This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 2296.17 589.91 21197.09 9470.21 34498.99 2396.69 7495.57 295.08 4199.23 186.40 3199.87 897.84 2098.66 3299.65 6
SED-MVS95.88 596.22 494.87 2599.03 1585.03 7399.12 1296.78 5688.72 6797.79 698.91 288.48 1799.82 1998.15 1198.97 1799.74 1
test_241102_TWO96.78 5688.72 6797.70 898.91 287.86 2299.82 1998.15 1199.00 1599.47 9
test072699.05 985.18 6599.11 1596.78 5688.75 6597.65 1198.91 287.69 23
test_241102_ONE99.03 1585.03 7396.78 5688.72 6797.79 698.90 588.48 1799.82 19
DPE-MVScopyleft95.32 1195.55 1294.64 3398.79 2384.87 7897.77 7396.74 6786.11 12696.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1494.26 3198.10 5798.14 4696.52 9784.74 16094.83 4798.80 782.80 6099.37 8095.95 4198.42 42
DPM-MVS96.21 295.53 1398.26 196.26 10595.09 199.15 896.98 3893.39 1496.45 2598.79 890.17 999.99 189.33 13899.25 699.70 3
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2499.06 1797.12 2994.66 596.79 1798.78 986.42 3099.95 397.59 2399.18 799.00 31
DVP-MVS++96.05 496.41 394.96 2499.05 985.34 6098.13 4996.77 6288.38 7597.70 898.77 1092.06 399.84 1397.47 2499.37 199.70 3
test_one_060198.91 1884.56 8396.70 7288.06 8496.57 2398.77 1088.04 21
DVP-MVScopyleft95.58 995.91 994.57 3499.05 985.18 6599.06 1796.46 10488.75 6596.69 1898.76 1287.69 2399.76 3197.90 1798.85 2198.77 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1299.76 3197.47 2498.84 2399.38 14
SF-MVS94.17 3094.05 3494.55 3597.56 7585.95 4197.73 7796.43 10884.02 18495.07 4298.74 1482.93 5899.38 7895.42 5098.51 3698.32 66
SMA-MVScopyleft94.70 2194.68 2194.76 2998.02 5985.94 4397.47 9896.77 6285.32 14497.92 398.70 1583.09 5799.84 1395.79 4399.08 1098.49 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++94.28 2794.39 2793.97 4998.30 4984.06 9098.64 3196.93 4490.71 4293.08 7098.70 1579.98 8399.21 9094.12 6899.07 1198.63 51
NCCC95.63 795.94 894.69 3299.21 685.15 7099.16 796.96 4194.11 995.59 3498.64 1785.07 3699.91 495.61 4699.10 999.00 31
fmvsm_l_conf0.5_n_a94.91 1595.30 1693.72 6194.50 16784.30 8699.14 1096.00 14791.94 2897.91 598.60 1884.78 3899.77 2998.84 596.03 11097.08 161
fmvsm_s_conf0.5_n_a93.34 4393.71 3692.22 13093.38 20381.71 13998.86 2596.98 3891.64 2996.85 1698.55 1975.58 15599.77 2997.88 1993.68 14295.18 218
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1399.11 399.37 199.74 1
DeepC-MVS_fast89.06 294.48 2594.30 2995.02 2298.86 2185.68 5098.06 5596.64 8293.64 1291.74 9398.54 2080.17 7999.90 592.28 9398.75 2999.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n93.69 3794.13 3392.34 12194.56 16082.01 12499.07 1697.13 2792.09 2396.25 2698.53 2276.47 13799.80 2598.39 894.71 12695.22 217
fmvsm_l_conf0.5_n94.89 1695.24 1793.86 5294.42 17084.61 8199.13 1196.15 13692.06 2597.92 398.52 2384.52 4099.74 3898.76 695.67 11797.22 153
HPM-MVS++copyleft95.32 1195.48 1494.85 2698.62 3486.04 3997.81 7096.93 4492.45 2095.69 3398.50 2485.38 3499.85 1194.75 5999.18 798.65 50
PHI-MVS93.59 3993.63 3893.48 7798.05 5881.76 13698.64 3197.13 2782.60 22194.09 5698.49 2580.35 7499.85 1194.74 6098.62 3398.83 38
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3195.17 392.11 8698.46 2687.33 2599.97 297.21 2999.31 499.63 7
test_fmvsm_n_192094.81 1995.60 1192.45 11695.29 13880.96 15699.29 297.21 2294.50 797.29 1398.44 2782.15 6299.78 2898.56 797.68 6796.61 179
reproduce-ours92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
our_new_method92.70 6093.02 5091.75 15297.45 7977.77 25396.16 20095.94 15484.12 18092.45 7798.43 2880.06 8199.24 8695.35 5197.18 8298.24 74
PC_three_145291.12 3698.33 298.42 3092.51 299.81 2298.96 499.37 199.70 3
reproduce_model92.53 6992.87 5491.50 16297.41 8377.14 27096.02 20795.91 15783.65 19892.45 7798.39 3179.75 8699.21 9095.27 5496.98 8898.14 81
MP-MVS-pluss92.58 6792.35 6693.29 8197.30 9082.53 11696.44 18196.04 14584.68 16389.12 13298.37 3277.48 12099.74 3893.31 8098.38 4597.59 126
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP94.13 3294.44 2693.20 8595.41 13381.35 14699.02 2196.59 8989.50 5994.18 5598.36 3383.68 5299.45 7594.77 5898.45 4198.81 39
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.1_n92.93 5093.16 4992.24 12890.52 28581.92 12898.42 3796.24 12891.17 3596.02 3098.35 3475.34 16699.74 3897.84 2094.58 12895.05 219
fmvsm_s_conf0.1_n_a92.38 7392.49 6492.06 13888.08 32481.62 14297.97 6196.01 14690.62 4396.58 2298.33 3574.09 18599.71 4597.23 2893.46 14794.86 223
MSP-MVS95.62 896.54 192.86 9998.31 4880.10 18397.42 10596.78 5692.20 2297.11 1498.29 3693.46 199.10 10496.01 3999.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft94.56 2494.75 2093.96 5098.84 2283.40 10398.04 5796.41 11085.79 13595.00 4398.28 3784.32 4599.18 9797.35 2698.77 2899.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CDPH-MVS93.12 4592.91 5393.74 5898.65 3083.88 9197.67 8196.26 12683.00 21193.22 6798.24 3881.31 6799.21 9089.12 13998.74 3098.14 81
test_fmvsmconf_n93.99 3494.36 2892.86 9992.82 22181.12 14999.26 496.37 11893.47 1395.16 3798.21 3979.00 9499.64 5598.21 1096.73 9897.83 106
APD-MVScopyleft93.61 3893.59 3993.69 6498.76 2483.26 10697.21 11696.09 14082.41 22594.65 4998.21 3981.96 6598.81 12294.65 6198.36 4799.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MTAPA92.45 7192.31 6892.86 9997.90 6180.85 16092.88 31096.33 12087.92 8890.20 11698.18 4176.71 13599.76 3192.57 9298.09 5397.96 98
PS-MVSNAJ94.17 3093.52 4196.10 995.65 12692.35 298.21 4495.79 16492.42 2196.24 2798.18 4171.04 22299.17 9896.77 3497.39 7796.79 172
MAR-MVS90.63 11690.22 11491.86 14798.47 4278.20 23797.18 12096.61 8583.87 19188.18 14998.18 4168.71 23599.75 3683.66 19297.15 8497.63 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SD-MVS94.84 1895.02 1994.29 4097.87 6484.61 8197.76 7596.19 13489.59 5796.66 2098.17 4484.33 4299.60 5996.09 3898.50 3898.66 49
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xiu_mvs_v2_base93.92 3593.26 4695.91 1195.07 14692.02 698.19 4595.68 17092.06 2596.01 3198.14 4570.83 22698.96 11296.74 3696.57 10096.76 175
PAPR92.74 5592.17 7394.45 3698.89 2084.87 7897.20 11896.20 13287.73 9488.40 14598.12 4678.71 10099.76 3187.99 15296.28 10398.74 42
test_898.63 3383.64 9897.81 7096.63 8484.50 16895.10 4098.11 4784.33 4299.23 88
TEST998.64 3183.71 9597.82 6896.65 7984.29 17795.16 3798.09 4884.39 4199.36 81
train_agg94.28 2794.45 2593.74 5898.64 3183.71 9597.82 6896.65 7984.50 16895.16 3798.09 4884.33 4299.36 8195.91 4298.96 1998.16 79
CP-MVS92.54 6892.60 6192.34 12198.50 4079.90 18698.40 3896.40 11284.75 15990.48 11398.09 4877.40 12199.21 9091.15 10798.23 5297.92 99
旧先验197.39 8679.58 19796.54 9598.08 5184.00 4797.42 7697.62 124
SR-MVS92.16 7792.27 6991.83 15098.37 4578.41 22796.67 16895.76 16582.19 22991.97 8898.07 5276.44 13898.64 12693.71 7297.27 8098.45 60
ZD-MVS99.09 883.22 10796.60 8882.88 21493.61 6398.06 5382.93 5899.14 10095.51 4998.49 39
test_prior298.37 3986.08 12894.57 5098.02 5483.14 5595.05 5598.79 27
MVS_030495.58 995.44 1596.01 1097.63 7089.26 1299.27 396.59 8994.71 497.08 1597.99 5578.69 10199.86 1099.15 297.85 6298.91 35
ACMMP_NAP93.46 4193.23 4794.17 4597.16 9284.28 8796.82 15796.65 7986.24 12494.27 5397.99 5577.94 11199.83 1793.39 7598.57 3498.39 63
testdata90.13 20295.92 11774.17 30796.49 10373.49 34294.82 4897.99 5578.80 9997.93 16283.53 19597.52 7198.29 70
region2R92.72 5892.70 5892.79 10298.68 2680.53 17197.53 9396.51 9885.22 14791.94 9097.98 5877.26 12299.67 5390.83 11398.37 4698.18 77
CSCG92.02 8091.65 8393.12 8898.53 3680.59 16697.47 9897.18 2577.06 31484.64 18797.98 5883.98 4899.52 6990.72 11597.33 7899.23 24
HFP-MVS92.89 5192.86 5692.98 9498.71 2581.12 14997.58 8896.70 7285.20 14991.75 9297.97 6078.47 10399.71 4590.95 10898.41 4398.12 84
MM95.85 695.74 1096.15 896.34 10289.50 999.18 698.10 895.68 196.64 2197.92 6180.72 7099.80 2599.16 197.96 5899.15 27
ACMMPR92.69 6292.67 5992.75 10398.66 2880.57 16797.58 8896.69 7485.20 14991.57 9497.92 6177.01 12799.67 5390.95 10898.41 4398.00 93
test_fmvsmconf0.1_n93.08 4793.22 4892.65 10988.45 31980.81 16199.00 2295.11 20293.21 1594.00 5797.91 6376.84 13099.59 6097.91 1696.55 10197.54 128
test_fmvsmvis_n_192092.12 7892.10 7592.17 13390.87 27881.04 15298.34 4093.90 27692.71 1887.24 15897.90 6474.83 17399.72 4396.96 3296.20 10495.76 202
SPE-MVS-test92.98 4893.67 3790.90 18096.52 9976.87 27298.68 2894.73 22390.36 5094.84 4697.89 6577.94 11197.15 21494.28 6797.80 6498.70 48
APD-MVS_3200maxsize91.23 10291.35 8890.89 18197.89 6276.35 28296.30 19295.52 17979.82 27291.03 10597.88 6674.70 17598.54 13292.11 9796.89 9197.77 111
SR-MVS-dyc-post91.29 10091.45 8790.80 18397.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6775.76 15198.61 12791.99 9996.79 9597.75 112
RE-MVS-def91.18 9597.76 6776.03 28796.20 19895.44 18680.56 25490.72 10997.84 6773.36 19591.99 9996.79 9597.75 112
XVS92.69 6292.71 5792.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9697.83 6977.24 12499.59 6090.46 12198.07 5498.02 88
CANet94.89 1694.64 2295.63 1397.55 7688.12 1899.06 1796.39 11494.07 1095.34 3697.80 7076.83 13299.87 897.08 3197.64 6898.89 36
PGM-MVS91.93 8291.80 8092.32 12598.27 5079.74 19295.28 24197.27 2083.83 19290.89 10897.78 7176.12 14599.56 6688.82 14297.93 6197.66 120
ZNCC-MVS92.75 5492.60 6193.23 8498.24 5181.82 13497.63 8296.50 10085.00 15591.05 10497.74 7278.38 10499.80 2590.48 11998.34 4898.07 86
API-MVS90.18 12688.97 13693.80 5498.66 2882.95 11197.50 9795.63 17375.16 32786.31 16697.69 7372.49 20399.90 581.26 21296.07 10898.56 54
CS-MVS92.73 5693.48 4390.48 19396.27 10475.93 29298.55 3494.93 21089.32 6094.54 5197.67 7478.91 9697.02 21893.80 7097.32 7998.49 57
cdsmvs_eth3d_5k21.43 38928.57 3920.00 4080.00 4310.00 4330.00 41995.93 1560.00 4260.00 42797.66 7563.57 2670.00 4270.00 4260.00 4250.00 423
MP-MVScopyleft92.61 6692.67 5992.42 11998.13 5679.73 19397.33 11196.20 13285.63 13790.53 11197.66 7578.14 10999.70 4892.12 9698.30 5097.85 104
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS91.88 8591.82 7992.07 13798.38 4478.63 22197.29 11396.09 14085.12 15188.45 14497.66 7575.53 15699.68 5189.83 13098.02 5797.88 100
lupinMVS93.87 3693.58 4094.75 3093.00 21488.08 1999.15 895.50 18191.03 3994.90 4497.66 7578.84 9797.56 18394.64 6297.46 7298.62 52
patch_mono-295.14 1396.08 792.33 12398.44 4377.84 24998.43 3697.21 2292.58 1997.68 1097.65 7986.88 2799.83 1798.25 997.60 6999.33 18
PAPM_NR91.46 9590.82 9993.37 8098.50 4081.81 13595.03 25796.13 13784.65 16486.10 16997.65 7979.24 9199.75 3683.20 19896.88 9298.56 54
DP-MVS Recon91.72 8990.85 9894.34 3899.50 185.00 7598.51 3595.96 15180.57 25388.08 15097.63 8176.84 13099.89 785.67 17094.88 12398.13 83
test_fmvsmconf0.01_n91.08 10690.68 10292.29 12682.43 37880.12 18297.94 6293.93 27292.07 2491.97 8897.60 8267.56 24099.53 6897.09 3095.56 11997.21 155
新几何193.12 8897.44 8181.60 14396.71 7174.54 33391.22 10297.57 8379.13 9399.51 7177.40 25198.46 4098.26 73
xiu_mvs_v1_base_debu90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
xiu_mvs_v1_base_debi90.54 11889.54 12993.55 7292.31 23487.58 2696.99 13994.87 21487.23 10893.27 6497.56 8457.43 31398.32 14692.72 8993.46 14794.74 227
EI-MVSNet-Vis-set91.84 8691.77 8192.04 14097.60 7281.17 14896.61 16996.87 4988.20 8289.19 13097.55 8778.69 10199.14 10090.29 12690.94 17295.80 200
alignmvs92.97 4992.26 7095.12 2195.54 13087.77 2298.67 2996.38 11588.04 8593.01 7197.45 8879.20 9298.60 12893.25 8188.76 19098.99 33
test22296.15 10878.41 22795.87 21796.46 10471.97 35389.66 12297.45 8876.33 14298.24 5198.30 69
TSAR-MVS + GP.94.35 2694.50 2393.89 5197.38 8883.04 11098.10 5195.29 19791.57 3093.81 5997.45 8886.64 2899.43 7696.28 3794.01 13599.20 25
CPTT-MVS89.72 13389.87 12789.29 22298.33 4773.30 31397.70 7995.35 19475.68 32387.40 15497.44 9170.43 22898.25 14989.56 13596.90 9096.33 189
原ACMM191.22 17297.77 6578.10 23996.61 8581.05 24391.28 10197.42 9277.92 11398.98 11179.85 22598.51 3696.59 180
GST-MVS92.43 7292.22 7293.04 9298.17 5481.64 14197.40 10796.38 11584.71 16290.90 10797.40 9377.55 11999.76 3189.75 13297.74 6597.72 114
EI-MVSNet-UG-set91.35 9991.22 9191.73 15497.39 8680.68 16496.47 17896.83 5387.92 8888.30 14897.36 9477.84 11499.13 10289.43 13789.45 18195.37 212
sasdasda92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
canonicalmvs92.27 7591.22 9195.41 1795.80 12188.31 1597.09 13494.64 23188.49 7292.99 7297.31 9572.68 20098.57 13093.38 7788.58 19399.36 16
MVS90.60 11788.64 14396.50 594.25 17490.53 893.33 29897.21 2277.59 30578.88 25297.31 9571.52 21799.69 4989.60 13398.03 5699.27 22
1112_ss88.60 15987.47 17092.00 14293.21 20680.97 15596.47 17892.46 32783.64 19980.86 23097.30 9880.24 7797.62 17977.60 24685.49 22897.40 143
ab-mvs-re8.11 39310.81 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.30 980.00 4310.00 4270.00 4260.00 4250.00 423
EIA-MVS91.73 8792.05 7690.78 18594.52 16376.40 28198.06 5595.34 19589.19 6288.90 13697.28 10077.56 11897.73 17490.77 11496.86 9498.20 76
MGCFI-Net91.95 8191.03 9794.72 3195.68 12586.38 3596.93 14994.48 24088.25 8092.78 7597.24 10172.34 20598.46 13893.13 8588.43 19799.32 19
ACMMPcopyleft90.39 12289.97 12291.64 15797.58 7478.21 23696.78 16096.72 7084.73 16184.72 18597.23 10271.22 21999.63 5788.37 15092.41 16097.08 161
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS92.65 6591.68 8295.56 1496.00 11288.90 1398.23 4397.65 1388.57 7089.82 11997.22 10379.29 8999.06 10789.57 13488.73 19198.73 46
HPM-MVScopyleft91.62 9291.53 8691.89 14597.88 6379.22 20596.99 13995.73 16882.07 23189.50 12797.19 10475.59 15498.93 11790.91 11097.94 5997.54 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR93.41 4293.39 4593.47 7997.34 8982.83 11297.56 9098.27 689.16 6389.71 12097.14 10579.77 8599.56 6693.65 7397.94 5998.02 88
MVSFormer91.36 9890.57 10493.73 6093.00 21488.08 1994.80 26394.48 24080.74 24994.90 4497.13 10678.84 9795.10 31483.77 18797.46 7298.02 88
jason92.73 5692.23 7194.21 4490.50 28687.30 2998.65 3095.09 20390.61 4492.76 7697.13 10675.28 16797.30 20393.32 7996.75 9798.02 88
jason: jason.
EC-MVSNet91.73 8792.11 7490.58 18993.54 19577.77 25398.07 5494.40 25087.44 10192.99 7297.11 10874.59 17996.87 22993.75 7197.08 8597.11 159
GDP-MVS92.85 5392.55 6393.75 5792.82 22185.76 4697.63 8295.05 20688.34 7793.15 6897.10 10986.92 2698.01 15987.95 15394.00 13697.47 137
DELS-MVS94.98 1494.49 2496.44 696.42 10190.59 799.21 597.02 3694.40 891.46 9597.08 11083.32 5499.69 4992.83 8898.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR91.60 9391.64 8491.47 16495.74 12378.79 21896.15 20296.77 6288.49 7288.64 14297.07 11172.33 20699.19 9693.13 8596.48 10296.43 184
BP-MVS193.55 4093.50 4293.71 6292.64 22885.39 5997.78 7296.84 5289.52 5892.00 8797.06 11288.21 2098.03 15791.45 10496.00 11297.70 117
mvsany_test187.58 18588.22 14985.67 29889.78 29867.18 36095.25 24487.93 37783.96 18788.79 13897.06 11272.52 20294.53 33092.21 9586.45 21695.30 215
test_vis1_n_192089.95 12990.59 10388.03 25192.36 23368.98 35399.12 1294.34 25393.86 1193.64 6297.01 11451.54 34499.59 6096.76 3596.71 9995.53 208
MG-MVS94.25 2993.72 3595.85 1299.38 389.35 1197.98 5998.09 989.99 5392.34 8296.97 11581.30 6898.99 11088.54 14598.88 2099.20 25
HPM-MVS_fast90.38 12490.17 11791.03 17697.61 7177.35 26497.15 12695.48 18279.51 27888.79 13896.90 11671.64 21698.81 12287.01 16497.44 7496.94 165
PAPM92.87 5292.40 6594.30 3992.25 24187.85 2196.40 18596.38 11591.07 3888.72 14196.90 11682.11 6397.37 20090.05 12997.70 6697.67 119
EPNet94.06 3394.15 3293.76 5697.27 9184.35 8498.29 4197.64 1494.57 695.36 3596.88 11879.96 8499.12 10391.30 10596.11 10797.82 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS88.80 15388.16 15290.72 18695.30 13777.92 24694.81 26294.51 23986.80 11884.97 18096.85 11967.53 24198.60 12885.08 17487.62 20695.63 204
ETV-MVS92.72 5892.87 5492.28 12794.54 16281.89 13097.98 5995.21 20089.77 5693.11 6996.83 12077.23 12697.50 19195.74 4495.38 12097.44 139
TAPA-MVS81.61 1285.02 22583.67 22889.06 22596.79 9673.27 31695.92 21394.79 22174.81 33080.47 23496.83 12071.07 22198.19 15249.82 39192.57 15695.71 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU90.98 10990.04 12093.83 5394.76 15686.23 3796.32 19193.12 31893.11 1693.71 6096.82 12263.08 27199.48 7384.29 18095.12 12295.77 201
TSAR-MVS + MP.94.79 2095.17 1893.64 6697.66 6984.10 8995.85 21996.42 10991.26 3497.49 1296.80 12386.50 2998.49 13595.54 4899.03 1398.33 65
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_293.10 4693.46 4492.02 14197.77 6579.73 19394.82 26193.86 27986.91 11591.33 9996.76 12485.20 3598.06 15696.90 3397.60 6998.27 72
DeepC-MVS86.58 391.53 9491.06 9692.94 9694.52 16381.89 13095.95 21195.98 14990.76 4183.76 19896.76 12473.24 19699.71 4591.67 10396.96 8997.22 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA86.96 19185.37 20191.72 15597.59 7379.34 20397.21 11691.05 35174.22 33478.90 25196.75 12667.21 24598.95 11474.68 27790.77 17396.88 170
ET-MVSNet_ETH3D90.01 12889.03 13492.95 9594.38 17186.77 3298.14 4696.31 12389.30 6163.33 37096.72 12790.09 1093.63 34890.70 11782.29 25598.46 59
AdaColmapbinary88.81 15287.61 16492.39 12099.33 479.95 18496.70 16795.58 17477.51 30683.05 20696.69 12861.90 28199.72 4384.29 18093.47 14697.50 134
LFMVS89.27 14287.64 16194.16 4797.16 9285.52 5797.18 12094.66 22879.17 28689.63 12396.57 12955.35 33098.22 15089.52 13689.54 18098.74 42
PMMVS89.46 13889.92 12588.06 24994.64 15769.57 35096.22 19694.95 20987.27 10791.37 9896.54 13065.88 25397.39 19888.54 14593.89 13997.23 152
131488.94 14787.20 17594.17 4593.21 20685.73 4793.33 29896.64 8282.89 21375.98 28896.36 13166.83 24899.39 7783.52 19696.02 11197.39 144
test_cas_vis1_n_192089.90 13090.02 12189.54 21990.14 29474.63 30298.71 2794.43 24893.04 1792.40 8096.35 13253.41 34099.08 10695.59 4796.16 10594.90 221
PLCcopyleft83.97 788.00 17587.38 17289.83 21498.02 5976.46 27997.16 12494.43 24879.26 28581.98 21996.28 13369.36 23399.27 8477.71 24492.25 16293.77 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_Blended93.13 4492.98 5293.57 7197.47 7783.86 9299.32 196.73 6891.02 4089.53 12596.21 13476.42 13999.57 6494.29 6595.81 11697.29 151
test_yl91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
DCV-MVSNet91.46 9590.53 10594.24 4297.41 8385.18 6598.08 5297.72 1180.94 24489.85 11796.14 13575.61 15298.81 12290.42 12488.56 19598.74 42
sss90.87 11389.96 12393.60 6994.15 17883.84 9497.14 12798.13 785.93 13389.68 12196.09 13771.67 21499.30 8387.69 15689.16 18497.66 120
3Dnovator+82.88 889.63 13687.85 15694.99 2394.49 16886.76 3397.84 6795.74 16786.10 12775.47 29696.02 13865.00 26199.51 7182.91 20297.07 8698.72 47
diffmvspermissive91.17 10390.74 10192.44 11893.11 21382.50 11896.25 19593.62 29487.79 9290.40 11495.93 13973.44 19497.42 19593.62 7492.55 15797.41 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator82.32 1089.33 14087.64 16194.42 3793.73 19185.70 4897.73 7796.75 6686.73 12276.21 28595.93 13962.17 27599.68 5181.67 21097.81 6397.88 100
VDD-MVS88.28 16987.02 18192.06 13895.09 14480.18 18197.55 9294.45 24583.09 20789.10 13395.92 14147.97 35898.49 13593.08 8786.91 21297.52 133
test_fmvs187.79 18088.52 14685.62 30092.98 21864.31 37297.88 6592.42 32887.95 8792.24 8395.82 14247.94 35998.44 14295.31 5394.09 13294.09 238
VNet92.11 7991.22 9194.79 2896.91 9586.98 3097.91 6397.96 1086.38 12393.65 6195.74 14370.16 23198.95 11493.39 7588.87 18998.43 61
OpenMVScopyleft79.58 1486.09 20683.62 23193.50 7590.95 27586.71 3497.44 10195.83 16275.35 32472.64 32195.72 14457.42 31699.64 5571.41 30095.85 11594.13 237
Effi-MVS+90.70 11589.90 12693.09 9093.61 19283.48 10195.20 24792.79 32483.22 20491.82 9195.70 14571.82 21397.48 19391.25 10693.67 14398.32 66
114514_t88.79 15487.57 16692.45 11698.21 5381.74 13796.99 13995.45 18575.16 32782.48 20995.69 14668.59 23698.50 13480.33 21795.18 12197.10 160
baseline90.76 11490.10 11892.74 10492.90 22082.56 11594.60 26594.56 23787.69 9589.06 13495.67 14773.76 18997.51 19090.43 12392.23 16398.16 79
Vis-MVSNet (Re-imp)88.88 15088.87 14188.91 22993.89 18774.43 30596.93 14994.19 26184.39 17183.22 20395.67 14778.24 10694.70 32578.88 23594.40 13197.61 125
QAPM86.88 19384.51 21493.98 4894.04 18485.89 4497.19 11996.05 14473.62 33975.12 29995.62 14962.02 27899.74 3870.88 30696.06 10996.30 191
IS-MVSNet88.67 15688.16 15290.20 20193.61 19276.86 27396.77 16293.07 31984.02 18483.62 19995.60 15074.69 17896.24 25578.43 23993.66 14497.49 135
test_fmvs1_n86.34 20286.72 18785.17 30787.54 33163.64 37796.91 15192.37 33087.49 10091.33 9995.58 15140.81 38698.46 13895.00 5693.49 14593.41 252
casdiffmvspermissive90.95 11190.39 10992.63 11192.82 22182.53 11696.83 15594.47 24387.69 9588.47 14395.56 15274.04 18697.54 18790.90 11192.74 15597.83 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest051590.95 11190.26 11293.01 9394.03 18684.27 8897.91 6396.67 7683.18 20586.87 16395.51 15388.66 1597.85 17080.46 21689.01 18796.92 168
BH-RMVSNet86.84 19485.28 20291.49 16395.35 13680.26 17796.95 14792.21 33182.86 21581.77 22495.46 15459.34 29597.64 17869.79 31393.81 14196.57 181
testing1192.48 7092.04 7793.78 5595.94 11686.00 4097.56 9097.08 3287.52 9989.32 12895.40 15584.60 3998.02 15891.93 10189.04 18697.32 147
CLD-MVS87.97 17687.48 16989.44 22092.16 24680.54 17098.14 4694.92 21191.41 3279.43 24795.40 15562.34 27497.27 20690.60 11882.90 24790.50 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing22291.09 10590.49 10792.87 9895.82 11985.04 7296.51 17697.28 1986.05 12989.13 13195.34 15780.16 8096.62 24185.82 16888.31 19996.96 164
testing9991.91 8391.35 8893.60 6995.98 11485.70 4897.31 11296.92 4686.82 11788.91 13595.25 15884.26 4697.89 16988.80 14387.94 20397.21 155
test250690.96 11090.39 10992.65 10993.54 19582.46 11996.37 18697.35 1786.78 11987.55 15395.25 15877.83 11597.50 19184.07 18294.80 12497.98 95
ECVR-MVScopyleft88.35 16787.25 17491.65 15693.54 19579.40 20096.56 17390.78 35686.78 11985.57 17395.25 15857.25 31797.56 18384.73 17894.80 12497.98 95
testing9191.90 8491.31 9093.66 6595.99 11385.68 5097.39 10896.89 4786.75 12188.85 13795.23 16183.93 4997.90 16888.91 14087.89 20497.41 141
XVG-OURS-SEG-HR85.74 21385.16 20687.49 26790.22 29071.45 33691.29 33094.09 26781.37 23983.90 19695.22 16260.30 28897.53 18985.58 17184.42 23593.50 248
LS3D82.22 27379.94 28789.06 22597.43 8274.06 30993.20 30492.05 33361.90 38773.33 31495.21 16359.35 29499.21 9054.54 37892.48 15993.90 242
test111188.11 17287.04 18091.35 16593.15 20978.79 21896.57 17190.78 35686.88 11685.04 17895.20 16457.23 31897.39 19883.88 18494.59 12797.87 102
VDDNet86.44 20084.51 21492.22 13091.56 26281.83 13397.10 13394.64 23169.50 36687.84 15195.19 16548.01 35797.92 16789.82 13186.92 21196.89 169
F-COLMAP84.50 23583.44 23687.67 25795.22 14072.22 32295.95 21193.78 28675.74 32276.30 28295.18 16659.50 29398.45 14072.67 29386.59 21592.35 258
TR-MVS86.30 20384.93 21190.42 19494.63 15877.58 25996.57 17193.82 28180.30 26282.42 21195.16 16758.74 29997.55 18574.88 27587.82 20596.13 194
gm-plane-assit92.27 23879.64 19684.47 17095.15 16897.93 16285.81 169
Vis-MVSNetpermissive88.67 15687.82 15791.24 17092.68 22478.82 21596.95 14793.85 28087.55 9887.07 16195.13 16963.43 26897.21 20877.58 24796.15 10697.70 117
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet82.34 989.02 14587.79 15892.71 10695.49 13181.50 14497.70 7997.29 1887.76 9385.47 17595.12 17056.90 31998.90 11880.33 21794.02 13497.71 116
h-mvs3389.30 14188.95 13890.36 19695.07 14676.04 28696.96 14697.11 3090.39 4892.22 8495.10 17174.70 17598.86 11993.14 8365.89 36196.16 192
XVG-OURS85.18 22384.38 21887.59 26190.42 28871.73 33391.06 33394.07 26882.00 23383.29 20295.08 17256.42 32497.55 18583.70 19183.42 24093.49 249
UBG92.68 6492.35 6693.70 6395.61 12785.65 5397.25 11497.06 3487.92 8889.28 12995.03 17386.06 3398.07 15592.24 9490.69 17597.37 145
EPNet_dtu87.65 18487.89 15586.93 27894.57 15971.37 33896.72 16396.50 10088.56 7187.12 16095.02 17475.91 14994.01 34066.62 32790.00 17795.42 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet89.76 13289.72 12889.87 21293.78 18876.02 28997.22 11596.51 9879.35 28085.11 17795.01 17584.82 3797.10 21687.46 15988.21 20196.50 182
baseline188.85 15187.49 16892.93 9795.21 14186.85 3195.47 23694.61 23487.29 10583.11 20594.99 17680.70 7196.89 22782.28 20673.72 30195.05 219
casdiffmvs_mvgpermissive91.13 10490.45 10893.17 8792.99 21783.58 9997.46 10094.56 23787.69 9587.19 15994.98 17774.50 18097.60 18091.88 10292.79 15498.34 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053089.65 13589.02 13591.53 16193.46 20180.78 16296.52 17496.67 7681.69 23783.79 19794.90 17888.85 1497.68 17677.80 24087.49 20996.14 193
ETVMVS90.99 10890.26 11293.19 8695.81 12085.64 5496.97 14497.18 2585.43 14188.77 14094.86 17982.00 6496.37 24882.70 20388.60 19297.57 127
test_vis1_n85.60 21685.70 19585.33 30484.79 36264.98 37096.83 15591.61 34187.36 10491.00 10694.84 18036.14 39397.18 21095.66 4593.03 15293.82 243
PCF-MVS84.09 586.77 19785.00 20992.08 13692.06 25383.07 10992.14 31994.47 24379.63 27676.90 27294.78 18171.15 22099.20 9572.87 29191.05 17193.98 240
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet85.80 21185.20 20387.59 26191.55 26377.41 26295.13 25195.36 19280.43 25980.33 23794.71 18273.72 19095.97 26376.96 25578.64 27789.39 286
CVMVSNet84.83 22885.57 19782.63 33991.55 26360.38 38995.13 25195.03 20780.60 25282.10 21894.71 18266.40 25190.19 38174.30 28290.32 17697.31 149
baseline290.39 12290.21 11590.93 17890.86 27980.99 15495.20 24797.41 1686.03 13180.07 24294.61 18490.58 697.47 19487.29 16089.86 17994.35 233
NP-MVS92.04 25478.22 23394.56 185
HQP-MVS87.91 17887.55 16788.98 22892.08 25078.48 22397.63 8294.80 21990.52 4582.30 21294.56 18565.40 25797.32 20187.67 15783.01 24491.13 261
BH-w/o88.24 17087.47 17090.54 19295.03 14978.54 22297.41 10693.82 28184.08 18278.23 25894.51 18769.34 23497.21 20880.21 22194.58 12895.87 199
tttt051788.57 16088.19 15189.71 21893.00 21475.99 29095.67 22696.67 7680.78 24881.82 22294.40 18888.97 1397.58 18276.05 26586.31 21795.57 206
CHOSEN 280x42091.71 9091.85 7891.29 16894.94 15082.69 11387.89 35896.17 13585.94 13287.27 15794.31 18990.27 895.65 28694.04 6995.86 11495.53 208
GG-mvs-BLEND93.49 7694.94 15086.26 3681.62 39097.00 3788.32 14794.30 19091.23 596.21 25688.49 14797.43 7598.00 93
Anonymous20240521184.41 23681.93 25791.85 14996.78 9778.41 22797.44 10191.34 34670.29 36184.06 19094.26 19141.09 38398.96 11279.46 22782.65 25198.17 78
hse-mvs288.22 17188.21 15088.25 24593.54 19573.41 31095.41 23995.89 15890.39 4892.22 8494.22 19274.70 17596.66 24093.14 8364.37 36694.69 231
AUN-MVS86.25 20585.57 19788.26 24493.57 19473.38 31195.45 23795.88 15983.94 18885.47 17594.21 19373.70 19296.67 23983.54 19464.41 36594.73 230
CDS-MVSNet89.50 13788.96 13791.14 17491.94 25880.93 15797.09 13495.81 16384.26 17884.72 18594.20 19480.31 7595.64 28783.37 19788.96 18896.85 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 18687.09 17988.74 23391.86 25977.96 24397.18 12094.69 22489.89 5481.33 22594.15 19564.77 26297.30 20387.08 16182.82 24890.96 263
plane_prior494.15 195
OPM-MVS85.84 21085.10 20888.06 24988.34 32177.83 25095.72 22494.20 26087.89 9180.45 23594.05 19758.57 30097.26 20783.88 18482.76 25089.09 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GeoE86.36 20185.20 20389.83 21493.17 20876.13 28497.53 9392.11 33279.58 27780.99 22894.01 19866.60 25096.17 25873.48 28989.30 18297.20 157
thres20088.92 14887.65 16092.73 10596.30 10385.62 5597.85 6698.86 184.38 17284.82 18293.99 19975.12 17098.01 15970.86 30786.67 21394.56 232
PVSNet_Blended_VisFu91.24 10190.77 10092.66 10895.09 14482.40 12097.77 7395.87 16188.26 7986.39 16593.94 20076.77 13399.27 8488.80 14394.00 13696.31 190
UA-Net88.92 14888.48 14790.24 19994.06 18377.18 26893.04 30694.66 22887.39 10391.09 10393.89 20174.92 17298.18 15375.83 26791.43 16995.35 213
balanced_conf0394.60 2394.30 2995.48 1696.45 10088.82 1496.33 19095.58 17491.12 3695.84 3293.87 20283.47 5398.37 14497.26 2798.81 2499.24 23
tfpn200view988.48 16287.15 17692.47 11596.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22094.17 234
thres40088.42 16587.15 17692.23 12996.21 10685.30 6397.44 10198.85 283.37 20283.99 19293.82 20375.36 16397.93 16269.04 31586.24 22093.45 250
BH-untuned86.95 19285.94 19389.99 20694.52 16377.46 26196.78 16093.37 30781.80 23476.62 27693.81 20566.64 24997.02 21876.06 26493.88 14095.48 210
dmvs_re84.10 24082.90 24287.70 25691.41 26773.28 31490.59 33693.19 31285.02 15377.96 26293.68 20657.92 31196.18 25775.50 27080.87 26093.63 246
thres100view90088.30 16886.95 18292.33 12396.10 11084.90 7797.14 12798.85 282.69 21983.41 20093.66 20775.43 16097.93 16269.04 31586.24 22094.17 234
thres600view788.06 17386.70 18892.15 13596.10 11085.17 6997.14 12798.85 282.70 21883.41 20093.66 20775.43 16097.82 17167.13 32485.88 22493.45 250
Syy-MVS77.97 31678.05 30177.74 36792.13 24756.85 39693.97 28294.23 25782.43 22373.39 31093.57 20957.95 30987.86 38932.40 41082.34 25388.51 314
myMVS_eth3d81.93 27682.18 25281.18 34992.13 24767.18 36093.97 28294.23 25782.43 22373.39 31093.57 20976.98 12887.86 38950.53 38982.34 25388.51 314
UWE-MVS88.56 16188.91 14087.50 26594.17 17772.19 32495.82 22197.05 3584.96 15684.78 18393.51 21181.33 6694.75 32379.43 22889.17 18395.57 206
TAMVS88.48 16287.79 15890.56 19091.09 27379.18 20696.45 18095.88 15983.64 19983.12 20493.33 21275.94 14895.74 28282.40 20588.27 20096.75 176
test0.0.03 182.79 26382.48 24983.74 32886.81 33672.22 32296.52 17495.03 20783.76 19573.00 31793.20 21372.30 20788.88 38464.15 34077.52 28690.12 276
LPG-MVS_test84.20 23983.49 23586.33 28590.88 27673.06 31795.28 24194.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
LGP-MVS_train86.33 28590.88 27673.06 31794.13 26482.20 22776.31 28093.20 21354.83 33596.95 22383.72 18980.83 26188.98 304
testing380.74 29281.17 26879.44 35991.15 27263.48 37897.16 12495.76 16580.83 24671.36 32993.15 21678.22 10787.30 39443.19 40279.67 26787.55 339
CHOSEN 1792x268891.07 10790.21 11593.64 6695.18 14283.53 10096.26 19496.13 13788.92 6484.90 18193.10 21772.86 19899.62 5888.86 14195.67 11797.79 110
Fast-Effi-MVS+87.93 17786.94 18390.92 17994.04 18479.16 20798.26 4293.72 29081.29 24083.94 19592.90 21869.83 23296.68 23876.70 25791.74 16796.93 166
MVSMamba_PlusPlus92.37 7491.55 8594.83 2795.37 13587.69 2495.60 23195.42 19074.65 33293.95 5892.81 21983.11 5697.70 17594.49 6398.53 3599.11 28
WB-MVSnew84.08 24183.51 23485.80 29491.34 26876.69 27795.62 23096.27 12581.77 23581.81 22392.81 21958.23 30394.70 32566.66 32687.06 21085.99 360
RPSCF77.73 31876.63 31381.06 35088.66 31755.76 40187.77 35987.88 37864.82 38074.14 30592.79 22149.22 35496.81 23367.47 32276.88 28790.62 266
DP-MVS81.47 28278.28 29991.04 17598.14 5578.48 22395.09 25686.97 38161.14 39371.12 33292.78 22259.59 29199.38 7853.11 38286.61 21495.27 216
Anonymous2024052983.15 25680.60 27690.80 18395.74 12378.27 23196.81 15894.92 21160.10 39781.89 22192.54 22345.82 36798.82 12179.25 23178.32 28395.31 214
dmvs_testset72.00 35273.36 33767.91 38483.83 37331.90 42485.30 37877.12 40982.80 21663.05 37392.46 22461.54 28382.55 40642.22 40571.89 31389.29 292
RRT-MVS89.67 13488.67 14292.67 10794.44 16981.08 15194.34 27194.45 24586.05 12985.79 17192.39 22563.39 26998.16 15493.22 8293.95 13898.76 41
mvsmamba90.53 12190.08 11991.88 14694.81 15480.93 15793.94 28494.45 24588.24 8187.02 16292.35 22668.04 23795.80 27494.86 5797.03 8798.92 34
FIs86.73 19886.10 19288.61 23590.05 29580.21 17996.14 20396.95 4285.56 14078.37 25692.30 22776.73 13495.28 30479.51 22679.27 27190.35 270
ACMP81.66 1184.00 24283.22 23886.33 28591.53 26572.95 32095.91 21593.79 28583.70 19773.79 30692.22 22854.31 33896.89 22783.98 18379.74 26689.16 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mamv485.50 21886.76 18581.72 34693.23 20554.93 40389.95 34092.94 32169.96 36379.00 25092.20 22980.69 7294.22 33692.06 9890.77 17396.01 195
VPNet84.69 23082.92 24190.01 20589.01 31283.45 10296.71 16595.46 18485.71 13679.65 24492.18 23056.66 32296.01 26283.05 20167.84 34890.56 267
SDMVSNet87.02 19085.61 19691.24 17094.14 17983.30 10593.88 28695.98 14984.30 17579.63 24592.01 23158.23 30397.68 17690.28 12882.02 25692.75 253
sd_testset84.62 23183.11 23989.17 22394.14 17977.78 25291.54 32994.38 25184.30 17579.63 24592.01 23152.28 34296.98 22177.67 24582.02 25692.75 253
tt080581.20 28779.06 29587.61 25986.50 33872.97 31993.66 28995.48 18274.11 33576.23 28491.99 23341.36 38297.40 19777.44 25074.78 29792.45 256
nrg03086.79 19685.43 19990.87 18288.76 31385.34 6097.06 13794.33 25484.31 17380.45 23591.98 23472.36 20496.36 24988.48 14871.13 31590.93 265
HY-MVS84.06 691.63 9190.37 11195.39 1996.12 10988.25 1790.22 33897.58 1588.33 7890.50 11291.96 23579.26 9099.06 10790.29 12689.07 18598.88 37
ACMM80.70 1383.72 24782.85 24486.31 28891.19 27072.12 32695.88 21694.29 25580.44 25777.02 27091.96 23555.24 33197.14 21579.30 23080.38 26389.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test85.96 20885.39 20087.66 25889.38 31078.02 24095.65 22896.87 4985.12 15177.34 26591.94 23776.28 14394.74 32477.09 25278.82 27590.21 273
MSDG80.62 29477.77 30489.14 22493.43 20277.24 26591.89 32290.18 36069.86 36568.02 34691.94 23752.21 34398.84 12059.32 36083.12 24291.35 260
TESTMET0.1,189.83 13189.34 13291.31 16692.54 23180.19 18097.11 13096.57 9286.15 12586.85 16491.83 23979.32 8896.95 22381.30 21192.35 16196.77 174
PatchMatch-RL85.00 22683.66 22989.02 22795.86 11874.55 30492.49 31493.60 29579.30 28379.29 24991.47 24058.53 30198.45 14070.22 31192.17 16494.07 239
Fast-Effi-MVS+-dtu83.33 25282.60 24885.50 30289.55 30669.38 35196.09 20691.38 34382.30 22675.96 28991.41 24156.71 32095.58 29275.13 27484.90 23391.54 259
test-LLR88.48 16287.98 15489.98 20792.26 23977.23 26697.11 13095.96 15183.76 19586.30 16791.38 24272.30 20796.78 23580.82 21391.92 16595.94 197
test-mter88.95 14688.60 14489.98 20792.26 23977.23 26697.11 13095.96 15185.32 14486.30 16791.38 24276.37 14196.78 23580.82 21391.92 16595.94 197
ITE_SJBPF82.38 34087.00 33465.59 36889.55 36479.99 27069.37 34391.30 24441.60 38195.33 30162.86 34774.63 29986.24 355
HyFIR lowres test89.36 13988.60 14491.63 15994.91 15280.76 16395.60 23195.53 17782.56 22284.03 19191.24 24578.03 11096.81 23387.07 16388.41 19897.32 147
Test_1112_low_res88.03 17486.73 18691.94 14493.15 20980.88 15996.44 18192.41 32983.59 20180.74 23291.16 24680.18 7897.59 18177.48 24985.40 22997.36 146
testgi74.88 33673.40 33679.32 36080.13 38561.75 38493.21 30386.64 38679.49 27966.56 35791.06 24735.51 39688.67 38556.79 37171.25 31487.56 337
MVS_Test90.29 12589.18 13393.62 6895.23 13984.93 7694.41 26894.66 22884.31 17390.37 11591.02 24875.13 16997.82 17183.11 20094.42 13098.12 84
cascas86.50 19984.48 21692.55 11492.64 22885.95 4197.04 13895.07 20575.32 32580.50 23391.02 24854.33 33797.98 16186.79 16587.62 20693.71 245
UniMVSNet_NR-MVSNet85.49 21984.59 21388.21 24789.44 30979.36 20196.71 16596.41 11085.22 14778.11 25990.98 25076.97 12995.14 31179.14 23268.30 34290.12 276
DU-MVS84.57 23383.33 23788.28 24388.76 31379.36 20196.43 18395.41 19185.42 14278.11 25990.82 25167.61 23895.14 31179.14 23268.30 34290.33 271
NR-MVSNet83.35 25181.52 26488.84 23088.76 31381.31 14794.45 26795.16 20184.65 16467.81 34790.82 25170.36 22994.87 31974.75 27666.89 35890.33 271
TranMVSNet+NR-MVSNet83.24 25581.71 26087.83 25387.71 32878.81 21796.13 20594.82 21884.52 16776.18 28690.78 25364.07 26594.60 32874.60 28066.59 36090.09 278
XXY-MVS83.84 24482.00 25689.35 22187.13 33381.38 14595.72 22494.26 25680.15 26675.92 29090.63 25461.96 28096.52 24378.98 23473.28 30690.14 275
MVSTER89.25 14388.92 13990.24 19995.98 11484.66 8096.79 15995.36 19287.19 11180.33 23790.61 25590.02 1195.97 26385.38 17378.64 27790.09 278
UGNet87.73 18186.55 18991.27 16995.16 14379.11 20996.35 18896.23 12988.14 8387.83 15290.48 25650.65 34799.09 10580.13 22294.03 13395.60 205
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS85.34 488.67 15687.14 17893.26 8293.12 21284.32 8598.76 2697.27 2087.19 11179.36 24890.45 25783.92 5098.53 13384.41 17969.79 32896.93 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_anonymous88.68 15587.62 16391.86 14794.80 15581.69 14093.53 29494.92 21182.03 23278.87 25390.43 25875.77 15095.34 30085.04 17593.16 15198.55 56
WR-MVS84.32 23782.96 24088.41 23889.38 31080.32 17396.59 17096.25 12783.97 18676.63 27590.36 25967.53 24194.86 32075.82 26870.09 32690.06 280
COLMAP_ROBcopyleft73.24 1975.74 33273.00 33983.94 32492.38 23269.08 35291.85 32386.93 38261.48 39065.32 36290.27 26042.27 37896.93 22650.91 38775.63 29385.80 364
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest75.92 33073.06 33884.47 31892.18 24467.29 35891.07 33284.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
TestCases84.47 31892.18 24467.29 35884.43 39467.63 37163.48 36790.18 26138.20 38997.16 21157.04 36873.37 30388.97 306
UniMVSNet_ETH3D80.86 29178.75 29787.22 27486.31 34172.02 32791.95 32093.76 28973.51 34075.06 30090.16 26343.04 37695.66 28476.37 26278.55 28093.98 240
ab-mvs87.08 18984.94 21093.48 7793.34 20483.67 9788.82 34795.70 16981.18 24184.55 18890.14 26462.72 27298.94 11685.49 17282.54 25297.85 104
PS-MVSNAJss84.91 22784.30 21986.74 27985.89 35074.40 30694.95 25894.16 26383.93 18976.45 27890.11 26571.04 22295.77 27783.16 19979.02 27490.06 280
test_fmvs279.59 30179.90 28878.67 36382.86 37755.82 40095.20 24789.55 36481.09 24280.12 24189.80 26634.31 39893.51 35087.82 15478.36 28286.69 349
jajsoiax82.12 27481.15 26985.03 30984.19 36870.70 34094.22 27893.95 27183.07 20873.48 30989.75 26749.66 35395.37 29982.24 20779.76 26489.02 302
MS-PatchMatch83.05 25881.82 25986.72 28389.64 30379.10 21094.88 26094.59 23679.70 27570.67 33589.65 26850.43 34996.82 23270.82 30995.99 11384.25 373
PVSNet_BlendedMVS90.05 12789.96 12390.33 19797.47 7783.86 9298.02 5896.73 6887.98 8689.53 12589.61 26976.42 13999.57 6494.29 6579.59 26887.57 336
mvs_tets81.74 27880.71 27484.84 31084.22 36770.29 34393.91 28593.78 28682.77 21773.37 31289.46 27047.36 36395.31 30381.99 20879.55 27088.92 308
pmmvs482.54 26780.79 27187.79 25486.11 34680.49 17293.55 29393.18 31477.29 30973.35 31389.40 27165.26 26095.05 31775.32 27273.61 30287.83 330
GA-MVS85.79 21284.04 22591.02 17789.47 30880.27 17696.90 15294.84 21785.57 13880.88 22989.08 27256.56 32396.47 24577.72 24385.35 23096.34 187
CMPMVSbinary54.94 2175.71 33374.56 32879.17 36179.69 38655.98 39889.59 34193.30 30960.28 39553.85 39989.07 27347.68 36296.33 25076.55 25881.02 25985.22 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
VPA-MVSNet85.32 22183.83 22689.77 21790.25 28982.63 11496.36 18797.07 3383.03 21081.21 22789.02 27461.58 28296.31 25185.02 17670.95 31790.36 269
UniMVSNet (Re)85.31 22284.23 22088.55 23689.75 29980.55 16896.72 16396.89 4785.42 14278.40 25588.93 27575.38 16295.52 29478.58 23768.02 34589.57 285
CP-MVSNet81.01 28980.08 28383.79 32687.91 32670.51 34194.29 27795.65 17180.83 24672.54 32388.84 27663.71 26692.32 35968.58 31968.36 34188.55 313
miper_enhance_ethall85.95 20985.20 20388.19 24894.85 15379.76 18996.00 20894.06 26982.98 21277.74 26388.76 27779.42 8795.46 29680.58 21572.42 30989.36 291
EU-MVSNet76.92 32676.95 31076.83 37284.10 36954.73 40491.77 32492.71 32572.74 34869.57 34288.69 27858.03 30887.43 39364.91 33770.00 32788.33 322
pmmvs581.34 28479.54 29086.73 28285.02 36076.91 27196.22 19691.65 33977.65 30473.55 30888.61 27955.70 32894.43 33274.12 28473.35 30588.86 310
PEN-MVS79.47 30478.26 30083.08 33586.36 34068.58 35493.85 28794.77 22279.76 27371.37 32888.55 28059.79 28992.46 35764.50 33865.40 36288.19 324
ACMH+76.62 1677.47 32174.94 32385.05 30891.07 27471.58 33593.26 30290.01 36171.80 35464.76 36488.55 28041.62 38096.48 24462.35 34871.00 31687.09 345
PVSNet_077.72 1581.70 27978.95 29689.94 21090.77 28276.72 27695.96 21096.95 4285.01 15470.24 33988.53 28252.32 34198.20 15186.68 16644.08 40794.89 222
PS-CasMVS80.27 29679.18 29283.52 33287.56 33069.88 34694.08 28095.29 19780.27 26472.08 32588.51 28359.22 29792.23 36167.49 32168.15 34488.45 319
WBMVS87.73 18186.79 18490.56 19095.61 12785.68 5097.63 8295.52 17983.77 19478.30 25788.44 28486.14 3295.78 27682.54 20473.15 30790.21 273
reproduce_monomvs87.80 17987.60 16588.40 23996.56 9880.26 17795.80 22296.32 12291.56 3173.60 30788.36 28588.53 1696.25 25490.47 12067.23 35488.67 311
FA-MVS(test-final)87.71 18386.23 19192.17 13394.19 17680.55 16887.16 36496.07 14382.12 23085.98 17088.35 28672.04 21198.49 13580.26 21989.87 17897.48 136
DTE-MVSNet78.37 31077.06 30982.32 34285.22 35967.17 36393.40 29593.66 29278.71 29470.53 33688.29 28759.06 29892.23 36161.38 35263.28 37187.56 337
v2v48283.46 25081.86 25888.25 24586.19 34479.65 19596.34 18994.02 27081.56 23877.32 26688.23 28865.62 25496.03 26077.77 24169.72 33089.09 298
USDC78.65 30976.25 31585.85 29387.58 32974.60 30389.58 34290.58 35984.05 18363.13 37188.23 28840.69 38796.86 23166.57 32975.81 29286.09 358
XVG-ACMP-BASELINE79.38 30577.90 30383.81 32584.98 36167.14 36489.03 34693.18 31480.26 26572.87 31988.15 29038.55 38896.26 25276.05 26578.05 28488.02 327
FMVSNet384.71 22982.71 24690.70 18794.55 16187.71 2395.92 21394.67 22781.73 23675.82 29188.08 29166.99 24694.47 33171.23 30275.38 29489.91 282
MVP-Stereo82.65 26681.67 26185.59 30186.10 34778.29 23093.33 29892.82 32377.75 30369.17 34587.98 29259.28 29695.76 27871.77 29796.88 9282.73 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2285.11 22484.17 22287.92 25295.06 14878.82 21595.51 23494.22 25979.74 27476.77 27387.92 29375.96 14795.68 28379.93 22472.42 30989.27 293
OurMVSNet-221017-077.18 32476.06 31680.55 35383.78 37460.00 39190.35 33791.05 35177.01 31566.62 35687.92 29347.73 36194.03 33971.63 29868.44 34087.62 334
test_djsdf83.00 26182.45 25084.64 31584.07 37069.78 34794.80 26394.48 24080.74 24975.41 29787.70 29561.32 28595.10 31483.77 18779.76 26489.04 301
miper_ehance_all_eth84.57 23383.60 23287.50 26592.64 22878.25 23295.40 24093.47 29979.28 28476.41 27987.64 29676.53 13695.24 30678.58 23772.42 30989.01 303
ACMH75.40 1777.99 31474.96 32287.10 27690.67 28376.41 28093.19 30591.64 34072.47 35163.44 36987.61 29743.34 37397.16 21158.34 36273.94 30087.72 331
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs180.05 29778.02 30286.15 29085.42 35475.81 29495.11 25392.69 32677.13 31170.36 33787.43 29858.44 30295.27 30571.36 30164.25 36787.36 342
FE-MVS86.06 20784.15 22391.78 15194.33 17379.81 18784.58 38296.61 8576.69 31785.00 17987.38 29970.71 22798.37 14470.39 31091.70 16897.17 158
FMVSNet282.79 26380.44 27889.83 21492.66 22585.43 5895.42 23894.35 25279.06 28974.46 30387.28 30056.38 32594.31 33469.72 31474.68 29889.76 283
LTVRE_ROB73.68 1877.99 31475.74 31984.74 31190.45 28772.02 32786.41 37091.12 34872.57 35066.63 35587.27 30154.95 33496.98 22156.29 37275.98 28985.21 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-LS83.93 24382.80 24587.31 27191.46 26677.39 26395.66 22793.43 30280.44 25775.51 29587.26 30273.72 19095.16 31076.99 25370.72 31989.39 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth83.12 25782.01 25586.47 28491.85 26174.80 30094.33 27293.18 31479.11 28775.74 29487.25 30372.71 19995.32 30276.78 25667.13 35589.27 293
c3_l83.80 24582.65 24787.25 27392.10 24977.74 25795.25 24493.04 32078.58 29576.01 28787.21 30475.25 16895.11 31377.54 24868.89 33688.91 309
Effi-MVS+-dtu84.61 23284.90 21283.72 32991.96 25663.14 38094.95 25893.34 30885.57 13879.79 24387.12 30561.99 27995.61 29083.55 19385.83 22592.41 257
DIV-MVS_self_test83.27 25382.12 25386.74 27992.19 24375.92 29395.11 25393.26 31178.44 29874.81 30287.08 30674.19 18395.19 30874.66 27969.30 33389.11 297
cl____83.27 25382.12 25386.74 27992.20 24275.95 29195.11 25393.27 31078.44 29874.82 30187.02 30774.19 18395.19 30874.67 27869.32 33289.09 298
CostFormer89.08 14488.39 14891.15 17393.13 21179.15 20888.61 35096.11 13983.14 20689.58 12486.93 30883.83 5196.87 22988.22 15185.92 22397.42 140
WR-MVS_H81.02 28880.09 28283.79 32688.08 32471.26 33994.46 26696.54 9580.08 26772.81 32086.82 30970.36 22992.65 35664.18 33967.50 35187.46 341
v114482.90 26281.27 26787.78 25586.29 34279.07 21296.14 20393.93 27280.05 26877.38 26486.80 31065.50 25595.93 26875.21 27370.13 32388.33 322
V4283.04 25981.53 26387.57 26386.27 34379.09 21195.87 21794.11 26680.35 26177.22 26886.79 31165.32 25996.02 26177.74 24270.14 32287.61 335
LF4IMVS72.36 34970.82 34776.95 37179.18 38756.33 39786.12 37286.11 38869.30 36763.06 37286.66 31233.03 40092.25 36065.33 33568.64 33882.28 386
LCM-MVSNet-Re83.75 24683.54 23384.39 32293.54 19564.14 37492.51 31384.03 39783.90 19066.14 35886.59 31367.36 24392.68 35584.89 17792.87 15396.35 186
v119282.31 27280.55 27787.60 26085.94 34878.47 22695.85 21993.80 28479.33 28176.97 27186.51 31463.33 27095.87 27073.11 29070.13 32388.46 318
v14419282.43 26880.73 27387.54 26485.81 35178.22 23395.98 20993.78 28679.09 28877.11 26986.49 31564.66 26495.91 26974.20 28369.42 33188.49 316
TransMVSNet (Re)76.94 32574.38 32984.62 31685.92 34975.25 29895.28 24189.18 36973.88 33867.22 34886.46 31659.64 29094.10 33859.24 36152.57 39284.50 371
v192192082.02 27580.23 28187.41 26885.62 35277.92 24695.79 22393.69 29178.86 29276.67 27486.44 31762.50 27395.83 27272.69 29269.77 32988.47 317
v124081.70 27979.83 28987.30 27285.50 35377.70 25895.48 23593.44 30078.46 29776.53 27786.44 31760.85 28695.84 27171.59 29970.17 32188.35 321
tpm287.35 18886.26 19090.62 18892.93 21978.67 22088.06 35795.99 14879.33 28187.40 15486.43 31980.28 7696.40 24680.23 22085.73 22796.79 172
Baseline_NR-MVSNet81.22 28680.07 28484.68 31385.32 35875.12 29996.48 17788.80 37276.24 32177.28 26786.40 32067.61 23894.39 33375.73 26966.73 35984.54 370
anonymousdsp80.98 29079.97 28684.01 32381.73 38070.44 34292.49 31493.58 29777.10 31372.98 31886.31 32157.58 31294.90 31879.32 22978.63 27986.69 349
SixPastTwentyTwo76.04 32974.32 33081.22 34884.54 36461.43 38791.16 33189.30 36877.89 30064.04 36686.31 32148.23 35594.29 33563.54 34463.84 36987.93 329
ttmdpeth69.58 35766.92 36377.54 36975.95 40262.40 38288.09 35484.32 39662.87 38465.70 36186.25 32336.53 39188.53 38655.65 37646.96 40381.70 392
Anonymous2023121179.72 30077.19 30887.33 26995.59 12977.16 26995.18 25094.18 26259.31 40072.57 32286.20 32447.89 36095.66 28474.53 28169.24 33489.18 295
tpmrst88.36 16687.38 17291.31 16694.36 17279.92 18587.32 36295.26 19985.32 14488.34 14686.13 32580.60 7396.70 23783.78 18685.34 23197.30 150
v14882.41 27180.89 27086.99 27786.18 34576.81 27496.27 19393.82 28180.49 25675.28 29886.11 32667.32 24495.75 27975.48 27167.03 35788.42 320
MonoMVSNet85.68 21484.22 22190.03 20488.43 32077.83 25092.95 30991.46 34287.28 10678.11 25985.96 32766.31 25294.81 32290.71 11676.81 28897.46 138
GBi-Net82.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
test182.42 26980.43 27988.39 24092.66 22581.95 12594.30 27493.38 30479.06 28975.82 29185.66 32856.38 32593.84 34371.23 30275.38 29489.38 288
FMVSNet179.50 30376.54 31488.39 24088.47 31881.95 12594.30 27493.38 30473.14 34472.04 32685.66 32843.86 37093.84 34365.48 33472.53 30889.38 288
TDRefinement69.20 36265.78 36679.48 35866.04 41362.21 38388.21 35286.12 38762.92 38361.03 38285.61 33133.23 39994.16 33755.82 37553.02 39082.08 388
v881.88 27780.06 28587.32 27086.63 33779.04 21394.41 26893.65 29378.77 29373.19 31685.57 33266.87 24795.81 27373.84 28767.61 35087.11 344
EPMVS87.47 18785.90 19492.18 13295.41 13382.26 12387.00 36596.28 12485.88 13484.23 18985.57 33275.07 17196.26 25271.14 30592.50 15898.03 87
tfpnnormal78.14 31275.42 32086.31 28888.33 32279.24 20494.41 26896.22 13073.51 34069.81 34185.52 33455.43 32995.75 27947.65 39667.86 34783.95 376
D2MVS82.67 26581.55 26286.04 29287.77 32776.47 27895.21 24696.58 9182.66 22070.26 33885.46 33560.39 28795.80 27476.40 26179.18 27285.83 363
miper_lstm_enhance81.66 28180.66 27584.67 31491.19 27071.97 32991.94 32193.19 31277.86 30272.27 32485.26 33673.46 19393.42 35173.71 28867.05 35688.61 312
v1081.43 28379.53 29187.11 27586.38 33978.87 21494.31 27393.43 30277.88 30173.24 31585.26 33665.44 25695.75 27972.14 29667.71 34986.72 348
tpm85.55 21784.47 21788.80 23290.19 29175.39 29788.79 34894.69 22484.83 15883.96 19485.21 33878.22 10794.68 32776.32 26378.02 28596.34 187
IterMVS-SCA-FT80.51 29579.10 29484.73 31289.63 30474.66 30192.98 30791.81 33780.05 26871.06 33385.18 33958.04 30691.40 37072.48 29570.70 32088.12 326
dp84.30 23882.31 25190.28 19894.24 17577.97 24286.57 36895.53 17779.94 27180.75 23185.16 34071.49 21896.39 24763.73 34283.36 24196.48 183
IterMVS80.67 29379.16 29385.20 30689.79 29776.08 28592.97 30891.86 33580.28 26371.20 33185.14 34157.93 31091.34 37172.52 29470.74 31888.18 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA85.63 21583.64 23091.60 16092.30 23781.86 13292.88 31095.56 17684.85 15782.52 20885.12 34258.04 30695.39 29773.89 28587.58 20897.54 128
Patchmatch-test78.25 31174.72 32688.83 23191.20 26974.10 30873.91 40888.70 37559.89 39866.82 35385.12 34278.38 10494.54 32948.84 39479.58 26997.86 103
PatchmatchNetpermissive86.83 19585.12 20791.95 14394.12 18182.27 12286.55 36995.64 17284.59 16682.98 20784.99 34477.26 12295.96 26668.61 31891.34 17097.64 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test77.19 32374.22 33186.13 29185.39 35578.22 23393.98 28191.36 34571.74 35567.11 35084.87 34556.67 32193.37 35352.21 38364.59 36486.80 347
TinyColmap72.41 34868.99 35782.68 33888.11 32369.59 34988.41 35185.20 39065.55 37757.91 39184.82 34630.80 40495.94 26751.38 38468.70 33782.49 384
our_test_377.90 31775.37 32185.48 30385.39 35576.74 27593.63 29091.67 33873.39 34365.72 36084.65 34758.20 30593.13 35457.82 36467.87 34686.57 351
v7n79.32 30677.34 30685.28 30584.05 37172.89 32193.38 29693.87 27875.02 32970.68 33484.37 34859.58 29295.62 28967.60 32067.50 35187.32 343
test20.0372.36 34971.15 34675.98 37677.79 39259.16 39392.40 31689.35 36774.09 33661.50 37984.32 34948.09 35685.54 39950.63 38862.15 37483.24 377
MDTV_nov1_ep1383.69 22794.09 18281.01 15386.78 36796.09 14083.81 19384.75 18484.32 34974.44 18196.54 24263.88 34185.07 232
MVStest166.93 36663.01 37078.69 36278.56 38971.43 33785.51 37786.81 38349.79 40748.57 40284.15 35153.46 33983.31 40243.14 40337.15 41381.34 394
pmmvs674.65 33771.67 34483.60 33179.13 38869.94 34593.31 30190.88 35561.05 39465.83 35984.15 35143.43 37294.83 32166.62 32760.63 37686.02 359
test_040272.68 34769.54 35482.09 34388.67 31671.81 33292.72 31286.77 38561.52 38962.21 37683.91 35343.22 37493.76 34634.60 40872.23 31280.72 395
EG-PatchMatch MVS74.92 33572.02 34383.62 33083.76 37573.28 31493.62 29192.04 33468.57 36958.88 38883.80 35431.87 40295.57 29356.97 37078.67 27682.00 389
Anonymous2023120675.29 33473.64 33580.22 35580.75 38163.38 37993.36 29790.71 35873.09 34567.12 34983.70 35550.33 35090.85 37653.63 38170.10 32586.44 352
tpmvs83.04 25980.77 27289.84 21395.43 13277.96 24385.59 37595.32 19675.31 32676.27 28383.70 35573.89 18797.41 19659.53 35781.93 25894.14 236
lessismore_v079.98 35680.59 38358.34 39580.87 40358.49 38983.46 35743.10 37593.89 34263.11 34648.68 39787.72 331
kuosan73.55 34172.39 34277.01 37089.68 30266.72 36585.24 37993.44 30067.76 37060.04 38683.40 35871.90 21284.25 40145.34 39954.75 38380.06 396
tpm cat183.63 24881.38 26590.39 19593.53 20078.19 23885.56 37695.09 20370.78 35978.51 25483.28 35974.80 17497.03 21766.77 32584.05 23695.95 196
OpenMVS_ROBcopyleft68.52 2073.02 34669.57 35383.37 33380.54 38471.82 33193.60 29288.22 37662.37 38561.98 37783.15 36035.31 39795.47 29545.08 40075.88 29182.82 379
KD-MVS_2432*160077.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
miper_refine_blended77.63 31974.92 32485.77 29590.86 27979.44 19888.08 35593.92 27476.26 31967.05 35182.78 36172.15 20991.92 36461.53 34941.62 41085.94 361
K. test v373.62 33971.59 34579.69 35782.98 37659.85 39290.85 33588.83 37177.13 31158.90 38782.11 36343.62 37191.72 36865.83 33354.10 38787.50 340
MDA-MVSNet-bldmvs71.45 35367.94 36081.98 34485.33 35768.50 35592.35 31788.76 37370.40 36042.99 40781.96 36446.57 36591.31 37248.75 39554.39 38686.11 357
MIMVSNet79.18 30775.99 31788.72 23487.37 33280.66 16579.96 39191.82 33677.38 30874.33 30481.87 36541.78 37990.74 37766.36 33283.10 24394.76 226
mvs5depth71.40 35468.36 35980.54 35475.31 40365.56 36979.94 39285.14 39169.11 36871.75 32781.59 36641.02 38493.94 34160.90 35550.46 39482.10 387
UnsupCasMVSNet_eth73.25 34470.57 34981.30 34777.53 39366.33 36687.24 36393.89 27780.38 26057.90 39281.59 36642.91 37790.56 37865.18 33648.51 39887.01 346
CL-MVSNet_self_test75.81 33174.14 33380.83 35278.33 39167.79 35794.22 27893.52 29877.28 31069.82 34081.54 36861.47 28489.22 38357.59 36653.51 38885.48 365
DSMNet-mixed73.13 34572.45 34075.19 37877.51 39446.82 40985.09 38082.01 40267.61 37569.27 34481.33 36950.89 34686.28 39654.54 37883.80 23792.46 255
YYNet173.53 34370.43 35082.85 33784.52 36571.73 33391.69 32691.37 34467.63 37146.79 40381.21 37055.04 33390.43 37955.93 37359.70 37886.38 353
MDA-MVSNet_test_wron73.54 34270.43 35082.86 33684.55 36371.85 33091.74 32591.32 34767.63 37146.73 40481.09 37155.11 33290.42 38055.91 37459.76 37786.31 354
tmp_tt41.54 38441.93 38640.38 40220.10 42826.84 42661.93 41459.09 42314.81 42128.51 41680.58 37235.53 39548.33 42363.70 34313.11 42045.96 416
FMVSNet576.46 32874.16 33283.35 33490.05 29576.17 28389.58 34289.85 36271.39 35765.29 36380.42 37350.61 34887.70 39261.05 35469.24 33486.18 356
CR-MVSNet83.53 24981.36 26690.06 20390.16 29279.75 19079.02 39791.12 34884.24 17982.27 21680.35 37475.45 15893.67 34763.37 34586.25 21896.75 176
Patchmtry77.36 32274.59 32785.67 29889.75 29975.75 29577.85 40091.12 34860.28 39571.23 33080.35 37475.45 15893.56 34957.94 36367.34 35387.68 333
dongtai69.47 35968.98 35870.93 38186.87 33558.45 39488.19 35393.18 31463.98 38156.04 39580.17 37670.97 22579.24 40833.46 40947.94 40075.09 402
ADS-MVSNet279.57 30277.53 30585.71 29793.78 18872.13 32579.48 39386.11 38873.09 34580.14 23979.99 37762.15 27690.14 38259.49 35883.52 23894.85 224
ADS-MVSNet81.26 28578.36 29889.96 20993.78 18879.78 18879.48 39393.60 29573.09 34580.14 23979.99 37762.15 27695.24 30659.49 35883.52 23894.85 224
MIMVSNet169.44 36066.65 36477.84 36676.48 39862.84 38187.42 36188.97 37066.96 37657.75 39379.72 37932.77 40185.83 39846.32 39763.42 37084.85 369
Anonymous2024052172.06 35169.91 35278.50 36577.11 39661.67 38691.62 32890.97 35365.52 37862.37 37579.05 38036.32 39290.96 37557.75 36568.52 33982.87 378
N_pmnet61.30 37060.20 37364.60 38984.32 36617.00 43091.67 32710.98 42861.77 38858.45 39078.55 38149.89 35291.83 36742.27 40463.94 36884.97 368
PM-MVS69.32 36166.93 36276.49 37373.60 40555.84 39985.91 37379.32 40774.72 33161.09 38178.18 38221.76 40991.10 37470.86 30756.90 38282.51 382
pmmvs-eth3d73.59 34070.66 34882.38 34076.40 39973.38 31189.39 34589.43 36672.69 34960.34 38477.79 38346.43 36691.26 37366.42 33157.06 38182.51 382
KD-MVS_self_test70.97 35669.31 35575.95 37776.24 40155.39 40287.45 36090.94 35470.20 36262.96 37477.48 38444.01 36988.09 38761.25 35353.26 38984.37 372
test_fmvs369.56 35869.19 35670.67 38269.01 40847.05 40890.87 33486.81 38371.31 35866.79 35477.15 38516.40 41383.17 40481.84 20962.51 37381.79 391
mvsany_test367.19 36565.34 36772.72 38063.08 41448.57 40783.12 38778.09 40872.07 35261.21 38077.11 38622.94 40887.78 39178.59 23651.88 39381.80 390
patchmatchnet-post77.09 38777.78 11695.39 297
mmtdpeth78.04 31376.76 31281.86 34589.60 30566.12 36792.34 31887.18 38076.83 31685.55 17476.49 38846.77 36497.02 21890.85 11245.24 40482.43 385
DeepMVS_CXcopyleft64.06 39078.53 39043.26 41568.11 41969.94 36438.55 40976.14 38918.53 41179.34 40743.72 40141.62 41069.57 405
APD_test156.56 37353.58 37765.50 38667.93 41146.51 41177.24 40372.95 41238.09 41042.75 40875.17 39013.38 41682.78 40540.19 40654.53 38567.23 407
test_vis1_rt73.96 33872.40 34178.64 36483.91 37261.16 38895.63 22968.18 41776.32 31860.09 38574.77 39129.01 40697.54 18787.74 15575.94 29077.22 400
EGC-MVSNET52.46 37847.56 38167.15 38581.98 37960.11 39082.54 38972.44 4130.11 4250.70 42674.59 39225.11 40783.26 40329.04 41261.51 37558.09 410
ambc76.02 37568.11 41051.43 40564.97 41389.59 36360.49 38374.49 39317.17 41292.46 35761.50 35152.85 39184.17 374
pmmvs365.75 36862.18 37176.45 37467.12 41264.54 37188.68 34985.05 39254.77 40657.54 39473.79 39429.40 40586.21 39755.49 37747.77 40178.62 398
new-patchmatchnet68.85 36365.93 36577.61 36873.57 40663.94 37690.11 33988.73 37471.62 35655.08 39773.60 39540.84 38587.22 39551.35 38648.49 39981.67 393
Patchmatch-RL test76.65 32774.01 33484.55 31777.37 39564.23 37378.49 39982.84 40178.48 29664.63 36573.40 39676.05 14691.70 36976.99 25357.84 38097.72 114
PatchT79.75 29976.85 31188.42 23789.55 30675.49 29677.37 40194.61 23463.07 38282.46 21073.32 39775.52 15793.41 35251.36 38584.43 23496.36 185
WB-MVS57.26 37156.22 37460.39 39569.29 40735.91 42286.39 37170.06 41559.84 39946.46 40572.71 39851.18 34578.11 40915.19 41934.89 41467.14 408
test_f64.01 36962.13 37269.65 38363.00 41545.30 41483.66 38680.68 40461.30 39155.70 39672.62 39914.23 41584.64 40069.84 31258.11 37979.00 397
RPMNet79.85 29875.92 31891.64 15790.16 29279.75 19079.02 39795.44 18658.43 40282.27 21672.55 40073.03 19798.41 14346.10 39886.25 21896.75 176
FPMVS55.09 37552.93 37861.57 39355.98 41740.51 41883.11 38883.41 40037.61 41134.95 41271.95 40114.40 41476.95 41129.81 41165.16 36367.25 406
test_method56.77 37254.53 37663.49 39176.49 39740.70 41775.68 40474.24 41119.47 41948.73 40171.89 40219.31 41065.80 41957.46 36747.51 40283.97 375
new_pmnet66.18 36763.18 36975.18 37976.27 40061.74 38583.79 38584.66 39356.64 40451.57 40071.85 40331.29 40387.93 38849.98 39062.55 37275.86 401
SSC-MVS56.01 37454.96 37559.17 39668.42 40934.13 42384.98 38169.23 41658.08 40345.36 40671.67 40450.30 35177.46 41014.28 42032.33 41565.91 409
UnsupCasMVSNet_bld68.60 36464.50 36880.92 35174.63 40467.80 35683.97 38492.94 32165.12 37954.63 39868.23 40535.97 39492.17 36360.13 35644.83 40582.78 380
testf145.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
APD_test245.70 38142.41 38355.58 39753.29 42140.02 41968.96 41162.67 42127.45 41429.85 41461.58 4065.98 42473.83 41628.49 41443.46 40852.90 411
PMMVS250.90 37946.31 38264.67 38855.53 41846.67 41077.30 40271.02 41440.89 40934.16 41359.32 4089.83 42176.14 41440.09 40728.63 41671.21 403
JIA-IIPM79.00 30877.20 30784.40 32189.74 30164.06 37575.30 40595.44 18662.15 38681.90 22059.08 40978.92 9595.59 29166.51 33085.78 22693.54 247
LCM-MVSNet52.52 37748.24 38065.35 38747.63 42441.45 41672.55 40983.62 39931.75 41237.66 41057.92 4109.19 42276.76 41249.26 39244.60 40677.84 399
gg-mvs-nofinetune85.48 22082.90 24293.24 8394.51 16685.82 4579.22 39596.97 4061.19 39287.33 15653.01 41190.58 696.07 25986.07 16797.23 8197.81 109
MVS-HIRNet71.36 35567.00 36184.46 32090.58 28469.74 34879.15 39687.74 37946.09 40861.96 37850.50 41245.14 36895.64 28753.74 38088.11 20288.00 328
PMVScopyleft34.80 2339.19 38535.53 38850.18 40029.72 42730.30 42559.60 41566.20 42026.06 41617.91 42049.53 4133.12 42674.09 41518.19 41849.40 39646.14 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt54.10 37651.04 37963.27 39258.16 41646.08 41384.17 38349.32 42756.48 40536.56 41149.48 4148.03 42391.91 36667.29 32349.87 39551.82 413
ANet_high46.22 38041.28 38761.04 39439.91 42646.25 41270.59 41076.18 41058.87 40123.09 41848.00 41512.58 41866.54 41828.65 41313.62 41970.35 404
MVEpermissive35.65 2233.85 38629.49 39146.92 40141.86 42536.28 42150.45 41656.52 42418.75 42018.28 41937.84 4162.41 42758.41 42018.71 41720.62 41746.06 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.11 38342.05 38554.30 39980.69 38251.30 40635.80 41783.81 39828.13 41327.94 41734.53 41711.41 42076.70 41321.45 41654.65 38434.90 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post33.80 41876.17 14495.97 263
E-PMN32.70 38732.39 38933.65 40353.35 42025.70 42774.07 40753.33 42521.08 41717.17 42133.63 41911.85 41954.84 42112.98 42114.04 41820.42 418
EMVS31.70 38831.45 39032.48 40450.72 42323.95 42874.78 40652.30 42620.36 41816.08 42231.48 42012.80 41753.60 42211.39 42213.10 42119.88 419
test_post185.88 37430.24 42173.77 18895.07 31673.89 285
X-MVStestdata86.26 20484.14 22492.63 11198.52 3780.29 17497.37 10996.44 10687.04 11391.38 9620.73 42277.24 12499.59 6090.46 12198.07 5498.02 88
testmvs9.92 39112.94 3940.84 4070.65 4290.29 43293.78 2880.39 4300.42 4232.85 42415.84 4230.17 4300.30 4262.18 4240.21 4231.91 421
test1239.07 39211.73 3951.11 4060.50 4300.77 43189.44 3440.20 4310.34 4242.15 42510.72 4240.34 4290.32 4251.79 4250.08 4242.23 420
wuyk23d14.10 39013.89 39314.72 40555.23 41922.91 42933.83 4183.56 4294.94 4224.11 4232.28 4252.06 42819.66 42410.23 4238.74 4221.59 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.92 3947.89 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42671.04 2220.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS67.18 36049.00 393
FOURS198.51 3978.01 24198.13 4996.21 13183.04 20994.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5399.81 2298.08 1498.81 2499.43 11
eth-test20.00 431
eth-test0.00 431
IU-MVS99.03 1585.34 6096.86 5192.05 2798.74 198.15 1198.97 1799.42 13
save fliter98.24 5183.34 10498.61 3396.57 9291.32 33
test_0728_SECOND95.14 2099.04 1486.14 3899.06 1796.77 6299.84 1397.90 1798.85 2199.45 10
GSMVS97.54 128
test_part298.90 1985.14 7196.07 29
sam_mvs177.59 11797.54 128
sam_mvs75.35 165
MTGPAbinary96.33 120
MTMP97.53 9368.16 418
test9_res96.00 4099.03 1398.31 68
agg_prior294.30 6499.00 1598.57 53
agg_prior98.59 3583.13 10896.56 9494.19 5499.16 99
test_prior482.34 12197.75 76
test_prior93.09 9098.68 2681.91 12996.40 11299.06 10798.29 70
旧先验296.97 14474.06 33796.10 2897.76 17388.38 149
新几何296.42 184
无先验96.87 15396.78 5677.39 30799.52 6979.95 22398.43 61
原ACMM296.84 154
testdata299.48 7376.45 260
segment_acmp82.69 61
testdata195.57 23387.44 101
test1294.25 4198.34 4685.55 5696.35 11992.36 8180.84 6999.22 8998.31 4997.98 95
plane_prior791.86 25977.55 260
plane_prior691.98 25577.92 24664.77 262
plane_prior594.69 22497.30 20387.08 16182.82 24890.96 263
plane_prior377.75 25690.17 5281.33 225
plane_prior297.18 12089.89 54
plane_prior191.95 257
plane_prior77.96 24397.52 9690.36 5082.96 246
n20.00 432
nn0.00 432
door-mid79.75 406
test1196.50 100
door80.13 405
HQP5-MVS78.48 223
HQP-NCC92.08 25097.63 8290.52 4582.30 212
ACMP_Plane92.08 25097.63 8290.52 4582.30 212
BP-MVS87.67 157
HQP4-MVS82.30 21297.32 20191.13 261
HQP3-MVS94.80 21983.01 244
HQP2-MVS65.40 257
MDTV_nov1_ep13_2view81.74 13786.80 36680.65 25185.65 17274.26 18276.52 25996.98 163
ACMMP++_ref78.45 281
ACMMP++79.05 273
Test By Simon71.65 215