This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS89.82 194.61 2296.17 589.91 20297.09 9070.21 33598.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2198.86 2185.68 4898.06 5696.64 8193.64 1491.74 8798.54 2080.17 7399.90 592.28 8898.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS86.58 391.53 8791.06 8992.94 9394.52 15781.89 12795.95 20795.98 14690.76 4183.76 18896.76 12173.24 18699.71 4591.67 9696.96 8497.22 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS85.34 488.67 14887.14 16993.26 7993.12 20484.32 8298.76 2797.27 2187.19 10779.36 24090.45 25183.92 4698.53 13084.41 16969.79 32096.93 157
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS84.09 586.77 18885.00 19992.08 13292.06 24383.07 10692.14 31094.47 23379.63 26976.90 26294.78 17771.15 20999.20 9272.87 28191.05 16393.98 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS84.06 691.63 8490.37 10495.39 1896.12 10588.25 1690.22 32997.58 1688.33 7790.50 10691.96 22779.26 8199.06 10490.29 11689.07 17598.88 35
PLCcopyleft83.97 788.00 16887.38 16389.83 20598.02 5976.46 26997.16 12394.43 23679.26 27881.98 21096.28 13069.36 22199.27 8477.71 23492.25 15493.77 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+82.88 889.63 12887.85 14894.99 2294.49 16286.76 3297.84 6895.74 16186.10 12475.47 28796.02 13565.00 24799.51 7182.91 19397.07 8398.72 44
PVSNet82.34 989.02 13787.79 15092.71 10395.49 12681.50 14197.70 7997.29 1987.76 9085.47 16595.12 16756.90 30698.90 11580.33 20794.02 12897.71 111
3Dnovator82.32 1089.33 13287.64 15394.42 3593.73 18485.70 4697.73 7796.75 6586.73 11976.21 27595.93 13662.17 26199.68 5181.67 20097.81 6297.88 95
ACMP81.66 1184.00 23283.22 22986.33 27691.53 25572.95 31195.91 21193.79 27483.70 19173.79 29792.22 22154.31 32596.89 21983.98 17379.74 25989.16 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS81.61 1285.02 21583.67 21889.06 21696.79 9273.27 30795.92 20994.79 21174.81 32280.47 22696.83 11771.07 21098.19 15049.82 37992.57 14895.71 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM80.70 1383.72 23882.85 23586.31 27991.19 26072.12 31795.88 21294.29 24480.44 25077.02 26091.96 22755.24 31897.14 20879.30 22080.38 25589.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft79.58 1486.09 19783.62 22193.50 7290.95 26586.71 3397.44 10095.83 15675.35 31672.64 31195.72 14157.42 30399.64 5571.41 29095.85 10994.13 227
PVSNet_077.72 1581.70 27078.95 28789.94 20190.77 27276.72 26695.96 20696.95 4285.01 15070.24 32888.53 27652.32 32798.20 14986.68 15644.08 39394.89 212
ACMH+76.62 1677.47 31174.94 31385.05 30091.07 26471.58 32793.26 29590.01 34771.80 34564.76 35288.55 27441.62 36796.48 23662.35 33871.00 30887.09 336
ACMH75.40 1777.99 30474.96 31287.10 26690.67 27376.41 27093.19 29891.64 32772.47 34263.44 35787.61 28943.34 36097.16 20458.34 35173.94 29387.72 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB73.68 1877.99 30475.74 30984.74 30390.45 27772.02 31986.41 35891.12 33472.57 34166.63 34487.27 29354.95 32196.98 21356.29 36175.98 28285.21 358
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft73.24 1975.74 32273.00 32983.94 31692.38 22269.08 34391.85 31486.93 36961.48 37665.32 35090.27 25442.27 36596.93 21850.91 37575.63 28685.80 355
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVS_ROBcopyleft68.52 2073.02 33569.57 34283.37 32580.54 37271.82 32393.60 28588.22 36362.37 37161.98 36583.15 34835.31 38295.47 28645.08 38775.88 28482.82 370
CMPMVSbinary54.94 2175.71 32374.56 31879.17 35079.69 37455.98 38489.59 33193.30 29760.28 38153.85 38589.07 26747.68 34896.33 24276.55 24881.02 25085.22 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive35.65 2233.85 37129.49 37646.92 38641.86 41036.28 40650.45 40156.52 40918.75 40518.28 40437.84 4012.41 41258.41 40518.71 40220.62 40246.06 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 37035.53 37350.18 38529.72 41230.30 41059.60 40066.20 40526.06 40117.91 40549.53 3983.12 41174.09 40018.19 40349.40 38546.14 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MGCFI-Net91.95 7391.03 9094.72 2995.68 12286.38 3496.93 14894.48 23088.25 7992.78 7397.24 10072.34 19598.46 13593.13 8088.43 18799.32 19
testing9191.90 7791.31 8293.66 6295.99 10985.68 4897.39 10796.89 4786.75 11888.85 13095.23 15883.93 4597.90 16288.91 13087.89 19497.41 133
testing1192.48 6392.04 7093.78 5595.94 11286.00 3997.56 8997.08 3387.52 9689.32 12295.40 15284.60 3598.02 15391.93 9489.04 17697.32 138
testing9991.91 7691.35 8093.60 6695.98 11085.70 4697.31 11196.92 4686.82 11488.91 12895.25 15584.26 4297.89 16388.80 13387.94 19397.21 146
UWE-MVS88.56 15388.91 13387.50 25594.17 17072.19 31595.82 21797.05 3584.96 15284.78 17393.51 20681.33 6094.75 31479.43 21889.17 17395.57 196
ETVMVS90.99 10190.26 10593.19 8395.81 11785.64 5096.97 14397.18 2685.43 13788.77 13394.86 17582.00 5896.37 24082.70 19488.60 18297.57 121
sasdasda92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
testing22291.09 9890.49 10092.87 9595.82 11685.04 6896.51 17597.28 2086.05 12689.13 12495.34 15480.16 7496.62 23385.82 15888.31 18996.96 155
WB-MVSnew84.08 23183.51 22485.80 28591.34 25876.69 26795.62 22596.27 12281.77 22881.81 21492.81 21458.23 29094.70 31666.66 31687.06 20085.99 351
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 6094.50 16184.30 8399.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 152
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5294.42 16384.61 7899.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 144
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13488.08 31181.62 13997.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 213
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12490.52 27581.92 12598.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 209
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12693.38 19681.71 13698.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 208
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11794.56 15482.01 12199.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 207
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 26
WAC-MVS67.18 35149.00 381
Syy-MVS77.97 30678.05 29277.74 35592.13 23756.85 38293.97 27694.23 24682.43 21673.39 30093.57 20457.95 29687.86 37732.40 39582.34 24388.51 305
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10588.45 30780.81 15699.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 122
test_fmvsmconf0.01_n91.08 9990.68 9592.29 12282.43 36680.12 17697.94 6393.93 26192.07 2691.97 8297.60 8167.56 22799.53 6897.09 2995.56 11397.21 146
myMVS_eth3d81.93 26782.18 24381.18 33992.13 23767.18 35193.97 27694.23 24682.43 21673.39 30093.57 20476.98 11887.86 37750.53 37782.34 24388.51 305
testing380.74 28381.17 25979.44 34891.15 26263.48 36697.16 12395.76 15980.83 23971.36 31893.15 21178.22 9787.30 38243.19 38979.67 26087.55 330
SSC-MVS56.01 35954.96 36059.17 38168.42 39434.13 40884.98 36769.23 40158.08 38945.36 39171.67 38950.30 33777.46 39514.28 40532.33 40065.91 394
test_fmvsmconf_n93.99 3394.36 2892.86 9692.82 21381.12 14699.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 101
WB-MVS57.26 35656.22 35960.39 38069.29 39235.91 40786.39 35970.06 40059.84 38546.46 39072.71 38351.18 33178.11 39415.19 40434.89 39967.14 393
test_fmvsmvis_n_192092.12 7092.10 6892.17 12990.87 26881.04 14898.34 4193.90 26592.71 2087.24 15197.90 6374.83 16399.72 4396.96 3196.20 9995.76 192
dmvs_re84.10 23082.90 23387.70 24691.41 25773.28 30590.59 32793.19 30085.02 14977.96 25293.68 20157.92 29896.18 24875.50 26080.87 25193.63 236
SDMVSNet87.02 18185.61 18691.24 16294.14 17283.30 10293.88 27995.98 14684.30 17179.63 23792.01 22358.23 29097.68 16990.28 11882.02 24692.75 243
dmvs_testset72.00 34173.36 32767.91 36983.83 36131.90 40985.30 36577.12 39482.80 20963.05 36192.46 21961.54 26982.55 39242.22 39171.89 30589.29 284
sd_testset84.62 22183.11 23089.17 21494.14 17277.78 24591.54 32094.38 23984.30 17179.63 23792.01 22352.28 32896.98 21377.67 23582.02 24692.75 243
test_fmvsm_n_192094.81 1995.60 1192.45 11295.29 13280.96 15299.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 170
test_cas_vis1_n_192089.90 12390.02 11389.54 21090.14 28474.63 29398.71 2894.43 23693.04 1992.40 7596.35 12953.41 32699.08 10395.59 4896.16 10094.90 211
test_vis1_n_192089.95 12290.59 9688.03 24192.36 22368.98 34499.12 1294.34 24193.86 1393.64 6197.01 11151.54 33099.59 6096.76 3496.71 9495.53 198
test_vis1_n85.60 20685.70 18585.33 29684.79 35064.98 35896.83 15491.61 32887.36 10191.00 10094.84 17636.14 37897.18 20395.66 4693.03 14493.82 233
test_fmvs1_n86.34 19386.72 17685.17 29987.54 31963.64 36596.91 15092.37 31687.49 9791.33 9395.58 14840.81 37298.46 13595.00 5493.49 13793.41 242
mvsany_test187.58 17688.22 14185.67 29089.78 28867.18 35195.25 23987.93 36483.96 18188.79 13197.06 11072.52 19294.53 32192.21 8986.45 20695.30 205
APD_test156.56 35853.58 36265.50 37167.93 39646.51 39677.24 38872.95 39738.09 39542.75 39375.17 37513.38 40182.78 39140.19 39254.53 37567.23 392
test_vis1_rt73.96 32872.40 33178.64 35283.91 36061.16 37595.63 22468.18 40276.32 31060.09 37374.77 37629.01 39197.54 18087.74 14475.94 28377.22 386
test_vis3_rt54.10 36151.04 36463.27 37758.16 40146.08 39884.17 36949.32 41256.48 39136.56 39649.48 3998.03 40891.91 35567.29 31349.87 38451.82 398
test_fmvs279.59 29279.90 27978.67 35182.86 36555.82 38695.20 24289.55 35081.09 23580.12 23389.80 26034.31 38393.51 33987.82 14378.36 27586.69 340
test_fmvs187.79 17288.52 13885.62 29292.98 21064.31 36097.88 6692.42 31487.95 8592.24 7895.82 13947.94 34598.44 13995.31 5294.09 12694.09 228
test_fmvs369.56 34569.19 34570.67 36769.01 39347.05 39390.87 32586.81 37071.31 34966.79 34377.15 37116.40 39883.17 39081.84 19962.51 36481.79 380
mvsany_test367.19 35165.34 35372.72 36663.08 39948.57 39283.12 37378.09 39372.07 34361.21 36877.11 37222.94 39387.78 37978.59 22651.88 38381.80 379
testf145.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
APD_test245.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
test_f64.01 35462.13 35769.65 36863.00 40045.30 39983.66 37280.68 38961.30 37755.70 38272.62 38414.23 40084.64 38869.84 30258.11 37079.00 383
FE-MVS86.06 19884.15 21391.78 14694.33 16679.81 18184.58 36896.61 8476.69 30985.00 16987.38 29170.71 21598.37 14170.39 30091.70 16097.17 149
FA-MVS(test-final)87.71 17486.23 18192.17 12994.19 16980.55 16387.16 35296.07 14082.12 22385.98 16288.35 27872.04 20198.49 13280.26 20989.87 16897.48 130
iter_conf05_1191.95 7391.17 8894.29 3896.33 9785.50 5499.61 191.84 32294.36 1097.89 698.51 2446.72 35098.24 14796.54 3698.75 2899.13 27
bld_raw_dy_0_6488.31 16086.38 17994.07 4796.33 9784.79 7697.19 11784.75 37894.48 882.36 20298.47 2746.18 35398.30 14596.54 3681.13 24999.13 27
patch_mono-295.14 1396.08 792.33 11998.44 4377.84 24398.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 18
EGC-MVSNET52.46 36347.56 36667.15 37081.98 36760.11 37782.54 37572.44 3980.11 4100.70 41174.59 37725.11 39283.26 38929.04 39761.51 36658.09 395
test250690.96 10390.39 10292.65 10593.54 18882.46 11696.37 18597.35 1886.78 11687.55 14695.25 15577.83 10597.50 18484.07 17294.80 11897.98 90
test111188.11 16587.04 17191.35 15793.15 20178.79 21296.57 17090.78 34286.88 11385.04 16895.20 16157.23 30597.39 19183.88 17594.59 12197.87 97
ECVR-MVScopyleft88.35 15987.25 16591.65 14993.54 18879.40 19496.56 17290.78 34286.78 11685.57 16495.25 15557.25 30497.56 17684.73 16894.80 11897.98 90
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080581.20 27879.06 28687.61 24986.50 32672.97 31093.66 28295.48 17474.11 32676.23 27491.99 22541.36 36997.40 19077.44 24074.78 29092.45 246
DVP-MVS++96.05 496.41 394.96 2399.05 985.34 5698.13 5096.77 6188.38 7597.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
FOURS198.51 3978.01 23598.13 5096.21 12883.04 20294.39 52
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
test_one_060198.91 1884.56 8096.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 416
eth-test0.00 416
GeoE86.36 19285.20 19389.83 20593.17 20076.13 27497.53 9292.11 31879.58 27080.99 22094.01 19466.60 23796.17 24973.48 27989.30 17297.20 148
test_method56.77 35754.53 36163.49 37676.49 38440.70 40275.68 38974.24 39619.47 40448.73 38771.89 38719.31 39565.80 40457.46 35647.51 39083.97 366
Anonymous2024052172.06 34069.91 34178.50 35377.11 38361.67 37391.62 31990.97 33965.52 36662.37 36379.05 36636.32 37790.96 36457.75 35468.52 33182.87 369
h-mvs3389.30 13388.95 13190.36 18895.07 14076.04 27696.96 14597.11 3190.39 4892.22 7995.10 16874.70 16598.86 11693.14 7865.89 35296.16 183
hse-mvs288.22 16488.21 14288.25 23593.54 18873.41 30195.41 23395.89 15290.39 4892.22 7994.22 18874.70 16596.66 23293.14 7864.37 35794.69 221
CL-MVSNet_self_test75.81 32174.14 32380.83 34278.33 37867.79 34894.22 27293.52 28777.28 30369.82 32981.54 35561.47 27089.22 37257.59 35553.51 37885.48 356
KD-MVS_2432*160077.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
KD-MVS_self_test70.97 34469.31 34475.95 36376.24 38855.39 38887.45 34890.94 34070.20 35362.96 36277.48 37044.01 35688.09 37561.25 34353.26 37984.37 363
AUN-MVS86.25 19685.57 18788.26 23493.57 18773.38 30295.45 23195.88 15383.94 18285.47 16594.21 18973.70 18296.67 23183.54 18564.41 35694.73 220
ZD-MVS99.09 883.22 10496.60 8782.88 20793.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
SR-MVS-dyc-post91.29 9391.45 7990.80 17697.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6675.76 14198.61 12491.99 9296.79 9097.75 107
RE-MVS-def91.18 8797.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6673.36 18591.99 9296.79 9097.75 107
SED-MVS95.88 596.22 494.87 2499.03 1585.03 6999.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 5696.86 5192.05 2998.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6996.78 5588.72 6797.79 798.90 588.48 1799.82 18
SF-MVS94.17 2994.05 3394.55 3397.56 7485.95 4097.73 7796.43 10684.02 17895.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 64
cl2285.11 21484.17 21287.92 24295.06 14278.82 20995.51 22894.22 24879.74 26776.77 26387.92 28575.96 13795.68 27479.93 21472.42 30189.27 285
miper_ehance_all_eth84.57 22383.60 22287.50 25592.64 21978.25 22695.40 23493.47 28879.28 27776.41 26987.64 28876.53 12695.24 29778.58 22772.42 30189.01 295
miper_enhance_ethall85.95 20085.20 19388.19 23894.85 14879.76 18396.00 20494.06 25882.98 20577.74 25388.76 27179.42 7895.46 28780.58 20572.42 30189.36 283
ZNCC-MVS92.75 5192.60 5693.23 8198.24 5181.82 13197.63 8396.50 9885.00 15191.05 9897.74 7178.38 9499.80 2590.48 10998.34 4798.07 81
dcpmvs_293.10 4493.46 4292.02 13797.77 6579.73 18794.82 25693.86 26886.91 11191.33 9396.76 12185.20 3198.06 15296.90 3297.60 6898.27 70
cl____83.27 24482.12 24486.74 27092.20 23275.95 28195.11 24893.27 29878.44 29174.82 29287.02 29974.19 17395.19 29974.67 26869.32 32489.09 290
DIV-MVS_self_test83.27 24482.12 24486.74 27092.19 23375.92 28395.11 24893.26 29978.44 29174.81 29387.08 29874.19 17395.19 29974.66 26969.30 32589.11 289
eth_miper_zixun_eth83.12 24882.01 24686.47 27591.85 25174.80 29194.33 26693.18 30279.11 28075.74 28587.25 29572.71 18995.32 29376.78 24667.13 34689.27 285
9.1494.26 3098.10 5798.14 4796.52 9584.74 15694.83 4798.80 782.80 5499.37 8095.95 4298.42 41
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter98.24 5183.34 10198.61 3496.57 9091.32 34
ET-MVSNet_ETH3D90.01 12189.03 12792.95 9294.38 16486.77 3198.14 4796.31 12089.30 6163.33 35896.72 12490.09 1193.63 33790.70 10782.29 24598.46 57
UniMVSNet_ETH3D80.86 28278.75 28887.22 26486.31 32972.02 31991.95 31193.76 27873.51 33175.06 29190.16 25743.04 36395.66 27576.37 25278.55 27393.98 230
EIA-MVS91.73 8092.05 6990.78 17894.52 15776.40 27198.06 5695.34 18689.19 6288.90 12997.28 9977.56 10897.73 16890.77 10596.86 8998.20 72
miper_refine_blended77.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
miper_lstm_enhance81.66 27280.66 26684.67 30691.19 26071.97 32191.94 31293.19 30077.86 29572.27 31485.26 32673.46 18393.42 34073.71 27867.05 34788.61 303
ETV-MVS92.72 5592.87 5092.28 12394.54 15681.89 12797.98 6095.21 19189.77 5793.11 6796.83 11777.23 11697.50 18495.74 4595.38 11497.44 131
CS-MVS92.73 5393.48 4190.48 18596.27 10075.93 28298.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 21193.80 6697.32 7898.49 55
D2MVS82.67 25681.55 25386.04 28387.77 31576.47 26895.21 24196.58 8982.66 21370.26 32785.46 32560.39 27495.80 26776.40 25179.18 26585.83 354
DVP-MVScopyleft95.58 995.91 994.57 3299.05 985.18 6199.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 1999.04 1486.14 3799.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
test072699.05 985.18 6199.11 1596.78 5588.75 6597.65 1298.91 287.69 22
SR-MVS92.16 6992.27 6291.83 14598.37 4578.41 22196.67 16795.76 15982.19 22291.97 8298.07 5176.44 12898.64 12393.71 6897.27 7998.45 58
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12899.25 699.70 3
GST-MVS92.43 6592.22 6593.04 8998.17 5481.64 13897.40 10696.38 11384.71 15890.90 10197.40 9277.55 10999.76 3189.75 12297.74 6497.72 109
test_yl91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
thisisatest053089.65 12789.02 12891.53 15493.46 19480.78 15796.52 17396.67 7581.69 23083.79 18794.90 17488.85 1597.68 16977.80 23087.49 19996.14 184
Anonymous2024052983.15 24780.60 26790.80 17695.74 12078.27 22596.81 15794.92 20160.10 38381.89 21292.54 21845.82 35498.82 11879.25 22178.32 27695.31 204
Anonymous20240521184.41 22681.93 24891.85 14496.78 9378.41 22197.44 10091.34 33270.29 35284.06 18094.26 18741.09 37098.96 10979.46 21782.65 24198.17 74
DCV-MVSNet91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
tttt051788.57 15288.19 14389.71 20993.00 20675.99 28095.67 22196.67 7580.78 24181.82 21394.40 18488.97 1497.58 17576.05 25586.31 20795.57 196
our_test_377.90 30775.37 31185.48 29585.39 34376.74 26593.63 28391.67 32573.39 33465.72 34984.65 33758.20 29293.13 34357.82 35367.87 33886.57 342
thisisatest051590.95 10490.26 10593.01 9094.03 17984.27 8597.91 6496.67 7583.18 19886.87 15595.51 15088.66 1697.85 16480.46 20689.01 17796.92 159
ppachtmachnet_test77.19 31374.22 32186.13 28285.39 34378.22 22793.98 27591.36 33171.74 34667.11 33984.87 33556.67 30893.37 34252.21 37164.59 35586.80 338
SMA-MVScopyleft94.70 2194.68 2194.76 2798.02 5985.94 4297.47 9796.77 6185.32 14097.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 55
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS97.54 122
DPE-MVScopyleft95.32 1195.55 1294.64 3198.79 2384.87 7497.77 7396.74 6686.11 12396.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.90 1985.14 6796.07 29
thres100view90088.30 16186.95 17392.33 11996.10 10684.90 7397.14 12698.85 282.69 21283.41 19093.66 20275.43 15097.93 15669.04 30586.24 21094.17 224
tfpnnormal78.14 30375.42 31086.31 27988.33 30979.24 19894.41 26396.22 12773.51 33169.81 33085.52 32455.43 31695.75 27047.65 38467.86 33983.95 367
tfpn200view988.48 15487.15 16792.47 11196.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21094.17 224
c3_l83.80 23682.65 23887.25 26392.10 23977.74 24895.25 23993.04 30778.58 28876.01 27787.21 29675.25 15895.11 30477.54 23868.89 32888.91 301
CHOSEN 280x42091.71 8391.85 7191.29 16094.94 14482.69 11087.89 34696.17 13285.94 12887.27 15094.31 18590.27 995.65 27794.04 6595.86 10895.53 198
CANet94.89 1694.64 2295.63 1397.55 7588.12 1799.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 34
Fast-Effi-MVS+-dtu83.33 24382.60 23985.50 29489.55 29469.38 34296.09 20391.38 32982.30 21975.96 27991.41 23456.71 30795.58 28375.13 26484.90 22391.54 249
Effi-MVS+-dtu84.61 22284.90 20283.72 32191.96 24663.14 36894.95 25393.34 29685.57 13479.79 23587.12 29761.99 26595.61 28183.55 18485.83 21592.41 247
CANet_DTU90.98 10290.04 11293.83 5394.76 15086.23 3696.32 18993.12 30593.11 1893.71 5996.82 11963.08 25799.48 7384.29 17095.12 11695.77 191
MVS_030495.36 1095.20 1795.85 1194.89 14789.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 54
MP-MVS-pluss92.58 6192.35 6093.29 7897.30 8682.53 11396.44 18096.04 14284.68 15989.12 12598.37 3177.48 11099.74 3893.31 7698.38 4497.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.62 896.54 192.86 9698.31 4880.10 17797.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.59 10797.54 122
sam_mvs75.35 155
IterMVS-SCA-FT80.51 28679.10 28584.73 30489.63 29374.66 29292.98 30091.81 32480.05 26171.06 32285.18 32958.04 29391.40 35972.48 28570.70 31288.12 317
TSAR-MVS + MP.94.79 2095.17 1893.64 6397.66 6984.10 8695.85 21596.42 10791.26 3597.49 1396.80 12086.50 2798.49 13295.54 4999.03 1398.33 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
OPM-MVS85.84 20185.10 19888.06 23988.34 30877.83 24495.72 21994.20 24987.89 8880.45 22794.05 19358.57 28797.26 20083.88 17582.76 24089.09 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP93.46 3993.23 4594.17 4497.16 8884.28 8496.82 15696.65 7886.24 12194.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 61
ambc76.02 36168.11 39551.43 39064.97 39889.59 34960.49 37174.49 37817.17 39792.46 34661.50 34152.85 38184.17 365
MTGPAbinary96.33 118
CS-MVS-test92.98 4693.67 3690.90 17396.52 9476.87 26298.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20794.28 6397.80 6398.70 45
Effi-MVS+90.70 10889.90 11893.09 8793.61 18583.48 9895.20 24292.79 31083.22 19791.82 8595.70 14271.82 20297.48 18691.25 9893.67 13598.32 64
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 14092.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21498.96 10996.74 3596.57 9596.76 166
xiu_mvs_v1_base90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
new-patchmatchnet68.85 34965.93 35177.61 35673.57 39163.94 36490.11 33088.73 36071.62 34755.08 38373.60 38040.84 37187.22 38351.35 37448.49 38881.67 381
pmmvs674.65 32771.67 33383.60 32379.13 37669.94 33693.31 29490.88 34161.05 38065.83 34884.15 34143.43 35994.83 31366.62 31760.63 36786.02 350
pmmvs581.34 27579.54 28186.73 27385.02 34876.91 26196.22 19491.65 32677.65 29773.55 29888.61 27355.70 31594.43 32374.12 27473.35 29888.86 302
test_post185.88 36230.24 40673.77 17895.07 30873.89 275
test_post33.80 40376.17 13495.97 255
Fast-Effi-MVS+87.93 17086.94 17490.92 17294.04 17779.16 20198.26 4393.72 27981.29 23383.94 18592.90 21369.83 22096.68 23076.70 24791.74 15996.93 157
patchmatchnet-post77.09 37377.78 10695.39 288
Anonymous2023121179.72 29177.19 29987.33 25995.59 12477.16 26095.18 24594.18 25159.31 38672.57 31286.20 31547.89 34695.66 27574.53 27169.24 32689.18 287
pmmvs-eth3d73.59 33070.66 33782.38 33276.40 38673.38 30289.39 33589.43 35272.69 34060.34 37277.79 36946.43 35291.26 36266.42 32157.06 37282.51 373
GG-mvs-BLEND93.49 7394.94 14486.26 3581.62 37697.00 3788.32 14094.30 18691.23 596.21 24788.49 13797.43 7498.00 88
xiu_mvs_v1_base_debi90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
Anonymous2023120675.29 32473.64 32580.22 34480.75 36963.38 36793.36 29090.71 34473.09 33667.12 33883.70 34450.33 33690.85 36553.63 36970.10 31786.44 343
MTAPA92.45 6492.31 6192.86 9697.90 6180.85 15592.88 30296.33 11887.92 8690.20 11098.18 4076.71 12599.76 3192.57 8798.09 5297.96 93
MTMP97.53 9268.16 403
gm-plane-assit92.27 22879.64 19084.47 16695.15 16597.93 15685.81 159
test9_res96.00 4199.03 1398.31 66
MVP-Stereo82.65 25781.67 25285.59 29386.10 33578.29 22493.33 29192.82 30977.75 29669.17 33487.98 28459.28 28395.76 26971.77 28796.88 8782.73 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.64 3183.71 9297.82 6996.65 7884.29 17395.16 3698.09 4784.39 3799.36 81
train_agg94.28 2694.45 2593.74 5798.64 3183.71 9297.82 6996.65 7884.50 16495.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 75
gg-mvs-nofinetune85.48 20982.90 23393.24 8094.51 16085.82 4479.22 38096.97 4061.19 37887.33 14953.01 39690.58 696.07 25086.07 15797.23 8097.81 104
SCA85.63 20583.64 22091.60 15392.30 22781.86 12992.88 30295.56 16984.85 15382.52 19885.12 33258.04 29395.39 28873.89 27587.58 19897.54 122
Patchmatch-test78.25 30274.72 31688.83 22291.20 25974.10 29973.91 39388.70 36159.89 38466.82 34285.12 33278.38 9494.54 32048.84 38279.58 26297.86 98
test_898.63 3383.64 9597.81 7196.63 8384.50 16495.10 4098.11 4684.33 3899.23 86
MS-PatchMatch83.05 24981.82 25086.72 27489.64 29279.10 20494.88 25594.59 22679.70 26870.67 32489.65 26250.43 33596.82 22470.82 29995.99 10784.25 364
Patchmatch-RL test76.65 31774.01 32484.55 30977.37 38264.23 36178.49 38482.84 38678.48 28964.63 35373.40 38176.05 13691.70 35876.99 24357.84 37197.72 109
cdsmvs_eth3d_5k21.43 37428.57 3770.00 3930.00 4160.00 4180.00 40495.93 1510.00 4110.00 41297.66 7463.57 2540.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.92 3797.89 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41171.04 2110.00 4120.00 4110.00 4100.00 408
agg_prior294.30 6099.00 1598.57 50
agg_prior98.59 3583.13 10596.56 9294.19 5499.16 96
tmp_tt41.54 36941.93 37140.38 38720.10 41326.84 41161.93 39959.09 40814.81 40628.51 40180.58 35935.53 38048.33 40863.70 33313.11 40545.96 401
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
anonymousdsp80.98 28179.97 27784.01 31581.73 36870.44 33392.49 30693.58 28677.10 30672.98 30886.31 31357.58 29994.90 31079.32 21978.63 27286.69 340
alignmvs92.97 4792.26 6395.12 2095.54 12587.77 2198.67 3096.38 11388.04 8393.01 6997.45 8779.20 8398.60 12593.25 7788.76 18098.99 33
nrg03086.79 18785.43 18990.87 17588.76 30185.34 5697.06 13694.33 24284.31 16980.45 22791.98 22672.36 19496.36 24188.48 13871.13 30790.93 255
v14419282.43 25980.73 26487.54 25485.81 33978.22 22795.98 20593.78 27579.09 28177.11 25986.49 30764.66 25195.91 26174.20 27369.42 32388.49 307
FIs86.73 18986.10 18288.61 22690.05 28580.21 17396.14 20096.95 4285.56 13678.37 24892.30 22076.73 12495.28 29579.51 21679.27 26490.35 261
v192192082.02 26680.23 27287.41 25885.62 34077.92 24095.79 21893.69 28078.86 28576.67 26486.44 30962.50 25995.83 26572.69 28269.77 32188.47 308
UA-Net88.92 14088.48 13990.24 19194.06 17677.18 25993.04 29994.66 21887.39 10091.09 9793.89 19774.92 16298.18 15175.83 25791.43 16195.35 203
v119282.31 26380.55 26887.60 25085.94 33678.47 22095.85 21593.80 27379.33 27476.97 26186.51 30663.33 25695.87 26373.11 28070.13 31588.46 309
FC-MVSNet-test85.96 19985.39 19087.66 24889.38 29878.02 23495.65 22396.87 4985.12 14777.34 25591.94 22976.28 13394.74 31577.09 24278.82 26890.21 264
v114482.90 25381.27 25887.78 24586.29 33079.07 20696.14 20093.93 26180.05 26177.38 25486.80 30265.50 24195.93 26075.21 26370.13 31588.33 313
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS92.89 4992.86 5192.98 9198.71 2581.12 14697.58 8796.70 7185.20 14591.75 8697.97 5978.47 9399.71 4590.95 10098.41 4298.12 79
v14882.41 26280.89 26186.99 26886.18 33376.81 26496.27 19193.82 27080.49 24975.28 28986.11 31767.32 23195.75 27075.48 26167.03 34888.42 311
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest75.92 32073.06 32884.47 31092.18 23467.29 34991.07 32384.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
TestCases84.47 31092.18 23467.29 34984.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
v7n79.32 29777.34 29785.28 29784.05 35972.89 31293.38 28993.87 26775.02 32170.68 32384.37 33859.58 27995.62 28067.60 31067.50 34387.32 334
region2R92.72 5592.70 5392.79 9998.68 2680.53 16697.53 9296.51 9685.22 14391.94 8497.98 5777.26 11299.67 5390.83 10498.37 4598.18 73
iter_conf0590.14 11989.79 12091.17 16595.85 11586.93 2997.68 8188.67 36289.93 5481.73 21692.80 21590.37 896.03 25190.44 11280.65 25490.56 257
RRT_MVS83.88 23483.27 22885.71 28887.53 32072.12 31795.35 23594.33 24283.81 18775.86 28191.28 23860.55 27395.09 30783.93 17476.76 28189.90 274
PS-MVSNAJss84.91 21784.30 21086.74 27085.89 33874.40 29794.95 25394.16 25283.93 18376.45 26890.11 25971.04 21195.77 26883.16 19079.02 26790.06 271
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12392.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 21199.17 9596.77 3397.39 7696.79 163
jajsoiax82.12 26581.15 26085.03 30184.19 35670.70 33194.22 27293.95 26083.07 20173.48 29989.75 26149.66 33995.37 29082.24 19779.76 25789.02 294
mvs_tets81.74 26980.71 26584.84 30284.22 35570.29 33493.91 27893.78 27582.77 21073.37 30289.46 26447.36 34995.31 29481.99 19879.55 26388.92 300
EI-MVSNet-UG-set91.35 9291.22 8391.73 14797.39 8280.68 15996.47 17796.83 5287.92 8688.30 14197.36 9377.84 10499.13 9989.43 12789.45 17195.37 202
EI-MVSNet-Vis-set91.84 7991.77 7492.04 13697.60 7181.17 14596.61 16896.87 4988.20 8089.19 12397.55 8678.69 9299.14 9790.29 11690.94 16495.80 190
HPM-MVS++copyleft95.32 1195.48 1494.85 2598.62 3486.04 3897.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 47
test_prior482.34 11897.75 76
XVS92.69 5792.71 5292.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9097.83 6877.24 11499.59 6090.46 11098.07 5398.02 83
v124081.70 27079.83 28087.30 26285.50 34177.70 24995.48 22993.44 28978.46 29076.53 26786.44 30960.85 27295.84 26471.59 28970.17 31388.35 312
pm-mvs180.05 28878.02 29386.15 28185.42 34275.81 28495.11 24892.69 31277.13 30470.36 32687.43 29058.44 28995.27 29671.36 29164.25 35887.36 333
test_prior298.37 4086.08 12594.57 5098.02 5383.14 5095.05 5398.79 26
X-MVStestdata86.26 19584.14 21492.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9020.73 40777.24 11499.59 6090.46 11098.07 5398.02 83
test_prior93.09 8798.68 2681.91 12696.40 11099.06 10498.29 68
旧先验296.97 14374.06 32896.10 2897.76 16788.38 139
新几何296.42 183
新几何193.12 8597.44 7881.60 14096.71 7074.54 32491.22 9697.57 8279.13 8499.51 7177.40 24198.46 3998.26 71
旧先验197.39 8279.58 19196.54 9398.08 5084.00 4397.42 7597.62 118
无先验96.87 15296.78 5577.39 30099.52 6979.95 21398.43 59
原ACMM296.84 153
原ACMM191.22 16497.77 6578.10 23396.61 8481.05 23691.28 9597.42 9177.92 10398.98 10879.85 21598.51 3596.59 171
test22296.15 10478.41 22195.87 21396.46 10271.97 34489.66 11697.45 8776.33 13298.24 5098.30 67
testdata299.48 7376.45 250
segment_acmp82.69 55
testdata90.13 19495.92 11374.17 29896.49 10173.49 33394.82 4897.99 5478.80 9097.93 15683.53 18697.52 7098.29 68
testdata195.57 22787.44 98
v881.88 26880.06 27687.32 26086.63 32579.04 20794.41 26393.65 28278.77 28673.19 30685.57 32266.87 23495.81 26673.84 27767.61 34287.11 335
131488.94 13987.20 16694.17 4493.21 19885.73 4593.33 29196.64 8182.89 20675.98 27896.36 12866.83 23599.39 7783.52 18796.02 10697.39 136
LFMVS89.27 13487.64 15394.16 4697.16 8885.52 5397.18 11994.66 21879.17 27989.63 11796.57 12655.35 31798.22 14889.52 12689.54 17098.74 39
VDD-MVS88.28 16287.02 17292.06 13495.09 13880.18 17597.55 9194.45 23583.09 20089.10 12695.92 13847.97 34498.49 13293.08 8286.91 20297.52 127
VDDNet86.44 19184.51 20592.22 12691.56 25281.83 13097.10 13294.64 22169.50 35687.84 14495.19 16248.01 34397.92 16189.82 12186.92 20196.89 160
v1081.43 27479.53 28287.11 26586.38 32778.87 20894.31 26793.43 29077.88 29473.24 30585.26 32665.44 24295.75 27072.14 28667.71 34186.72 339
VPNet84.69 22082.92 23290.01 19689.01 30083.45 9996.71 16495.46 17685.71 13279.65 23692.18 22256.66 30996.01 25483.05 19267.84 34090.56 257
MVS90.60 11088.64 13596.50 594.25 16790.53 893.33 29197.21 2377.59 29878.88 24397.31 9471.52 20699.69 4989.60 12398.03 5599.27 22
v2v48283.46 24181.86 24988.25 23586.19 33279.65 18996.34 18894.02 25981.56 23177.32 25688.23 28065.62 24096.03 25177.77 23169.72 32289.09 290
V4283.04 25081.53 25487.57 25386.27 33179.09 20595.87 21394.11 25580.35 25477.22 25886.79 30365.32 24596.02 25377.74 23270.14 31487.61 326
SD-MVS94.84 1895.02 1994.29 3897.87 6484.61 7897.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS85.79 20384.04 21591.02 17089.47 29680.27 17196.90 15194.84 20785.57 13480.88 22189.08 26656.56 31096.47 23777.72 23385.35 22096.34 178
MSLP-MVS++94.28 2694.39 2793.97 4998.30 4984.06 8798.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 48
APDe-MVScopyleft94.56 2394.75 2093.96 5098.84 2283.40 10098.04 5896.41 10885.79 13195.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize91.23 9591.35 8090.89 17497.89 6276.35 27296.30 19095.52 17279.82 26591.03 9997.88 6574.70 16598.54 12992.11 9196.89 8697.77 106
ADS-MVSNet279.57 29377.53 29685.71 28893.78 18172.13 31679.48 37886.11 37473.09 33680.14 23179.99 36362.15 26290.14 37159.49 34783.52 22894.85 214
EI-MVSNet85.80 20285.20 19387.59 25191.55 25377.41 25395.13 24695.36 18380.43 25280.33 22994.71 17873.72 18095.97 25576.96 24578.64 27089.39 278
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet84.83 21885.57 18782.63 33191.55 25360.38 37695.13 24695.03 19780.60 24582.10 20994.71 17866.40 23890.19 37074.30 27290.32 16697.31 140
pmmvs482.54 25880.79 26287.79 24486.11 33480.49 16793.55 28693.18 30277.29 30273.35 30389.40 26565.26 24695.05 30975.32 26273.61 29587.83 321
EU-MVSNet76.92 31676.95 30176.83 35884.10 35754.73 38991.77 31592.71 31172.74 33969.57 33188.69 27258.03 29587.43 38164.91 32770.00 31988.33 313
VNet92.11 7191.22 8394.79 2696.91 9186.98 2897.91 6497.96 1086.38 12093.65 6095.74 14070.16 21998.95 11193.39 7188.87 17998.43 59
test-LLR88.48 15487.98 14689.98 19892.26 22977.23 25797.11 12995.96 14883.76 18986.30 15991.38 23572.30 19796.78 22780.82 20391.92 15795.94 187
TESTMET0.1,189.83 12489.34 12591.31 15892.54 22180.19 17497.11 12996.57 9086.15 12286.85 15691.83 23179.32 7996.95 21581.30 20192.35 15396.77 165
test-mter88.95 13888.60 13689.98 19892.26 22977.23 25797.11 12995.96 14885.32 14086.30 15991.38 23576.37 13196.78 22780.82 20391.92 15795.94 187
VPA-MVSNet85.32 21083.83 21689.77 20890.25 27982.63 11196.36 18697.07 3483.03 20381.21 21989.02 26861.58 26896.31 24385.02 16670.95 30990.36 260
ACMMPR92.69 5792.67 5492.75 10098.66 2880.57 16297.58 8796.69 7385.20 14591.57 8897.92 6077.01 11799.67 5390.95 10098.41 4298.00 88
testgi74.88 32673.40 32679.32 34980.13 37361.75 37193.21 29686.64 37279.49 27266.56 34691.06 24135.51 38188.67 37456.79 36071.25 30687.56 328
test20.0372.36 33871.15 33575.98 36277.79 37959.16 38092.40 30889.35 35374.09 32761.50 36784.32 33948.09 34285.54 38750.63 37662.15 36583.24 368
thres600view788.06 16686.70 17792.15 13196.10 10685.17 6597.14 12698.85 282.70 21183.41 19093.66 20275.43 15097.82 16567.13 31485.88 21493.45 240
ADS-MVSNet81.26 27678.36 28989.96 20093.78 18179.78 18279.48 37893.60 28473.09 33680.14 23179.99 36362.15 26295.24 29759.49 34783.52 22894.85 214
MP-MVScopyleft92.61 6092.67 5492.42 11598.13 5679.73 18797.33 11096.20 12985.63 13390.53 10597.66 7478.14 9999.70 4892.12 9098.30 4997.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.92 37612.94 3790.84 3920.65 4140.29 41793.78 2810.39 4150.42 4082.85 40915.84 4080.17 4150.30 4112.18 4090.21 4081.91 406
thres40088.42 15787.15 16792.23 12596.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21093.45 240
test1239.07 37711.73 3801.11 3910.50 4150.77 41689.44 3340.20 4160.34 4092.15 41010.72 4090.34 4140.32 4101.79 4100.08 4092.23 405
thres20088.92 14087.65 15292.73 10296.30 9985.62 5197.85 6798.86 184.38 16884.82 17293.99 19575.12 16098.01 15470.86 29786.67 20394.56 222
test0.0.03 182.79 25482.48 24083.74 32086.81 32472.22 31396.52 17395.03 19783.76 18973.00 30793.20 20872.30 19788.88 37364.15 33077.52 27990.12 266
pmmvs365.75 35362.18 35676.45 36067.12 39764.54 35988.68 33985.05 37754.77 39257.54 38173.79 37929.40 39086.21 38555.49 36547.77 38978.62 384
EMVS31.70 37331.45 37532.48 38950.72 40823.95 41374.78 39152.30 41120.36 40316.08 40731.48 40512.80 40253.60 40711.39 40713.10 40619.88 404
E-PMN32.70 37232.39 37433.65 38853.35 40525.70 41274.07 39253.33 41021.08 40217.17 40633.63 40411.85 40454.84 40612.98 40614.04 40320.42 403
PGM-MVS91.93 7591.80 7392.32 12198.27 5079.74 18695.28 23697.27 2183.83 18690.89 10297.78 7076.12 13599.56 6688.82 13297.93 6197.66 114
LCM-MVSNet-Re83.75 23783.54 22384.39 31493.54 18864.14 36292.51 30584.03 38283.90 18466.14 34786.59 30567.36 23092.68 34484.89 16792.87 14596.35 177
LCM-MVSNet52.52 36248.24 36565.35 37247.63 40941.45 40172.55 39483.62 38431.75 39737.66 39557.92 3959.19 40776.76 39749.26 38044.60 39277.84 385
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 8198.46 2887.33 2499.97 297.21 2899.31 499.63 7
mvs_anonymous88.68 14787.62 15591.86 14294.80 14981.69 13793.53 28794.92 20182.03 22578.87 24490.43 25275.77 14095.34 29185.04 16593.16 14398.55 53
MVS_Test90.29 11789.18 12693.62 6595.23 13384.93 7294.41 26394.66 21884.31 16990.37 10991.02 24275.13 15997.82 16583.11 19194.42 12498.12 79
MDA-MVSNet-bldmvs71.45 34267.94 34781.98 33685.33 34568.50 34692.35 30988.76 35970.40 35142.99 39281.96 35246.57 35191.31 36148.75 38354.39 37686.11 348
CDPH-MVS93.12 4392.91 4993.74 5798.65 3083.88 8897.67 8296.26 12383.00 20493.22 6698.24 3781.31 6199.21 8889.12 12998.74 3098.14 77
test1294.25 4098.34 4685.55 5296.35 11792.36 7680.84 6399.22 8798.31 4897.98 90
casdiffmvspermissive90.95 10490.39 10292.63 10792.82 21382.53 11396.83 15494.47 23387.69 9288.47 13695.56 14974.04 17697.54 18090.90 10392.74 14797.83 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.17 9690.74 9492.44 11493.11 20582.50 11596.25 19393.62 28387.79 8990.40 10895.93 13673.44 18497.42 18893.62 7092.55 14997.41 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline290.39 11490.21 10890.93 17190.86 26980.99 15095.20 24297.41 1786.03 12780.07 23494.61 18090.58 697.47 18787.29 14989.86 16994.35 223
baseline188.85 14387.49 15992.93 9495.21 13586.85 3095.47 23094.61 22487.29 10283.11 19594.99 17280.70 6696.89 21982.28 19673.72 29495.05 209
YYNet173.53 33270.43 33982.85 32984.52 35371.73 32591.69 31791.37 33067.63 35946.79 38881.21 35755.04 32090.43 36855.93 36259.70 36986.38 344
PMMVS250.90 36446.31 36764.67 37355.53 40346.67 39577.30 38771.02 39940.89 39434.16 39859.32 3939.83 40676.14 39940.09 39328.63 40171.21 388
MDA-MVSNet_test_wron73.54 33170.43 33982.86 32884.55 35171.85 32291.74 31691.32 33367.63 35946.73 38981.09 35855.11 31990.42 36955.91 36359.76 36886.31 345
tpmvs83.04 25080.77 26389.84 20495.43 12777.96 23785.59 36395.32 18775.31 31876.27 27383.70 34473.89 17797.41 18959.53 34681.93 24894.14 226
PM-MVS69.32 34766.93 34976.49 35973.60 39055.84 38585.91 36179.32 39274.72 32361.09 36978.18 36821.76 39491.10 36370.86 29756.90 37382.51 373
HQP_MVS87.50 17787.09 17088.74 22491.86 24977.96 23797.18 11994.69 21489.89 5581.33 21794.15 19164.77 24997.30 19687.08 15082.82 23890.96 253
plane_prior791.86 24977.55 251
plane_prior691.98 24577.92 24064.77 249
plane_prior594.69 21497.30 19687.08 15082.82 23890.96 253
plane_prior494.15 191
plane_prior377.75 24790.17 5281.33 217
plane_prior297.18 11989.89 55
plane_prior191.95 247
plane_prior77.96 23797.52 9590.36 5082.96 236
PS-CasMVS80.27 28779.18 28383.52 32487.56 31869.88 33794.08 27495.29 18880.27 25772.08 31588.51 27759.22 28492.23 35067.49 31168.15 33688.45 310
UniMVSNet_NR-MVSNet85.49 20884.59 20388.21 23789.44 29779.36 19596.71 16496.41 10885.22 14378.11 25090.98 24476.97 11995.14 30279.14 22268.30 33490.12 266
PEN-MVS79.47 29578.26 29183.08 32786.36 32868.58 34593.85 28094.77 21279.76 26671.37 31788.55 27459.79 27692.46 34664.50 32865.40 35388.19 315
TransMVSNet (Re)76.94 31574.38 31984.62 30885.92 33775.25 28895.28 23689.18 35573.88 32967.22 33786.46 30859.64 27794.10 32859.24 35052.57 38284.50 362
DTE-MVSNet78.37 30177.06 30082.32 33485.22 34767.17 35493.40 28893.66 28178.71 28770.53 32588.29 27959.06 28592.23 35061.38 34263.28 36287.56 328
DU-MVS84.57 22383.33 22788.28 23388.76 30179.36 19596.43 18295.41 18285.42 13878.11 25090.82 24567.61 22595.14 30279.14 22268.30 33490.33 262
UniMVSNet (Re)85.31 21184.23 21188.55 22789.75 28980.55 16396.72 16296.89 4785.42 13878.40 24788.93 26975.38 15295.52 28578.58 22768.02 33789.57 277
CP-MVSNet81.01 28080.08 27483.79 31887.91 31470.51 33294.29 27195.65 16580.83 23972.54 31388.84 27063.71 25392.32 34868.58 30968.36 33388.55 304
WR-MVS_H81.02 27980.09 27383.79 31888.08 31171.26 33094.46 26196.54 9380.08 26072.81 31086.82 30170.36 21792.65 34564.18 32967.50 34387.46 332
WR-MVS84.32 22782.96 23188.41 22989.38 29880.32 16896.59 16996.25 12483.97 18076.63 26590.36 25367.53 22894.86 31275.82 25870.09 31890.06 271
NR-MVSNet83.35 24281.52 25588.84 22188.76 30181.31 14494.45 26295.16 19284.65 16067.81 33690.82 24570.36 21794.87 31174.75 26666.89 34990.33 262
Baseline_NR-MVSNet81.22 27780.07 27584.68 30585.32 34675.12 28996.48 17688.80 35876.24 31377.28 25786.40 31267.61 22594.39 32475.73 25966.73 35084.54 361
TranMVSNet+NR-MVSNet83.24 24681.71 25187.83 24387.71 31678.81 21196.13 20294.82 20884.52 16376.18 27690.78 24764.07 25294.60 31974.60 27066.59 35190.09 269
TSAR-MVS + GP.94.35 2594.50 2393.89 5197.38 8483.04 10798.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 24
n20.00 417
nn0.00 417
mPP-MVS91.88 7891.82 7292.07 13398.38 4478.63 21597.29 11296.09 13785.12 14788.45 13797.66 7475.53 14699.68 5189.83 12098.02 5697.88 95
door-mid79.75 391
XVG-OURS-SEG-HR85.74 20485.16 19687.49 25790.22 28071.45 32891.29 32194.09 25681.37 23283.90 18695.22 15960.30 27597.53 18285.58 16184.42 22593.50 238
mvsmamba85.17 21384.54 20487.05 26787.94 31375.11 29096.22 19487.79 36686.91 11178.55 24591.77 23264.93 24895.91 26186.94 15479.80 25690.12 266
MVSFormer91.36 9190.57 9793.73 5993.00 20688.08 1894.80 25894.48 23080.74 24294.90 4497.13 10578.84 8895.10 30583.77 17897.46 7198.02 83
jason92.73 5392.23 6494.21 4390.50 27687.30 2798.65 3195.09 19490.61 4492.76 7497.13 10575.28 15797.30 19693.32 7596.75 9298.02 83
jason: jason.
lupinMVS93.87 3593.58 3994.75 2893.00 20688.08 1899.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17694.64 5997.46 7198.62 49
test_djsdf83.00 25282.45 24184.64 30784.07 35869.78 33894.80 25894.48 23080.74 24275.41 28887.70 28761.32 27195.10 30583.77 17879.76 25789.04 293
HPM-MVS_fast90.38 11690.17 11091.03 16997.61 7077.35 25597.15 12595.48 17479.51 27188.79 13196.90 11371.64 20598.81 11987.01 15397.44 7396.94 156
K. test v373.62 32971.59 33479.69 34682.98 36459.85 37990.85 32688.83 35777.13 30458.90 37482.11 35143.62 35891.72 35765.83 32354.10 37787.50 331
lessismore_v079.98 34580.59 37158.34 38180.87 38858.49 37683.46 34643.10 36293.89 33163.11 33648.68 38687.72 322
SixPastTwentyTwo76.04 31974.32 32081.22 33884.54 35261.43 37491.16 32289.30 35477.89 29364.04 35486.31 31348.23 34194.29 32663.54 33463.84 36087.93 320
OurMVSNet-221017-077.18 31476.06 30680.55 34383.78 36260.00 37890.35 32891.05 33777.01 30866.62 34587.92 28547.73 34794.03 32971.63 28868.44 33287.62 325
HPM-MVScopyleft91.62 8591.53 7891.89 14197.88 6379.22 19996.99 13895.73 16282.07 22489.50 12197.19 10375.59 14498.93 11490.91 10297.94 5997.54 122
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS85.18 21284.38 20987.59 25190.42 27871.73 32591.06 32494.07 25782.00 22683.29 19295.08 16956.42 31197.55 17883.70 18283.42 23093.49 239
XVG-ACMP-BASELINE79.38 29677.90 29483.81 31784.98 34967.14 35589.03 33693.18 30280.26 25872.87 30988.15 28238.55 37496.26 24476.05 25578.05 27788.02 318
casdiffmvs_mvgpermissive91.13 9790.45 10193.17 8492.99 20983.58 9697.46 9994.56 22787.69 9287.19 15294.98 17374.50 17097.60 17391.88 9592.79 14698.34 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test84.20 22983.49 22586.33 27690.88 26673.06 30895.28 23694.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
LGP-MVS_train86.33 27690.88 26673.06 30894.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
baseline90.76 10790.10 11192.74 10192.90 21282.56 11294.60 26094.56 22787.69 9289.06 12795.67 14473.76 17997.51 18390.43 11392.23 15598.16 75
test1196.50 98
door80.13 390
EPNet_dtu87.65 17587.89 14786.93 26994.57 15371.37 32996.72 16296.50 9888.56 7187.12 15395.02 17075.91 13994.01 33066.62 31790.00 16795.42 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268891.07 10090.21 10893.64 6395.18 13683.53 9796.26 19296.13 13488.92 6484.90 17193.10 21272.86 18899.62 5888.86 13195.67 11197.79 105
EPNet94.06 3294.15 3193.76 5697.27 8784.35 8198.29 4297.64 1594.57 695.36 3496.88 11579.96 7699.12 10091.30 9796.11 10297.82 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS78.48 217
HQP-NCC92.08 24097.63 8390.52 4582.30 203
ACMP_Plane92.08 24097.63 8390.52 4582.30 203
APD-MVScopyleft93.61 3793.59 3893.69 6198.76 2483.26 10397.21 11496.09 13782.41 21894.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS87.67 146
HQP4-MVS82.30 20397.32 19491.13 251
HQP3-MVS94.80 20983.01 234
HQP2-MVS65.40 243
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2399.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
NCCC95.63 795.94 894.69 3099.21 685.15 6699.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 31
114514_t88.79 14687.57 15792.45 11298.21 5381.74 13496.99 13895.45 17775.16 31982.48 19995.69 14368.59 22498.50 13180.33 20795.18 11597.10 151
CP-MVS92.54 6292.60 5692.34 11798.50 4079.90 18098.40 3996.40 11084.75 15590.48 10798.09 4777.40 11199.21 8891.15 9998.23 5197.92 94
DSMNet-mixed73.13 33472.45 33075.19 36477.51 38146.82 39485.09 36682.01 38767.61 36369.27 33381.33 35650.89 33286.28 38454.54 36683.80 22792.46 245
tpm287.35 17986.26 18090.62 18192.93 21178.67 21488.06 34595.99 14579.33 27487.40 14786.43 31180.28 7096.40 23880.23 21085.73 21796.79 163
NP-MVS92.04 24478.22 22794.56 181
EG-PatchMatch MVS74.92 32572.02 33283.62 32283.76 36373.28 30593.62 28492.04 32068.57 35858.88 37583.80 34331.87 38795.57 28456.97 35978.67 26982.00 378
tpm cat183.63 23981.38 25690.39 18793.53 19378.19 23285.56 36495.09 19470.78 35078.51 24683.28 34774.80 16497.03 21066.77 31584.05 22695.95 186
SteuartSystems-ACMMP94.13 3194.44 2693.20 8295.41 12881.35 14399.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 37
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.08 13688.39 14091.15 16693.13 20379.15 20288.61 34096.11 13683.14 19989.58 11886.93 30083.83 4796.87 22188.22 14185.92 21397.42 132
CR-MVSNet83.53 24081.36 25790.06 19590.16 28279.75 18479.02 38291.12 33484.24 17582.27 20780.35 36175.45 14893.67 33663.37 33586.25 20896.75 167
JIA-IIPM79.00 29977.20 29884.40 31389.74 29164.06 36375.30 39095.44 17862.15 37281.90 21159.08 39478.92 8695.59 28266.51 32085.78 21693.54 237
Patchmtry77.36 31274.59 31785.67 29089.75 28975.75 28577.85 38591.12 33460.28 38171.23 31980.35 36175.45 14893.56 33857.94 35267.34 34587.68 324
PatchT79.75 29076.85 30288.42 22889.55 29475.49 28677.37 38694.61 22463.07 36982.46 20073.32 38275.52 14793.41 34151.36 37384.43 22496.36 176
tpmrst88.36 15887.38 16391.31 15894.36 16579.92 17987.32 35095.26 19085.32 14088.34 13986.13 31680.60 6796.70 22983.78 17785.34 22197.30 141
BH-w/o88.24 16387.47 16190.54 18495.03 14378.54 21697.41 10593.82 27084.08 17678.23 24994.51 18369.34 22297.21 20180.21 21194.58 12295.87 189
tpm85.55 20784.47 20888.80 22390.19 28175.39 28788.79 33894.69 21484.83 15483.96 18485.21 32878.22 9794.68 31876.32 25378.02 27896.34 178
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8997.08 10883.32 4999.69 4992.83 8398.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned86.95 18385.94 18389.99 19794.52 15777.46 25296.78 15993.37 29581.80 22776.62 26693.81 20066.64 23697.02 21176.06 25493.88 13295.48 200
RPMNet79.85 28975.92 30891.64 15090.16 28279.75 18479.02 38295.44 17858.43 38882.27 20772.55 38573.03 18798.41 14046.10 38686.25 20896.75 167
MVSTER89.25 13588.92 13290.24 19195.98 11084.66 7796.79 15895.36 18387.19 10780.33 22990.61 24990.02 1295.97 25585.38 16378.64 27090.09 269
CPTT-MVS89.72 12689.87 11989.29 21398.33 4773.30 30497.70 7995.35 18575.68 31587.40 14797.44 9070.43 21698.25 14689.56 12596.90 8596.33 180
GBi-Net82.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
PVSNet_Blended_VisFu91.24 9490.77 9392.66 10495.09 13882.40 11797.77 7395.87 15588.26 7886.39 15793.94 19676.77 12399.27 8488.80 13394.00 13096.31 181
PVSNet_BlendedMVS90.05 12089.96 11590.33 18997.47 7683.86 8998.02 5996.73 6787.98 8489.53 11989.61 26376.42 12999.57 6494.29 6179.59 26187.57 327
UnsupCasMVSNet_eth73.25 33370.57 33881.30 33777.53 38066.33 35687.24 35193.89 26680.38 25357.90 37981.59 35442.91 36490.56 36765.18 32648.51 38787.01 337
UnsupCasMVSNet_bld68.60 35064.50 35480.92 34174.63 38967.80 34783.97 37092.94 30865.12 36754.63 38468.23 39035.97 37992.17 35260.13 34544.83 39182.78 371
PVSNet_Blended93.13 4292.98 4893.57 6897.47 7683.86 8999.32 296.73 6791.02 4089.53 11996.21 13176.42 12999.57 6494.29 6195.81 11097.29 142
FMVSNet576.46 31874.16 32283.35 32690.05 28576.17 27389.58 33289.85 34871.39 34865.29 35180.42 36050.61 33487.70 38061.05 34469.24 32686.18 347
test182.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
new_pmnet66.18 35263.18 35575.18 36576.27 38761.74 37283.79 37184.66 37956.64 39051.57 38671.85 38831.29 38887.93 37649.98 37862.55 36375.86 387
FMVSNet384.71 21982.71 23790.70 18094.55 15587.71 2295.92 20994.67 21781.73 22975.82 28288.08 28366.99 23394.47 32271.23 29275.38 28789.91 273
dp84.30 22882.31 24290.28 19094.24 16877.97 23686.57 35695.53 17079.94 26480.75 22385.16 33071.49 20796.39 23963.73 33283.36 23196.48 174
FMVSNet282.79 25480.44 26989.83 20592.66 21685.43 5595.42 23294.35 24079.06 28274.46 29487.28 29256.38 31294.31 32569.72 30474.68 29189.76 275
FMVSNet179.50 29476.54 30488.39 23088.47 30681.95 12294.30 26893.38 29273.14 33572.04 31685.66 31843.86 35793.84 33265.48 32472.53 30089.38 280
N_pmnet61.30 35560.20 35864.60 37484.32 35417.00 41591.67 31810.98 41361.77 37458.45 37778.55 36749.89 33891.83 35642.27 39063.94 35984.97 359
cascas86.50 19084.48 20792.55 11092.64 21985.95 4097.04 13795.07 19675.32 31780.50 22591.02 24254.33 32497.98 15586.79 15587.62 19693.71 235
BH-RMVSNet86.84 18585.28 19291.49 15595.35 13080.26 17296.95 14692.21 31782.86 20881.77 21595.46 15159.34 28297.64 17169.79 30393.81 13396.57 172
UGNet87.73 17386.55 17891.27 16195.16 13779.11 20396.35 18796.23 12688.14 8187.83 14590.48 25050.65 33399.09 10280.13 21294.03 12795.60 195
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11397.22 10279.29 8099.06 10489.57 12488.73 18198.73 43
XXY-MVS83.84 23582.00 24789.35 21287.13 32281.38 14295.72 21994.26 24580.15 25975.92 28090.63 24861.96 26696.52 23578.98 22473.28 29990.14 265
EC-MVSNet91.73 8092.11 6790.58 18293.54 18877.77 24698.07 5594.40 23887.44 9892.99 7097.11 10774.59 16996.87 22193.75 6797.08 8297.11 150
sss90.87 10689.96 11593.60 6694.15 17183.84 9197.14 12698.13 785.93 12989.68 11596.09 13471.67 20399.30 8387.69 14589.16 17497.66 114
Test_1112_low_res88.03 16786.73 17591.94 14093.15 20180.88 15496.44 18092.41 31583.59 19480.74 22491.16 24080.18 7297.59 17477.48 23985.40 21997.36 137
1112_ss88.60 15187.47 16192.00 13893.21 19880.97 15196.47 17792.46 31383.64 19280.86 22297.30 9780.24 7197.62 17277.60 23685.49 21897.40 135
ab-mvs-re8.11 37810.81 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.30 970.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs87.08 18084.94 20093.48 7493.34 19783.67 9488.82 33795.70 16381.18 23484.55 17890.14 25862.72 25898.94 11385.49 16282.54 24297.85 99
TR-MVS86.30 19484.93 20190.42 18694.63 15277.58 25096.57 17093.82 27080.30 25582.42 20195.16 16458.74 28697.55 17874.88 26587.82 19596.13 185
MDTV_nov1_ep13_2view81.74 13486.80 35480.65 24485.65 16374.26 17276.52 24996.98 154
MDTV_nov1_ep1383.69 21794.09 17581.01 14986.78 35596.09 13783.81 18784.75 17484.32 33974.44 17196.54 23463.88 33185.07 222
MIMVSNet169.44 34666.65 35077.84 35476.48 38562.84 36987.42 34988.97 35666.96 36457.75 38079.72 36532.77 38685.83 38646.32 38563.42 36184.85 360
MIMVSNet79.18 29875.99 30788.72 22587.37 32180.66 16079.96 37791.82 32377.38 30174.33 29581.87 35341.78 36690.74 36666.36 32283.10 23394.76 216
IterMVS-LS83.93 23382.80 23687.31 26191.46 25677.39 25495.66 22293.43 29080.44 25075.51 28687.26 29473.72 18095.16 30176.99 24370.72 31189.39 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.50 12988.96 13091.14 16791.94 24880.93 15397.09 13395.81 15784.26 17484.72 17594.20 19080.31 6995.64 27883.37 18888.96 17896.85 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref78.45 274
IterMVS80.67 28479.16 28485.20 29889.79 28776.08 27592.97 30191.86 32180.28 25671.20 32085.14 33157.93 29791.34 36072.52 28470.74 31088.18 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon91.72 8290.85 9194.34 3699.50 185.00 7198.51 3695.96 14880.57 24688.08 14397.63 8076.84 12099.89 785.67 16094.88 11798.13 78
MVS_111021_LR91.60 8691.64 7791.47 15695.74 12078.79 21296.15 19996.77 6188.49 7288.64 13597.07 10972.33 19699.19 9393.13 8096.48 9796.43 175
DP-MVS81.47 27378.28 29091.04 16898.14 5578.48 21795.09 25186.97 36861.14 37971.12 32192.78 21759.59 27899.38 7853.11 37086.61 20495.27 206
ACMMP++79.05 266
HQP-MVS87.91 17187.55 15888.98 21992.08 24078.48 21797.63 8394.80 20990.52 4582.30 20394.56 18165.40 24397.32 19487.67 14683.01 23491.13 251
QAPM86.88 18484.51 20593.98 4894.04 17785.89 4397.19 11796.05 14173.62 33075.12 29095.62 14662.02 26499.74 3870.88 29696.06 10496.30 182
Vis-MVSNetpermissive88.67 14887.82 14991.24 16292.68 21578.82 20996.95 14693.85 26987.55 9587.07 15495.13 16663.43 25597.21 20177.58 23796.15 10197.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet71.36 34367.00 34884.46 31290.58 27469.74 33979.15 38187.74 36746.09 39361.96 36650.50 39745.14 35595.64 27853.74 36888.11 19288.00 319
IS-MVSNet88.67 14888.16 14490.20 19393.61 18576.86 26396.77 16193.07 30684.02 17883.62 18995.60 14774.69 16896.24 24678.43 22993.66 13697.49 129
HyFIR lowres test89.36 13188.60 13691.63 15294.91 14680.76 15895.60 22695.53 17082.56 21584.03 18191.24 23978.03 10096.81 22587.07 15288.41 18897.32 138
EPMVS87.47 17885.90 18492.18 12895.41 12882.26 12087.00 35396.28 12185.88 13084.23 17985.57 32275.07 16196.26 24471.14 29592.50 15098.03 82
PAPM_NR91.46 8890.82 9293.37 7798.50 4081.81 13295.03 25296.13 13484.65 16086.10 16197.65 7879.24 8299.75 3683.20 18996.88 8798.56 51
TAMVS88.48 15487.79 15090.56 18391.09 26379.18 20096.45 17995.88 15383.64 19283.12 19493.33 20775.94 13895.74 27382.40 19588.27 19096.75 167
PAPR92.74 5292.17 6694.45 3498.89 2084.87 7497.20 11696.20 12987.73 9188.40 13898.12 4578.71 9199.76 3187.99 14296.28 9898.74 39
RPSCF77.73 30876.63 30381.06 34088.66 30555.76 38787.77 34787.88 36564.82 36874.14 29692.79 21649.22 34096.81 22567.47 31276.88 28090.62 256
Vis-MVSNet (Re-imp)88.88 14288.87 13488.91 22093.89 18074.43 29696.93 14894.19 25084.39 16783.22 19395.67 14478.24 9694.70 31678.88 22594.40 12597.61 119
test_040272.68 33669.54 34382.09 33588.67 30471.81 32492.72 30486.77 37161.52 37562.21 36483.91 34243.22 36193.76 33534.60 39472.23 30480.72 382
MVS_111021_HR93.41 4093.39 4393.47 7697.34 8582.83 10997.56 8998.27 689.16 6389.71 11497.14 10479.77 7799.56 6693.65 6997.94 5998.02 83
CSCG92.02 7291.65 7693.12 8598.53 3680.59 16197.47 9797.18 2677.06 30784.64 17797.98 5783.98 4499.52 6990.72 10697.33 7799.23 23
PatchMatch-RL85.00 21683.66 21989.02 21895.86 11474.55 29592.49 30693.60 28479.30 27679.29 24191.47 23358.53 28898.45 13770.22 30192.17 15694.07 229
API-MVS90.18 11888.97 12993.80 5498.66 2882.95 10897.50 9695.63 16775.16 31986.31 15897.69 7272.49 19399.90 581.26 20296.07 10398.56 51
Test By Simon71.65 204
TDRefinement69.20 34865.78 35279.48 34766.04 39862.21 37088.21 34286.12 37362.92 37061.03 37085.61 32133.23 38494.16 32755.82 36453.02 38082.08 377
USDC78.65 30076.25 30585.85 28487.58 31774.60 29489.58 33290.58 34584.05 17763.13 35988.23 28040.69 37396.86 22366.57 31975.81 28586.09 349
EPP-MVSNet89.76 12589.72 12189.87 20393.78 18176.02 27997.22 11396.51 9679.35 27385.11 16795.01 17184.82 3397.10 20987.46 14888.21 19196.50 173
PMMVS89.46 13089.92 11788.06 23994.64 15169.57 34196.22 19494.95 19987.27 10391.37 9296.54 12765.88 23997.39 19188.54 13593.89 13197.23 143
PAPM92.87 5092.40 5994.30 3792.25 23187.85 2096.40 18496.38 11391.07 3888.72 13496.90 11382.11 5797.37 19390.05 11997.70 6597.67 113
ACMMPcopyleft90.39 11489.97 11491.64 15097.58 7378.21 23096.78 15996.72 6984.73 15784.72 17597.23 10171.22 20899.63 5788.37 14092.41 15297.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA86.96 18285.37 19191.72 14897.59 7279.34 19797.21 11491.05 33774.22 32578.90 24296.75 12367.21 23298.95 11174.68 26790.77 16596.88 161
PatchmatchNetpermissive86.83 18685.12 19791.95 13994.12 17482.27 11986.55 35795.64 16684.59 16282.98 19784.99 33477.26 11295.96 25868.61 30891.34 16297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS93.59 3893.63 3793.48 7498.05 5881.76 13398.64 3297.13 2882.60 21494.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 36
F-COLMAP84.50 22583.44 22687.67 24795.22 13472.22 31395.95 20793.78 27575.74 31476.30 27295.18 16359.50 28098.45 13772.67 28386.59 20592.35 248
ANet_high46.22 36541.28 37261.04 37939.91 41146.25 39770.59 39576.18 39558.87 38723.09 40348.00 40012.58 40366.54 40328.65 39813.62 40470.35 389
wuyk23d14.10 37513.89 37814.72 39055.23 40422.91 41433.83 4033.56 4144.94 4074.11 4082.28 4102.06 41319.66 40910.23 4088.74 4071.59 407
OMC-MVS88.80 14588.16 14490.72 17995.30 13177.92 24094.81 25794.51 22986.80 11584.97 17096.85 11667.53 22898.60 12585.08 16487.62 19695.63 194
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7796.97 11281.30 6298.99 10788.54 13598.88 2099.20 24
AdaColmapbinary88.81 14487.61 15692.39 11699.33 479.95 17896.70 16695.58 16877.51 29983.05 19696.69 12561.90 26799.72 4384.29 17093.47 13897.50 128
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF82.38 33287.00 32365.59 35789.55 35079.99 26369.37 33291.30 23741.60 36895.33 29262.86 33774.63 29286.24 346
DeepMVS_CXcopyleft64.06 37578.53 37743.26 40068.11 40469.94 35438.55 39476.14 37418.53 39679.34 39343.72 38841.62 39669.57 390
TinyColmap72.41 33768.99 34682.68 33088.11 31069.59 34088.41 34185.20 37665.55 36557.91 37884.82 33630.80 38995.94 25951.38 37268.70 32982.49 375
MAR-MVS90.63 10990.22 10791.86 14298.47 4278.20 23197.18 11996.61 8483.87 18588.18 14298.18 4068.71 22399.75 3683.66 18397.15 8197.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS72.36 33870.82 33676.95 35779.18 37556.33 38386.12 36086.11 37469.30 35763.06 36086.66 30433.03 38592.25 34965.33 32568.64 33082.28 376
MSDG80.62 28577.77 29589.14 21593.43 19577.24 25691.89 31390.18 34669.86 35568.02 33591.94 22952.21 32998.84 11759.32 34983.12 23291.35 250
LS3D82.22 26479.94 27889.06 21697.43 7974.06 30093.20 29792.05 31961.90 37373.33 30495.21 16059.35 28199.21 8854.54 36692.48 15193.90 232
CLD-MVS87.97 16987.48 16089.44 21192.16 23680.54 16598.14 4794.92 20191.41 3379.43 23995.40 15262.34 26097.27 19990.60 10882.90 23790.50 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS55.09 36052.93 36361.57 37855.98 40240.51 40383.11 37483.41 38537.61 39634.95 39771.95 38614.40 39976.95 39629.81 39665.16 35467.25 391
Gipumacopyleft45.11 36842.05 37054.30 38480.69 37051.30 39135.80 40283.81 38328.13 39827.94 40234.53 40211.41 40576.70 39821.45 40154.65 37434.90 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015