This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM97.29 1996.98 2698.23 1198.01 10995.03 2698.07 5595.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
MVS_030497.04 2896.73 4297.96 2397.60 13894.36 3698.01 6094.09 35197.33 296.29 8898.79 2489.73 8599.86 899.36 299.42 4999.67 13
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
test_fmvsm_n_192097.55 1197.89 396.53 8298.41 7491.73 11098.01 6099.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14792.37 9097.91 7798.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 7098.76 894.93 3098.84 1699.06 488.80 9699.65 5899.06 798.63 10498.18 162
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7398.27 3995.78 1098.40 2599.00 689.99 8199.78 3599.06 799.41 5299.59 22
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13290.72 16198.00 6298.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6498.30 3296.19 596.10 9798.95 889.42 8699.76 3898.90 1099.08 8597.43 205
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7798.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
test_fmvsmconf0.01_n96.15 6795.85 7297.03 6992.66 36091.83 10997.97 7097.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
fmvsm_s_conf0.1_n_a96.40 5996.47 5496.16 11895.48 25290.69 16297.91 7798.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
mamv494.66 11296.10 6690.37 34298.01 10973.41 38896.82 19097.78 12489.95 20794.52 13797.43 12992.91 2799.09 14798.28 1499.16 7898.60 126
MVSMamba_PlusPlus96.51 5596.48 5396.59 7998.07 10591.97 10598.14 4997.79 12390.43 19697.34 4897.52 12491.29 6099.19 12898.12 1599.64 1398.60 126
iter_conf0596.12 6896.06 6796.29 10798.07 10591.48 12497.25 15397.65 13990.43 19694.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1799.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14882.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1898.82 9797.40 207
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2199.50 3699.72 11
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5996.80 23891.18 16697.77 3797.93 8858.02 38498.29 22997.63 2298.21 12297.23 216
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6497.08 20890.72 18196.79 6498.18 7063.07 37698.45 21497.62 2398.42 11597.36 208
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13896.96 22190.68 18396.80 6398.04 7969.25 34598.40 21797.58 2498.50 10997.16 217
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2599.66 1099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2599.65 1299.74 8
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2599.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2599.67 699.75 6
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2999.58 2399.59 22
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2999.72 299.77 2
EC-MVSNet96.42 5896.47 5496.26 11097.01 16891.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8798.60 20297.45 2999.11 8498.67 124
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3299.66 1099.74 8
dcpmvs_296.37 6197.05 2294.31 21998.96 4684.11 32297.56 11997.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3399.50 3699.51 37
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5898.03 8091.72 4798.71 19297.10 3499.17 7698.90 104
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5597.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3599.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3699.49 3999.57 26
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7698.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3799.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6197.97 8691.24 6298.75 18696.92 3899.33 6198.94 97
CANet96.39 6096.02 6897.50 4797.62 13593.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3999.20 7499.29 63
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 4097.76 13699.08 83
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4199.48 4099.45 47
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11397.64 14293.32 9597.68 3898.36 5073.75 32099.08 15096.73 4299.05 8797.31 212
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7498.18 5790.57 19398.85 1598.94 993.33 2399.83 2696.72 4399.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4499.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4599.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10498.49 1994.66 4897.24 5198.41 4792.31 4198.94 16696.61 4699.46 4298.96 94
MP-MVS-pluss96.70 4796.27 6297.98 2199.23 3094.71 2996.96 17998.06 8290.67 18495.55 11798.78 2591.07 6699.86 896.58 4799.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4899.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12898.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
EI-MVSNet-Vis-set96.51 5596.47 5496.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7199.58 7796.44 5198.32 11899.13 77
iter_conf05_1196.17 6696.16 6596.21 11497.48 14690.74 16098.14 4997.80 12292.80 11997.34 4897.29 13488.54 10399.10 14396.40 5299.64 1398.80 115
VDD-MVS93.82 14093.08 14696.02 12697.88 11989.96 18497.72 10095.85 28492.43 12695.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13290.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9199.04 16096.27 5499.00 9196.85 226
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13186.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set96.34 6296.30 6196.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7699.58 7796.23 5797.96 13098.90 104
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6498.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
alignmvs95.87 7895.23 8897.78 3197.56 14495.19 2197.86 8197.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
sasdasda96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 19998.91 101
canonicalmvs96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 19998.91 101
MGCFI-Net95.94 7695.40 8397.56 4697.59 13994.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13496.19 6594.73 20498.91 101
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7199.90 296.18 6699.50 3699.58 25
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6498.06 8293.11 10597.44 4398.55 3390.93 6999.55 8796.06 6799.25 6999.51 37
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6498.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6498.03 9193.52 8797.43 4598.51 3690.71 7396.05 6899.26 6799.43 51
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
PHI-MVS96.77 4496.46 5797.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5698.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17391.49 12397.50 12597.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
DELS-MVS96.61 5296.38 6097.30 5497.79 12393.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 6596.19 6496.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8399.24 12495.87 7499.20 7498.58 128
h-mvs3394.15 12393.52 13296.04 12497.81 12290.22 17597.62 11597.58 15095.19 2096.74 6697.45 12683.67 17599.61 6995.85 7679.73 36898.29 155
hse-mvs293.45 15292.99 14894.81 19097.02 16788.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14498.04 8995.96 697.09 5797.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12598.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
PC_three_145290.77 17898.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
9.1496.75 4198.93 4797.73 9798.23 5091.28 16297.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
ETV-MVS96.02 7195.89 7196.40 9697.16 15592.44 8897.47 13197.77 12594.55 5096.48 8194.51 27891.23 6498.92 16895.65 8598.19 12397.82 187
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5298.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5398.33 5791.35 5899.86 895.63 8799.59 1999.62 18
HPM-MVScopyleft96.69 4996.45 5897.40 5099.36 1893.11 7198.87 698.06 8291.17 16796.40 8597.99 8490.99 6899.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
DeepC-MVS93.07 396.06 6995.66 7497.29 5597.96 11293.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5498.34 5491.59 5399.87 795.46 9499.59 1999.64 16
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6799.88 495.20 9799.57 2599.60 21
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13498.04 8994.81 3996.59 7698.37 4991.24 6299.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13284.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
train_agg96.30 6395.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6298.49 3888.98 9298.08 25195.03 10195.62 18596.46 238
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5495.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15298.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
MP-MVScopyleft96.77 4496.45 5897.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7599.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 10899.38 5699.45 47
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14990.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9999.65 5894.80 10998.27 12096.17 244
HPM-MVS_fast96.51 5596.27 6297.22 6199.32 2292.74 7998.74 998.06 8290.57 19396.77 6598.35 5190.21 7899.53 9194.80 10999.63 1699.38 58
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15190.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10299.53 9194.79 11197.81 13396.17 244
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11195.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
EIA-MVS95.53 8695.47 7895.71 14397.06 16389.63 18997.82 8897.87 11193.57 8193.92 15295.04 25390.61 7498.95 16594.62 11498.68 10298.54 130
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14398.20 5293.18 10191.79 20197.28 13579.13 26098.93 16794.61 11592.84 23497.28 213
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5998.10 7392.52 3699.65 5894.58 11699.31 63
ACMMPcopyleft96.27 6495.93 6997.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9399.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13097.14 5498.44 4491.17 6599.85 1894.35 11899.46 4299.57 26
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19275.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7493.39 36490.57 19396.29 8898.31 6069.00 34699.16 13694.18 12095.87 17899.12 80
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15696.22 9297.32 13286.20 14297.92 28294.07 12199.05 8798.85 110
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15690.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8198.66 1692.30 12992.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
agg_prior293.94 12599.38 5699.50 40
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11397.53 15792.04 13988.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17394.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9797.53 15792.00 14188.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16388.53 23195.28 29197.45 17391.68 14894.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9497.56 15592.50 12589.94 24996.54 18188.65 9998.18 23893.83 13090.90 27095.86 254
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8494.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13787.48 12399.73 4293.53 13297.77 13598.55 129
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16391.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14589.56 19398.67 1097.00 21990.69 18294.24 14397.62 11689.79 8498.81 17993.39 13896.49 16998.92 100
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
test_yl94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
test111193.19 16192.82 15594.30 22097.58 14384.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 13085.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15493.05 14598.49 11099.25 68
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9597.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
test250691.60 22490.78 23094.04 23197.66 13083.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15493.01 14898.49 11099.25 68
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16795.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 14493.35 14194.80 19397.07 16088.61 22694.79 30697.46 16891.97 14293.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5298.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10797.46 16891.29 15990.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 15990.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13879.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BP-MVS92.13 158
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8299.48 10192.08 16198.59 10798.44 145
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
sss94.51 11393.80 12196.64 7497.07 16091.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12497.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14297.25 19791.52 15188.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 8097.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13998.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12784.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5198.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
Vis-MVSNetpermissive95.23 9394.81 9696.51 8697.18 15491.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 13994.77 13197.96 8787.01 13199.09 14791.31 17896.77 16198.36 152
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8999.25 12391.27 17998.77 9999.13 77
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11797.36 18891.40 15890.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 11194.02 11696.79 7297.71 12792.05 10296.59 21697.35 18990.61 19094.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17191.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11996.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6397.72 13179.63 37793.54 15997.41 13069.94 34299.56 8591.04 18491.11 26598.22 158
AUN-MVS91.76 21790.75 23294.81 19097.00 16988.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
CANet_DTU94.37 11593.65 12596.55 8196.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
ab-mvs93.57 14892.55 16896.64 7497.28 15091.96 10795.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11795.00 32486.00 31593.64 15697.45 12666.24 36799.53 9190.68 19092.71 23799.01 89
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15091.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
thisisatest053093.03 16992.21 18095.49 15797.07 16089.11 21797.49 13092.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
UA-Net95.95 7595.53 7697.20 6397.67 12892.98 7497.65 10798.13 6594.81 3996.61 7498.35 5188.87 9499.51 9690.36 19497.35 14799.11 81
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
tttt051792.96 17292.33 17794.87 18797.11 15887.16 26897.97 7092.09 37690.63 18893.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14591.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13990.01 19896.16 17398.25 156
IS-MVSNet94.90 10494.52 10896.05 12397.67 12890.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18691.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18489.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14389.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13998.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5797.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5998.07 7690.06 7998.85 17589.67 20898.98 9298.64 125
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19695.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13197.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17289.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12398.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13397.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14492.93 17796.62 17889.13 9099.14 13989.21 22297.78 13498.97 93
baseline192.82 18191.90 18995.55 15397.20 15390.77 15897.19 16194.58 34092.20 13292.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15992.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13575.35 30698.65 19788.99 22792.84 23497.28 213
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14886.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
API-MVS94.84 10794.49 10995.90 13197.90 11892.00 10497.80 9197.48 16289.19 23094.81 13096.71 16488.84 9599.17 13488.91 22998.76 10096.53 233
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 16990.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13687.92 24998.10 5295.80 28692.22 13093.02 17197.45 12684.53 16297.91 28588.24 23797.97 12999.02 86
1112_ss93.37 15492.42 17596.21 11497.05 16590.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13988.12 23893.67 22598.50 135
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
MAR-MVS94.22 11993.46 13596.51 8698.00 11192.19 9997.67 10497.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7799.54 8987.95 24199.12 8398.49 137
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8898.19 5591.70 14788.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14184.42 16398.39 22187.71 24796.50 16899.01 89
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16689.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14387.70 24893.58 23098.49 137
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
CNLPA94.28 11893.53 13096.52 8398.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13985.21 15399.09 14787.64 25397.83 13297.92 179
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14497.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13789.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19087.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18090.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
BH-untuned92.94 17492.62 16593.92 24297.22 15186.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8598.24 4791.46 15488.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9296.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12483.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 8099.67 5686.50 27399.13 8198.69 122
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17692.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
PAPR94.18 12093.42 14096.48 8997.64 13291.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8899.11 14286.14 27997.38 14598.90 104
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14385.97 28497.46 14095.83 258
testdata299.67 5685.96 285
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18680.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5898.68 1391.46 15488.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9398.18 5791.29 15987.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13496.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14496.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10397.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17784.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 14892.61 16696.47 9097.59 13991.61 11797.67 10497.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11197.65 13990.74 17987.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15587.99 24796.15 24895.60 29790.62 18991.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12596.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17491.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17588.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15387.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
thres600view792.49 18991.60 19895.18 16897.91 11789.47 19897.65 10794.66 33792.18 13693.33 16594.91 25878.06 28299.10 14381.61 32994.06 22096.98 220
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
thres100view90092.43 19091.58 19994.98 18097.92 11689.37 20497.71 10294.66 33792.20 13293.31 16694.90 25978.06 28299.08 15081.40 33294.08 21696.48 236
tfpn200view992.38 19391.52 20294.95 18397.85 12089.29 20897.41 13494.88 33192.19 13493.27 16894.46 28378.17 27899.08 15081.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 12089.29 20897.41 13494.88 33192.19 13493.27 16894.46 28378.17 27899.08 15081.40 33294.08 21696.98 220
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14196.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
thres20092.23 20391.39 20594.75 19797.61 13689.03 21896.60 21595.09 32192.08 13893.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
MSDG91.42 23590.24 25494.96 18297.15 15788.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
AllTest90.23 28288.98 29493.98 23497.94 11486.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23296.15 246
TestCases93.98 23497.94 11486.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23296.15 246
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9795.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11387.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 16986.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14685.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
WAC-MVS79.53 36875.56 368
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11998.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 14087.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 990.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 247
MTMP97.86 8182.03 406
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
新几何295.79 267
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
原ACMM295.67 272
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9699.15 7998.72 119
segment_acmp92.89 28
testdata195.26 29593.10 106
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 7099.46 10399.25 6999.22 70
plane_prior796.21 21889.98 182
plane_prior696.10 22990.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9594.85 34
plane_prior196.14 226
plane_prior89.99 18097.24 15494.06 6792.16 247
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
HQP4-MVS90.14 23798.50 21095.78 262
HQP3-MVS97.39 18392.10 248
HQP2-MVS80.95 227
NP-MVS95.99 23389.81 18795.87 213
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 98