This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 3099.95 397.59 2399.18 799.00 31
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13899.25 699.70 3
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8698.46 2687.33 2599.97 297.21 2999.31 499.63 7
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 6098.13 4996.77 6288.38 7597.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7399.12 1296.78 5688.72 6797.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 7099.80 2599.16 197.96 5899.15 27
NCCC95.63 795.94 894.69 3299.21 685.15 7099.16 796.96 4194.11 995.59 3498.64 1785.07 3699.91 495.61 4699.10 999.00 31
MSP-MVS95.62 896.54 192.86 9998.31 4880.10 18397.42 10596.78 5692.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6599.06 1796.46 10488.75 6596.69 1898.76 1287.69 2399.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8994.71 497.08 1597.99 5578.69 10199.86 1099.15 297.85 6298.91 35
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7897.77 7396.74 6786.11 12696.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3499.85 1194.75 5999.18 798.65 50
patch_mono-295.14 1396.08 792.33 12398.44 4377.84 24998.43 3697.21 2292.58 1997.68 1097.65 7986.88 2799.83 1798.25 997.60 6999.33 18
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9597.08 11083.32 5499.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6194.50 16784.30 8699.14 1096.00 14791.94 2897.91 598.60 1884.78 3899.77 2998.84 596.03 11097.08 161
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 8199.13 1196.15 13692.06 2597.92 398.52 2384.52 4099.74 3898.76 695.67 11797.22 153
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11494.07 1095.34 3697.80 7076.83 13299.87 897.08 3197.64 6898.89 36
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 8197.76 7596.19 13489.59 5796.66 2098.17 4484.33 4299.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192094.81 1995.60 1192.45 11695.29 13880.96 15699.29 297.21 2294.50 797.29 1398.44 2782.15 6299.78 2898.56 797.68 6796.61 179
TSAR-MVS + MP.94.79 2095.17 1893.64 6697.66 6984.10 8995.85 21996.42 10991.26 3497.49 1296.80 12386.50 2998.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9896.77 6285.32 14497.92 398.70 1583.09 5799.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS89.82 194.61 2296.17 589.91 21197.09 9470.21 34498.99 2396.69 7495.57 295.08 4199.23 186.40 3199.87 897.84 2098.66 3299.65 6
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 19095.58 17491.12 3695.84 3293.87 20283.47 5398.37 14497.26 2798.81 2499.24 23
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10398.04 5796.41 11085.79 13595.00 4398.28 3784.32 4599.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5098.06 5596.64 8293.64 1291.74 9398.54 2080.17 7999.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 11098.10 5195.29 19791.57 3093.81 5997.45 8886.64 2899.43 7696.28 3794.01 13599.20 25
train_agg94.28 2794.45 2593.74 5898.64 3183.71 9597.82 6896.65 7984.50 16895.16 3798.09 4884.33 4299.36 8195.91 4298.96 1998.16 79
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 9098.64 3196.93 4490.71 4293.08 7098.70 1579.98 8399.21 9094.12 6899.07 1198.63 51
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8296.97 11581.30 6898.99 11088.54 14598.88 2099.20 25
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7796.43 10884.02 18495.07 4298.74 1482.93 5899.38 7895.42 5098.51 3698.32 66
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16492.42 2196.24 2798.18 4171.04 22299.17 9896.77 3497.39 7796.79 172
SteuartSystems-ACMMP94.13 3294.44 2693.20 8595.41 13381.35 14699.02 2196.59 8989.50 5994.18 5598.36 3383.68 5299.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8498.29 4197.64 1494.57 695.36 3596.88 11879.96 8499.12 10391.30 10596.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n93.99 3494.36 2892.86 9992.82 22181.12 14999.26 496.37 11893.47 1395.16 3798.21 3979.00 9499.64 5598.21 1096.73 9897.83 106
xiu_mvs_v2_base93.92 3593.26 4695.91 1195.07 14692.02 698.19 4595.68 17092.06 2596.01 3198.14 4570.83 22698.96 11296.74 3696.57 10096.76 175
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18191.03 3994.90 4497.66 7578.84 9797.56 18394.64 6297.46 7298.62 52
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 12194.56 16082.01 12499.07 1697.13 2792.09 2396.25 2698.53 2276.47 13799.80 2598.39 894.71 12695.22 217
APD-MVScopyleft93.61 3893.59 3993.69 6498.76 2483.26 10697.21 11696.09 14082.41 22594.65 4998.21 3981.96 6598.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS93.59 3993.63 3893.48 7798.05 5881.76 13698.64 3197.13 2782.60 22194.09 5698.49 2580.35 7499.85 1194.74 6098.62 3398.83 38
BP-MVS193.55 4093.50 4293.71 6292.64 22885.39 5997.78 7296.84 5289.52 5892.00 8797.06 11288.21 2098.03 15791.45 10496.00 11297.70 117
ACMMP_NAP93.46 4193.23 4794.17 4597.16 9284.28 8796.82 15796.65 7986.24 12494.27 5397.99 5577.94 11199.83 1793.39 7598.57 3498.39 63
MVS_111021_HR93.41 4293.39 4593.47 7997.34 8982.83 11297.56 9098.27 689.16 6389.71 12097.14 10579.77 8599.56 6693.65 7397.94 5998.02 88
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 13093.38 20381.71 13998.86 2596.98 3891.64 2996.85 1698.55 1975.58 15599.77 2997.88 1993.68 14295.18 218
PVSNet_Blended93.13 4492.98 5293.57 7197.47 7783.86 9299.32 196.73 6891.02 4089.53 12596.21 13476.42 13999.57 6494.29 6595.81 11697.29 151
CDPH-MVS93.12 4592.91 5393.74 5898.65 3083.88 9197.67 8196.26 12683.00 21193.22 6798.24 3881.31 6799.21 9089.12 13998.74 3098.14 81
dcpmvs_293.10 4693.46 4492.02 14197.77 6579.73 19394.82 26193.86 27986.91 11591.33 9996.76 12485.20 3598.06 15696.90 3397.60 6998.27 72
test_fmvsmconf0.1_n93.08 4793.22 4892.65 10988.45 31980.81 16199.00 2295.11 20293.21 1594.00 5797.91 6376.84 13099.59 6097.91 1696.55 10197.54 128
SPE-MVS-test92.98 4893.67 3790.90 18096.52 9976.87 27298.68 2894.73 22390.36 5094.84 4697.89 6577.94 11197.15 21494.28 6797.80 6498.70 48
alignmvs92.97 4992.26 7095.12 2195.54 13087.77 2298.67 2996.38 11588.04 8593.01 7197.45 8879.20 9298.60 12893.25 8188.76 19098.99 33
fmvsm_s_conf0.1_n92.93 5093.16 4992.24 12890.52 28581.92 12898.42 3796.24 12891.17 3596.02 3098.35 3475.34 16699.74 3897.84 2094.58 12895.05 219
HFP-MVS92.89 5192.86 5692.98 9498.71 2581.12 14997.58 8896.70 7285.20 14991.75 9297.97 6078.47 10399.71 4590.95 10898.41 4398.12 84
PAPM92.87 5292.40 6594.30 3992.25 24187.85 2196.40 18596.38 11591.07 3888.72 14196.90 11682.11 6397.37 20090.05 12997.70 6697.67 119
GDP-MVS92.85 5392.55 6393.75 5792.82 22185.76 4697.63 8295.05 20688.34 7793.15 6897.10 10986.92 2698.01 15987.95 15394.00 13697.47 137
ZNCC-MVS92.75 5492.60 6193.23 8498.24 5181.82 13497.63 8296.50 10085.00 15591.05 10497.74 7278.38 10499.80 2590.48 11998.34 4898.07 86
PAPR92.74 5592.17 7394.45 3698.89 2084.87 7897.20 11896.20 13287.73 9488.40 14598.12 4678.71 10099.76 3187.99 15296.28 10398.74 42
CS-MVS92.73 5693.48 4390.48 19396.27 10475.93 29298.55 3494.93 21089.32 6094.54 5197.67 7478.91 9697.02 21893.80 7097.32 7998.49 57
jason92.73 5692.23 7194.21 4490.50 28687.30 2998.65 3095.09 20390.61 4492.76 7697.13 10675.28 16797.30 20393.32 7996.75 9798.02 88
jason: jason.
ETV-MVS92.72 5892.87 5492.28 12794.54 16281.89 13097.98 5995.21 20089.77 5693.11 6996.83 12077.23 12697.50 19195.74 4495.38 12097.44 139
region2R92.72 5892.70 5892.79 10298.68 2680.53 17197.53 9396.51 9885.22 14791.94 9097.98 5877.26 12299.67 5390.83 11398.37 4698.18 77
reproduce-ours92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
our_new_method92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
XVS92.69 6292.71 5792.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9697.83 6977.24 12499.59 6090.46 12198.07 5498.02 88
ACMMPR92.69 6292.67 5992.75 10398.66 2880.57 16797.58 8896.69 7485.20 14991.57 9497.92 6177.01 12799.67 5390.95 10898.41 4398.00 93
UBG92.68 6492.35 6693.70 6395.61 12785.65 5397.25 11497.06 3487.92 8889.28 12995.03 17386.06 3398.07 15592.24 9490.69 17597.37 145
WTY-MVS92.65 6591.68 8295.56 1496.00 11288.90 1398.23 4397.65 1388.57 7089.82 11997.22 10379.29 8999.06 10789.57 13488.73 19198.73 46
MP-MVScopyleft92.61 6692.67 5992.42 11998.13 5679.73 19397.33 11196.20 13285.63 13790.53 11197.66 7578.14 10999.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss92.58 6792.35 6693.29 8197.30 9082.53 11696.44 18196.04 14584.68 16389.12 13298.37 3277.48 12099.74 3893.31 8098.38 4597.59 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6892.60 6192.34 12198.50 4079.90 18698.40 3896.40 11284.75 15990.48 11398.09 4877.40 12199.21 9091.15 10798.23 5297.92 99
reproduce_model92.53 6992.87 5491.50 16297.41 8377.14 27096.02 20795.91 15783.65 19892.45 7798.39 3179.75 8699.21 9095.27 5496.98 8898.14 81
testing1192.48 7092.04 7793.78 5595.94 11686.00 4097.56 9097.08 3287.52 9989.32 12895.40 15584.60 3998.02 15891.93 10189.04 18697.32 147
MTAPA92.45 7192.31 6892.86 9997.90 6180.85 16092.88 31096.33 12087.92 8890.20 11698.18 4176.71 13599.76 3192.57 9298.09 5397.96 98
GST-MVS92.43 7292.22 7293.04 9298.17 5481.64 14197.40 10796.38 11584.71 16290.90 10797.40 9377.55 11999.76 3189.75 13297.74 6597.72 114
fmvsm_s_conf0.1_n_a92.38 7392.49 6492.06 13888.08 32481.62 14297.97 6196.01 14690.62 4396.58 2298.33 3574.09 18599.71 4597.23 2893.46 14794.86 223
MVSMamba_PlusPlus92.37 7491.55 8594.83 2795.37 13587.69 2495.60 23195.42 19074.65 33293.95 5892.81 21983.11 5697.70 17594.49 6398.53 3599.11 28
sasdasda92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
canonicalmvs92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
SR-MVS92.16 7792.27 6991.83 15098.37 4578.41 22796.67 16895.76 16582.19 22991.97 8898.07 5276.44 13898.64 12693.71 7297.27 8098.45 60
test_fmvsmvis_n_192092.12 7892.10 7592.17 13390.87 27881.04 15298.34 4093.90 27692.71 1887.24 15897.90 6474.83 17399.72 4396.96 3296.20 10495.76 202
VNet92.11 7991.22 9194.79 2896.91 9586.98 3097.91 6397.96 1086.38 12393.65 6195.74 14370.16 23198.95 11493.39 7588.87 18998.43 61
CSCG92.02 8091.65 8393.12 8898.53 3680.59 16697.47 9897.18 2577.06 31484.64 18797.98 5883.98 4899.52 6990.72 11597.33 7899.23 24
MGCFI-Net91.95 8191.03 9794.72 3195.68 12586.38 3596.93 14994.48 24088.25 8092.78 7597.24 10172.34 20598.46 13893.13 8588.43 19799.32 19
PGM-MVS91.93 8291.80 8092.32 12598.27 5079.74 19295.28 24197.27 2083.83 19290.89 10897.78 7176.12 14599.56 6688.82 14297.93 6197.66 120
testing9991.91 8391.35 8893.60 6995.98 11485.70 4897.31 11296.92 4686.82 11788.91 13595.25 15884.26 4697.89 16988.80 14387.94 20397.21 155
testing9191.90 8491.31 9093.66 6595.99 11385.68 5097.39 10896.89 4786.75 12188.85 13795.23 16183.93 4997.90 16888.91 14087.89 20497.41 141
mPP-MVS91.88 8591.82 7992.07 13798.38 4478.63 22197.29 11396.09 14085.12 15188.45 14497.66 7575.53 15699.68 5189.83 13098.02 5797.88 100
EI-MVSNet-Vis-set91.84 8691.77 8192.04 14097.60 7281.17 14896.61 16996.87 4988.20 8289.19 13097.55 8778.69 10199.14 10090.29 12690.94 17295.80 200
EIA-MVS91.73 8792.05 7690.78 18594.52 16376.40 28198.06 5595.34 19589.19 6288.90 13697.28 10077.56 11897.73 17490.77 11496.86 9498.20 76
EC-MVSNet91.73 8792.11 7490.58 18993.54 19577.77 25398.07 5494.40 25087.44 10192.99 7297.11 10874.59 17996.87 22993.75 7197.08 8597.11 159
DP-MVS Recon91.72 8990.85 9894.34 3899.50 185.00 7598.51 3595.96 15180.57 25388.08 15097.63 8176.84 13099.89 785.67 17094.88 12398.13 83
CHOSEN 280x42091.71 9091.85 7891.29 16894.94 15082.69 11387.89 35896.17 13585.94 13287.27 15794.31 18990.27 895.65 28694.04 6995.86 11495.53 208
HY-MVS84.06 691.63 9190.37 11195.39 1996.12 10988.25 1790.22 33897.58 1588.33 7890.50 11291.96 23579.26 9099.06 10790.29 12689.07 18598.88 37
HPM-MVScopyleft91.62 9291.53 8691.89 14597.88 6379.22 20596.99 13995.73 16882.07 23189.50 12797.19 10475.59 15498.93 11790.91 11097.94 5997.54 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR91.60 9391.64 8491.47 16495.74 12378.79 21896.15 20296.77 6288.49 7288.64 14297.07 11172.33 20699.19 9693.13 8596.48 10296.43 184
DeepC-MVS86.58 391.53 9491.06 9692.94 9694.52 16381.89 13095.95 21195.98 14990.76 4183.76 19896.76 12473.24 19699.71 4591.67 10396.96 8997.22 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_yl91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
DCV-MVSNet91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
PAPM_NR91.46 9590.82 9993.37 8098.50 4081.81 13595.03 25796.13 13784.65 16486.10 16997.65 7979.24 9199.75 3683.20 19896.88 9298.56 54
MVSFormer91.36 9890.57 10493.73 6093.00 21488.08 1994.80 26394.48 24080.74 24994.90 4497.13 10678.84 9795.10 31483.77 18797.46 7298.02 88
EI-MVSNet-UG-set91.35 9991.22 9191.73 15497.39 8680.68 16496.47 17896.83 5387.92 8888.30 14897.36 9477.84 11499.13 10289.43 13789.45 18195.37 212
SR-MVS-dyc-post91.29 10091.45 8790.80 18397.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6775.76 15198.61 12791.99 9996.79 9597.75 112
PVSNet_Blended_VisFu91.24 10190.77 10092.66 10895.09 14482.40 12097.77 7395.87 16188.26 7986.39 16593.94 20076.77 13399.27 8488.80 14394.00 13696.31 190
APD-MVS_3200maxsize91.23 10291.35 8890.89 18197.89 6276.35 28296.30 19295.52 17979.82 27291.03 10597.88 6674.70 17598.54 13292.11 9796.89 9197.77 111
diffmvspermissive91.17 10390.74 10192.44 11893.11 21382.50 11896.25 19593.62 29487.79 9290.40 11495.93 13973.44 19497.42 19593.62 7492.55 15797.41 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive91.13 10490.45 10893.17 8792.99 21783.58 9997.46 10094.56 23787.69 9587.19 15994.98 17774.50 18097.60 18091.88 10292.79 15498.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22291.09 10590.49 10792.87 9895.82 11985.04 7296.51 17697.28 1986.05 12989.13 13195.34 15780.16 8096.62 24185.82 16888.31 19996.96 164
test_fmvsmconf0.01_n91.08 10690.68 10292.29 12682.43 37880.12 18297.94 6293.93 27292.07 2491.97 8897.60 8267.56 24099.53 6897.09 3095.56 11997.21 155
CHOSEN 1792x268891.07 10790.21 11593.64 6695.18 14283.53 10096.26 19496.13 13788.92 6484.90 18193.10 21772.86 19899.62 5888.86 14195.67 11797.79 110
ETVMVS90.99 10890.26 11293.19 8695.81 12085.64 5496.97 14497.18 2585.43 14188.77 14094.86 17982.00 6496.37 24882.70 20388.60 19297.57 127
CANet_DTU90.98 10990.04 12093.83 5394.76 15686.23 3796.32 19193.12 31893.11 1693.71 6096.82 12263.08 27199.48 7384.29 18095.12 12295.77 201
test250690.96 11090.39 10992.65 10993.54 19582.46 11996.37 18697.35 1786.78 11987.55 15395.25 15877.83 11597.50 19184.07 18294.80 12497.98 95
thisisatest051590.95 11190.26 11293.01 9394.03 18684.27 8897.91 6396.67 7683.18 20586.87 16395.51 15388.66 1597.85 17080.46 21689.01 18796.92 168
casdiffmvspermissive90.95 11190.39 10992.63 11192.82 22182.53 11696.83 15594.47 24387.69 9588.47 14395.56 15274.04 18697.54 18790.90 11192.74 15597.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss90.87 11389.96 12393.60 6994.15 17883.84 9497.14 12798.13 785.93 13389.68 12196.09 13771.67 21499.30 8387.69 15689.16 18497.66 120
baseline90.76 11490.10 11892.74 10492.90 22082.56 11594.60 26594.56 23787.69 9589.06 13495.67 14773.76 18997.51 19090.43 12392.23 16398.16 79
Effi-MVS+90.70 11589.90 12693.09 9093.61 19283.48 10195.20 24792.79 32483.22 20491.82 9195.70 14571.82 21397.48 19391.25 10693.67 14398.32 66
MAR-MVS90.63 11690.22 11491.86 14798.47 4278.20 23797.18 12096.61 8583.87 19188.18 14998.18 4168.71 23599.75 3683.66 19297.15 8497.63 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS90.60 11788.64 14396.50 594.25 17490.53 893.33 29897.21 2277.59 30578.88 25297.31 9571.52 21799.69 4989.60 13398.03 5699.27 22
xiu_mvs_v1_base_debu90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base_debi90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
mvsmamba90.53 12190.08 11991.88 14694.81 15480.93 15793.94 28494.45 24588.24 8187.02 16292.35 22668.04 23795.80 27494.86 5797.03 8798.92 34
baseline290.39 12290.21 11590.93 17890.86 27980.99 15495.20 24797.41 1686.03 13180.07 24294.61 18490.58 697.47 19487.29 16089.86 17994.35 233
ACMMPcopyleft90.39 12289.97 12291.64 15797.58 7478.21 23696.78 16096.72 7084.73 16184.72 18597.23 10271.22 21999.63 5788.37 15092.41 16097.08 161
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast90.38 12490.17 11791.03 17697.61 7177.35 26497.15 12695.48 18279.51 27888.79 13896.90 11671.64 21698.81 12287.01 16497.44 7496.94 165
MVS_Test90.29 12589.18 13393.62 6895.23 13984.93 7694.41 26894.66 22884.31 17390.37 11591.02 24875.13 16997.82 17183.11 20094.42 13098.12 84
API-MVS90.18 12688.97 13693.80 5498.66 2882.95 11197.50 9795.63 17375.16 32786.31 16697.69 7372.49 20399.90 581.26 21296.07 10898.56 54
PVSNet_BlendedMVS90.05 12789.96 12390.33 19797.47 7783.86 9298.02 5896.73 6887.98 8689.53 12589.61 26976.42 13999.57 6494.29 6579.59 26887.57 336
ET-MVSNet_ETH3D90.01 12889.03 13492.95 9594.38 17186.77 3298.14 4696.31 12389.30 6163.33 37096.72 12790.09 1093.63 34890.70 11782.29 25598.46 59
test_vis1_n_192089.95 12990.59 10388.03 25192.36 23368.98 35399.12 1294.34 25393.86 1193.64 6297.01 11451.54 34499.59 6096.76 3596.71 9995.53 208
test_cas_vis1_n_192089.90 13090.02 12189.54 21990.14 29474.63 30298.71 2794.43 24893.04 1792.40 8096.35 13253.41 34099.08 10695.59 4796.16 10594.90 221
TESTMET0.1,189.83 13189.34 13291.31 16692.54 23180.19 18097.11 13096.57 9286.15 12586.85 16491.83 23979.32 8896.95 22381.30 21192.35 16196.77 174
EPP-MVSNet89.76 13289.72 12889.87 21293.78 18876.02 28997.22 11596.51 9879.35 28085.11 17795.01 17584.82 3797.10 21687.46 15988.21 20196.50 182
CPTT-MVS89.72 13389.87 12789.29 22298.33 4773.30 31397.70 7995.35 19475.68 32387.40 15497.44 9170.43 22898.25 14989.56 13596.90 9096.33 189
RRT-MVS89.67 13488.67 14292.67 10794.44 16981.08 15194.34 27194.45 24586.05 12985.79 17192.39 22563.39 26998.16 15493.22 8293.95 13898.76 41
thisisatest053089.65 13589.02 13591.53 16193.46 20180.78 16296.52 17496.67 7681.69 23783.79 19794.90 17888.85 1497.68 17677.80 24087.49 20996.14 193
3Dnovator+82.88 889.63 13687.85 15694.99 2394.49 16886.76 3397.84 6795.74 16786.10 12775.47 29696.02 13865.00 26199.51 7182.91 20297.07 8698.72 47
CDS-MVSNet89.50 13788.96 13791.14 17491.94 25880.93 15797.09 13495.81 16384.26 17884.72 18594.20 19480.31 7595.64 28783.37 19788.96 18896.85 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS89.46 13889.92 12588.06 24994.64 15769.57 35096.22 19694.95 20987.27 10791.37 9896.54 13065.88 25397.39 19888.54 14593.89 13997.23 152
HyFIR lowres test89.36 13988.60 14491.63 15994.91 15280.76 16395.60 23195.53 17782.56 22284.03 19191.24 24578.03 11096.81 23387.07 16388.41 19897.32 147
3Dnovator82.32 1089.33 14087.64 16194.42 3793.73 19185.70 4897.73 7796.75 6686.73 12276.21 28595.93 13962.17 27599.68 5181.67 21097.81 6397.88 100
h-mvs3389.30 14188.95 13890.36 19695.07 14676.04 28696.96 14697.11 3090.39 4892.22 8495.10 17174.70 17598.86 11993.14 8365.89 36196.16 192
LFMVS89.27 14287.64 16194.16 4797.16 9285.52 5797.18 12094.66 22879.17 28689.63 12396.57 12955.35 33098.22 15089.52 13689.54 18098.74 42
MVSTER89.25 14388.92 13990.24 19995.98 11484.66 8096.79 15995.36 19287.19 11180.33 23790.61 25590.02 1195.97 26385.38 17378.64 27790.09 278
CostFormer89.08 14488.39 14891.15 17393.13 21179.15 20888.61 35096.11 13983.14 20689.58 12486.93 30883.83 5196.87 22988.22 15185.92 22397.42 140
PVSNet82.34 989.02 14587.79 15892.71 10695.49 13181.50 14497.70 7997.29 1887.76 9385.47 17595.12 17056.90 31998.90 11880.33 21794.02 13497.71 116
test-mter88.95 14688.60 14489.98 20792.26 23977.23 26697.11 13095.96 15185.32 14486.30 16791.38 24276.37 14196.78 23580.82 21391.92 16595.94 197
131488.94 14787.20 17594.17 4593.21 20685.73 4793.33 29896.64 8282.89 21375.98 28896.36 13166.83 24899.39 7783.52 19696.02 11197.39 144
UA-Net88.92 14888.48 14790.24 19994.06 18377.18 26893.04 30694.66 22887.39 10391.09 10393.89 20174.92 17298.18 15375.83 26791.43 16995.35 213
thres20088.92 14887.65 16092.73 10596.30 10385.62 5597.85 6698.86 184.38 17284.82 18293.99 19975.12 17098.01 15970.86 30786.67 21394.56 232
Vis-MVSNet (Re-imp)88.88 15088.87 14188.91 22993.89 18774.43 30596.93 14994.19 26184.39 17183.22 20395.67 14778.24 10694.70 32578.88 23594.40 13197.61 125
baseline188.85 15187.49 16892.93 9795.21 14186.85 3195.47 23694.61 23487.29 10583.11 20594.99 17680.70 7196.89 22782.28 20673.72 30195.05 219
AdaColmapbinary88.81 15287.61 16492.39 12099.33 479.95 18496.70 16795.58 17477.51 30683.05 20696.69 12861.90 28199.72 4384.29 18093.47 14697.50 134
OMC-MVS88.80 15388.16 15290.72 18695.30 13777.92 24694.81 26294.51 23986.80 11884.97 18096.85 11967.53 24198.60 12885.08 17487.62 20695.63 204
114514_t88.79 15487.57 16692.45 11698.21 5381.74 13796.99 13995.45 18575.16 32782.48 20995.69 14668.59 23698.50 13480.33 21795.18 12197.10 160
mvs_anonymous88.68 15587.62 16391.86 14794.80 15581.69 14093.53 29494.92 21182.03 23278.87 25390.43 25875.77 15095.34 30085.04 17593.16 15198.55 56
Vis-MVSNetpermissive88.67 15687.82 15791.24 17092.68 22478.82 21596.95 14793.85 28087.55 9887.07 16195.13 16963.43 26897.21 20877.58 24796.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet88.67 15688.16 15290.20 20193.61 19276.86 27396.77 16293.07 31984.02 18483.62 19995.60 15074.69 17896.24 25578.43 23993.66 14497.49 135
IB-MVS85.34 488.67 15687.14 17893.26 8293.12 21284.32 8598.76 2697.27 2087.19 11179.36 24890.45 25783.92 5098.53 13384.41 17969.79 32896.93 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
1112_ss88.60 15987.47 17092.00 14293.21 20680.97 15596.47 17892.46 32783.64 19980.86 23097.30 9880.24 7797.62 17977.60 24685.49 22897.40 143
tttt051788.57 16088.19 15189.71 21893.00 21475.99 29095.67 22696.67 7680.78 24881.82 22294.40 18888.97 1397.58 18276.05 26586.31 21795.57 206
UWE-MVS88.56 16188.91 14087.50 26594.17 17772.19 32495.82 22197.05 3584.96 15684.78 18393.51 21181.33 6694.75 32379.43 22889.17 18395.57 206
tfpn200view988.48 16287.15 17692.47 11596.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22094.17 234
test-LLR88.48 16287.98 15489.98 20792.26 23977.23 26697.11 13095.96 15183.76 19586.30 16791.38 24272.30 20796.78 23580.82 21391.92 16595.94 197
TAMVS88.48 16287.79 15890.56 19091.09 27379.18 20696.45 18095.88 15983.64 19983.12 20493.33 21275.94 14895.74 28282.40 20588.27 20096.75 176
thres40088.42 16587.15 17692.23 12996.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22093.45 250
tpmrst88.36 16687.38 17291.31 16694.36 17279.92 18587.32 36295.26 19985.32 14488.34 14686.13 32580.60 7396.70 23783.78 18685.34 23197.30 150
ECVR-MVScopyleft88.35 16787.25 17491.65 15693.54 19579.40 20096.56 17390.78 35686.78 11985.57 17395.25 15857.25 31797.56 18384.73 17894.80 12497.98 95
thres100view90088.30 16886.95 18292.33 12396.10 11084.90 7797.14 12798.85 282.69 21983.41 20093.66 20775.43 16097.93 16269.04 31586.24 22094.17 234
VDD-MVS88.28 16987.02 18192.06 13895.09 14480.18 18197.55 9294.45 24583.09 20789.10 13395.92 14147.97 35898.49 13593.08 8786.91 21297.52 133
BH-w/o88.24 17087.47 17090.54 19295.03 14978.54 22297.41 10693.82 28184.08 18278.23 25894.51 18769.34 23497.21 20880.21 22194.58 12895.87 199
hse-mvs288.22 17188.21 15088.25 24593.54 19573.41 31095.41 23995.89 15890.39 4892.22 8494.22 19274.70 17596.66 24093.14 8364.37 36694.69 231
test111188.11 17287.04 18091.35 16593.15 20978.79 21896.57 17190.78 35686.88 11685.04 17895.20 16457.23 31897.39 19883.88 18494.59 12797.87 102
thres600view788.06 17386.70 18892.15 13596.10 11085.17 6997.14 12798.85 282.70 21883.41 20093.66 20775.43 16097.82 17167.13 32485.88 22493.45 250
Test_1112_low_res88.03 17486.73 18691.94 14493.15 20980.88 15996.44 18192.41 32983.59 20180.74 23291.16 24680.18 7897.59 18177.48 24985.40 22997.36 146
PLCcopyleft83.97 788.00 17587.38 17289.83 21498.02 5976.46 27997.16 12494.43 24879.26 28581.98 21996.28 13369.36 23399.27 8477.71 24492.25 16293.77 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CLD-MVS87.97 17687.48 16989.44 22092.16 24680.54 17098.14 4694.92 21191.41 3279.43 24795.40 15562.34 27497.27 20690.60 11882.90 24790.50 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Fast-Effi-MVS+87.93 17786.94 18390.92 17994.04 18479.16 20798.26 4293.72 29081.29 24083.94 19592.90 21869.83 23296.68 23876.70 25791.74 16796.93 166
HQP-MVS87.91 17887.55 16788.98 22892.08 25078.48 22397.63 8294.80 21990.52 4582.30 21294.56 18565.40 25797.32 20187.67 15783.01 24491.13 261
reproduce_monomvs87.80 17987.60 16588.40 23996.56 9880.26 17795.80 22296.32 12291.56 3173.60 30788.36 28588.53 1696.25 25490.47 12067.23 35488.67 311
test_fmvs187.79 18088.52 14685.62 30092.98 21864.31 37297.88 6592.42 32887.95 8792.24 8395.82 14247.94 35998.44 14295.31 5394.09 13294.09 238
WBMVS87.73 18186.79 18490.56 19095.61 12785.68 5097.63 8295.52 17983.77 19478.30 25788.44 28486.14 3295.78 27682.54 20473.15 30790.21 273
UGNet87.73 18186.55 18991.27 16995.16 14379.11 20996.35 18896.23 12988.14 8387.83 15290.48 25650.65 34799.09 10580.13 22294.03 13395.60 205
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)87.71 18386.23 19192.17 13394.19 17680.55 16887.16 36496.07 14382.12 23085.98 17088.35 28672.04 21198.49 13580.26 21989.87 17897.48 136
EPNet_dtu87.65 18487.89 15586.93 27894.57 15971.37 33896.72 16396.50 10088.56 7187.12 16095.02 17475.91 14994.01 34066.62 32790.00 17795.42 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test187.58 18588.22 14985.67 29889.78 29867.18 36095.25 24487.93 37783.96 18788.79 13897.06 11272.52 20294.53 33092.21 9586.45 21695.30 215
HQP_MVS87.50 18687.09 17988.74 23391.86 25977.96 24397.18 12094.69 22489.89 5481.33 22594.15 19564.77 26297.30 20387.08 16182.82 24890.96 263
EPMVS87.47 18785.90 19492.18 13295.41 13382.26 12387.00 36596.28 12485.88 13484.23 18985.57 33275.07 17196.26 25271.14 30592.50 15898.03 87
tpm287.35 18886.26 19090.62 18892.93 21978.67 22088.06 35795.99 14879.33 28187.40 15486.43 31980.28 7696.40 24680.23 22085.73 22796.79 172
ab-mvs87.08 18984.94 21093.48 7793.34 20483.67 9788.82 34795.70 16981.18 24184.55 18890.14 26462.72 27298.94 11685.49 17282.54 25297.85 104
SDMVSNet87.02 19085.61 19691.24 17094.14 17983.30 10593.88 28695.98 14984.30 17579.63 24592.01 23158.23 30397.68 17690.28 12882.02 25692.75 253
CNLPA86.96 19185.37 20191.72 15597.59 7379.34 20397.21 11691.05 35174.22 33478.90 25196.75 12667.21 24598.95 11474.68 27790.77 17396.88 170
BH-untuned86.95 19285.94 19389.99 20694.52 16377.46 26196.78 16093.37 30781.80 23476.62 27693.81 20566.64 24997.02 21876.06 26493.88 14095.48 210
QAPM86.88 19384.51 21493.98 4894.04 18485.89 4497.19 11996.05 14473.62 33975.12 29995.62 14962.02 27899.74 3870.88 30696.06 10996.30 191
BH-RMVSNet86.84 19485.28 20291.49 16395.35 13680.26 17796.95 14792.21 33182.86 21581.77 22495.46 15459.34 29597.64 17869.79 31393.81 14196.57 181
PatchmatchNetpermissive86.83 19585.12 20791.95 14394.12 18182.27 12286.55 36995.64 17284.59 16682.98 20784.99 34477.26 12295.96 26668.61 31891.34 17097.64 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
nrg03086.79 19685.43 19990.87 18288.76 31385.34 6097.06 13794.33 25484.31 17380.45 23591.98 23472.36 20496.36 24988.48 14871.13 31590.93 265
PCF-MVS84.09 586.77 19785.00 20992.08 13692.06 25383.07 10992.14 31994.47 24379.63 27676.90 27294.78 18171.15 22099.20 9572.87 29191.05 17193.98 240
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FIs86.73 19886.10 19288.61 23590.05 29580.21 17996.14 20396.95 4285.56 14078.37 25692.30 22776.73 13495.28 30479.51 22679.27 27190.35 270
cascas86.50 19984.48 21692.55 11492.64 22885.95 4197.04 13895.07 20575.32 32580.50 23391.02 24854.33 33797.98 16186.79 16587.62 20693.71 245
VDDNet86.44 20084.51 21492.22 13091.56 26281.83 13397.10 13394.64 23169.50 36687.84 15195.19 16548.01 35797.92 16789.82 13186.92 21196.89 169
GeoE86.36 20185.20 20389.83 21493.17 20876.13 28497.53 9392.11 33279.58 27780.99 22894.01 19866.60 25096.17 25873.48 28989.30 18297.20 157
test_fmvs1_n86.34 20286.72 18785.17 30787.54 33163.64 37796.91 15192.37 33087.49 10091.33 9995.58 15140.81 38698.46 13895.00 5693.49 14593.41 252
TR-MVS86.30 20384.93 21190.42 19494.63 15877.58 25996.57 17193.82 28180.30 26282.42 21195.16 16758.74 29997.55 18574.88 27587.82 20596.13 194
X-MVStestdata86.26 20484.14 22492.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9620.73 42277.24 12499.59 6090.46 12198.07 5498.02 88
AUN-MVS86.25 20585.57 19788.26 24493.57 19473.38 31195.45 23795.88 15983.94 18885.47 17594.21 19373.70 19296.67 23983.54 19464.41 36594.73 230
OpenMVScopyleft79.58 1486.09 20683.62 23193.50 7590.95 27586.71 3497.44 10195.83 16275.35 32472.64 32195.72 14457.42 31699.64 5571.41 30095.85 11594.13 237
FE-MVS86.06 20784.15 22391.78 15194.33 17379.81 18784.58 38296.61 8576.69 31785.00 17987.38 29970.71 22798.37 14470.39 31091.70 16897.17 158
FC-MVSNet-test85.96 20885.39 20087.66 25889.38 31078.02 24095.65 22896.87 4985.12 15177.34 26591.94 23776.28 14394.74 32477.09 25278.82 27590.21 273
miper_enhance_ethall85.95 20985.20 20388.19 24894.85 15379.76 18996.00 20894.06 26982.98 21277.74 26388.76 27779.42 8795.46 29680.58 21572.42 30989.36 291
OPM-MVS85.84 21085.10 20888.06 24988.34 32177.83 25095.72 22494.20 26087.89 9180.45 23594.05 19758.57 30097.26 20783.88 18482.76 25089.09 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet85.80 21185.20 20387.59 26191.55 26377.41 26295.13 25195.36 19280.43 25980.33 23794.71 18273.72 19095.97 26376.96 25578.64 27789.39 286
GA-MVS85.79 21284.04 22591.02 17789.47 30880.27 17696.90 15294.84 21785.57 13880.88 22989.08 27256.56 32396.47 24577.72 24385.35 23096.34 187
XVG-OURS-SEG-HR85.74 21385.16 20687.49 26790.22 29071.45 33691.29 33094.09 26781.37 23983.90 19695.22 16260.30 28897.53 18985.58 17184.42 23593.50 248
MonoMVSNet85.68 21484.22 22190.03 20488.43 32077.83 25092.95 30991.46 34287.28 10678.11 25985.96 32766.31 25294.81 32290.71 11676.81 28897.46 138
SCA85.63 21583.64 23091.60 16092.30 23781.86 13292.88 31095.56 17684.85 15782.52 20885.12 34258.04 30695.39 29773.89 28587.58 20897.54 128
test_vis1_n85.60 21685.70 19585.33 30484.79 36264.98 37096.83 15591.61 34187.36 10491.00 10694.84 18036.14 39397.18 21095.66 4593.03 15293.82 243
tpm85.55 21784.47 21788.80 23290.19 29175.39 29788.79 34894.69 22484.83 15883.96 19485.21 33878.22 10794.68 32776.32 26378.02 28596.34 187
mamv485.50 21886.76 18581.72 34693.23 20554.93 40389.95 34092.94 32169.96 36379.00 25092.20 22980.69 7294.22 33692.06 9890.77 17396.01 195
UniMVSNet_NR-MVSNet85.49 21984.59 21388.21 24789.44 30979.36 20196.71 16596.41 11085.22 14778.11 25990.98 25076.97 12995.14 31179.14 23268.30 34290.12 276
gg-mvs-nofinetune85.48 22082.90 24293.24 8394.51 16685.82 4579.22 39596.97 4061.19 39287.33 15653.01 41190.58 696.07 25986.07 16797.23 8197.81 109
VPA-MVSNet85.32 22183.83 22689.77 21790.25 28982.63 11496.36 18797.07 3383.03 21081.21 22789.02 27461.58 28296.31 25185.02 17670.95 31790.36 269
UniMVSNet (Re)85.31 22284.23 22088.55 23689.75 29980.55 16896.72 16396.89 4785.42 14278.40 25588.93 27575.38 16295.52 29478.58 23768.02 34589.57 285
XVG-OURS85.18 22384.38 21887.59 26190.42 28871.73 33391.06 33394.07 26882.00 23383.29 20295.08 17256.42 32497.55 18583.70 19183.42 24093.49 249
cl2285.11 22484.17 22287.92 25295.06 14878.82 21595.51 23494.22 25979.74 27476.77 27387.92 29375.96 14795.68 28379.93 22472.42 30989.27 293
TAPA-MVS81.61 1285.02 22583.67 22889.06 22596.79 9673.27 31695.92 21394.79 22174.81 33080.47 23496.83 12071.07 22198.19 15249.82 39192.57 15695.71 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 22683.66 22989.02 22795.86 11874.55 30492.49 31493.60 29579.30 28379.29 24991.47 24058.53 30198.45 14070.22 31192.17 16494.07 239
PS-MVSNAJss84.91 22784.30 21986.74 27985.89 35074.40 30694.95 25894.16 26383.93 18976.45 27890.11 26571.04 22295.77 27783.16 19979.02 27490.06 280
CVMVSNet84.83 22885.57 19782.63 33991.55 26360.38 38995.13 25195.03 20780.60 25282.10 21894.71 18266.40 25190.19 38174.30 28290.32 17697.31 149
FMVSNet384.71 22982.71 24690.70 18794.55 16187.71 2395.92 21394.67 22781.73 23675.82 29188.08 29166.99 24694.47 33171.23 30275.38 29489.91 282
VPNet84.69 23082.92 24190.01 20589.01 31283.45 10296.71 16595.46 18485.71 13679.65 24492.18 23056.66 32296.01 26283.05 20167.84 34890.56 267
sd_testset84.62 23183.11 23989.17 22394.14 17977.78 25291.54 32994.38 25184.30 17579.63 24592.01 23152.28 34296.98 22177.67 24582.02 25692.75 253
Effi-MVS+-dtu84.61 23284.90 21283.72 32991.96 25663.14 38094.95 25893.34 30885.57 13879.79 24387.12 30561.99 27995.61 29083.55 19385.83 22592.41 257
miper_ehance_all_eth84.57 23383.60 23287.50 26592.64 22878.25 23295.40 24093.47 29979.28 28476.41 27987.64 29676.53 13695.24 30678.58 23772.42 30989.01 303
DU-MVS84.57 23383.33 23788.28 24388.76 31379.36 20196.43 18395.41 19185.42 14278.11 25990.82 25167.61 23895.14 31179.14 23268.30 34290.33 271
F-COLMAP84.50 23583.44 23687.67 25795.22 14072.22 32295.95 21193.78 28675.74 32276.30 28295.18 16659.50 29398.45 14072.67 29386.59 21592.35 258
Anonymous20240521184.41 23681.93 25791.85 14996.78 9778.41 22797.44 10191.34 34670.29 36184.06 19094.26 19141.09 38398.96 11279.46 22782.65 25198.17 78
WR-MVS84.32 23782.96 24088.41 23889.38 31080.32 17396.59 17096.25 12783.97 18676.63 27590.36 25967.53 24194.86 32075.82 26870.09 32690.06 280
dp84.30 23882.31 25190.28 19894.24 17577.97 24286.57 36895.53 17779.94 27180.75 23185.16 34071.49 21896.39 24763.73 34283.36 24196.48 183
LPG-MVS_test84.20 23983.49 23586.33 28590.88 27673.06 31795.28 24194.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
dmvs_re84.10 24082.90 24287.70 25691.41 26773.28 31490.59 33693.19 31285.02 15377.96 26293.68 20657.92 31196.18 25775.50 27080.87 26093.63 246
WB-MVSnew84.08 24183.51 23485.80 29491.34 26876.69 27795.62 23096.27 12581.77 23581.81 22392.81 21958.23 30394.70 32566.66 32687.06 21085.99 360
ACMP81.66 1184.00 24283.22 23886.33 28591.53 26572.95 32095.91 21593.79 28583.70 19773.79 30692.22 22854.31 33896.89 22783.98 18379.74 26689.16 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 24382.80 24587.31 27191.46 26677.39 26395.66 22793.43 30280.44 25775.51 29587.26 30273.72 19095.16 31076.99 25370.72 31989.39 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS83.84 24482.00 25689.35 22187.13 33381.38 14595.72 22494.26 25680.15 26675.92 29090.63 25461.96 28096.52 24378.98 23473.28 30690.14 275
c3_l83.80 24582.65 24787.25 27392.10 24977.74 25795.25 24493.04 32078.58 29576.01 28787.21 30475.25 16895.11 31377.54 24868.89 33688.91 309
LCM-MVSNet-Re83.75 24683.54 23384.39 32293.54 19564.14 37492.51 31384.03 39783.90 19066.14 35886.59 31367.36 24392.68 35584.89 17792.87 15396.35 186
ACMM80.70 1383.72 24782.85 24486.31 28891.19 27072.12 32695.88 21694.29 25580.44 25777.02 27091.96 23555.24 33197.14 21579.30 23080.38 26389.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm cat183.63 24881.38 26590.39 19593.53 20078.19 23885.56 37695.09 20370.78 35978.51 25483.28 35974.80 17497.03 21766.77 32584.05 23695.95 196
CR-MVSNet83.53 24981.36 26690.06 20390.16 29279.75 19079.02 39791.12 34884.24 17982.27 21680.35 37475.45 15893.67 34763.37 34586.25 21896.75 176
v2v48283.46 25081.86 25888.25 24586.19 34479.65 19596.34 18994.02 27081.56 23877.32 26688.23 28865.62 25496.03 26077.77 24169.72 33089.09 298
NR-MVSNet83.35 25181.52 26488.84 23088.76 31381.31 14794.45 26795.16 20184.65 16467.81 34790.82 25170.36 22994.87 31974.75 27666.89 35890.33 271
Fast-Effi-MVS+-dtu83.33 25282.60 24885.50 30289.55 30669.38 35196.09 20691.38 34382.30 22675.96 28991.41 24156.71 32095.58 29275.13 27484.90 23391.54 259
cl____83.27 25382.12 25386.74 27992.20 24275.95 29195.11 25393.27 31078.44 29874.82 30187.02 30774.19 18395.19 30874.67 27869.32 33289.09 298
DIV-MVS_self_test83.27 25382.12 25386.74 27992.19 24375.92 29395.11 25393.26 31178.44 29874.81 30287.08 30674.19 18395.19 30874.66 27969.30 33389.11 297
TranMVSNet+NR-MVSNet83.24 25581.71 26087.83 25387.71 32878.81 21796.13 20594.82 21884.52 16776.18 28690.78 25364.07 26594.60 32874.60 28066.59 36090.09 278
Anonymous2024052983.15 25680.60 27690.80 18395.74 12378.27 23196.81 15894.92 21160.10 39781.89 22192.54 22345.82 36798.82 12179.25 23178.32 28395.31 214
eth_miper_zixun_eth83.12 25782.01 25586.47 28491.85 26174.80 30094.33 27293.18 31479.11 28775.74 29487.25 30372.71 19995.32 30276.78 25667.13 35589.27 293
MS-PatchMatch83.05 25881.82 25986.72 28389.64 30379.10 21094.88 26094.59 23679.70 27570.67 33589.65 26850.43 34996.82 23270.82 30995.99 11384.25 373
V4283.04 25981.53 26387.57 26386.27 34379.09 21195.87 21794.11 26680.35 26177.22 26886.79 31165.32 25996.02 26177.74 24270.14 32287.61 335
tpmvs83.04 25980.77 27289.84 21395.43 13277.96 24385.59 37595.32 19675.31 32676.27 28383.70 35573.89 18797.41 19659.53 35781.93 25894.14 236
test_djsdf83.00 26182.45 25084.64 31584.07 37069.78 34794.80 26394.48 24080.74 24975.41 29787.70 29561.32 28595.10 31483.77 18779.76 26489.04 301
v114482.90 26281.27 26787.78 25586.29 34279.07 21296.14 20393.93 27280.05 26877.38 26486.80 31065.50 25595.93 26875.21 27370.13 32388.33 322
test0.0.03 182.79 26382.48 24983.74 32886.81 33672.22 32296.52 17495.03 20783.76 19573.00 31793.20 21372.30 20788.88 38464.15 34077.52 28690.12 276
FMVSNet282.79 26380.44 27889.83 21492.66 22585.43 5895.42 23894.35 25279.06 28974.46 30387.28 30056.38 32594.31 33469.72 31474.68 29889.76 283
D2MVS82.67 26581.55 26286.04 29287.77 32776.47 27895.21 24696.58 9182.66 22070.26 33885.46 33560.39 28795.80 27476.40 26179.18 27285.83 363
MVP-Stereo82.65 26681.67 26185.59 30186.10 34778.29 23093.33 29892.82 32377.75 30369.17 34587.98 29259.28 29695.76 27871.77 29796.88 9282.73 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs482.54 26780.79 27187.79 25486.11 34680.49 17293.55 29393.18 31477.29 30973.35 31389.40 27165.26 26095.05 31775.32 27273.61 30287.83 330
v14419282.43 26880.73 27387.54 26485.81 35178.22 23395.98 20993.78 28679.09 28877.11 26986.49 31564.66 26495.91 26974.20 28369.42 33188.49 316
GBi-Net82.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
test182.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
v14882.41 27180.89 27086.99 27786.18 34576.81 27496.27 19393.82 28180.49 25675.28 29886.11 32667.32 24495.75 27975.48 27167.03 35788.42 320
v119282.31 27280.55 27787.60 26085.94 34878.47 22695.85 21993.80 28479.33 28176.97 27186.51 31463.33 27095.87 27073.11 29070.13 32388.46 318
LS3D82.22 27379.94 28789.06 22597.43 8274.06 30993.20 30492.05 33361.90 38773.33 31495.21 16359.35 29499.21 9054.54 37892.48 15993.90 242
jajsoiax82.12 27481.15 26985.03 30984.19 36870.70 34094.22 27893.95 27183.07 20873.48 30989.75 26749.66 35395.37 29982.24 20779.76 26489.02 302
v192192082.02 27580.23 28187.41 26885.62 35277.92 24695.79 22393.69 29178.86 29276.67 27486.44 31762.50 27395.83 27272.69 29269.77 32988.47 317
myMVS_eth3d81.93 27682.18 25281.18 34992.13 24767.18 36093.97 28294.23 25782.43 22373.39 31093.57 20976.98 12887.86 38950.53 38982.34 25388.51 314
v881.88 27780.06 28587.32 27086.63 33779.04 21394.41 26893.65 29378.77 29373.19 31685.57 33266.87 24795.81 27373.84 28767.61 35087.11 344
mvs_tets81.74 27880.71 27484.84 31084.22 36770.29 34393.91 28593.78 28682.77 21773.37 31289.46 27047.36 36395.31 30381.99 20879.55 27088.92 308
v124081.70 27979.83 28987.30 27285.50 35377.70 25895.48 23593.44 30078.46 29776.53 27786.44 31760.85 28695.84 27171.59 29970.17 32188.35 321
PVSNet_077.72 1581.70 27978.95 29689.94 21090.77 28276.72 27695.96 21096.95 4285.01 15470.24 33988.53 28252.32 34198.20 15186.68 16644.08 40794.89 222
miper_lstm_enhance81.66 28180.66 27584.67 31491.19 27071.97 32991.94 32193.19 31277.86 30272.27 32485.26 33673.46 19393.42 35173.71 28867.05 35688.61 312
DP-MVS81.47 28278.28 29991.04 17598.14 5578.48 22395.09 25686.97 38161.14 39371.12 33292.78 22259.59 29199.38 7853.11 38286.61 21495.27 216
v1081.43 28379.53 29187.11 27586.38 33978.87 21494.31 27393.43 30277.88 30173.24 31585.26 33665.44 25695.75 27972.14 29667.71 34986.72 348
pmmvs581.34 28479.54 29086.73 28285.02 36076.91 27196.22 19691.65 33977.65 30473.55 30888.61 27955.70 32894.43 33274.12 28473.35 30588.86 310
ADS-MVSNet81.26 28578.36 29889.96 20993.78 18879.78 18879.48 39393.60 29573.09 34580.14 23979.99 37762.15 27695.24 30659.49 35883.52 23894.85 224
Baseline_NR-MVSNet81.22 28680.07 28484.68 31385.32 35875.12 29996.48 17788.80 37276.24 32177.28 26786.40 32067.61 23894.39 33375.73 26966.73 35984.54 370
tt080581.20 28779.06 29587.61 25986.50 33872.97 31993.66 28995.48 18274.11 33576.23 28491.99 23341.36 38297.40 19777.44 25074.78 29792.45 256
WR-MVS_H81.02 28880.09 28283.79 32688.08 32471.26 33994.46 26696.54 9580.08 26772.81 32086.82 30970.36 22992.65 35664.18 33967.50 35187.46 341
CP-MVSNet81.01 28980.08 28383.79 32687.91 32670.51 34194.29 27795.65 17180.83 24672.54 32388.84 27663.71 26692.32 35968.58 31968.36 34188.55 313
anonymousdsp80.98 29079.97 28684.01 32381.73 38070.44 34292.49 31493.58 29777.10 31372.98 31886.31 32157.58 31294.90 31879.32 22978.63 27986.69 349
UniMVSNet_ETH3D80.86 29178.75 29787.22 27486.31 34172.02 32791.95 32093.76 28973.51 34075.06 30090.16 26343.04 37695.66 28476.37 26278.55 28093.98 240
testing380.74 29281.17 26879.44 35991.15 27263.48 37897.16 12495.76 16580.83 24671.36 32993.15 21678.22 10787.30 39443.19 40279.67 26787.55 339
IterMVS80.67 29379.16 29385.20 30689.79 29776.08 28592.97 30891.86 33580.28 26371.20 33185.14 34157.93 31091.34 37172.52 29470.74 31888.18 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG80.62 29477.77 30489.14 22493.43 20277.24 26591.89 32290.18 36069.86 36568.02 34691.94 23752.21 34398.84 12059.32 36083.12 24291.35 260
IterMVS-SCA-FT80.51 29579.10 29484.73 31289.63 30474.66 30192.98 30791.81 33780.05 26871.06 33385.18 33958.04 30691.40 37072.48 29570.70 32088.12 326
PS-CasMVS80.27 29679.18 29283.52 33287.56 33069.88 34694.08 28095.29 19780.27 26472.08 32588.51 28359.22 29792.23 36167.49 32168.15 34488.45 319
pm-mvs180.05 29778.02 30286.15 29085.42 35475.81 29495.11 25392.69 32677.13 31170.36 33787.43 29858.44 30295.27 30571.36 30164.25 36787.36 342
RPMNet79.85 29875.92 31891.64 15790.16 29279.75 19079.02 39795.44 18658.43 40282.27 21672.55 40073.03 19798.41 14346.10 39886.25 21896.75 176
PatchT79.75 29976.85 31188.42 23789.55 30675.49 29677.37 40194.61 23463.07 38282.46 21073.32 39775.52 15793.41 35251.36 38584.43 23496.36 185
Anonymous2023121179.72 30077.19 30887.33 26995.59 12977.16 26995.18 25094.18 26259.31 40072.57 32286.20 32447.89 36095.66 28474.53 28169.24 33489.18 295
test_fmvs279.59 30179.90 28878.67 36382.86 37755.82 40095.20 24789.55 36481.09 24280.12 24189.80 26634.31 39893.51 35087.82 15478.36 28286.69 349
ADS-MVSNet279.57 30277.53 30585.71 29793.78 18872.13 32579.48 39386.11 38873.09 34580.14 23979.99 37762.15 27690.14 38259.49 35883.52 23894.85 224
FMVSNet179.50 30376.54 31488.39 24088.47 31881.95 12594.30 27493.38 30473.14 34472.04 32685.66 32843.86 37093.84 34365.48 33472.53 30889.38 288
PEN-MVS79.47 30478.26 30083.08 33586.36 34068.58 35493.85 28794.77 22279.76 27371.37 32888.55 28059.79 28992.46 35764.50 33865.40 36288.19 324
XVG-ACMP-BASELINE79.38 30577.90 30383.81 32584.98 36167.14 36489.03 34693.18 31480.26 26572.87 31988.15 29038.55 38896.26 25276.05 26578.05 28488.02 327
v7n79.32 30677.34 30685.28 30584.05 37172.89 32193.38 29693.87 27875.02 32970.68 33484.37 34859.58 29295.62 28967.60 32067.50 35187.32 343
MIMVSNet79.18 30775.99 31788.72 23487.37 33280.66 16579.96 39191.82 33677.38 30874.33 30481.87 36541.78 37990.74 37766.36 33283.10 24394.76 226
JIA-IIPM79.00 30877.20 30784.40 32189.74 30164.06 37575.30 40595.44 18662.15 38681.90 22059.08 40978.92 9595.59 29166.51 33085.78 22693.54 247
USDC78.65 30976.25 31585.85 29387.58 32974.60 30389.58 34290.58 35984.05 18363.13 37188.23 28840.69 38796.86 23166.57 32975.81 29286.09 358
DTE-MVSNet78.37 31077.06 30982.32 34285.22 35967.17 36393.40 29593.66 29278.71 29470.53 33688.29 28759.06 29892.23 36161.38 35263.28 37187.56 337
Patchmatch-test78.25 31174.72 32688.83 23191.20 26974.10 30873.91 40888.70 37559.89 39866.82 35385.12 34278.38 10494.54 32948.84 39479.58 26997.86 103
tfpnnormal78.14 31275.42 32086.31 28888.33 32279.24 20494.41 26896.22 13073.51 34069.81 34185.52 33455.43 32995.75 27947.65 39667.86 34783.95 376
mmtdpeth78.04 31376.76 31281.86 34589.60 30566.12 36792.34 31887.18 38076.83 31685.55 17476.49 38846.77 36497.02 21890.85 11245.24 40482.43 385
ACMH75.40 1777.99 31474.96 32287.10 27690.67 28376.41 28093.19 30591.64 34072.47 35163.44 36987.61 29743.34 37397.16 21158.34 36273.94 30087.72 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 31475.74 31984.74 31190.45 28772.02 32786.41 37091.12 34872.57 35066.63 35587.27 30154.95 33496.98 22156.29 37275.98 28985.21 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS77.97 31678.05 30177.74 36792.13 24756.85 39693.97 28294.23 25782.43 22373.39 31093.57 20957.95 30987.86 38932.40 41082.34 25388.51 314
our_test_377.90 31775.37 32185.48 30385.39 35576.74 27593.63 29091.67 33873.39 34365.72 36084.65 34758.20 30593.13 35457.82 36467.87 34686.57 351
RPSCF77.73 31876.63 31381.06 35088.66 31755.76 40187.77 35987.88 37864.82 38074.14 30592.79 22149.22 35496.81 23367.47 32276.88 28790.62 266
KD-MVS_2432*160077.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
miper_refine_blended77.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
ACMH+76.62 1677.47 32174.94 32385.05 30891.07 27471.58 33593.26 30290.01 36171.80 35464.76 36488.55 28041.62 38096.48 24462.35 34871.00 31687.09 345
Patchmtry77.36 32274.59 32785.67 29889.75 29975.75 29577.85 40091.12 34860.28 39571.23 33080.35 37475.45 15893.56 34957.94 36367.34 35387.68 333
ppachtmachnet_test77.19 32374.22 33186.13 29185.39 35578.22 23393.98 28191.36 34571.74 35567.11 35084.87 34556.67 32193.37 35352.21 38364.59 36486.80 347
OurMVSNet-221017-077.18 32476.06 31680.55 35383.78 37460.00 39190.35 33791.05 35177.01 31566.62 35687.92 29347.73 36194.03 33971.63 29868.44 34087.62 334
TransMVSNet (Re)76.94 32574.38 32984.62 31685.92 34975.25 29895.28 24189.18 36973.88 33867.22 34886.46 31659.64 29094.10 33859.24 36152.57 39284.50 371
EU-MVSNet76.92 32676.95 31076.83 37284.10 36954.73 40491.77 32492.71 32572.74 34869.57 34288.69 27858.03 30887.43 39364.91 33770.00 32788.33 322
Patchmatch-RL test76.65 32774.01 33484.55 31777.37 39564.23 37378.49 39982.84 40178.48 29664.63 36573.40 39676.05 14691.70 36976.99 25357.84 38097.72 114
FMVSNet576.46 32874.16 33283.35 33490.05 29576.17 28389.58 34289.85 36271.39 35765.29 36380.42 37350.61 34887.70 39261.05 35469.24 33486.18 356
SixPastTwentyTwo76.04 32974.32 33081.22 34884.54 36461.43 38791.16 33189.30 36877.89 30064.04 36686.31 32148.23 35594.29 33563.54 34463.84 36987.93 329
AllTest75.92 33073.06 33884.47 31892.18 24467.29 35891.07 33284.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
CL-MVSNet_self_test75.81 33174.14 33380.83 35278.33 39167.79 35794.22 27893.52 29877.28 31069.82 34081.54 36861.47 28489.22 38357.59 36653.51 38885.48 365
COLMAP_ROBcopyleft73.24 1975.74 33273.00 33983.94 32492.38 23269.08 35291.85 32386.93 38261.48 39065.32 36290.27 26042.27 37896.93 22650.91 38775.63 29385.80 364
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary54.94 2175.71 33374.56 32879.17 36179.69 38655.98 39889.59 34193.30 30960.28 39553.85 39989.07 27347.68 36296.33 25076.55 25881.02 25985.22 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120675.29 33473.64 33580.22 35580.75 38163.38 37993.36 29790.71 35873.09 34567.12 34983.70 35550.33 35090.85 37653.63 38170.10 32586.44 352
EG-PatchMatch MVS74.92 33572.02 34383.62 33083.76 37573.28 31493.62 29192.04 33468.57 36958.88 38883.80 35431.87 40295.57 29356.97 37078.67 27682.00 389
testgi74.88 33673.40 33679.32 36080.13 38561.75 38493.21 30386.64 38679.49 27966.56 35791.06 24735.51 39688.67 38556.79 37171.25 31487.56 337
pmmvs674.65 33771.67 34483.60 33179.13 38869.94 34593.31 30190.88 35561.05 39465.83 35984.15 35143.43 37294.83 32166.62 32760.63 37686.02 359
test_vis1_rt73.96 33872.40 34178.64 36483.91 37261.16 38895.63 22968.18 41776.32 31860.09 38574.77 39129.01 40697.54 18787.74 15575.94 29077.22 400
K. test v373.62 33971.59 34579.69 35782.98 37659.85 39290.85 33588.83 37177.13 31158.90 38782.11 36343.62 37191.72 36865.83 33354.10 38787.50 340
pmmvs-eth3d73.59 34070.66 34882.38 34076.40 39973.38 31189.39 34589.43 36672.69 34960.34 38477.79 38346.43 36691.26 37366.42 33157.06 38182.51 382
kuosan73.55 34172.39 34277.01 37089.68 30266.72 36585.24 37993.44 30067.76 37060.04 38683.40 35871.90 21284.25 40145.34 39954.75 38380.06 396
MDA-MVSNet_test_wron73.54 34270.43 35082.86 33684.55 36371.85 33091.74 32591.32 34767.63 37146.73 40481.09 37155.11 33290.42 38055.91 37459.76 37786.31 354
YYNet173.53 34370.43 35082.85 33784.52 36571.73 33391.69 32691.37 34467.63 37146.79 40381.21 37055.04 33390.43 37955.93 37359.70 37886.38 353
UnsupCasMVSNet_eth73.25 34470.57 34981.30 34777.53 39366.33 36687.24 36393.89 27780.38 26057.90 39281.59 36642.91 37790.56 37865.18 33648.51 39887.01 346
DSMNet-mixed73.13 34572.45 34075.19 37877.51 39446.82 40985.09 38082.01 40267.61 37569.27 34481.33 36950.89 34686.28 39654.54 37883.80 23792.46 255
OpenMVS_ROBcopyleft68.52 2073.02 34669.57 35383.37 33380.54 38471.82 33193.60 29288.22 37662.37 38561.98 37783.15 36035.31 39795.47 29545.08 40075.88 29182.82 379
test_040272.68 34769.54 35482.09 34388.67 31671.81 33292.72 31286.77 38561.52 38962.21 37683.91 35343.22 37493.76 34634.60 40872.23 31280.72 395
TinyColmap72.41 34868.99 35782.68 33888.11 32369.59 34988.41 35185.20 39065.55 37757.91 39184.82 34630.80 40495.94 26751.38 38468.70 33782.49 384
test20.0372.36 34971.15 34675.98 37677.79 39259.16 39392.40 31689.35 36774.09 33661.50 37984.32 34948.09 35685.54 39950.63 38862.15 37483.24 377
LF4IMVS72.36 34970.82 34776.95 37179.18 38756.33 39786.12 37286.11 38869.30 36763.06 37286.66 31233.03 40092.25 36065.33 33568.64 33882.28 386
Anonymous2024052172.06 35169.91 35278.50 36577.11 39661.67 38691.62 32890.97 35365.52 37862.37 37579.05 38036.32 39290.96 37557.75 36568.52 33982.87 378
dmvs_testset72.00 35273.36 33767.91 38483.83 37331.90 42485.30 37877.12 40982.80 21663.05 37392.46 22461.54 28382.55 40642.22 40571.89 31389.29 292
MDA-MVSNet-bldmvs71.45 35367.94 36081.98 34485.33 35768.50 35592.35 31788.76 37370.40 36042.99 40781.96 36446.57 36591.31 37248.75 39554.39 38686.11 357
mvs5depth71.40 35468.36 35980.54 35475.31 40365.56 36979.94 39285.14 39169.11 36871.75 32781.59 36641.02 38493.94 34160.90 35550.46 39482.10 387
MVS-HIRNet71.36 35567.00 36184.46 32090.58 28469.74 34879.15 39687.74 37946.09 40861.96 37850.50 41245.14 36895.64 28753.74 38088.11 20288.00 328
KD-MVS_self_test70.97 35669.31 35575.95 37776.24 40155.39 40287.45 36090.94 35470.20 36262.96 37477.48 38444.01 36988.09 38761.25 35353.26 38984.37 372
ttmdpeth69.58 35766.92 36377.54 36975.95 40262.40 38288.09 35484.32 39662.87 38465.70 36186.25 32336.53 39188.53 38655.65 37646.96 40381.70 392
test_fmvs369.56 35869.19 35670.67 38269.01 40847.05 40890.87 33486.81 38371.31 35866.79 35477.15 38516.40 41383.17 40481.84 20962.51 37381.79 391
dongtai69.47 35968.98 35870.93 38186.87 33558.45 39488.19 35393.18 31463.98 38156.04 39580.17 37670.97 22579.24 40833.46 40947.94 40075.09 402
MIMVSNet169.44 36066.65 36477.84 36676.48 39862.84 38187.42 36188.97 37066.96 37657.75 39379.72 37932.77 40185.83 39846.32 39763.42 37084.85 369
PM-MVS69.32 36166.93 36276.49 37373.60 40555.84 39985.91 37379.32 40774.72 33161.09 38178.18 38221.76 40991.10 37470.86 30756.90 38282.51 382
TDRefinement69.20 36265.78 36679.48 35866.04 41362.21 38388.21 35286.12 38762.92 38361.03 38285.61 33133.23 39994.16 33755.82 37553.02 39082.08 388
new-patchmatchnet68.85 36365.93 36577.61 36873.57 40663.94 37690.11 33988.73 37471.62 35655.08 39773.60 39540.84 38587.22 39551.35 38648.49 39981.67 393
UnsupCasMVSNet_bld68.60 36464.50 36880.92 35174.63 40467.80 35683.97 38492.94 32165.12 37954.63 39868.23 40535.97 39492.17 36360.13 35644.83 40582.78 380
mvsany_test367.19 36565.34 36772.72 38063.08 41448.57 40783.12 38778.09 40872.07 35261.21 38077.11 38622.94 40887.78 39178.59 23651.88 39381.80 390
MVStest166.93 36663.01 37078.69 36278.56 38971.43 33785.51 37786.81 38349.79 40748.57 40284.15 35153.46 33983.31 40243.14 40337.15 41381.34 394
new_pmnet66.18 36763.18 36975.18 37976.27 40061.74 38583.79 38584.66 39356.64 40451.57 40071.85 40331.29 40387.93 38849.98 39062.55 37275.86 401
pmmvs365.75 36862.18 37176.45 37467.12 41264.54 37188.68 34985.05 39254.77 40657.54 39473.79 39429.40 40586.21 39755.49 37747.77 40178.62 398
test_f64.01 36962.13 37269.65 38363.00 41545.30 41483.66 38680.68 40461.30 39155.70 39672.62 39914.23 41584.64 40069.84 31258.11 37979.00 397
N_pmnet61.30 37060.20 37364.60 38984.32 36617.00 43091.67 32710.98 42861.77 38858.45 39078.55 38149.89 35291.83 36742.27 40463.94 36884.97 368
WB-MVS57.26 37156.22 37460.39 39569.29 40735.91 42286.39 37170.06 41559.84 39946.46 40572.71 39851.18 34578.11 40915.19 41934.89 41467.14 408
test_method56.77 37254.53 37663.49 39176.49 39740.70 41775.68 40474.24 41119.47 41948.73 40171.89 40219.31 41065.80 41957.46 36747.51 40283.97 375
APD_test156.56 37353.58 37765.50 38667.93 41146.51 41177.24 40372.95 41238.09 41042.75 40875.17 39013.38 41682.78 40540.19 40654.53 38567.23 407
SSC-MVS56.01 37454.96 37559.17 39668.42 40934.13 42384.98 38169.23 41658.08 40345.36 40671.67 40450.30 35177.46 41014.28 42032.33 41565.91 409
FPMVS55.09 37552.93 37861.57 39355.98 41740.51 41883.11 38883.41 40037.61 41134.95 41271.95 40114.40 41476.95 41129.81 41165.16 36367.25 406
test_vis3_rt54.10 37651.04 37963.27 39258.16 41646.08 41384.17 38349.32 42756.48 40536.56 41149.48 4148.03 42391.91 36667.29 32349.87 39551.82 413
LCM-MVSNet52.52 37748.24 38065.35 38747.63 42441.45 41672.55 40983.62 39931.75 41237.66 41057.92 4109.19 42276.76 41249.26 39244.60 40677.84 399
EGC-MVSNET52.46 37847.56 38167.15 38581.98 37960.11 39082.54 38972.44 4130.11 4250.70 42674.59 39225.11 40783.26 40329.04 41261.51 37558.09 410
PMMVS250.90 37946.31 38264.67 38855.53 41846.67 41077.30 40271.02 41440.89 40934.16 41359.32 4089.83 42176.14 41440.09 40728.63 41671.21 403
ANet_high46.22 38041.28 38761.04 39439.91 42646.25 41270.59 41076.18 41058.87 40123.09 41848.00 41512.58 41866.54 41828.65 41313.62 41970.35 404
testf145.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
APD_test245.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
Gipumacopyleft45.11 38342.05 38554.30 39980.69 38251.30 40635.80 41783.81 39828.13 41327.94 41734.53 41711.41 42076.70 41321.45 41654.65 38434.90 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 38441.93 38640.38 40220.10 42826.84 42661.93 41459.09 42314.81 42128.51 41680.58 37235.53 39548.33 42363.70 34313.11 42045.96 416
PMVScopyleft34.80 2339.19 38535.53 38850.18 40029.72 42730.30 42559.60 41566.20 42026.06 41617.91 42049.53 4133.12 42674.09 41518.19 41849.40 39646.14 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 38629.49 39146.92 40141.86 42536.28 42150.45 41656.52 42418.75 42018.28 41937.84 4162.41 42758.41 42018.71 41720.62 41746.06 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 38732.39 38933.65 40353.35 42025.70 42774.07 40753.33 42521.08 41717.17 42133.63 41911.85 41954.84 42112.98 42114.04 41820.42 418
EMVS31.70 38831.45 39032.48 40450.72 42323.95 42874.78 40652.30 42620.36 41816.08 42231.48 42012.80 41753.60 42211.39 42213.10 42119.88 419
cdsmvs_eth3d_5k21.43 38928.57 3920.00 4080.00 4310.00 4330.00 41995.93 1560.00 4260.00 42797.66 7563.57 2670.00 4270.00 4260.00 4250.00 423
wuyk23d14.10 39013.89 39314.72 40555.23 41922.91 42933.83 4183.56 4294.94 4224.11 4232.28 4252.06 42819.66 42410.23 4238.74 4221.59 422
testmvs9.92 39112.94 3940.84 4070.65 4290.29 43293.78 2880.39 4300.42 4232.85 42415.84 4230.17 4300.30 4262.18 4240.21 4231.91 421
test1239.07 39211.73 3951.11 4060.50 4300.77 43189.44 3440.20 4310.34 4242.15 42510.72 4240.34 4290.32 4251.79 4250.08 4242.23 420
ab-mvs-re8.11 39310.81 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.30 980.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.92 3947.89 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42671.04 2220.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS67.18 36049.00 393
FOURS198.51 3978.01 24198.13 4996.21 13183.04 20994.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
test_one_060198.91 1884.56 8396.70 7288.06 8496.57 2398.77 1088.04 21
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.09 883.22 10796.60 8882.88 21493.61 6398.06 5382.93 5899.14 10095.51 4998.49 39
RE-MVS-def91.18 9597.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6773.36 19591.99 9996.79 9597.75 112
IU-MVS99.03 1585.34 6096.86 5192.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
test_241102_TWO96.78 5688.72 6797.70 898.91 287.86 2299.82 1998.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 7396.78 5688.72 6797.79 698.90 588.48 1799.82 19
9.1494.26 3198.10 5798.14 4696.52 9784.74 16094.83 4798.80 782.80 6099.37 8095.95 4198.42 42
save fliter98.24 5183.34 10498.61 3396.57 9291.32 33
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6299.84 1397.90 1798.85 2199.45 10
test072699.05 985.18 6599.11 1596.78 5688.75 6597.65 1198.91 287.69 23
GSMVS97.54 128
test_part298.90 1985.14 7196.07 29
sam_mvs177.59 11797.54 128
sam_mvs75.35 165
ambc76.02 37568.11 41051.43 40564.97 41389.59 36360.49 38374.49 39317.17 41292.46 35761.50 35152.85 39184.17 374
MTGPAbinary96.33 120
test_post185.88 37430.24 42173.77 18895.07 31673.89 285
test_post33.80 41876.17 14495.97 263
patchmatchnet-post77.09 38777.78 11695.39 297
GG-mvs-BLEND93.49 7694.94 15086.26 3681.62 39097.00 3788.32 14794.30 19091.23 596.21 25688.49 14797.43 7598.00 93
MTMP97.53 9368.16 418
gm-plane-assit92.27 23879.64 19684.47 17095.15 16897.93 16285.81 169
test9_res96.00 4099.03 1398.31 68
TEST998.64 3183.71 9597.82 6896.65 7984.29 17795.16 3798.09 4884.39 4199.36 81
test_898.63 3383.64 9897.81 7096.63 8484.50 16895.10 4098.11 4784.33 4299.23 88
agg_prior294.30 6499.00 1598.57 53
agg_prior98.59 3583.13 10896.56 9494.19 5499.16 99
TestCases84.47 31892.18 24467.29 35884.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
test_prior482.34 12197.75 76
test_prior298.37 3986.08 12894.57 5098.02 5483.14 5595.05 5598.79 27
test_prior93.09 9098.68 2681.91 12996.40 11299.06 10798.29 70
旧先验296.97 14474.06 33796.10 2897.76 17388.38 149
新几何296.42 184
新几何193.12 8897.44 8181.60 14396.71 7174.54 33391.22 10297.57 8379.13 9399.51 7177.40 25198.46 4098.26 73
旧先验197.39 8679.58 19796.54 9598.08 5184.00 4797.42 7697.62 124
无先验96.87 15396.78 5677.39 30799.52 6979.95 22398.43 61
原ACMM296.84 154
原ACMM191.22 17297.77 6578.10 23996.61 8581.05 24391.28 10197.42 9277.92 11398.98 11179.85 22598.51 3696.59 180
test22296.15 10878.41 22795.87 21796.46 10471.97 35389.66 12297.45 8876.33 14298.24 5198.30 69
testdata299.48 7376.45 260
segment_acmp82.69 61
testdata90.13 20295.92 11774.17 30796.49 10373.49 34294.82 4897.99 5578.80 9997.93 16283.53 19597.52 7198.29 70
testdata195.57 23387.44 101
test1294.25 4198.34 4685.55 5696.35 11992.36 8180.84 6999.22 8998.31 4997.98 95
plane_prior791.86 25977.55 260
plane_prior691.98 25577.92 24664.77 262
plane_prior594.69 22497.30 20387.08 16182.82 24890.96 263
plane_prior494.15 195
plane_prior377.75 25690.17 5281.33 225
plane_prior297.18 12089.89 54
plane_prior191.95 257
plane_prior77.96 24397.52 9690.36 5082.96 246
n20.00 432
nn0.00 432
door-mid79.75 406
lessismore_v079.98 35680.59 38358.34 39580.87 40358.49 38983.46 35743.10 37593.89 34263.11 34648.68 39787.72 331
LGP-MVS_train86.33 28590.88 27673.06 31794.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
test1196.50 100
door80.13 405
HQP5-MVS78.48 223
HQP-NCC92.08 25097.63 8290.52 4582.30 212
ACMP_Plane92.08 25097.63 8290.52 4582.30 212
BP-MVS87.67 157
HQP4-MVS82.30 21297.32 20191.13 261
HQP3-MVS94.80 21983.01 244
HQP2-MVS65.40 257
NP-MVS92.04 25478.22 23394.56 185
MDTV_nov1_ep13_2view81.74 13786.80 36680.65 25185.65 17274.26 18276.52 25996.98 163
MDTV_nov1_ep1383.69 22794.09 18281.01 15386.78 36796.09 14083.81 19384.75 18484.32 34974.44 18196.54 24263.88 34185.07 232
ACMMP++_ref78.45 281
ACMMP++79.05 273
Test By Simon71.65 215
ITE_SJBPF82.38 34087.00 33465.59 36889.55 36479.99 27069.37 34391.30 24441.60 38195.33 30162.86 34774.63 29986.24 355
DeepMVS_CXcopyleft64.06 39078.53 39043.26 41568.11 41969.94 36438.55 40976.14 38918.53 41179.34 40743.72 40141.62 41069.57 405