This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 6098.13 4996.77 6288.38 7597.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8698.46 2687.33 2599.97 297.21 2999.31 499.63 7
MSP-MVS95.62 896.54 192.86 9998.31 4880.10 18397.42 10596.78 5692.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13899.25 699.70 3
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3499.85 1194.75 5999.18 798.65 50
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 3099.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3299.21 685.15 7099.16 796.96 4194.11 995.59 3498.64 1785.07 3699.91 495.61 4699.10 999.00 31
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9896.77 6285.32 14497.92 398.70 1583.09 5799.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 9098.64 3196.93 4490.71 4293.08 7098.70 1579.98 8399.21 9094.12 6899.07 1198.63 51
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7897.77 7396.74 6786.11 12696.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.79 2095.17 1893.64 6697.66 6984.10 8995.85 21996.42 10991.26 3497.49 1296.80 12386.50 2998.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test9_res96.00 4099.03 1398.31 68
test_241102_TWO96.78 5688.72 6797.70 898.91 287.86 2299.82 1998.15 1199.00 1599.47 9
agg_prior294.30 6499.00 1598.57 53
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7399.12 1296.78 5688.72 6797.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 6096.86 5192.05 2798.74 198.15 1198.97 1799.42 13
train_agg94.28 2794.45 2593.74 5898.64 3183.71 9597.82 6896.65 7984.50 16895.16 3798.09 4884.33 4299.36 8195.91 4298.96 1998.16 79
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8296.97 11581.30 6898.99 11088.54 14598.88 2099.20 25
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6599.06 1796.46 10488.75 6596.69 1898.76 1287.69 2399.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6299.84 1397.90 1798.85 2199.45 10
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 19095.58 17491.12 3695.84 3293.87 20283.47 5398.37 14497.26 2798.81 2499.24 23
MSC_two_6792asdad97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
test_prior298.37 3986.08 12894.57 5098.02 5483.14 5595.05 5598.79 27
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10398.04 5796.41 11085.79 13595.00 4398.28 3784.32 4599.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5098.06 5596.64 8293.64 1291.74 9398.54 2080.17 7999.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS93.12 4592.91 5393.74 5898.65 3083.88 9197.67 8196.26 12683.00 21193.22 6798.24 3881.31 6799.21 9089.12 13998.74 3098.14 81
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9597.08 11083.32 5499.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS89.82 194.61 2296.17 589.91 21197.09 9470.21 34498.99 2396.69 7495.57 295.08 4199.23 186.40 3199.87 897.84 2098.66 3299.65 6
PHI-MVS93.59 3993.63 3893.48 7798.05 5881.76 13698.64 3197.13 2782.60 22194.09 5698.49 2580.35 7499.85 1194.74 6098.62 3398.83 38
ACMMP_NAP93.46 4193.23 4794.17 4597.16 9284.28 8796.82 15796.65 7986.24 12494.27 5397.99 5577.94 11199.83 1793.39 7598.57 3498.39 63
MVSMamba_PlusPlus92.37 7491.55 8594.83 2795.37 13587.69 2495.60 23195.42 19074.65 33293.95 5892.81 21983.11 5697.70 17594.49 6398.53 3599.11 28
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7796.43 10884.02 18495.07 4298.74 1482.93 5899.38 7895.42 5098.51 3698.32 66
原ACMM191.22 17297.77 6578.10 23996.61 8581.05 24391.28 10197.42 9277.92 11398.98 11179.85 22598.51 3696.59 180
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 8197.76 7596.19 13489.59 5796.66 2098.17 4484.33 4299.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS99.09 883.22 10796.60 8882.88 21493.61 6398.06 5382.93 5899.14 10095.51 4998.49 39
新几何193.12 8897.44 8181.60 14396.71 7174.54 33391.22 10297.57 8379.13 9399.51 7177.40 25198.46 4098.26 73
SteuartSystems-ACMMP94.13 3294.44 2693.20 8595.41 13381.35 14699.02 2196.59 8989.50 5994.18 5598.36 3383.68 5299.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
9.1494.26 3198.10 5798.14 4696.52 9784.74 16094.83 4798.80 782.80 6099.37 8095.95 4198.42 42
HFP-MVS92.89 5192.86 5692.98 9498.71 2581.12 14997.58 8896.70 7285.20 14991.75 9297.97 6078.47 10399.71 4590.95 10898.41 4398.12 84
ACMMPR92.69 6292.67 5992.75 10398.66 2880.57 16797.58 8896.69 7485.20 14991.57 9497.92 6177.01 12799.67 5390.95 10898.41 4398.00 93
MP-MVS-pluss92.58 6792.35 6693.29 8197.30 9082.53 11696.44 18196.04 14584.68 16389.12 13298.37 3277.48 12099.74 3893.31 8098.38 4597.59 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R92.72 5892.70 5892.79 10298.68 2680.53 17197.53 9396.51 9885.22 14791.94 9097.98 5877.26 12299.67 5390.83 11398.37 4698.18 77
APD-MVScopyleft93.61 3893.59 3993.69 6498.76 2483.26 10697.21 11696.09 14082.41 22594.65 4998.21 3981.96 6598.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS92.75 5492.60 6193.23 8498.24 5181.82 13497.63 8296.50 10085.00 15591.05 10497.74 7278.38 10499.80 2590.48 11998.34 4898.07 86
test1294.25 4198.34 4685.55 5696.35 11992.36 8180.84 6999.22 8998.31 4997.98 95
MP-MVScopyleft92.61 6692.67 5992.42 11998.13 5679.73 19397.33 11196.20 13285.63 13790.53 11197.66 7578.14 10999.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22296.15 10878.41 22795.87 21796.46 10471.97 35389.66 12297.45 8876.33 14298.24 5198.30 69
CP-MVS92.54 6892.60 6192.34 12198.50 4079.90 18698.40 3896.40 11284.75 15990.48 11398.09 4877.40 12199.21 9091.15 10798.23 5297.92 99
MTAPA92.45 7192.31 6892.86 9997.90 6180.85 16092.88 31096.33 12087.92 8890.20 11698.18 4176.71 13599.76 3192.57 9298.09 5397.96 98
XVS92.69 6292.71 5792.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9697.83 6977.24 12499.59 6090.46 12198.07 5498.02 88
X-MVStestdata86.26 20484.14 22492.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9620.73 42277.24 12499.59 6090.46 12198.07 5498.02 88
MVS90.60 11788.64 14396.50 594.25 17490.53 893.33 29897.21 2277.59 30578.88 25297.31 9571.52 21799.69 4989.60 13398.03 5699.27 22
mPP-MVS91.88 8591.82 7992.07 13798.38 4478.63 22197.29 11396.09 14085.12 15188.45 14497.66 7575.53 15699.68 5189.83 13098.02 5797.88 100
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 7099.80 2599.16 197.96 5899.15 27
HPM-MVScopyleft91.62 9291.53 8691.89 14597.88 6379.22 20596.99 13995.73 16882.07 23189.50 12797.19 10475.59 15498.93 11790.91 11097.94 5997.54 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 4293.39 4593.47 7997.34 8982.83 11297.56 9098.27 689.16 6389.71 12097.14 10579.77 8599.56 6693.65 7397.94 5998.02 88
PGM-MVS91.93 8291.80 8092.32 12598.27 5079.74 19295.28 24197.27 2083.83 19290.89 10897.78 7176.12 14599.56 6688.82 14297.93 6197.66 120
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8994.71 497.08 1597.99 5578.69 10199.86 1099.15 297.85 6298.91 35
3Dnovator82.32 1089.33 14087.64 16194.42 3793.73 19185.70 4897.73 7796.75 6686.73 12276.21 28595.93 13962.17 27599.68 5181.67 21097.81 6397.88 100
SPE-MVS-test92.98 4893.67 3790.90 18096.52 9976.87 27298.68 2894.73 22390.36 5094.84 4697.89 6577.94 11197.15 21494.28 6797.80 6498.70 48
GST-MVS92.43 7292.22 7293.04 9298.17 5481.64 14197.40 10796.38 11584.71 16290.90 10797.40 9377.55 11999.76 3189.75 13297.74 6597.72 114
PAPM92.87 5292.40 6594.30 3992.25 24187.85 2196.40 18596.38 11591.07 3888.72 14196.90 11682.11 6397.37 20090.05 12997.70 6697.67 119
test_fmvsm_n_192094.81 1995.60 1192.45 11695.29 13880.96 15699.29 297.21 2294.50 797.29 1398.44 2782.15 6299.78 2898.56 797.68 6796.61 179
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11494.07 1095.34 3697.80 7076.83 13299.87 897.08 3197.64 6898.89 36
patch_mono-295.14 1396.08 792.33 12398.44 4377.84 24998.43 3697.21 2292.58 1997.68 1097.65 7986.88 2799.83 1798.25 997.60 6999.33 18
dcpmvs_293.10 4693.46 4492.02 14197.77 6579.73 19394.82 26193.86 27986.91 11591.33 9996.76 12485.20 3598.06 15696.90 3397.60 6998.27 72
testdata90.13 20295.92 11774.17 30796.49 10373.49 34294.82 4897.99 5578.80 9997.93 16283.53 19597.52 7198.29 70
MVSFormer91.36 9890.57 10493.73 6093.00 21488.08 1994.80 26394.48 24080.74 24994.90 4497.13 10678.84 9795.10 31483.77 18797.46 7298.02 88
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18191.03 3994.90 4497.66 7578.84 9797.56 18394.64 6297.46 7298.62 52
HPM-MVS_fast90.38 12490.17 11791.03 17697.61 7177.35 26497.15 12695.48 18279.51 27888.79 13896.90 11671.64 21698.81 12287.01 16497.44 7496.94 165
GG-mvs-BLEND93.49 7694.94 15086.26 3681.62 39097.00 3788.32 14794.30 19091.23 596.21 25688.49 14797.43 7598.00 93
旧先验197.39 8679.58 19796.54 9598.08 5184.00 4797.42 7697.62 124
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16492.42 2196.24 2798.18 4171.04 22299.17 9896.77 3497.39 7796.79 172
CSCG92.02 8091.65 8393.12 8898.53 3680.59 16697.47 9897.18 2577.06 31484.64 18797.98 5883.98 4899.52 6990.72 11597.33 7899.23 24
CS-MVS92.73 5693.48 4390.48 19396.27 10475.93 29298.55 3494.93 21089.32 6094.54 5197.67 7478.91 9697.02 21893.80 7097.32 7998.49 57
SR-MVS92.16 7792.27 6991.83 15098.37 4578.41 22796.67 16895.76 16582.19 22991.97 8898.07 5276.44 13898.64 12693.71 7297.27 8098.45 60
gg-mvs-nofinetune85.48 22082.90 24293.24 8394.51 16685.82 4579.22 39596.97 4061.19 39287.33 15653.01 41190.58 696.07 25986.07 16797.23 8197.81 109
reproduce-ours92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
our_new_method92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
MAR-MVS90.63 11690.22 11491.86 14798.47 4278.20 23797.18 12096.61 8583.87 19188.18 14998.18 4168.71 23599.75 3683.66 19297.15 8497.63 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EC-MVSNet91.73 8792.11 7490.58 18993.54 19577.77 25398.07 5494.40 25087.44 10192.99 7297.11 10874.59 17996.87 22993.75 7197.08 8597.11 159
3Dnovator+82.88 889.63 13687.85 15694.99 2394.49 16886.76 3397.84 6795.74 16786.10 12775.47 29696.02 13865.00 26199.51 7182.91 20297.07 8698.72 47
mvsmamba90.53 12190.08 11991.88 14694.81 15480.93 15793.94 28494.45 24588.24 8187.02 16292.35 22668.04 23795.80 27494.86 5797.03 8798.92 34
reproduce_model92.53 6992.87 5491.50 16297.41 8377.14 27096.02 20795.91 15783.65 19892.45 7798.39 3179.75 8699.21 9095.27 5496.98 8898.14 81
DeepC-MVS86.58 391.53 9491.06 9692.94 9694.52 16381.89 13095.95 21195.98 14990.76 4183.76 19896.76 12473.24 19699.71 4591.67 10396.96 8997.22 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS89.72 13389.87 12789.29 22298.33 4773.30 31397.70 7995.35 19475.68 32387.40 15497.44 9170.43 22898.25 14989.56 13596.90 9096.33 189
APD-MVS_3200maxsize91.23 10291.35 8890.89 18197.89 6276.35 28296.30 19295.52 17979.82 27291.03 10597.88 6674.70 17598.54 13292.11 9796.89 9197.77 111
MVP-Stereo82.65 26681.67 26185.59 30186.10 34778.29 23093.33 29892.82 32377.75 30369.17 34587.98 29259.28 29695.76 27871.77 29796.88 9282.73 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM_NR91.46 9590.82 9993.37 8098.50 4081.81 13595.03 25796.13 13784.65 16486.10 16997.65 7979.24 9199.75 3683.20 19896.88 9298.56 54
EIA-MVS91.73 8792.05 7690.78 18594.52 16376.40 28198.06 5595.34 19589.19 6288.90 13697.28 10077.56 11897.73 17490.77 11496.86 9498.20 76
SR-MVS-dyc-post91.29 10091.45 8790.80 18397.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6775.76 15198.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9597.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6773.36 19591.99 9996.79 9597.75 112
jason92.73 5692.23 7194.21 4490.50 28687.30 2998.65 3095.09 20390.61 4492.76 7697.13 10675.28 16797.30 20393.32 7996.75 9798.02 88
jason: jason.
test_fmvsmconf_n93.99 3494.36 2892.86 9992.82 22181.12 14999.26 496.37 11893.47 1395.16 3798.21 3979.00 9499.64 5598.21 1096.73 9897.83 106
test_vis1_n_192089.95 12990.59 10388.03 25192.36 23368.98 35399.12 1294.34 25393.86 1193.64 6297.01 11451.54 34499.59 6096.76 3596.71 9995.53 208
xiu_mvs_v2_base93.92 3593.26 4695.91 1195.07 14692.02 698.19 4595.68 17092.06 2596.01 3198.14 4570.83 22698.96 11296.74 3696.57 10096.76 175
test_fmvsmconf0.1_n93.08 4793.22 4892.65 10988.45 31980.81 16199.00 2295.11 20293.21 1594.00 5797.91 6376.84 13099.59 6097.91 1696.55 10197.54 128
MVS_111021_LR91.60 9391.64 8491.47 16495.74 12378.79 21896.15 20296.77 6288.49 7288.64 14297.07 11172.33 20699.19 9693.13 8596.48 10296.43 184
PAPR92.74 5592.17 7394.45 3698.89 2084.87 7897.20 11896.20 13287.73 9488.40 14598.12 4678.71 10099.76 3187.99 15296.28 10398.74 42
test_fmvsmvis_n_192092.12 7892.10 7592.17 13390.87 27881.04 15298.34 4093.90 27692.71 1887.24 15897.90 6474.83 17399.72 4396.96 3296.20 10495.76 202
test_cas_vis1_n_192089.90 13090.02 12189.54 21990.14 29474.63 30298.71 2794.43 24893.04 1792.40 8096.35 13253.41 34099.08 10695.59 4796.16 10594.90 221
Vis-MVSNetpermissive88.67 15687.82 15791.24 17092.68 22478.82 21596.95 14793.85 28087.55 9887.07 16195.13 16963.43 26897.21 20877.58 24796.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8498.29 4197.64 1494.57 695.36 3596.88 11879.96 8499.12 10391.30 10596.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS90.18 12688.97 13693.80 5498.66 2882.95 11197.50 9795.63 17375.16 32786.31 16697.69 7372.49 20399.90 581.26 21296.07 10898.56 54
QAPM86.88 19384.51 21493.98 4894.04 18485.89 4497.19 11996.05 14473.62 33975.12 29995.62 14962.02 27899.74 3870.88 30696.06 10996.30 191
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6194.50 16784.30 8699.14 1096.00 14791.94 2897.91 598.60 1884.78 3899.77 2998.84 596.03 11097.08 161
131488.94 14787.20 17594.17 4593.21 20685.73 4793.33 29896.64 8282.89 21375.98 28896.36 13166.83 24899.39 7783.52 19696.02 11197.39 144
BP-MVS193.55 4093.50 4293.71 6292.64 22885.39 5997.78 7296.84 5289.52 5892.00 8797.06 11288.21 2098.03 15791.45 10496.00 11297.70 117
MS-PatchMatch83.05 25881.82 25986.72 28389.64 30379.10 21094.88 26094.59 23679.70 27570.67 33589.65 26850.43 34996.82 23270.82 30995.99 11384.25 373
CHOSEN 280x42091.71 9091.85 7891.29 16894.94 15082.69 11387.89 35896.17 13585.94 13287.27 15794.31 18990.27 895.65 28694.04 6995.86 11495.53 208
OpenMVScopyleft79.58 1486.09 20683.62 23193.50 7590.95 27586.71 3497.44 10195.83 16275.35 32472.64 32195.72 14457.42 31699.64 5571.41 30095.85 11594.13 237
PVSNet_Blended93.13 4492.98 5293.57 7197.47 7783.86 9299.32 196.73 6891.02 4089.53 12596.21 13476.42 13999.57 6494.29 6595.81 11697.29 151
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 8199.13 1196.15 13692.06 2597.92 398.52 2384.52 4099.74 3898.76 695.67 11797.22 153
CHOSEN 1792x268891.07 10790.21 11593.64 6695.18 14283.53 10096.26 19496.13 13788.92 6484.90 18193.10 21772.86 19899.62 5888.86 14195.67 11797.79 110
test_fmvsmconf0.01_n91.08 10690.68 10292.29 12682.43 37880.12 18297.94 6293.93 27292.07 2491.97 8897.60 8267.56 24099.53 6897.09 3095.56 11997.21 155
ETV-MVS92.72 5892.87 5492.28 12794.54 16281.89 13097.98 5995.21 20089.77 5693.11 6996.83 12077.23 12697.50 19195.74 4495.38 12097.44 139
114514_t88.79 15487.57 16692.45 11698.21 5381.74 13796.99 13995.45 18575.16 32782.48 20995.69 14668.59 23698.50 13480.33 21795.18 12197.10 160
CANet_DTU90.98 10990.04 12093.83 5394.76 15686.23 3796.32 19193.12 31893.11 1693.71 6096.82 12263.08 27199.48 7384.29 18095.12 12295.77 201
DP-MVS Recon91.72 8990.85 9894.34 3899.50 185.00 7598.51 3595.96 15180.57 25388.08 15097.63 8176.84 13099.89 785.67 17094.88 12398.13 83
test250690.96 11090.39 10992.65 10993.54 19582.46 11996.37 18697.35 1786.78 11987.55 15395.25 15877.83 11597.50 19184.07 18294.80 12497.98 95
ECVR-MVScopyleft88.35 16787.25 17491.65 15693.54 19579.40 20096.56 17390.78 35686.78 11985.57 17395.25 15857.25 31797.56 18384.73 17894.80 12497.98 95
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 12194.56 16082.01 12499.07 1697.13 2792.09 2396.25 2698.53 2276.47 13799.80 2598.39 894.71 12695.22 217
test111188.11 17287.04 18091.35 16593.15 20978.79 21896.57 17190.78 35686.88 11685.04 17895.20 16457.23 31897.39 19883.88 18494.59 12797.87 102
fmvsm_s_conf0.1_n92.93 5093.16 4992.24 12890.52 28581.92 12898.42 3796.24 12891.17 3596.02 3098.35 3475.34 16699.74 3897.84 2094.58 12895.05 219
BH-w/o88.24 17087.47 17090.54 19295.03 14978.54 22297.41 10693.82 28184.08 18278.23 25894.51 18769.34 23497.21 20880.21 22194.58 12895.87 199
MVS_Test90.29 12589.18 13393.62 6895.23 13984.93 7694.41 26894.66 22884.31 17390.37 11591.02 24875.13 16997.82 17183.11 20094.42 13098.12 84
Vis-MVSNet (Re-imp)88.88 15088.87 14188.91 22993.89 18774.43 30596.93 14994.19 26184.39 17183.22 20395.67 14778.24 10694.70 32578.88 23594.40 13197.61 125
test_fmvs187.79 18088.52 14685.62 30092.98 21864.31 37297.88 6592.42 32887.95 8792.24 8395.82 14247.94 35998.44 14295.31 5394.09 13294.09 238
UGNet87.73 18186.55 18991.27 16995.16 14379.11 20996.35 18896.23 12988.14 8387.83 15290.48 25650.65 34799.09 10580.13 22294.03 13395.60 205
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet82.34 989.02 14587.79 15892.71 10695.49 13181.50 14497.70 7997.29 1887.76 9385.47 17595.12 17056.90 31998.90 11880.33 21794.02 13497.71 116
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 11098.10 5195.29 19791.57 3093.81 5997.45 8886.64 2899.43 7696.28 3794.01 13599.20 25
GDP-MVS92.85 5392.55 6393.75 5792.82 22185.76 4697.63 8295.05 20688.34 7793.15 6897.10 10986.92 2698.01 15987.95 15394.00 13697.47 137
PVSNet_Blended_VisFu91.24 10190.77 10092.66 10895.09 14482.40 12097.77 7395.87 16188.26 7986.39 16593.94 20076.77 13399.27 8488.80 14394.00 13696.31 190
RRT-MVS89.67 13488.67 14292.67 10794.44 16981.08 15194.34 27194.45 24586.05 12985.79 17192.39 22563.39 26998.16 15493.22 8293.95 13898.76 41
PMMVS89.46 13889.92 12588.06 24994.64 15769.57 35096.22 19694.95 20987.27 10791.37 9896.54 13065.88 25397.39 19888.54 14593.89 13997.23 152
BH-untuned86.95 19285.94 19389.99 20694.52 16377.46 26196.78 16093.37 30781.80 23476.62 27693.81 20566.64 24997.02 21876.06 26493.88 14095.48 210
BH-RMVSNet86.84 19485.28 20291.49 16395.35 13680.26 17796.95 14792.21 33182.86 21581.77 22495.46 15459.34 29597.64 17869.79 31393.81 14196.57 181
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 13093.38 20381.71 13998.86 2596.98 3891.64 2996.85 1698.55 1975.58 15599.77 2997.88 1993.68 14295.18 218
Effi-MVS+90.70 11589.90 12693.09 9093.61 19283.48 10195.20 24792.79 32483.22 20491.82 9195.70 14571.82 21397.48 19391.25 10693.67 14398.32 66
IS-MVSNet88.67 15688.16 15290.20 20193.61 19276.86 27396.77 16293.07 31984.02 18483.62 19995.60 15074.69 17896.24 25578.43 23993.66 14497.49 135
test_fmvs1_n86.34 20286.72 18785.17 30787.54 33163.64 37796.91 15192.37 33087.49 10091.33 9995.58 15140.81 38698.46 13895.00 5693.49 14593.41 252
AdaColmapbinary88.81 15287.61 16492.39 12099.33 479.95 18496.70 16795.58 17477.51 30683.05 20696.69 12861.90 28199.72 4384.29 18093.47 14697.50 134
fmvsm_s_conf0.1_n_a92.38 7392.49 6492.06 13888.08 32481.62 14297.97 6196.01 14690.62 4396.58 2298.33 3574.09 18599.71 4597.23 2893.46 14794.86 223
xiu_mvs_v1_base_debu90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base_debi90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
mvs_anonymous88.68 15587.62 16391.86 14794.80 15581.69 14093.53 29494.92 21182.03 23278.87 25390.43 25875.77 15095.34 30085.04 17593.16 15198.55 56
test_vis1_n85.60 21685.70 19585.33 30484.79 36264.98 37096.83 15591.61 34187.36 10491.00 10694.84 18036.14 39397.18 21095.66 4593.03 15293.82 243
LCM-MVSNet-Re83.75 24683.54 23384.39 32293.54 19564.14 37492.51 31384.03 39783.90 19066.14 35886.59 31367.36 24392.68 35584.89 17792.87 15396.35 186
casdiffmvs_mvgpermissive91.13 10490.45 10893.17 8792.99 21783.58 9997.46 10094.56 23787.69 9587.19 15994.98 17774.50 18097.60 18091.88 10292.79 15498.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive90.95 11190.39 10992.63 11192.82 22182.53 11696.83 15594.47 24387.69 9588.47 14395.56 15274.04 18697.54 18790.90 11192.74 15597.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS81.61 1285.02 22583.67 22889.06 22596.79 9673.27 31695.92 21394.79 22174.81 33080.47 23496.83 12071.07 22198.19 15249.82 39192.57 15695.71 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive91.17 10390.74 10192.44 11893.11 21382.50 11896.25 19593.62 29487.79 9290.40 11495.93 13973.44 19497.42 19593.62 7492.55 15797.41 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS87.47 18785.90 19492.18 13295.41 13382.26 12387.00 36596.28 12485.88 13484.23 18985.57 33275.07 17196.26 25271.14 30592.50 15898.03 87
LS3D82.22 27379.94 28789.06 22597.43 8274.06 30993.20 30492.05 33361.90 38773.33 31495.21 16359.35 29499.21 9054.54 37892.48 15993.90 242
ACMMPcopyleft90.39 12289.97 12291.64 15797.58 7478.21 23696.78 16096.72 7084.73 16184.72 18597.23 10271.22 21999.63 5788.37 15092.41 16097.08 161
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TESTMET0.1,189.83 13189.34 13291.31 16692.54 23180.19 18097.11 13096.57 9286.15 12586.85 16491.83 23979.32 8896.95 22381.30 21192.35 16196.77 174
PLCcopyleft83.97 788.00 17587.38 17289.83 21498.02 5976.46 27997.16 12494.43 24879.26 28581.98 21996.28 13369.36 23399.27 8477.71 24492.25 16293.77 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline90.76 11490.10 11892.74 10492.90 22082.56 11594.60 26594.56 23787.69 9589.06 13495.67 14773.76 18997.51 19090.43 12392.23 16398.16 79
PatchMatch-RL85.00 22683.66 22989.02 22795.86 11874.55 30492.49 31493.60 29579.30 28379.29 24991.47 24058.53 30198.45 14070.22 31192.17 16494.07 239
test-LLR88.48 16287.98 15489.98 20792.26 23977.23 26697.11 13095.96 15183.76 19586.30 16791.38 24272.30 20796.78 23580.82 21391.92 16595.94 197
test-mter88.95 14688.60 14489.98 20792.26 23977.23 26697.11 13095.96 15185.32 14486.30 16791.38 24276.37 14196.78 23580.82 21391.92 16595.94 197
Fast-Effi-MVS+87.93 17786.94 18390.92 17994.04 18479.16 20798.26 4293.72 29081.29 24083.94 19592.90 21869.83 23296.68 23876.70 25791.74 16796.93 166
FE-MVS86.06 20784.15 22391.78 15194.33 17379.81 18784.58 38296.61 8576.69 31785.00 17987.38 29970.71 22798.37 14470.39 31091.70 16897.17 158
UA-Net88.92 14888.48 14790.24 19994.06 18377.18 26893.04 30694.66 22887.39 10391.09 10393.89 20174.92 17298.18 15375.83 26791.43 16995.35 213
PatchmatchNetpermissive86.83 19585.12 20791.95 14394.12 18182.27 12286.55 36995.64 17284.59 16682.98 20784.99 34477.26 12295.96 26668.61 31891.34 17097.64 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PCF-MVS84.09 586.77 19785.00 20992.08 13692.06 25383.07 10992.14 31994.47 24379.63 27676.90 27294.78 18171.15 22099.20 9572.87 29191.05 17193.98 240
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-Vis-set91.84 8691.77 8192.04 14097.60 7281.17 14896.61 16996.87 4988.20 8289.19 13097.55 8778.69 10199.14 10090.29 12690.94 17295.80 200
mamv485.50 21886.76 18581.72 34693.23 20554.93 40389.95 34092.94 32169.96 36379.00 25092.20 22980.69 7294.22 33692.06 9890.77 17396.01 195
CNLPA86.96 19185.37 20191.72 15597.59 7379.34 20397.21 11691.05 35174.22 33478.90 25196.75 12667.21 24598.95 11474.68 27790.77 17396.88 170
UBG92.68 6492.35 6693.70 6395.61 12785.65 5397.25 11497.06 3487.92 8889.28 12995.03 17386.06 3398.07 15592.24 9490.69 17597.37 145
CVMVSNet84.83 22885.57 19782.63 33991.55 26360.38 38995.13 25195.03 20780.60 25282.10 21894.71 18266.40 25190.19 38174.30 28290.32 17697.31 149
EPNet_dtu87.65 18487.89 15586.93 27894.57 15971.37 33896.72 16396.50 10088.56 7187.12 16095.02 17475.91 14994.01 34066.62 32790.00 17795.42 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)87.71 18386.23 19192.17 13394.19 17680.55 16887.16 36496.07 14382.12 23085.98 17088.35 28672.04 21198.49 13580.26 21989.87 17897.48 136
baseline290.39 12290.21 11590.93 17890.86 27980.99 15495.20 24797.41 1686.03 13180.07 24294.61 18490.58 697.47 19487.29 16089.86 17994.35 233
LFMVS89.27 14287.64 16194.16 4797.16 9285.52 5797.18 12094.66 22879.17 28689.63 12396.57 12955.35 33098.22 15089.52 13689.54 18098.74 42
EI-MVSNet-UG-set91.35 9991.22 9191.73 15497.39 8680.68 16496.47 17896.83 5387.92 8888.30 14897.36 9477.84 11499.13 10289.43 13789.45 18195.37 212
GeoE86.36 20185.20 20389.83 21493.17 20876.13 28497.53 9392.11 33279.58 27780.99 22894.01 19866.60 25096.17 25873.48 28989.30 18297.20 157
UWE-MVS88.56 16188.91 14087.50 26594.17 17772.19 32495.82 22197.05 3584.96 15684.78 18393.51 21181.33 6694.75 32379.43 22889.17 18395.57 206
sss90.87 11389.96 12393.60 6994.15 17883.84 9497.14 12798.13 785.93 13389.68 12196.09 13771.67 21499.30 8387.69 15689.16 18497.66 120
HY-MVS84.06 691.63 9190.37 11195.39 1996.12 10988.25 1790.22 33897.58 1588.33 7890.50 11291.96 23579.26 9099.06 10790.29 12689.07 18598.88 37
testing1192.48 7092.04 7793.78 5595.94 11686.00 4097.56 9097.08 3287.52 9989.32 12895.40 15584.60 3998.02 15891.93 10189.04 18697.32 147
thisisatest051590.95 11190.26 11293.01 9394.03 18684.27 8897.91 6396.67 7683.18 20586.87 16395.51 15388.66 1597.85 17080.46 21689.01 18796.92 168
CDS-MVSNet89.50 13788.96 13791.14 17491.94 25880.93 15797.09 13495.81 16384.26 17884.72 18594.20 19480.31 7595.64 28783.37 19788.96 18896.85 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet92.11 7991.22 9194.79 2896.91 9586.98 3097.91 6397.96 1086.38 12393.65 6195.74 14370.16 23198.95 11493.39 7588.87 18998.43 61
alignmvs92.97 4992.26 7095.12 2195.54 13087.77 2298.67 2996.38 11588.04 8593.01 7197.45 8879.20 9298.60 12893.25 8188.76 19098.99 33
WTY-MVS92.65 6591.68 8295.56 1496.00 11288.90 1398.23 4397.65 1388.57 7089.82 11997.22 10379.29 8999.06 10789.57 13488.73 19198.73 46
ETVMVS90.99 10890.26 11293.19 8695.81 12085.64 5496.97 14497.18 2585.43 14188.77 14094.86 17982.00 6496.37 24882.70 20388.60 19297.57 127
sasdasda92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
canonicalmvs92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
test_yl91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
DCV-MVSNet91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
MGCFI-Net91.95 8191.03 9794.72 3195.68 12586.38 3596.93 14994.48 24088.25 8092.78 7597.24 10172.34 20598.46 13893.13 8588.43 19799.32 19
HyFIR lowres test89.36 13988.60 14491.63 15994.91 15280.76 16395.60 23195.53 17782.56 22284.03 19191.24 24578.03 11096.81 23387.07 16388.41 19897.32 147
testing22291.09 10590.49 10792.87 9895.82 11985.04 7296.51 17697.28 1986.05 12989.13 13195.34 15780.16 8096.62 24185.82 16888.31 19996.96 164
TAMVS88.48 16287.79 15890.56 19091.09 27379.18 20696.45 18095.88 15983.64 19983.12 20493.33 21275.94 14895.74 28282.40 20588.27 20096.75 176
EPP-MVSNet89.76 13289.72 12889.87 21293.78 18876.02 28997.22 11596.51 9879.35 28085.11 17795.01 17584.82 3797.10 21687.46 15988.21 20196.50 182
MVS-HIRNet71.36 35567.00 36184.46 32090.58 28469.74 34879.15 39687.74 37946.09 40861.96 37850.50 41245.14 36895.64 28753.74 38088.11 20288.00 328
testing9991.91 8391.35 8893.60 6995.98 11485.70 4897.31 11296.92 4686.82 11788.91 13595.25 15884.26 4697.89 16988.80 14387.94 20397.21 155
testing9191.90 8491.31 9093.66 6595.99 11385.68 5097.39 10896.89 4786.75 12188.85 13795.23 16183.93 4997.90 16888.91 14087.89 20497.41 141
TR-MVS86.30 20384.93 21190.42 19494.63 15877.58 25996.57 17193.82 28180.30 26282.42 21195.16 16758.74 29997.55 18574.88 27587.82 20596.13 194
cascas86.50 19984.48 21692.55 11492.64 22885.95 4197.04 13895.07 20575.32 32580.50 23391.02 24854.33 33797.98 16186.79 16587.62 20693.71 245
OMC-MVS88.80 15388.16 15290.72 18695.30 13777.92 24694.81 26294.51 23986.80 11884.97 18096.85 11967.53 24198.60 12885.08 17487.62 20695.63 204
SCA85.63 21583.64 23091.60 16092.30 23781.86 13292.88 31095.56 17684.85 15782.52 20885.12 34258.04 30695.39 29773.89 28587.58 20897.54 128
thisisatest053089.65 13589.02 13591.53 16193.46 20180.78 16296.52 17496.67 7681.69 23783.79 19794.90 17888.85 1497.68 17677.80 24087.49 20996.14 193
WB-MVSnew84.08 24183.51 23485.80 29491.34 26876.69 27795.62 23096.27 12581.77 23581.81 22392.81 21958.23 30394.70 32566.66 32687.06 21085.99 360
VDDNet86.44 20084.51 21492.22 13091.56 26281.83 13397.10 13394.64 23169.50 36687.84 15195.19 16548.01 35797.92 16789.82 13186.92 21196.89 169
VDD-MVS88.28 16987.02 18192.06 13895.09 14480.18 18197.55 9294.45 24583.09 20789.10 13395.92 14147.97 35898.49 13593.08 8786.91 21297.52 133
thres20088.92 14887.65 16092.73 10596.30 10385.62 5597.85 6698.86 184.38 17284.82 18293.99 19975.12 17098.01 15970.86 30786.67 21394.56 232
DP-MVS81.47 28278.28 29991.04 17598.14 5578.48 22395.09 25686.97 38161.14 39371.12 33292.78 22259.59 29199.38 7853.11 38286.61 21495.27 216
F-COLMAP84.50 23583.44 23687.67 25795.22 14072.22 32295.95 21193.78 28675.74 32276.30 28295.18 16659.50 29398.45 14072.67 29386.59 21592.35 258
mvsany_test187.58 18588.22 14985.67 29889.78 29867.18 36095.25 24487.93 37783.96 18788.79 13897.06 11272.52 20294.53 33092.21 9586.45 21695.30 215
tttt051788.57 16088.19 15189.71 21893.00 21475.99 29095.67 22696.67 7680.78 24881.82 22294.40 18888.97 1397.58 18276.05 26586.31 21795.57 206
CR-MVSNet83.53 24981.36 26690.06 20390.16 29279.75 19079.02 39791.12 34884.24 17982.27 21680.35 37475.45 15893.67 34763.37 34586.25 21896.75 176
RPMNet79.85 29875.92 31891.64 15790.16 29279.75 19079.02 39795.44 18658.43 40282.27 21672.55 40073.03 19798.41 14346.10 39886.25 21896.75 176
thres100view90088.30 16886.95 18292.33 12396.10 11084.90 7797.14 12798.85 282.69 21983.41 20093.66 20775.43 16097.93 16269.04 31586.24 22094.17 234
tfpn200view988.48 16287.15 17692.47 11596.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22094.17 234
thres40088.42 16587.15 17692.23 12996.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22093.45 250
CostFormer89.08 14488.39 14891.15 17393.13 21179.15 20888.61 35096.11 13983.14 20689.58 12486.93 30883.83 5196.87 22988.22 15185.92 22397.42 140
thres600view788.06 17386.70 18892.15 13596.10 11085.17 6997.14 12798.85 282.70 21883.41 20093.66 20775.43 16097.82 17167.13 32485.88 22493.45 250
Effi-MVS+-dtu84.61 23284.90 21283.72 32991.96 25663.14 38094.95 25893.34 30885.57 13879.79 24387.12 30561.99 27995.61 29083.55 19385.83 22592.41 257
JIA-IIPM79.00 30877.20 30784.40 32189.74 30164.06 37575.30 40595.44 18662.15 38681.90 22059.08 40978.92 9595.59 29166.51 33085.78 22693.54 247
tpm287.35 18886.26 19090.62 18892.93 21978.67 22088.06 35795.99 14879.33 28187.40 15486.43 31980.28 7696.40 24680.23 22085.73 22796.79 172
1112_ss88.60 15987.47 17092.00 14293.21 20680.97 15596.47 17892.46 32783.64 19980.86 23097.30 9880.24 7797.62 17977.60 24685.49 22897.40 143
Test_1112_low_res88.03 17486.73 18691.94 14493.15 20980.88 15996.44 18192.41 32983.59 20180.74 23291.16 24680.18 7897.59 18177.48 24985.40 22997.36 146
GA-MVS85.79 21284.04 22591.02 17789.47 30880.27 17696.90 15294.84 21785.57 13880.88 22989.08 27256.56 32396.47 24577.72 24385.35 23096.34 187
tpmrst88.36 16687.38 17291.31 16694.36 17279.92 18587.32 36295.26 19985.32 14488.34 14686.13 32580.60 7396.70 23783.78 18685.34 23197.30 150
MDTV_nov1_ep1383.69 22794.09 18281.01 15386.78 36796.09 14083.81 19384.75 18484.32 34974.44 18196.54 24263.88 34185.07 232
Fast-Effi-MVS+-dtu83.33 25282.60 24885.50 30289.55 30669.38 35196.09 20691.38 34382.30 22675.96 28991.41 24156.71 32095.58 29275.13 27484.90 23391.54 259
PatchT79.75 29976.85 31188.42 23789.55 30675.49 29677.37 40194.61 23463.07 38282.46 21073.32 39775.52 15793.41 35251.36 38584.43 23496.36 185
XVG-OURS-SEG-HR85.74 21385.16 20687.49 26790.22 29071.45 33691.29 33094.09 26781.37 23983.90 19695.22 16260.30 28897.53 18985.58 17184.42 23593.50 248
tpm cat183.63 24881.38 26590.39 19593.53 20078.19 23885.56 37695.09 20370.78 35978.51 25483.28 35974.80 17497.03 21766.77 32584.05 23695.95 196
DSMNet-mixed73.13 34572.45 34075.19 37877.51 39446.82 40985.09 38082.01 40267.61 37569.27 34481.33 36950.89 34686.28 39654.54 37883.80 23792.46 255
ADS-MVSNet279.57 30277.53 30585.71 29793.78 18872.13 32579.48 39386.11 38873.09 34580.14 23979.99 37762.15 27690.14 38259.49 35883.52 23894.85 224
ADS-MVSNet81.26 28578.36 29889.96 20993.78 18879.78 18879.48 39393.60 29573.09 34580.14 23979.99 37762.15 27695.24 30659.49 35883.52 23894.85 224
XVG-OURS85.18 22384.38 21887.59 26190.42 28871.73 33391.06 33394.07 26882.00 23383.29 20295.08 17256.42 32497.55 18583.70 19183.42 24093.49 249
dp84.30 23882.31 25190.28 19894.24 17577.97 24286.57 36895.53 17779.94 27180.75 23185.16 34071.49 21896.39 24763.73 34283.36 24196.48 183
MSDG80.62 29477.77 30489.14 22493.43 20277.24 26591.89 32290.18 36069.86 36568.02 34691.94 23752.21 34398.84 12059.32 36083.12 24291.35 260
MIMVSNet79.18 30775.99 31788.72 23487.37 33280.66 16579.96 39191.82 33677.38 30874.33 30481.87 36541.78 37990.74 37766.36 33283.10 24394.76 226
HQP3-MVS94.80 21983.01 244
HQP-MVS87.91 17887.55 16788.98 22892.08 25078.48 22397.63 8294.80 21990.52 4582.30 21294.56 18565.40 25797.32 20187.67 15783.01 24491.13 261
plane_prior77.96 24397.52 9690.36 5082.96 246
CLD-MVS87.97 17687.48 16989.44 22092.16 24680.54 17098.14 4694.92 21191.41 3279.43 24795.40 15562.34 27497.27 20690.60 11882.90 24790.50 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS87.50 18687.09 17988.74 23391.86 25977.96 24397.18 12094.69 22489.89 5481.33 22594.15 19564.77 26297.30 20387.08 16182.82 24890.96 263
plane_prior594.69 22497.30 20387.08 16182.82 24890.96 263
OPM-MVS85.84 21085.10 20888.06 24988.34 32177.83 25095.72 22494.20 26087.89 9180.45 23594.05 19758.57 30097.26 20783.88 18482.76 25089.09 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Anonymous20240521184.41 23681.93 25791.85 14996.78 9778.41 22797.44 10191.34 34670.29 36184.06 19094.26 19141.09 38398.96 11279.46 22782.65 25198.17 78
ab-mvs87.08 18984.94 21093.48 7793.34 20483.67 9788.82 34795.70 16981.18 24184.55 18890.14 26462.72 27298.94 11685.49 17282.54 25297.85 104
Syy-MVS77.97 31678.05 30177.74 36792.13 24756.85 39693.97 28294.23 25782.43 22373.39 31093.57 20957.95 30987.86 38932.40 41082.34 25388.51 314
myMVS_eth3d81.93 27682.18 25281.18 34992.13 24767.18 36093.97 28294.23 25782.43 22373.39 31093.57 20976.98 12887.86 38950.53 38982.34 25388.51 314
ET-MVSNet_ETH3D90.01 12889.03 13492.95 9594.38 17186.77 3298.14 4696.31 12389.30 6163.33 37096.72 12790.09 1093.63 34890.70 11782.29 25598.46 59
SDMVSNet87.02 19085.61 19691.24 17094.14 17983.30 10593.88 28695.98 14984.30 17579.63 24592.01 23158.23 30397.68 17690.28 12882.02 25692.75 253
sd_testset84.62 23183.11 23989.17 22394.14 17977.78 25291.54 32994.38 25184.30 17579.63 24592.01 23152.28 34296.98 22177.67 24582.02 25692.75 253
tpmvs83.04 25980.77 27289.84 21395.43 13277.96 24385.59 37595.32 19675.31 32676.27 28383.70 35573.89 18797.41 19659.53 35781.93 25894.14 236
CMPMVSbinary54.94 2175.71 33374.56 32879.17 36179.69 38655.98 39889.59 34193.30 30960.28 39553.85 39989.07 27347.68 36296.33 25076.55 25881.02 25985.22 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re84.10 24082.90 24287.70 25691.41 26773.28 31490.59 33693.19 31285.02 15377.96 26293.68 20657.92 31196.18 25775.50 27080.87 26093.63 246
LPG-MVS_test84.20 23983.49 23586.33 28590.88 27673.06 31795.28 24194.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
LGP-MVS_train86.33 28590.88 27673.06 31794.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
ACMM80.70 1383.72 24782.85 24486.31 28891.19 27072.12 32695.88 21694.29 25580.44 25777.02 27091.96 23555.24 33197.14 21579.30 23080.38 26389.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax82.12 27481.15 26985.03 30984.19 36870.70 34094.22 27893.95 27183.07 20873.48 30989.75 26749.66 35395.37 29982.24 20779.76 26489.02 302
test_djsdf83.00 26182.45 25084.64 31584.07 37069.78 34794.80 26394.48 24080.74 24975.41 29787.70 29561.32 28595.10 31483.77 18779.76 26489.04 301
ACMP81.66 1184.00 24283.22 23886.33 28591.53 26572.95 32095.91 21593.79 28583.70 19773.79 30692.22 22854.31 33896.89 22783.98 18379.74 26689.16 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing380.74 29281.17 26879.44 35991.15 27263.48 37897.16 12495.76 16580.83 24671.36 32993.15 21678.22 10787.30 39443.19 40279.67 26787.55 339
PVSNet_BlendedMVS90.05 12789.96 12390.33 19797.47 7783.86 9298.02 5896.73 6887.98 8689.53 12589.61 26976.42 13999.57 6494.29 6579.59 26887.57 336
Patchmatch-test78.25 31174.72 32688.83 23191.20 26974.10 30873.91 40888.70 37559.89 39866.82 35385.12 34278.38 10494.54 32948.84 39479.58 26997.86 103
mvs_tets81.74 27880.71 27484.84 31084.22 36770.29 34393.91 28593.78 28682.77 21773.37 31289.46 27047.36 36395.31 30381.99 20879.55 27088.92 308
FIs86.73 19886.10 19288.61 23590.05 29580.21 17996.14 20396.95 4285.56 14078.37 25692.30 22776.73 13495.28 30479.51 22679.27 27190.35 270
D2MVS82.67 26581.55 26286.04 29287.77 32776.47 27895.21 24696.58 9182.66 22070.26 33885.46 33560.39 28795.80 27476.40 26179.18 27285.83 363
ACMMP++79.05 273
PS-MVSNAJss84.91 22784.30 21986.74 27985.89 35074.40 30694.95 25894.16 26383.93 18976.45 27890.11 26571.04 22295.77 27783.16 19979.02 27490.06 280
FC-MVSNet-test85.96 20885.39 20087.66 25889.38 31078.02 24095.65 22896.87 4985.12 15177.34 26591.94 23776.28 14394.74 32477.09 25278.82 27590.21 273
EG-PatchMatch MVS74.92 33572.02 34383.62 33083.76 37573.28 31493.62 29192.04 33468.57 36958.88 38883.80 35431.87 40295.57 29356.97 37078.67 27682.00 389
EI-MVSNet85.80 21185.20 20387.59 26191.55 26377.41 26295.13 25195.36 19280.43 25980.33 23794.71 18273.72 19095.97 26376.96 25578.64 27789.39 286
MVSTER89.25 14388.92 13990.24 19995.98 11484.66 8096.79 15995.36 19287.19 11180.33 23790.61 25590.02 1195.97 26385.38 17378.64 27790.09 278
anonymousdsp80.98 29079.97 28684.01 32381.73 38070.44 34292.49 31493.58 29777.10 31372.98 31886.31 32157.58 31294.90 31879.32 22978.63 27986.69 349
UniMVSNet_ETH3D80.86 29178.75 29787.22 27486.31 34172.02 32791.95 32093.76 28973.51 34075.06 30090.16 26343.04 37695.66 28476.37 26278.55 28093.98 240
ACMMP++_ref78.45 281
test_fmvs279.59 30179.90 28878.67 36382.86 37755.82 40095.20 24789.55 36481.09 24280.12 24189.80 26634.31 39893.51 35087.82 15478.36 28286.69 349
Anonymous2024052983.15 25680.60 27690.80 18395.74 12378.27 23196.81 15894.92 21160.10 39781.89 22192.54 22345.82 36798.82 12179.25 23178.32 28395.31 214
XVG-ACMP-BASELINE79.38 30577.90 30383.81 32584.98 36167.14 36489.03 34693.18 31480.26 26572.87 31988.15 29038.55 38896.26 25276.05 26578.05 28488.02 327
tpm85.55 21784.47 21788.80 23290.19 29175.39 29788.79 34894.69 22484.83 15883.96 19485.21 33878.22 10794.68 32776.32 26378.02 28596.34 187
test0.0.03 182.79 26382.48 24983.74 32886.81 33672.22 32296.52 17495.03 20783.76 19573.00 31793.20 21372.30 20788.88 38464.15 34077.52 28690.12 276
RPSCF77.73 31876.63 31381.06 35088.66 31755.76 40187.77 35987.88 37864.82 38074.14 30592.79 22149.22 35496.81 23367.47 32276.88 28790.62 266
MonoMVSNet85.68 21484.22 22190.03 20488.43 32077.83 25092.95 30991.46 34287.28 10678.11 25985.96 32766.31 25294.81 32290.71 11676.81 28897.46 138
LTVRE_ROB73.68 1877.99 31475.74 31984.74 31190.45 28772.02 32786.41 37091.12 34872.57 35066.63 35587.27 30154.95 33496.98 22156.29 37275.98 28985.21 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_rt73.96 33872.40 34178.64 36483.91 37261.16 38895.63 22968.18 41776.32 31860.09 38574.77 39129.01 40697.54 18787.74 15575.94 29077.22 400
OpenMVS_ROBcopyleft68.52 2073.02 34669.57 35383.37 33380.54 38471.82 33193.60 29288.22 37662.37 38561.98 37783.15 36035.31 39795.47 29545.08 40075.88 29182.82 379
USDC78.65 30976.25 31585.85 29387.58 32974.60 30389.58 34290.58 35984.05 18363.13 37188.23 28840.69 38796.86 23166.57 32975.81 29286.09 358
COLMAP_ROBcopyleft73.24 1975.74 33273.00 33983.94 32492.38 23269.08 35291.85 32386.93 38261.48 39065.32 36290.27 26042.27 37896.93 22650.91 38775.63 29385.80 364
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GBi-Net82.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
test182.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
FMVSNet384.71 22982.71 24690.70 18794.55 16187.71 2395.92 21394.67 22781.73 23675.82 29188.08 29166.99 24694.47 33171.23 30275.38 29489.91 282
tt080581.20 28779.06 29587.61 25986.50 33872.97 31993.66 28995.48 18274.11 33576.23 28491.99 23341.36 38297.40 19777.44 25074.78 29792.45 256
FMVSNet282.79 26380.44 27889.83 21492.66 22585.43 5895.42 23894.35 25279.06 28974.46 30387.28 30056.38 32594.31 33469.72 31474.68 29889.76 283
ITE_SJBPF82.38 34087.00 33465.59 36889.55 36479.99 27069.37 34391.30 24441.60 38195.33 30162.86 34774.63 29986.24 355
ACMH75.40 1777.99 31474.96 32287.10 27690.67 28376.41 28093.19 30591.64 34072.47 35163.44 36987.61 29743.34 37397.16 21158.34 36273.94 30087.72 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline188.85 15187.49 16892.93 9795.21 14186.85 3195.47 23694.61 23487.29 10583.11 20594.99 17680.70 7196.89 22782.28 20673.72 30195.05 219
pmmvs482.54 26780.79 27187.79 25486.11 34680.49 17293.55 29393.18 31477.29 30973.35 31389.40 27165.26 26095.05 31775.32 27273.61 30287.83 330
AllTest75.92 33073.06 33884.47 31892.18 24467.29 35891.07 33284.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
TestCases84.47 31892.18 24467.29 35884.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
pmmvs581.34 28479.54 29086.73 28285.02 36076.91 27196.22 19691.65 33977.65 30473.55 30888.61 27955.70 32894.43 33274.12 28473.35 30588.86 310
XXY-MVS83.84 24482.00 25689.35 22187.13 33381.38 14595.72 22494.26 25680.15 26675.92 29090.63 25461.96 28096.52 24378.98 23473.28 30690.14 275
WBMVS87.73 18186.79 18490.56 19095.61 12785.68 5097.63 8295.52 17983.77 19478.30 25788.44 28486.14 3295.78 27682.54 20473.15 30790.21 273
FMVSNet179.50 30376.54 31488.39 24088.47 31881.95 12594.30 27493.38 30473.14 34472.04 32685.66 32843.86 37093.84 34365.48 33472.53 30889.38 288
cl2285.11 22484.17 22287.92 25295.06 14878.82 21595.51 23494.22 25979.74 27476.77 27387.92 29375.96 14795.68 28379.93 22472.42 30989.27 293
miper_ehance_all_eth84.57 23383.60 23287.50 26592.64 22878.25 23295.40 24093.47 29979.28 28476.41 27987.64 29676.53 13695.24 30678.58 23772.42 30989.01 303
miper_enhance_ethall85.95 20985.20 20388.19 24894.85 15379.76 18996.00 20894.06 26982.98 21277.74 26388.76 27779.42 8795.46 29680.58 21572.42 30989.36 291
test_040272.68 34769.54 35482.09 34388.67 31671.81 33292.72 31286.77 38561.52 38962.21 37683.91 35343.22 37493.76 34634.60 40872.23 31280.72 395
dmvs_testset72.00 35273.36 33767.91 38483.83 37331.90 42485.30 37877.12 40982.80 21663.05 37392.46 22461.54 28382.55 40642.22 40571.89 31389.29 292
testgi74.88 33673.40 33679.32 36080.13 38561.75 38493.21 30386.64 38679.49 27966.56 35791.06 24735.51 39688.67 38556.79 37171.25 31487.56 337
nrg03086.79 19685.43 19990.87 18288.76 31385.34 6097.06 13794.33 25484.31 17380.45 23591.98 23472.36 20496.36 24988.48 14871.13 31590.93 265
ACMH+76.62 1677.47 32174.94 32385.05 30891.07 27471.58 33593.26 30290.01 36171.80 35464.76 36488.55 28041.62 38096.48 24462.35 34871.00 31687.09 345
VPA-MVSNet85.32 22183.83 22689.77 21790.25 28982.63 11496.36 18797.07 3383.03 21081.21 22789.02 27461.58 28296.31 25185.02 17670.95 31790.36 269
IterMVS80.67 29379.16 29385.20 30689.79 29776.08 28592.97 30891.86 33580.28 26371.20 33185.14 34157.93 31091.34 37172.52 29470.74 31888.18 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-LS83.93 24382.80 24587.31 27191.46 26677.39 26395.66 22793.43 30280.44 25775.51 29587.26 30273.72 19095.16 31076.99 25370.72 31989.39 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 29579.10 29484.73 31289.63 30474.66 30192.98 30791.81 33780.05 26871.06 33385.18 33958.04 30691.40 37072.48 29570.70 32088.12 326
v124081.70 27979.83 28987.30 27285.50 35377.70 25895.48 23593.44 30078.46 29776.53 27786.44 31760.85 28695.84 27171.59 29970.17 32188.35 321
V4283.04 25981.53 26387.57 26386.27 34379.09 21195.87 21794.11 26680.35 26177.22 26886.79 31165.32 25996.02 26177.74 24270.14 32287.61 335
v119282.31 27280.55 27787.60 26085.94 34878.47 22695.85 21993.80 28479.33 28176.97 27186.51 31463.33 27095.87 27073.11 29070.13 32388.46 318
v114482.90 26281.27 26787.78 25586.29 34279.07 21296.14 20393.93 27280.05 26877.38 26486.80 31065.50 25595.93 26875.21 27370.13 32388.33 322
Anonymous2023120675.29 33473.64 33580.22 35580.75 38163.38 37993.36 29790.71 35873.09 34567.12 34983.70 35550.33 35090.85 37653.63 38170.10 32586.44 352
WR-MVS84.32 23782.96 24088.41 23889.38 31080.32 17396.59 17096.25 12783.97 18676.63 27590.36 25967.53 24194.86 32075.82 26870.09 32690.06 280
EU-MVSNet76.92 32676.95 31076.83 37284.10 36954.73 40491.77 32492.71 32572.74 34869.57 34288.69 27858.03 30887.43 39364.91 33770.00 32788.33 322
IB-MVS85.34 488.67 15687.14 17893.26 8293.12 21284.32 8598.76 2697.27 2087.19 11179.36 24890.45 25783.92 5098.53 13384.41 17969.79 32896.93 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v192192082.02 27580.23 28187.41 26885.62 35277.92 24695.79 22393.69 29178.86 29276.67 27486.44 31762.50 27395.83 27272.69 29269.77 32988.47 317
v2v48283.46 25081.86 25888.25 24586.19 34479.65 19596.34 18994.02 27081.56 23877.32 26688.23 28865.62 25496.03 26077.77 24169.72 33089.09 298
v14419282.43 26880.73 27387.54 26485.81 35178.22 23395.98 20993.78 28679.09 28877.11 26986.49 31564.66 26495.91 26974.20 28369.42 33188.49 316
cl____83.27 25382.12 25386.74 27992.20 24275.95 29195.11 25393.27 31078.44 29874.82 30187.02 30774.19 18395.19 30874.67 27869.32 33289.09 298
DIV-MVS_self_test83.27 25382.12 25386.74 27992.19 24375.92 29395.11 25393.26 31178.44 29874.81 30287.08 30674.19 18395.19 30874.66 27969.30 33389.11 297
Anonymous2023121179.72 30077.19 30887.33 26995.59 12977.16 26995.18 25094.18 26259.31 40072.57 32286.20 32447.89 36095.66 28474.53 28169.24 33489.18 295
FMVSNet576.46 32874.16 33283.35 33490.05 29576.17 28389.58 34289.85 36271.39 35765.29 36380.42 37350.61 34887.70 39261.05 35469.24 33486.18 356
c3_l83.80 24582.65 24787.25 27392.10 24977.74 25795.25 24493.04 32078.58 29576.01 28787.21 30475.25 16895.11 31377.54 24868.89 33688.91 309
TinyColmap72.41 34868.99 35782.68 33888.11 32369.59 34988.41 35185.20 39065.55 37757.91 39184.82 34630.80 40495.94 26751.38 38468.70 33782.49 384
LF4IMVS72.36 34970.82 34776.95 37179.18 38756.33 39786.12 37286.11 38869.30 36763.06 37286.66 31233.03 40092.25 36065.33 33568.64 33882.28 386
Anonymous2024052172.06 35169.91 35278.50 36577.11 39661.67 38691.62 32890.97 35365.52 37862.37 37579.05 38036.32 39290.96 37557.75 36568.52 33982.87 378
OurMVSNet-221017-077.18 32476.06 31680.55 35383.78 37460.00 39190.35 33791.05 35177.01 31566.62 35687.92 29347.73 36194.03 33971.63 29868.44 34087.62 334
CP-MVSNet81.01 28980.08 28383.79 32687.91 32670.51 34194.29 27795.65 17180.83 24672.54 32388.84 27663.71 26692.32 35968.58 31968.36 34188.55 313
UniMVSNet_NR-MVSNet85.49 21984.59 21388.21 24789.44 30979.36 20196.71 16596.41 11085.22 14778.11 25990.98 25076.97 12995.14 31179.14 23268.30 34290.12 276
DU-MVS84.57 23383.33 23788.28 24388.76 31379.36 20196.43 18395.41 19185.42 14278.11 25990.82 25167.61 23895.14 31179.14 23268.30 34290.33 271
PS-CasMVS80.27 29679.18 29283.52 33287.56 33069.88 34694.08 28095.29 19780.27 26472.08 32588.51 28359.22 29792.23 36167.49 32168.15 34488.45 319
UniMVSNet (Re)85.31 22284.23 22088.55 23689.75 29980.55 16896.72 16396.89 4785.42 14278.40 25588.93 27575.38 16295.52 29478.58 23768.02 34589.57 285
our_test_377.90 31775.37 32185.48 30385.39 35576.74 27593.63 29091.67 33873.39 34365.72 36084.65 34758.20 30593.13 35457.82 36467.87 34686.57 351
tfpnnormal78.14 31275.42 32086.31 28888.33 32279.24 20494.41 26896.22 13073.51 34069.81 34185.52 33455.43 32995.75 27947.65 39667.86 34783.95 376
VPNet84.69 23082.92 24190.01 20589.01 31283.45 10296.71 16595.46 18485.71 13679.65 24492.18 23056.66 32296.01 26283.05 20167.84 34890.56 267
v1081.43 28379.53 29187.11 27586.38 33978.87 21494.31 27393.43 30277.88 30173.24 31585.26 33665.44 25695.75 27972.14 29667.71 34986.72 348
v881.88 27780.06 28587.32 27086.63 33779.04 21394.41 26893.65 29378.77 29373.19 31685.57 33266.87 24795.81 27373.84 28767.61 35087.11 344
v7n79.32 30677.34 30685.28 30584.05 37172.89 32193.38 29693.87 27875.02 32970.68 33484.37 34859.58 29295.62 28967.60 32067.50 35187.32 343
WR-MVS_H81.02 28880.09 28283.79 32688.08 32471.26 33994.46 26696.54 9580.08 26772.81 32086.82 30970.36 22992.65 35664.18 33967.50 35187.46 341
Patchmtry77.36 32274.59 32785.67 29889.75 29975.75 29577.85 40091.12 34860.28 39571.23 33080.35 37475.45 15893.56 34957.94 36367.34 35387.68 333
reproduce_monomvs87.80 17987.60 16588.40 23996.56 9880.26 17795.80 22296.32 12291.56 3173.60 30788.36 28588.53 1696.25 25490.47 12067.23 35488.67 311
eth_miper_zixun_eth83.12 25782.01 25586.47 28491.85 26174.80 30094.33 27293.18 31479.11 28775.74 29487.25 30372.71 19995.32 30276.78 25667.13 35589.27 293
miper_lstm_enhance81.66 28180.66 27584.67 31491.19 27071.97 32991.94 32193.19 31277.86 30272.27 32485.26 33673.46 19393.42 35173.71 28867.05 35688.61 312
v14882.41 27180.89 27086.99 27786.18 34576.81 27496.27 19393.82 28180.49 25675.28 29886.11 32667.32 24495.75 27975.48 27167.03 35788.42 320
NR-MVSNet83.35 25181.52 26488.84 23088.76 31381.31 14794.45 26795.16 20184.65 16467.81 34790.82 25170.36 22994.87 31974.75 27666.89 35890.33 271
Baseline_NR-MVSNet81.22 28680.07 28484.68 31385.32 35875.12 29996.48 17788.80 37276.24 32177.28 26786.40 32067.61 23894.39 33375.73 26966.73 35984.54 370
TranMVSNet+NR-MVSNet83.24 25581.71 26087.83 25387.71 32878.81 21796.13 20594.82 21884.52 16776.18 28690.78 25364.07 26594.60 32874.60 28066.59 36090.09 278
h-mvs3389.30 14188.95 13890.36 19695.07 14676.04 28696.96 14697.11 3090.39 4892.22 8495.10 17174.70 17598.86 11993.14 8365.89 36196.16 192
PEN-MVS79.47 30478.26 30083.08 33586.36 34068.58 35493.85 28794.77 22279.76 27371.37 32888.55 28059.79 28992.46 35764.50 33865.40 36288.19 324
FPMVS55.09 37552.93 37861.57 39355.98 41740.51 41883.11 38883.41 40037.61 41134.95 41271.95 40114.40 41476.95 41129.81 41165.16 36367.25 406
ppachtmachnet_test77.19 32374.22 33186.13 29185.39 35578.22 23393.98 28191.36 34571.74 35567.11 35084.87 34556.67 32193.37 35352.21 38364.59 36486.80 347
AUN-MVS86.25 20585.57 19788.26 24493.57 19473.38 31195.45 23795.88 15983.94 18885.47 17594.21 19373.70 19296.67 23983.54 19464.41 36594.73 230
hse-mvs288.22 17188.21 15088.25 24593.54 19573.41 31095.41 23995.89 15890.39 4892.22 8494.22 19274.70 17596.66 24093.14 8364.37 36694.69 231
pm-mvs180.05 29778.02 30286.15 29085.42 35475.81 29495.11 25392.69 32677.13 31170.36 33787.43 29858.44 30295.27 30571.36 30164.25 36787.36 342
N_pmnet61.30 37060.20 37364.60 38984.32 36617.00 43091.67 32710.98 42861.77 38858.45 39078.55 38149.89 35291.83 36742.27 40463.94 36884.97 368
SixPastTwentyTwo76.04 32974.32 33081.22 34884.54 36461.43 38791.16 33189.30 36877.89 30064.04 36686.31 32148.23 35594.29 33563.54 34463.84 36987.93 329
MIMVSNet169.44 36066.65 36477.84 36676.48 39862.84 38187.42 36188.97 37066.96 37657.75 39379.72 37932.77 40185.83 39846.32 39763.42 37084.85 369
DTE-MVSNet78.37 31077.06 30982.32 34285.22 35967.17 36393.40 29593.66 29278.71 29470.53 33688.29 28759.06 29892.23 36161.38 35263.28 37187.56 337
new_pmnet66.18 36763.18 36975.18 37976.27 40061.74 38583.79 38584.66 39356.64 40451.57 40071.85 40331.29 40387.93 38849.98 39062.55 37275.86 401
test_fmvs369.56 35869.19 35670.67 38269.01 40847.05 40890.87 33486.81 38371.31 35866.79 35477.15 38516.40 41383.17 40481.84 20962.51 37381.79 391
test20.0372.36 34971.15 34675.98 37677.79 39259.16 39392.40 31689.35 36774.09 33661.50 37984.32 34948.09 35685.54 39950.63 38862.15 37483.24 377
EGC-MVSNET52.46 37847.56 38167.15 38581.98 37960.11 39082.54 38972.44 4130.11 4250.70 42674.59 39225.11 40783.26 40329.04 41261.51 37558.09 410
pmmvs674.65 33771.67 34483.60 33179.13 38869.94 34593.31 30190.88 35561.05 39465.83 35984.15 35143.43 37294.83 32166.62 32760.63 37686.02 359
MDA-MVSNet_test_wron73.54 34270.43 35082.86 33684.55 36371.85 33091.74 32591.32 34767.63 37146.73 40481.09 37155.11 33290.42 38055.91 37459.76 37786.31 354
YYNet173.53 34370.43 35082.85 33784.52 36571.73 33391.69 32691.37 34467.63 37146.79 40381.21 37055.04 33390.43 37955.93 37359.70 37886.38 353
test_f64.01 36962.13 37269.65 38363.00 41545.30 41483.66 38680.68 40461.30 39155.70 39672.62 39914.23 41584.64 40069.84 31258.11 37979.00 397
Patchmatch-RL test76.65 32774.01 33484.55 31777.37 39564.23 37378.49 39982.84 40178.48 29664.63 36573.40 39676.05 14691.70 36976.99 25357.84 38097.72 114
pmmvs-eth3d73.59 34070.66 34882.38 34076.40 39973.38 31189.39 34589.43 36672.69 34960.34 38477.79 38346.43 36691.26 37366.42 33157.06 38182.51 382
PM-MVS69.32 36166.93 36276.49 37373.60 40555.84 39985.91 37379.32 40774.72 33161.09 38178.18 38221.76 40991.10 37470.86 30756.90 38282.51 382
kuosan73.55 34172.39 34277.01 37089.68 30266.72 36585.24 37993.44 30067.76 37060.04 38683.40 35871.90 21284.25 40145.34 39954.75 38380.06 396
Gipumacopyleft45.11 38342.05 38554.30 39980.69 38251.30 40635.80 41783.81 39828.13 41327.94 41734.53 41711.41 42076.70 41321.45 41654.65 38434.90 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test156.56 37353.58 37765.50 38667.93 41146.51 41177.24 40372.95 41238.09 41042.75 40875.17 39013.38 41682.78 40540.19 40654.53 38567.23 407
MDA-MVSNet-bldmvs71.45 35367.94 36081.98 34485.33 35768.50 35592.35 31788.76 37370.40 36042.99 40781.96 36446.57 36591.31 37248.75 39554.39 38686.11 357
K. test v373.62 33971.59 34579.69 35782.98 37659.85 39290.85 33588.83 37177.13 31158.90 38782.11 36343.62 37191.72 36865.83 33354.10 38787.50 340
CL-MVSNet_self_test75.81 33174.14 33380.83 35278.33 39167.79 35794.22 27893.52 29877.28 31069.82 34081.54 36861.47 28489.22 38357.59 36653.51 38885.48 365
KD-MVS_self_test70.97 35669.31 35575.95 37776.24 40155.39 40287.45 36090.94 35470.20 36262.96 37477.48 38444.01 36988.09 38761.25 35353.26 38984.37 372
TDRefinement69.20 36265.78 36679.48 35866.04 41362.21 38388.21 35286.12 38762.92 38361.03 38285.61 33133.23 39994.16 33755.82 37553.02 39082.08 388
ambc76.02 37568.11 41051.43 40564.97 41389.59 36360.49 38374.49 39317.17 41292.46 35761.50 35152.85 39184.17 374
TransMVSNet (Re)76.94 32574.38 32984.62 31685.92 34975.25 29895.28 24189.18 36973.88 33867.22 34886.46 31659.64 29094.10 33859.24 36152.57 39284.50 371
mvsany_test367.19 36565.34 36772.72 38063.08 41448.57 40783.12 38778.09 40872.07 35261.21 38077.11 38622.94 40887.78 39178.59 23651.88 39381.80 390
mvs5depth71.40 35468.36 35980.54 35475.31 40365.56 36979.94 39285.14 39169.11 36871.75 32781.59 36641.02 38493.94 34160.90 35550.46 39482.10 387
test_vis3_rt54.10 37651.04 37963.27 39258.16 41646.08 41384.17 38349.32 42756.48 40536.56 41149.48 4148.03 42391.91 36667.29 32349.87 39551.82 413
PMVScopyleft34.80 2339.19 38535.53 38850.18 40029.72 42730.30 42559.60 41566.20 42026.06 41617.91 42049.53 4133.12 42674.09 41518.19 41849.40 39646.14 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
lessismore_v079.98 35680.59 38358.34 39580.87 40358.49 38983.46 35743.10 37593.89 34263.11 34648.68 39787.72 331
UnsupCasMVSNet_eth73.25 34470.57 34981.30 34777.53 39366.33 36687.24 36393.89 27780.38 26057.90 39281.59 36642.91 37790.56 37865.18 33648.51 39887.01 346
new-patchmatchnet68.85 36365.93 36577.61 36873.57 40663.94 37690.11 33988.73 37471.62 35655.08 39773.60 39540.84 38587.22 39551.35 38648.49 39981.67 393
dongtai69.47 35968.98 35870.93 38186.87 33558.45 39488.19 35393.18 31463.98 38156.04 39580.17 37670.97 22579.24 40833.46 40947.94 40075.09 402
pmmvs365.75 36862.18 37176.45 37467.12 41264.54 37188.68 34985.05 39254.77 40657.54 39473.79 39429.40 40586.21 39755.49 37747.77 40178.62 398
test_method56.77 37254.53 37663.49 39176.49 39740.70 41775.68 40474.24 41119.47 41948.73 40171.89 40219.31 41065.80 41957.46 36747.51 40283.97 375
ttmdpeth69.58 35766.92 36377.54 36975.95 40262.40 38288.09 35484.32 39662.87 38465.70 36186.25 32336.53 39188.53 38655.65 37646.96 40381.70 392
mmtdpeth78.04 31376.76 31281.86 34589.60 30566.12 36792.34 31887.18 38076.83 31685.55 17476.49 38846.77 36497.02 21890.85 11245.24 40482.43 385
UnsupCasMVSNet_bld68.60 36464.50 36880.92 35174.63 40467.80 35683.97 38492.94 32165.12 37954.63 39868.23 40535.97 39492.17 36360.13 35644.83 40582.78 380
LCM-MVSNet52.52 37748.24 38065.35 38747.63 42441.45 41672.55 40983.62 39931.75 41237.66 41057.92 4109.19 42276.76 41249.26 39244.60 40677.84 399
PVSNet_077.72 1581.70 27978.95 29689.94 21090.77 28276.72 27695.96 21096.95 4285.01 15470.24 33988.53 28252.32 34198.20 15186.68 16644.08 40794.89 222
testf145.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
APD_test245.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
KD-MVS_2432*160077.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
miper_refine_blended77.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
DeepMVS_CXcopyleft64.06 39078.53 39043.26 41568.11 41969.94 36438.55 40976.14 38918.53 41179.34 40743.72 40141.62 41069.57 405
MVStest166.93 36663.01 37078.69 36278.56 38971.43 33785.51 37786.81 38349.79 40748.57 40284.15 35153.46 33983.31 40243.14 40337.15 41381.34 394
WB-MVS57.26 37156.22 37460.39 39569.29 40735.91 42286.39 37170.06 41559.84 39946.46 40572.71 39851.18 34578.11 40915.19 41934.89 41467.14 408
SSC-MVS56.01 37454.96 37559.17 39668.42 40934.13 42384.98 38169.23 41658.08 40345.36 40671.67 40450.30 35177.46 41014.28 42032.33 41565.91 409
PMMVS250.90 37946.31 38264.67 38855.53 41846.67 41077.30 40271.02 41440.89 40934.16 41359.32 4089.83 42176.14 41440.09 40728.63 41671.21 403
MVEpermissive35.65 2233.85 38629.49 39146.92 40141.86 42536.28 42150.45 41656.52 42418.75 42018.28 41937.84 4162.41 42758.41 42018.71 41720.62 41746.06 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 38732.39 38933.65 40353.35 42025.70 42774.07 40753.33 42521.08 41717.17 42133.63 41911.85 41954.84 42112.98 42114.04 41820.42 418
ANet_high46.22 38041.28 38761.04 39439.91 42646.25 41270.59 41076.18 41058.87 40123.09 41848.00 41512.58 41866.54 41828.65 41313.62 41970.35 404
tmp_tt41.54 38441.93 38640.38 40220.10 42826.84 42661.93 41459.09 42314.81 42128.51 41680.58 37235.53 39548.33 42363.70 34313.11 42045.96 416
EMVS31.70 38831.45 39032.48 40450.72 42323.95 42874.78 40652.30 42620.36 41816.08 42231.48 42012.80 41753.60 42211.39 42213.10 42119.88 419
wuyk23d14.10 39013.89 39314.72 40555.23 41922.91 42933.83 4183.56 4294.94 4224.11 4232.28 4252.06 42819.66 42410.23 4238.74 4221.59 422
testmvs9.92 39112.94 3940.84 4070.65 4290.29 43293.78 2880.39 4300.42 4232.85 42415.84 4230.17 4300.30 4262.18 4240.21 4231.91 421
test1239.07 39211.73 3951.11 4060.50 4300.77 43189.44 3440.20 4310.34 4242.15 42510.72 4240.34 4290.32 4251.79 4250.08 4242.23 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k21.43 38928.57 3920.00 4080.00 4310.00 4330.00 41995.93 1560.00 4260.00 42797.66 7563.57 2670.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.92 3947.89 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42671.04 2220.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.11 39310.81 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.30 980.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS67.18 36049.00 393
FOURS198.51 3978.01 24198.13 4996.21 13183.04 20994.39 52
test_one_060198.91 1884.56 8396.70 7288.06 8496.57 2398.77 1088.04 21
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.03 1585.03 7396.78 5688.72 6797.79 698.90 588.48 1799.82 19
save fliter98.24 5183.34 10498.61 3396.57 9291.32 33
test072699.05 985.18 6599.11 1596.78 5688.75 6597.65 1198.91 287.69 23
GSMVS97.54 128
test_part298.90 1985.14 7196.07 29
sam_mvs177.59 11797.54 128
sam_mvs75.35 165
MTGPAbinary96.33 120
test_post185.88 37430.24 42173.77 18895.07 31673.89 285
test_post33.80 41876.17 14495.97 263
patchmatchnet-post77.09 38777.78 11695.39 297
MTMP97.53 9368.16 418
gm-plane-assit92.27 23879.64 19684.47 17095.15 16897.93 16285.81 169
TEST998.64 3183.71 9597.82 6896.65 7984.29 17795.16 3798.09 4884.39 4199.36 81
test_898.63 3383.64 9897.81 7096.63 8484.50 16895.10 4098.11 4784.33 4299.23 88
agg_prior98.59 3583.13 10896.56 9494.19 5499.16 99
test_prior482.34 12197.75 76
test_prior93.09 9098.68 2681.91 12996.40 11299.06 10798.29 70
旧先验296.97 14474.06 33796.10 2897.76 17388.38 149
新几何296.42 184
无先验96.87 15396.78 5677.39 30799.52 6979.95 22398.43 61
原ACMM296.84 154
testdata299.48 7376.45 260
segment_acmp82.69 61
testdata195.57 23387.44 101
plane_prior791.86 25977.55 260
plane_prior691.98 25577.92 24664.77 262
plane_prior494.15 195
plane_prior377.75 25690.17 5281.33 225
plane_prior297.18 12089.89 54
plane_prior191.95 257
n20.00 432
nn0.00 432
door-mid79.75 406
test1196.50 100
door80.13 405
HQP5-MVS78.48 223
HQP-NCC92.08 25097.63 8290.52 4582.30 212
ACMP_Plane92.08 25097.63 8290.52 4582.30 212
BP-MVS87.67 157
HQP4-MVS82.30 21297.32 20191.13 261
HQP2-MVS65.40 257
NP-MVS92.04 25478.22 23394.56 185
MDTV_nov1_ep13_2view81.74 13786.80 36680.65 25185.65 17274.26 18276.52 25996.98 163
Test By Simon71.65 215