.69 34196.86 20066.57 29475.81 25786.09 321
COLMAP_ROBcopyleft73.24 1975.74 29473.00 30083.94 29092.38 20369.08 31891.85 28886.93 34161.48 34765.32 32290.27 22442.27 33396.93 19550.91 35075.63 25885.80 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GBi-Net82.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
test182.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
FMVSNet384.71 19582.71 21090.70 15794.55 14387.71 1995.92 18694.67 19881.73 20075.82 25788.08 25366.99 21194.47 29671.23 26775.38 25989.91 247
tt080581.20 25179.06 25887.61 22486.50 29872.97 28593.66 25595.48 15574.11 29676.23 24991.99 19441.36 33797.40 16877.44 21674.78 26292.45 219
FMVSNet282.79 22780.44 24189.83 18392.66 19785.43 4695.42 20794.35 21779.06 25274.46 26987.28 26256.38 28594.31 29969.72 27974.68 26389.76 249
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32179.99 23369.37 30491.30 20641.60 33695.33 26762.86 31274.63 26486.24 318
ACMH75.40 1777.99 27774.96 28487.10 24090.67 24876.41 24693.19 27191.64 29872.47 31263.44 32987.61 25943.34 32897.16 18258.34 32673.94 26587.72 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline188.85 12287.49 13792.93 8295.21 12586.85 2795.47 20594.61 20487.29 8483.11 17294.99 15080.70 5796.89 19682.28 17373.72 26695.05 188
pmmvs482.54 23180.79 23387.79 22086.11 30680.49 14693.55 25993.18 27477.29 27273.35 27689.40 23565.26 22495.05 28475.32 23773.61 26787.83 293
AllTest75.92 29273.06 29984.47 28492.18 21567.29 32491.07 29684.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
TestCases84.47 28492.18 21567.29 32484.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
pmmvs581.34 24879.54 25386.73 24785.02 32176.91 23896.22 17191.65 29777.65 26773.55 27388.61 24355.70 28894.43 29774.12 24973.35 27088.86 276
XXY-MVS83.84 20882.00 21989.35 18987.13 29481.38 12595.72 19594.26 22280.15 22975.92 25590.63 21861.96 24496.52 21178.98 20173.28 27190.14 239
FMVSNet179.50 26676.54 27688.39 20688.47 27981.95 10894.30 24493.38 26573.14 30572.04 28985.66 28843.86 32593.84 30665.48 29972.53 27289.38 254
cl2285.11 19084.17 18887.92 21895.06 13278.82 18795.51 20394.22 22379.74 23776.77 23787.92 25575.96 12295.68 24979.93 19272.42 27389.27 258
miper_ehance_all_eth84.57 19883.60 19887.50 23092.64 20078.25 20495.40 20993.47 26179.28 24776.41 24487.64 25876.53 11295.24 27278.58 20472.42 27389.01 269
miper_enhance_ethall85.95 17685.20 16988.19 21494.85 13779.76 16196.00 18194.06 23382.98 18077.74 22788.76 24179.42 6895.46 26280.58 18372.42 27389.36 257
test_040272.68 30869.54 31482.09 31088.67 27771.81 29892.72 27886.77 34361.52 34662.21 33583.91 31243.22 32993.76 30934.60 36572.23 27680.72 353
testgi74.88 29873.40 29879.32 32280.13 34461.75 34393.21 26986.64 34479.49 24266.56 31891.06 21035.51 34988.67 34956.79 33571.25 27787.56 301
nrg03086.79 16385.43 16590.87 15288.76 27485.34 4797.06 11694.33 21984.31 14580.45 20391.98 19572.36 17496.36 21688.48 11771.13 27890.93 228
ACMH+76.62 1677.47 28374.94 28585.05 27491.07 24071.58 30193.26 26890.01 31871.80 31664.76 32488.55 24441.62 33596.48 21262.35 31371.00 27987.09 308
VPA-MVSNet85.32 18683.83 19289.77 18690.25 25382.63 9896.36 16397.07 2783.03 17881.21 19589.02 23861.58 24696.31 21885.02 14470.95 28090.36 234
IterMVS80.67 25679.16 25685.20 27289.79 26076.08 25192.97 27491.86 29380.28 22671.20 29285.14 30157.93 27191.34 33572.52 25970.74 28188.18 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-LS83.93 20682.80 20987.31 23591.46 23577.39 23195.66 19893.43 26380.44 22075.51 26187.26 26473.72 16195.16 27676.99 21970.72 28289.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 25879.10 25784.73 27889.63 26674.66 26992.98 27391.81 29580.05 23171.06 29485.18 29958.04 26891.40 33472.48 26070.70 28388.12 289
v124081.70 24379.83 25287.30 23685.50 31477.70 22695.48 20493.44 26278.46 26076.53 24186.44 27960.85 24995.84 23971.59 26470.17 28488.35 284
V4283.04 22381.53 22687.57 22886.27 30379.09 18395.87 19094.11 23080.35 22477.22 23286.79 27365.32 22396.02 22877.74 20970.14 28587.61 299
v119282.31 23680.55 24087.60 22585.94 30878.47 19895.85 19293.80 24679.33 24476.97 23586.51 27663.33 23495.87 23873.11 25570.13 28688.46 281
v114482.90 22681.27 23087.78 22186.29 30279.07 18496.14 17793.93 23680.05 23177.38 22886.80 27265.50 21995.93 23575.21 23870.13 28688.33 285
Anonymous2023120675.29 29673.64 29780.22 31880.75 34063.38 33993.36 26390.71 31573.09 30667.12 31083.70 31450.33 30790.85 34053.63 34470.10 28886.44 315
WR-MVS84.32 20282.96 20588.41 20589.38 27180.32 14796.59 14796.25 11183.97 15476.63 23990.36 22367.53 20694.86 28775.82 23470.09 28990.06 245
EU-MVSNet76.92 28876.95 27276.83 33084.10 33054.73 36091.77 28992.71 28372.74 30969.57 30388.69 24258.03 27087.43 35464.91 30270.00 29088.33 285
IB-MVS85.34 488.67 12787.14 14793.26 6893.12 18684.32 7198.76 1797.27 1887.19 8979.36 21490.45 22183.92 4298.53 11584.41 14769.79 29196.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192082.02 24080.23 24487.41 23285.62 31377.92 21895.79 19493.69 25378.86 25576.67 23886.44 27962.50 23795.83 24072.69 25769.77 29288.47 280
v2v48283.46 21481.86 22188.25 21186.19 30479.65 16796.34 16594.02 23481.56 20277.32 23088.23 25065.62 21896.03 22577.77 20869.72 29389.09 264
v14419282.43 23280.73 23687.54 22985.81 31178.22 20595.98 18293.78 24879.09 25177.11 23386.49 27764.66 22995.91 23674.20 24869.42 29488.49 279
cl____83.27 21782.12 21686.74 24492.20 21375.95 25795.11 22393.27 27178.44 26174.82 26787.02 26974.19 15595.19 27474.67 24369.32 29589.09 264
DIV-MVS_self_test83.27 21782.12 21686.74 24492.19 21475.92 25995.11 22393.26 27278.44 26174.81 26887.08 26874.19 15595.19 27474.66 24469.30 29689.11 263
Anonymous2023121179.72 26377.19 27087.33 23395.59 11577.16 23795.18 22094.18 22659.31 35672.57 28586.20 28547.89 31695.66 25074.53 24669.24 29789.18 260
FMVSNet576.46 29074.16 29483.35 30190.05 25876.17 24989.58 30489.85 31971.39 31965.29 32380.42 33050.61 30587.70 35361.05 31969.24 29786.18 319
c3_l83.80 20982.65 21187.25 23792.10 21877.74 22595.25 21493.04 27978.58 25876.01 25287.21 26675.25 14195.11 27977.54 21468.89 29988.91 275
TinyColmap72.41 30968.99 31782.68 30588.11 28369.59 31588.41 31385.20 34865.55 33657.91 34984.82 30630.80 35895.94 23451.38 34768.70 30082.49 346
LF4IMVS72.36 31070.82 30776.95 32979.18 34656.33 35486.12 33186.11 34669.30 32863.06 33286.66 27433.03 35492.25 32465.33 30068.64 30182.28 347
Anonymous2024052172.06 31269.91 31278.50 32677.11 35461.67 34591.62 29390.97 31065.52 33762.37 33479.05 33736.32 34590.96 33957.75 32968.52 30282.87 340
OurMVSNet-221017-077.18 28676.06 27880.55 31783.78 33460.00 35090.35 30091.05 30877.01 27866.62 31787.92 25547.73 31794.03 30371.63 26368.44 30387.62 298
CP-MVSNet81.01 25380.08 24683.79 29287.91 28670.51 30694.29 24795.65 14680.83 21072.54 28688.84 24063.71 23192.32 32368.58 28568.36 30488.55 278
UniMVSNet_NR-MVSNet85.49 18484.59 17988.21 21389.44 27079.36 17396.71 14296.41 9785.22 12178.11 22590.98 21376.97 10695.14 27779.14 19968.30 30590.12 240
DU-MVS84.57 19883.33 20288.28 20988.76 27479.36 17396.43 15995.41 16385.42 11678.11 22590.82 21567.61 20495.14 27779.14 19968.30 30590.33 236
PS-CasMVS80.27 25979.18 25583.52 29987.56 29069.88 31194.08 25095.29 16980.27 22772.08 28888.51 24759.22 26192.23 32567.49 28768.15 30788.45 282
UniMVSNet (Re)85.31 18784.23 18788.55 20389.75 26280.55 14296.72 14096.89 3785.42 11678.40 22288.93 23975.38 13695.52 26078.58 20468.02 30889.57 251
our_test_377.90 27975.37 28385.48 26985.39 31676.74 24293.63 25691.67 29673.39 30465.72 32184.65 30758.20 26793.13 31857.82 32867.87 30986.57 314
tfpnnormal78.14 27675.42 28286.31 25388.33 28179.24 17694.41 23896.22 11373.51 30169.81 30285.52 29455.43 28995.75 24547.65 35767.86 31083.95 338
VPNet84.69 19682.92 20690.01 17489.01 27383.45 8796.71 14295.46 15785.71 11179.65 21292.18 19356.66 28296.01 22983.05 17067.84 31190.56 231
v1081.43 24779.53 25487.11 23986.38 29978.87 18694.31 24393.43 26377.88 26473.24 27885.26 29665.44 22095.75 24572.14 26167.71 31286.72 311
v881.88 24180.06 24887.32 23486.63 29779.04 18594.41 23893.65 25578.77 25673.19 27985.57 29266.87 21295.81 24173.84 25267.61 31387.11 307
v7n79.32 26977.34 26885.28 27184.05 33272.89 28793.38 26293.87 24075.02 29170.68 29584.37 30859.58 25695.62 25567.60 28667.50 31487.32 306
WR-MVS_H81.02 25280.09 24583.79 29288.08 28471.26 30494.46 23696.54 8280.08 23072.81 28386.82 27170.36 19692.65 32064.18 30467.50 31487.46 304
Patchmtry77.36 28474.59 28985.67 26489.75 26275.75 26177.85 35491.12 30560.28 35271.23 29180.35 33175.45 13293.56 31257.94 32767.34 31687.68 296
eth_miper_zixun_eth83.12 22182.01 21886.47 24991.85 23074.80 26894.33 24293.18 27479.11 25075.74 26087.25 26572.71 17095.32 26876.78 22267.13 31789.27 258
miper_lstm_enhance81.66 24580.66 23884.67 28091.19 23771.97 29591.94 28693.19 27377.86 26572.27 28785.26 29673.46 16493.42 31473.71 25367.05 31888.61 277
v14882.41 23580.89 23286.99 24286.18 30576.81 24196.27 16893.82 24380.49 21975.28 26486.11 28767.32 20995.75 24575.48 23667.03 31988.42 283
NR-MVSNet83.35 21581.52 22788.84 19788.76 27481.31 12794.45 23795.16 17384.65 13667.81 30890.82 21570.36 19694.87 28674.75 24166.89 32090.33 236
Baseline_NR-MVSNet81.22 25080.07 24784.68 27985.32 31975.12 26596.48 15388.80 33076.24 28377.28 23186.40 28267.61 20494.39 29875.73 23566.73 32184.54 332
TranMVSNet+NR-MVSNet83.24 21981.71 22387.83 21987.71 28878.81 18996.13 17994.82 18984.52 13976.18 25190.78 21764.07 23094.60 29274.60 24566.59 32290.09 243
h-mvs3389.30 11288.95 11090.36 16695.07 13076.04 25296.96 12497.11 2590.39 3292.22 6495.10 14674.70 14798.86 10293.14 6165.89 32396.16 166
PEN-MVS79.47 26778.26 26383.08 30286.36 30068.58 32093.85 25394.77 19379.76 23671.37 29088.55 24459.79 25392.46 32164.50 30365.40 32488.19 287
FPMVS55.09 32952.93 33261.57 34955.98 37140.51 37483.11 34383.41 35637.61 36534.95 36671.95 35614.40 36876.95 36529.81 36665.16 32567.25 362
ppachtmachnet_test77.19 28574.22 29386.13 25785.39 31678.22 20593.98 25191.36 30271.74 31767.11 31184.87 30556.67 28193.37 31652.21 34664.59 32686.80 310
AUN-MVS86.25 17285.57 16388.26 21093.57 17073.38 27895.45 20695.88 13583.94 15685.47 14394.21 16673.70 16396.67 20883.54 16364.41 32794.73 196
hse-mvs288.22 14188.21 12088.25 21193.54 17173.41 27795.41 20895.89 13490.39 3292.22 6494.22 16574.70 14796.66 20993.14 6164.37 32894.69 197
pm-mvs180.05 26078.02 26486.15 25685.42 31575.81 26095.11 22392.69 28477.13 27470.36 29887.43 26058.44 26695.27 27171.36 26664.25 32987.36 305
N_pmnet61.30 32660.20 32964.60 34584.32 32717.00 38391.67 29210.98 38261.77 34558.45 34878.55 33849.89 30891.83 33142.27 36263.94 33084.97 330
SixPastTwentyTwo76.04 29174.32 29281.22 31384.54 32561.43 34691.16 29589.30 32577.89 26364.04 32686.31 28348.23 31194.29 30063.54 30963.84 33187.93 292
MIMVSNet169.44 31766.65 32177.84 32776.48 35662.84 34187.42 32188.97 32866.96 33557.75 35179.72 33632.77 35585.83 35846.32 35863.42 33284.85 331
DTE-MVSNet78.37 27477.06 27182.32 30985.22 32067.17 32793.40 26193.66 25478.71 25770.53 29788.29 24959.06 26292.23 32561.38 31763.28 33387.56 301
new_pmnet66.18 32363.18 32675.18 33776.27 35861.74 34483.79 34084.66 35056.64 35951.57 35771.85 35831.29 35787.93 35149.98 35262.55 33475.86 358
test_fmvs369.56 31669.19 31670.67 33969.01 36347.05 36490.87 29886.81 34271.31 32066.79 31577.15 34216.40 36783.17 36281.84 17662.51 33581.79 351
test20.0372.36 31071.15 30675.98 33477.79 35059.16 35292.40 28289.35 32474.09 29761.50 33884.32 30948.09 31285.54 35950.63 35162.15 33683.24 339
EGC-MVSNET52.46 33247.56 33567.15 34181.98 33860.11 34982.54 34472.44 3690.11 3790.70 38074.59 34825.11 36183.26 36129.04 36761.51 33758.09 364
pmmvs674.65 29971.67 30483.60 29779.13 34769.94 31093.31 26790.88 31261.05 35165.83 32084.15 31143.43 32794.83 28866.62 29260.63 33886.02 322
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32471.85 29691.74 29091.32 30467.63 33046.73 36081.09 32855.11 29290.42 34455.91 33859.76 33986.31 317
YYNet173.53 30470.43 31082.85 30484.52 32671.73 29991.69 29191.37 30167.63 33046.79 35981.21 32755.04 29390.43 34355.93 33759.70 34086.38 316
test_f64.01 32562.13 32869.65 34063.00 36945.30 37083.66 34180.68 36161.30 34855.70 35372.62 35414.23 36984.64 36069.84 27758.11 34179.00 354
Patchmatch-RL test76.65 28974.01 29684.55 28377.37 35364.23 33478.49 35382.84 35778.48 25964.63 32573.40 35276.05 12191.70 33376.99 21957.84 34297.72 102
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35773.38 27889.39 30789.43 32372.69 31060.34 34377.79 34046.43 32191.26 33766.42 29657.06 34382.51 344
PM-MVS69.32 31866.93 32076.49 33173.60 36155.84 35685.91 33279.32 36474.72 29361.09 34078.18 33921.76 36391.10 33870.86 27256.90 34482.51 344
Gipumacopyleft45.11 33742.05 33954.30 35380.69 34151.30 36235.80 37183.81 35428.13 36727.94 37134.53 37111.41 37476.70 36721.45 37154.65 34534.90 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test156.56 32853.58 33165.50 34267.93 36546.51 36777.24 35772.95 36838.09 36442.75 36275.17 34613.38 37082.78 36340.19 36354.53 34667.23 363
MDA-MVSNet-bldmvs71.45 31367.94 31881.98 31185.33 31868.50 32192.35 28388.76 33170.40 32242.99 36181.96 32246.57 32091.31 33648.75 35654.39 34786.11 320
K. test v373.62 30171.59 30579.69 32082.98 33659.85 35190.85 29988.83 32977.13 27458.90 34582.11 32143.62 32691.72 33265.83 29854.10 34887.50 303
CL-MVSNet_self_test75.81 29374.14 29580.83 31678.33 34967.79 32394.22 24893.52 26077.28 27369.82 30181.54 32561.47 24789.22 34757.59 33053.51 34985.48 327
KD-MVS_self_test70.97 31569.31 31575.95 33576.24 35955.39 35987.45 32090.94 31170.20 32462.96 33377.48 34144.01 32488.09 35061.25 31853.26 35084.37 334
TDRefinement69.20 31965.78 32379.48 32166.04 36762.21 34288.21 31486.12 34562.92 34161.03 34185.61 29133.23 35394.16 30155.82 33953.02 35182.08 348
ambc76.02 33368.11 36451.43 36164.97 36789.59 32060.49 34274.49 34917.17 36692.46 32161.50 31652.85 35284.17 336
TransMVSNet (Re)76.94 28774.38 29184.62 28285.92 30975.25 26495.28 21189.18 32673.88 29967.22 30986.46 27859.64 25494.10 30259.24 32552.57 35384.50 333
mvsany_test367.19 32265.34 32472.72 33863.08 36848.57 36383.12 34278.09 36572.07 31461.21 33977.11 34322.94 36287.78 35278.59 20351.88 35481.80 350
test_vis3_rt54.10 33051.04 33363.27 34858.16 37046.08 36984.17 33849.32 38156.48 36036.56 36549.48 3688.03 37791.91 33067.29 28949.87 35551.82 367
PMVScopyleft34.80 2339.19 33935.53 34250.18 35429.72 38130.30 37859.60 36966.20 37426.06 37017.91 37449.53 3673.12 38074.09 36918.19 37349.40 35646.14 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v079.98 31980.59 34258.34 35380.87 36058.49 34783.46 31643.10 33093.89 30563.11 31148.68 35787.72 294
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 35166.33 32987.24 32393.89 23980.38 22357.90 35081.59 32442.91 33290.56 34265.18 30148.51 35887.01 309
new-patchmatchnet68.85 32065.93 32277.61 32873.57 36263.94 33790.11 30288.73 33271.62 31855.08 35473.60 35140.84 33987.22 35551.35 34948.49 35981.67 352
pmmvs365.75 32462.18 32776.45 33267.12 36664.54 33288.68 31185.05 34954.77 36157.54 35273.79 35029.40 35986.21 35755.49 34047.77 36078.62 355
test_method56.77 32754.53 33063.49 34776.49 35540.70 37375.68 35874.24 36719.47 37348.73 35871.89 35719.31 36465.80 37357.46 33147.51 36183.97 337
UnsupCasMVSNet_bld68.60 32164.50 32580.92 31574.63 36067.80 32283.97 33992.94 28065.12 33854.63 35568.23 35935.97 34792.17 32760.13 32044.83 36282.78 342
LCM-MVSNet52.52 33148.24 33465.35 34347.63 37841.45 37272.55 36383.62 35531.75 36637.66 36457.92 3649.19 37676.76 36649.26 35444.60 36377.84 356
PVSNet_077.72 1581.70 24378.95 25989.94 17990.77 24776.72 24395.96 18396.95 3385.01 12770.24 30088.53 24652.32 30098.20 13186.68 13544.08 36494.89 189
testf145.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
APD_test245.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
KD-MVS_2432*160077.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
miper_refine_blended77.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
DeepMVS_CXcopyleft64.06 34678.53 34843.26 37168.11 37369.94 32538.55 36376.14 34518.53 36579.34 36443.72 36141.62 36769.57 361
PMMVS250.90 33346.31 33664.67 34455.53 37246.67 36677.30 35671.02 37040.89 36334.16 36759.32 3629.83 37576.14 36840.09 36428.63 37071.21 359
MVEpermissive35.65 2233.85 34029.49 34546.92 35541.86 37936.28 37750.45 37056.52 37818.75 37418.28 37337.84 3702.41 38158.41 37418.71 37220.62 37146.06 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 34132.39 34333.65 35753.35 37425.70 38074.07 36153.33 37921.08 37117.17 37533.63 37311.85 37354.84 37512.98 37414.04 37220.42 372
ANet_high46.22 33441.28 34161.04 35039.91 38046.25 36870.59 36476.18 36658.87 35723.09 37248.00 36912.58 37266.54 37228.65 36813.62 37370.35 360
tmp_tt41.54 33841.93 34040.38 35620.10 38226.84 37961.93 36859.09 37714.81 37528.51 37080.58 32935.53 34848.33 37763.70 30813.11 37445.96 370
EMVS31.70 34231.45 34432.48 35850.72 37723.95 38174.78 36052.30 38020.36 37216.08 37631.48 37412.80 37153.60 37611.39 37513.10 37519.88 373
wuyk23d14.10 34413.89 34714.72 35955.23 37322.91 38233.83 3723.56 3834.94 3764.11 3772.28 3792.06 38219.66 37810.23 3768.74 3761.59 376
testmvs9.92 34512.94 3480.84 3610.65 3830.29 38593.78 2540.39 3840.42 3772.85 37815.84 3770.17 3840.30 3802.18 3770.21 3771.91 375
test1239.07 34611.73 3491.11 3600.50 3840.77 38489.44 3060.20 3850.34 3782.15 37910.72 3780.34 3830.32 3791.79 3780.08 3782.23 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k21.43 34328.57 3460.00 3620.00 3850.00 3860.00 37395.93 1330.00 3800.00 38197.66 6063.57 2320.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.92 3487.89 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38071.04 1900.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.11 34710.81 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.30 810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.51 3978.01 21398.13 3796.21 11483.04 17794.39 41
test_one_060198.91 1884.56 6896.70 6088.06 6596.57 1698.77 1088.04 20
eth-test20.00 385
eth-test0.00 385
test_241102_ONE99.03 1585.03 5996.78 4488.72 5297.79 498.90 588.48 1799.82 18
save fliter98.24 5183.34 8998.61 2396.57 7991.32 20
test072699.05 985.18 5299.11 996.78 4488.75 5097.65 998.91 287.69 22
GSMVS97.54 114
test_part298.90 1985.14 5896.07 21
sam_mvs177.59 9597.54 114
sam_mvs75.35 139
MTGPAbinary96.33 106
test_post185.88 33330.24 37573.77 15995.07 28373.89 250
test_post33.80 37276.17 11995.97 230
patchmatchnet-post77.09 34477.78 9495.39 263
MTMP97.53 7668.16 372
gm-plane-assit92.27 20979.64 16884.47 14295.15 14397.93 13785.81 137
TEST998.64 3183.71 8097.82 5496.65 6784.29 14795.16 2798.09 3784.39 3599.36 68
test_898.63 3383.64 8397.81 5696.63 7284.50 14095.10 2998.11 3684.33 3699.23 73
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 83
test_prior482.34 10597.75 61
test_prior93.09 7598.68 2681.91 11196.40 9999.06 9098.29 62
旧先验296.97 12374.06 29896.10 2097.76 14688.38 118
新几何296.42 160
无先验96.87 13096.78 4477.39 27099.52 5679.95 19198.43 53
原ACMM296.84 131
testdata299.48 6076.45 226
segment_acmp82.69 51
testdata195.57 20287.44 80
plane_prior791.86 22877.55 228
plane_prior691.98 22477.92 21864.77 227
plane_prior494.15 168
plane_prior377.75 22490.17 3681.33 193
plane_prior297.18 10189.89 39
plane_prior191.95 226
n20.00 386
nn0.00 386
door-mid79.75 363
test1196.50 87
door80.13 362
HQP5-MVS78.48 195
HQP-NCC92.08 21997.63 6890.52 2982.30 179
ACMP_Plane92.08 21997.63 6890.52 2982.30 179
BP-MVS87.67 125
HQP4-MVS82.30 17997.32 17291.13 224
HQP2-MVS65.40 221
NP-MVS92.04 22378.22 20594.56 158
MDTV_nov1_ep13_2view81.74 11986.80 32680.65 21485.65 14174.26 15476.52 22596.98 139
Test By Simon71.65 183