This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 2196.17 589.91 19497.09 9070.21 32698.99 2296.69 6795.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 1196.78 4988.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
test_241102_TWO96.78 4988.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test072699.05 985.18 5499.11 1496.78 4988.75 6497.65 1198.91 287.69 22
test_241102_ONE99.03 1585.03 6196.78 4988.72 6697.79 698.90 588.48 1799.82 18
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7296.74 6086.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1494.26 2998.10 5798.14 4696.52 8984.74 14794.83 4698.80 782.80 5299.37 8095.95 4098.42 40
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2894.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5588.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
test_one_060198.91 1884.56 7196.70 6588.06 7996.57 2298.77 1088.04 20
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9688.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10084.02 16995.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5585.32 13297.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 7998.64 3196.93 4090.71 4093.08 6798.70 1579.98 7099.21 8894.12 6299.07 1198.63 44
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15284.30 7599.14 996.00 13791.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11793.38 18681.71 12898.86 2496.98 3491.64 2996.85 1598.55 1975.58 14099.77 2997.88 1993.68 13395.18 198
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7593.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10894.56 14582.01 11399.07 1597.13 2692.09 2396.25 2598.53 2276.47 12299.80 2598.39 894.71 11995.22 197
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15484.61 6999.13 1096.15 12692.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4092.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12598.64 3197.13 2682.60 20694.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3095.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
test_fmvsm_n_192094.81 1895.60 1092.45 10395.29 12380.96 14499.29 297.21 2294.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 161
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10596.44 17296.04 13584.68 15089.12 12098.37 2977.48 10599.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 11981.35 13599.02 2096.59 8289.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11590.52 26481.92 11798.42 3796.24 11891.17 3496.02 2998.35 3175.34 15199.74 3897.84 2094.58 12195.05 199
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12588.08 30081.62 13197.97 6196.01 13690.62 4196.58 2198.33 3274.09 17099.71 4597.23 2793.46 13894.86 203
MSP-MVS95.62 796.54 192.86 8798.31 4880.10 16997.42 10296.78 4992.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9298.04 5796.41 10285.79 12495.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8097.67 8196.26 11683.00 19693.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
test_fmvsmconf_n93.99 3294.36 2792.86 8792.82 20381.12 13899.26 396.37 11093.47 1395.16 3598.21 3679.00 8099.64 5598.21 1096.73 9297.83 97
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9597.21 11196.09 13082.41 21094.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MTAPA92.45 6292.31 6092.86 8797.90 6180.85 14792.88 29396.33 11287.92 8390.20 10798.18 3876.71 12099.76 3192.57 8398.09 5197.96 89
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11392.35 298.21 4495.79 15192.42 2196.24 2698.18 3871.04 20499.17 9596.77 3397.39 7596.79 154
MAR-MVS90.63 10090.22 9891.86 13398.47 4278.20 22397.18 11596.61 7883.87 17688.18 13498.18 3868.71 21699.75 3683.66 17697.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 6997.76 7496.19 12489.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13192.02 698.19 4595.68 15792.06 2596.01 3098.14 4270.83 20798.96 10996.74 3596.57 9496.76 157
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6697.20 11396.20 12287.73 8888.40 13098.12 4378.71 8699.76 3187.99 13696.28 9798.74 35
test_898.63 3383.64 8797.81 7096.63 7784.50 15595.10 3998.11 4484.33 3899.23 86
TEST998.64 3183.71 8497.82 6896.65 7284.29 16495.16 3598.09 4584.39 3799.36 81
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8497.82 6896.65 7284.50 15595.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
CP-MVS92.54 6192.60 5592.34 10898.50 4079.90 17298.40 3896.40 10484.75 14690.48 10498.09 4577.40 10699.21 8891.15 9498.23 5097.92 90
旧先验197.39 8279.58 18396.54 8798.08 4884.00 4297.42 7497.62 114
SR-MVS92.16 6692.27 6191.83 13698.37 4578.41 21396.67 16095.76 15282.19 21491.97 7998.07 4976.44 12398.64 12393.71 6697.27 7898.45 54
ZD-MVS99.09 883.22 9696.60 8182.88 19993.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
MVS_030495.36 995.20 1695.85 1194.89 13889.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7696.82 14996.65 7286.24 11594.27 5297.99 5277.94 9699.83 1693.39 6998.57 3398.39 57
testdata90.13 18695.92 10774.17 29096.49 9573.49 32494.82 4797.99 5278.80 8597.93 15183.53 17997.52 6998.29 64
region2R92.72 5492.70 5292.79 9098.68 2680.53 15897.53 9096.51 9085.22 13591.94 8197.98 5577.26 10799.67 5390.83 9998.37 4498.18 69
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15397.47 9597.18 2577.06 29884.64 16897.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13897.58 8696.70 6585.20 13791.75 8397.97 5778.47 8899.71 4590.95 9598.41 4198.12 75
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
ACMMPR92.69 5692.67 5392.75 9198.66 2880.57 15497.58 8696.69 6785.20 13791.57 8597.92 5877.01 11299.67 5390.95 9598.41 4198.00 84
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9688.45 29680.81 14899.00 2195.11 18693.21 1594.00 5697.91 6076.84 11599.59 6097.91 1696.55 9597.54 117
test_fmvsmvis_n_192092.12 6792.10 6792.17 12090.87 25781.04 14098.34 4093.90 25692.71 1887.24 14397.90 6174.83 15899.72 4396.96 3196.20 9895.76 183
CS-MVS-test92.98 4593.67 3590.90 16496.52 9476.87 25498.68 2894.73 20690.36 4894.84 4597.89 6277.94 9697.15 20094.28 6197.80 6298.70 41
APD-MVS_3200maxsize91.23 8891.35 7890.89 16597.89 6276.35 26396.30 18295.52 16579.82 25691.03 9697.88 6374.70 16098.54 12892.11 8796.89 8597.77 102
SR-MVS-dyc-post91.29 8691.45 7790.80 16797.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6475.76 13698.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8297.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6473.36 18091.99 8896.79 8997.75 103
XVS92.69 5692.71 5192.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8797.83 6677.24 10999.59 6090.46 10598.07 5298.02 79
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10694.07 1095.34 3497.80 6776.83 11799.87 897.08 3097.64 6698.89 30
PGM-MVS91.93 7091.80 7192.32 11298.27 5079.74 17895.28 22697.27 2083.83 17790.89 9997.78 6876.12 13099.56 6688.82 12797.93 6097.66 110
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12397.63 8296.50 9285.00 14391.05 9597.74 6978.38 8999.80 2590.48 10498.34 4698.07 77
API-MVS90.18 10988.97 12193.80 5098.66 2882.95 10097.50 9495.63 16075.16 31086.31 15097.69 7072.49 18799.90 581.26 19496.07 10298.56 47
CS-MVS92.73 5293.48 4090.48 17696.27 9775.93 27398.55 3494.93 19389.32 5894.54 5097.67 7178.91 8297.02 20493.80 6497.32 7798.49 51
cdsmvs_eth3d_5k21.43 36428.57 3670.00 3840.00 4060.00 4090.00 39595.93 1440.00 4020.00 40397.66 7263.57 2470.00 4030.00 4020.00 4010.00 399
MP-MVScopyleft92.61 5992.67 5392.42 10698.13 5679.73 17997.33 10796.20 12285.63 12690.53 10297.66 7278.14 9499.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS91.88 7191.82 7092.07 12498.38 4478.63 20797.29 10896.09 13085.12 13988.45 12997.66 7275.53 14199.68 5189.83 11598.02 5597.88 91
lupinMVS93.87 3493.58 3894.75 2793.00 19688.08 1799.15 795.50 16691.03 3794.90 4397.66 7278.84 8397.56 16994.64 5797.46 7098.62 45
patch_mono-295.14 1296.08 792.33 11098.44 4377.84 23598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12495.03 24296.13 12784.65 15186.10 15397.65 7679.24 7799.75 3683.20 18296.88 8698.56 47
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6398.51 3595.96 14180.57 23788.08 13597.63 7876.84 11599.89 785.67 15394.88 11698.13 74
test_fmvsmconf0.01_n91.08 9190.68 8892.29 11382.43 35680.12 16897.94 6293.93 25292.07 2491.97 7997.60 7967.56 22099.53 6897.09 2995.56 11297.21 139
新几何193.12 7797.44 7881.60 13296.71 6474.54 31591.22 9397.57 8079.13 7999.51 7177.40 23398.46 3898.26 67
xiu_mvs_v1_base_debu90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12797.60 7181.17 13796.61 16196.87 4388.20 7789.19 11997.55 8478.69 8799.14 9790.29 11190.94 16395.80 181
alignmvs92.97 4692.26 6295.12 1995.54 11687.77 2098.67 2996.38 10788.04 8093.01 6897.45 8579.20 7898.60 12593.25 7488.76 17798.99 29
test22296.15 10178.41 21395.87 20596.46 9671.97 33589.66 11397.45 8576.33 12798.24 4998.30 63
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 9998.10 5195.29 18191.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
CPTT-MVS89.72 11789.87 11089.29 20598.33 4773.30 29697.70 7895.35 17875.68 30687.40 13997.44 8870.43 20998.25 14389.56 12096.90 8496.33 171
原ACMM191.22 15597.77 6578.10 22596.61 7881.05 22791.28 9297.42 8977.92 9898.98 10879.85 20898.51 3496.59 162
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13097.40 10496.38 10784.71 14990.90 9897.40 9077.55 10499.76 3189.75 11797.74 6397.72 105
EI-MVSNet-UG-set91.35 8591.22 7991.73 13897.39 8280.68 15196.47 16996.83 4687.92 8388.30 13397.36 9177.84 9999.13 9989.43 12289.45 17095.37 192
canonicalmvs92.27 6591.22 7995.41 1695.80 11088.31 1497.09 12994.64 21488.49 7192.99 6997.31 9272.68 18598.57 12793.38 7188.58 17999.36 16
MVS90.60 10188.64 12696.50 594.25 15890.53 893.33 28297.21 2277.59 28978.88 23397.31 9271.52 19999.69 4989.60 11898.03 5499.27 20
1112_ss88.60 14387.47 15292.00 12993.21 18880.97 14396.47 16992.46 30483.64 18380.86 21297.30 9480.24 6797.62 16577.60 22885.49 20897.40 129
ab-mvs-re8.11 36810.81 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.30 940.00 4070.00 4030.00 4020.00 4010.00 399
EIA-MVS91.73 7392.05 6890.78 16994.52 14876.40 26298.06 5595.34 17989.19 6088.90 12397.28 9677.56 10397.73 16190.77 10096.86 8898.20 68
ACMMPcopyleft90.39 10589.97 10591.64 14197.58 7378.21 22296.78 15296.72 6384.73 14884.72 16697.23 9771.22 20199.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7599.06 10489.57 11988.73 17898.73 39
HPM-MVScopyleft91.62 7891.53 7691.89 13297.88 6379.22 19196.99 13395.73 15582.07 21689.50 11897.19 9975.59 13998.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10197.56 8898.27 689.16 6189.71 11197.14 10079.77 7299.56 6693.65 6797.94 5898.02 79
MVSFormer91.36 8490.57 9093.73 5493.00 19688.08 1794.80 24894.48 22280.74 23394.90 4397.13 10178.84 8395.10 29783.77 17197.46 7098.02 79
jason92.73 5292.23 6394.21 4090.50 26587.30 2698.65 3095.09 18790.61 4292.76 7197.13 10175.28 15297.30 18993.32 7296.75 9198.02 79
jason: jason.
EC-MVSNet91.73 7392.11 6690.58 17393.54 17877.77 23898.07 5494.40 22987.44 9492.99 6997.11 10374.59 16496.87 21493.75 6597.08 8197.11 142
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR91.60 7991.64 7591.47 14795.74 11178.79 20496.15 19196.77 5588.49 7188.64 12797.07 10572.33 18999.19 9393.13 7796.48 9696.43 166
mvsany_test187.58 16688.22 13285.67 28189.78 27767.18 34295.25 22987.93 35583.96 17288.79 12497.06 10672.52 18694.53 31292.21 8586.45 19695.30 195
test_vis1_n_192089.95 11390.59 8988.03 23392.36 21368.98 33599.12 1194.34 23293.86 1193.64 6097.01 10751.54 32399.59 6096.76 3496.71 9395.53 188
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
HPM-MVS_fast90.38 10790.17 10191.03 16097.61 7077.35 24797.15 12195.48 16779.51 26288.79 12496.90 10971.64 19898.81 11987.01 14797.44 7296.94 147
PAPM92.87 4992.40 5894.30 3592.25 22187.85 1996.40 17696.38 10791.07 3688.72 12696.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7398.29 4197.64 1594.57 695.36 3396.88 11179.96 7199.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS88.80 13788.16 13590.72 17095.30 12277.92 23294.81 24794.51 22186.80 11084.97 16296.85 11267.53 22198.60 12585.08 15787.62 18795.63 185
ETV-MVS92.72 5492.87 4992.28 11494.54 14781.89 11997.98 5995.21 18489.77 5593.11 6696.83 11377.23 11197.50 17795.74 4395.38 11397.44 126
TAPA-MVS81.61 1285.02 20583.67 20889.06 20896.79 9273.27 29995.92 20194.79 20474.81 31380.47 21696.83 11371.07 20398.19 14649.82 37092.57 14795.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU90.98 9390.04 10393.83 4994.76 14186.23 3496.32 18193.12 29693.11 1693.71 5896.82 11563.08 25099.48 7384.29 16395.12 11595.77 182
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7895.85 20796.42 10191.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_293.10 4393.46 4192.02 12897.77 6579.73 17994.82 24693.86 25986.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14881.89 11995.95 19995.98 13990.76 3983.76 17996.76 11773.24 18199.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA86.96 17285.37 18191.72 13997.59 7279.34 18997.21 11191.05 32774.22 31678.90 23296.75 11967.21 22598.95 11174.68 25990.77 16496.88 152
ET-MVSNet_ETH3D90.01 11289.03 11992.95 8494.38 15586.77 3098.14 4696.31 11489.30 5963.33 34996.72 12090.09 1193.63 32890.70 10282.29 23598.46 53
AdaColmapbinary88.81 13687.61 14792.39 10799.33 479.95 17096.70 15995.58 16177.51 29083.05 18796.69 12161.90 26099.72 4384.29 16393.47 13797.50 123
LFMVS89.27 12687.64 14494.16 4397.16 8885.52 4797.18 11594.66 21179.17 27089.63 11496.57 12255.35 30998.22 14489.52 12189.54 16998.74 35
PMMVS89.46 12289.92 10888.06 23194.64 14269.57 33296.22 18694.95 19287.27 9991.37 8996.54 12365.88 23297.39 18488.54 12993.89 13097.23 136
131488.94 13187.20 15794.17 4193.21 18885.73 4293.33 28296.64 7582.89 19875.98 26996.36 12466.83 22899.39 7783.52 18096.02 10597.39 130
test_cas_vis1_n_192089.90 11490.02 10489.54 20290.14 27374.63 28598.71 2794.43 22793.04 1792.40 7296.35 12553.41 31999.08 10395.59 4696.16 9994.90 201
PLCcopyleft83.97 788.00 15887.38 15489.83 19798.02 5976.46 26097.16 11994.43 22779.26 26981.98 20196.28 12669.36 21499.27 8477.71 22692.25 15393.77 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8199.32 196.73 6191.02 3889.53 11696.21 12776.42 12499.57 6494.29 5995.81 10997.29 135
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
sss90.87 9789.96 10693.60 6094.15 16183.84 8397.14 12298.13 785.93 12289.68 11296.09 13071.67 19699.30 8387.69 13989.16 17297.66 110
3Dnovator+82.88 889.63 11987.85 13994.99 2194.49 15386.76 3197.84 6795.74 15486.10 11875.47 27896.02 13165.00 24099.51 7182.91 18697.07 8298.72 40
diffmvspermissive91.17 8990.74 8792.44 10593.11 19582.50 10796.25 18593.62 27487.79 8690.40 10595.93 13273.44 17997.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator82.32 1089.33 12487.64 14494.42 3393.73 17485.70 4397.73 7696.75 5986.73 11376.21 26695.93 13262.17 25499.68 5181.67 19297.81 6197.88 91
VDD-MVS88.28 15287.02 16392.06 12595.09 12980.18 16797.55 8994.45 22683.09 19289.10 12195.92 13447.97 33798.49 13193.08 7886.91 19297.52 122
test_fmvs187.79 16288.52 12985.62 28392.98 20064.31 35197.88 6592.42 30587.95 8292.24 7595.82 13547.94 33898.44 13795.31 5094.09 12594.09 218
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21298.95 11193.39 6988.87 17698.43 55
OpenMVScopyleft79.58 1486.09 18783.62 21193.50 6590.95 25486.71 3297.44 9895.83 14975.35 30772.64 30295.72 13757.42 29599.64 5571.41 28295.85 10894.13 217
Effi-MVS+90.70 9989.90 10993.09 7993.61 17583.48 9095.20 23292.79 30183.22 18891.82 8295.70 13871.82 19597.48 17991.25 9393.67 13498.32 60
114514_t88.79 13887.57 14892.45 10398.21 5381.74 12696.99 13395.45 17075.16 31082.48 19095.69 13968.59 21798.50 13080.33 20095.18 11497.10 143
baseline90.76 9890.10 10292.74 9292.90 20282.56 10494.60 25094.56 21987.69 8989.06 12295.67 14073.76 17497.51 17690.43 10892.23 15498.16 71
Vis-MVSNet (Re-imp)88.88 13488.87 12588.91 21293.89 17074.43 28896.93 14294.19 24184.39 15883.22 18495.67 14078.24 9194.70 30778.88 21794.40 12497.61 115
QAPM86.88 17484.51 19593.98 4494.04 16785.89 4097.19 11496.05 13473.62 32175.12 28195.62 14262.02 25799.74 3870.88 28896.06 10396.30 173
IS-MVSNet88.67 14088.16 13590.20 18593.61 17576.86 25596.77 15493.07 29784.02 16983.62 18095.60 14374.69 16396.24 23778.43 22193.66 13597.49 124
test_fmvs1_n86.34 18386.72 16785.17 29087.54 30863.64 35696.91 14392.37 30787.49 9391.33 9095.58 14440.81 36398.46 13495.00 5293.49 13693.41 232
casdiffmvspermissive90.95 9590.39 9492.63 9892.82 20382.53 10596.83 14794.47 22487.69 8988.47 12895.56 14574.04 17197.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest051590.95 9590.26 9793.01 8294.03 16984.27 7797.91 6396.67 6983.18 18986.87 14795.51 14688.66 1697.85 15780.46 19989.01 17496.92 150
BH-RMVSNet86.84 17585.28 18291.49 14695.35 12180.26 16496.95 14092.21 30882.86 20081.77 20595.46 14759.34 27597.64 16469.79 29593.81 13296.57 163
CLD-MVS87.97 15987.48 15189.44 20392.16 22680.54 15798.14 4694.92 19491.41 3179.43 22995.40 14862.34 25397.27 19290.60 10382.90 22790.50 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test250690.96 9490.39 9492.65 9693.54 17882.46 10896.37 17797.35 1886.78 11187.55 13895.25 14977.83 10097.50 17784.07 16594.80 11797.98 86
ECVR-MVScopyleft88.35 15087.25 15691.65 14093.54 17879.40 18696.56 16590.78 33286.78 11185.57 15695.25 14957.25 29697.56 16984.73 16194.80 11797.98 86
XVG-OURS-SEG-HR85.74 19485.16 18687.49 24890.22 26971.45 31991.29 31294.09 24781.37 22383.90 17795.22 15160.30 26897.53 17585.58 15484.42 21593.50 228
LS3D82.22 25379.94 26889.06 20897.43 7974.06 29293.20 28892.05 31061.90 36473.33 29595.21 15259.35 27499.21 8854.54 35792.48 15093.90 222
test111188.11 15587.04 16291.35 14893.15 19178.79 20496.57 16390.78 33286.88 10985.04 16095.20 15357.23 29797.39 18483.88 16894.59 12097.87 93
VDDNet86.44 18184.51 19592.22 11791.56 24281.83 12297.10 12894.64 21469.50 34787.84 13695.19 15448.01 33697.92 15689.82 11686.92 19196.89 151
F-COLMAP84.50 21583.44 21587.67 23995.22 12572.22 30595.95 19993.78 26675.74 30576.30 26395.18 15559.50 27398.45 13572.67 27586.59 19592.35 238
TR-MVS86.30 18484.93 19190.42 17794.63 14377.58 24296.57 16393.82 26180.30 24682.42 19295.16 15658.74 27997.55 17174.88 25787.82 18696.13 176
gm-plane-assit92.27 21879.64 18284.47 15795.15 15797.93 15185.81 152
Vis-MVSNetpermissive88.67 14087.82 14091.24 15392.68 20578.82 20196.95 14093.85 26087.55 9287.07 14695.13 15863.43 24897.21 19477.58 22996.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet82.34 989.02 12987.79 14192.71 9495.49 11781.50 13397.70 7897.29 1987.76 8785.47 15795.12 15956.90 29898.90 11580.33 20094.02 12797.71 107
h-mvs3389.30 12588.95 12390.36 18095.07 13176.04 26796.96 13997.11 2990.39 4692.22 7695.10 16074.70 16098.86 11693.14 7565.89 34396.16 174
XVG-OURS85.18 20284.38 19987.59 24390.42 26771.73 31691.06 31594.07 24882.00 21883.29 18395.08 16156.42 30397.55 17183.70 17583.42 22093.49 229
EPNet_dtu87.65 16587.89 13886.93 26094.57 14471.37 32096.72 15596.50 9288.56 7087.12 14595.02 16275.91 13494.01 32166.62 30890.00 16695.42 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet89.76 11689.72 11289.87 19593.78 17176.02 27097.22 10996.51 9079.35 26485.11 15995.01 16384.82 3497.10 20287.46 14288.21 18496.50 164
baseline188.85 13587.49 15092.93 8695.21 12686.85 2995.47 22094.61 21687.29 9883.11 18694.99 16480.70 6296.89 21282.28 18873.72 28595.05 199
casdiffmvs_mvgpermissive91.13 9090.45 9393.17 7692.99 19983.58 8897.46 9794.56 21987.69 8987.19 14494.98 16574.50 16597.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053089.65 11889.02 12091.53 14593.46 18480.78 14996.52 16696.67 6981.69 22183.79 17894.90 16688.85 1597.68 16277.80 22287.49 19096.14 175
test_vis1_n85.60 19685.70 17585.33 28784.79 34064.98 34996.83 14791.61 31887.36 9791.00 9794.84 16736.14 36997.18 19695.66 4493.03 14393.82 223
PCF-MVS84.09 586.77 17885.00 18992.08 12392.06 23383.07 9892.14 30194.47 22479.63 26076.90 25294.78 16871.15 20299.20 9272.87 27391.05 16293.98 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet85.80 19285.20 18387.59 24391.55 24377.41 24595.13 23695.36 17680.43 24380.33 21994.71 16973.72 17595.97 24776.96 23778.64 26089.39 269
CVMVSNet84.83 20885.57 17782.63 32291.55 24360.38 36795.13 23695.03 19080.60 23682.10 19994.71 16966.40 23190.19 36174.30 26490.32 16597.31 133
baseline290.39 10590.21 9990.93 16290.86 25880.99 14295.20 23297.41 1786.03 12080.07 22494.61 17190.58 697.47 18087.29 14389.86 16894.35 213
NP-MVS92.04 23478.22 21994.56 172
HQP-MVS87.91 16187.55 14988.98 21192.08 23078.48 20997.63 8294.80 20290.52 4382.30 19394.56 17265.40 23697.32 18787.67 14083.01 22491.13 241
BH-w/o88.24 15387.47 15290.54 17595.03 13478.54 20897.41 10393.82 26184.08 16778.23 23994.51 17469.34 21597.21 19480.21 20494.58 12195.87 180
tttt051788.57 14488.19 13489.71 20193.00 19675.99 27195.67 21296.67 6980.78 23281.82 20494.40 17588.97 1497.58 16876.05 24786.31 19795.57 187
CHOSEN 280x42091.71 7691.85 6991.29 15194.94 13582.69 10287.89 33796.17 12585.94 12187.27 14294.31 17690.27 995.65 26994.04 6395.86 10795.53 188
GG-mvs-BLEND93.49 6694.94 13586.26 3381.62 36797.00 3388.32 13294.30 17791.23 596.21 23888.49 13197.43 7398.00 84
Anonymous20240521184.41 21681.93 23791.85 13596.78 9378.41 21397.44 9891.34 32270.29 34384.06 17194.26 17841.09 36198.96 10979.46 21082.65 23198.17 70
hse-mvs288.22 15488.21 13388.25 22793.54 17873.41 29395.41 22395.89 14590.39 4692.22 7694.22 17974.70 16096.66 22593.14 7564.37 34894.69 211
AUN-MVS86.25 18685.57 17788.26 22693.57 17773.38 29495.45 22195.88 14683.94 17385.47 15794.21 18073.70 17796.67 22483.54 17864.41 34794.73 210
CDS-MVSNet89.50 12188.96 12291.14 15891.94 23880.93 14597.09 12995.81 15084.26 16584.72 16694.20 18180.31 6595.64 27083.37 18188.96 17596.85 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 16787.09 16188.74 21691.86 23977.96 22997.18 11594.69 20789.89 5381.33 20794.15 18264.77 24297.30 18987.08 14482.82 22890.96 243
plane_prior494.15 182
OPM-MVS85.84 19185.10 18888.06 23188.34 29777.83 23695.72 21094.20 24087.89 8580.45 21794.05 18458.57 28097.26 19383.88 16882.76 23089.09 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GeoE86.36 18285.20 18389.83 19793.17 19076.13 26597.53 9092.11 30979.58 26180.99 21094.01 18566.60 23096.17 24073.48 27189.30 17197.20 140
thres20088.92 13287.65 14392.73 9396.30 9685.62 4597.85 6698.86 184.38 15984.82 16493.99 18675.12 15598.01 14970.86 28986.67 19394.56 212
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9595.09 12982.40 10997.77 7295.87 14888.26 7686.39 14993.94 18776.77 11899.27 8488.80 12894.00 12996.31 172
UA-Net88.92 13288.48 13090.24 18394.06 16677.18 25193.04 29094.66 21187.39 9691.09 9493.89 18874.92 15798.18 14775.83 24991.43 16095.35 193
tfpn200view988.48 14587.15 15892.47 10296.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20094.17 214
thres40088.42 14887.15 15892.23 11696.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20093.45 230
BH-untuned86.95 17385.94 17389.99 18994.52 14877.46 24496.78 15293.37 28681.80 21976.62 25693.81 19166.64 22997.02 20476.06 24693.88 13195.48 190
dmvs_re84.10 22082.90 22287.70 23891.41 24773.28 29790.59 31893.19 29185.02 14177.96 24293.68 19257.92 29096.18 23975.50 25280.87 24193.63 226
thres100view90088.30 15186.95 16492.33 11096.10 10384.90 6597.14 12298.85 282.69 20483.41 18193.66 19375.43 14597.93 15169.04 29786.24 20094.17 214
thres600view788.06 15686.70 16892.15 12296.10 10385.17 5897.14 12298.85 282.70 20383.41 18193.66 19375.43 14597.82 15867.13 30685.88 20493.45 230
Syy-MVS77.97 29678.05 28277.74 34692.13 22756.85 37393.97 26794.23 23782.43 20873.39 29193.57 19557.95 28887.86 36832.40 38682.34 23388.51 297
myMVS_eth3d81.93 25782.18 23281.18 33092.13 22767.18 34293.97 26794.23 23782.43 20873.39 29193.57 19576.98 11387.86 36850.53 36882.34 23388.51 297
TAMVS88.48 14587.79 14190.56 17491.09 25279.18 19296.45 17195.88 14683.64 18383.12 18593.33 19775.94 13395.74 26582.40 18788.27 18396.75 158
test0.0.03 182.79 24382.48 22983.74 31186.81 31372.22 30596.52 16695.03 19083.76 18073.00 29893.20 19872.30 19088.88 36464.15 32177.52 27090.12 257
LPG-MVS_test84.20 21983.49 21486.33 26790.88 25573.06 30095.28 22694.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
LGP-MVS_train86.33 26790.88 25573.06 30094.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
testing380.74 27381.17 24879.44 33991.15 25163.48 35797.16 11995.76 15280.83 23071.36 30993.15 20178.22 9287.30 37343.19 38079.67 25087.55 322
CHOSEN 1792x268891.07 9290.21 9993.64 5795.18 12783.53 8996.26 18496.13 12788.92 6384.90 16393.10 20272.86 18399.62 5888.86 12695.67 11097.79 101
Fast-Effi-MVS+87.93 16086.94 16590.92 16394.04 16779.16 19398.26 4293.72 27081.29 22483.94 17692.90 20369.83 21396.68 22376.70 23991.74 15896.93 148
iter_conf_final89.51 12089.21 11790.39 17895.60 11484.44 7297.22 10989.09 34689.11 6282.07 20092.80 20487.03 2596.03 24289.10 12580.89 24090.70 246
iter_conf0590.14 11089.79 11191.17 15695.85 10986.93 2897.68 8088.67 35389.93 5281.73 20692.80 20490.37 896.03 24290.44 10780.65 24490.56 248
RPSCF77.73 29876.63 29381.06 33188.66 29455.76 37887.77 33887.88 35664.82 35974.14 28792.79 20649.22 33396.81 21867.47 30476.88 27190.62 247
DP-MVS81.47 26378.28 28091.04 15998.14 5578.48 20995.09 24186.97 35961.14 37071.12 31292.78 20759.59 27199.38 7853.11 36186.61 19495.27 196
Anonymous2024052983.15 23680.60 25790.80 16795.74 11178.27 21796.81 15094.92 19460.10 37481.89 20392.54 20845.82 34598.82 11879.25 21378.32 26795.31 194
dmvs_testset72.00 33173.36 31767.91 36083.83 35131.90 40085.30 35677.12 38582.80 20163.05 35292.46 20961.54 26282.55 38342.22 38271.89 29689.29 275
FIs86.73 17986.10 17288.61 21890.05 27480.21 16596.14 19296.95 3885.56 12978.37 23892.30 21076.73 11995.28 28779.51 20979.27 25490.35 252
ACMP81.66 1184.00 22183.22 21886.33 26791.53 24572.95 30395.91 20393.79 26583.70 18273.79 28892.22 21154.31 31796.89 21283.98 16679.74 24989.16 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPNet84.69 21082.92 22190.01 18889.01 28983.45 9196.71 15795.46 16985.71 12579.65 22692.18 21256.66 30196.01 24683.05 18567.84 33190.56 248
SDMVSNet87.02 17185.61 17691.24 15394.14 16283.30 9493.88 27095.98 13984.30 16279.63 22792.01 21358.23 28397.68 16290.28 11382.02 23692.75 233
sd_testset84.62 21183.11 21989.17 20694.14 16277.78 23791.54 31194.38 23084.30 16279.63 22792.01 21352.28 32196.98 20677.67 22782.02 23692.75 233
tt080581.20 26879.06 27687.61 24186.50 31572.97 30293.66 27395.48 16774.11 31776.23 26591.99 21541.36 36097.40 18377.44 23274.78 28192.45 236
nrg03086.79 17785.43 17990.87 16688.76 29085.34 4997.06 13194.33 23384.31 16080.45 21791.98 21672.36 18896.36 23288.48 13271.13 29890.93 245
HY-MVS84.06 691.63 7790.37 9695.39 1796.12 10288.25 1590.22 32097.58 1688.33 7590.50 10391.96 21779.26 7699.06 10490.29 11189.07 17398.88 31
ACMM80.70 1383.72 22782.85 22486.31 27091.19 24972.12 30895.88 20494.29 23580.44 24177.02 25091.96 21755.24 31097.14 20179.30 21280.38 24589.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test85.96 18985.39 18087.66 24089.38 28778.02 22695.65 21496.87 4385.12 13977.34 24591.94 21976.28 12894.74 30677.09 23478.82 25890.21 255
MSDG80.62 27577.77 28589.14 20793.43 18577.24 24891.89 30490.18 33669.86 34668.02 32691.94 21952.21 32298.84 11759.32 34083.12 22291.35 240
TESTMET0.1,189.83 11589.34 11691.31 14992.54 21180.19 16697.11 12596.57 8486.15 11686.85 14891.83 22179.32 7496.95 20881.30 19392.35 15296.77 156
mvsmamba85.17 20384.54 19487.05 25887.94 30275.11 28196.22 18687.79 35786.91 10778.55 23591.77 22264.93 24195.91 25386.94 14879.80 24690.12 257
PatchMatch-RL85.00 20683.66 20989.02 21095.86 10874.55 28792.49 29793.60 27579.30 26779.29 23191.47 22358.53 28198.45 13570.22 29392.17 15594.07 219
Fast-Effi-MVS+-dtu83.33 23282.60 22885.50 28589.55 28369.38 33396.09 19591.38 31982.30 21175.96 27091.41 22456.71 29995.58 27575.13 25684.90 21391.54 239
test-LLR88.48 14587.98 13789.98 19092.26 21977.23 24997.11 12595.96 14183.76 18086.30 15191.38 22572.30 19096.78 22080.82 19691.92 15695.94 178
test-mter88.95 13088.60 12789.98 19092.26 21977.23 24997.11 12595.96 14185.32 13286.30 15191.38 22576.37 12696.78 22080.82 19691.92 15695.94 178
ITE_SJBPF82.38 32387.00 31265.59 34889.55 34079.99 25469.37 32391.30 22741.60 35995.33 28462.86 32874.63 28386.24 338
RRT_MVS83.88 22383.27 21785.71 27987.53 30972.12 30895.35 22594.33 23383.81 17875.86 27291.28 22860.55 26695.09 29983.93 16776.76 27289.90 265
HyFIR lowres test89.36 12388.60 12791.63 14394.91 13780.76 15095.60 21695.53 16382.56 20784.03 17291.24 22978.03 9596.81 21887.07 14688.41 18297.32 132
Test_1112_low_res88.03 15786.73 16691.94 13193.15 19180.88 14696.44 17292.41 30683.59 18580.74 21491.16 23080.18 6897.59 16777.48 23185.40 20997.36 131
testgi74.88 31673.40 31679.32 34080.13 36361.75 36293.21 28786.64 36379.49 26366.56 33791.06 23135.51 37288.67 36556.79 35171.25 29787.56 320
MVS_Test90.29 10889.18 11893.62 5995.23 12484.93 6494.41 25394.66 21184.31 16090.37 10691.02 23275.13 15497.82 15883.11 18494.42 12398.12 75
cascas86.50 18084.48 19792.55 10192.64 20985.95 3797.04 13295.07 18975.32 30880.50 21591.02 23254.33 31697.98 15086.79 14987.62 18793.71 225
UniMVSNet_NR-MVSNet85.49 19884.59 19388.21 22989.44 28679.36 18796.71 15796.41 10285.22 13578.11 24090.98 23476.97 11495.14 29479.14 21468.30 32590.12 257
bld_raw_dy_0_6482.13 25480.76 25386.24 27285.78 32975.03 28294.40 25682.62 37783.12 19176.46 25890.96 23553.83 31894.55 31081.04 19578.60 26389.14 280
DU-MVS84.57 21383.33 21688.28 22588.76 29079.36 18796.43 17495.41 17585.42 13078.11 24090.82 23667.61 21895.14 29479.14 21468.30 32590.33 253
NR-MVSNet83.35 23181.52 24488.84 21388.76 29081.31 13694.45 25295.16 18584.65 15167.81 32790.82 23670.36 21094.87 30374.75 25866.89 34090.33 253
TranMVSNet+NR-MVSNet83.24 23581.71 24087.83 23587.71 30578.81 20396.13 19494.82 20184.52 15476.18 26790.78 23864.07 24594.60 30974.60 26266.59 34290.09 260
XXY-MVS83.84 22482.00 23689.35 20487.13 31181.38 13495.72 21094.26 23680.15 25075.92 27190.63 23961.96 25996.52 22778.98 21673.28 29090.14 256
MVSTER89.25 12788.92 12490.24 18395.98 10684.66 6896.79 15195.36 17687.19 10380.33 21990.61 24090.02 1295.97 24785.38 15678.64 26090.09 260
UGNet87.73 16386.55 16991.27 15295.16 12879.11 19596.35 17996.23 11988.14 7887.83 13790.48 24150.65 32699.09 10280.13 20594.03 12695.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS85.34 488.67 14087.14 16093.26 7293.12 19484.32 7498.76 2697.27 2087.19 10379.36 23090.45 24283.92 4498.53 12984.41 16269.79 31196.93 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous88.68 13987.62 14691.86 13394.80 14081.69 12993.53 27894.92 19482.03 21778.87 23490.43 24375.77 13595.34 28385.04 15893.16 14298.55 49
WR-MVS84.32 21782.96 22088.41 22189.38 28780.32 16096.59 16296.25 11783.97 17176.63 25590.36 24467.53 22194.86 30475.82 25070.09 30990.06 262
COLMAP_ROBcopyleft73.24 1975.74 31273.00 31983.94 30792.38 21269.08 33491.85 30586.93 36061.48 36765.32 34190.27 24542.27 35696.93 21150.91 36675.63 27785.80 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest75.92 31073.06 31884.47 30192.18 22467.29 34091.07 31484.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
TestCases84.47 30192.18 22467.29 34084.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
UniMVSNet_ETH3D80.86 27278.75 27887.22 25586.31 31872.02 31091.95 30293.76 26973.51 32275.06 28290.16 24843.04 35495.66 26776.37 24478.55 26493.98 220
ab-mvs87.08 17084.94 19093.48 6793.34 18783.67 8688.82 32895.70 15681.18 22584.55 16990.14 24962.72 25198.94 11385.49 15582.54 23297.85 95
PS-MVSNAJss84.91 20784.30 20086.74 26185.89 32774.40 28994.95 24394.16 24383.93 17476.45 25990.11 25071.04 20495.77 26083.16 18379.02 25790.06 262
test_fmvs279.59 28279.90 26978.67 34282.86 35555.82 37795.20 23289.55 34081.09 22680.12 22389.80 25134.31 37493.51 33087.82 13778.36 26686.69 332
jajsoiax82.12 25581.15 24985.03 29284.19 34670.70 32294.22 26393.95 25183.07 19373.48 29089.75 25249.66 33295.37 28282.24 18979.76 24789.02 286
MS-PatchMatch83.05 23881.82 23986.72 26589.64 28179.10 19694.88 24594.59 21879.70 25970.67 31589.65 25350.43 32896.82 21770.82 29195.99 10684.25 355
PVSNet_BlendedMVS90.05 11189.96 10690.33 18197.47 7683.86 8198.02 5896.73 6187.98 8189.53 11689.61 25476.42 12499.57 6494.29 5979.59 25187.57 319
mvs_tets81.74 25980.71 25584.84 29384.22 34570.29 32593.91 26993.78 26682.77 20273.37 29389.46 25547.36 34295.31 28681.99 19079.55 25388.92 292
pmmvs482.54 24780.79 25187.79 23686.11 32380.49 15993.55 27793.18 29377.29 29373.35 29489.40 25665.26 23995.05 30175.32 25473.61 28687.83 313
GA-MVS85.79 19384.04 20591.02 16189.47 28580.27 16396.90 14494.84 20085.57 12780.88 21189.08 25756.56 30296.47 22977.72 22585.35 21096.34 169
CMPMVSbinary54.94 2175.71 31374.56 30879.17 34179.69 36455.98 37589.59 32293.30 28860.28 37253.85 37689.07 25847.68 34196.33 23376.55 24081.02 23985.22 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 20083.83 20689.77 20090.25 26882.63 10396.36 17897.07 3183.03 19581.21 20989.02 25961.58 26196.31 23485.02 15970.95 30090.36 251
UniMVSNet (Re)85.31 20184.23 20188.55 21989.75 27880.55 15596.72 15596.89 4285.42 13078.40 23788.93 26075.38 14795.52 27778.58 21968.02 32889.57 268
CP-MVSNet81.01 27080.08 26483.79 30987.91 30370.51 32394.29 26295.65 15880.83 23072.54 30488.84 26163.71 24692.32 33968.58 30168.36 32488.55 296
miper_enhance_ethall85.95 19085.20 18388.19 23094.85 13979.76 17596.00 19694.06 24982.98 19777.74 24388.76 26279.42 7395.46 27980.58 19872.42 29289.36 274
EU-MVSNet76.92 30676.95 29176.83 34984.10 34754.73 38091.77 30692.71 30272.74 33069.57 32288.69 26358.03 28787.43 37264.91 31870.00 31088.33 305
pmmvs581.34 26579.54 27186.73 26485.02 33876.91 25396.22 18691.65 31677.65 28873.55 28988.61 26455.70 30794.43 31474.12 26673.35 28988.86 294
PEN-MVS79.47 28578.26 28183.08 31886.36 31768.58 33693.85 27194.77 20579.76 25771.37 30888.55 26559.79 26992.46 33764.50 31965.40 34488.19 307
ACMH+76.62 1677.47 30174.94 30385.05 29191.07 25371.58 31893.26 28690.01 33771.80 33664.76 34388.55 26541.62 35896.48 22862.35 32971.00 29987.09 328
PVSNet_077.72 1581.70 26078.95 27789.94 19390.77 26176.72 25895.96 19896.95 3885.01 14270.24 31988.53 26752.32 32098.20 14586.68 15044.08 38494.89 202
PS-CasMVS80.27 27779.18 27383.52 31587.56 30769.88 32894.08 26595.29 18180.27 24872.08 30688.51 26859.22 27792.23 34167.49 30368.15 32788.45 302
FA-MVS(test-final)87.71 16486.23 17192.17 12094.19 16080.55 15587.16 34396.07 13382.12 21585.98 15488.35 26972.04 19498.49 13180.26 20289.87 16797.48 125
DTE-MVSNet78.37 29177.06 29082.32 32585.22 33767.17 34593.40 27993.66 27278.71 27870.53 31688.29 27059.06 27892.23 34161.38 33363.28 35387.56 320
v2v48283.46 23081.86 23888.25 22786.19 32179.65 18196.34 18094.02 25081.56 22277.32 24688.23 27165.62 23396.03 24277.77 22369.72 31389.09 282
USDC78.65 29076.25 29585.85 27687.58 30674.60 28689.58 32390.58 33584.05 16863.13 35088.23 27140.69 36496.86 21666.57 31075.81 27686.09 341
XVG-ACMP-BASELINE79.38 28677.90 28483.81 30884.98 33967.14 34689.03 32793.18 29380.26 24972.87 30088.15 27338.55 36596.26 23576.05 24778.05 26888.02 310
FMVSNet384.71 20982.71 22690.70 17194.55 14687.71 2195.92 20194.67 21081.73 22075.82 27388.08 27466.99 22694.47 31371.23 28475.38 27889.91 264
MVP-Stereo82.65 24681.67 24185.59 28486.10 32478.29 21693.33 28292.82 30077.75 28769.17 32587.98 27559.28 27695.76 26171.77 27996.88 8682.73 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2285.11 20484.17 20287.92 23495.06 13378.82 20195.51 21894.22 23979.74 25876.77 25387.92 27675.96 13295.68 26679.93 20772.42 29289.27 276
OurMVSNet-221017-077.18 30476.06 29680.55 33483.78 35260.00 36990.35 31991.05 32777.01 29966.62 33687.92 27647.73 34094.03 32071.63 28068.44 32387.62 317
test_djsdf83.00 24182.45 23084.64 29884.07 34869.78 32994.80 24894.48 22280.74 23375.41 27987.70 27861.32 26495.10 29783.77 17179.76 24789.04 285
miper_ehance_all_eth84.57 21383.60 21287.50 24792.64 20978.25 21895.40 22493.47 27979.28 26876.41 26087.64 27976.53 12195.24 28978.58 21972.42 29289.01 287
ACMH75.40 1777.99 29474.96 30287.10 25790.67 26276.41 26193.19 28991.64 31772.47 33363.44 34887.61 28043.34 35197.16 19758.34 34273.94 28487.72 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs180.05 27878.02 28386.15 27385.42 33275.81 27595.11 23892.69 30377.13 29570.36 31787.43 28158.44 28295.27 28871.36 28364.25 34987.36 325
FE-MVS86.06 18884.15 20391.78 13794.33 15779.81 17384.58 35996.61 7876.69 30085.00 16187.38 28270.71 20898.37 13970.39 29291.70 15997.17 141
FMVSNet282.79 24380.44 25989.83 19792.66 20685.43 4895.42 22294.35 23179.06 27374.46 28587.28 28356.38 30494.31 31669.72 29674.68 28289.76 266
LTVRE_ROB73.68 1877.99 29475.74 29984.74 29490.45 26672.02 31086.41 34991.12 32472.57 33266.63 33587.27 28454.95 31396.98 20656.29 35275.98 27385.21 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-LS83.93 22282.80 22587.31 25291.46 24677.39 24695.66 21393.43 28180.44 24175.51 27787.26 28573.72 17595.16 29376.99 23570.72 30289.39 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth83.12 23782.01 23586.47 26691.85 24174.80 28394.33 25793.18 29379.11 27175.74 27687.25 28672.71 18495.32 28576.78 23867.13 33789.27 276
c3_l83.80 22582.65 22787.25 25492.10 22977.74 24095.25 22993.04 29878.58 27976.01 26887.21 28775.25 15395.11 29677.54 23068.89 31988.91 293
Effi-MVS+-dtu84.61 21284.90 19283.72 31291.96 23663.14 35994.95 24393.34 28785.57 12779.79 22587.12 28861.99 25895.61 27383.55 17785.83 20592.41 237
DIV-MVS_self_test83.27 23382.12 23386.74 26192.19 22375.92 27495.11 23893.26 29078.44 28274.81 28487.08 28974.19 16895.19 29174.66 26169.30 31689.11 281
cl____83.27 23382.12 23386.74 26192.20 22275.95 27295.11 23893.27 28978.44 28274.82 28387.02 29074.19 16895.19 29174.67 26069.32 31589.09 282
CostFormer89.08 12888.39 13191.15 15793.13 19379.15 19488.61 33196.11 12983.14 19089.58 11586.93 29183.83 4596.87 21488.22 13585.92 20397.42 127
WR-MVS_H81.02 26980.09 26383.79 30988.08 30071.26 32194.46 25196.54 8780.08 25172.81 30186.82 29270.36 21092.65 33664.18 32067.50 33487.46 324
v114482.90 24281.27 24787.78 23786.29 31979.07 19896.14 19293.93 25280.05 25277.38 24486.80 29365.50 23495.93 25275.21 25570.13 30688.33 305
V4283.04 23981.53 24387.57 24586.27 32079.09 19795.87 20594.11 24680.35 24577.22 24886.79 29465.32 23896.02 24577.74 22470.14 30587.61 318
LF4IMVS72.36 32870.82 32676.95 34879.18 36556.33 37486.12 35186.11 36569.30 34863.06 35186.66 29533.03 37692.25 34065.33 31668.64 32182.28 367
LCM-MVSNet-Re83.75 22683.54 21384.39 30593.54 17864.14 35392.51 29684.03 37283.90 17566.14 33886.59 29667.36 22392.68 33584.89 16092.87 14496.35 168
v119282.31 25280.55 25887.60 24285.94 32578.47 21295.85 20793.80 26479.33 26576.97 25186.51 29763.33 24995.87 25573.11 27270.13 30688.46 301
v14419282.43 24880.73 25487.54 24685.81 32878.22 21995.98 19793.78 26679.09 27277.11 24986.49 29864.66 24495.91 25374.20 26569.42 31488.49 299
TransMVSNet (Re)76.94 30574.38 30984.62 29985.92 32675.25 27995.28 22689.18 34573.88 32067.22 32886.46 29959.64 27094.10 31959.24 34152.57 37384.50 353
v192192082.02 25680.23 26287.41 24985.62 33077.92 23295.79 20993.69 27178.86 27676.67 25486.44 30062.50 25295.83 25772.69 27469.77 31288.47 300
v124081.70 26079.83 27087.30 25385.50 33177.70 24195.48 21993.44 28078.46 28176.53 25786.44 30060.85 26595.84 25671.59 28170.17 30488.35 304
tpm287.35 16986.26 17090.62 17292.93 20178.67 20688.06 33695.99 13879.33 26587.40 13986.43 30280.28 6696.40 23080.23 20385.73 20796.79 154
Baseline_NR-MVSNet81.22 26780.07 26584.68 29685.32 33675.12 28096.48 16888.80 34976.24 30477.28 24786.40 30367.61 21894.39 31575.73 25166.73 34184.54 352
anonymousdsp80.98 27179.97 26784.01 30681.73 35870.44 32492.49 29793.58 27777.10 29772.98 29986.31 30457.58 29194.90 30279.32 21178.63 26286.69 332
SixPastTwentyTwo76.04 30974.32 31081.22 32984.54 34261.43 36591.16 31389.30 34477.89 28464.04 34586.31 30448.23 33494.29 31763.54 32563.84 35187.93 312
Anonymous2023121179.72 28177.19 28987.33 25095.59 11577.16 25295.18 23594.18 24259.31 37772.57 30386.20 30647.89 33995.66 26774.53 26369.24 31789.18 278
tpmrst88.36 14987.38 15491.31 14994.36 15679.92 17187.32 34195.26 18385.32 13288.34 13186.13 30780.60 6396.70 22283.78 17085.34 21197.30 134
v14882.41 25180.89 25086.99 25986.18 32276.81 25696.27 18393.82 26180.49 24075.28 28086.11 30867.32 22495.75 26275.48 25367.03 33988.42 303
GBi-Net82.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
test182.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
FMVSNet179.50 28476.54 29488.39 22288.47 29581.95 11494.30 25993.38 28373.14 32672.04 30785.66 30943.86 34893.84 32365.48 31572.53 29189.38 271
TDRefinement69.20 33865.78 34279.48 33866.04 38862.21 36188.21 33386.12 36462.92 36161.03 36185.61 31233.23 37594.16 31855.82 35553.02 37182.08 368
v881.88 25880.06 26687.32 25186.63 31479.04 19994.41 25393.65 27378.77 27773.19 29785.57 31366.87 22795.81 25873.84 26967.61 33387.11 327
EPMVS87.47 16885.90 17492.18 11995.41 11982.26 11287.00 34496.28 11585.88 12384.23 17085.57 31375.07 15696.26 23571.14 28792.50 14998.03 78
tfpnnormal78.14 29375.42 30086.31 27088.33 29879.24 19094.41 25396.22 12073.51 32269.81 32185.52 31555.43 30895.75 26247.65 37567.86 33083.95 358
D2MVS82.67 24581.55 24286.04 27587.77 30476.47 25995.21 23196.58 8382.66 20570.26 31885.46 31660.39 26795.80 25976.40 24379.18 25585.83 345
miper_lstm_enhance81.66 26280.66 25684.67 29791.19 24971.97 31291.94 30393.19 29177.86 28672.27 30585.26 31773.46 17893.42 33173.71 27067.05 33888.61 295
v1081.43 26479.53 27287.11 25686.38 31678.87 20094.31 25893.43 28177.88 28573.24 29685.26 31765.44 23595.75 26272.14 27867.71 33286.72 331
tpm85.55 19784.47 19888.80 21590.19 27075.39 27888.79 32994.69 20784.83 14583.96 17585.21 31978.22 9294.68 30876.32 24578.02 26996.34 169
IterMVS-SCA-FT80.51 27679.10 27584.73 29589.63 28274.66 28492.98 29191.81 31480.05 25271.06 31385.18 32058.04 28591.40 35072.48 27770.70 30388.12 309
dp84.30 21882.31 23190.28 18294.24 15977.97 22886.57 34795.53 16379.94 25580.75 21385.16 32171.49 20096.39 23163.73 32383.36 22196.48 165
IterMVS80.67 27479.16 27485.20 28989.79 27676.08 26692.97 29291.86 31280.28 24771.20 31185.14 32257.93 28991.34 35172.52 27670.74 30188.18 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA85.63 19583.64 21091.60 14492.30 21781.86 12192.88 29395.56 16284.85 14482.52 18985.12 32358.04 28595.39 28073.89 26787.58 18997.54 117
Patchmatch-test78.25 29274.72 30688.83 21491.20 24874.10 29173.91 38488.70 35259.89 37566.82 33385.12 32378.38 8994.54 31148.84 37379.58 25297.86 94
PatchmatchNetpermissive86.83 17685.12 18791.95 13094.12 16482.27 11186.55 34895.64 15984.59 15382.98 18884.99 32577.26 10795.96 25068.61 30091.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test77.19 30374.22 31186.13 27485.39 33378.22 21993.98 26691.36 32171.74 33767.11 33084.87 32656.67 30093.37 33352.21 36264.59 34686.80 330
TinyColmap72.41 32768.99 33682.68 32188.11 29969.59 33188.41 33285.20 36765.55 35657.91 36984.82 32730.80 38095.94 25151.38 36368.70 32082.49 366
our_test_377.90 29775.37 30185.48 28685.39 33376.74 25793.63 27491.67 31573.39 32565.72 34084.65 32858.20 28493.13 33457.82 34467.87 32986.57 334
v7n79.32 28777.34 28785.28 28884.05 34972.89 30493.38 28093.87 25875.02 31270.68 31484.37 32959.58 27295.62 27267.60 30267.50 33487.32 326
test20.0372.36 32871.15 32575.98 35377.79 36959.16 37192.40 29989.35 34374.09 31861.50 35884.32 33048.09 33585.54 37850.63 36762.15 35683.24 359
MDTV_nov1_ep1383.69 20794.09 16581.01 14186.78 34696.09 13083.81 17884.75 16584.32 33074.44 16696.54 22663.88 32285.07 212
pmmvs674.65 31771.67 32383.60 31479.13 36669.94 32793.31 28590.88 33161.05 37165.83 33984.15 33243.43 35094.83 30566.62 30860.63 35886.02 342
test_040272.68 32669.54 33382.09 32688.67 29371.81 31592.72 29586.77 36261.52 36662.21 35583.91 33343.22 35293.76 32634.60 38572.23 29580.72 373
EG-PatchMatch MVS74.92 31572.02 32283.62 31383.76 35373.28 29793.62 27592.04 31168.57 34958.88 36683.80 33431.87 37895.57 27656.97 35078.67 25982.00 369
Anonymous2023120675.29 31473.64 31580.22 33580.75 35963.38 35893.36 28190.71 33473.09 32767.12 32983.70 33550.33 32990.85 35653.63 36070.10 30886.44 335
tpmvs83.04 23980.77 25289.84 19695.43 11877.96 22985.59 35495.32 18075.31 30976.27 26483.70 33573.89 17297.41 18259.53 33781.93 23894.14 216
lessismore_v079.98 33680.59 36158.34 37280.87 37958.49 36783.46 33743.10 35393.89 32263.11 32748.68 37787.72 314
tpm cat183.63 22881.38 24590.39 17893.53 18378.19 22485.56 35595.09 18770.78 34178.51 23683.28 33874.80 15997.03 20366.77 30784.05 21695.95 177
OpenMVS_ROBcopyleft68.52 2073.02 32569.57 33283.37 31680.54 36271.82 31493.60 27688.22 35462.37 36261.98 35683.15 33935.31 37395.47 27845.08 37875.88 27582.82 361
KD-MVS_2432*160077.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
miper_refine_blended77.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
K. test v373.62 31971.59 32479.69 33782.98 35459.85 37090.85 31788.83 34877.13 29558.90 36582.11 34243.62 34991.72 34865.83 31454.10 36887.50 323
MDA-MVSNet-bldmvs71.45 33267.94 33781.98 32785.33 33568.50 33792.35 30088.76 35070.40 34242.99 38381.96 34346.57 34391.31 35248.75 37454.39 36786.11 340
MIMVSNet79.18 28875.99 29788.72 21787.37 31080.66 15279.96 36891.82 31377.38 29274.33 28681.87 34441.78 35790.74 35766.36 31383.10 22394.76 206
UnsupCasMVSNet_eth73.25 32370.57 32881.30 32877.53 37066.33 34787.24 34293.89 25780.38 24457.90 37081.59 34542.91 35590.56 35865.18 31748.51 37887.01 329
CL-MVSNet_self_test75.81 31174.14 31380.83 33378.33 36867.79 33994.22 26393.52 27877.28 29469.82 32081.54 34661.47 26389.22 36357.59 34653.51 36985.48 347
DSMNet-mixed73.13 32472.45 32075.19 35577.51 37146.82 38585.09 35782.01 37867.61 35469.27 32481.33 34750.89 32586.28 37554.54 35783.80 21792.46 235
YYNet173.53 32270.43 32982.85 32084.52 34371.73 31691.69 30891.37 32067.63 35046.79 37981.21 34855.04 31290.43 35955.93 35359.70 36086.38 336
MDA-MVSNet_test_wron73.54 32170.43 32982.86 31984.55 34171.85 31391.74 30791.32 32367.63 35046.73 38081.09 34955.11 31190.42 36055.91 35459.76 35986.31 337
tmp_tt41.54 35941.93 36140.38 37820.10 40326.84 40261.93 39059.09 39914.81 39728.51 39280.58 35035.53 37148.33 39963.70 32413.11 39645.96 392
FMVSNet576.46 30874.16 31283.35 31790.05 27476.17 26489.58 32389.85 33871.39 33965.29 34280.42 35150.61 32787.70 37161.05 33569.24 31786.18 339
CR-MVSNet83.53 22981.36 24690.06 18790.16 27179.75 17679.02 37391.12 32484.24 16682.27 19780.35 35275.45 14393.67 32763.37 32686.25 19896.75 158
Patchmtry77.36 30274.59 30785.67 28189.75 27875.75 27677.85 37691.12 32460.28 37271.23 31080.35 35275.45 14393.56 32957.94 34367.34 33687.68 316
ADS-MVSNet279.57 28377.53 28685.71 27993.78 17172.13 30779.48 36986.11 36573.09 32780.14 22179.99 35462.15 25590.14 36259.49 33883.52 21894.85 204
ADS-MVSNet81.26 26678.36 27989.96 19293.78 17179.78 17479.48 36993.60 27573.09 32780.14 22179.99 35462.15 25595.24 28959.49 33883.52 21894.85 204
MIMVSNet169.44 33666.65 34077.84 34576.48 37562.84 36087.42 34088.97 34766.96 35557.75 37179.72 35632.77 37785.83 37746.32 37663.42 35284.85 351
Anonymous2024052172.06 33069.91 33178.50 34477.11 37361.67 36491.62 31090.97 32965.52 35762.37 35479.05 35736.32 36890.96 35557.75 34568.52 32282.87 360
N_pmnet61.30 34560.20 34864.60 36584.32 34417.00 40691.67 30910.98 40461.77 36558.45 36878.55 35849.89 33191.83 34742.27 38163.94 35084.97 350
PM-MVS69.32 33766.93 33976.49 35073.60 38055.84 37685.91 35279.32 38374.72 31461.09 36078.18 35921.76 38591.10 35470.86 28956.90 36482.51 364
pmmvs-eth3d73.59 32070.66 32782.38 32376.40 37673.38 29489.39 32689.43 34272.69 33160.34 36377.79 36046.43 34491.26 35366.42 31257.06 36382.51 364
KD-MVS_self_test70.97 33469.31 33475.95 35476.24 37855.39 37987.45 33990.94 33070.20 34462.96 35377.48 36144.01 34788.09 36661.25 33453.26 37084.37 354
test_fmvs369.56 33569.19 33570.67 35869.01 38347.05 38490.87 31686.81 36171.31 34066.79 33477.15 36216.40 38983.17 38181.84 19162.51 35581.79 371
mvsany_test367.19 34165.34 34372.72 35763.08 38948.57 38383.12 36478.09 38472.07 33461.21 35977.11 36322.94 38487.78 37078.59 21851.88 37481.80 370
patchmatchnet-post77.09 36477.78 10195.39 280
DeepMVS_CXcopyleft64.06 36678.53 36743.26 39168.11 39569.94 34538.55 38576.14 36518.53 38779.34 38443.72 37941.62 38769.57 381
APD_test156.56 34853.58 35265.50 36267.93 38646.51 38777.24 37972.95 38838.09 38642.75 38475.17 36613.38 39282.78 38240.19 38354.53 36667.23 383
test_vis1_rt73.96 31872.40 32178.64 34383.91 35061.16 36695.63 21568.18 39376.32 30160.09 36474.77 36729.01 38297.54 17387.74 13875.94 27477.22 377
EGC-MVSNET52.46 35347.56 35667.15 36181.98 35760.11 36882.54 36672.44 3890.11 4010.70 40274.59 36825.11 38383.26 38029.04 38861.51 35758.09 386
ambc76.02 35268.11 38551.43 38164.97 38989.59 33960.49 36274.49 36917.17 38892.46 33761.50 33252.85 37284.17 356
pmmvs365.75 34362.18 34676.45 35167.12 38764.54 35088.68 33085.05 36854.77 38357.54 37273.79 37029.40 38186.21 37655.49 35647.77 38078.62 375
new-patchmatchnet68.85 33965.93 34177.61 34773.57 38163.94 35590.11 32188.73 35171.62 33855.08 37473.60 37140.84 36287.22 37451.35 36548.49 37981.67 372
Patchmatch-RL test76.65 30774.01 31484.55 30077.37 37264.23 35278.49 37582.84 37678.48 28064.63 34473.40 37276.05 13191.70 34976.99 23557.84 36297.72 105
PatchT79.75 28076.85 29288.42 22089.55 28375.49 27777.37 37794.61 21663.07 36082.46 19173.32 37375.52 14293.41 33251.36 36484.43 21496.36 167
WB-MVS57.26 34656.22 34960.39 37169.29 38235.91 39886.39 35070.06 39159.84 37646.46 38172.71 37451.18 32478.11 38515.19 39534.89 39067.14 384
test_f64.01 34462.13 34769.65 35963.00 39045.30 39083.66 36380.68 38061.30 36855.70 37372.62 37514.23 39184.64 37969.84 29458.11 36179.00 374
RPMNet79.85 27975.92 29891.64 14190.16 27179.75 17679.02 37395.44 17158.43 37982.27 19772.55 37673.03 18298.41 13846.10 37786.25 19896.75 158
FPMVS55.09 35052.93 35361.57 36955.98 39240.51 39483.11 36583.41 37537.61 38734.95 38871.95 37714.40 39076.95 38729.81 38765.16 34567.25 382
test_method56.77 34754.53 35163.49 36776.49 37440.70 39375.68 38074.24 38719.47 39548.73 37871.89 37819.31 38665.80 39557.46 34747.51 38183.97 357
new_pmnet66.18 34263.18 34575.18 35676.27 37761.74 36383.79 36284.66 36956.64 38151.57 37771.85 37931.29 37987.93 36749.98 36962.55 35475.86 378
SSC-MVS56.01 34954.96 35059.17 37268.42 38434.13 39984.98 35869.23 39258.08 38045.36 38271.67 38050.30 33077.46 38614.28 39632.33 39165.91 385
UnsupCasMVSNet_bld68.60 34064.50 34480.92 33274.63 37967.80 33883.97 36192.94 29965.12 35854.63 37568.23 38135.97 37092.17 34360.13 33644.83 38282.78 362
testf145.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
APD_test245.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
PMMVS250.90 35446.31 35764.67 36455.53 39346.67 38677.30 37871.02 39040.89 38534.16 38959.32 3849.83 39776.14 39040.09 38428.63 39271.21 379
JIA-IIPM79.00 28977.20 28884.40 30489.74 28064.06 35475.30 38195.44 17162.15 36381.90 20259.08 38578.92 8195.59 27466.51 31185.78 20693.54 227
LCM-MVSNet52.52 35248.24 35565.35 36347.63 39941.45 39272.55 38583.62 37431.75 38837.66 38657.92 3869.19 39876.76 38849.26 37144.60 38377.84 376
gg-mvs-nofinetune85.48 19982.90 22293.24 7394.51 15185.82 4179.22 37196.97 3661.19 36987.33 14153.01 38790.58 696.07 24186.07 15197.23 7997.81 100
MVS-HIRNet71.36 33367.00 33884.46 30390.58 26369.74 33079.15 37287.74 35846.09 38461.96 35750.50 38845.14 34695.64 27053.74 35988.11 18588.00 311
PMVScopyleft34.80 2339.19 36035.53 36350.18 37629.72 40230.30 40159.60 39166.20 39626.06 39217.91 39649.53 3893.12 40274.09 39118.19 39449.40 37646.14 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt54.10 35151.04 35463.27 36858.16 39146.08 38984.17 36049.32 40356.48 38236.56 38749.48 3908.03 39991.91 34667.29 30549.87 37551.82 389
ANet_high46.22 35541.28 36261.04 37039.91 40146.25 38870.59 38676.18 38658.87 37823.09 39448.00 39112.58 39466.54 39428.65 38913.62 39570.35 380
MVEpermissive35.65 2233.85 36129.49 36646.92 37741.86 40036.28 39750.45 39256.52 40018.75 39618.28 39537.84 3922.41 40358.41 39618.71 39320.62 39346.06 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.11 35842.05 36054.30 37580.69 36051.30 38235.80 39383.81 37328.13 38927.94 39334.53 39311.41 39676.70 38921.45 39254.65 36534.90 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post33.80 39476.17 12995.97 247
E-PMN32.70 36232.39 36433.65 37953.35 39525.70 40374.07 38353.33 40121.08 39317.17 39733.63 39511.85 39554.84 39712.98 39714.04 39420.42 394
EMVS31.70 36331.45 36532.48 38050.72 39823.95 40474.78 38252.30 40220.36 39416.08 39831.48 39612.80 39353.60 39811.39 39813.10 39719.88 395
test_post185.88 35330.24 39773.77 17395.07 30073.89 267
X-MVStestdata86.26 18584.14 20492.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8720.73 39877.24 10999.59 6090.46 10598.07 5298.02 79
testmvs9.92 36612.94 3690.84 3830.65 4040.29 40893.78 2720.39 4060.42 3992.85 40015.84 3990.17 4060.30 4022.18 4000.21 3991.91 397
test1239.07 36711.73 3701.11 3820.50 4050.77 40789.44 3250.20 4070.34 4002.15 40110.72 4000.34 4050.32 4011.79 4010.08 4002.23 396
wuyk23d14.10 36513.89 36814.72 38155.23 39422.91 40533.83 3943.56 4054.94 3984.11 3992.28 4012.06 40419.66 40010.23 3998.74 3981.59 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.92 3697.89 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40271.04 2040.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS67.18 34249.00 372
FOURS198.51 3978.01 22798.13 4996.21 12183.04 19494.39 51
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
eth-test20.00 406
eth-test0.00 406
IU-MVS99.03 1585.34 4996.86 4592.05 2798.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 9398.61 3396.57 8491.32 32
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5599.84 1297.90 1798.85 2199.45 10
GSMVS97.54 117
test_part298.90 1985.14 6096.07 28
sam_mvs177.59 10297.54 117
sam_mvs75.35 150
MTGPAbinary96.33 112
MTMP97.53 9068.16 394
test9_res96.00 3999.03 1398.31 62
agg_prior294.30 5899.00 1598.57 46
agg_prior98.59 3583.13 9796.56 8694.19 5399.16 96
test_prior482.34 11097.75 75
test_prior93.09 7998.68 2681.91 11896.40 10499.06 10498.29 64
旧先验296.97 13874.06 31996.10 2797.76 16088.38 133
新几何296.42 175
无先验96.87 14596.78 4977.39 29199.52 6979.95 20698.43 55
原ACMM296.84 146
testdata299.48 7376.45 242
segment_acmp82.69 53
testdata195.57 21787.44 94
test1294.25 3798.34 4685.55 4696.35 11192.36 7380.84 5999.22 8798.31 4797.98 86
plane_prior791.86 23977.55 243
plane_prior691.98 23577.92 23264.77 242
plane_prior594.69 20797.30 18987.08 14482.82 22890.96 243
plane_prior377.75 23990.17 5081.33 207
plane_prior297.18 11589.89 53
plane_prior191.95 237
plane_prior77.96 22997.52 9390.36 4882.96 226
n20.00 408
nn0.00 408
door-mid79.75 382
test1196.50 92
door80.13 381
HQP5-MVS78.48 209
HQP-NCC92.08 23097.63 8290.52 4382.30 193
ACMP_Plane92.08 23097.63 8290.52 4382.30 193
BP-MVS87.67 140
HQP4-MVS82.30 19397.32 18791.13 241
HQP3-MVS94.80 20283.01 224
HQP2-MVS65.40 236
MDTV_nov1_ep13_2view81.74 12686.80 34580.65 23585.65 15574.26 16776.52 24196.98 146
ACMMP++_ref78.45 265
ACMMP++79.05 256
Test By Simon71.65 197