| DeepPCF-MVS | | 89.82 1 | 94.61 21 | 96.17 5 | 89.91 194 | 97.09 90 | 70.21 326 | 98.99 22 | 96.69 67 | 95.57 2 | 95.08 40 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 20 | 98.66 31 | 99.65 6 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 23 | 99.03 15 | 85.03 61 | 99.12 11 | 96.78 49 | 88.72 66 | 97.79 6 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| test_241102_TWO | | | | | | | | | 96.78 49 | 88.72 66 | 97.70 8 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| test0726 | | | | | | 99.05 9 | 85.18 54 | 99.11 14 | 96.78 49 | 88.75 64 | 97.65 11 | 98.91 2 | 87.69 22 | | | | |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 61 | | 96.78 49 | 88.72 66 | 97.79 6 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
| DPE-MVS |  | | 95.32 10 | 95.55 11 | 94.64 29 | 98.79 23 | 84.87 66 | 97.77 72 | 96.74 60 | 86.11 117 | 96.54 23 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 18 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| 9.14 | | | | 94.26 29 | | 98.10 57 | | 98.14 46 | 96.52 89 | 84.74 147 | 94.83 46 | 98.80 7 | 82.80 52 | 99.37 80 | 95.95 40 | 98.42 40 | |
|
| DPM-MVS | | | 96.21 2 | 95.53 12 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 7 | 96.98 34 | 93.39 14 | 96.45 24 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 123 | 99.25 6 | 99.70 3 |
|
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 22 | 99.06 16 | 97.12 28 | 94.66 5 | 96.79 16 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 27 |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 22 | 99.05 9 | 85.34 49 | 98.13 49 | 96.77 55 | 88.38 73 | 97.70 8 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 71 | | 96.70 65 | 88.06 79 | 96.57 22 | 98.77 10 | 88.04 20 | | | | |
|
| DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 30 | 99.05 9 | 85.18 54 | 99.06 16 | 96.46 96 | 88.75 64 | 96.69 17 | 98.76 12 | 87.69 22 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 34 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 88.38 73 | 96.69 17 | 98.76 12 | 89.64 13 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| SF-MVS | | | 94.17 28 | 94.05 32 | 94.55 31 | 97.56 74 | 85.95 37 | 97.73 76 | 96.43 100 | 84.02 169 | 95.07 41 | 98.74 14 | 82.93 50 | 99.38 78 | 95.42 49 | 98.51 34 | 98.32 60 |
|
| SMA-MVS |  | | 94.70 20 | 94.68 20 | 94.76 26 | 98.02 59 | 85.94 39 | 97.47 95 | 96.77 55 | 85.32 132 | 97.92 3 | 98.70 15 | 83.09 49 | 99.84 12 | 95.79 42 | 99.08 10 | 98.49 51 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MSLP-MVS++ | | | 94.28 25 | 94.39 26 | 93.97 45 | 98.30 49 | 84.06 79 | 98.64 31 | 96.93 40 | 90.71 40 | 93.08 67 | 98.70 15 | 79.98 70 | 99.21 88 | 94.12 62 | 99.07 11 | 98.63 44 |
|
| NCCC | | | 95.63 6 | 95.94 8 | 94.69 28 | 99.21 6 | 85.15 59 | 99.16 6 | 96.96 37 | 94.11 9 | 95.59 32 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 45 | 99.10 9 | 99.00 27 |
|
| fmvsm_l_conf0.5_n_a | | | 94.91 14 | 95.30 14 | 93.72 55 | 94.50 152 | 84.30 75 | 99.14 9 | 96.00 137 | 91.94 28 | 97.91 5 | 98.60 18 | 84.78 35 | 99.77 29 | 98.84 4 | 96.03 104 | 97.08 144 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 40 | 93.71 34 | 92.22 117 | 93.38 186 | 81.71 128 | 98.86 24 | 96.98 34 | 91.64 29 | 96.85 15 | 98.55 19 | 75.58 140 | 99.77 29 | 97.88 19 | 93.68 133 | 95.18 198 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 11 | | | | 98.54 20 | 92.06 3 | 99.84 12 | 99.11 2 | 99.37 1 | 99.74 1 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 23 | 94.30 28 | 95.02 20 | 98.86 21 | 85.68 44 | 98.06 55 | 96.64 75 | 93.64 12 | 91.74 84 | 98.54 20 | 80.17 69 | 99.90 5 | 92.28 84 | 98.75 28 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| fmvsm_s_conf0.5_n | | | 93.69 35 | 94.13 31 | 92.34 108 | 94.56 145 | 82.01 113 | 99.07 15 | 97.13 26 | 92.09 23 | 96.25 25 | 98.53 22 | 76.47 122 | 99.80 25 | 98.39 8 | 94.71 119 | 95.22 197 |
|
| fmvsm_l_conf0.5_n | | | 94.89 15 | 95.24 15 | 93.86 48 | 94.42 154 | 84.61 69 | 99.13 10 | 96.15 126 | 92.06 25 | 97.92 3 | 98.52 23 | 84.52 36 | 99.74 38 | 98.76 5 | 95.67 110 | 97.22 137 |
|
| HPM-MVS++ |  | | 95.32 10 | 95.48 13 | 94.85 24 | 98.62 34 | 86.04 36 | 97.81 70 | 96.93 40 | 92.45 20 | 95.69 31 | 98.50 24 | 85.38 31 | 99.85 10 | 94.75 54 | 99.18 7 | 98.65 43 |
|
| PHI-MVS | | | 93.59 37 | 93.63 36 | 93.48 67 | 98.05 58 | 81.76 125 | 98.64 31 | 97.13 26 | 82.60 206 | 94.09 55 | 98.49 25 | 80.35 64 | 99.85 10 | 94.74 55 | 98.62 32 | 98.83 32 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 23 | 97.10 30 | 95.17 3 | 92.11 78 | 98.46 26 | 87.33 24 | 99.97 2 | 97.21 28 | 99.31 4 | 99.63 7 |
|
| test_fmvsm_n_1920 | | | 94.81 18 | 95.60 10 | 92.45 103 | 95.29 123 | 80.96 144 | 99.29 2 | 97.21 22 | 94.50 7 | 97.29 13 | 98.44 27 | 82.15 54 | 99.78 28 | 98.56 7 | 97.68 65 | 96.61 161 |
|
| PC_three_1452 | | | | | | | | | | 91.12 35 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 21 | 98.96 3 | 99.37 1 | 99.70 3 |
|
| MP-MVS-pluss | | | 92.58 60 | 92.35 59 | 93.29 71 | 97.30 86 | 82.53 105 | 96.44 172 | 96.04 135 | 84.68 150 | 89.12 120 | 98.37 29 | 77.48 105 | 99.74 38 | 93.31 73 | 98.38 43 | 97.59 116 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SteuartSystems-ACMMP | | | 94.13 30 | 94.44 25 | 93.20 75 | 95.41 119 | 81.35 135 | 99.02 20 | 96.59 82 | 89.50 57 | 94.18 54 | 98.36 30 | 83.68 46 | 99.45 75 | 94.77 53 | 98.45 39 | 98.81 33 |
| Skip Steuart: Steuart Systems R&D Blog. |
| fmvsm_s_conf0.1_n | | | 92.93 47 | 93.16 46 | 92.24 115 | 90.52 264 | 81.92 117 | 98.42 37 | 96.24 118 | 91.17 34 | 96.02 29 | 98.35 31 | 75.34 151 | 99.74 38 | 97.84 20 | 94.58 121 | 95.05 199 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 64 | 92.49 57 | 92.06 125 | 88.08 300 | 81.62 131 | 97.97 61 | 96.01 136 | 90.62 41 | 96.58 21 | 98.33 32 | 74.09 170 | 99.71 45 | 97.23 27 | 93.46 138 | 94.86 203 |
|
| MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 87 | 98.31 48 | 80.10 169 | 97.42 102 | 96.78 49 | 92.20 22 | 97.11 14 | 98.29 33 | 93.46 1 | 99.10 101 | 96.01 38 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 94.56 22 | 94.75 19 | 93.96 46 | 98.84 22 | 83.40 92 | 98.04 57 | 96.41 102 | 85.79 124 | 95.00 42 | 98.28 34 | 84.32 41 | 99.18 94 | 97.35 26 | 98.77 27 | 99.28 19 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CDPH-MVS | | | 93.12 42 | 92.91 48 | 93.74 52 | 98.65 30 | 83.88 80 | 97.67 81 | 96.26 116 | 83.00 196 | 93.22 65 | 98.24 35 | 81.31 57 | 99.21 88 | 89.12 124 | 98.74 29 | 98.14 73 |
|
| test_fmvsmconf_n | | | 93.99 32 | 94.36 27 | 92.86 87 | 92.82 203 | 81.12 138 | 99.26 3 | 96.37 110 | 93.47 13 | 95.16 35 | 98.21 36 | 79.00 80 | 99.64 55 | 98.21 10 | 96.73 92 | 97.83 97 |
|
| APD-MVS |  | | 93.61 36 | 93.59 37 | 93.69 56 | 98.76 24 | 83.26 95 | 97.21 111 | 96.09 130 | 82.41 210 | 94.65 48 | 98.21 36 | 81.96 56 | 98.81 119 | 94.65 56 | 98.36 45 | 99.01 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MTAPA | | | 92.45 62 | 92.31 60 | 92.86 87 | 97.90 61 | 80.85 147 | 92.88 293 | 96.33 112 | 87.92 83 | 90.20 107 | 98.18 38 | 76.71 120 | 99.76 31 | 92.57 83 | 98.09 51 | 97.96 89 |
|
| PS-MVSNAJ | | | 94.17 28 | 93.52 39 | 96.10 9 | 95.65 113 | 92.35 2 | 98.21 44 | 95.79 151 | 92.42 21 | 96.24 26 | 98.18 38 | 71.04 204 | 99.17 95 | 96.77 33 | 97.39 75 | 96.79 154 |
|
| MAR-MVS | | | 90.63 100 | 90.22 98 | 91.86 133 | 98.47 42 | 78.20 223 | 97.18 115 | 96.61 78 | 83.87 176 | 88.18 134 | 98.18 38 | 68.71 216 | 99.75 36 | 83.66 176 | 97.15 80 | 97.63 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| SD-MVS | | | 94.84 17 | 95.02 18 | 94.29 36 | 97.87 64 | 84.61 69 | 97.76 74 | 96.19 124 | 89.59 56 | 96.66 19 | 98.17 41 | 84.33 38 | 99.60 59 | 96.09 37 | 98.50 36 | 98.66 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| xiu_mvs_v2_base | | | 93.92 33 | 93.26 43 | 95.91 10 | 95.07 131 | 92.02 6 | 98.19 45 | 95.68 157 | 92.06 25 | 96.01 30 | 98.14 42 | 70.83 207 | 98.96 109 | 96.74 35 | 96.57 94 | 96.76 157 |
|
| PAPR | | | 92.74 51 | 92.17 65 | 94.45 32 | 98.89 20 | 84.87 66 | 97.20 113 | 96.20 122 | 87.73 88 | 88.40 130 | 98.12 43 | 78.71 86 | 99.76 31 | 87.99 136 | 96.28 97 | 98.74 35 |
|
| test_8 | | | | | | 98.63 33 | 83.64 87 | 97.81 70 | 96.63 77 | 84.50 155 | 95.10 39 | 98.11 44 | 84.33 38 | 99.23 86 | | | |
|
| TEST9 | | | | | | 98.64 31 | 83.71 84 | 97.82 68 | 96.65 72 | 84.29 164 | 95.16 35 | 98.09 45 | 84.39 37 | 99.36 81 | | | |
|
| train_agg | | | 94.28 25 | 94.45 24 | 93.74 52 | 98.64 31 | 83.71 84 | 97.82 68 | 96.65 72 | 84.50 155 | 95.16 35 | 98.09 45 | 84.33 38 | 99.36 81 | 95.91 41 | 98.96 19 | 98.16 71 |
|
| CP-MVS | | | 92.54 61 | 92.60 55 | 92.34 108 | 98.50 40 | 79.90 172 | 98.40 38 | 96.40 104 | 84.75 146 | 90.48 104 | 98.09 45 | 77.40 106 | 99.21 88 | 91.15 94 | 98.23 50 | 97.92 90 |
|
| 旧先验1 | | | | | | 97.39 82 | 79.58 183 | | 96.54 87 | | | 98.08 48 | 84.00 42 | | | 97.42 74 | 97.62 114 |
|
| SR-MVS | | | 92.16 66 | 92.27 61 | 91.83 136 | 98.37 45 | 78.41 213 | 96.67 160 | 95.76 152 | 82.19 214 | 91.97 79 | 98.07 49 | 76.44 123 | 98.64 123 | 93.71 66 | 97.27 78 | 98.45 54 |
|
| ZD-MVS | | | | | | 99.09 8 | 83.22 96 | | 96.60 81 | 82.88 199 | 93.61 61 | 98.06 50 | 82.93 50 | 99.14 97 | 95.51 48 | 98.49 37 | |
|
| test_prior2 | | | | | | | | 98.37 39 | | 86.08 119 | 94.57 49 | 98.02 51 | 83.14 48 | | 95.05 51 | 98.79 26 | |
|
| MVS_0304 | | | 95.36 9 | 95.20 16 | 95.85 11 | 94.89 138 | 89.22 12 | 98.83 25 | 97.88 11 | 94.68 4 | 95.14 38 | 97.99 52 | 80.80 60 | 99.81 21 | 98.60 6 | 97.95 57 | 98.50 50 |
|
| ACMMP_NAP | | | 93.46 38 | 93.23 44 | 94.17 41 | 97.16 88 | 84.28 76 | 96.82 149 | 96.65 72 | 86.24 115 | 94.27 52 | 97.99 52 | 77.94 96 | 99.83 16 | 93.39 69 | 98.57 33 | 98.39 57 |
|
| testdata | | | | | 90.13 186 | 95.92 107 | 74.17 290 | | 96.49 95 | 73.49 324 | 94.82 47 | 97.99 52 | 78.80 85 | 97.93 151 | 83.53 179 | 97.52 69 | 98.29 64 |
|
| region2R | | | 92.72 54 | 92.70 52 | 92.79 90 | 98.68 26 | 80.53 158 | 97.53 90 | 96.51 90 | 85.22 135 | 91.94 81 | 97.98 55 | 77.26 107 | 99.67 53 | 90.83 99 | 98.37 44 | 98.18 69 |
|
| CSCG | | | 92.02 69 | 91.65 74 | 93.12 77 | 98.53 36 | 80.59 153 | 97.47 95 | 97.18 25 | 77.06 298 | 84.64 168 | 97.98 55 | 83.98 43 | 99.52 69 | 90.72 101 | 97.33 76 | 99.23 21 |
|
| HFP-MVS | | | 92.89 48 | 92.86 50 | 92.98 83 | 98.71 25 | 81.12 138 | 97.58 86 | 96.70 65 | 85.20 137 | 91.75 83 | 97.97 57 | 78.47 88 | 99.71 45 | 90.95 95 | 98.41 41 | 98.12 75 |
|
| MM | | | | | 96.15 8 | | 89.50 9 | 99.18 5 | 98.10 8 | 95.68 1 | 96.64 20 | 97.92 58 | 80.72 61 | 99.80 25 | 99.16 1 | 97.96 56 | 99.15 24 |
|
| ACMMPR | | | 92.69 56 | 92.67 53 | 92.75 91 | 98.66 28 | 80.57 154 | 97.58 86 | 96.69 67 | 85.20 137 | 91.57 85 | 97.92 58 | 77.01 112 | 99.67 53 | 90.95 95 | 98.41 41 | 98.00 84 |
|
| test_fmvsmconf0.1_n | | | 93.08 44 | 93.22 45 | 92.65 96 | 88.45 296 | 80.81 148 | 99.00 21 | 95.11 186 | 93.21 15 | 94.00 56 | 97.91 60 | 76.84 115 | 99.59 60 | 97.91 16 | 96.55 95 | 97.54 117 |
|
| test_fmvsmvis_n_1920 | | | 92.12 67 | 92.10 67 | 92.17 120 | 90.87 257 | 81.04 140 | 98.34 40 | 93.90 256 | 92.71 18 | 87.24 143 | 97.90 61 | 74.83 158 | 99.72 43 | 96.96 31 | 96.20 98 | 95.76 183 |
|
| CS-MVS-test | | | 92.98 45 | 93.67 35 | 90.90 164 | 96.52 94 | 76.87 254 | 98.68 28 | 94.73 206 | 90.36 48 | 94.84 45 | 97.89 62 | 77.94 96 | 97.15 200 | 94.28 61 | 97.80 62 | 98.70 41 |
|
| APD-MVS_3200maxsize | | | 91.23 88 | 91.35 78 | 90.89 165 | 97.89 62 | 76.35 263 | 96.30 182 | 95.52 165 | 79.82 256 | 91.03 96 | 97.88 63 | 74.70 160 | 98.54 128 | 92.11 87 | 96.89 85 | 97.77 102 |
|
| SR-MVS-dyc-post | | | 91.29 86 | 91.45 77 | 90.80 167 | 97.76 67 | 76.03 268 | 96.20 189 | 95.44 171 | 80.56 238 | 90.72 100 | 97.84 64 | 75.76 136 | 98.61 124 | 91.99 88 | 96.79 89 | 97.75 103 |
|
| RE-MVS-def | | | | 91.18 82 | | 97.76 67 | 76.03 268 | 96.20 189 | 95.44 171 | 80.56 238 | 90.72 100 | 97.84 64 | 73.36 180 | | 91.99 88 | 96.79 89 | 97.75 103 |
|
| XVS | | | 92.69 56 | 92.71 51 | 92.63 98 | 98.52 37 | 80.29 161 | 97.37 105 | 96.44 98 | 87.04 105 | 91.38 87 | 97.83 66 | 77.24 109 | 99.59 60 | 90.46 105 | 98.07 52 | 98.02 79 |
|
| CANet | | | 94.89 15 | 94.64 21 | 95.63 13 | 97.55 75 | 88.12 16 | 99.06 16 | 96.39 106 | 94.07 10 | 95.34 34 | 97.80 67 | 76.83 117 | 99.87 8 | 97.08 30 | 97.64 66 | 98.89 30 |
|
| PGM-MVS | | | 91.93 70 | 91.80 71 | 92.32 112 | 98.27 50 | 79.74 178 | 95.28 226 | 97.27 20 | 83.83 177 | 90.89 99 | 97.78 68 | 76.12 130 | 99.56 66 | 88.82 127 | 97.93 60 | 97.66 110 |
|
| ZNCC-MVS | | | 92.75 50 | 92.60 55 | 93.23 74 | 98.24 51 | 81.82 123 | 97.63 82 | 96.50 92 | 85.00 143 | 91.05 95 | 97.74 69 | 78.38 89 | 99.80 25 | 90.48 104 | 98.34 46 | 98.07 77 |
|
| API-MVS | | | 90.18 109 | 88.97 121 | 93.80 50 | 98.66 28 | 82.95 100 | 97.50 94 | 95.63 160 | 75.16 310 | 86.31 150 | 97.69 70 | 72.49 187 | 99.90 5 | 81.26 194 | 96.07 102 | 98.56 47 |
|
| CS-MVS | | | 92.73 52 | 93.48 40 | 90.48 176 | 96.27 97 | 75.93 273 | 98.55 34 | 94.93 193 | 89.32 58 | 94.54 50 | 97.67 71 | 78.91 82 | 97.02 204 | 93.80 64 | 97.32 77 | 98.49 51 |
|
| cdsmvs_eth3d_5k | | | 21.43 364 | 28.57 367 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 95.93 144 | 0.00 402 | 0.00 403 | 97.66 72 | 63.57 247 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| MP-MVS |  | | 92.61 59 | 92.67 53 | 92.42 106 | 98.13 56 | 79.73 179 | 97.33 107 | 96.20 122 | 85.63 126 | 90.53 102 | 97.66 72 | 78.14 94 | 99.70 48 | 92.12 86 | 98.30 48 | 97.85 95 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 91.88 71 | 91.82 70 | 92.07 124 | 98.38 44 | 78.63 207 | 97.29 108 | 96.09 130 | 85.12 139 | 88.45 129 | 97.66 72 | 75.53 141 | 99.68 51 | 89.83 115 | 98.02 55 | 97.88 91 |
|
| lupinMVS | | | 93.87 34 | 93.58 38 | 94.75 27 | 93.00 196 | 88.08 17 | 99.15 7 | 95.50 166 | 91.03 37 | 94.90 43 | 97.66 72 | 78.84 83 | 97.56 169 | 94.64 57 | 97.46 70 | 98.62 45 |
|
| patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 110 | 98.44 43 | 77.84 235 | 98.43 36 | 97.21 22 | 92.58 19 | 97.68 10 | 97.65 76 | 86.88 26 | 99.83 16 | 98.25 9 | 97.60 67 | 99.33 17 |
|
| PAPM_NR | | | 91.46 81 | 90.82 85 | 93.37 70 | 98.50 40 | 81.81 124 | 95.03 242 | 96.13 127 | 84.65 151 | 86.10 153 | 97.65 76 | 79.24 77 | 99.75 36 | 83.20 182 | 96.88 86 | 98.56 47 |
|
| DP-MVS Recon | | | 91.72 75 | 90.85 84 | 94.34 34 | 99.50 1 | 85.00 63 | 98.51 35 | 95.96 141 | 80.57 237 | 88.08 135 | 97.63 78 | 76.84 115 | 99.89 7 | 85.67 153 | 94.88 116 | 98.13 74 |
|
| test_fmvsmconf0.01_n | | | 91.08 91 | 90.68 88 | 92.29 113 | 82.43 356 | 80.12 168 | 97.94 62 | 93.93 252 | 92.07 24 | 91.97 79 | 97.60 79 | 67.56 220 | 99.53 68 | 97.09 29 | 95.56 112 | 97.21 139 |
|
| æ–°å‡ ä½•1 | | | | | 93.12 77 | 97.44 78 | 81.60 132 | | 96.71 64 | 74.54 315 | 91.22 93 | 97.57 80 | 79.13 79 | 99.51 71 | 77.40 233 | 98.46 38 | 98.26 67 |
|
| xiu_mvs_v1_base_debu | | | 90.54 102 | 89.54 113 | 93.55 62 | 92.31 214 | 87.58 23 | 96.99 133 | 94.87 197 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 292 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 207 |
|
| xiu_mvs_v1_base | | | 90.54 102 | 89.54 113 | 93.55 62 | 92.31 214 | 87.58 23 | 96.99 133 | 94.87 197 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 292 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 207 |
|
| xiu_mvs_v1_base_debi | | | 90.54 102 | 89.54 113 | 93.55 62 | 92.31 214 | 87.58 23 | 96.99 133 | 94.87 197 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 292 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 207 |
|
| EI-MVSNet-Vis-set | | | 91.84 72 | 91.77 72 | 92.04 127 | 97.60 71 | 81.17 137 | 96.61 161 | 96.87 43 | 88.20 77 | 89.19 119 | 97.55 84 | 78.69 87 | 99.14 97 | 90.29 111 | 90.94 163 | 95.80 181 |
|
| alignmvs | | | 92.97 46 | 92.26 62 | 95.12 19 | 95.54 116 | 87.77 20 | 98.67 29 | 96.38 107 | 88.04 80 | 93.01 68 | 97.45 85 | 79.20 78 | 98.60 125 | 93.25 74 | 88.76 177 | 98.99 29 |
|
| test222 | | | | | | 96.15 101 | 78.41 213 | 95.87 205 | 96.46 96 | 71.97 335 | 89.66 113 | 97.45 85 | 76.33 127 | | | 98.24 49 | 98.30 63 |
|
| TSAR-MVS + GP. | | | 94.35 24 | 94.50 22 | 93.89 47 | 97.38 84 | 83.04 99 | 98.10 51 | 95.29 181 | 91.57 30 | 93.81 57 | 97.45 85 | 86.64 27 | 99.43 76 | 96.28 36 | 94.01 128 | 99.20 22 |
|
| CPTT-MVS | | | 89.72 117 | 89.87 110 | 89.29 205 | 98.33 47 | 73.30 296 | 97.70 78 | 95.35 178 | 75.68 306 | 87.40 139 | 97.44 88 | 70.43 209 | 98.25 143 | 89.56 120 | 96.90 84 | 96.33 171 |
|
| 原ACMM1 | | | | | 91.22 155 | 97.77 65 | 78.10 225 | | 96.61 78 | 81.05 227 | 91.28 92 | 97.42 89 | 77.92 98 | 98.98 108 | 79.85 208 | 98.51 34 | 96.59 162 |
|
| GST-MVS | | | 92.43 63 | 92.22 64 | 93.04 81 | 98.17 54 | 81.64 130 | 97.40 104 | 96.38 107 | 84.71 149 | 90.90 98 | 97.40 90 | 77.55 104 | 99.76 31 | 89.75 117 | 97.74 63 | 97.72 105 |
|
| EI-MVSNet-UG-set | | | 91.35 85 | 91.22 79 | 91.73 138 | 97.39 82 | 80.68 151 | 96.47 169 | 96.83 46 | 87.92 83 | 88.30 133 | 97.36 91 | 77.84 99 | 99.13 99 | 89.43 122 | 89.45 170 | 95.37 192 |
|
| canonicalmvs | | | 92.27 65 | 91.22 79 | 95.41 16 | 95.80 110 | 88.31 14 | 97.09 129 | 94.64 214 | 88.49 71 | 92.99 69 | 97.31 92 | 72.68 185 | 98.57 127 | 93.38 71 | 88.58 179 | 99.36 16 |
|
| MVS | | | 90.60 101 | 88.64 126 | 96.50 5 | 94.25 158 | 90.53 8 | 93.33 282 | 97.21 22 | 77.59 289 | 78.88 233 | 97.31 92 | 71.52 199 | 99.69 49 | 89.60 118 | 98.03 54 | 99.27 20 |
|
| 1112_ss | | | 88.60 143 | 87.47 152 | 92.00 129 | 93.21 188 | 80.97 143 | 96.47 169 | 92.46 304 | 83.64 183 | 80.86 212 | 97.30 94 | 80.24 67 | 97.62 165 | 77.60 228 | 85.49 208 | 97.40 129 |
|
| ab-mvs-re | | | 8.11 368 | 10.81 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 97.30 94 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| EIA-MVS | | | 91.73 73 | 92.05 68 | 90.78 169 | 94.52 148 | 76.40 262 | 98.06 55 | 95.34 179 | 89.19 60 | 88.90 123 | 97.28 96 | 77.56 103 | 97.73 161 | 90.77 100 | 96.86 88 | 98.20 68 |
|
| ACMMP |  | | 90.39 105 | 89.97 105 | 91.64 141 | 97.58 73 | 78.21 222 | 96.78 152 | 96.72 63 | 84.73 148 | 84.72 166 | 97.23 97 | 71.22 201 | 99.63 57 | 88.37 134 | 92.41 151 | 97.08 144 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| WTY-MVS | | | 92.65 58 | 91.68 73 | 95.56 14 | 96.00 105 | 88.90 13 | 98.23 43 | 97.65 14 | 88.57 69 | 89.82 110 | 97.22 98 | 79.29 75 | 99.06 104 | 89.57 119 | 88.73 178 | 98.73 39 |
|
| HPM-MVS |  | | 91.62 78 | 91.53 76 | 91.89 132 | 97.88 63 | 79.22 191 | 96.99 133 | 95.73 155 | 82.07 216 | 89.50 118 | 97.19 99 | 75.59 139 | 98.93 114 | 90.91 97 | 97.94 58 | 97.54 117 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_HR | | | 93.41 39 | 93.39 42 | 93.47 69 | 97.34 85 | 82.83 101 | 97.56 88 | 98.27 6 | 89.16 61 | 89.71 111 | 97.14 100 | 79.77 72 | 99.56 66 | 93.65 67 | 97.94 58 | 98.02 79 |
|
| MVSFormer | | | 91.36 84 | 90.57 90 | 93.73 54 | 93.00 196 | 88.08 17 | 94.80 248 | 94.48 222 | 80.74 233 | 94.90 43 | 97.13 101 | 78.84 83 | 95.10 297 | 83.77 171 | 97.46 70 | 98.02 79 |
|
| jason | | | 92.73 52 | 92.23 63 | 94.21 40 | 90.50 265 | 87.30 26 | 98.65 30 | 95.09 187 | 90.61 42 | 92.76 71 | 97.13 101 | 75.28 152 | 97.30 189 | 93.32 72 | 96.75 91 | 98.02 79 |
| jason: jason. |
| EC-MVSNet | | | 91.73 73 | 92.11 66 | 90.58 173 | 93.54 178 | 77.77 238 | 98.07 54 | 94.40 229 | 87.44 94 | 92.99 69 | 97.11 103 | 74.59 164 | 96.87 214 | 93.75 65 | 97.08 81 | 97.11 142 |
|
| DELS-MVS | | | 94.98 13 | 94.49 23 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 4 | 97.02 32 | 94.40 8 | 91.46 86 | 97.08 104 | 83.32 47 | 99.69 49 | 92.83 79 | 98.70 30 | 99.04 25 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_111021_LR | | | 91.60 79 | 91.64 75 | 91.47 147 | 95.74 111 | 78.79 204 | 96.15 191 | 96.77 55 | 88.49 71 | 88.64 127 | 97.07 105 | 72.33 189 | 99.19 93 | 93.13 77 | 96.48 96 | 96.43 166 |
|
| mvsany_test1 | | | 87.58 166 | 88.22 132 | 85.67 281 | 89.78 277 | 67.18 342 | 95.25 229 | 87.93 355 | 83.96 172 | 88.79 124 | 97.06 106 | 72.52 186 | 94.53 312 | 92.21 85 | 86.45 196 | 95.30 195 |
|
| test_vis1_n_1920 | | | 89.95 113 | 90.59 89 | 88.03 233 | 92.36 213 | 68.98 335 | 99.12 11 | 94.34 232 | 93.86 11 | 93.64 60 | 97.01 107 | 51.54 323 | 99.59 60 | 96.76 34 | 96.71 93 | 95.53 188 |
|
| MG-MVS | | | 94.25 27 | 93.72 33 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 59 | 98.09 9 | 89.99 51 | 92.34 74 | 96.97 108 | 81.30 58 | 98.99 107 | 88.54 129 | 98.88 20 | 99.20 22 |
|
| HPM-MVS_fast | | | 90.38 107 | 90.17 101 | 91.03 160 | 97.61 70 | 77.35 247 | 97.15 121 | 95.48 167 | 79.51 262 | 88.79 124 | 96.90 109 | 71.64 198 | 98.81 119 | 87.01 147 | 97.44 72 | 96.94 147 |
|
| PAPM | | | 92.87 49 | 92.40 58 | 94.30 35 | 92.25 221 | 87.85 19 | 96.40 176 | 96.38 107 | 91.07 36 | 88.72 126 | 96.90 109 | 82.11 55 | 97.37 186 | 90.05 114 | 97.70 64 | 97.67 109 |
|
| EPNet | | | 94.06 31 | 94.15 30 | 93.76 51 | 97.27 87 | 84.35 73 | 98.29 41 | 97.64 15 | 94.57 6 | 95.36 33 | 96.88 111 | 79.96 71 | 99.12 100 | 91.30 92 | 96.11 101 | 97.82 99 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OMC-MVS | | | 88.80 137 | 88.16 135 | 90.72 170 | 95.30 122 | 77.92 232 | 94.81 247 | 94.51 221 | 86.80 110 | 84.97 162 | 96.85 112 | 67.53 221 | 98.60 125 | 85.08 157 | 87.62 187 | 95.63 185 |
|
| ETV-MVS | | | 92.72 54 | 92.87 49 | 92.28 114 | 94.54 147 | 81.89 119 | 97.98 59 | 95.21 184 | 89.77 55 | 93.11 66 | 96.83 113 | 77.23 111 | 97.50 177 | 95.74 43 | 95.38 113 | 97.44 126 |
|
| TAPA-MVS | | 81.61 12 | 85.02 205 | 83.67 208 | 89.06 208 | 96.79 92 | 73.27 299 | 95.92 201 | 94.79 204 | 74.81 313 | 80.47 216 | 96.83 113 | 71.07 203 | 98.19 146 | 49.82 370 | 92.57 147 | 95.71 184 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CANet_DTU | | | 90.98 93 | 90.04 103 | 93.83 49 | 94.76 141 | 86.23 34 | 96.32 181 | 93.12 296 | 93.11 16 | 93.71 58 | 96.82 115 | 63.08 250 | 99.48 73 | 84.29 163 | 95.12 115 | 95.77 182 |
|
| TSAR-MVS + MP. | | | 94.79 19 | 95.17 17 | 93.64 57 | 97.66 69 | 84.10 78 | 95.85 207 | 96.42 101 | 91.26 33 | 97.49 12 | 96.80 116 | 86.50 28 | 98.49 131 | 95.54 47 | 99.03 13 | 98.33 59 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| dcpmvs_2 | | | 93.10 43 | 93.46 41 | 92.02 128 | 97.77 65 | 79.73 179 | 94.82 246 | 93.86 259 | 86.91 107 | 91.33 90 | 96.76 117 | 85.20 32 | 98.06 148 | 96.90 32 | 97.60 67 | 98.27 66 |
|
| DeepC-MVS | | 86.58 3 | 91.53 80 | 91.06 83 | 92.94 85 | 94.52 148 | 81.89 119 | 95.95 199 | 95.98 139 | 90.76 39 | 83.76 179 | 96.76 117 | 73.24 181 | 99.71 45 | 91.67 91 | 96.96 83 | 97.22 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CNLPA | | | 86.96 172 | 85.37 181 | 91.72 139 | 97.59 72 | 79.34 189 | 97.21 111 | 91.05 327 | 74.22 316 | 78.90 232 | 96.75 119 | 67.21 225 | 98.95 111 | 74.68 259 | 90.77 164 | 96.88 152 |
|
| ET-MVSNet_ETH3D | | | 90.01 112 | 89.03 119 | 92.95 84 | 94.38 155 | 86.77 30 | 98.14 46 | 96.31 114 | 89.30 59 | 63.33 349 | 96.72 120 | 90.09 11 | 93.63 328 | 90.70 102 | 82.29 235 | 98.46 53 |
|
| AdaColmap |  | | 88.81 136 | 87.61 147 | 92.39 107 | 99.33 4 | 79.95 170 | 96.70 159 | 95.58 161 | 77.51 290 | 83.05 187 | 96.69 121 | 61.90 260 | 99.72 43 | 84.29 163 | 93.47 137 | 97.50 123 |
|
| LFMVS | | | 89.27 126 | 87.64 144 | 94.16 43 | 97.16 88 | 85.52 47 | 97.18 115 | 94.66 211 | 79.17 270 | 89.63 114 | 96.57 122 | 55.35 309 | 98.22 144 | 89.52 121 | 89.54 169 | 98.74 35 |
|
| PMMVS | | | 89.46 122 | 89.92 108 | 88.06 231 | 94.64 142 | 69.57 332 | 96.22 186 | 94.95 192 | 87.27 99 | 91.37 89 | 96.54 123 | 65.88 232 | 97.39 184 | 88.54 129 | 93.89 130 | 97.23 136 |
|
| 1314 | | | 88.94 131 | 87.20 157 | 94.17 41 | 93.21 188 | 85.73 42 | 93.33 282 | 96.64 75 | 82.89 198 | 75.98 269 | 96.36 124 | 66.83 228 | 99.39 77 | 83.52 180 | 96.02 105 | 97.39 130 |
|
| test_cas_vis1_n_1920 | | | 89.90 114 | 90.02 104 | 89.54 202 | 90.14 273 | 74.63 285 | 98.71 27 | 94.43 227 | 93.04 17 | 92.40 72 | 96.35 125 | 53.41 319 | 99.08 103 | 95.59 46 | 96.16 99 | 94.90 201 |
|
| PLC |  | 83.97 7 | 88.00 158 | 87.38 154 | 89.83 197 | 98.02 59 | 76.46 260 | 97.16 119 | 94.43 227 | 79.26 269 | 81.98 201 | 96.28 126 | 69.36 214 | 99.27 84 | 77.71 226 | 92.25 153 | 93.77 224 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PVSNet_Blended | | | 93.13 41 | 92.98 47 | 93.57 61 | 97.47 76 | 83.86 81 | 99.32 1 | 96.73 61 | 91.02 38 | 89.53 116 | 96.21 127 | 76.42 124 | 99.57 64 | 94.29 59 | 95.81 109 | 97.29 135 |
|
| test_yl | | | 91.46 81 | 90.53 91 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 52 | 97.72 12 | 80.94 228 | 89.85 108 | 96.14 128 | 75.61 137 | 98.81 119 | 90.42 109 | 88.56 180 | 98.74 35 |
|
| DCV-MVSNet | | | 91.46 81 | 90.53 91 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 52 | 97.72 12 | 80.94 228 | 89.85 108 | 96.14 128 | 75.61 137 | 98.81 119 | 90.42 109 | 88.56 180 | 98.74 35 |
|
| sss | | | 90.87 97 | 89.96 106 | 93.60 60 | 94.15 161 | 83.84 83 | 97.14 122 | 98.13 7 | 85.93 122 | 89.68 112 | 96.09 130 | 71.67 196 | 99.30 83 | 87.69 139 | 89.16 172 | 97.66 110 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 119 | 87.85 139 | 94.99 21 | 94.49 153 | 86.76 31 | 97.84 67 | 95.74 154 | 86.10 118 | 75.47 278 | 96.02 131 | 65.00 240 | 99.51 71 | 82.91 186 | 97.07 82 | 98.72 40 |
|
| diffmvs |  | | 91.17 89 | 90.74 87 | 92.44 105 | 93.11 195 | 82.50 107 | 96.25 185 | 93.62 274 | 87.79 86 | 90.40 105 | 95.93 132 | 73.44 179 | 97.42 181 | 93.62 68 | 92.55 148 | 97.41 128 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator | | 82.32 10 | 89.33 124 | 87.64 144 | 94.42 33 | 93.73 174 | 85.70 43 | 97.73 76 | 96.75 59 | 86.73 113 | 76.21 266 | 95.93 132 | 62.17 254 | 99.68 51 | 81.67 192 | 97.81 61 | 97.88 91 |
|
| VDD-MVS | | | 88.28 152 | 87.02 163 | 92.06 125 | 95.09 129 | 80.18 167 | 97.55 89 | 94.45 226 | 83.09 192 | 89.10 121 | 95.92 134 | 47.97 337 | 98.49 131 | 93.08 78 | 86.91 192 | 97.52 122 |
|
| test_fmvs1 | | | 87.79 162 | 88.52 129 | 85.62 283 | 92.98 200 | 64.31 351 | 97.88 65 | 92.42 305 | 87.95 82 | 92.24 75 | 95.82 135 | 47.94 338 | 98.44 137 | 95.31 50 | 94.09 125 | 94.09 218 |
|
| VNet | | | 92.11 68 | 91.22 79 | 94.79 25 | 96.91 91 | 86.98 27 | 97.91 63 | 97.96 10 | 86.38 114 | 93.65 59 | 95.74 136 | 70.16 212 | 98.95 111 | 93.39 69 | 88.87 176 | 98.43 55 |
|
| OpenMVS |  | 79.58 14 | 86.09 187 | 83.62 211 | 93.50 65 | 90.95 254 | 86.71 32 | 97.44 98 | 95.83 149 | 75.35 307 | 72.64 302 | 95.72 137 | 57.42 295 | 99.64 55 | 71.41 282 | 95.85 108 | 94.13 217 |
|
| Effi-MVS+ | | | 90.70 99 | 89.90 109 | 93.09 79 | 93.61 175 | 83.48 90 | 95.20 232 | 92.79 301 | 83.22 188 | 91.82 82 | 95.70 138 | 71.82 195 | 97.48 179 | 91.25 93 | 93.67 134 | 98.32 60 |
|
| 114514_t | | | 88.79 138 | 87.57 148 | 92.45 103 | 98.21 53 | 81.74 126 | 96.99 133 | 95.45 170 | 75.16 310 | 82.48 190 | 95.69 139 | 68.59 217 | 98.50 130 | 80.33 200 | 95.18 114 | 97.10 143 |
|
| baseline | | | 90.76 98 | 90.10 102 | 92.74 92 | 92.90 202 | 82.56 104 | 94.60 250 | 94.56 219 | 87.69 89 | 89.06 122 | 95.67 140 | 73.76 174 | 97.51 176 | 90.43 108 | 92.23 154 | 98.16 71 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 134 | 88.87 125 | 88.91 212 | 93.89 170 | 74.43 288 | 96.93 142 | 94.19 241 | 84.39 158 | 83.22 184 | 95.67 140 | 78.24 91 | 94.70 307 | 78.88 217 | 94.40 124 | 97.61 115 |
|
| QAPM | | | 86.88 174 | 84.51 195 | 93.98 44 | 94.04 167 | 85.89 40 | 97.19 114 | 96.05 134 | 73.62 321 | 75.12 281 | 95.62 142 | 62.02 257 | 99.74 38 | 70.88 288 | 96.06 103 | 96.30 173 |
|
| IS-MVSNet | | | 88.67 140 | 88.16 135 | 90.20 185 | 93.61 175 | 76.86 255 | 96.77 154 | 93.07 297 | 84.02 169 | 83.62 180 | 95.60 143 | 74.69 163 | 96.24 237 | 78.43 221 | 93.66 135 | 97.49 124 |
|
| test_fmvs1_n | | | 86.34 183 | 86.72 167 | 85.17 290 | 87.54 308 | 63.64 356 | 96.91 143 | 92.37 307 | 87.49 93 | 91.33 90 | 95.58 144 | 40.81 363 | 98.46 134 | 95.00 52 | 93.49 136 | 93.41 232 |
|
| casdiffmvs |  | | 90.95 95 | 90.39 94 | 92.63 98 | 92.82 203 | 82.53 105 | 96.83 147 | 94.47 224 | 87.69 89 | 88.47 128 | 95.56 145 | 74.04 171 | 97.54 173 | 90.90 98 | 92.74 146 | 97.83 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thisisatest0515 | | | 90.95 95 | 90.26 97 | 93.01 82 | 94.03 169 | 84.27 77 | 97.91 63 | 96.67 69 | 83.18 189 | 86.87 147 | 95.51 146 | 88.66 16 | 97.85 157 | 80.46 199 | 89.01 174 | 96.92 150 |
|
| BH-RMVSNet | | | 86.84 175 | 85.28 182 | 91.49 146 | 95.35 121 | 80.26 164 | 96.95 140 | 92.21 308 | 82.86 200 | 81.77 205 | 95.46 147 | 59.34 275 | 97.64 164 | 69.79 295 | 93.81 132 | 96.57 163 |
|
| CLD-MVS | | | 87.97 159 | 87.48 151 | 89.44 203 | 92.16 226 | 80.54 157 | 98.14 46 | 94.92 194 | 91.41 31 | 79.43 229 | 95.40 148 | 62.34 253 | 97.27 192 | 90.60 103 | 82.90 227 | 90.50 250 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test2506 | | | 90.96 94 | 90.39 94 | 92.65 96 | 93.54 178 | 82.46 108 | 96.37 177 | 97.35 18 | 86.78 111 | 87.55 138 | 95.25 149 | 77.83 100 | 97.50 177 | 84.07 165 | 94.80 117 | 97.98 86 |
|
| ECVR-MVS |  | | 88.35 150 | 87.25 156 | 91.65 140 | 93.54 178 | 79.40 186 | 96.56 165 | 90.78 332 | 86.78 111 | 85.57 156 | 95.25 149 | 57.25 296 | 97.56 169 | 84.73 161 | 94.80 117 | 97.98 86 |
|
| XVG-OURS-SEG-HR | | | 85.74 194 | 85.16 186 | 87.49 248 | 90.22 269 | 71.45 319 | 91.29 312 | 94.09 247 | 81.37 223 | 83.90 177 | 95.22 151 | 60.30 268 | 97.53 175 | 85.58 154 | 84.42 215 | 93.50 228 |
|
| LS3D | | | 82.22 253 | 79.94 268 | 89.06 208 | 97.43 79 | 74.06 292 | 93.20 288 | 92.05 310 | 61.90 364 | 73.33 295 | 95.21 152 | 59.35 274 | 99.21 88 | 54.54 357 | 92.48 150 | 93.90 222 |
|
| test1111 | | | 88.11 155 | 87.04 162 | 91.35 148 | 93.15 191 | 78.79 204 | 96.57 163 | 90.78 332 | 86.88 109 | 85.04 160 | 95.20 153 | 57.23 297 | 97.39 184 | 83.88 168 | 94.59 120 | 97.87 93 |
|
| VDDNet | | | 86.44 181 | 84.51 195 | 92.22 117 | 91.56 242 | 81.83 122 | 97.10 128 | 94.64 214 | 69.50 347 | 87.84 136 | 95.19 154 | 48.01 336 | 97.92 156 | 89.82 116 | 86.92 191 | 96.89 151 |
|
| F-COLMAP | | | 84.50 215 | 83.44 215 | 87.67 239 | 95.22 125 | 72.22 305 | 95.95 199 | 93.78 266 | 75.74 305 | 76.30 263 | 95.18 155 | 59.50 273 | 98.45 135 | 72.67 275 | 86.59 195 | 92.35 238 |
|
| TR-MVS | | | 86.30 184 | 84.93 191 | 90.42 177 | 94.63 143 | 77.58 242 | 96.57 163 | 93.82 261 | 80.30 246 | 82.42 192 | 95.16 156 | 58.74 279 | 97.55 171 | 74.88 257 | 87.82 186 | 96.13 176 |
|
| gm-plane-assit | | | | | | 92.27 218 | 79.64 182 | | | 84.47 157 | | 95.15 157 | | 97.93 151 | 85.81 152 | | |
|
| Vis-MVSNet |  | | 88.67 140 | 87.82 140 | 91.24 153 | 92.68 205 | 78.82 201 | 96.95 140 | 93.85 260 | 87.55 92 | 87.07 146 | 95.13 158 | 63.43 248 | 97.21 194 | 77.58 229 | 96.15 100 | 97.70 108 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PVSNet | | 82.34 9 | 89.02 129 | 87.79 141 | 92.71 94 | 95.49 117 | 81.50 133 | 97.70 78 | 97.29 19 | 87.76 87 | 85.47 157 | 95.12 159 | 56.90 298 | 98.90 115 | 80.33 200 | 94.02 127 | 97.71 107 |
|
| h-mvs33 | | | 89.30 125 | 88.95 123 | 90.36 180 | 95.07 131 | 76.04 267 | 96.96 139 | 97.11 29 | 90.39 46 | 92.22 76 | 95.10 160 | 74.70 160 | 98.86 116 | 93.14 75 | 65.89 343 | 96.16 174 |
|
| XVG-OURS | | | 85.18 202 | 84.38 199 | 87.59 243 | 90.42 267 | 71.73 316 | 91.06 315 | 94.07 248 | 82.00 218 | 83.29 183 | 95.08 161 | 56.42 303 | 97.55 171 | 83.70 175 | 83.42 220 | 93.49 229 |
|
| EPNet_dtu | | | 87.65 165 | 87.89 138 | 86.93 260 | 94.57 144 | 71.37 320 | 96.72 155 | 96.50 92 | 88.56 70 | 87.12 145 | 95.02 162 | 75.91 134 | 94.01 321 | 66.62 308 | 90.00 166 | 95.42 191 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EPP-MVSNet | | | 89.76 116 | 89.72 112 | 89.87 195 | 93.78 171 | 76.02 270 | 97.22 109 | 96.51 90 | 79.35 264 | 85.11 159 | 95.01 163 | 84.82 34 | 97.10 202 | 87.46 142 | 88.21 184 | 96.50 164 |
|
| baseline1 | | | 88.85 135 | 87.49 150 | 92.93 86 | 95.21 126 | 86.85 29 | 95.47 220 | 94.61 216 | 87.29 98 | 83.11 186 | 94.99 164 | 80.70 62 | 96.89 212 | 82.28 188 | 73.72 285 | 95.05 199 |
|
| casdiffmvs_mvg |  | | 91.13 90 | 90.45 93 | 93.17 76 | 92.99 199 | 83.58 88 | 97.46 97 | 94.56 219 | 87.69 89 | 87.19 144 | 94.98 165 | 74.50 165 | 97.60 166 | 91.88 90 | 92.79 145 | 98.34 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thisisatest0530 | | | 89.65 118 | 89.02 120 | 91.53 145 | 93.46 184 | 80.78 149 | 96.52 166 | 96.67 69 | 81.69 221 | 83.79 178 | 94.90 166 | 88.85 15 | 97.68 162 | 77.80 222 | 87.49 190 | 96.14 175 |
|
| test_vis1_n | | | 85.60 196 | 85.70 175 | 85.33 287 | 84.79 340 | 64.98 349 | 96.83 147 | 91.61 318 | 87.36 97 | 91.00 97 | 94.84 167 | 36.14 369 | 97.18 196 | 95.66 44 | 93.03 143 | 93.82 223 |
|
| PCF-MVS | | 84.09 5 | 86.77 178 | 85.00 189 | 92.08 123 | 92.06 233 | 83.07 98 | 92.14 301 | 94.47 224 | 79.63 260 | 76.90 252 | 94.78 168 | 71.15 202 | 99.20 92 | 72.87 273 | 91.05 162 | 93.98 220 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EI-MVSNet | | | 85.80 192 | 85.20 183 | 87.59 243 | 91.55 243 | 77.41 245 | 95.13 236 | 95.36 176 | 80.43 243 | 80.33 219 | 94.71 169 | 73.72 175 | 95.97 247 | 76.96 237 | 78.64 260 | 89.39 269 |
|
| CVMVSNet | | | 84.83 208 | 85.57 177 | 82.63 322 | 91.55 243 | 60.38 367 | 95.13 236 | 95.03 190 | 80.60 236 | 82.10 199 | 94.71 169 | 66.40 231 | 90.19 361 | 74.30 264 | 90.32 165 | 97.31 133 |
|
| baseline2 | | | 90.39 105 | 90.21 99 | 90.93 162 | 90.86 258 | 80.99 142 | 95.20 232 | 97.41 17 | 86.03 120 | 80.07 224 | 94.61 171 | 90.58 6 | 97.47 180 | 87.29 143 | 89.86 168 | 94.35 213 |
|
| NP-MVS | | | | | | 92.04 234 | 78.22 219 | | | | | 94.56 172 | | | | | |
|
| HQP-MVS | | | 87.91 161 | 87.55 149 | 88.98 211 | 92.08 230 | 78.48 209 | 97.63 82 | 94.80 202 | 90.52 43 | 82.30 193 | 94.56 172 | 65.40 236 | 97.32 187 | 87.67 140 | 83.01 224 | 91.13 241 |
|
| BH-w/o | | | 88.24 153 | 87.47 152 | 90.54 175 | 95.03 134 | 78.54 208 | 97.41 103 | 93.82 261 | 84.08 167 | 78.23 239 | 94.51 174 | 69.34 215 | 97.21 194 | 80.21 204 | 94.58 121 | 95.87 180 |
|
| tttt0517 | | | 88.57 144 | 88.19 134 | 89.71 201 | 93.00 196 | 75.99 271 | 95.67 212 | 96.67 69 | 80.78 232 | 81.82 204 | 94.40 175 | 88.97 14 | 97.58 168 | 76.05 247 | 86.31 197 | 95.57 187 |
|
| CHOSEN 280x420 | | | 91.71 76 | 91.85 69 | 91.29 151 | 94.94 135 | 82.69 102 | 87.89 337 | 96.17 125 | 85.94 121 | 87.27 142 | 94.31 176 | 90.27 9 | 95.65 269 | 94.04 63 | 95.86 107 | 95.53 188 |
|
| GG-mvs-BLEND | | | | | 93.49 66 | 94.94 135 | 86.26 33 | 81.62 367 | 97.00 33 | | 88.32 132 | 94.30 177 | 91.23 5 | 96.21 238 | 88.49 131 | 97.43 73 | 98.00 84 |
|
| Anonymous202405211 | | | 84.41 216 | 81.93 237 | 91.85 135 | 96.78 93 | 78.41 213 | 97.44 98 | 91.34 322 | 70.29 343 | 84.06 171 | 94.26 178 | 41.09 361 | 98.96 109 | 79.46 210 | 82.65 231 | 98.17 70 |
|
| hse-mvs2 | | | 88.22 154 | 88.21 133 | 88.25 227 | 93.54 178 | 73.41 293 | 95.41 223 | 95.89 145 | 90.39 46 | 92.22 76 | 94.22 179 | 74.70 160 | 96.66 225 | 93.14 75 | 64.37 348 | 94.69 211 |
|
| AUN-MVS | | | 86.25 186 | 85.57 177 | 88.26 226 | 93.57 177 | 73.38 294 | 95.45 221 | 95.88 146 | 83.94 173 | 85.47 157 | 94.21 180 | 73.70 177 | 96.67 224 | 83.54 178 | 64.41 347 | 94.73 210 |
|
| CDS-MVSNet | | | 89.50 121 | 88.96 122 | 91.14 158 | 91.94 238 | 80.93 145 | 97.09 129 | 95.81 150 | 84.26 165 | 84.72 166 | 94.20 181 | 80.31 65 | 95.64 270 | 83.37 181 | 88.96 175 | 96.85 153 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| HQP_MVS | | | 87.50 167 | 87.09 161 | 88.74 216 | 91.86 239 | 77.96 229 | 97.18 115 | 94.69 207 | 89.89 53 | 81.33 207 | 94.15 182 | 64.77 242 | 97.30 189 | 87.08 144 | 82.82 228 | 90.96 243 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 182 | | | | | |
|
| OPM-MVS | | | 85.84 191 | 85.10 188 | 88.06 231 | 88.34 297 | 77.83 236 | 95.72 210 | 94.20 240 | 87.89 85 | 80.45 217 | 94.05 184 | 58.57 280 | 97.26 193 | 83.88 168 | 82.76 230 | 89.09 282 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| GeoE | | | 86.36 182 | 85.20 183 | 89.83 197 | 93.17 190 | 76.13 265 | 97.53 90 | 92.11 309 | 79.58 261 | 80.99 210 | 94.01 185 | 66.60 230 | 96.17 240 | 73.48 271 | 89.30 171 | 97.20 140 |
|
| thres200 | | | 88.92 132 | 87.65 143 | 92.73 93 | 96.30 96 | 85.62 45 | 97.85 66 | 98.86 1 | 84.38 159 | 84.82 164 | 93.99 186 | 75.12 155 | 98.01 149 | 70.86 289 | 86.67 193 | 94.56 212 |
|
| PVSNet_Blended_VisFu | | | 91.24 87 | 90.77 86 | 92.66 95 | 95.09 129 | 82.40 109 | 97.77 72 | 95.87 148 | 88.26 76 | 86.39 149 | 93.94 187 | 76.77 118 | 99.27 84 | 88.80 128 | 94.00 129 | 96.31 172 |
|
| UA-Net | | | 88.92 132 | 88.48 130 | 90.24 183 | 94.06 166 | 77.18 251 | 93.04 290 | 94.66 211 | 87.39 96 | 91.09 94 | 93.89 188 | 74.92 157 | 98.18 147 | 75.83 249 | 91.43 160 | 95.35 193 |
|
| tfpn200view9 | | | 88.48 145 | 87.15 158 | 92.47 102 | 96.21 99 | 85.30 52 | 97.44 98 | 98.85 2 | 83.37 186 | 83.99 173 | 93.82 189 | 75.36 148 | 97.93 151 | 69.04 297 | 86.24 200 | 94.17 214 |
|
| thres400 | | | 88.42 148 | 87.15 158 | 92.23 116 | 96.21 99 | 85.30 52 | 97.44 98 | 98.85 2 | 83.37 186 | 83.99 173 | 93.82 189 | 75.36 148 | 97.93 151 | 69.04 297 | 86.24 200 | 93.45 230 |
|
| BH-untuned | | | 86.95 173 | 85.94 173 | 89.99 189 | 94.52 148 | 77.46 244 | 96.78 152 | 93.37 286 | 81.80 219 | 76.62 256 | 93.81 191 | 66.64 229 | 97.02 204 | 76.06 246 | 93.88 131 | 95.48 190 |
|
| dmvs_re | | | 84.10 220 | 82.90 222 | 87.70 238 | 91.41 247 | 73.28 297 | 90.59 318 | 93.19 291 | 85.02 141 | 77.96 242 | 93.68 192 | 57.92 290 | 96.18 239 | 75.50 252 | 80.87 241 | 93.63 226 |
|
| thres100view900 | | | 88.30 151 | 86.95 164 | 92.33 110 | 96.10 103 | 84.90 65 | 97.14 122 | 98.85 2 | 82.69 204 | 83.41 181 | 93.66 193 | 75.43 145 | 97.93 151 | 69.04 297 | 86.24 200 | 94.17 214 |
|
| thres600view7 | | | 88.06 156 | 86.70 168 | 92.15 122 | 96.10 103 | 85.17 58 | 97.14 122 | 98.85 2 | 82.70 203 | 83.41 181 | 93.66 193 | 75.43 145 | 97.82 158 | 67.13 306 | 85.88 204 | 93.45 230 |
|
| Syy-MVS | | | 77.97 296 | 78.05 282 | 77.74 346 | 92.13 227 | 56.85 373 | 93.97 267 | 94.23 237 | 82.43 208 | 73.39 291 | 93.57 195 | 57.95 288 | 87.86 368 | 32.40 386 | 82.34 233 | 88.51 297 |
|
| myMVS_eth3d | | | 81.93 257 | 82.18 232 | 81.18 330 | 92.13 227 | 67.18 342 | 93.97 267 | 94.23 237 | 82.43 208 | 73.39 291 | 93.57 195 | 76.98 113 | 87.86 368 | 50.53 368 | 82.34 233 | 88.51 297 |
|
| TAMVS | | | 88.48 145 | 87.79 141 | 90.56 174 | 91.09 252 | 79.18 192 | 96.45 171 | 95.88 146 | 83.64 183 | 83.12 185 | 93.33 197 | 75.94 133 | 95.74 265 | 82.40 187 | 88.27 183 | 96.75 158 |
|
| test0.0.03 1 | | | 82.79 243 | 82.48 229 | 83.74 311 | 86.81 313 | 72.22 305 | 96.52 166 | 95.03 190 | 83.76 180 | 73.00 298 | 93.20 198 | 72.30 190 | 88.88 364 | 64.15 321 | 77.52 270 | 90.12 257 |
|
| LPG-MVS_test | | | 84.20 219 | 83.49 214 | 86.33 267 | 90.88 255 | 73.06 300 | 95.28 226 | 94.13 244 | 82.20 212 | 76.31 261 | 93.20 198 | 54.83 314 | 96.95 208 | 83.72 173 | 80.83 242 | 88.98 288 |
|
| LGP-MVS_train | | | | | 86.33 267 | 90.88 255 | 73.06 300 | | 94.13 244 | 82.20 212 | 76.31 261 | 93.20 198 | 54.83 314 | 96.95 208 | 83.72 173 | 80.83 242 | 88.98 288 |
|
| testing3 | | | 80.74 273 | 81.17 248 | 79.44 339 | 91.15 251 | 63.48 357 | 97.16 119 | 95.76 152 | 80.83 230 | 71.36 309 | 93.15 201 | 78.22 92 | 87.30 373 | 43.19 380 | 79.67 250 | 87.55 322 |
|
| CHOSEN 1792x2688 | | | 91.07 92 | 90.21 99 | 93.64 57 | 95.18 127 | 83.53 89 | 96.26 184 | 96.13 127 | 88.92 63 | 84.90 163 | 93.10 202 | 72.86 183 | 99.62 58 | 88.86 126 | 95.67 110 | 97.79 101 |
|
| Fast-Effi-MVS+ | | | 87.93 160 | 86.94 165 | 90.92 163 | 94.04 167 | 79.16 193 | 98.26 42 | 93.72 270 | 81.29 224 | 83.94 176 | 92.90 203 | 69.83 213 | 96.68 223 | 76.70 239 | 91.74 158 | 96.93 148 |
|
| iter_conf_final | | | 89.51 120 | 89.21 117 | 90.39 178 | 95.60 114 | 84.44 72 | 97.22 109 | 89.09 346 | 89.11 62 | 82.07 200 | 92.80 204 | 87.03 25 | 96.03 242 | 89.10 125 | 80.89 240 | 90.70 246 |
|
| iter_conf05 | | | 90.14 110 | 89.79 111 | 91.17 156 | 95.85 109 | 86.93 28 | 97.68 80 | 88.67 353 | 89.93 52 | 81.73 206 | 92.80 204 | 90.37 8 | 96.03 242 | 90.44 107 | 80.65 244 | 90.56 248 |
|
| RPSCF | | | 77.73 298 | 76.63 293 | 81.06 331 | 88.66 294 | 55.76 378 | 87.77 338 | 87.88 356 | 64.82 359 | 74.14 287 | 92.79 206 | 49.22 333 | 96.81 218 | 67.47 304 | 76.88 271 | 90.62 247 |
|
| DP-MVS | | | 81.47 263 | 78.28 280 | 91.04 159 | 98.14 55 | 78.48 209 | 95.09 241 | 86.97 359 | 61.14 370 | 71.12 312 | 92.78 207 | 59.59 271 | 99.38 78 | 53.11 361 | 86.61 194 | 95.27 196 |
|
| Anonymous20240529 | | | 83.15 236 | 80.60 257 | 90.80 167 | 95.74 111 | 78.27 217 | 96.81 150 | 94.92 194 | 60.10 374 | 81.89 203 | 92.54 208 | 45.82 345 | 98.82 118 | 79.25 213 | 78.32 267 | 95.31 194 |
|
| dmvs_testset | | | 72.00 331 | 73.36 317 | 67.91 360 | 83.83 351 | 31.90 400 | 85.30 356 | 77.12 385 | 82.80 201 | 63.05 352 | 92.46 209 | 61.54 262 | 82.55 383 | 42.22 382 | 71.89 296 | 89.29 275 |
|
| FIs | | | 86.73 179 | 86.10 172 | 88.61 218 | 90.05 274 | 80.21 165 | 96.14 192 | 96.95 38 | 85.56 129 | 78.37 238 | 92.30 210 | 76.73 119 | 95.28 287 | 79.51 209 | 79.27 254 | 90.35 252 |
|
| ACMP | | 81.66 11 | 84.00 221 | 83.22 218 | 86.33 267 | 91.53 245 | 72.95 303 | 95.91 203 | 93.79 265 | 83.70 182 | 73.79 288 | 92.22 211 | 54.31 317 | 96.89 212 | 83.98 166 | 79.74 249 | 89.16 279 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| VPNet | | | 84.69 210 | 82.92 221 | 90.01 188 | 89.01 289 | 83.45 91 | 96.71 157 | 95.46 169 | 85.71 125 | 79.65 226 | 92.18 212 | 56.66 301 | 96.01 246 | 83.05 185 | 67.84 331 | 90.56 248 |
|
| SDMVSNet | | | 87.02 171 | 85.61 176 | 91.24 153 | 94.14 162 | 83.30 94 | 93.88 270 | 95.98 139 | 84.30 162 | 79.63 227 | 92.01 213 | 58.23 283 | 97.68 162 | 90.28 113 | 82.02 236 | 92.75 233 |
|
| sd_testset | | | 84.62 211 | 83.11 219 | 89.17 206 | 94.14 162 | 77.78 237 | 91.54 311 | 94.38 230 | 84.30 162 | 79.63 227 | 92.01 213 | 52.28 321 | 96.98 206 | 77.67 227 | 82.02 236 | 92.75 233 |
|
| tt0805 | | | 81.20 268 | 79.06 276 | 87.61 241 | 86.50 315 | 72.97 302 | 93.66 273 | 95.48 167 | 74.11 317 | 76.23 265 | 91.99 215 | 41.36 360 | 97.40 183 | 77.44 232 | 74.78 281 | 92.45 236 |
|
| nrg030 | | | 86.79 177 | 85.43 179 | 90.87 166 | 88.76 290 | 85.34 49 | 97.06 131 | 94.33 233 | 84.31 160 | 80.45 217 | 91.98 216 | 72.36 188 | 96.36 232 | 88.48 132 | 71.13 298 | 90.93 245 |
|
| HY-MVS | | 84.06 6 | 91.63 77 | 90.37 96 | 95.39 17 | 96.12 102 | 88.25 15 | 90.22 320 | 97.58 16 | 88.33 75 | 90.50 103 | 91.96 217 | 79.26 76 | 99.06 104 | 90.29 111 | 89.07 173 | 98.88 31 |
|
| ACMM | | 80.70 13 | 83.72 227 | 82.85 224 | 86.31 270 | 91.19 249 | 72.12 308 | 95.88 204 | 94.29 235 | 80.44 241 | 77.02 250 | 91.96 217 | 55.24 310 | 97.14 201 | 79.30 212 | 80.38 245 | 89.67 267 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| FC-MVSNet-test | | | 85.96 189 | 85.39 180 | 87.66 240 | 89.38 287 | 78.02 226 | 95.65 214 | 96.87 43 | 85.12 139 | 77.34 245 | 91.94 219 | 76.28 128 | 94.74 306 | 77.09 234 | 78.82 258 | 90.21 255 |
|
| MSDG | | | 80.62 275 | 77.77 285 | 89.14 207 | 93.43 185 | 77.24 248 | 91.89 304 | 90.18 336 | 69.86 346 | 68.02 326 | 91.94 219 | 52.21 322 | 98.84 117 | 59.32 340 | 83.12 222 | 91.35 240 |
|
| TESTMET0.1,1 | | | 89.83 115 | 89.34 116 | 91.31 149 | 92.54 211 | 80.19 166 | 97.11 125 | 96.57 84 | 86.15 116 | 86.85 148 | 91.83 221 | 79.32 74 | 96.95 208 | 81.30 193 | 92.35 152 | 96.77 156 |
|
| mvsmamba | | | 85.17 203 | 84.54 194 | 87.05 258 | 87.94 302 | 75.11 281 | 96.22 186 | 87.79 357 | 86.91 107 | 78.55 235 | 91.77 222 | 64.93 241 | 95.91 253 | 86.94 148 | 79.80 246 | 90.12 257 |
|
| PatchMatch-RL | | | 85.00 206 | 83.66 209 | 89.02 210 | 95.86 108 | 74.55 287 | 92.49 297 | 93.60 275 | 79.30 267 | 79.29 231 | 91.47 223 | 58.53 281 | 98.45 135 | 70.22 293 | 92.17 155 | 94.07 219 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 232 | 82.60 228 | 85.50 285 | 89.55 283 | 69.38 333 | 96.09 195 | 91.38 319 | 82.30 211 | 75.96 270 | 91.41 224 | 56.71 299 | 95.58 275 | 75.13 256 | 84.90 213 | 91.54 239 |
|
| test-LLR | | | 88.48 145 | 87.98 137 | 89.98 190 | 92.26 219 | 77.23 249 | 97.11 125 | 95.96 141 | 83.76 180 | 86.30 151 | 91.38 225 | 72.30 190 | 96.78 220 | 80.82 196 | 91.92 156 | 95.94 178 |
|
| test-mter | | | 88.95 130 | 88.60 127 | 89.98 190 | 92.26 219 | 77.23 249 | 97.11 125 | 95.96 141 | 85.32 132 | 86.30 151 | 91.38 225 | 76.37 126 | 96.78 220 | 80.82 196 | 91.92 156 | 95.94 178 |
|
| ITE_SJBPF | | | | | 82.38 323 | 87.00 312 | 65.59 348 | | 89.55 340 | 79.99 254 | 69.37 323 | 91.30 227 | 41.60 359 | 95.33 284 | 62.86 328 | 74.63 283 | 86.24 338 |
|
| RRT_MVS | | | 83.88 223 | 83.27 217 | 85.71 279 | 87.53 309 | 72.12 308 | 95.35 225 | 94.33 233 | 83.81 178 | 75.86 272 | 91.28 228 | 60.55 266 | 95.09 299 | 83.93 167 | 76.76 272 | 89.90 265 |
|
| HyFIR lowres test | | | 89.36 123 | 88.60 127 | 91.63 143 | 94.91 137 | 80.76 150 | 95.60 216 | 95.53 163 | 82.56 207 | 84.03 172 | 91.24 229 | 78.03 95 | 96.81 218 | 87.07 146 | 88.41 182 | 97.32 132 |
|
| Test_1112_low_res | | | 88.03 157 | 86.73 166 | 91.94 131 | 93.15 191 | 80.88 146 | 96.44 172 | 92.41 306 | 83.59 185 | 80.74 214 | 91.16 230 | 80.18 68 | 97.59 167 | 77.48 231 | 85.40 209 | 97.36 131 |
|
| testgi | | | 74.88 316 | 73.40 316 | 79.32 340 | 80.13 363 | 61.75 362 | 93.21 287 | 86.64 363 | 79.49 263 | 66.56 337 | 91.06 231 | 35.51 372 | 88.67 365 | 56.79 351 | 71.25 297 | 87.56 320 |
|
| MVS_Test | | | 90.29 108 | 89.18 118 | 93.62 59 | 95.23 124 | 84.93 64 | 94.41 253 | 94.66 211 | 84.31 160 | 90.37 106 | 91.02 232 | 75.13 154 | 97.82 158 | 83.11 184 | 94.42 123 | 98.12 75 |
|
| cascas | | | 86.50 180 | 84.48 197 | 92.55 101 | 92.64 209 | 85.95 37 | 97.04 132 | 95.07 189 | 75.32 308 | 80.50 215 | 91.02 232 | 54.33 316 | 97.98 150 | 86.79 149 | 87.62 187 | 93.71 225 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 198 | 84.59 193 | 88.21 229 | 89.44 286 | 79.36 187 | 96.71 157 | 96.41 102 | 85.22 135 | 78.11 240 | 90.98 234 | 76.97 114 | 95.14 294 | 79.14 214 | 68.30 325 | 90.12 257 |
|
| bld_raw_dy_0_64 | | | 82.13 254 | 80.76 253 | 86.24 272 | 85.78 329 | 75.03 282 | 94.40 256 | 82.62 377 | 83.12 191 | 76.46 258 | 90.96 235 | 53.83 318 | 94.55 310 | 81.04 195 | 78.60 263 | 89.14 280 |
|
| DU-MVS | | | 84.57 213 | 83.33 216 | 88.28 225 | 88.76 290 | 79.36 187 | 96.43 174 | 95.41 175 | 85.42 130 | 78.11 240 | 90.82 236 | 67.61 218 | 95.14 294 | 79.14 214 | 68.30 325 | 90.33 253 |
|
| NR-MVSNet | | | 83.35 231 | 81.52 244 | 88.84 213 | 88.76 290 | 81.31 136 | 94.45 252 | 95.16 185 | 84.65 151 | 67.81 327 | 90.82 236 | 70.36 210 | 94.87 303 | 74.75 258 | 66.89 340 | 90.33 253 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 235 | 81.71 240 | 87.83 235 | 87.71 305 | 78.81 203 | 96.13 194 | 94.82 201 | 84.52 154 | 76.18 267 | 90.78 238 | 64.07 245 | 94.60 309 | 74.60 262 | 66.59 342 | 90.09 260 |
|
| XXY-MVS | | | 83.84 224 | 82.00 236 | 89.35 204 | 87.13 311 | 81.38 134 | 95.72 210 | 94.26 236 | 80.15 250 | 75.92 271 | 90.63 239 | 61.96 259 | 96.52 227 | 78.98 216 | 73.28 290 | 90.14 256 |
|
| MVSTER | | | 89.25 127 | 88.92 124 | 90.24 183 | 95.98 106 | 84.66 68 | 96.79 151 | 95.36 176 | 87.19 103 | 80.33 219 | 90.61 240 | 90.02 12 | 95.97 247 | 85.38 156 | 78.64 260 | 90.09 260 |
|
| UGNet | | | 87.73 163 | 86.55 169 | 91.27 152 | 95.16 128 | 79.11 195 | 96.35 179 | 96.23 119 | 88.14 78 | 87.83 137 | 90.48 241 | 50.65 326 | 99.09 102 | 80.13 205 | 94.03 126 | 95.60 186 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| IB-MVS | | 85.34 4 | 88.67 140 | 87.14 160 | 93.26 72 | 93.12 194 | 84.32 74 | 98.76 26 | 97.27 20 | 87.19 103 | 79.36 230 | 90.45 242 | 83.92 44 | 98.53 129 | 84.41 162 | 69.79 311 | 96.93 148 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| mvs_anonymous | | | 88.68 139 | 87.62 146 | 91.86 133 | 94.80 140 | 81.69 129 | 93.53 278 | 94.92 194 | 82.03 217 | 78.87 234 | 90.43 243 | 75.77 135 | 95.34 283 | 85.04 158 | 93.16 142 | 98.55 49 |
|
| WR-MVS | | | 84.32 217 | 82.96 220 | 88.41 221 | 89.38 287 | 80.32 160 | 96.59 162 | 96.25 117 | 83.97 171 | 76.63 255 | 90.36 244 | 67.53 221 | 94.86 304 | 75.82 250 | 70.09 309 | 90.06 262 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 312 | 73.00 319 | 83.94 307 | 92.38 212 | 69.08 334 | 91.85 305 | 86.93 360 | 61.48 367 | 65.32 341 | 90.27 245 | 42.27 356 | 96.93 211 | 50.91 366 | 75.63 277 | 85.80 346 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| AllTest | | | 75.92 310 | 73.06 318 | 84.47 301 | 92.18 224 | 67.29 340 | 91.07 314 | 84.43 370 | 67.63 350 | 63.48 346 | 90.18 246 | 38.20 366 | 97.16 197 | 57.04 348 | 73.37 287 | 88.97 290 |
|
| TestCases | | | | | 84.47 301 | 92.18 224 | 67.29 340 | | 84.43 370 | 67.63 350 | 63.48 346 | 90.18 246 | 38.20 366 | 97.16 197 | 57.04 348 | 73.37 287 | 88.97 290 |
|
| UniMVSNet_ETH3D | | | 80.86 272 | 78.75 278 | 87.22 255 | 86.31 318 | 72.02 310 | 91.95 302 | 93.76 269 | 73.51 322 | 75.06 282 | 90.16 248 | 43.04 354 | 95.66 267 | 76.37 244 | 78.55 264 | 93.98 220 |
|
| ab-mvs | | | 87.08 170 | 84.94 190 | 93.48 67 | 93.34 187 | 83.67 86 | 88.82 328 | 95.70 156 | 81.18 225 | 84.55 169 | 90.14 249 | 62.72 251 | 98.94 113 | 85.49 155 | 82.54 232 | 97.85 95 |
|
| PS-MVSNAJss | | | 84.91 207 | 84.30 200 | 86.74 261 | 85.89 327 | 74.40 289 | 94.95 243 | 94.16 243 | 83.93 174 | 76.45 259 | 90.11 250 | 71.04 204 | 95.77 260 | 83.16 183 | 79.02 257 | 90.06 262 |
|
| test_fmvs2 | | | 79.59 282 | 79.90 269 | 78.67 342 | 82.86 355 | 55.82 377 | 95.20 232 | 89.55 340 | 81.09 226 | 80.12 223 | 89.80 251 | 34.31 374 | 93.51 330 | 87.82 137 | 78.36 266 | 86.69 332 |
|
| jajsoiax | | | 82.12 255 | 81.15 249 | 85.03 292 | 84.19 346 | 70.70 322 | 94.22 263 | 93.95 251 | 83.07 193 | 73.48 290 | 89.75 252 | 49.66 332 | 95.37 282 | 82.24 189 | 79.76 247 | 89.02 286 |
|
| MS-PatchMatch | | | 83.05 238 | 81.82 239 | 86.72 265 | 89.64 281 | 79.10 196 | 94.88 245 | 94.59 218 | 79.70 259 | 70.67 315 | 89.65 253 | 50.43 328 | 96.82 217 | 70.82 291 | 95.99 106 | 84.25 355 |
|
| PVSNet_BlendedMVS | | | 90.05 111 | 89.96 106 | 90.33 181 | 97.47 76 | 83.86 81 | 98.02 58 | 96.73 61 | 87.98 81 | 89.53 116 | 89.61 254 | 76.42 124 | 99.57 64 | 94.29 59 | 79.59 251 | 87.57 319 |
|
| mvs_tets | | | 81.74 259 | 80.71 255 | 84.84 293 | 84.22 345 | 70.29 325 | 93.91 269 | 93.78 266 | 82.77 202 | 73.37 293 | 89.46 255 | 47.36 342 | 95.31 286 | 81.99 190 | 79.55 253 | 88.92 292 |
|
| pmmvs4 | | | 82.54 247 | 80.79 251 | 87.79 236 | 86.11 323 | 80.49 159 | 93.55 277 | 93.18 293 | 77.29 293 | 73.35 294 | 89.40 256 | 65.26 239 | 95.05 301 | 75.32 254 | 73.61 286 | 87.83 313 |
|
| GA-MVS | | | 85.79 193 | 84.04 205 | 91.02 161 | 89.47 285 | 80.27 163 | 96.90 144 | 94.84 200 | 85.57 127 | 80.88 211 | 89.08 257 | 56.56 302 | 96.47 229 | 77.72 225 | 85.35 210 | 96.34 169 |
|
| CMPMVS |  | 54.94 21 | 75.71 313 | 74.56 308 | 79.17 341 | 79.69 364 | 55.98 375 | 89.59 322 | 93.30 288 | 60.28 372 | 53.85 376 | 89.07 258 | 47.68 341 | 96.33 233 | 76.55 240 | 81.02 239 | 85.22 348 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| VPA-MVSNet | | | 85.32 200 | 83.83 206 | 89.77 200 | 90.25 268 | 82.63 103 | 96.36 178 | 97.07 31 | 83.03 195 | 81.21 209 | 89.02 259 | 61.58 261 | 96.31 234 | 85.02 159 | 70.95 300 | 90.36 251 |
|
| UniMVSNet (Re) | | | 85.31 201 | 84.23 201 | 88.55 219 | 89.75 278 | 80.55 155 | 96.72 155 | 96.89 42 | 85.42 130 | 78.40 237 | 88.93 260 | 75.38 147 | 95.52 277 | 78.58 219 | 68.02 328 | 89.57 268 |
|
| CP-MVSNet | | | 81.01 270 | 80.08 264 | 83.79 309 | 87.91 303 | 70.51 323 | 94.29 262 | 95.65 158 | 80.83 230 | 72.54 304 | 88.84 261 | 63.71 246 | 92.32 339 | 68.58 301 | 68.36 324 | 88.55 296 |
|
| miper_enhance_ethall | | | 85.95 190 | 85.20 183 | 88.19 230 | 94.85 139 | 79.76 175 | 96.00 196 | 94.06 249 | 82.98 197 | 77.74 243 | 88.76 262 | 79.42 73 | 95.46 279 | 80.58 198 | 72.42 292 | 89.36 274 |
|
| EU-MVSNet | | | 76.92 306 | 76.95 291 | 76.83 349 | 84.10 347 | 54.73 380 | 91.77 306 | 92.71 302 | 72.74 330 | 69.57 322 | 88.69 263 | 58.03 287 | 87.43 372 | 64.91 318 | 70.00 310 | 88.33 305 |
|
| pmmvs5 | | | 81.34 265 | 79.54 271 | 86.73 264 | 85.02 338 | 76.91 253 | 96.22 186 | 91.65 316 | 77.65 288 | 73.55 289 | 88.61 264 | 55.70 307 | 94.43 314 | 74.12 266 | 73.35 289 | 88.86 294 |
|
| PEN-MVS | | | 79.47 285 | 78.26 281 | 83.08 318 | 86.36 317 | 68.58 336 | 93.85 271 | 94.77 205 | 79.76 257 | 71.37 308 | 88.55 265 | 59.79 269 | 92.46 337 | 64.50 319 | 65.40 344 | 88.19 307 |
|
| ACMH+ | | 76.62 16 | 77.47 301 | 74.94 303 | 85.05 291 | 91.07 253 | 71.58 318 | 93.26 286 | 90.01 337 | 71.80 336 | 64.76 343 | 88.55 265 | 41.62 358 | 96.48 228 | 62.35 329 | 71.00 299 | 87.09 328 |
|
| PVSNet_0 | | 77.72 15 | 81.70 260 | 78.95 277 | 89.94 193 | 90.77 261 | 76.72 258 | 95.96 198 | 96.95 38 | 85.01 142 | 70.24 319 | 88.53 267 | 52.32 320 | 98.20 145 | 86.68 150 | 44.08 384 | 94.89 202 |
|
| PS-CasMVS | | | 80.27 277 | 79.18 273 | 83.52 315 | 87.56 307 | 69.88 328 | 94.08 265 | 95.29 181 | 80.27 248 | 72.08 306 | 88.51 268 | 59.22 277 | 92.23 341 | 67.49 303 | 68.15 327 | 88.45 302 |
|
| FA-MVS(test-final) | | | 87.71 164 | 86.23 171 | 92.17 120 | 94.19 160 | 80.55 155 | 87.16 343 | 96.07 133 | 82.12 215 | 85.98 154 | 88.35 269 | 72.04 194 | 98.49 131 | 80.26 202 | 89.87 167 | 97.48 125 |
|
| DTE-MVSNet | | | 78.37 291 | 77.06 290 | 82.32 325 | 85.22 337 | 67.17 345 | 93.40 279 | 93.66 272 | 78.71 278 | 70.53 316 | 88.29 270 | 59.06 278 | 92.23 341 | 61.38 333 | 63.28 353 | 87.56 320 |
|
| v2v482 | | | 83.46 230 | 81.86 238 | 88.25 227 | 86.19 321 | 79.65 181 | 96.34 180 | 94.02 250 | 81.56 222 | 77.32 246 | 88.23 271 | 65.62 233 | 96.03 242 | 77.77 223 | 69.72 313 | 89.09 282 |
|
| USDC | | | 78.65 290 | 76.25 295 | 85.85 276 | 87.58 306 | 74.60 286 | 89.58 323 | 90.58 335 | 84.05 168 | 63.13 350 | 88.23 271 | 40.69 364 | 96.86 216 | 66.57 310 | 75.81 276 | 86.09 341 |
|
| XVG-ACMP-BASELINE | | | 79.38 286 | 77.90 284 | 83.81 308 | 84.98 339 | 67.14 346 | 89.03 327 | 93.18 293 | 80.26 249 | 72.87 300 | 88.15 273 | 38.55 365 | 96.26 235 | 76.05 247 | 78.05 268 | 88.02 310 |
|
| FMVSNet3 | | | 84.71 209 | 82.71 226 | 90.70 171 | 94.55 146 | 87.71 21 | 95.92 201 | 94.67 210 | 81.73 220 | 75.82 273 | 88.08 274 | 66.99 226 | 94.47 313 | 71.23 284 | 75.38 278 | 89.91 264 |
|
| MVP-Stereo | | | 82.65 246 | 81.67 241 | 85.59 284 | 86.10 324 | 78.29 216 | 93.33 282 | 92.82 300 | 77.75 287 | 69.17 325 | 87.98 275 | 59.28 276 | 95.76 261 | 71.77 279 | 96.88 86 | 82.73 363 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| cl22 | | | 85.11 204 | 84.17 202 | 87.92 234 | 95.06 133 | 78.82 201 | 95.51 218 | 94.22 239 | 79.74 258 | 76.77 253 | 87.92 276 | 75.96 132 | 95.68 266 | 79.93 207 | 72.42 292 | 89.27 276 |
|
| OurMVSNet-221017-0 | | | 77.18 304 | 76.06 296 | 80.55 334 | 83.78 352 | 60.00 369 | 90.35 319 | 91.05 327 | 77.01 299 | 66.62 336 | 87.92 276 | 47.73 340 | 94.03 320 | 71.63 280 | 68.44 323 | 87.62 317 |
|
| test_djsdf | | | 83.00 241 | 82.45 230 | 84.64 298 | 84.07 348 | 69.78 329 | 94.80 248 | 94.48 222 | 80.74 233 | 75.41 279 | 87.70 278 | 61.32 264 | 95.10 297 | 83.77 171 | 79.76 247 | 89.04 285 |
|
| miper_ehance_all_eth | | | 84.57 213 | 83.60 212 | 87.50 247 | 92.64 209 | 78.25 218 | 95.40 224 | 93.47 279 | 79.28 268 | 76.41 260 | 87.64 279 | 76.53 121 | 95.24 289 | 78.58 219 | 72.42 292 | 89.01 287 |
|
| ACMH | | 75.40 17 | 77.99 294 | 74.96 302 | 87.10 257 | 90.67 262 | 76.41 261 | 93.19 289 | 91.64 317 | 72.47 333 | 63.44 348 | 87.61 280 | 43.34 351 | 97.16 197 | 58.34 342 | 73.94 284 | 87.72 314 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pm-mvs1 | | | 80.05 278 | 78.02 283 | 86.15 273 | 85.42 332 | 75.81 275 | 95.11 238 | 92.69 303 | 77.13 295 | 70.36 317 | 87.43 281 | 58.44 282 | 95.27 288 | 71.36 283 | 64.25 349 | 87.36 325 |
|
| FE-MVS | | | 86.06 188 | 84.15 203 | 91.78 137 | 94.33 157 | 79.81 173 | 84.58 359 | 96.61 78 | 76.69 300 | 85.00 161 | 87.38 282 | 70.71 208 | 98.37 139 | 70.39 292 | 91.70 159 | 97.17 141 |
|
| FMVSNet2 | | | 82.79 243 | 80.44 259 | 89.83 197 | 92.66 206 | 85.43 48 | 95.42 222 | 94.35 231 | 79.06 273 | 74.46 285 | 87.28 283 | 56.38 304 | 94.31 316 | 69.72 296 | 74.68 282 | 89.76 266 |
|
| LTVRE_ROB | | 73.68 18 | 77.99 294 | 75.74 299 | 84.74 294 | 90.45 266 | 72.02 310 | 86.41 349 | 91.12 324 | 72.57 332 | 66.63 335 | 87.27 284 | 54.95 313 | 96.98 206 | 56.29 352 | 75.98 273 | 85.21 349 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| IterMVS-LS | | | 83.93 222 | 82.80 225 | 87.31 252 | 91.46 246 | 77.39 246 | 95.66 213 | 93.43 281 | 80.44 241 | 75.51 277 | 87.26 285 | 73.72 175 | 95.16 293 | 76.99 235 | 70.72 302 | 89.39 269 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| eth_miper_zixun_eth | | | 83.12 237 | 82.01 235 | 86.47 266 | 91.85 241 | 74.80 283 | 94.33 257 | 93.18 293 | 79.11 271 | 75.74 276 | 87.25 286 | 72.71 184 | 95.32 285 | 76.78 238 | 67.13 337 | 89.27 276 |
|
| c3_l | | | 83.80 225 | 82.65 227 | 87.25 254 | 92.10 229 | 77.74 240 | 95.25 229 | 93.04 298 | 78.58 279 | 76.01 268 | 87.21 287 | 75.25 153 | 95.11 296 | 77.54 230 | 68.89 319 | 88.91 293 |
|
| Effi-MVS+-dtu | | | 84.61 212 | 84.90 192 | 83.72 312 | 91.96 236 | 63.14 359 | 94.95 243 | 93.34 287 | 85.57 127 | 79.79 225 | 87.12 288 | 61.99 258 | 95.61 273 | 83.55 177 | 85.83 205 | 92.41 237 |
|
| DIV-MVS_self_test | | | 83.27 233 | 82.12 233 | 86.74 261 | 92.19 223 | 75.92 274 | 95.11 238 | 93.26 290 | 78.44 282 | 74.81 284 | 87.08 289 | 74.19 168 | 95.19 291 | 74.66 261 | 69.30 316 | 89.11 281 |
|
| cl____ | | | 83.27 233 | 82.12 233 | 86.74 261 | 92.20 222 | 75.95 272 | 95.11 238 | 93.27 289 | 78.44 282 | 74.82 283 | 87.02 290 | 74.19 168 | 95.19 291 | 74.67 260 | 69.32 315 | 89.09 282 |
|
| CostFormer | | | 89.08 128 | 88.39 131 | 91.15 157 | 93.13 193 | 79.15 194 | 88.61 331 | 96.11 129 | 83.14 190 | 89.58 115 | 86.93 291 | 83.83 45 | 96.87 214 | 88.22 135 | 85.92 203 | 97.42 127 |
|
| WR-MVS_H | | | 81.02 269 | 80.09 263 | 83.79 309 | 88.08 300 | 71.26 321 | 94.46 251 | 96.54 87 | 80.08 251 | 72.81 301 | 86.82 292 | 70.36 210 | 92.65 336 | 64.18 320 | 67.50 334 | 87.46 324 |
|
| v1144 | | | 82.90 242 | 81.27 247 | 87.78 237 | 86.29 319 | 79.07 198 | 96.14 192 | 93.93 252 | 80.05 252 | 77.38 244 | 86.80 293 | 65.50 234 | 95.93 252 | 75.21 255 | 70.13 306 | 88.33 305 |
|
| V42 | | | 83.04 239 | 81.53 243 | 87.57 245 | 86.27 320 | 79.09 197 | 95.87 205 | 94.11 246 | 80.35 245 | 77.22 248 | 86.79 294 | 65.32 238 | 96.02 245 | 77.74 224 | 70.14 305 | 87.61 318 |
|
| LF4IMVS | | | 72.36 328 | 70.82 326 | 76.95 348 | 79.18 365 | 56.33 374 | 86.12 351 | 86.11 365 | 69.30 348 | 63.06 351 | 86.66 295 | 33.03 376 | 92.25 340 | 65.33 316 | 68.64 321 | 82.28 367 |
|
| LCM-MVSNet-Re | | | 83.75 226 | 83.54 213 | 84.39 305 | 93.54 178 | 64.14 353 | 92.51 296 | 84.03 372 | 83.90 175 | 66.14 338 | 86.59 296 | 67.36 223 | 92.68 335 | 84.89 160 | 92.87 144 | 96.35 168 |
|
| v1192 | | | 82.31 252 | 80.55 258 | 87.60 242 | 85.94 325 | 78.47 212 | 95.85 207 | 93.80 264 | 79.33 265 | 76.97 251 | 86.51 297 | 63.33 249 | 95.87 255 | 73.11 272 | 70.13 306 | 88.46 301 |
|
| v144192 | | | 82.43 248 | 80.73 254 | 87.54 246 | 85.81 328 | 78.22 219 | 95.98 197 | 93.78 266 | 79.09 272 | 77.11 249 | 86.49 298 | 64.66 244 | 95.91 253 | 74.20 265 | 69.42 314 | 88.49 299 |
|
| TransMVSNet (Re) | | | 76.94 305 | 74.38 309 | 84.62 299 | 85.92 326 | 75.25 279 | 95.28 226 | 89.18 345 | 73.88 320 | 67.22 328 | 86.46 299 | 59.64 270 | 94.10 319 | 59.24 341 | 52.57 373 | 84.50 353 |
|
| v1921920 | | | 82.02 256 | 80.23 262 | 87.41 249 | 85.62 330 | 77.92 232 | 95.79 209 | 93.69 271 | 78.86 276 | 76.67 254 | 86.44 300 | 62.50 252 | 95.83 257 | 72.69 274 | 69.77 312 | 88.47 300 |
|
| v1240 | | | 81.70 260 | 79.83 270 | 87.30 253 | 85.50 331 | 77.70 241 | 95.48 219 | 93.44 280 | 78.46 281 | 76.53 257 | 86.44 300 | 60.85 265 | 95.84 256 | 71.59 281 | 70.17 304 | 88.35 304 |
|
| tpm2 | | | 87.35 169 | 86.26 170 | 90.62 172 | 92.93 201 | 78.67 206 | 88.06 336 | 95.99 138 | 79.33 265 | 87.40 139 | 86.43 302 | 80.28 66 | 96.40 230 | 80.23 203 | 85.73 207 | 96.79 154 |
|
| Baseline_NR-MVSNet | | | 81.22 267 | 80.07 265 | 84.68 296 | 85.32 336 | 75.12 280 | 96.48 168 | 88.80 349 | 76.24 304 | 77.28 247 | 86.40 303 | 67.61 218 | 94.39 315 | 75.73 251 | 66.73 341 | 84.54 352 |
|
| anonymousdsp | | | 80.98 271 | 79.97 267 | 84.01 306 | 81.73 358 | 70.44 324 | 92.49 297 | 93.58 277 | 77.10 297 | 72.98 299 | 86.31 304 | 57.58 291 | 94.90 302 | 79.32 211 | 78.63 262 | 86.69 332 |
|
| SixPastTwentyTwo | | | 76.04 309 | 74.32 310 | 81.22 329 | 84.54 342 | 61.43 365 | 91.16 313 | 89.30 344 | 77.89 284 | 64.04 345 | 86.31 304 | 48.23 334 | 94.29 317 | 63.54 325 | 63.84 351 | 87.93 312 |
|
| Anonymous20231211 | | | 79.72 281 | 77.19 289 | 87.33 250 | 95.59 115 | 77.16 252 | 95.18 235 | 94.18 242 | 59.31 377 | 72.57 303 | 86.20 306 | 47.89 339 | 95.66 267 | 74.53 263 | 69.24 317 | 89.18 278 |
|
| tpmrst | | | 88.36 149 | 87.38 154 | 91.31 149 | 94.36 156 | 79.92 171 | 87.32 341 | 95.26 183 | 85.32 132 | 88.34 131 | 86.13 307 | 80.60 63 | 96.70 222 | 83.78 170 | 85.34 211 | 97.30 134 |
|
| v148 | | | 82.41 251 | 80.89 250 | 86.99 259 | 86.18 322 | 76.81 256 | 96.27 183 | 93.82 261 | 80.49 240 | 75.28 280 | 86.11 308 | 67.32 224 | 95.75 262 | 75.48 253 | 67.03 339 | 88.42 303 |
|
| GBi-Net | | | 82.42 249 | 80.43 260 | 88.39 222 | 92.66 206 | 81.95 114 | 94.30 259 | 93.38 283 | 79.06 273 | 75.82 273 | 85.66 309 | 56.38 304 | 93.84 323 | 71.23 284 | 75.38 278 | 89.38 271 |
|
| test1 | | | 82.42 249 | 80.43 260 | 88.39 222 | 92.66 206 | 81.95 114 | 94.30 259 | 93.38 283 | 79.06 273 | 75.82 273 | 85.66 309 | 56.38 304 | 93.84 323 | 71.23 284 | 75.38 278 | 89.38 271 |
|
| FMVSNet1 | | | 79.50 284 | 76.54 294 | 88.39 222 | 88.47 295 | 81.95 114 | 94.30 259 | 93.38 283 | 73.14 326 | 72.04 307 | 85.66 309 | 43.86 348 | 93.84 323 | 65.48 315 | 72.53 291 | 89.38 271 |
|
| TDRefinement | | | 69.20 338 | 65.78 342 | 79.48 338 | 66.04 388 | 62.21 361 | 88.21 333 | 86.12 364 | 62.92 361 | 61.03 361 | 85.61 312 | 33.23 375 | 94.16 318 | 55.82 355 | 53.02 371 | 82.08 368 |
|
| v8 | | | 81.88 258 | 80.06 266 | 87.32 251 | 86.63 314 | 79.04 199 | 94.41 253 | 93.65 273 | 78.77 277 | 73.19 297 | 85.57 313 | 66.87 227 | 95.81 258 | 73.84 269 | 67.61 333 | 87.11 327 |
|
| EPMVS | | | 87.47 168 | 85.90 174 | 92.18 119 | 95.41 119 | 82.26 112 | 87.00 344 | 96.28 115 | 85.88 123 | 84.23 170 | 85.57 313 | 75.07 156 | 96.26 235 | 71.14 287 | 92.50 149 | 98.03 78 |
|
| tfpnnormal | | | 78.14 293 | 75.42 300 | 86.31 270 | 88.33 298 | 79.24 190 | 94.41 253 | 96.22 120 | 73.51 322 | 69.81 321 | 85.52 315 | 55.43 308 | 95.75 262 | 47.65 375 | 67.86 330 | 83.95 358 |
|
| D2MVS | | | 82.67 245 | 81.55 242 | 86.04 275 | 87.77 304 | 76.47 259 | 95.21 231 | 96.58 83 | 82.66 205 | 70.26 318 | 85.46 316 | 60.39 267 | 95.80 259 | 76.40 243 | 79.18 255 | 85.83 345 |
|
| miper_lstm_enhance | | | 81.66 262 | 80.66 256 | 84.67 297 | 91.19 249 | 71.97 312 | 91.94 303 | 93.19 291 | 77.86 286 | 72.27 305 | 85.26 317 | 73.46 178 | 93.42 331 | 73.71 270 | 67.05 338 | 88.61 295 |
|
| v10 | | | 81.43 264 | 79.53 272 | 87.11 256 | 86.38 316 | 78.87 200 | 94.31 258 | 93.43 281 | 77.88 285 | 73.24 296 | 85.26 317 | 65.44 235 | 95.75 262 | 72.14 278 | 67.71 332 | 86.72 331 |
|
| tpm | | | 85.55 197 | 84.47 198 | 88.80 215 | 90.19 270 | 75.39 278 | 88.79 329 | 94.69 207 | 84.83 145 | 83.96 175 | 85.21 319 | 78.22 92 | 94.68 308 | 76.32 245 | 78.02 269 | 96.34 169 |
|
| IterMVS-SCA-FT | | | 80.51 276 | 79.10 275 | 84.73 295 | 89.63 282 | 74.66 284 | 92.98 291 | 91.81 314 | 80.05 252 | 71.06 313 | 85.18 320 | 58.04 285 | 91.40 350 | 72.48 277 | 70.70 303 | 88.12 309 |
|
| dp | | | 84.30 218 | 82.31 231 | 90.28 182 | 94.24 159 | 77.97 228 | 86.57 347 | 95.53 163 | 79.94 255 | 80.75 213 | 85.16 321 | 71.49 200 | 96.39 231 | 63.73 323 | 83.36 221 | 96.48 165 |
|
| IterMVS | | | 80.67 274 | 79.16 274 | 85.20 289 | 89.79 276 | 76.08 266 | 92.97 292 | 91.86 312 | 80.28 247 | 71.20 311 | 85.14 322 | 57.93 289 | 91.34 351 | 72.52 276 | 70.74 301 | 88.18 308 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| SCA | | | 85.63 195 | 83.64 210 | 91.60 144 | 92.30 217 | 81.86 121 | 92.88 293 | 95.56 162 | 84.85 144 | 82.52 189 | 85.12 323 | 58.04 285 | 95.39 280 | 73.89 267 | 87.58 189 | 97.54 117 |
|
| Patchmatch-test | | | 78.25 292 | 74.72 306 | 88.83 214 | 91.20 248 | 74.10 291 | 73.91 384 | 88.70 352 | 59.89 375 | 66.82 333 | 85.12 323 | 78.38 89 | 94.54 311 | 48.84 373 | 79.58 252 | 97.86 94 |
|
| PatchmatchNet |  | | 86.83 176 | 85.12 187 | 91.95 130 | 94.12 164 | 82.27 111 | 86.55 348 | 95.64 159 | 84.59 153 | 82.98 188 | 84.99 325 | 77.26 107 | 95.96 250 | 68.61 300 | 91.34 161 | 97.64 112 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| ppachtmachnet_test | | | 77.19 303 | 74.22 311 | 86.13 274 | 85.39 333 | 78.22 219 | 93.98 266 | 91.36 321 | 71.74 337 | 67.11 330 | 84.87 326 | 56.67 300 | 93.37 333 | 52.21 362 | 64.59 346 | 86.80 330 |
|
| TinyColmap | | | 72.41 327 | 68.99 336 | 82.68 321 | 88.11 299 | 69.59 331 | 88.41 332 | 85.20 367 | 65.55 356 | 57.91 369 | 84.82 327 | 30.80 380 | 95.94 251 | 51.38 363 | 68.70 320 | 82.49 366 |
|
| our_test_3 | | | 77.90 297 | 75.37 301 | 85.48 286 | 85.39 333 | 76.74 257 | 93.63 274 | 91.67 315 | 73.39 325 | 65.72 340 | 84.65 328 | 58.20 284 | 93.13 334 | 57.82 344 | 67.87 329 | 86.57 334 |
|
| v7n | | | 79.32 287 | 77.34 287 | 85.28 288 | 84.05 349 | 72.89 304 | 93.38 280 | 93.87 258 | 75.02 312 | 70.68 314 | 84.37 329 | 59.58 272 | 95.62 272 | 67.60 302 | 67.50 334 | 87.32 326 |
|
| test20.03 | | | 72.36 328 | 71.15 325 | 75.98 353 | 77.79 369 | 59.16 371 | 92.40 299 | 89.35 343 | 74.09 318 | 61.50 358 | 84.32 330 | 48.09 335 | 85.54 378 | 50.63 367 | 62.15 356 | 83.24 359 |
|
| MDTV_nov1_ep13 | | | | 83.69 207 | | 94.09 165 | 81.01 141 | 86.78 346 | 96.09 130 | 83.81 178 | 84.75 165 | 84.32 330 | 74.44 166 | 96.54 226 | 63.88 322 | 85.07 212 | |
|
| pmmvs6 | | | 74.65 317 | 71.67 323 | 83.60 314 | 79.13 366 | 69.94 327 | 93.31 285 | 90.88 331 | 61.05 371 | 65.83 339 | 84.15 332 | 43.43 350 | 94.83 305 | 66.62 308 | 60.63 358 | 86.02 342 |
|
| test_0402 | | | 72.68 326 | 69.54 333 | 82.09 326 | 88.67 293 | 71.81 315 | 92.72 295 | 86.77 362 | 61.52 366 | 62.21 355 | 83.91 333 | 43.22 352 | 93.76 326 | 34.60 385 | 72.23 295 | 80.72 373 |
|
| EG-PatchMatch MVS | | | 74.92 315 | 72.02 322 | 83.62 313 | 83.76 353 | 73.28 297 | 93.62 275 | 92.04 311 | 68.57 349 | 58.88 366 | 83.80 334 | 31.87 378 | 95.57 276 | 56.97 350 | 78.67 259 | 82.00 369 |
|
| Anonymous20231206 | | | 75.29 314 | 73.64 315 | 80.22 335 | 80.75 359 | 63.38 358 | 93.36 281 | 90.71 334 | 73.09 327 | 67.12 329 | 83.70 335 | 50.33 329 | 90.85 356 | 53.63 360 | 70.10 308 | 86.44 335 |
|
| tpmvs | | | 83.04 239 | 80.77 252 | 89.84 196 | 95.43 118 | 77.96 229 | 85.59 354 | 95.32 180 | 75.31 309 | 76.27 264 | 83.70 335 | 73.89 172 | 97.41 182 | 59.53 337 | 81.93 238 | 94.14 216 |
|
| lessismore_v0 | | | | | 79.98 336 | 80.59 361 | 58.34 372 | | 80.87 379 | | 58.49 367 | 83.46 337 | 43.10 353 | 93.89 322 | 63.11 327 | 48.68 377 | 87.72 314 |
|
| tpm cat1 | | | 83.63 228 | 81.38 245 | 90.39 178 | 93.53 183 | 78.19 224 | 85.56 355 | 95.09 187 | 70.78 341 | 78.51 236 | 83.28 338 | 74.80 159 | 97.03 203 | 66.77 307 | 84.05 216 | 95.95 177 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 325 | 69.57 332 | 83.37 316 | 80.54 362 | 71.82 314 | 93.60 276 | 88.22 354 | 62.37 362 | 61.98 356 | 83.15 339 | 35.31 373 | 95.47 278 | 45.08 378 | 75.88 275 | 82.82 361 |
|
| KD-MVS_2432*1600 | | | 77.63 299 | 74.92 304 | 85.77 277 | 90.86 258 | 79.44 184 | 88.08 334 | 93.92 254 | 76.26 302 | 67.05 331 | 82.78 340 | 72.15 192 | 91.92 344 | 61.53 330 | 41.62 387 | 85.94 343 |
|
| miper_refine_blended | | | 77.63 299 | 74.92 304 | 85.77 277 | 90.86 258 | 79.44 184 | 88.08 334 | 93.92 254 | 76.26 302 | 67.05 331 | 82.78 340 | 72.15 192 | 91.92 344 | 61.53 330 | 41.62 387 | 85.94 343 |
|
| K. test v3 | | | 73.62 319 | 71.59 324 | 79.69 337 | 82.98 354 | 59.85 370 | 90.85 317 | 88.83 348 | 77.13 295 | 58.90 365 | 82.11 342 | 43.62 349 | 91.72 348 | 65.83 314 | 54.10 368 | 87.50 323 |
|
| MDA-MVSNet-bldmvs | | | 71.45 332 | 67.94 337 | 81.98 327 | 85.33 335 | 68.50 337 | 92.35 300 | 88.76 350 | 70.40 342 | 42.99 383 | 81.96 343 | 46.57 343 | 91.31 352 | 48.75 374 | 54.39 367 | 86.11 340 |
|
| MIMVSNet | | | 79.18 288 | 75.99 297 | 88.72 217 | 87.37 310 | 80.66 152 | 79.96 368 | 91.82 313 | 77.38 292 | 74.33 286 | 81.87 344 | 41.78 357 | 90.74 357 | 66.36 313 | 83.10 223 | 94.76 206 |
|
| UnsupCasMVSNet_eth | | | 73.25 323 | 70.57 328 | 81.30 328 | 77.53 370 | 66.33 347 | 87.24 342 | 93.89 257 | 80.38 244 | 57.90 370 | 81.59 345 | 42.91 355 | 90.56 358 | 65.18 317 | 48.51 378 | 87.01 329 |
|
| CL-MVSNet_self_test | | | 75.81 311 | 74.14 313 | 80.83 333 | 78.33 368 | 67.79 339 | 94.22 263 | 93.52 278 | 77.28 294 | 69.82 320 | 81.54 346 | 61.47 263 | 89.22 363 | 57.59 346 | 53.51 369 | 85.48 347 |
|
| DSMNet-mixed | | | 73.13 324 | 72.45 320 | 75.19 355 | 77.51 371 | 46.82 385 | 85.09 357 | 82.01 378 | 67.61 354 | 69.27 324 | 81.33 347 | 50.89 325 | 86.28 375 | 54.54 357 | 83.80 217 | 92.46 235 |
|
| YYNet1 | | | 73.53 322 | 70.43 329 | 82.85 320 | 84.52 343 | 71.73 316 | 91.69 308 | 91.37 320 | 67.63 350 | 46.79 379 | 81.21 348 | 55.04 312 | 90.43 359 | 55.93 353 | 59.70 360 | 86.38 336 |
|
| MDA-MVSNet_test_wron | | | 73.54 321 | 70.43 329 | 82.86 319 | 84.55 341 | 71.85 313 | 91.74 307 | 91.32 323 | 67.63 350 | 46.73 380 | 81.09 349 | 55.11 311 | 90.42 360 | 55.91 354 | 59.76 359 | 86.31 337 |
|
| tmp_tt | | | 41.54 359 | 41.93 361 | 40.38 378 | 20.10 403 | 26.84 402 | 61.93 390 | 59.09 399 | 14.81 397 | 28.51 392 | 80.58 350 | 35.53 371 | 48.33 399 | 63.70 324 | 13.11 396 | 45.96 392 |
|
| FMVSNet5 | | | 76.46 308 | 74.16 312 | 83.35 317 | 90.05 274 | 76.17 264 | 89.58 323 | 89.85 338 | 71.39 339 | 65.29 342 | 80.42 351 | 50.61 327 | 87.70 371 | 61.05 335 | 69.24 317 | 86.18 339 |
|
| CR-MVSNet | | | 83.53 229 | 81.36 246 | 90.06 187 | 90.16 271 | 79.75 176 | 79.02 373 | 91.12 324 | 84.24 166 | 82.27 197 | 80.35 352 | 75.45 143 | 93.67 327 | 63.37 326 | 86.25 198 | 96.75 158 |
|
| Patchmtry | | | 77.36 302 | 74.59 307 | 85.67 281 | 89.75 278 | 75.75 276 | 77.85 376 | 91.12 324 | 60.28 372 | 71.23 310 | 80.35 352 | 75.45 143 | 93.56 329 | 57.94 343 | 67.34 336 | 87.68 316 |
|
| ADS-MVSNet2 | | | 79.57 283 | 77.53 286 | 85.71 279 | 93.78 171 | 72.13 307 | 79.48 369 | 86.11 365 | 73.09 327 | 80.14 221 | 79.99 354 | 62.15 255 | 90.14 362 | 59.49 338 | 83.52 218 | 94.85 204 |
|
| ADS-MVSNet | | | 81.26 266 | 78.36 279 | 89.96 192 | 93.78 171 | 79.78 174 | 79.48 369 | 93.60 275 | 73.09 327 | 80.14 221 | 79.99 354 | 62.15 255 | 95.24 289 | 59.49 338 | 83.52 218 | 94.85 204 |
|
| MIMVSNet1 | | | 69.44 336 | 66.65 340 | 77.84 345 | 76.48 375 | 62.84 360 | 87.42 340 | 88.97 347 | 66.96 355 | 57.75 371 | 79.72 356 | 32.77 377 | 85.83 377 | 46.32 376 | 63.42 352 | 84.85 351 |
|
| Anonymous20240521 | | | 72.06 330 | 69.91 331 | 78.50 344 | 77.11 373 | 61.67 364 | 91.62 310 | 90.97 329 | 65.52 357 | 62.37 354 | 79.05 357 | 36.32 368 | 90.96 355 | 57.75 345 | 68.52 322 | 82.87 360 |
|
| N_pmnet | | | 61.30 345 | 60.20 348 | 64.60 365 | 84.32 344 | 17.00 406 | 91.67 309 | 10.98 404 | 61.77 365 | 58.45 368 | 78.55 358 | 49.89 331 | 91.83 347 | 42.27 381 | 63.94 350 | 84.97 350 |
|
| PM-MVS | | | 69.32 337 | 66.93 339 | 76.49 350 | 73.60 380 | 55.84 376 | 85.91 352 | 79.32 383 | 74.72 314 | 61.09 360 | 78.18 359 | 21.76 385 | 91.10 354 | 70.86 289 | 56.90 364 | 82.51 364 |
|
| pmmvs-eth3d | | | 73.59 320 | 70.66 327 | 82.38 323 | 76.40 376 | 73.38 294 | 89.39 326 | 89.43 342 | 72.69 331 | 60.34 363 | 77.79 360 | 46.43 344 | 91.26 353 | 66.42 312 | 57.06 363 | 82.51 364 |
|
| KD-MVS_self_test | | | 70.97 334 | 69.31 334 | 75.95 354 | 76.24 378 | 55.39 379 | 87.45 339 | 90.94 330 | 70.20 344 | 62.96 353 | 77.48 361 | 44.01 347 | 88.09 366 | 61.25 334 | 53.26 370 | 84.37 354 |
|
| test_fmvs3 | | | 69.56 335 | 69.19 335 | 70.67 358 | 69.01 383 | 47.05 384 | 90.87 316 | 86.81 361 | 71.31 340 | 66.79 334 | 77.15 362 | 16.40 389 | 83.17 381 | 81.84 191 | 62.51 355 | 81.79 371 |
|
| mvsany_test3 | | | 67.19 341 | 65.34 343 | 72.72 357 | 63.08 389 | 48.57 383 | 83.12 364 | 78.09 384 | 72.07 334 | 61.21 359 | 77.11 363 | 22.94 384 | 87.78 370 | 78.59 218 | 51.88 374 | 81.80 370 |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 364 | 77.78 101 | 95.39 280 | | | |
|
| DeepMVS_CX |  | | | | 64.06 366 | 78.53 367 | 43.26 391 | | 68.11 395 | 69.94 345 | 38.55 385 | 76.14 365 | 18.53 387 | 79.34 384 | 43.72 379 | 41.62 387 | 69.57 381 |
|
| APD_test1 | | | 56.56 348 | 53.58 352 | 65.50 362 | 67.93 386 | 46.51 387 | 77.24 379 | 72.95 388 | 38.09 386 | 42.75 384 | 75.17 366 | 13.38 392 | 82.78 382 | 40.19 383 | 54.53 366 | 67.23 383 |
|
| test_vis1_rt | | | 73.96 318 | 72.40 321 | 78.64 343 | 83.91 350 | 61.16 366 | 95.63 215 | 68.18 393 | 76.32 301 | 60.09 364 | 74.77 367 | 29.01 382 | 97.54 173 | 87.74 138 | 75.94 274 | 77.22 377 |
|
| EGC-MVSNET | | | 52.46 353 | 47.56 356 | 67.15 361 | 81.98 357 | 60.11 368 | 82.54 366 | 72.44 389 | 0.11 401 | 0.70 402 | 74.59 368 | 25.11 383 | 83.26 380 | 29.04 388 | 61.51 357 | 58.09 386 |
|
| ambc | | | | | 76.02 352 | 68.11 385 | 51.43 381 | 64.97 389 | 89.59 339 | | 60.49 362 | 74.49 369 | 17.17 388 | 92.46 337 | 61.50 332 | 52.85 372 | 84.17 356 |
|
| pmmvs3 | | | 65.75 343 | 62.18 346 | 76.45 351 | 67.12 387 | 64.54 350 | 88.68 330 | 85.05 368 | 54.77 383 | 57.54 372 | 73.79 370 | 29.40 381 | 86.21 376 | 55.49 356 | 47.77 380 | 78.62 375 |
|
| new-patchmatchnet | | | 68.85 339 | 65.93 341 | 77.61 347 | 73.57 381 | 63.94 355 | 90.11 321 | 88.73 351 | 71.62 338 | 55.08 374 | 73.60 371 | 40.84 362 | 87.22 374 | 51.35 365 | 48.49 379 | 81.67 372 |
|
| Patchmatch-RL test | | | 76.65 307 | 74.01 314 | 84.55 300 | 77.37 372 | 64.23 352 | 78.49 375 | 82.84 376 | 78.48 280 | 64.63 344 | 73.40 372 | 76.05 131 | 91.70 349 | 76.99 235 | 57.84 362 | 97.72 105 |
|
| PatchT | | | 79.75 280 | 76.85 292 | 88.42 220 | 89.55 283 | 75.49 277 | 77.37 377 | 94.61 216 | 63.07 360 | 82.46 191 | 73.32 373 | 75.52 142 | 93.41 332 | 51.36 364 | 84.43 214 | 96.36 167 |
|
| WB-MVS | | | 57.26 346 | 56.22 349 | 60.39 371 | 69.29 382 | 35.91 398 | 86.39 350 | 70.06 391 | 59.84 376 | 46.46 381 | 72.71 374 | 51.18 324 | 78.11 385 | 15.19 395 | 34.89 390 | 67.14 384 |
|
| test_f | | | 64.01 344 | 62.13 347 | 69.65 359 | 63.00 390 | 45.30 390 | 83.66 363 | 80.68 380 | 61.30 368 | 55.70 373 | 72.62 375 | 14.23 391 | 84.64 379 | 69.84 294 | 58.11 361 | 79.00 374 |
|
| RPMNet | | | 79.85 279 | 75.92 298 | 91.64 141 | 90.16 271 | 79.75 176 | 79.02 373 | 95.44 171 | 58.43 379 | 82.27 197 | 72.55 376 | 73.03 182 | 98.41 138 | 46.10 377 | 86.25 198 | 96.75 158 |
|
| FPMVS | | | 55.09 350 | 52.93 353 | 61.57 369 | 55.98 392 | 40.51 394 | 83.11 365 | 83.41 375 | 37.61 387 | 34.95 388 | 71.95 377 | 14.40 390 | 76.95 387 | 29.81 387 | 65.16 345 | 67.25 382 |
|
| test_method | | | 56.77 347 | 54.53 351 | 63.49 367 | 76.49 374 | 40.70 393 | 75.68 380 | 74.24 387 | 19.47 395 | 48.73 378 | 71.89 378 | 19.31 386 | 65.80 395 | 57.46 347 | 47.51 381 | 83.97 357 |
|
| new_pmnet | | | 66.18 342 | 63.18 345 | 75.18 356 | 76.27 377 | 61.74 363 | 83.79 362 | 84.66 369 | 56.64 381 | 51.57 377 | 71.85 379 | 31.29 379 | 87.93 367 | 49.98 369 | 62.55 354 | 75.86 378 |
|
| SSC-MVS | | | 56.01 349 | 54.96 350 | 59.17 372 | 68.42 384 | 34.13 399 | 84.98 358 | 69.23 392 | 58.08 380 | 45.36 382 | 71.67 380 | 50.30 330 | 77.46 386 | 14.28 396 | 32.33 391 | 65.91 385 |
|
| UnsupCasMVSNet_bld | | | 68.60 340 | 64.50 344 | 80.92 332 | 74.63 379 | 67.80 338 | 83.97 361 | 92.94 299 | 65.12 358 | 54.63 375 | 68.23 381 | 35.97 370 | 92.17 343 | 60.13 336 | 44.83 382 | 82.78 362 |
|
| testf1 | | | 45.70 356 | 42.41 358 | 55.58 373 | 53.29 396 | 40.02 395 | 68.96 387 | 62.67 397 | 27.45 390 | 29.85 390 | 61.58 382 | 5.98 400 | 73.83 392 | 28.49 390 | 43.46 385 | 52.90 387 |
|
| APD_test2 | | | 45.70 356 | 42.41 358 | 55.58 373 | 53.29 396 | 40.02 395 | 68.96 387 | 62.67 397 | 27.45 390 | 29.85 390 | 61.58 382 | 5.98 400 | 73.83 392 | 28.49 390 | 43.46 385 | 52.90 387 |
|
| PMMVS2 | | | 50.90 354 | 46.31 357 | 64.67 364 | 55.53 393 | 46.67 386 | 77.30 378 | 71.02 390 | 40.89 385 | 34.16 389 | 59.32 384 | 9.83 397 | 76.14 390 | 40.09 384 | 28.63 392 | 71.21 379 |
|
| JIA-IIPM | | | 79.00 289 | 77.20 288 | 84.40 304 | 89.74 280 | 64.06 354 | 75.30 381 | 95.44 171 | 62.15 363 | 81.90 202 | 59.08 385 | 78.92 81 | 95.59 274 | 66.51 311 | 85.78 206 | 93.54 227 |
|
| LCM-MVSNet | | | 52.52 352 | 48.24 355 | 65.35 363 | 47.63 399 | 41.45 392 | 72.55 385 | 83.62 374 | 31.75 388 | 37.66 386 | 57.92 386 | 9.19 398 | 76.76 388 | 49.26 371 | 44.60 383 | 77.84 376 |
|
| gg-mvs-nofinetune | | | 85.48 199 | 82.90 222 | 93.24 73 | 94.51 151 | 85.82 41 | 79.22 371 | 96.97 36 | 61.19 369 | 87.33 141 | 53.01 387 | 90.58 6 | 96.07 241 | 86.07 151 | 97.23 79 | 97.81 100 |
|
| MVS-HIRNet | | | 71.36 333 | 67.00 338 | 84.46 303 | 90.58 263 | 69.74 330 | 79.15 372 | 87.74 358 | 46.09 384 | 61.96 357 | 50.50 388 | 45.14 346 | 95.64 270 | 53.74 359 | 88.11 185 | 88.00 311 |
|
| PMVS |  | 34.80 23 | 39.19 360 | 35.53 363 | 50.18 376 | 29.72 402 | 30.30 401 | 59.60 391 | 66.20 396 | 26.06 392 | 17.91 396 | 49.53 389 | 3.12 402 | 74.09 391 | 18.19 394 | 49.40 376 | 46.14 390 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 54.10 351 | 51.04 354 | 63.27 368 | 58.16 391 | 46.08 389 | 84.17 360 | 49.32 403 | 56.48 382 | 36.56 387 | 49.48 390 | 8.03 399 | 91.91 346 | 67.29 305 | 49.87 375 | 51.82 389 |
|
| ANet_high | | | 46.22 355 | 41.28 362 | 61.04 370 | 39.91 401 | 46.25 388 | 70.59 386 | 76.18 386 | 58.87 378 | 23.09 394 | 48.00 391 | 12.58 394 | 66.54 394 | 28.65 389 | 13.62 395 | 70.35 380 |
|
| MVE |  | 35.65 22 | 33.85 361 | 29.49 366 | 46.92 377 | 41.86 400 | 36.28 397 | 50.45 392 | 56.52 400 | 18.75 396 | 18.28 395 | 37.84 392 | 2.41 403 | 58.41 396 | 18.71 393 | 20.62 393 | 46.06 391 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| Gipuma |  | | 45.11 358 | 42.05 360 | 54.30 375 | 80.69 360 | 51.30 382 | 35.80 393 | 83.81 373 | 28.13 389 | 27.94 393 | 34.53 393 | 11.41 396 | 76.70 389 | 21.45 392 | 54.65 365 | 34.90 393 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_post | | | | | | | | | | | | 33.80 394 | 76.17 129 | 95.97 247 | | | |
|
| E-PMN | | | 32.70 362 | 32.39 364 | 33.65 379 | 53.35 395 | 25.70 403 | 74.07 383 | 53.33 401 | 21.08 393 | 17.17 397 | 33.63 395 | 11.85 395 | 54.84 397 | 12.98 397 | 14.04 394 | 20.42 394 |
|
| EMVS | | | 31.70 363 | 31.45 365 | 32.48 380 | 50.72 398 | 23.95 404 | 74.78 382 | 52.30 402 | 20.36 394 | 16.08 398 | 31.48 396 | 12.80 393 | 53.60 398 | 11.39 398 | 13.10 397 | 19.88 395 |
|
| test_post1 | | | | | | | | 85.88 353 | | | | 30.24 397 | 73.77 173 | 95.07 300 | 73.89 267 | | |
|
| X-MVStestdata | | | 86.26 185 | 84.14 204 | 92.63 98 | 98.52 37 | 80.29 161 | 97.37 105 | 96.44 98 | 87.04 105 | 91.38 87 | 20.73 398 | 77.24 109 | 99.59 60 | 90.46 105 | 98.07 52 | 98.02 79 |
|
| testmvs | | | 9.92 366 | 12.94 369 | 0.84 383 | 0.65 404 | 0.29 408 | 93.78 272 | 0.39 406 | 0.42 399 | 2.85 400 | 15.84 399 | 0.17 406 | 0.30 402 | 2.18 400 | 0.21 399 | 1.91 397 |
|
| test123 | | | 9.07 367 | 11.73 370 | 1.11 382 | 0.50 405 | 0.77 407 | 89.44 325 | 0.20 407 | 0.34 400 | 2.15 401 | 10.72 400 | 0.34 405 | 0.32 401 | 1.79 401 | 0.08 400 | 2.23 396 |
|
| wuyk23d | | | 14.10 365 | 13.89 368 | 14.72 381 | 55.23 394 | 22.91 405 | 33.83 394 | 3.56 405 | 4.94 398 | 4.11 399 | 2.28 401 | 2.06 404 | 19.66 400 | 10.23 399 | 8.74 398 | 1.59 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 5.92 369 | 7.89 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 71.04 204 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 67.18 342 | | | | | | | | 49.00 372 | | |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 227 | 98.13 49 | 96.21 121 | 83.04 194 | 94.39 51 | | | | | | |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 46 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 46 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 49 | | 96.86 45 | 92.05 27 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| save fliter | | | | | | 98.24 51 | 83.34 93 | 98.61 33 | 96.57 84 | 91.32 32 | | | | | | | |
|
| test_0728_SECOND | | | | | 95.14 18 | 99.04 14 | 86.14 35 | 99.06 16 | 96.77 55 | | | | | 99.84 12 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 117 |
|
| test_part2 | | | | | | 98.90 19 | 85.14 60 | | | | 96.07 28 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 102 | | | | 97.54 117 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 150 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 112 | | | | | | | | |
|
| MTMP | | | | | | | | 97.53 90 | 68.16 394 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 39 | 99.03 13 | 98.31 62 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 58 | 99.00 15 | 98.57 46 |
|
| agg_prior | | | | | | 98.59 35 | 83.13 97 | | 96.56 86 | | 94.19 53 | | | 99.16 96 | | | |
|
| test_prior4 | | | | | | | 82.34 110 | 97.75 75 | | | | | | | | | |
|
| test_prior | | | | | 93.09 79 | 98.68 26 | 81.91 118 | | 96.40 104 | | | | | 99.06 104 | | | 98.29 64 |
|
| 旧先验2 | | | | | | | | 96.97 138 | | 74.06 319 | 96.10 27 | | | 97.76 160 | 88.38 133 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 96.42 175 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 96.87 145 | 96.78 49 | 77.39 291 | | | | 99.52 69 | 79.95 206 | | 98.43 55 |
|
| 原ACMM2 | | | | | | | | 96.84 146 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 242 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
| testdata1 | | | | | | | | 95.57 217 | | 87.44 94 | | | | | | | |
|
| test12 | | | | | 94.25 37 | 98.34 46 | 85.55 46 | | 96.35 111 | | 92.36 73 | | 80.84 59 | 99.22 87 | | 98.31 47 | 97.98 86 |
|
| plane_prior7 | | | | | | 91.86 239 | 77.55 243 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 91.98 235 | 77.92 232 | | | | | | 64.77 242 | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 207 | | | | | 97.30 189 | 87.08 144 | 82.82 228 | 90.96 243 |
|
| plane_prior3 | | | | | | | 77.75 239 | | | 90.17 50 | 81.33 207 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 115 | | 89.89 53 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 237 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 77.96 229 | 97.52 93 | | 90.36 48 | | | | | | 82.96 226 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 382 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 92 | | | | | | | | |
|
| door | | | | | | | | | 80.13 381 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 209 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 230 | | 97.63 82 | | 90.52 43 | 82.30 193 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 230 | | 97.63 82 | | 90.52 43 | 82.30 193 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 140 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 193 | | | 97.32 187 | | | 91.13 241 |
|
| HQP3-MVS | | | | | | | | | 94.80 202 | | | | | | | 83.01 224 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 236 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 126 | 86.80 345 | | 80.65 235 | 85.65 155 | | 74.26 167 | | 76.52 241 | | 96.98 146 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 265 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 256 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 197 | | | | |
|