This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3398.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4097.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4098.28 2799.86 897.52 499.67 699.75 5
DVP-MVS++98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
DROMVSNet96.42 5596.47 4896.26 11197.01 16391.52 12798.89 397.75 12194.42 4596.64 6197.68 9789.32 9098.60 18597.45 899.11 8498.67 125
IU-MVS99.42 795.39 1197.94 10590.40 18198.94 597.41 1199.66 1099.74 7
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 5097.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 13098.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6398.14 5694.82 3299.01 398.55 2194.18 1497.41 30996.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 16098.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
CANet96.39 5796.02 6197.50 5397.62 13693.38 7197.02 15297.96 10395.42 794.86 11997.81 8887.38 11999.82 2896.88 1699.20 7499.29 66
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17696.72 23394.17 5197.44 3397.66 10092.76 2699.33 11796.86 1797.76 12799.08 87
CS-MVS95.88 7195.98 6295.58 14696.44 19390.56 16297.78 7597.73 12493.01 9396.07 8596.77 14790.13 8398.57 19096.83 1899.10 8597.60 187
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 16097.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 17298.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 17297.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 24198.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 6198.18 4990.57 17798.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8893.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8998.49 1294.66 4097.24 4098.41 3692.31 4098.94 15696.61 2699.46 4298.96 99
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 16098.06 7690.67 16895.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14798.07 7393.54 7196.08 8497.69 9693.86 1699.71 4196.50 2999.39 5199.55 30
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 15297.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3798.27 3092.37 11698.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16797.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 11199.13 81
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8495.85 27492.43 11495.86 9498.44 3068.42 33399.39 11396.31 3394.85 18498.71 122
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 6098.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9998.19 4792.82 10497.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
diffmvs95.25 8695.13 8495.63 14296.43 19589.34 20295.99 24297.35 18192.83 10396.31 7697.37 12086.44 13098.67 17996.26 3597.19 14498.87 110
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16897.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 12198.90 106
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5598.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
alignmvs95.87 7295.23 8197.78 3697.56 14295.19 2297.86 6697.17 19394.39 4796.47 7196.40 17585.89 13899.20 12696.21 4295.11 18298.95 101
canonicalmvs96.02 6695.45 7497.75 4097.59 13995.15 2598.28 2997.60 14294.52 4396.27 7896.12 18787.65 11299.18 12996.20 4394.82 18698.91 105
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14598.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 13298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5598.06 7693.11 9097.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 23198.90 294.30 5095.86 9497.74 9392.33 3899.38 11596.04 4999.42 4799.28 69
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 4098.45 1589.86 18997.11 4898.01 7492.52 3599.69 4796.03 5099.53 2899.36 62
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10397.97 10295.59 496.61 6397.89 7892.57 3399.84 2295.95 5199.51 3399.40 57
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24398.18 4995.23 1295.87 9397.65 10191.45 5899.70 4695.87 5299.44 4699.00 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22998.79 493.99 5595.80 9697.65 10189.92 8899.24 12495.87 5299.20 7498.58 127
h-mvs3394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9897.58 14595.19 1496.74 5497.45 11683.67 16799.61 6595.85 5479.73 34098.29 154
hse-mvs293.45 14092.99 13694.81 18297.02 16288.59 22396.69 18696.47 25195.19 1496.74 5496.16 18683.67 16798.48 19995.85 5479.13 34497.35 195
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 12298.04 8495.96 297.09 4997.88 8093.18 2399.71 4195.84 5699.17 7699.56 26
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10698.15 5493.87 5797.52 2997.61 10785.29 14599.53 9295.81 5795.27 17899.16 77
PC_three_145290.77 16498.89 898.28 5596.24 198.35 20795.76 5899.58 2299.59 19
9.1496.75 3498.93 4997.73 8198.23 4191.28 15297.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20289.67 26297.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 37191.70 5399.80 3095.66 6099.40 4999.62 15
baseline95.58 7895.42 7696.08 11796.78 17390.41 16997.16 14397.45 16593.69 6695.65 10597.85 8487.29 12098.68 17895.66 6097.25 14299.13 81
ETV-MVS96.02 6695.89 6596.40 9997.16 15092.44 9797.47 11197.77 11994.55 4296.48 7094.51 26191.23 6598.92 15795.65 6398.19 11497.82 176
casdiffmvs95.64 7695.49 7296.08 11796.76 17690.45 16797.29 12997.44 16994.00 5495.46 11297.98 7687.52 11698.73 17395.64 6497.33 13999.08 87
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8497.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8497.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15696.40 7497.99 7590.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9496.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12898.06 7693.92 5693.38 15098.66 1486.83 12599.73 3595.60 6999.22 7298.96 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 11196.39 7598.18 6491.61 5599.88 495.59 7099.55 2599.57 23
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8898.24 3791.57 13897.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
CS-MVS-test95.86 7395.88 6695.80 13196.76 17690.59 16198.40 2297.65 13793.52 7395.53 11096.79 14589.98 8698.59 18995.59 7098.69 9998.23 155
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8797.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
OPU-MVS98.55 398.82 5896.86 398.25 3398.26 5696.04 299.24 12495.36 7499.59 1799.56 26
lupinMVS94.99 9694.56 9696.29 10996.34 19991.21 13895.83 24996.27 25988.93 21796.22 7996.88 14386.20 13598.85 16395.27 7599.05 8798.82 114
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8395.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11498.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 10194.39 10496.18 11595.52 23290.93 15196.09 23596.52 24989.28 20596.01 9097.32 12184.70 15298.77 17095.15 7898.91 9498.85 111
jason: jason.
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4598.32 2192.57 11297.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6498.03 8793.34 8297.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 90
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20898.02 9188.58 22996.03 8697.56 11292.73 2899.59 7195.04 8199.37 5699.39 58
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22498.00 9688.76 22695.68 10197.55 11492.70 3099.57 8295.01 8299.32 5799.32 64
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21698.00 9692.80 10596.03 8697.59 10892.01 4499.41 11095.01 8299.38 5299.29 66
test_prior296.35 21692.80 10596.03 8697.59 10892.01 4495.01 8299.38 52
nrg03094.05 12093.31 13096.27 11095.22 25494.59 3298.34 2497.46 15992.93 10191.21 20096.64 15787.23 12298.22 21594.99 8585.80 29195.98 231
VDDNet93.05 15592.07 16796.02 12296.84 16990.39 17098.08 4995.85 27486.22 28595.79 9798.46 2867.59 33699.19 12794.92 8694.85 18498.47 139
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8498.10 6491.50 14098.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15798.05 8389.85 19197.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 71
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10896.70 5698.06 7091.35 6299.86 894.83 8999.28 6399.47 48
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7995.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 9199.38 5299.45 49
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14490.66 16095.31 27097.48 15493.85 5896.51 6895.70 21388.65 9999.65 5694.80 9298.27 11296.17 222
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17796.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14690.50 16595.44 26497.44 16993.70 6596.46 7296.18 18388.59 10299.53 9294.79 9497.81 12496.17 222
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 21293.97 13797.57 11092.62 3199.76 3394.66 9599.27 6599.15 79
EIA-MVS95.53 8095.47 7395.71 13997.06 15889.63 18697.82 7197.87 11293.57 6793.92 13895.04 23890.61 7798.95 15594.62 9698.68 10098.54 129
ZD-MVS99.05 4394.59 3298.08 6789.22 20797.03 5198.10 6692.52 3599.65 5694.58 9799.31 59
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3398.81 392.99 9494.56 12598.39 3788.96 9499.85 1794.57 9897.63 12899.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 9298.98 192.22 11997.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
ET-MVSNet_ETH3D91.49 21590.11 24495.63 14296.40 19691.57 12695.34 26793.48 34090.60 17675.58 35695.49 22480.08 23596.79 32994.25 10089.76 25698.52 131
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7598.22 4292.74 10797.59 2898.20 6391.96 4799.86 894.21 10199.25 6999.63 13
bset_n11_16_dypcd91.55 21190.59 22394.44 19991.51 34590.25 17192.70 33393.42 34192.27 11890.22 21494.74 25278.42 26597.80 27394.19 10287.86 27295.29 274
LFMVS93.60 13592.63 15096.52 8898.13 10991.27 13597.94 6193.39 34290.57 17796.29 7798.31 4969.00 32999.16 13194.18 10395.87 16799.12 84
MVSFormer95.37 8295.16 8395.99 12496.34 19991.21 13898.22 3897.57 14691.42 14496.22 7997.32 12186.20 13597.92 26294.07 10499.05 8798.85 111
test_djsdf93.07 15492.76 14394.00 21893.49 31988.70 22198.22 3897.57 14691.42 14490.08 22595.55 22182.85 18697.92 26294.07 10491.58 23095.40 261
mvs_anonymous93.82 12893.74 11294.06 21496.44 19385.41 28995.81 25097.05 20689.85 19190.09 22496.36 17787.44 11897.75 27993.97 10696.69 15499.02 90
VPA-MVSNet93.24 14692.48 15995.51 15195.70 22692.39 9897.86 6698.66 992.30 11792.09 18095.37 22780.49 22798.40 20293.95 10785.86 29095.75 244
agg_prior293.94 10899.38 5299.50 41
mvs_tets92.31 18291.76 17793.94 22593.41 32188.29 23097.63 9797.53 15092.04 12888.76 26396.45 17174.62 29798.09 23493.91 10991.48 23295.45 257
Effi-MVS+94.93 9794.45 10296.36 10496.61 17991.47 12996.41 20897.41 17491.02 16194.50 12695.92 19687.53 11598.78 16893.89 11096.81 14998.84 113
jajsoiax92.42 17791.89 17594.03 21793.33 32488.50 22797.73 8197.53 15092.00 13088.85 25996.50 16975.62 29398.11 22993.88 11191.56 23195.48 252
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15888.53 22695.28 27197.45 16591.68 13694.08 13497.68 9782.41 19798.90 16093.84 11292.47 21596.98 200
PS-MVSNAJss93.74 13193.51 12294.44 19993.91 30689.28 20797.75 7897.56 14992.50 11389.94 22796.54 16788.65 9998.18 22193.83 11390.90 24395.86 233
EPNet95.20 8994.56 9697.14 7192.80 33292.68 8997.85 6994.87 31996.64 192.46 16697.80 9086.23 13299.65 5693.72 11498.62 10299.10 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_test8_iter0591.19 23490.78 21492.41 28195.76 22583.14 31997.32 12597.46 15991.37 14889.07 25595.57 21870.33 32298.21 21693.56 11586.62 28595.89 232
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 13098.25 3590.21 18294.18 13297.27 12387.48 11799.73 3593.53 11697.77 12698.55 128
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25495.17 11698.03 7287.09 12399.61 6593.51 11799.42 4799.02 90
MVSTER93.20 14892.81 14294.37 20396.56 18589.59 18997.06 14897.12 19791.24 15391.30 19495.96 19482.02 20498.05 24193.48 11890.55 24795.47 254
PVSNet_BlendedMVS94.06 11993.92 10894.47 19898.27 9489.46 19796.73 18098.36 1690.17 18394.36 12895.24 23288.02 10599.58 7493.44 11990.72 24594.36 315
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26398.36 1688.84 22094.36 12896.09 19188.02 10599.58 7493.44 11998.18 11598.40 147
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18593.36 7398.65 998.36 1694.12 5289.25 25298.06 7082.20 20199.77 3293.41 12199.32 5799.18 76
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14389.56 19098.67 897.00 21290.69 16794.24 13197.62 10689.79 8998.81 16693.39 12296.49 15998.92 104
RRT_MVS93.21 14792.32 16395.91 12694.92 26994.15 4796.92 16496.86 22791.42 14491.28 19796.43 17279.66 24498.10 23093.29 12390.06 25295.46 255
CHOSEN 280x42093.12 15292.72 14894.34 20596.71 17887.27 25390.29 34997.72 12886.61 28091.34 19195.29 22984.29 16098.41 20193.25 12498.94 9297.35 195
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16795.34 1698.48 1897.87 11294.65 4188.53 26898.02 7383.69 16699.71 4193.18 12598.96 9199.44 51
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
test111193.19 14992.82 14194.30 20797.58 14184.56 30398.21 4089.02 36393.53 7294.58 12498.21 6072.69 30899.05 14893.06 12898.48 10799.28 69
ECVR-MVScopyleft93.19 14992.73 14794.57 19697.66 13385.41 28998.21 4088.23 36493.43 7794.70 12298.21 6072.57 30999.07 14593.05 12998.49 10599.25 72
HQP_MVS93.78 13093.43 12694.82 18096.21 20389.99 17797.74 7997.51 15294.85 2891.34 19196.64 15781.32 21598.60 18593.02 13092.23 21895.86 233
plane_prior597.51 15298.60 18593.02 13092.23 21895.86 233
test250691.60 20690.78 21494.04 21697.66 13383.81 31098.27 3075.53 37593.43 7795.23 11498.21 6067.21 33999.07 14593.01 13298.49 10599.25 72
MVS_Test94.89 9994.62 9495.68 14096.83 17189.55 19196.70 18497.17 19391.17 15695.60 10696.11 19087.87 10998.76 17193.01 13297.17 14598.72 120
CLD-MVS92.98 15892.53 15694.32 20696.12 21289.20 20995.28 27197.47 15792.66 10989.90 22895.62 21680.58 22598.40 20292.73 13492.40 21695.38 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 13293.35 12994.80 18597.07 15588.61 22294.79 28197.46 15991.97 13193.99 13597.86 8381.74 21098.88 16292.64 13592.67 21396.92 204
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14998.21 4388.16 24396.64 6197.70 9591.18 6699.67 5292.44 13699.47 4099.48 45
旧先验295.94 24481.66 33497.34 3898.82 16592.26 137
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21697.88 11086.98 27396.65 6097.89 7891.99 4699.47 10392.26 13799.46 4299.39 58
FIs94.09 11893.70 11395.27 16195.70 22692.03 11298.10 4798.68 793.36 8190.39 21096.70 15287.63 11397.94 25992.25 13990.50 24995.84 236
LPG-MVS_test92.94 16192.56 15394.10 21296.16 20888.26 23297.65 9297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
LGP-MVS_train94.10 21296.16 20888.26 23297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
cascas91.20 23190.08 24594.58 19594.97 26589.16 21293.65 31797.59 14479.90 34589.40 24492.92 31475.36 29498.36 20692.14 14294.75 18896.23 219
OPM-MVS93.28 14592.76 14394.82 18094.63 28590.77 15796.65 19097.18 19193.72 6391.68 18597.26 12479.33 24998.63 18292.13 14392.28 21795.07 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BP-MVS92.13 143
HQP-MVS93.19 14992.74 14694.54 19795.86 21889.33 20396.65 19097.39 17593.55 6890.14 21595.87 19880.95 21898.50 19592.13 14392.10 22395.78 240
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14998.08 6788.35 23695.09 11797.65 10189.97 8799.48 10292.08 14698.59 10398.44 144
VPNet92.23 18891.31 19494.99 17195.56 23090.96 14997.22 13897.86 11592.96 10090.96 20296.62 16475.06 29598.20 21891.90 14783.65 32595.80 239
sss94.51 10793.80 11196.64 8197.07 15591.97 11596.32 22098.06 7688.94 21694.50 12696.78 14684.60 15399.27 12291.90 14796.02 16398.68 124
anonymousdsp92.16 19191.55 18593.97 22192.58 33689.55 19197.51 10597.42 17389.42 20288.40 26994.84 24680.66 22497.88 26791.87 14991.28 23694.48 311
ACMP89.59 1092.62 17292.14 16694.05 21596.40 19688.20 23597.36 12197.25 18991.52 13988.30 27296.64 15778.46 26498.72 17691.86 15091.48 23295.23 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28598.49 1285.06 30293.78 14095.78 20782.86 18598.67 17991.77 15195.71 17299.07 89
UGNet94.04 12193.28 13196.31 10696.85 16891.19 14197.88 6597.68 13394.40 4693.00 15896.18 18373.39 30799.61 6591.72 15298.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 14292.67 14995.47 15795.34 24392.83 8597.17 14298.58 1092.98 9990.13 21995.80 20388.37 10497.85 26891.71 15383.93 32095.73 246
DU-MVS92.90 16392.04 16895.49 15494.95 26792.83 8597.16 14398.24 3793.02 9290.13 21995.71 21183.47 17097.85 26891.71 15383.93 32095.78 240
Effi-MVS+-dtu93.08 15393.21 13392.68 27696.02 21583.25 31897.14 14696.72 23393.85 5891.20 20193.44 30883.08 17898.30 21191.69 15595.73 17196.50 215
mvs-test193.63 13493.69 11493.46 24896.02 21584.61 30297.24 13296.72 23393.85 5892.30 17395.76 20883.08 17898.89 16191.69 15596.54 15796.87 206
UniMVSNet (Re)93.31 14492.55 15495.61 14495.39 23793.34 7497.39 11898.71 593.14 8990.10 22394.83 24787.71 11098.03 24591.67 15783.99 31995.46 255
LCM-MVSNet-Re92.50 17392.52 15792.44 27996.82 17281.89 32896.92 16493.71 33892.41 11584.30 32494.60 25985.08 14897.03 32091.51 15897.36 13798.40 147
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23491.45 13198.12 4698.71 593.37 7990.23 21396.70 15287.66 11197.85 26891.49 15990.39 25095.83 237
PMMVS92.86 16592.34 16194.42 20294.92 26986.73 26794.53 28796.38 25584.78 30794.27 13095.12 23783.13 17798.40 20291.47 16096.49 15998.12 160
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14991.58 12598.26 3298.12 5994.38 4894.90 11898.15 6582.28 19998.92 15791.45 16198.58 10499.01 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27798.48 1485.60 29393.76 14197.11 13283.15 17699.61 6591.33 16298.72 9899.19 75
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20697.57 14692.04 12894.77 12197.96 7787.01 12499.09 14091.31 16396.77 15098.36 151
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23797.48 15493.47 7695.67 10498.10 6689.17 9299.25 12391.27 16498.77 9699.13 81
ACMM89.79 892.96 15992.50 15894.35 20496.30 20188.71 22097.58 10097.36 18091.40 14790.53 20696.65 15679.77 24198.75 17291.24 16591.64 22895.59 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19997.35 18190.61 17494.64 12396.93 13886.41 13199.39 11391.20 16694.71 19098.94 102
Anonymous2024052991.98 19690.73 21895.73 13798.14 10889.40 19997.99 5497.72 12879.63 34693.54 14597.41 11969.94 32799.56 8491.04 16791.11 23898.22 156
test_part192.21 19091.10 20495.51 15197.80 12592.66 9098.02 5397.68 13389.79 19488.80 26296.02 19276.85 28298.18 22190.86 16884.11 31895.69 247
AUN-MVS91.76 20190.75 21794.81 18297.00 16488.57 22496.65 19096.49 25089.63 19692.15 17696.12 18778.66 26198.50 19590.83 16979.18 34397.36 194
CANet_DTU94.37 10893.65 11696.55 8796.46 19292.13 10996.21 23096.67 24194.38 4893.53 14697.03 13679.34 24899.71 4190.76 17098.45 10997.82 176
ab-mvs93.57 13792.55 15496.64 8197.28 14591.96 11695.40 26597.45 16589.81 19393.22 15696.28 18079.62 24599.46 10490.74 17193.11 20798.50 134
CostFormer91.18 23590.70 21992.62 27794.84 27581.76 32994.09 30494.43 32684.15 31392.72 16593.77 29779.43 24798.20 21890.70 17292.18 22197.90 169
Anonymous20240521192.07 19490.83 21395.76 13298.19 10588.75 21997.58 10095.00 31086.00 28893.64 14297.45 11666.24 34699.53 9290.68 17392.71 21199.01 94
tpmrst91.44 21791.32 19391.79 29695.15 25779.20 35193.42 32195.37 29288.55 23293.49 14793.67 30282.49 19598.27 21290.41 17489.34 25997.90 169
thisisatest053093.03 15692.21 16595.49 15497.07 15589.11 21397.49 11092.19 35090.16 18494.09 13396.41 17476.43 28799.05 14890.38 17595.68 17398.31 153
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 9298.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17697.35 13899.11 85
UniMVSNet_ETH3D91.34 22590.22 24194.68 19094.86 27487.86 24597.23 13797.46 15987.99 24689.90 22896.92 14166.35 34498.23 21490.30 17790.99 24197.96 165
tttt051792.96 15992.33 16294.87 17997.11 15387.16 25997.97 5992.09 35190.63 17293.88 13997.01 13776.50 28499.06 14790.29 17895.45 17598.38 149
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8493.99 13597.74 9385.55 14398.45 20089.98 17997.86 12299.14 80
miper_enhance_ethall91.54 21391.01 20593.15 26095.35 24287.07 26193.97 30696.90 22186.79 27789.17 25393.43 31086.55 12897.64 28789.97 18086.93 28094.74 305
EI-MVSNet93.03 15692.88 14093.48 24695.77 22386.98 26296.44 20497.12 19790.66 17091.30 19497.64 10486.56 12798.05 24189.91 18190.55 24795.41 258
IterMVS-LS92.29 18491.94 17393.34 25396.25 20286.97 26396.57 20297.05 20690.67 16889.50 24394.80 24986.59 12697.64 28789.91 18186.11 28995.40 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2291.21 23090.56 22693.14 26196.09 21486.80 26594.41 29296.58 24887.80 25388.58 26793.99 29080.85 22397.62 29089.87 18386.93 28094.99 282
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20691.46 13096.33 21997.04 20888.97 21593.56 14396.51 16887.55 11497.89 26689.80 18495.95 16598.44 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 18091.53 18694.77 18795.13 25990.83 15496.40 21197.98 10191.88 13289.29 24995.54 22282.50 19497.80 27389.79 18585.27 29995.69 247
NR-MVSNet92.34 18091.27 19795.53 15094.95 26793.05 8097.39 11898.07 7392.65 11084.46 32295.71 21185.00 14997.77 27889.71 18683.52 32695.78 240
Anonymous2023121190.63 25589.42 26694.27 20898.24 9889.19 21198.05 5197.89 10879.95 34488.25 27594.96 23972.56 31098.13 22589.70 18785.14 30195.49 251
testdata95.46 15898.18 10788.90 21797.66 13582.73 32897.03 5198.07 6990.06 8498.85 16389.67 18898.98 9098.64 126
Baseline_NR-MVSNet91.20 23190.62 22192.95 26793.83 30988.03 24097.01 15695.12 30688.42 23489.70 23495.13 23683.47 17097.44 30689.66 18983.24 32893.37 333
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27397.62 14190.43 18095.55 10797.07 13491.72 5199.50 10089.62 19098.94 9298.82 114
XXY-MVS92.16 19191.23 19994.95 17694.75 27990.94 15097.47 11197.43 17289.14 20988.90 25696.43 17279.71 24298.24 21389.56 19187.68 27395.67 249
miper_ehance_all_eth91.59 20791.13 20392.97 26695.55 23186.57 27294.47 28896.88 22487.77 25588.88 25894.01 28886.22 13397.54 29689.49 19286.93 28094.79 301
XVG-ACMP-BASELINE90.93 24490.21 24293.09 26294.31 29785.89 28295.33 26897.26 18791.06 16089.38 24595.44 22668.61 33198.60 18589.46 19391.05 23994.79 301
thisisatest051592.29 18491.30 19595.25 16296.60 18088.90 21794.36 29492.32 34987.92 24893.43 14994.57 26077.28 28099.00 15289.42 19495.86 16897.86 172
c3_l91.38 22090.89 20792.88 26995.58 22986.30 27594.68 28396.84 22988.17 24188.83 26194.23 28085.65 14297.47 30389.36 19584.63 30994.89 291
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19997.81 11889.87 18892.15 17697.06 13583.62 16999.54 8989.34 19698.07 11897.70 180
TranMVSNet+NR-MVSNet92.50 17391.63 18295.14 16694.76 27892.07 11097.53 10498.11 6292.90 10289.56 24096.12 18783.16 17597.60 29289.30 19783.20 32995.75 244
D2MVS91.30 22790.95 20692.35 28294.71 28185.52 28796.18 23298.21 4388.89 21886.60 30593.82 29579.92 23997.95 25889.29 19890.95 24293.56 329
131492.81 16992.03 16995.14 16695.33 24689.52 19496.04 23797.44 16987.72 25886.25 30895.33 22883.84 16498.79 16789.26 19997.05 14797.11 198
v2v48291.59 20790.85 21193.80 23193.87 30888.17 23796.94 16396.88 22489.54 19789.53 24194.90 24381.70 21198.02 24689.25 20085.04 30595.20 276
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11397.96 10377.99 35293.00 15897.57 11086.14 13799.33 11789.22 20199.15 7798.94 102
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 13297.73 12491.80 13392.93 16396.62 16489.13 9399.14 13489.21 20297.78 12598.97 98
baseline192.82 16891.90 17495.55 14997.20 14890.77 15797.19 14094.58 32492.20 12192.36 17096.34 17884.16 16198.21 21689.20 20383.90 32397.68 181
IB-MVS87.33 1789.91 27088.28 28294.79 18695.26 25387.70 24895.12 27993.95 33789.35 20487.03 29992.49 32070.74 32099.19 12789.18 20481.37 33697.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15492.49 9695.64 25796.64 24289.05 21193.00 15895.79 20685.77 14199.45 10689.16 20594.35 19297.96 165
V4291.58 20990.87 20893.73 23394.05 30388.50 22797.32 12596.97 21388.80 22589.71 23394.33 27282.54 19398.05 24189.01 20685.07 30394.64 309
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32181.25 33296.98 15996.28 25891.68 13686.55 30696.30 17974.20 30097.98 24988.96 20787.40 27895.09 278
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7397.48 15489.19 20894.81 12096.71 15088.84 9699.17 13088.91 20898.76 9796.53 213
test-LLR91.42 21891.19 20192.12 28694.59 28680.66 33594.29 29892.98 34491.11 15890.76 20492.37 32279.02 25498.07 23888.81 20996.74 15197.63 182
test-mter90.19 26689.54 26592.12 28694.59 28680.66 33594.29 29892.98 34487.68 25990.76 20492.37 32267.67 33598.07 23888.81 20996.74 15197.63 182
eth_miper_zixun_eth91.02 23990.59 22392.34 28395.33 24684.35 30494.10 30396.90 22188.56 23188.84 26094.33 27284.08 16297.60 29288.77 21184.37 31595.06 280
TAMVS94.01 12293.46 12495.64 14196.16 20890.45 16796.71 18396.89 22389.27 20693.46 14896.92 14187.29 12097.94 25988.70 21295.74 17098.53 130
Patchmatch-RL test87.38 29886.24 29990.81 31588.74 36178.40 35588.12 35893.17 34387.11 27282.17 33989.29 34881.95 20695.60 34588.64 21377.02 34798.41 146
baseline291.63 20590.86 20993.94 22594.33 29586.32 27495.92 24591.64 35589.37 20386.94 30194.69 25481.62 21298.69 17788.64 21394.57 19196.81 208
TESTMET0.1,190.06 26889.42 26691.97 28994.41 29380.62 33794.29 29891.97 35387.28 26990.44 20992.47 32168.79 33097.67 28488.50 21596.60 15697.61 186
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13787.92 24298.10 4795.80 27692.22 11993.02 15797.45 11684.53 15597.91 26588.24 21697.97 12099.02 90
DWT-MVSNet_test90.76 24889.89 25293.38 25195.04 26383.70 31495.85 24894.30 33288.19 23990.46 20892.80 31573.61 30598.50 19588.16 21790.58 24697.95 167
1112_ss93.37 14292.42 16096.21 11497.05 16090.99 14796.31 22196.72 23386.87 27689.83 23196.69 15486.51 12999.14 13488.12 21893.67 20198.50 134
CVMVSNet91.23 22991.75 17889.67 32995.77 22374.69 36096.44 20494.88 31685.81 29092.18 17597.64 10479.07 25195.58 34688.06 21995.86 16898.74 118
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8997.47 15788.13 24593.00 15895.84 20084.86 15199.51 9787.99 22098.17 11697.83 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26595.22 11597.68 9790.25 8099.54 8987.95 22199.12 8298.49 136
CP-MVSNet91.89 19891.24 19893.82 23095.05 26288.57 22497.82 7198.19 4791.70 13588.21 27695.76 20881.96 20597.52 30087.86 22284.65 30895.37 264
v14890.99 24090.38 23092.81 27293.83 30985.80 28396.78 17896.68 23989.45 20188.75 26493.93 29282.96 18497.82 27287.83 22383.25 32794.80 299
v114491.37 22290.60 22293.68 23893.89 30788.23 23496.84 17197.03 21088.37 23589.69 23594.39 26882.04 20397.98 24987.80 22485.37 29694.84 293
DIV-MVS_self_test90.97 24290.33 23192.88 26995.36 24186.19 27994.46 29096.63 24587.82 25188.18 27794.23 28082.99 18197.53 29887.72 22585.57 29394.93 287
gm-plane-assit93.22 32578.89 35484.82 30693.52 30598.64 18187.72 225
GeoE93.89 12593.28 13195.72 13896.96 16689.75 18598.24 3696.92 22089.47 20092.12 17897.21 12784.42 15698.39 20587.71 22796.50 15899.01 94
cl____90.96 24390.32 23292.89 26895.37 24086.21 27894.46 29096.64 24287.82 25188.15 27894.18 28382.98 18297.54 29687.70 22885.59 29294.92 289
pmmvs490.93 24489.85 25494.17 21093.34 32390.79 15694.60 28496.02 26884.62 30887.45 28995.15 23481.88 20897.45 30587.70 22887.87 27194.27 320
Test_1112_low_res92.84 16791.84 17695.85 12997.04 16189.97 18095.53 26196.64 24285.38 29689.65 23795.18 23385.86 13999.10 13787.70 22893.58 20698.49 136
无先验95.79 25197.87 11283.87 31899.65 5687.68 23198.89 108
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23797.73 12481.56 33695.68 10197.85 8490.23 8199.65 5687.68 23199.12 8298.73 119
Fast-Effi-MVS+93.46 13992.75 14595.59 14596.77 17490.03 17496.81 17597.13 19688.19 23991.30 19494.27 27786.21 13498.63 18287.66 23396.46 16198.12 160
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19996.88 22490.13 18591.91 18297.24 12585.21 14699.09 14087.64 23497.83 12397.92 168
v891.29 22890.53 22793.57 24394.15 29988.12 23997.34 12297.06 20588.99 21388.32 27194.26 27983.08 17898.01 24787.62 23583.92 32294.57 310
pmmvs589.86 27388.87 27592.82 27192.86 33086.23 27796.26 22595.39 29084.24 31287.12 29694.51 26174.27 29997.36 31287.61 23687.57 27494.86 292
Fast-Effi-MVS+-dtu92.29 18491.99 17193.21 25995.27 25085.52 28797.03 14996.63 24592.09 12689.11 25495.14 23580.33 23198.08 23587.54 23794.74 18996.03 230
OpenMVScopyleft89.19 1292.86 16591.68 18196.40 9995.34 24392.73 8898.27 3098.12 5984.86 30585.78 31197.75 9278.89 25999.74 3487.50 23898.65 10196.73 210
miper_lstm_enhance90.50 25990.06 24891.83 29395.33 24683.74 31193.86 31096.70 23887.56 26287.79 28493.81 29683.45 17296.92 32687.39 23984.62 31094.82 296
IterMVS-SCA-FT90.31 26189.81 25691.82 29495.52 23284.20 30794.30 29796.15 26590.61 17487.39 29294.27 27775.80 29096.44 33287.34 24086.88 28494.82 296
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18697.39 17587.29 26891.37 19096.71 15088.39 10399.52 9687.33 24197.13 14697.73 178
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 26389.74 26191.76 29993.92 30579.73 34793.98 30593.54 33988.28 23791.99 18193.25 31177.51 27997.44 30687.30 24287.94 27098.12 160
GA-MVS91.38 22090.31 23394.59 19194.65 28387.62 24994.34 29596.19 26490.73 16690.35 21193.83 29371.84 31297.96 25687.22 24393.61 20498.21 157
BH-untuned92.94 16192.62 15193.92 22797.22 14686.16 28096.40 21196.25 26190.06 18689.79 23296.17 18583.19 17498.35 20787.19 24497.27 14197.24 197
v14419291.06 23790.28 23593.39 25093.66 31487.23 25696.83 17297.07 20387.43 26489.69 23594.28 27681.48 21398.00 24887.18 24584.92 30794.93 287
RPSCF90.75 25090.86 20990.42 32296.84 16976.29 35895.61 25896.34 25683.89 31691.38 18997.87 8176.45 28598.78 16887.16 24692.23 21896.20 220
PS-CasMVS91.55 21190.84 21293.69 23794.96 26688.28 23197.84 7098.24 3791.46 14288.04 28095.80 20379.67 24397.48 30287.02 24784.54 31395.31 267
pm-mvs190.72 25289.65 26493.96 22294.29 29889.63 18697.79 7496.82 23089.07 21086.12 31095.48 22578.61 26297.78 27686.97 24881.67 33494.46 312
IterMVS90.15 26789.67 26291.61 30195.48 23483.72 31294.33 29696.12 26689.99 18787.31 29594.15 28575.78 29296.27 33586.97 24886.89 28394.83 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 14197.29 18687.75 25790.49 20797.10 13385.21 14699.50 10086.70 25096.72 15397.63 182
PVSNet86.66 1892.24 18791.74 18093.73 23397.77 12783.69 31592.88 33096.72 23387.91 24993.00 15894.86 24578.51 26399.05 14886.53 25197.45 13598.47 139
v119291.07 23690.23 23993.58 24293.70 31287.82 24696.73 18097.07 20387.77 25589.58 23894.32 27480.90 22297.97 25286.52 25285.48 29494.95 283
新几何197.32 5998.60 7393.59 6597.75 12181.58 33595.75 9897.85 8490.04 8599.67 5286.50 25399.13 7998.69 123
v1091.04 23890.23 23993.49 24594.12 30088.16 23897.32 12597.08 20288.26 23888.29 27394.22 28282.17 20297.97 25286.45 25484.12 31794.33 316
v192192090.85 24690.03 24993.29 25593.55 31586.96 26496.74 17997.04 20887.36 26689.52 24294.34 27180.23 23397.97 25286.27 25585.21 30094.94 285
MDTV_nov1_ep13_2view70.35 36593.10 32883.88 31793.55 14482.47 19686.25 25698.38 149
test_post192.81 33216.58 37580.53 22697.68 28386.20 257
SCA91.84 19991.18 20293.83 22995.59 22884.95 29894.72 28295.58 28690.82 16292.25 17493.69 29975.80 29098.10 23086.20 25795.98 16498.45 141
PAPR94.18 11293.42 12896.48 9397.64 13591.42 13295.55 25997.71 13288.99 21392.34 17295.82 20289.19 9199.11 13686.14 25997.38 13698.90 106
GBi-Net91.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
test191.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
FMVSNet391.78 20090.69 22095.03 17096.53 18792.27 10497.02 15296.93 21689.79 19489.35 24694.65 25777.01 28197.47 30386.12 26088.82 26295.35 265
EPMVS90.70 25389.81 25693.37 25294.73 28084.21 30693.67 31688.02 36589.50 19992.38 16993.49 30677.82 27797.78 27686.03 26392.68 21298.11 163
MVS91.71 20290.44 22895.51 15195.20 25691.59 12496.04 23797.45 16573.44 35987.36 29395.60 21785.42 14499.10 13785.97 26497.46 13195.83 237
testdata299.67 5285.96 265
K. test v387.64 29786.75 29890.32 32393.02 32979.48 34996.61 19692.08 35290.66 17080.25 34894.09 28667.21 33996.65 33185.96 26580.83 33894.83 294
WR-MVS_H92.00 19591.35 19193.95 22395.09 26189.47 19598.04 5298.68 791.46 14288.34 27094.68 25585.86 13997.56 29485.77 26784.24 31694.82 296
gg-mvs-nofinetune87.82 29585.61 30494.44 19994.46 29089.27 20891.21 34484.61 37080.88 33989.89 23074.98 36371.50 31497.53 29885.75 26897.21 14396.51 214
tpm289.96 26989.21 27092.23 28594.91 27281.25 33293.78 31294.42 32780.62 34291.56 18693.44 30876.44 28697.94 25985.60 26992.08 22597.49 192
v124090.70 25389.85 25493.23 25793.51 31886.80 26596.61 19697.02 21187.16 27189.58 23894.31 27579.55 24697.98 24985.52 27085.44 29594.90 290
PEN-MVS91.20 23190.44 22893.48 24694.49 28987.91 24497.76 7798.18 4991.29 14987.78 28595.74 21080.35 23097.33 31385.46 27182.96 33095.19 277
QAPM93.45 14092.27 16496.98 7796.77 17492.62 9298.39 2398.12 5984.50 31088.27 27497.77 9182.39 19899.81 2985.40 27298.81 9598.51 133
EU-MVSNet88.72 28788.90 27488.20 33493.15 32774.21 36196.63 19594.22 33385.18 29987.32 29495.97 19376.16 28894.98 35085.27 27386.17 28795.41 258
BH-w/o92.14 19391.75 17893.31 25496.99 16585.73 28495.67 25495.69 28088.73 22789.26 25194.82 24882.97 18398.07 23885.26 27496.32 16296.13 226
FMVSNet291.31 22690.08 24594.99 17196.51 18892.21 10597.41 11496.95 21488.82 22288.62 26594.75 25173.87 30197.42 30885.20 27588.55 26795.35 265
PM-MVS83.48 32181.86 32588.31 33387.83 36477.59 35693.43 32091.75 35486.91 27480.63 34489.91 34544.42 36795.84 34185.17 27676.73 34991.50 353
LF4IMVS87.94 29487.25 29189.98 32692.38 34180.05 34594.38 29395.25 30087.59 26184.34 32394.74 25264.31 35197.66 28684.83 27787.45 27592.23 346
PatchmatchNetpermissive91.91 19791.35 19193.59 24195.38 23884.11 30893.15 32695.39 29089.54 19792.10 17993.68 30182.82 18798.13 22584.81 27895.32 17798.52 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 29686.19 30092.69 27591.32 34686.30 27597.34 12296.41 25480.59 34384.05 33094.37 27067.37 33897.67 28484.75 27979.51 34294.09 324
v7n90.76 24889.86 25393.45 24993.54 31687.60 25097.70 8797.37 17888.85 21987.65 28794.08 28781.08 21798.10 23084.68 28083.79 32494.66 308
SixPastTwentyTwo89.15 27988.54 27990.98 31293.49 31980.28 34296.70 18494.70 32090.78 16384.15 32795.57 21871.78 31397.71 28284.63 28185.07 30394.94 285
TDRefinement86.53 30384.76 31391.85 29282.23 36884.25 30596.38 21495.35 29384.97 30484.09 32894.94 24065.76 34998.34 21084.60 28274.52 35292.97 335
MVS_030488.79 28587.57 28792.46 27894.65 28386.15 28196.40 21197.17 19386.44 28188.02 28191.71 33456.68 36197.03 32084.47 28392.58 21494.19 321
ACMH87.59 1690.53 25789.42 26693.87 22896.21 20387.92 24297.24 13296.94 21588.45 23383.91 33196.27 18171.92 31198.62 18484.43 28489.43 25895.05 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 26589.18 27193.25 25696.48 19186.45 27396.99 15796.68 23988.83 22184.79 32196.22 18270.16 32598.53 19384.42 28588.04 26994.77 304
MS-PatchMatch90.27 26289.77 25891.78 29794.33 29584.72 30195.55 25996.73 23286.17 28686.36 30795.28 23171.28 31697.80 27384.09 28698.14 11792.81 338
PatchMatch-RL92.90 16392.02 17095.56 14798.19 10590.80 15595.27 27397.18 19187.96 24791.86 18495.68 21480.44 22898.99 15384.01 28797.54 13096.89 205
lessismore_v090.45 32191.96 34479.09 35387.19 36880.32 34794.39 26866.31 34597.55 29584.00 28876.84 34894.70 306
CMPMVSbinary62.92 2185.62 31484.92 31187.74 33689.14 35973.12 36394.17 30196.80 23173.98 35773.65 35894.93 24166.36 34397.61 29183.95 28991.28 23692.48 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 25190.08 24592.71 27493.19 32688.20 23595.86 24796.27 25986.07 28784.86 32094.76 25077.84 27697.75 27983.88 29098.01 11992.17 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 13792.61 15296.47 9497.59 13991.61 12297.67 8997.72 12885.17 30090.29 21298.34 4384.60 15399.73 3583.85 29198.27 11298.06 164
DTE-MVSNet90.56 25689.75 26093.01 26493.95 30487.25 25497.64 9697.65 13790.74 16587.12 29695.68 21479.97 23897.00 32483.33 29281.66 33594.78 303
BH-RMVSNet92.72 17191.97 17294.97 17497.16 15087.99 24196.15 23395.60 28490.62 17391.87 18397.15 13178.41 26698.57 19083.16 29397.60 12998.36 151
pmmvs-eth3d86.22 30884.45 31491.53 30288.34 36287.25 25494.47 28895.01 30983.47 32379.51 35189.61 34769.75 32895.71 34383.13 29476.73 34991.64 350
FMVSNet189.88 27288.31 28194.59 19195.41 23691.18 14297.50 10696.93 21686.62 27987.41 29194.51 26165.94 34897.29 31583.04 29587.43 27695.31 267
MDTV_nov1_ep1390.76 21695.22 25480.33 34093.03 32995.28 29788.14 24492.84 16493.83 29381.34 21498.08 23582.86 29694.34 193
TR-MVS91.48 21690.59 22394.16 21196.40 19687.33 25195.67 25495.34 29687.68 25991.46 18895.52 22376.77 28398.35 20782.85 29793.61 20496.79 209
JIA-IIPM88.26 29287.04 29691.91 29093.52 31781.42 33189.38 35594.38 32880.84 34090.93 20380.74 36179.22 25097.92 26282.76 29891.62 22996.38 218
PVSNet_082.17 1985.46 31583.64 31890.92 31395.27 25079.49 34890.55 34895.60 28483.76 31983.00 33789.95 34471.09 31797.97 25282.75 29960.79 36695.31 267
ambc86.56 34083.60 36670.00 36685.69 36094.97 31280.60 34588.45 34937.42 36996.84 32882.69 30075.44 35192.86 337
USDC88.94 28187.83 28692.27 28494.66 28284.96 29793.86 31095.90 27287.34 26783.40 33395.56 22067.43 33798.19 22082.64 30189.67 25793.66 328
ITE_SJBPF92.43 28095.34 24385.37 29195.92 27091.47 14187.75 28696.39 17671.00 31897.96 25682.36 30289.86 25593.97 325
UnsupCasMVSNet_eth85.99 31084.45 31490.62 31989.97 35482.40 32593.62 31897.37 17889.86 18978.59 35392.37 32265.25 35095.35 34982.27 30370.75 35894.10 322
GG-mvs-BLEND93.62 23993.69 31389.20 20992.39 33883.33 37187.98 28389.84 34671.00 31896.87 32782.08 30495.40 17694.80 299
thres600view792.49 17591.60 18395.18 16497.91 11989.47 19597.65 9294.66 32192.18 12593.33 15194.91 24278.06 27399.10 13781.61 30594.06 19896.98 200
LTVRE_ROB88.41 1390.99 24089.92 25194.19 20996.18 20689.55 19196.31 22197.09 20187.88 25085.67 31295.91 19778.79 26098.57 19081.50 30689.98 25394.44 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 27489.15 27291.89 29194.92 26980.30 34193.11 32795.46 28986.28 28388.08 27992.65 31780.44 22898.52 19481.47 30789.92 25496.84 207
thres100view90092.43 17691.58 18494.98 17397.92 11889.37 20197.71 8694.66 32192.20 12193.31 15294.90 24378.06 27399.08 14281.40 30894.08 19596.48 216
tfpn200view992.38 17991.52 18794.95 17697.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.48 216
thres40092.42 17791.52 18795.12 16897.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.98 200
DP-MVS92.76 17091.51 18996.52 8898.77 5990.99 14797.38 12096.08 26782.38 32989.29 24997.87 8183.77 16599.69 4781.37 31196.69 15498.89 108
thres20092.23 18891.39 19094.75 18997.61 13789.03 21496.60 19895.09 30792.08 12793.28 15394.00 28978.39 26799.04 15181.26 31294.18 19496.19 221
CR-MVSNet90.82 24789.77 25893.95 22394.45 29187.19 25790.23 35095.68 28286.89 27592.40 16792.36 32580.91 22097.05 31981.09 31393.95 19997.60 187
MSDG91.42 21890.24 23894.96 17597.15 15288.91 21693.69 31596.32 25785.72 29286.93 30296.47 17080.24 23298.98 15480.57 31495.05 18396.98 200
dp88.90 28388.26 28390.81 31594.58 28876.62 35792.85 33194.93 31485.12 30190.07 22693.07 31275.81 28998.12 22880.53 31587.42 27797.71 179
tpm cat188.36 29087.21 29391.81 29595.13 25980.55 33892.58 33595.70 27974.97 35687.45 28991.96 33078.01 27598.17 22380.39 31688.74 26596.72 211
KD-MVS_self_test85.95 31184.95 31088.96 33189.55 35879.11 35295.13 27896.42 25385.91 28984.07 32990.48 34070.03 32694.82 35180.04 31772.94 35692.94 336
AllTest90.23 26488.98 27393.98 21997.94 11686.64 26896.51 20395.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
TestCases93.98 21997.94 11686.64 26895.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
ADS-MVSNet289.45 27688.59 27892.03 28895.86 21882.26 32690.93 34594.32 33183.23 32591.28 19791.81 33279.01 25695.99 33779.52 32091.39 23497.84 173
ADS-MVSNet89.89 27188.68 27793.53 24495.86 21884.89 29990.93 34595.07 30883.23 32591.28 19791.81 33279.01 25697.85 26879.52 32091.39 23497.84 173
our_test_388.78 28687.98 28591.20 31092.45 33982.53 32293.61 31995.69 28085.77 29184.88 31993.71 29879.99 23796.78 33079.47 32286.24 28694.28 319
EPNet_dtu91.71 20291.28 19692.99 26593.76 31183.71 31396.69 18695.28 29793.15 8887.02 30095.95 19583.37 17397.38 31179.46 32396.84 14897.88 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 28187.56 28893.08 26394.35 29488.45 22997.73 8195.23 30187.47 26384.26 32595.29 22979.86 24097.33 31379.44 32474.44 35393.45 332
EG-PatchMatch MVS87.02 30185.44 30591.76 29992.67 33485.00 29696.08 23696.45 25283.41 32479.52 35093.49 30657.10 36097.72 28179.34 32590.87 24492.56 342
Patchmtry88.64 28887.25 29192.78 27394.09 30186.64 26889.82 35395.68 28280.81 34187.63 28892.36 32580.91 22097.03 32078.86 32685.12 30294.67 307
FMVSNet587.29 29985.79 30391.78 29794.80 27787.28 25295.49 26295.28 29784.09 31483.85 33291.82 33162.95 35494.17 35578.48 32785.34 29893.91 326
COLMAP_ROBcopyleft87.81 1590.40 26089.28 26993.79 23297.95 11587.13 26096.92 16495.89 27382.83 32786.88 30497.18 12873.77 30499.29 12178.44 32893.62 20394.95 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 30585.44 30589.34 33090.33 35179.79 34696.73 18095.92 27083.71 32083.25 33491.36 33763.92 35296.01 33678.39 32985.36 29792.22 347
test0.0.03 189.37 27888.70 27691.41 30692.47 33885.63 28595.22 27692.70 34791.11 15886.91 30393.65 30379.02 25493.19 36178.00 33089.18 26095.41 258
MIMVSNet88.50 28986.76 29793.72 23594.84 27587.77 24791.39 34094.05 33486.41 28287.99 28292.59 31963.27 35395.82 34277.44 33192.84 21097.57 190
MDA-MVSNet_test_wron85.87 31284.23 31690.80 31792.38 34182.57 32193.17 32495.15 30482.15 33067.65 36092.33 32878.20 26895.51 34777.33 33279.74 33994.31 318
YYNet185.87 31284.23 31690.78 31892.38 34182.46 32493.17 32495.14 30582.12 33167.69 35992.36 32578.16 27195.50 34877.31 33379.73 34094.39 314
UnsupCasMVSNet_bld82.13 32579.46 32890.14 32588.00 36382.47 32390.89 34796.62 24778.94 34975.61 35584.40 35956.63 36296.31 33477.30 33466.77 36291.63 351
KD-MVS_2432*160084.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
miper_refine_blended84.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
PCF-MVS89.48 1191.56 21089.95 25096.36 10496.60 18092.52 9592.51 33697.26 18779.41 34788.90 25696.56 16684.04 16399.55 8777.01 33797.30 14097.01 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 29387.21 29390.24 32492.86 33080.76 33496.67 18994.97 31291.74 13485.52 31395.83 20162.66 35594.47 35476.25 33888.36 26895.48 252
TinyColmap86.82 30285.35 30891.21 30994.91 27282.99 32093.94 30894.02 33683.58 32181.56 34094.68 25562.34 35698.13 22575.78 33987.35 27992.52 343
ppachtmachnet_test88.35 29187.29 29091.53 30292.45 33983.57 31693.75 31395.97 26984.28 31185.32 31794.18 28379.00 25896.93 32575.71 34084.99 30694.10 322
PAPM91.52 21490.30 23495.20 16395.30 24989.83 18393.38 32296.85 22886.26 28488.59 26695.80 20384.88 15098.15 22475.67 34195.93 16697.63 182
CL-MVSNet_self_test86.31 30785.15 30989.80 32888.83 36081.74 33093.93 30996.22 26286.67 27885.03 31890.80 33978.09 27294.50 35274.92 34271.86 35793.15 334
tfpnnormal89.70 27588.40 28093.60 24095.15 25790.10 17397.56 10298.16 5387.28 26986.16 30994.63 25877.57 27898.05 24174.48 34384.59 31192.65 341
DSMNet-mixed86.34 30686.12 30287.00 33989.88 35570.43 36494.93 28090.08 36177.97 35385.42 31692.78 31674.44 29893.96 35674.43 34495.14 17996.62 212
Patchmatch-test89.42 27787.99 28493.70 23695.27 25085.11 29488.98 35694.37 32981.11 33787.10 29893.69 29982.28 19997.50 30174.37 34594.76 18798.48 138
LCM-MVSNet72.55 32869.39 33282.03 34370.81 37565.42 37090.12 35294.36 33055.02 36565.88 36281.72 36024.16 37689.96 36374.32 34668.10 36190.71 357
new-patchmatchnet83.18 32281.87 32487.11 33886.88 36575.99 35993.70 31495.18 30385.02 30377.30 35488.40 35065.99 34793.88 35774.19 34770.18 35991.47 354
MDA-MVSNet-bldmvs85.00 31682.95 32091.17 31193.13 32883.33 31794.56 28695.00 31084.57 30965.13 36492.65 31770.45 32195.85 34073.57 34877.49 34694.33 316
pmmvs379.97 32677.50 33087.39 33782.80 36779.38 35092.70 33390.75 36070.69 36078.66 35287.47 35751.34 36593.40 35973.39 34969.65 36089.38 359
test_method66.11 33364.89 33569.79 35072.62 37335.23 38065.19 36892.83 34620.35 37165.20 36388.08 35443.14 36882.70 36873.12 35063.46 36391.45 355
PatchT88.87 28487.42 28993.22 25894.08 30285.10 29589.51 35494.64 32381.92 33292.36 17088.15 35380.05 23697.01 32372.43 35193.65 20297.54 191
Anonymous2023120687.09 30086.14 30189.93 32791.22 34780.35 33996.11 23495.35 29383.57 32284.16 32693.02 31373.54 30695.61 34472.16 35286.14 28893.84 327
MVS-HIRNet82.47 32481.21 32686.26 34195.38 23869.21 36788.96 35789.49 36266.28 36180.79 34374.08 36568.48 33297.39 31071.93 35395.47 17492.18 348
new_pmnet82.89 32381.12 32788.18 33589.63 35680.18 34391.77 33992.57 34876.79 35575.56 35788.23 35261.22 35794.48 35371.43 35482.92 33189.87 358
TAPA-MVS90.10 792.30 18391.22 20095.56 14798.33 9089.60 18896.79 17697.65 13781.83 33391.52 18797.23 12687.94 10798.91 15971.31 35598.37 11098.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 30985.40 30788.35 33290.12 35280.06 34495.90 24695.20 30288.59 22881.29 34193.62 30471.43 31592.65 36271.26 35681.17 33792.34 345
tmp_tt51.94 33953.82 33946.29 35533.73 37945.30 37878.32 36567.24 37818.02 37250.93 36887.05 35852.99 36453.11 37470.76 35725.29 37240.46 370
MIMVSNet184.93 31783.05 31990.56 32089.56 35784.84 30095.40 26595.35 29383.91 31580.38 34692.21 32957.23 35993.34 36070.69 35882.75 33393.50 330
RPMNet88.98 28087.05 29594.77 18794.45 29187.19 25790.23 35098.03 8777.87 35492.40 16787.55 35680.17 23499.51 9768.84 35993.95 19997.60 187
N_pmnet78.73 32778.71 32978.79 34592.80 33246.50 37694.14 30243.71 37978.61 35080.83 34291.66 33574.94 29696.36 33367.24 36084.45 31493.50 330
OpenMVS_ROBcopyleft81.14 2084.42 32082.28 32390.83 31490.06 35384.05 30995.73 25394.04 33573.89 35880.17 34991.53 33659.15 35897.64 28766.92 36189.05 26190.80 356
PMMVS270.19 33066.92 33380.01 34476.35 36965.67 36986.22 35987.58 36764.83 36362.38 36580.29 36226.78 37488.49 36563.79 36254.07 36785.88 360
test_040286.46 30484.79 31291.45 30495.02 26485.55 28696.29 22394.89 31580.90 33882.21 33893.97 29168.21 33497.29 31562.98 36388.68 26691.51 352
DeepMVS_CXcopyleft74.68 34990.84 35064.34 37181.61 37365.34 36267.47 36188.01 35548.60 36680.13 37062.33 36473.68 35579.58 364
EGC-MVSNET68.77 33163.01 33686.07 34292.49 33782.24 32793.96 30790.96 3590.71 3762.62 37790.89 33853.66 36393.46 35857.25 36584.55 31282.51 362
FPMVS71.27 32969.85 33175.50 34774.64 37059.03 37291.30 34191.50 35658.80 36457.92 36688.28 35129.98 37285.53 36753.43 36682.84 33281.95 363
ANet_high63.94 33459.58 33777.02 34661.24 37766.06 36885.66 36187.93 36678.53 35142.94 36971.04 36625.42 37580.71 36952.60 36730.83 37084.28 361
Gipumacopyleft67.86 33265.41 33475.18 34892.66 33573.45 36266.50 36794.52 32553.33 36657.80 36766.07 36730.81 37089.20 36448.15 36878.88 34562.90 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 33555.40 33868.12 35151.00 37848.64 37478.86 36487.10 36946.77 36735.84 37374.28 3648.76 37786.34 36642.07 36973.91 35469.38 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33748.81 34266.58 35265.34 37657.50 37372.49 36670.94 37740.15 37039.28 37263.51 3686.89 37973.48 37338.29 37042.38 36868.76 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 33652.56 34055.43 35374.43 37147.13 37583.63 36376.30 37442.23 36842.59 37062.22 36928.57 37374.40 37131.53 37131.51 36944.78 368
EMVS52.08 33851.31 34154.39 35472.62 37345.39 37783.84 36275.51 37641.13 36940.77 37159.65 37030.08 37173.60 37228.31 37229.90 37144.18 369
wuyk23d25.11 34024.57 34426.74 35673.98 37239.89 37957.88 3699.80 38012.27 37310.39 3746.97 3767.03 37836.44 37525.43 37317.39 3733.89 373
testmvs13.36 34216.33 3454.48 3585.04 3802.26 38293.18 3233.28 3812.70 3748.24 37521.66 3722.29 3812.19 3767.58 3742.96 3749.00 372
test12313.04 34315.66 3465.18 3574.51 3813.45 38192.50 3371.81 3822.50 3757.58 37620.15 3733.67 3802.18 3777.13 3751.07 3759.90 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.24 34130.99 3430.00 3590.00 3820.00 3830.00 37097.63 1400.00 3770.00 37896.88 14384.38 1570.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.39 3459.85 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37788.65 990.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.06 34410.74 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37896.69 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
save fliter98.91 5194.28 3997.02 15298.02 9195.35 8
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
GSMVS98.45 141
test_part299.28 2795.74 898.10 21
sam_mvs182.76 18898.45 141
sam_mvs81.94 207
MTGPAbinary98.08 67
test_post17.58 37481.76 20998.08 235
patchmatchnet-post90.45 34182.65 19298.10 230
MTMP97.86 6682.03 372
TEST998.70 6294.19 4496.41 20898.02 9188.17 24196.03 8697.56 11292.74 2799.59 71
test_898.67 6494.06 5396.37 21598.01 9488.58 22995.98 9197.55 11492.73 2899.58 74
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
test_prior493.66 6396.42 207
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
新几何295.79 251
旧先验198.38 8693.38 7197.75 12198.09 6892.30 4199.01 8999.16 77
原ACMM295.67 254
test22298.24 9892.21 10595.33 26897.60 14279.22 34895.25 11397.84 8788.80 9799.15 7798.72 120
segment_acmp92.89 25
testdata195.26 27593.10 91
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 74
plane_prior796.21 20389.98 179
plane_prior696.10 21390.00 17581.32 215
plane_prior496.64 157
plane_prior390.00 17594.46 4491.34 191
plane_prior297.74 7994.85 28
plane_prior196.14 211
plane_prior89.99 17797.24 13294.06 5392.16 222
n20.00 383
nn0.00 383
door-mid91.06 358
test1197.88 110
door91.13 357
HQP5-MVS89.33 203
HQP-NCC95.86 21896.65 19093.55 6890.14 215
ACMP_Plane95.86 21896.65 19093.55 6890.14 215
HQP4-MVS90.14 21598.50 19595.78 240
HQP3-MVS97.39 17592.10 223
HQP2-MVS80.95 218
NP-MVS95.99 21789.81 18495.87 198
ACMMP++_ref90.30 251
ACMMP++91.02 240
Test By Simon88.73 98