This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 8798.31 4880.10 16997.42 10296.78 4992.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2894.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5588.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 1196.78 4988.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
DeepPCF-MVS89.82 194.61 2196.17 589.91 19497.09 9070.21 32698.99 2296.69 6795.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3095.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
patch_mono-295.14 1296.08 792.33 11098.44 4377.84 23598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9688.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_fmvsm_n_192094.81 1895.60 1092.45 10395.29 12380.96 14499.29 297.21 2294.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 161
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7296.74 6086.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4092.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15284.30 7599.14 996.00 13791.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15484.61 6999.13 1096.15 12692.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
MVS_030495.36 995.20 1695.85 1194.89 13889.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7895.85 20796.42 10191.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 6997.76 7496.19 12489.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9298.04 5796.41 10285.79 12495.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5585.32 13297.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10694.07 1095.34 3497.80 6776.83 11799.87 897.08 3097.64 6698.89 30
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 9998.10 5195.29 18191.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8497.82 6896.65 7284.50 15595.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 11981.35 13599.02 2096.59 8289.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 7998.64 3196.93 4090.71 4093.08 6798.70 1579.98 7099.21 8894.12 6299.07 1198.63 44
test_fmvsmconf_n93.99 3294.36 2792.86 8792.82 20381.12 13899.26 396.37 11093.47 1395.16 3598.21 3679.00 8099.64 5598.21 1096.73 9297.83 97
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7593.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.26 2998.10 5798.14 4696.52 8984.74 14794.83 4698.80 782.80 5299.37 8095.95 4098.42 40
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7398.29 4197.64 1594.57 695.36 3396.88 11179.96 7199.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10894.56 14582.01 11399.07 1597.13 2692.09 2396.25 2598.53 2276.47 12299.80 2598.39 894.71 11995.22 197
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10084.02 16995.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11793.38 18681.71 12898.86 2496.98 3491.64 2996.85 1598.55 1975.58 14099.77 2997.88 1993.68 13395.18 198
CS-MVS-test92.98 4593.67 3590.90 16496.52 9476.87 25498.68 2894.73 20690.36 4894.84 4597.89 6277.94 9697.15 20094.28 6197.80 6298.70 41
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12598.64 3197.13 2682.60 20694.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9597.21 11196.09 13082.41 21094.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS93.87 3493.58 3894.75 2793.00 19688.08 1799.15 795.50 16691.03 3794.90 4397.66 7278.84 8397.56 16994.64 5797.46 7098.62 45
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11392.35 298.21 4495.79 15192.42 2196.24 2698.18 3871.04 20499.17 9596.77 3397.39 7596.79 154
CS-MVS92.73 5293.48 4090.48 17696.27 9775.93 27398.55 3494.93 19389.32 5894.54 5097.67 7178.91 8297.02 20493.80 6497.32 7798.49 51
dcpmvs_293.10 4393.46 4192.02 12897.77 6579.73 17994.82 24693.86 25986.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10197.56 8898.27 689.16 6189.71 11197.14 10079.77 7299.56 6693.65 6797.94 5898.02 79
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13192.02 698.19 4595.68 15792.06 2596.01 3098.14 4270.83 20798.96 10996.74 3596.57 9496.76 157
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7696.82 14996.65 7286.24 11594.27 5297.99 5277.94 9699.83 1693.39 6998.57 3398.39 57
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9688.45 29680.81 14899.00 2195.11 18693.21 1594.00 5697.91 6076.84 11599.59 6097.91 1696.55 9597.54 117
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11590.52 26481.92 11798.42 3796.24 11891.17 3496.02 2998.35 3175.34 15199.74 3897.84 2094.58 12195.05 199
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8199.32 196.73 6191.02 3889.53 11696.21 12776.42 12499.57 6494.29 5995.81 10997.29 135
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8097.67 8196.26 11683.00 19693.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
ETV-MVS92.72 5492.87 4992.28 11494.54 14781.89 11997.98 5995.21 18489.77 5593.11 6696.83 11377.23 11197.50 17795.74 4395.38 11397.44 126
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13897.58 8696.70 6585.20 13791.75 8397.97 5778.47 8899.71 4590.95 9598.41 4198.12 75
XVS92.69 5692.71 5192.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8797.83 6677.24 10999.59 6090.46 10598.07 5298.02 79
region2R92.72 5492.70 5292.79 9098.68 2680.53 15897.53 9096.51 9085.22 13591.94 8197.98 5577.26 10799.67 5390.83 9998.37 4498.18 69
ACMMPR92.69 5692.67 5392.75 9198.66 2880.57 15497.58 8696.69 6785.20 13791.57 8597.92 5877.01 11299.67 5390.95 9598.41 4198.00 84
MP-MVScopyleft92.61 5992.67 5392.42 10698.13 5679.73 17997.33 10796.20 12285.63 12690.53 10297.66 7278.14 9499.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12397.63 8296.50 9285.00 14391.05 9597.74 6978.38 8999.80 2590.48 10498.34 4698.07 77
CP-MVS92.54 6192.60 5592.34 10898.50 4079.90 17298.40 3896.40 10484.75 14690.48 10498.09 4577.40 10699.21 8891.15 9498.23 5097.92 90
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12588.08 30081.62 13197.97 6196.01 13690.62 4196.58 2198.33 3274.09 17099.71 4597.23 2793.46 13894.86 203
PAPM92.87 4992.40 5894.30 3592.25 22187.85 1996.40 17696.38 10791.07 3688.72 12696.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10596.44 17296.04 13584.68 15089.12 12098.37 2977.48 10599.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA92.45 6292.31 6092.86 8797.90 6180.85 14792.88 29396.33 11287.92 8390.20 10798.18 3876.71 12099.76 3192.57 8398.09 5197.96 89
SR-MVS92.16 6692.27 6191.83 13698.37 4578.41 21396.67 16095.76 15282.19 21491.97 7998.07 4976.44 12398.64 12393.71 6697.27 7898.45 54
alignmvs92.97 4692.26 6295.12 1995.54 11687.77 2098.67 2996.38 10788.04 8093.01 6897.45 8579.20 7898.60 12593.25 7488.76 17798.99 29
jason92.73 5292.23 6394.21 4090.50 26587.30 2698.65 3095.09 18790.61 4292.76 7197.13 10175.28 15297.30 18993.32 7296.75 9198.02 79
jason: jason.
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13097.40 10496.38 10784.71 14990.90 9897.40 9077.55 10499.76 3189.75 11797.74 6397.72 105
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6697.20 11396.20 12287.73 8888.40 13098.12 4378.71 8699.76 3187.99 13696.28 9798.74 35
EC-MVSNet91.73 7392.11 6690.58 17393.54 17877.77 23898.07 5494.40 22987.44 9492.99 6997.11 10374.59 16496.87 21493.75 6597.08 8197.11 142
test_fmvsmvis_n_192092.12 6792.10 6792.17 12090.87 25781.04 14098.34 4093.90 25692.71 1887.24 14397.90 6174.83 15899.72 4396.96 3196.20 9895.76 183
EIA-MVS91.73 7392.05 6890.78 16994.52 14876.40 26298.06 5595.34 17989.19 6088.90 12397.28 9677.56 10397.73 16190.77 10096.86 8898.20 68
CHOSEN 280x42091.71 7691.85 6991.29 15194.94 13582.69 10287.89 33796.17 12585.94 12187.27 14294.31 17690.27 995.65 26994.04 6395.86 10795.53 188
mPP-MVS91.88 7191.82 7092.07 12498.38 4478.63 20797.29 10896.09 13085.12 13988.45 12997.66 7275.53 14199.68 5189.83 11598.02 5597.88 91
PGM-MVS91.93 7091.80 7192.32 11298.27 5079.74 17895.28 22697.27 2083.83 17790.89 9997.78 6876.12 13099.56 6688.82 12797.93 6097.66 110
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12797.60 7181.17 13796.61 16196.87 4388.20 7789.19 11997.55 8478.69 8799.14 9790.29 11190.94 16395.80 181
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7599.06 10489.57 11988.73 17898.73 39
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15397.47 9597.18 2577.06 29884.64 16897.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
MVS_111021_LR91.60 7991.64 7591.47 14795.74 11178.79 20496.15 19196.77 5588.49 7188.64 12797.07 10572.33 18999.19 9393.13 7796.48 9696.43 166
HPM-MVScopyleft91.62 7891.53 7691.89 13297.88 6379.22 19196.99 13395.73 15582.07 21689.50 11897.19 9975.59 13998.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post91.29 8691.45 7790.80 16797.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6475.76 13698.61 12491.99 8896.79 8997.75 103
APD-MVS_3200maxsize91.23 8891.35 7890.89 16597.89 6276.35 26396.30 18295.52 16579.82 25691.03 9697.88 6374.70 16098.54 12892.11 8796.89 8597.77 102
canonicalmvs92.27 6591.22 7995.41 1695.80 11088.31 1497.09 12994.64 21488.49 7192.99 6997.31 9272.68 18598.57 12793.38 7188.58 17999.36 16
EI-MVSNet-UG-set91.35 8591.22 7991.73 13897.39 8280.68 15196.47 16996.83 4687.92 8388.30 13397.36 9177.84 9999.13 9989.43 12289.45 17095.37 192
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21298.95 11193.39 6988.87 17698.43 55
RE-MVS-def91.18 8297.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6473.36 18091.99 8896.79 8997.75 103
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14881.89 11995.95 19995.98 13990.76 3983.76 17996.76 11773.24 18199.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6398.51 3595.96 14180.57 23788.08 13597.63 7876.84 11599.89 785.67 15394.88 11698.13 74
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12495.03 24296.13 12784.65 15186.10 15397.65 7679.24 7799.75 3683.20 18296.88 8698.56 47
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9595.09 12982.40 10997.77 7295.87 14888.26 7686.39 14993.94 18776.77 11899.27 8488.80 12894.00 12996.31 172
diffmvspermissive91.17 8990.74 8792.44 10593.11 19582.50 10796.25 18593.62 27487.79 8690.40 10595.93 13273.44 17997.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n91.08 9190.68 8892.29 11382.43 35680.12 16897.94 6293.93 25292.07 2491.97 7997.60 7967.56 22099.53 6897.09 2995.56 11297.21 139
test_vis1_n_192089.95 11390.59 8988.03 23392.36 21368.98 33599.12 1194.34 23293.86 1193.64 6097.01 10751.54 32399.59 6096.76 3496.71 9395.53 188
MVSFormer91.36 8490.57 9093.73 5493.00 19688.08 1794.80 24894.48 22280.74 23394.90 4397.13 10178.84 8395.10 29783.77 17197.46 7098.02 79
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
casdiffmvs_mvgpermissive91.13 9090.45 9393.17 7692.99 19983.58 8897.46 9794.56 21987.69 8987.19 14494.98 16574.50 16597.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250690.96 9490.39 9492.65 9693.54 17882.46 10896.37 17797.35 1886.78 11187.55 13895.25 14977.83 10097.50 17784.07 16594.80 11797.98 86
casdiffmvspermissive90.95 9590.39 9492.63 9892.82 20382.53 10596.83 14794.47 22487.69 8988.47 12895.56 14574.04 17197.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS84.06 691.63 7790.37 9695.39 1796.12 10288.25 1590.22 32097.58 1688.33 7590.50 10391.96 21779.26 7699.06 10490.29 11189.07 17398.88 31
thisisatest051590.95 9590.26 9793.01 8294.03 16984.27 7797.91 6396.67 6983.18 18986.87 14795.51 14688.66 1697.85 15780.46 19989.01 17496.92 150
MAR-MVS90.63 10090.22 9891.86 13398.47 4278.20 22397.18 11596.61 7883.87 17688.18 13498.18 3868.71 21699.75 3683.66 17697.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline290.39 10590.21 9990.93 16290.86 25880.99 14295.20 23297.41 1786.03 12080.07 22494.61 17190.58 697.47 18087.29 14389.86 16894.35 213
CHOSEN 1792x268891.07 9290.21 9993.64 5795.18 12783.53 8996.26 18496.13 12788.92 6384.90 16393.10 20272.86 18399.62 5888.86 12695.67 11097.79 101
HPM-MVS_fast90.38 10790.17 10191.03 16097.61 7077.35 24797.15 12195.48 16779.51 26288.79 12496.90 10971.64 19898.81 11987.01 14797.44 7296.94 147
baseline90.76 9890.10 10292.74 9292.90 20282.56 10494.60 25094.56 21987.69 8989.06 12295.67 14073.76 17497.51 17690.43 10892.23 15498.16 71
CANet_DTU90.98 9390.04 10393.83 4994.76 14186.23 3496.32 18193.12 29693.11 1693.71 5896.82 11563.08 25099.48 7384.29 16395.12 11595.77 182
test_cas_vis1_n_192089.90 11490.02 10489.54 20290.14 27374.63 28598.71 2794.43 22793.04 1792.40 7296.35 12553.41 31999.08 10395.59 4696.16 9994.90 201
ACMMPcopyleft90.39 10589.97 10591.64 14197.58 7378.21 22296.78 15296.72 6384.73 14884.72 16697.23 9771.22 20199.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_BlendedMVS90.05 11189.96 10690.33 18197.47 7683.86 8198.02 5896.73 6187.98 8189.53 11689.61 25476.42 12499.57 6494.29 5979.59 25187.57 319
sss90.87 9789.96 10693.60 6094.15 16183.84 8397.14 12298.13 785.93 12289.68 11296.09 13071.67 19699.30 8387.69 13989.16 17297.66 110
PMMVS89.46 12289.92 10888.06 23194.64 14269.57 33296.22 18694.95 19287.27 9991.37 8996.54 12365.88 23297.39 18488.54 12993.89 13097.23 136
Effi-MVS+90.70 9989.90 10993.09 7993.61 17583.48 9095.20 23292.79 30183.22 18891.82 8295.70 13871.82 19597.48 17991.25 9393.67 13498.32 60
CPTT-MVS89.72 11789.87 11089.29 20598.33 4773.30 29697.70 7895.35 17875.68 30687.40 13997.44 8870.43 20998.25 14389.56 12096.90 8496.33 171
iter_conf0590.14 11089.79 11191.17 15695.85 10986.93 2897.68 8088.67 35389.93 5281.73 20692.80 20490.37 896.03 24290.44 10780.65 24490.56 248
EPP-MVSNet89.76 11689.72 11289.87 19593.78 17176.02 27097.22 10996.51 9079.35 26485.11 15995.01 16384.82 3497.10 20287.46 14288.21 18496.50 164
xiu_mvs_v1_base_debu90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
TESTMET0.1,189.83 11589.34 11691.31 14992.54 21180.19 16697.11 12596.57 8486.15 11686.85 14891.83 22179.32 7496.95 20881.30 19392.35 15296.77 156
iter_conf_final89.51 12089.21 11790.39 17895.60 11484.44 7297.22 10989.09 34689.11 6282.07 20092.80 20487.03 2596.03 24289.10 12580.89 24090.70 246
MVS_Test90.29 10889.18 11893.62 5995.23 12484.93 6494.41 25394.66 21184.31 16090.37 10691.02 23275.13 15497.82 15883.11 18494.42 12398.12 75
ET-MVSNet_ETH3D90.01 11289.03 11992.95 8494.38 15586.77 3098.14 4696.31 11489.30 5963.33 34996.72 12090.09 1193.63 32890.70 10282.29 23598.46 53
thisisatest053089.65 11889.02 12091.53 14593.46 18480.78 14996.52 16696.67 6981.69 22183.79 17894.90 16688.85 1597.68 16277.80 22287.49 19096.14 175
API-MVS90.18 10988.97 12193.80 5098.66 2882.95 10097.50 9495.63 16075.16 31086.31 15097.69 7072.49 18799.90 581.26 19496.07 10298.56 47
CDS-MVSNet89.50 12188.96 12291.14 15891.94 23880.93 14597.09 12995.81 15084.26 16584.72 16694.20 18180.31 6595.64 27083.37 18188.96 17596.85 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
h-mvs3389.30 12588.95 12390.36 18095.07 13176.04 26796.96 13997.11 2990.39 4692.22 7695.10 16074.70 16098.86 11693.14 7565.89 34396.16 174
MVSTER89.25 12788.92 12490.24 18395.98 10684.66 6896.79 15195.36 17687.19 10380.33 21990.61 24090.02 1295.97 24785.38 15678.64 26090.09 260
Vis-MVSNet (Re-imp)88.88 13488.87 12588.91 21293.89 17074.43 28896.93 14294.19 24184.39 15883.22 18495.67 14078.24 9194.70 30778.88 21794.40 12497.61 115
MVS90.60 10188.64 12696.50 594.25 15890.53 893.33 28297.21 2277.59 28978.88 23397.31 9271.52 19999.69 4989.60 11898.03 5499.27 20
test-mter88.95 13088.60 12789.98 19092.26 21977.23 24997.11 12595.96 14185.32 13286.30 15191.38 22576.37 12696.78 22080.82 19691.92 15695.94 178
HyFIR lowres test89.36 12388.60 12791.63 14394.91 13780.76 15095.60 21695.53 16382.56 20784.03 17291.24 22978.03 9596.81 21887.07 14688.41 18297.32 132
test_fmvs187.79 16288.52 12985.62 28392.98 20064.31 35197.88 6592.42 30587.95 8292.24 7595.82 13547.94 33898.44 13795.31 5094.09 12594.09 218
UA-Net88.92 13288.48 13090.24 18394.06 16677.18 25193.04 29094.66 21187.39 9691.09 9493.89 18874.92 15798.18 14775.83 24991.43 16095.35 193
CostFormer89.08 12888.39 13191.15 15793.13 19379.15 19488.61 33196.11 12983.14 19089.58 11586.93 29183.83 4596.87 21488.22 13585.92 20397.42 127
mvsany_test187.58 16688.22 13285.67 28189.78 27767.18 34295.25 22987.93 35583.96 17288.79 12497.06 10672.52 18694.53 31292.21 8586.45 19695.30 195
hse-mvs288.22 15488.21 13388.25 22793.54 17873.41 29395.41 22395.89 14590.39 4692.22 7694.22 17974.70 16096.66 22593.14 7564.37 34894.69 211
tttt051788.57 14488.19 13489.71 20193.00 19675.99 27195.67 21296.67 6980.78 23281.82 20494.40 17588.97 1497.58 16876.05 24786.31 19795.57 187
IS-MVSNet88.67 14088.16 13590.20 18593.61 17576.86 25596.77 15493.07 29784.02 16983.62 18095.60 14374.69 16396.24 23778.43 22193.66 13597.49 124
OMC-MVS88.80 13788.16 13590.72 17095.30 12277.92 23294.81 24794.51 22186.80 11084.97 16296.85 11267.53 22198.60 12585.08 15787.62 18795.63 185
test-LLR88.48 14587.98 13789.98 19092.26 21977.23 24997.11 12595.96 14183.76 18086.30 15191.38 22572.30 19096.78 22080.82 19691.92 15695.94 178
EPNet_dtu87.65 16587.89 13886.93 26094.57 14471.37 32096.72 15596.50 9288.56 7087.12 14595.02 16275.91 13494.01 32166.62 30890.00 16695.42 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+82.88 889.63 11987.85 13994.99 2194.49 15386.76 3197.84 6795.74 15486.10 11875.47 27896.02 13165.00 24099.51 7182.91 18697.07 8298.72 40
Vis-MVSNetpermissive88.67 14087.82 14091.24 15392.68 20578.82 20196.95 14093.85 26087.55 9287.07 14695.13 15863.43 24897.21 19477.58 22996.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS88.48 14587.79 14190.56 17491.09 25279.18 19296.45 17195.88 14683.64 18383.12 18593.33 19775.94 13395.74 26582.40 18788.27 18396.75 158
PVSNet82.34 989.02 12987.79 14192.71 9495.49 11781.50 13397.70 7897.29 1987.76 8785.47 15795.12 15956.90 29898.90 11580.33 20094.02 12797.71 107
thres20088.92 13287.65 14392.73 9396.30 9685.62 4597.85 6698.86 184.38 15984.82 16493.99 18675.12 15598.01 14970.86 28986.67 19394.56 212
LFMVS89.27 12687.64 14494.16 4397.16 8885.52 4797.18 11594.66 21179.17 27089.63 11496.57 12255.35 30998.22 14489.52 12189.54 16998.74 35
3Dnovator82.32 1089.33 12487.64 14494.42 3393.73 17485.70 4397.73 7696.75 5986.73 11376.21 26695.93 13262.17 25499.68 5181.67 19297.81 6197.88 91
mvs_anonymous88.68 13987.62 14691.86 13394.80 14081.69 12993.53 27894.92 19482.03 21778.87 23490.43 24375.77 13595.34 28385.04 15893.16 14298.55 49
AdaColmapbinary88.81 13687.61 14792.39 10799.33 479.95 17096.70 15995.58 16177.51 29083.05 18796.69 12161.90 26099.72 4384.29 16393.47 13797.50 123
114514_t88.79 13887.57 14892.45 10398.21 5381.74 12696.99 13395.45 17075.16 31082.48 19095.69 13968.59 21798.50 13080.33 20095.18 11497.10 143
HQP-MVS87.91 16187.55 14988.98 21192.08 23078.48 20997.63 8294.80 20290.52 4382.30 19394.56 17265.40 23697.32 18787.67 14083.01 22491.13 241
baseline188.85 13587.49 15092.93 8695.21 12686.85 2995.47 22094.61 21687.29 9883.11 18694.99 16480.70 6296.89 21282.28 18873.72 28595.05 199
CLD-MVS87.97 15987.48 15189.44 20392.16 22680.54 15798.14 4694.92 19491.41 3179.43 22995.40 14862.34 25397.27 19290.60 10382.90 22790.50 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o88.24 15387.47 15290.54 17595.03 13478.54 20897.41 10393.82 26184.08 16778.23 23994.51 17469.34 21597.21 19480.21 20494.58 12195.87 180
1112_ss88.60 14387.47 15292.00 12993.21 18880.97 14396.47 16992.46 30483.64 18380.86 21297.30 9480.24 6797.62 16577.60 22885.49 20897.40 129
tpmrst88.36 14987.38 15491.31 14994.36 15679.92 17187.32 34195.26 18385.32 13288.34 13186.13 30780.60 6396.70 22283.78 17085.34 21197.30 134
PLCcopyleft83.97 788.00 15887.38 15489.83 19798.02 5976.46 26097.16 11994.43 22779.26 26981.98 20196.28 12669.36 21499.27 8477.71 22692.25 15393.77 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ECVR-MVScopyleft88.35 15087.25 15691.65 14093.54 17879.40 18696.56 16590.78 33286.78 11185.57 15695.25 14957.25 29697.56 16984.73 16194.80 11797.98 86
131488.94 13187.20 15794.17 4193.21 18885.73 4293.33 28296.64 7582.89 19875.98 26996.36 12466.83 22899.39 7783.52 18096.02 10597.39 130
tfpn200view988.48 14587.15 15892.47 10296.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20094.17 214
thres40088.42 14887.15 15892.23 11696.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20093.45 230
IB-MVS85.34 488.67 14087.14 16093.26 7293.12 19484.32 7498.76 2697.27 2087.19 10379.36 23090.45 24283.92 4498.53 12984.41 16269.79 31196.93 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HQP_MVS87.50 16787.09 16188.74 21691.86 23977.96 22997.18 11594.69 20789.89 5381.33 20794.15 18264.77 24297.30 18987.08 14482.82 22890.96 243
test111188.11 15587.04 16291.35 14893.15 19178.79 20496.57 16390.78 33286.88 10985.04 16095.20 15357.23 29797.39 18483.88 16894.59 12097.87 93
VDD-MVS88.28 15287.02 16392.06 12595.09 12980.18 16797.55 8994.45 22683.09 19289.10 12195.92 13447.97 33798.49 13193.08 7886.91 19297.52 122
thres100view90088.30 15186.95 16492.33 11096.10 10384.90 6597.14 12298.85 282.69 20483.41 18193.66 19375.43 14597.93 15169.04 29786.24 20094.17 214
Fast-Effi-MVS+87.93 16086.94 16590.92 16394.04 16779.16 19398.26 4293.72 27081.29 22483.94 17692.90 20369.83 21396.68 22376.70 23991.74 15896.93 148
Test_1112_low_res88.03 15786.73 16691.94 13193.15 19180.88 14696.44 17292.41 30683.59 18580.74 21491.16 23080.18 6897.59 16777.48 23185.40 20997.36 131
test_fmvs1_n86.34 18386.72 16785.17 29087.54 30863.64 35696.91 14392.37 30787.49 9391.33 9095.58 14440.81 36398.46 13495.00 5293.49 13693.41 232
thres600view788.06 15686.70 16892.15 12296.10 10385.17 5897.14 12298.85 282.70 20383.41 18193.66 19375.43 14597.82 15867.13 30685.88 20493.45 230
UGNet87.73 16386.55 16991.27 15295.16 12879.11 19596.35 17996.23 11988.14 7887.83 13790.48 24150.65 32699.09 10280.13 20594.03 12695.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm287.35 16986.26 17090.62 17292.93 20178.67 20688.06 33695.99 13879.33 26587.40 13986.43 30280.28 6696.40 23080.23 20385.73 20796.79 154
FA-MVS(test-final)87.71 16486.23 17192.17 12094.19 16080.55 15587.16 34396.07 13382.12 21585.98 15488.35 26972.04 19498.49 13180.26 20289.87 16797.48 125
FIs86.73 17986.10 17288.61 21890.05 27480.21 16596.14 19296.95 3885.56 12978.37 23892.30 21076.73 11995.28 28779.51 20979.27 25490.35 252
BH-untuned86.95 17385.94 17389.99 18994.52 14877.46 24496.78 15293.37 28681.80 21976.62 25693.81 19166.64 22997.02 20476.06 24693.88 13195.48 190
EPMVS87.47 16885.90 17492.18 11995.41 11982.26 11287.00 34496.28 11585.88 12384.23 17085.57 31375.07 15696.26 23571.14 28792.50 14998.03 78
test_vis1_n85.60 19685.70 17585.33 28784.79 34064.98 34996.83 14791.61 31887.36 9791.00 9794.84 16736.14 36997.18 19695.66 4493.03 14393.82 223
SDMVSNet87.02 17185.61 17691.24 15394.14 16283.30 9493.88 27095.98 13984.30 16279.63 22792.01 21358.23 28397.68 16290.28 11382.02 23692.75 233
AUN-MVS86.25 18685.57 17788.26 22693.57 17773.38 29495.45 22195.88 14683.94 17385.47 15794.21 18073.70 17796.67 22483.54 17864.41 34794.73 210
CVMVSNet84.83 20885.57 17782.63 32291.55 24360.38 36795.13 23695.03 19080.60 23682.10 19994.71 16966.40 23190.19 36174.30 26490.32 16597.31 133
nrg03086.79 17785.43 17990.87 16688.76 29085.34 4997.06 13194.33 23384.31 16080.45 21791.98 21672.36 18896.36 23288.48 13271.13 29890.93 245
FC-MVSNet-test85.96 18985.39 18087.66 24089.38 28778.02 22695.65 21496.87 4385.12 13977.34 24591.94 21976.28 12894.74 30677.09 23478.82 25890.21 255
CNLPA86.96 17285.37 18191.72 13997.59 7279.34 18997.21 11191.05 32774.22 31678.90 23296.75 11967.21 22598.95 11174.68 25990.77 16496.88 152
BH-RMVSNet86.84 17585.28 18291.49 14695.35 12180.26 16496.95 14092.21 30882.86 20081.77 20595.46 14759.34 27597.64 16469.79 29593.81 13296.57 163
GeoE86.36 18285.20 18389.83 19793.17 19076.13 26597.53 9092.11 30979.58 26180.99 21094.01 18566.60 23096.17 24073.48 27189.30 17197.20 140
miper_enhance_ethall85.95 19085.20 18388.19 23094.85 13979.76 17596.00 19694.06 24982.98 19777.74 24388.76 26279.42 7395.46 27980.58 19872.42 29289.36 274
EI-MVSNet85.80 19285.20 18387.59 24391.55 24377.41 24595.13 23695.36 17680.43 24380.33 21994.71 16973.72 17595.97 24776.96 23778.64 26089.39 269
XVG-OURS-SEG-HR85.74 19485.16 18687.49 24890.22 26971.45 31991.29 31294.09 24781.37 22383.90 17795.22 15160.30 26897.53 17585.58 15484.42 21593.50 228
PatchmatchNetpermissive86.83 17685.12 18791.95 13094.12 16482.27 11186.55 34895.64 15984.59 15382.98 18884.99 32577.26 10795.96 25068.61 30091.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS85.84 19185.10 18888.06 23188.34 29777.83 23695.72 21094.20 24087.89 8580.45 21794.05 18458.57 28097.26 19383.88 16882.76 23089.09 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS84.09 586.77 17885.00 18992.08 12392.06 23383.07 9892.14 30194.47 22479.63 26076.90 25294.78 16871.15 20299.20 9272.87 27391.05 16293.98 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs87.08 17084.94 19093.48 6793.34 18783.67 8688.82 32895.70 15681.18 22584.55 16990.14 24962.72 25198.94 11385.49 15582.54 23297.85 95
TR-MVS86.30 18484.93 19190.42 17794.63 14377.58 24296.57 16393.82 26180.30 24682.42 19295.16 15658.74 27997.55 17174.88 25787.82 18696.13 176
Effi-MVS+-dtu84.61 21284.90 19283.72 31291.96 23663.14 35994.95 24393.34 28785.57 12779.79 22587.12 28861.99 25895.61 27383.55 17785.83 20592.41 237
UniMVSNet_NR-MVSNet85.49 19884.59 19388.21 22989.44 28679.36 18796.71 15796.41 10285.22 13578.11 24090.98 23476.97 11495.14 29479.14 21468.30 32590.12 257
mvsmamba85.17 20384.54 19487.05 25887.94 30275.11 28196.22 18687.79 35786.91 10778.55 23591.77 22264.93 24195.91 25386.94 14879.80 24690.12 257
VDDNet86.44 18184.51 19592.22 11791.56 24281.83 12297.10 12894.64 21469.50 34787.84 13695.19 15448.01 33697.92 15689.82 11686.92 19196.89 151
QAPM86.88 17484.51 19593.98 4494.04 16785.89 4097.19 11496.05 13473.62 32175.12 28195.62 14262.02 25799.74 3870.88 28896.06 10396.30 173
cascas86.50 18084.48 19792.55 10192.64 20985.95 3797.04 13295.07 18975.32 30880.50 21591.02 23254.33 31697.98 15086.79 14987.62 18793.71 225
tpm85.55 19784.47 19888.80 21590.19 27075.39 27888.79 32994.69 20784.83 14583.96 17585.21 31978.22 9294.68 30876.32 24578.02 26996.34 169
XVG-OURS85.18 20284.38 19987.59 24390.42 26771.73 31691.06 31594.07 24882.00 21883.29 18395.08 16156.42 30397.55 17183.70 17583.42 22093.49 229
PS-MVSNAJss84.91 20784.30 20086.74 26185.89 32774.40 28994.95 24394.16 24383.93 17476.45 25990.11 25071.04 20495.77 26083.16 18379.02 25790.06 262
UniMVSNet (Re)85.31 20184.23 20188.55 21989.75 27880.55 15596.72 15596.89 4285.42 13078.40 23788.93 26075.38 14795.52 27778.58 21968.02 32889.57 268
cl2285.11 20484.17 20287.92 23495.06 13378.82 20195.51 21894.22 23979.74 25876.77 25387.92 27675.96 13295.68 26679.93 20772.42 29289.27 276
FE-MVS86.06 18884.15 20391.78 13794.33 15779.81 17384.58 35996.61 7876.69 30085.00 16187.38 28270.71 20898.37 13970.39 29291.70 15997.17 141
X-MVStestdata86.26 18584.14 20492.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8720.73 39877.24 10999.59 6090.46 10598.07 5298.02 79
GA-MVS85.79 19384.04 20591.02 16189.47 28580.27 16396.90 14494.84 20085.57 12780.88 21189.08 25756.56 30296.47 22977.72 22585.35 21096.34 169
VPA-MVSNet85.32 20083.83 20689.77 20090.25 26882.63 10396.36 17897.07 3183.03 19581.21 20989.02 25961.58 26196.31 23485.02 15970.95 30090.36 251
MDTV_nov1_ep1383.69 20794.09 16581.01 14186.78 34696.09 13083.81 17884.75 16584.32 33074.44 16696.54 22663.88 32285.07 212
TAPA-MVS81.61 1285.02 20583.67 20889.06 20896.79 9273.27 29995.92 20194.79 20474.81 31380.47 21696.83 11371.07 20398.19 14649.82 37092.57 14795.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 20683.66 20989.02 21095.86 10874.55 28792.49 29793.60 27579.30 26779.29 23191.47 22358.53 28198.45 13570.22 29392.17 15594.07 219
SCA85.63 19583.64 21091.60 14492.30 21781.86 12192.88 29395.56 16284.85 14482.52 18985.12 32358.04 28595.39 28073.89 26787.58 18997.54 117
OpenMVScopyleft79.58 1486.09 18783.62 21193.50 6590.95 25486.71 3297.44 9895.83 14975.35 30772.64 30295.72 13757.42 29599.64 5571.41 28295.85 10894.13 217
miper_ehance_all_eth84.57 21383.60 21287.50 24792.64 20978.25 21895.40 22493.47 27979.28 26876.41 26087.64 27976.53 12195.24 28978.58 21972.42 29289.01 287
LCM-MVSNet-Re83.75 22683.54 21384.39 30593.54 17864.14 35392.51 29684.03 37283.90 17566.14 33886.59 29667.36 22392.68 33584.89 16092.87 14496.35 168
LPG-MVS_test84.20 21983.49 21486.33 26790.88 25573.06 30095.28 22694.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
F-COLMAP84.50 21583.44 21587.67 23995.22 12572.22 30595.95 19993.78 26675.74 30576.30 26395.18 15559.50 27398.45 13572.67 27586.59 19592.35 238
DU-MVS84.57 21383.33 21688.28 22588.76 29079.36 18796.43 17495.41 17585.42 13078.11 24090.82 23667.61 21895.14 29479.14 21468.30 32590.33 253
RRT_MVS83.88 22383.27 21785.71 27987.53 30972.12 30895.35 22594.33 23383.81 17875.86 27291.28 22860.55 26695.09 29983.93 16776.76 27289.90 265
ACMP81.66 1184.00 22183.22 21886.33 26791.53 24572.95 30395.91 20393.79 26583.70 18273.79 28892.22 21154.31 31796.89 21283.98 16679.74 24989.16 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sd_testset84.62 21183.11 21989.17 20694.14 16277.78 23791.54 31194.38 23084.30 16279.63 22792.01 21352.28 32196.98 20677.67 22782.02 23692.75 233
WR-MVS84.32 21782.96 22088.41 22189.38 28780.32 16096.59 16296.25 11783.97 17176.63 25590.36 24467.53 22194.86 30475.82 25070.09 30990.06 262
VPNet84.69 21082.92 22190.01 18889.01 28983.45 9196.71 15795.46 16985.71 12579.65 22692.18 21256.66 30196.01 24683.05 18567.84 33190.56 248
dmvs_re84.10 22082.90 22287.70 23891.41 24773.28 29790.59 31893.19 29185.02 14177.96 24293.68 19257.92 29096.18 23975.50 25280.87 24193.63 226
gg-mvs-nofinetune85.48 19982.90 22293.24 7394.51 15185.82 4179.22 37196.97 3661.19 36987.33 14153.01 38790.58 696.07 24186.07 15197.23 7997.81 100
ACMM80.70 1383.72 22782.85 22486.31 27091.19 24972.12 30895.88 20494.29 23580.44 24177.02 25091.96 21755.24 31097.14 20179.30 21280.38 24589.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS83.93 22282.80 22587.31 25291.46 24677.39 24695.66 21393.43 28180.44 24175.51 27787.26 28573.72 17595.16 29376.99 23570.72 30289.39 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet384.71 20982.71 22690.70 17194.55 14687.71 2195.92 20194.67 21081.73 22075.82 27388.08 27466.99 22694.47 31371.23 28475.38 27889.91 264
c3_l83.80 22582.65 22787.25 25492.10 22977.74 24095.25 22993.04 29878.58 27976.01 26887.21 28775.25 15395.11 29677.54 23068.89 31988.91 293
Fast-Effi-MVS+-dtu83.33 23282.60 22885.50 28589.55 28369.38 33396.09 19591.38 31982.30 21175.96 27091.41 22456.71 29995.58 27575.13 25684.90 21391.54 239
test0.0.03 182.79 24382.48 22983.74 31186.81 31372.22 30596.52 16695.03 19083.76 18073.00 29893.20 19872.30 19088.88 36464.15 32177.52 27090.12 257
test_djsdf83.00 24182.45 23084.64 29884.07 34869.78 32994.80 24894.48 22280.74 23375.41 27987.70 27861.32 26495.10 29783.77 17179.76 24789.04 285
dp84.30 21882.31 23190.28 18294.24 15977.97 22886.57 34795.53 16379.94 25580.75 21385.16 32171.49 20096.39 23163.73 32383.36 22196.48 165
myMVS_eth3d81.93 25782.18 23281.18 33092.13 22767.18 34293.97 26794.23 23782.43 20873.39 29193.57 19576.98 11387.86 36850.53 36882.34 23388.51 297
cl____83.27 23382.12 23386.74 26192.20 22275.95 27295.11 23893.27 28978.44 28274.82 28387.02 29074.19 16895.19 29174.67 26069.32 31589.09 282
DIV-MVS_self_test83.27 23382.12 23386.74 26192.19 22375.92 27495.11 23893.26 29078.44 28274.81 28487.08 28974.19 16895.19 29174.66 26169.30 31689.11 281
eth_miper_zixun_eth83.12 23782.01 23586.47 26691.85 24174.80 28394.33 25793.18 29379.11 27175.74 27687.25 28672.71 18495.32 28576.78 23867.13 33789.27 276
XXY-MVS83.84 22482.00 23689.35 20487.13 31181.38 13495.72 21094.26 23680.15 25075.92 27190.63 23961.96 25996.52 22778.98 21673.28 29090.14 256
Anonymous20240521184.41 21681.93 23791.85 13596.78 9378.41 21397.44 9891.34 32270.29 34384.06 17194.26 17841.09 36198.96 10979.46 21082.65 23198.17 70
v2v48283.46 23081.86 23888.25 22786.19 32179.65 18196.34 18094.02 25081.56 22277.32 24688.23 27165.62 23396.03 24277.77 22369.72 31389.09 282
MS-PatchMatch83.05 23881.82 23986.72 26589.64 28179.10 19694.88 24594.59 21879.70 25970.67 31589.65 25350.43 32896.82 21770.82 29195.99 10684.25 355
TranMVSNet+NR-MVSNet83.24 23581.71 24087.83 23587.71 30578.81 20396.13 19494.82 20184.52 15476.18 26790.78 23864.07 24594.60 30974.60 26266.59 34290.09 260
MVP-Stereo82.65 24681.67 24185.59 28486.10 32478.29 21693.33 28292.82 30077.75 28769.17 32587.98 27559.28 27695.76 26171.77 27996.88 8682.73 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS82.67 24581.55 24286.04 27587.77 30476.47 25995.21 23196.58 8382.66 20570.26 31885.46 31660.39 26795.80 25976.40 24379.18 25585.83 345
V4283.04 23981.53 24387.57 24586.27 32079.09 19795.87 20594.11 24680.35 24577.22 24886.79 29465.32 23896.02 24577.74 22470.14 30587.61 318
NR-MVSNet83.35 23181.52 24488.84 21388.76 29081.31 13694.45 25295.16 18584.65 15167.81 32790.82 23670.36 21094.87 30374.75 25866.89 34090.33 253
tpm cat183.63 22881.38 24590.39 17893.53 18378.19 22485.56 35595.09 18770.78 34178.51 23683.28 33874.80 15997.03 20366.77 30784.05 21695.95 177
CR-MVSNet83.53 22981.36 24690.06 18790.16 27179.75 17679.02 37391.12 32484.24 16682.27 19780.35 35275.45 14393.67 32763.37 32686.25 19896.75 158
v114482.90 24281.27 24787.78 23786.29 31979.07 19896.14 19293.93 25280.05 25277.38 24486.80 29365.50 23495.93 25275.21 25570.13 30688.33 305
testing380.74 27381.17 24879.44 33991.15 25163.48 35797.16 11995.76 15280.83 23071.36 30993.15 20178.22 9287.30 37343.19 38079.67 25087.55 322
jajsoiax82.12 25581.15 24985.03 29284.19 34670.70 32294.22 26393.95 25183.07 19373.48 29089.75 25249.66 33295.37 28282.24 18979.76 24789.02 286
v14882.41 25180.89 25086.99 25986.18 32276.81 25696.27 18393.82 26180.49 24075.28 28086.11 30867.32 22495.75 26275.48 25367.03 33988.42 303
pmmvs482.54 24780.79 25187.79 23686.11 32380.49 15993.55 27793.18 29377.29 29373.35 29489.40 25665.26 23995.05 30175.32 25473.61 28687.83 313
tpmvs83.04 23980.77 25289.84 19695.43 11877.96 22985.59 35495.32 18075.31 30976.27 26483.70 33573.89 17297.41 18259.53 33781.93 23894.14 216
bld_raw_dy_0_6482.13 25480.76 25386.24 27285.78 32975.03 28294.40 25682.62 37783.12 19176.46 25890.96 23553.83 31894.55 31081.04 19578.60 26389.14 280
v14419282.43 24880.73 25487.54 24685.81 32878.22 21995.98 19793.78 26679.09 27277.11 24986.49 29864.66 24495.91 25374.20 26569.42 31488.49 299
mvs_tets81.74 25980.71 25584.84 29384.22 34570.29 32593.91 26993.78 26682.77 20273.37 29389.46 25547.36 34295.31 28681.99 19079.55 25388.92 292
miper_lstm_enhance81.66 26280.66 25684.67 29791.19 24971.97 31291.94 30393.19 29177.86 28672.27 30585.26 31773.46 17893.42 33173.71 27067.05 33888.61 295
Anonymous2024052983.15 23680.60 25790.80 16795.74 11178.27 21796.81 15094.92 19460.10 37481.89 20392.54 20845.82 34598.82 11879.25 21378.32 26795.31 194
v119282.31 25280.55 25887.60 24285.94 32578.47 21295.85 20793.80 26479.33 26576.97 25186.51 29763.33 24995.87 25573.11 27270.13 30688.46 301
FMVSNet282.79 24380.44 25989.83 19792.66 20685.43 4895.42 22294.35 23179.06 27374.46 28587.28 28356.38 30494.31 31669.72 29674.68 28289.76 266
GBi-Net82.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
test182.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
v192192082.02 25680.23 26287.41 24985.62 33077.92 23295.79 20993.69 27178.86 27676.67 25486.44 30062.50 25295.83 25772.69 27469.77 31288.47 300
WR-MVS_H81.02 26980.09 26383.79 30988.08 30071.26 32194.46 25196.54 8780.08 25172.81 30186.82 29270.36 21092.65 33664.18 32067.50 33487.46 324
CP-MVSNet81.01 27080.08 26483.79 30987.91 30370.51 32394.29 26295.65 15880.83 23072.54 30488.84 26163.71 24692.32 33968.58 30168.36 32488.55 296
Baseline_NR-MVSNet81.22 26780.07 26584.68 29685.32 33675.12 28096.48 16888.80 34976.24 30477.28 24786.40 30367.61 21894.39 31575.73 25166.73 34184.54 352
v881.88 25880.06 26687.32 25186.63 31479.04 19994.41 25393.65 27378.77 27773.19 29785.57 31366.87 22795.81 25873.84 26967.61 33387.11 327
anonymousdsp80.98 27179.97 26784.01 30681.73 35870.44 32492.49 29793.58 27777.10 29772.98 29986.31 30457.58 29194.90 30279.32 21178.63 26286.69 332
LS3D82.22 25379.94 26889.06 20897.43 7974.06 29293.20 28892.05 31061.90 36473.33 29595.21 15259.35 27499.21 8854.54 35792.48 15093.90 222
test_fmvs279.59 28279.90 26978.67 34282.86 35555.82 37795.20 23289.55 34081.09 22680.12 22389.80 25134.31 37493.51 33087.82 13778.36 26686.69 332
v124081.70 26079.83 27087.30 25385.50 33177.70 24195.48 21993.44 28078.46 28176.53 25786.44 30060.85 26595.84 25671.59 28170.17 30488.35 304
pmmvs581.34 26579.54 27186.73 26485.02 33876.91 25396.22 18691.65 31677.65 28873.55 28988.61 26455.70 30794.43 31474.12 26673.35 28988.86 294
v1081.43 26479.53 27287.11 25686.38 31678.87 20094.31 25893.43 28177.88 28573.24 29685.26 31765.44 23595.75 26272.14 27867.71 33286.72 331
PS-CasMVS80.27 27779.18 27383.52 31587.56 30769.88 32894.08 26595.29 18180.27 24872.08 30688.51 26859.22 27792.23 34167.49 30368.15 32788.45 302
IterMVS80.67 27479.16 27485.20 28989.79 27676.08 26692.97 29291.86 31280.28 24771.20 31185.14 32257.93 28991.34 35172.52 27670.74 30188.18 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 27679.10 27584.73 29589.63 28274.66 28492.98 29191.81 31480.05 25271.06 31385.18 32058.04 28591.40 35072.48 27770.70 30388.12 309
tt080581.20 26879.06 27687.61 24186.50 31572.97 30293.66 27395.48 16774.11 31776.23 26591.99 21541.36 36097.40 18377.44 23274.78 28192.45 236
PVSNet_077.72 1581.70 26078.95 27789.94 19390.77 26176.72 25895.96 19896.95 3885.01 14270.24 31988.53 26752.32 32098.20 14586.68 15044.08 38494.89 202
UniMVSNet_ETH3D80.86 27278.75 27887.22 25586.31 31872.02 31091.95 30293.76 26973.51 32275.06 28290.16 24843.04 35495.66 26776.37 24478.55 26493.98 220
ADS-MVSNet81.26 26678.36 27989.96 19293.78 17179.78 17479.48 36993.60 27573.09 32780.14 22179.99 35462.15 25595.24 28959.49 33883.52 21894.85 204
DP-MVS81.47 26378.28 28091.04 15998.14 5578.48 20995.09 24186.97 35961.14 37071.12 31292.78 20759.59 27199.38 7853.11 36186.61 19495.27 196
PEN-MVS79.47 28578.26 28183.08 31886.36 31768.58 33693.85 27194.77 20579.76 25771.37 30888.55 26559.79 26992.46 33764.50 31965.40 34488.19 307
Syy-MVS77.97 29678.05 28277.74 34692.13 22756.85 37393.97 26794.23 23782.43 20873.39 29193.57 19557.95 28887.86 36832.40 38682.34 23388.51 297
pm-mvs180.05 27878.02 28386.15 27385.42 33275.81 27595.11 23892.69 30377.13 29570.36 31787.43 28158.44 28295.27 28871.36 28364.25 34987.36 325
XVG-ACMP-BASELINE79.38 28677.90 28483.81 30884.98 33967.14 34689.03 32793.18 29380.26 24972.87 30088.15 27338.55 36596.26 23576.05 24778.05 26888.02 310
MSDG80.62 27577.77 28589.14 20793.43 18577.24 24891.89 30490.18 33669.86 34668.02 32691.94 21952.21 32298.84 11759.32 34083.12 22291.35 240
ADS-MVSNet279.57 28377.53 28685.71 27993.78 17172.13 30779.48 36986.11 36573.09 32780.14 22179.99 35462.15 25590.14 36259.49 33883.52 21894.85 204
v7n79.32 28777.34 28785.28 28884.05 34972.89 30493.38 28093.87 25875.02 31270.68 31484.37 32959.58 27295.62 27267.60 30267.50 33487.32 326
JIA-IIPM79.00 28977.20 28884.40 30489.74 28064.06 35475.30 38195.44 17162.15 36381.90 20259.08 38578.92 8195.59 27466.51 31185.78 20693.54 227
Anonymous2023121179.72 28177.19 28987.33 25095.59 11577.16 25295.18 23594.18 24259.31 37772.57 30386.20 30647.89 33995.66 26774.53 26369.24 31789.18 278
DTE-MVSNet78.37 29177.06 29082.32 32585.22 33767.17 34593.40 27993.66 27278.71 27870.53 31688.29 27059.06 27892.23 34161.38 33363.28 35387.56 320
EU-MVSNet76.92 30676.95 29176.83 34984.10 34754.73 38091.77 30692.71 30272.74 33069.57 32288.69 26358.03 28787.43 37264.91 31870.00 31088.33 305
PatchT79.75 28076.85 29288.42 22089.55 28375.49 27777.37 37794.61 21663.07 36082.46 19173.32 37375.52 14293.41 33251.36 36484.43 21496.36 167
RPSCF77.73 29876.63 29381.06 33188.66 29455.76 37887.77 33887.88 35664.82 35974.14 28792.79 20649.22 33396.81 21867.47 30476.88 27190.62 247
FMVSNet179.50 28476.54 29488.39 22288.47 29581.95 11494.30 25993.38 28373.14 32672.04 30785.66 30943.86 34893.84 32365.48 31572.53 29189.38 271
USDC78.65 29076.25 29585.85 27687.58 30674.60 28689.58 32390.58 33584.05 16863.13 35088.23 27140.69 36496.86 21666.57 31075.81 27686.09 341
OurMVSNet-221017-077.18 30476.06 29680.55 33483.78 35260.00 36990.35 31991.05 32777.01 29966.62 33687.92 27647.73 34094.03 32071.63 28068.44 32387.62 317
MIMVSNet79.18 28875.99 29788.72 21787.37 31080.66 15279.96 36891.82 31377.38 29274.33 28681.87 34441.78 35790.74 35766.36 31383.10 22394.76 206
RPMNet79.85 27975.92 29891.64 14190.16 27179.75 17679.02 37395.44 17158.43 37982.27 19772.55 37673.03 18298.41 13846.10 37786.25 19896.75 158
LTVRE_ROB73.68 1877.99 29475.74 29984.74 29490.45 26672.02 31086.41 34991.12 32472.57 33266.63 33587.27 28454.95 31396.98 20656.29 35275.98 27385.21 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal78.14 29375.42 30086.31 27088.33 29879.24 19094.41 25396.22 12073.51 32269.81 32185.52 31555.43 30895.75 26247.65 37567.86 33083.95 358
our_test_377.90 29775.37 30185.48 28685.39 33376.74 25793.63 27491.67 31573.39 32565.72 34084.65 32858.20 28493.13 33457.82 34467.87 32986.57 334
ACMH75.40 1777.99 29474.96 30287.10 25790.67 26276.41 26193.19 28991.64 31772.47 33363.44 34887.61 28043.34 35197.16 19758.34 34273.94 28487.72 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+76.62 1677.47 30174.94 30385.05 29191.07 25371.58 31893.26 28690.01 33771.80 33664.76 34388.55 26541.62 35896.48 22862.35 32971.00 29987.09 328
KD-MVS_2432*160077.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
miper_refine_blended77.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
Patchmatch-test78.25 29274.72 30688.83 21491.20 24874.10 29173.91 38488.70 35259.89 37566.82 33385.12 32378.38 8994.54 31148.84 37379.58 25297.86 94
Patchmtry77.36 30274.59 30785.67 28189.75 27875.75 27677.85 37691.12 32460.28 37271.23 31080.35 35275.45 14393.56 32957.94 34367.34 33687.68 316
CMPMVSbinary54.94 2175.71 31374.56 30879.17 34179.69 36455.98 37589.59 32293.30 28860.28 37253.85 37689.07 25847.68 34196.33 23376.55 24081.02 23985.22 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)76.94 30574.38 30984.62 29985.92 32675.25 27995.28 22689.18 34573.88 32067.22 32886.46 29959.64 27094.10 31959.24 34152.57 37384.50 353
SixPastTwentyTwo76.04 30974.32 31081.22 32984.54 34261.43 36591.16 31389.30 34477.89 28464.04 34586.31 30448.23 33494.29 31763.54 32563.84 35187.93 312
ppachtmachnet_test77.19 30374.22 31186.13 27485.39 33378.22 21993.98 26691.36 32171.74 33767.11 33084.87 32656.67 30093.37 33352.21 36264.59 34686.80 330
FMVSNet576.46 30874.16 31283.35 31790.05 27476.17 26489.58 32389.85 33871.39 33965.29 34280.42 35150.61 32787.70 37161.05 33569.24 31786.18 339
CL-MVSNet_self_test75.81 31174.14 31380.83 33378.33 36867.79 33994.22 26393.52 27877.28 29469.82 32081.54 34661.47 26389.22 36357.59 34653.51 36985.48 347
Patchmatch-RL test76.65 30774.01 31484.55 30077.37 37264.23 35278.49 37582.84 37678.48 28064.63 34473.40 37276.05 13191.70 34976.99 23557.84 36297.72 105
Anonymous2023120675.29 31473.64 31580.22 33580.75 35963.38 35893.36 28190.71 33473.09 32767.12 32983.70 33550.33 32990.85 35653.63 36070.10 30886.44 335
testgi74.88 31673.40 31679.32 34080.13 36361.75 36293.21 28786.64 36379.49 26366.56 33791.06 23135.51 37288.67 36556.79 35171.25 29787.56 320
dmvs_testset72.00 33173.36 31767.91 36083.83 35131.90 40085.30 35677.12 38582.80 20163.05 35292.46 20961.54 26282.55 38342.22 38271.89 29689.29 275
AllTest75.92 31073.06 31884.47 30192.18 22467.29 34091.07 31484.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
COLMAP_ROBcopyleft73.24 1975.74 31273.00 31983.94 30792.38 21269.08 33491.85 30586.93 36061.48 36765.32 34190.27 24542.27 35696.93 21150.91 36675.63 27785.80 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DSMNet-mixed73.13 32472.45 32075.19 35577.51 37146.82 38585.09 35782.01 37867.61 35469.27 32481.33 34750.89 32586.28 37554.54 35783.80 21792.46 235
test_vis1_rt73.96 31872.40 32178.64 34383.91 35061.16 36695.63 21568.18 39376.32 30160.09 36474.77 36729.01 38297.54 17387.74 13875.94 27477.22 377
EG-PatchMatch MVS74.92 31572.02 32283.62 31383.76 35373.28 29793.62 27592.04 31168.57 34958.88 36683.80 33431.87 37895.57 27656.97 35078.67 25982.00 369
pmmvs674.65 31771.67 32383.60 31479.13 36669.94 32793.31 28590.88 33161.05 37165.83 33984.15 33243.43 35094.83 30566.62 30860.63 35886.02 342
K. test v373.62 31971.59 32479.69 33782.98 35459.85 37090.85 31788.83 34877.13 29558.90 36582.11 34243.62 34991.72 34865.83 31454.10 36887.50 323
test20.0372.36 32871.15 32575.98 35377.79 36959.16 37192.40 29989.35 34374.09 31861.50 35884.32 33048.09 33585.54 37850.63 36762.15 35683.24 359
LF4IMVS72.36 32870.82 32676.95 34879.18 36556.33 37486.12 35186.11 36569.30 34863.06 35186.66 29533.03 37692.25 34065.33 31668.64 32182.28 367
pmmvs-eth3d73.59 32070.66 32782.38 32376.40 37673.38 29489.39 32689.43 34272.69 33160.34 36377.79 36046.43 34491.26 35366.42 31257.06 36382.51 364
UnsupCasMVSNet_eth73.25 32370.57 32881.30 32877.53 37066.33 34787.24 34293.89 25780.38 24457.90 37081.59 34542.91 35590.56 35865.18 31748.51 37887.01 329
YYNet173.53 32270.43 32982.85 32084.52 34371.73 31691.69 30891.37 32067.63 35046.79 37981.21 34855.04 31290.43 35955.93 35359.70 36086.38 336
MDA-MVSNet_test_wron73.54 32170.43 32982.86 31984.55 34171.85 31391.74 30791.32 32367.63 35046.73 38081.09 34955.11 31190.42 36055.91 35459.76 35986.31 337
Anonymous2024052172.06 33069.91 33178.50 34477.11 37361.67 36491.62 31090.97 32965.52 35762.37 35479.05 35736.32 36890.96 35557.75 34568.52 32282.87 360
OpenMVS_ROBcopyleft68.52 2073.02 32569.57 33283.37 31680.54 36271.82 31493.60 27688.22 35462.37 36261.98 35683.15 33935.31 37395.47 27845.08 37875.88 27582.82 361
test_040272.68 32669.54 33382.09 32688.67 29371.81 31592.72 29586.77 36261.52 36662.21 35583.91 33343.22 35293.76 32634.60 38572.23 29580.72 373
KD-MVS_self_test70.97 33469.31 33475.95 35476.24 37855.39 37987.45 33990.94 33070.20 34462.96 35377.48 36144.01 34788.09 36661.25 33453.26 37084.37 354
test_fmvs369.56 33569.19 33570.67 35869.01 38347.05 38490.87 31686.81 36171.31 34066.79 33477.15 36216.40 38983.17 38181.84 19162.51 35581.79 371
TinyColmap72.41 32768.99 33682.68 32188.11 29969.59 33188.41 33285.20 36765.55 35657.91 36984.82 32730.80 38095.94 25151.38 36368.70 32082.49 366
MDA-MVSNet-bldmvs71.45 33267.94 33781.98 32785.33 33568.50 33792.35 30088.76 35070.40 34242.99 38381.96 34346.57 34391.31 35248.75 37454.39 36786.11 340
MVS-HIRNet71.36 33367.00 33884.46 30390.58 26369.74 33079.15 37287.74 35846.09 38461.96 35750.50 38845.14 34695.64 27053.74 35988.11 18588.00 311
PM-MVS69.32 33766.93 33976.49 35073.60 38055.84 37685.91 35279.32 38374.72 31461.09 36078.18 35921.76 38591.10 35470.86 28956.90 36482.51 364
MIMVSNet169.44 33666.65 34077.84 34576.48 37562.84 36087.42 34088.97 34766.96 35557.75 37179.72 35632.77 37785.83 37746.32 37663.42 35284.85 351
new-patchmatchnet68.85 33965.93 34177.61 34773.57 38163.94 35590.11 32188.73 35171.62 33855.08 37473.60 37140.84 36287.22 37451.35 36548.49 37981.67 372
TDRefinement69.20 33865.78 34279.48 33866.04 38862.21 36188.21 33386.12 36462.92 36161.03 36185.61 31233.23 37594.16 31855.82 35553.02 37182.08 368
mvsany_test367.19 34165.34 34372.72 35763.08 38948.57 38383.12 36478.09 38472.07 33461.21 35977.11 36322.94 38487.78 37078.59 21851.88 37481.80 370
UnsupCasMVSNet_bld68.60 34064.50 34480.92 33274.63 37967.80 33883.97 36192.94 29965.12 35854.63 37568.23 38135.97 37092.17 34360.13 33644.83 38282.78 362
new_pmnet66.18 34263.18 34575.18 35676.27 37761.74 36383.79 36284.66 36956.64 38151.57 37771.85 37931.29 37987.93 36749.98 36962.55 35475.86 378
pmmvs365.75 34362.18 34676.45 35167.12 38764.54 35088.68 33085.05 36854.77 38357.54 37273.79 37029.40 38186.21 37655.49 35647.77 38078.62 375
test_f64.01 34462.13 34769.65 35963.00 39045.30 39083.66 36380.68 38061.30 36855.70 37372.62 37514.23 39184.64 37969.84 29458.11 36179.00 374
N_pmnet61.30 34560.20 34864.60 36584.32 34417.00 40691.67 30910.98 40461.77 36558.45 36878.55 35849.89 33191.83 34742.27 38163.94 35084.97 350
WB-MVS57.26 34656.22 34960.39 37169.29 38235.91 39886.39 35070.06 39159.84 37646.46 38172.71 37451.18 32478.11 38515.19 39534.89 39067.14 384
SSC-MVS56.01 34954.96 35059.17 37268.42 38434.13 39984.98 35869.23 39258.08 38045.36 38271.67 38050.30 33077.46 38614.28 39632.33 39165.91 385
test_method56.77 34754.53 35163.49 36776.49 37440.70 39375.68 38074.24 38719.47 39548.73 37871.89 37819.31 38665.80 39557.46 34747.51 38183.97 357
APD_test156.56 34853.58 35265.50 36267.93 38646.51 38777.24 37972.95 38838.09 38642.75 38475.17 36613.38 39282.78 38240.19 38354.53 36667.23 383
FPMVS55.09 35052.93 35361.57 36955.98 39240.51 39483.11 36583.41 37537.61 38734.95 38871.95 37714.40 39076.95 38729.81 38765.16 34567.25 382
test_vis3_rt54.10 35151.04 35463.27 36858.16 39146.08 38984.17 36049.32 40356.48 38236.56 38749.48 3908.03 39991.91 34667.29 30549.87 37551.82 389
LCM-MVSNet52.52 35248.24 35565.35 36347.63 39941.45 39272.55 38583.62 37431.75 38837.66 38657.92 3869.19 39876.76 38849.26 37144.60 38377.84 376
EGC-MVSNET52.46 35347.56 35667.15 36181.98 35760.11 36882.54 36672.44 3890.11 4010.70 40274.59 36825.11 38383.26 38029.04 38861.51 35758.09 386
PMMVS250.90 35446.31 35764.67 36455.53 39346.67 38677.30 37871.02 39040.89 38534.16 38959.32 3849.83 39776.14 39040.09 38428.63 39271.21 379
testf145.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
APD_test245.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
Gipumacopyleft45.11 35842.05 36054.30 37580.69 36051.30 38235.80 39383.81 37328.13 38927.94 39334.53 39311.41 39676.70 38921.45 39254.65 36534.90 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 35941.93 36140.38 37820.10 40326.84 40261.93 39059.09 39914.81 39728.51 39280.58 35035.53 37148.33 39963.70 32413.11 39645.96 392
ANet_high46.22 35541.28 36261.04 37039.91 40146.25 38870.59 38676.18 38658.87 37823.09 39448.00 39112.58 39466.54 39428.65 38913.62 39570.35 380
PMVScopyleft34.80 2339.19 36035.53 36350.18 37629.72 40230.30 40159.60 39166.20 39626.06 39217.91 39649.53 3893.12 40274.09 39118.19 39449.40 37646.14 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 36232.39 36433.65 37953.35 39525.70 40374.07 38353.33 40121.08 39317.17 39733.63 39511.85 39554.84 39712.98 39714.04 39420.42 394
EMVS31.70 36331.45 36532.48 38050.72 39823.95 40474.78 38252.30 40220.36 39416.08 39831.48 39612.80 39353.60 39811.39 39813.10 39719.88 395
MVEpermissive35.65 2233.85 36129.49 36646.92 37741.86 40036.28 39750.45 39256.52 40018.75 39618.28 39537.84 3922.41 40358.41 39618.71 39320.62 39346.06 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k21.43 36428.57 3670.00 3840.00 4060.00 4090.00 39595.93 1440.00 4020.00 40397.66 7263.57 2470.00 4030.00 4020.00 4010.00 399
wuyk23d14.10 36513.89 36814.72 38155.23 39422.91 40533.83 3943.56 4054.94 3984.11 3992.28 4012.06 40419.66 40010.23 3998.74 3981.59 398
testmvs9.92 36612.94 3690.84 3830.65 4040.29 40893.78 2720.39 4060.42 3992.85 40015.84 3990.17 4060.30 4022.18 4000.21 3991.91 397
test1239.07 36711.73 3701.11 3820.50 4050.77 40789.44 3250.20 4070.34 4002.15 40110.72 4000.34 4050.32 4011.79 4010.08 4002.23 396
ab-mvs-re8.11 36810.81 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.30 940.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.92 3697.89 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40271.04 2040.00 4030.00 4020.00 4010.00 399
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
WAC-MVS67.18 34249.00 372
FOURS198.51 3978.01 22798.13 4996.21 12183.04 19494.39 51
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
test_one_060198.91 1884.56 7196.70 6588.06 7996.57 2298.77 1088.04 20
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.09 883.22 9696.60 8182.88 19993.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
IU-MVS99.03 1585.34 4996.86 4592.05 2798.74 198.15 1198.97 1799.42 13
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
test_241102_TWO96.78 4988.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6196.78 4988.72 6697.79 698.90 588.48 1799.82 18
save fliter98.24 5183.34 9398.61 3396.57 8491.32 32
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5599.84 1297.90 1798.85 2199.45 10
test072699.05 985.18 5499.11 1496.78 4988.75 6497.65 1198.91 287.69 22
GSMVS97.54 117
test_part298.90 1985.14 6096.07 28
sam_mvs177.59 10297.54 117
sam_mvs75.35 150
ambc76.02 35268.11 38551.43 38164.97 38989.59 33960.49 36274.49 36917.17 38892.46 33761.50 33252.85 37284.17 356
MTGPAbinary96.33 112
test_post185.88 35330.24 39773.77 17395.07 30073.89 267
test_post33.80 39476.17 12995.97 247
patchmatchnet-post77.09 36477.78 10195.39 280
GG-mvs-BLEND93.49 6694.94 13586.26 3381.62 36797.00 3388.32 13294.30 17791.23 596.21 23888.49 13197.43 7398.00 84
MTMP97.53 9068.16 394
gm-plane-assit92.27 21879.64 18284.47 15795.15 15797.93 15185.81 152
test9_res96.00 3999.03 1398.31 62
TEST998.64 3183.71 8497.82 6896.65 7284.29 16495.16 3598.09 4584.39 3799.36 81
test_898.63 3383.64 8797.81 7096.63 7784.50 15595.10 3998.11 4484.33 3899.23 86
agg_prior294.30 5899.00 1598.57 46
agg_prior98.59 3583.13 9796.56 8694.19 5399.16 96
TestCases84.47 30192.18 22467.29 34084.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
test_prior482.34 11097.75 75
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
test_prior93.09 7998.68 2681.91 11896.40 10499.06 10498.29 64
旧先验296.97 13874.06 31996.10 2797.76 16088.38 133
新几何296.42 175
新几何193.12 7797.44 7881.60 13296.71 6474.54 31591.22 9397.57 8079.13 7999.51 7177.40 23398.46 3898.26 67
旧先验197.39 8279.58 18396.54 8798.08 4884.00 4297.42 7497.62 114
无先验96.87 14596.78 4977.39 29199.52 6979.95 20698.43 55
原ACMM296.84 146
原ACMM191.22 15597.77 6578.10 22596.61 7881.05 22791.28 9297.42 8977.92 9898.98 10879.85 20898.51 3496.59 162
test22296.15 10178.41 21395.87 20596.46 9671.97 33589.66 11397.45 8576.33 12798.24 4998.30 63
testdata299.48 7376.45 242
segment_acmp82.69 53
testdata90.13 18695.92 10774.17 29096.49 9573.49 32494.82 4797.99 5278.80 8597.93 15183.53 17997.52 6998.29 64
testdata195.57 21787.44 94
test1294.25 3798.34 4685.55 4696.35 11192.36 7380.84 5999.22 8798.31 4797.98 86
plane_prior791.86 23977.55 243
plane_prior691.98 23577.92 23264.77 242
plane_prior594.69 20797.30 18987.08 14482.82 22890.96 243
plane_prior494.15 182
plane_prior377.75 23990.17 5081.33 207
plane_prior297.18 11589.89 53
plane_prior191.95 237
plane_prior77.96 22997.52 9390.36 4882.96 226
n20.00 408
nn0.00 408
door-mid79.75 382
lessismore_v079.98 33680.59 36158.34 37280.87 37958.49 36783.46 33743.10 35393.89 32263.11 32748.68 37787.72 314
LGP-MVS_train86.33 26790.88 25573.06 30094.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
test1196.50 92
door80.13 381
HQP5-MVS78.48 209
HQP-NCC92.08 23097.63 8290.52 4382.30 193
ACMP_Plane92.08 23097.63 8290.52 4382.30 193
BP-MVS87.67 140
HQP4-MVS82.30 19397.32 18791.13 241
HQP3-MVS94.80 20283.01 224
HQP2-MVS65.40 236
NP-MVS92.04 23478.22 21994.56 172
MDTV_nov1_ep13_2view81.74 12686.80 34580.65 23585.65 15574.26 16776.52 24196.98 146
ACMMP++_ref78.45 265
ACMMP++79.05 256
Test By Simon71.65 197
ITE_SJBPF82.38 32387.00 31265.59 34889.55 34079.99 25469.37 32391.30 22741.60 35995.33 28462.86 32874.63 28386.24 338
DeepMVS_CXcopyleft64.06 36678.53 36743.26 39168.11 39569.94 34538.55 38576.14 36518.53 38779.34 38443.72 37941.62 38769.57 381