This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5473.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 6
MVS_030478.73 1678.75 1578.66 3080.82 10357.62 8385.31 3081.31 11770.51 274.17 6091.24 1454.99 4889.56 1782.29 288.13 3488.80 8
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8386.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
IU-MVS87.77 459.15 6085.53 2553.93 22684.64 379.07 1190.87 588.37 17
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 129
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3566.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 58
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3564.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 42
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5790.06 1378.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n72.81 7672.33 7974.24 10769.89 32355.81 11578.22 12975.40 22254.17 22375.00 4488.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
test_fmvsmconf0.01_n72.17 8971.50 8774.16 10867.96 34055.58 12378.06 13574.67 23754.19 22274.54 5488.23 6150.35 11280.24 21578.07 2177.46 15486.65 72
test_fmvsmconf_n73.01 7472.59 7574.27 10671.28 30355.88 11478.21 13075.56 21954.31 22174.86 4887.80 7254.72 5280.23 21678.07 2178.48 14286.70 68
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20980.97 12965.13 1575.77 3690.88 1748.63 12886.66 7177.23 2488.17 3384.81 143
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 6790.60 2054.85 5186.72 6977.20 2588.06 3785.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6359.34 12079.37 1989.76 4559.84 1687.62 5076.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6288.68 2776.48 2889.63 2087.16 56
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n70.99 10970.82 10371.48 17771.45 29654.40 13977.18 15970.46 27448.67 28675.17 4086.86 8353.77 6776.86 26976.33 3077.51 15383.17 197
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6060.37 9679.89 1889.38 4954.97 4985.58 9876.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmvis_n_192070.84 11170.38 11172.22 16271.16 30455.39 12775.86 18872.21 26149.03 28273.28 7286.17 10951.83 9477.29 26175.80 3278.05 14783.98 165
fmvsm_s_conf0.5_n69.58 14168.84 13771.79 16972.31 28652.90 16477.90 13762.43 33549.97 27272.85 8585.90 12052.21 8776.49 27775.75 3370.26 24885.97 95
fmvsm_s_conf0.1_n69.41 14868.60 14371.83 16771.07 30552.88 16577.85 14062.44 33449.58 27672.97 8186.22 10651.68 9776.48 27875.53 3470.10 25186.14 90
fmvsm_l_conf0.5_n_a70.50 11970.27 11371.18 18971.30 30254.09 14176.89 16769.87 27747.90 29974.37 5786.49 10053.07 7776.69 27475.41 3577.11 16182.76 204
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3262.57 6073.09 7989.97 4150.90 10887.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test9_res75.28 3788.31 3283.81 172
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12055.86 18374.93 4588.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
fmvsm_s_conf0.5_n_a69.54 14368.74 14071.93 16472.47 28153.82 14578.25 12762.26 33749.78 27473.12 7886.21 10752.66 7976.79 27175.02 3968.88 27385.18 130
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 27956.53 10175.60 19276.16 20948.11 29577.22 2885.56 12853.10 7677.43 25874.86 4077.14 16086.55 75
fmvsm_s_conf0.1_n_a69.32 14968.44 14971.96 16370.91 30753.78 14678.12 13362.30 33649.35 27873.20 7486.55 9951.99 9176.79 27174.83 4168.68 27885.32 125
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PC_three_145255.09 20484.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4566.73 874.67 5389.38 4955.30 4589.18 2174.19 4687.34 4486.38 77
ZD-MVS86.64 2160.38 4382.70 9157.95 14778.10 2490.06 3656.12 4188.84 2674.05 4787.00 49
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6390.50 2453.20 7488.35 3274.02 4887.05 4586.13 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 6890.56 2249.80 11588.24 3474.02 4887.03 4686.32 85
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7090.58 2149.90 11388.21 3573.78 5087.03 4686.29 88
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16274.91 4788.19 6259.15 2387.68 4973.67 5187.45 4386.57 74
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2448.18 13387.34 5373.59 5285.71 6084.76 146
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 8979.05 2190.30 3055.54 4488.32 3373.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
agg_prior273.09 5587.93 4084.33 153
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22051.83 18879.67 10985.08 3265.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7967.78 370.09 11486.34 10454.92 5088.90 2572.68 5784.55 6987.76 37
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6461.71 7672.45 9590.34 2948.48 13188.13 3872.32 5886.85 5185.78 102
test_prior281.75 7960.37 9675.01 4389.06 5256.22 4072.19 5988.96 24
iter_conf0575.83 4775.63 4576.43 5880.84 10251.87 18778.13 13284.81 4059.65 11272.86 8487.47 7556.92 3488.17 3772.18 6087.79 4289.24 5
ACMMPcopyleft76.02 4375.33 4778.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12489.74 4645.43 17387.16 5972.01 6182.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet75.84 4575.87 4275.74 7278.86 14552.65 16883.73 5086.08 1763.47 4272.77 8887.25 8153.13 7587.93 4371.97 6285.57 6286.66 71
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5763.24 4573.30 7087.27 8055.06 4786.30 8471.78 6384.58 6889.25 4
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7571.71 6485.66 6184.97 138
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9659.99 10675.10 4190.35 2847.66 14086.52 7671.64 6582.99 8284.47 152
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9690.01 4047.95 13588.01 4171.55 6686.74 5386.37 79
X-MVStestdata70.21 12567.28 17479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 966.49 40847.95 13588.01 4171.55 6686.74 5386.37 79
dcpmvs_274.55 6075.23 4972.48 15582.34 7753.34 15677.87 13881.46 10857.80 15175.49 3786.81 8562.22 1377.75 25471.09 6882.02 9686.34 81
PHI-MVS75.87 4475.36 4677.41 4680.62 10955.91 11384.28 3985.78 2056.08 18173.41 6986.58 9650.94 10788.54 2970.79 6989.71 1787.79 36
diffmvspermissive70.69 11570.43 10971.46 17869.45 32848.95 22972.93 24178.46 17457.27 15671.69 10083.97 15951.48 9977.92 25170.70 7077.95 14987.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3372.71 7971.49 8876.40 5981.99 8259.58 5276.92 16676.74 20560.40 9374.81 4985.95 11845.54 16985.76 9470.41 7170.61 24083.86 171
hse-mvs271.04 10769.86 11974.60 9679.58 12757.12 9673.96 22575.25 22560.40 9374.81 4981.95 20145.54 16982.90 15270.41 7166.83 29183.77 176
APD-MVS_3200maxsize74.96 5074.39 5776.67 5482.20 7858.24 7783.67 5183.29 8058.41 13673.71 6690.14 3345.62 16685.99 8869.64 7382.85 8885.78 102
baseline74.61 5874.70 5474.34 10375.70 22849.99 21477.54 14884.63 4362.73 5973.98 6287.79 7357.67 3083.82 13569.49 7482.74 9089.20 7
OPM-MVS74.73 5474.25 5876.19 6480.81 10459.01 6782.60 6683.64 6663.74 3972.52 9287.49 7447.18 15185.88 9169.47 7580.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvspermissive74.80 5274.89 5374.53 9975.59 23250.37 20678.17 13185.06 3462.80 5874.40 5687.86 7057.88 2783.61 13969.46 7682.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5156.32 17574.05 6188.98 5453.34 7387.92 4469.23 7788.42 2887.59 43
CPTT-MVS72.78 7772.08 8274.87 8884.88 5761.41 2684.15 4377.86 18555.27 19867.51 16688.08 6541.93 20681.85 17869.04 7880.01 11781.35 231
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3961.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post74.57 5973.90 6276.58 5683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3444.74 18085.84 9268.20 8081.76 10084.03 162
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3443.06 19568.20 8081.76 10084.03 162
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5264.52 2569.27 13286.10 11145.26 17787.21 5668.16 8280.58 10984.65 147
plane_prior584.01 5287.21 5668.16 8280.58 10984.65 147
mvsmamba71.15 10569.54 12475.99 6677.61 19253.46 15381.95 7775.11 23057.73 15266.95 17685.96 11737.14 25987.56 5167.94 8475.49 18086.97 59
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16279.97 10185.21 2955.21 20172.81 8685.37 13553.93 6387.17 5867.93 8586.46 5788.80 8
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7467.86 8687.87 4186.06 93
CS-MVS-test75.62 4875.31 4876.56 5780.63 10855.13 13083.88 4885.22 2862.05 7171.49 10486.03 11453.83 6586.36 8267.74 8786.91 5088.19 23
LPG-MVS_test72.74 7871.74 8475.76 7080.22 11357.51 8682.55 6783.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12660.15 10370.43 11089.84 4341.09 22085.59 9767.61 9082.90 8685.77 105
MVS_111021_HR74.02 6473.46 6875.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 10985.97 11654.18 5984.00 13267.52 9182.98 8482.45 210
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11485.00 3764.97 2172.65 9079.46 25053.65 7287.87 4567.45 9282.91 8585.89 99
DELS-MVS74.76 5374.46 5675.65 7577.84 17952.25 17775.59 19384.17 4963.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.74.90 5174.15 5977.17 4982.00 8158.77 7281.80 7878.57 16858.58 13374.32 5884.51 14855.94 4287.22 5567.11 9484.48 7185.52 114
BP-MVS67.04 95
HQP-MVS73.45 6972.80 7375.40 7980.66 10554.94 13182.31 7183.90 5762.10 6867.85 15585.54 13145.46 17186.93 6467.04 9580.35 11384.32 154
ACMP63.53 672.30 8671.20 9675.59 7880.28 11157.54 8482.74 6382.84 9060.58 9065.24 21286.18 10839.25 23486.03 8766.95 9776.79 16583.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet-Vis-set72.42 8571.59 8574.91 8678.47 15654.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11566.46 9874.23 18885.83 101
DPM-MVS75.47 4975.00 5076.88 5181.38 9259.16 5979.94 10285.71 2256.59 17072.46 9386.76 8656.89 3587.86 4666.36 9988.91 2583.64 184
patch_mono-269.85 13271.09 9966.16 26379.11 14054.80 13571.97 25774.31 24253.50 23170.90 10784.17 15257.63 3163.31 34266.17 10082.02 9680.38 249
MVSFormer71.50 10270.38 11174.88 8778.76 14857.15 9482.79 6178.48 17251.26 25769.49 12783.22 17143.99 18883.24 14566.06 10179.37 12584.23 157
test_djsdf69.45 14767.74 15774.58 9774.57 25154.92 13382.79 6178.48 17251.26 25765.41 20583.49 16938.37 24383.24 14566.06 10169.25 26885.56 113
sasdasda74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
canonicalmvs74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
MVS_Test72.45 8372.46 7872.42 15974.88 24148.50 23576.28 17883.14 8559.40 11872.46 9384.68 14055.66 4381.12 19365.98 10579.66 12187.63 41
alignmvs73.86 6673.99 6173.45 13578.20 16650.50 20578.57 12382.43 9359.40 11876.57 3286.71 9056.42 3981.23 19265.84 10681.79 9988.62 10
nrg03072.96 7573.01 7172.84 14875.41 23550.24 20780.02 9982.89 8958.36 13874.44 5586.73 8858.90 2480.83 20265.84 10674.46 18487.44 47
MVS_111021_LR69.50 14568.78 13971.65 17478.38 15959.33 5674.82 21170.11 27658.08 14167.83 15984.68 14041.96 20576.34 28165.62 10877.54 15179.30 266
EI-MVSNet-UG-set71.92 9471.06 10074.52 10077.98 17553.56 15076.62 17179.16 15464.40 2771.18 10578.95 25952.19 8884.66 12165.47 10973.57 19985.32 125
PS-MVSNAJss72.24 8771.21 9575.31 8178.50 15455.93 11281.63 8082.12 9756.24 17870.02 11885.68 12747.05 15384.34 12565.27 11074.41 18785.67 109
MSLP-MVS++73.77 6773.47 6774.66 9283.02 7159.29 5882.30 7481.88 10059.34 12071.59 10286.83 8445.94 16483.65 13865.09 11185.22 6581.06 238
v2v48270.50 11969.45 12873.66 12572.62 27650.03 21377.58 14580.51 13659.90 10769.52 12682.14 19747.53 14484.88 11765.07 11270.17 24986.09 92
jason69.65 13968.39 15173.43 13778.27 16556.88 9877.12 16073.71 25046.53 31469.34 13183.22 17143.37 19279.18 22964.77 11379.20 13084.23 157
jason: jason.
anonymousdsp67.00 19964.82 21673.57 13170.09 31956.13 10776.35 17677.35 19648.43 29164.99 22180.84 22633.01 29980.34 21164.66 11467.64 28584.23 157
lupinMVS69.57 14268.28 15273.44 13678.76 14857.15 9476.57 17273.29 25346.19 31769.49 12782.18 19343.99 18879.23 22864.66 11479.37 12583.93 166
CLD-MVS73.33 7072.68 7475.29 8378.82 14753.33 15778.23 12884.79 4161.30 8170.41 11181.04 21852.41 8487.12 6064.61 11682.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bld_raw_dy_0_6472.13 9371.18 9774.96 8577.70 18251.88 18671.67 26184.69 4251.27 25665.06 21785.80 12654.50 5688.19 3664.51 11785.45 6484.82 142
V4268.65 16167.35 17272.56 15368.93 33450.18 20972.90 24279.47 15056.92 16169.45 12980.26 23446.29 16282.99 14964.07 11867.82 28384.53 149
3Dnovator+66.72 475.84 4574.57 5579.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20489.38 1964.07 11886.50 5689.69 2
v114470.42 12169.31 12973.76 11873.22 26450.64 20077.83 14181.43 10958.58 13369.40 13081.16 21547.53 14485.29 10864.01 12070.64 23885.34 124
Effi-MVS+73.31 7172.54 7775.62 7677.87 17753.64 14879.62 11179.61 14761.63 7772.02 9882.61 18156.44 3885.97 8963.99 12179.07 13387.25 55
MGCFI-Net72.45 8373.34 7069.81 21677.77 18143.21 28975.84 19081.18 12359.59 11675.45 3886.64 9157.74 2877.94 24963.92 12281.90 9888.30 18
SDMVSNet68.03 17568.10 15567.84 24177.13 20448.72 23365.32 32079.10 15558.02 14465.08 21582.55 18347.83 13773.40 29363.92 12273.92 19281.41 226
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
v870.33 12369.28 13073.49 13373.15 26650.22 20878.62 12180.78 13260.79 8666.45 18682.11 19949.35 11884.98 11263.58 12768.71 27685.28 127
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9078.51 17152.33 24164.33 22884.11 15428.28 34081.81 18063.48 12870.62 23983.67 180
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9178.56 16952.48 24064.27 23084.10 15527.45 34681.84 17963.45 12970.56 24183.69 179
v14419269.71 13568.51 14473.33 14073.10 26750.13 21077.54 14880.64 13356.65 16468.57 14280.55 22846.87 15884.96 11462.98 13069.66 26284.89 140
v119269.97 13068.68 14173.85 11373.19 26550.94 19377.68 14481.36 11257.51 15468.95 13880.85 22545.28 17685.33 10762.97 13170.37 24485.27 128
v1070.21 12569.02 13473.81 11573.51 26350.92 19578.74 11881.39 11060.05 10566.39 18781.83 20447.58 14285.41 10662.80 13268.86 27585.09 134
OMC-MVS71.40 10470.60 10673.78 11676.60 21653.15 15979.74 10879.78 14358.37 13768.75 13986.45 10245.43 17380.60 20662.58 13377.73 15087.58 44
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15654.77 21266.99 17486.01 11539.57 23078.21 24662.54 13473.33 20583.37 188
EPNet73.09 7372.16 8075.90 6875.95 22656.28 10483.05 5672.39 25966.53 1065.27 20887.00 8250.40 11085.47 10362.48 13586.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192069.47 14668.17 15373.36 13973.06 26850.10 21177.39 15180.56 13456.58 17168.59 14080.37 23044.72 18184.98 11262.47 13669.82 25785.00 136
c3_l68.33 16967.56 16170.62 20070.87 30846.21 25974.47 21878.80 16256.22 17966.19 19078.53 26651.88 9281.40 18662.08 13769.04 27184.25 156
AUN-MVS68.45 16866.41 19174.57 9879.53 12957.08 9773.93 22875.23 22654.44 21966.69 18181.85 20337.10 26182.89 15362.07 13866.84 29083.75 177
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 16155.24 19967.79 16185.81 12536.54 26678.28 24562.04 13975.74 17683.19 194
v124069.24 15267.91 15673.25 14373.02 27049.82 21577.21 15880.54 13556.43 17368.34 14680.51 22943.33 19384.99 11062.03 14069.77 26084.95 139
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20374.74 23552.91 23560.03 27880.12 23633.68 29282.64 16461.86 14176.34 16985.78 102
VDD-MVS72.50 8172.09 8173.75 12081.58 8649.69 21977.76 14377.63 19063.21 4773.21 7389.02 5342.14 20383.32 14361.72 14282.50 9188.25 20
PS-MVSNAJ70.51 11869.70 12272.93 14681.52 8755.79 11674.92 20979.00 15755.04 20969.88 12278.66 26147.05 15382.19 17261.61 14379.58 12280.83 242
xiu_mvs_v2_base70.52 11769.75 12072.84 14881.21 9655.63 12075.11 20378.92 15954.92 21069.96 12179.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
cl2267.47 18766.45 18770.54 20269.85 32446.49 25573.85 23177.35 19655.07 20765.51 20377.92 27347.64 14181.10 19461.58 14569.32 26584.01 164
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31146.21 25973.98 22478.68 16655.07 20766.05 19277.80 27752.16 8981.31 18961.53 14669.32 26583.67 180
iter_conf05_1173.52 6872.59 7576.30 6380.93 10151.97 18478.62 12183.48 7052.20 24371.53 10385.93 11954.01 6088.55 2861.08 14785.56 6388.39 16
MG-MVS73.96 6573.89 6374.16 10885.65 4249.69 21981.59 8381.29 11961.45 7871.05 10688.11 6351.77 9587.73 4861.05 14883.09 8085.05 135
mamv456.85 29858.00 28653.43 35172.46 28254.47 13757.56 36254.74 36638.81 36857.42 30879.45 25147.57 14338.70 40160.88 14953.07 36667.11 371
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33145.98 26172.85 24378.41 17851.38 25365.65 20175.98 30651.17 10381.25 19060.82 15069.32 26583.29 191
ACMM61.98 770.80 11469.73 12174.02 11080.59 11058.59 7482.68 6482.02 9955.46 19567.18 17184.39 15038.51 24183.17 14760.65 15176.10 17280.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu69.64 14067.53 16475.95 6776.10 22462.29 1580.20 9876.06 21359.83 11165.26 21177.09 28741.56 21284.02 13160.60 15271.09 23681.53 224
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9382.01 8058.82 7179.93 10380.35 13955.09 20465.82 20082.16 19649.17 12282.64 16460.34 15378.62 14182.50 209
MVSTER67.16 19565.58 20871.88 16670.37 31549.70 21770.25 28278.45 17551.52 25069.16 13680.37 23038.45 24282.50 16760.19 15471.46 23183.44 187
EIA-MVS71.78 9670.60 10675.30 8279.85 12253.54 15177.27 15783.26 8257.92 14866.49 18479.39 25252.07 9086.69 7060.05 15579.14 13285.66 110
v14868.24 17267.19 18071.40 18270.43 31347.77 24475.76 19177.03 20058.91 12567.36 16780.10 23748.60 13081.89 17760.01 15666.52 29484.53 149
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36343.14 29067.49 30366.36 30640.22 36265.89 19771.95 33631.04 31859.75 35659.94 15764.90 30471.85 345
CANet_DTU68.18 17367.71 16069.59 21974.83 24346.24 25878.66 12076.85 20259.60 11363.45 23982.09 20035.25 27477.41 25959.88 15878.76 13885.14 131
IterMVS-LS69.22 15368.48 14571.43 18174.44 25449.40 22376.23 17977.55 19159.60 11365.85 19981.59 21051.28 10181.58 18459.87 15969.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.27 15168.44 14971.73 17174.47 25249.39 22475.20 20178.45 17559.60 11369.16 13676.51 29851.29 10082.50 16759.86 16071.45 23283.30 189
3Dnovator64.47 572.49 8271.39 9175.79 6977.70 18258.99 6880.66 9383.15 8462.24 6665.46 20486.59 9542.38 20285.52 9959.59 16184.72 6782.85 203
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29448.33 23773.68 23477.88 18455.80 18765.91 19578.62 26447.35 15082.88 15459.45 16266.25 29583.81 172
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31645.74 26373.29 23776.83 20355.10 20265.27 20879.58 24647.38 14980.53 20759.43 16369.22 26983.54 185
cl____67.18 19366.26 19869.94 21170.20 31645.74 26373.30 23676.83 20355.10 20265.27 20879.57 24747.39 14880.53 20759.41 16469.22 26983.53 186
旧先验276.08 18245.32 32576.55 3365.56 33658.75 165
VDDNet71.81 9571.33 9373.26 14282.80 7547.60 24778.74 11875.27 22459.59 11672.94 8289.40 4841.51 21483.91 13358.75 16582.99 8288.26 19
114514_t70.83 11269.56 12374.64 9486.21 3154.63 13682.34 7081.81 10248.22 29363.01 24685.83 12340.92 22187.10 6157.91 16779.79 11882.18 215
Vis-MVSNetpermissive72.18 8871.37 9274.61 9581.29 9355.41 12680.90 8978.28 18160.73 8869.23 13588.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192056.91 29756.71 29557.51 33059.13 38445.40 26963.58 33061.29 34236.24 37267.14 17271.85 33729.89 32756.69 37057.65 16963.58 31770.46 358
PAPM_NR72.63 8071.80 8375.13 8481.72 8553.42 15579.91 10483.28 8159.14 12266.31 18985.90 12051.86 9386.06 8557.45 17080.62 10785.91 98
LFMVS71.78 9671.59 8572.32 16083.40 6746.38 25679.75 10771.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
v7n69.01 15567.36 17173.98 11172.51 28052.65 16878.54 12581.30 11860.26 10262.67 25081.62 20743.61 19084.49 12257.01 17268.70 27784.79 144
GeoE71.01 10870.15 11673.60 13079.57 12852.17 17878.93 11678.12 18258.02 14467.76 16383.87 16052.36 8582.72 16156.90 17375.79 17585.92 97
FA-MVS(test-final)69.82 13368.48 14573.84 11478.44 15750.04 21275.58 19578.99 15858.16 14067.59 16482.14 19742.66 19785.63 9556.60 17476.19 17185.84 100
mvs_anonymous68.03 17567.51 16569.59 21972.08 28844.57 27771.99 25675.23 22651.67 24667.06 17382.57 18254.68 5377.94 24956.56 17575.71 17786.26 89
Patchmatch-RL test58.16 28855.49 30566.15 26467.92 34148.89 23060.66 34851.07 37847.86 30059.36 28862.71 38034.02 28872.27 29956.41 17659.40 34477.30 287
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34846.25 25756.29 36775.70 21650.68 26361.27 26975.48 31240.21 22468.03 32356.31 17765.25 30282.18 215
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19276.89 16774.25 24453.67 22965.59 20281.76 20535.15 27585.50 10155.94 17872.47 21886.47 76
EPP-MVSNet72.16 9171.31 9474.71 8978.68 15149.70 21782.10 7581.65 10460.40 9365.94 19485.84 12251.74 9686.37 8155.93 17979.55 12488.07 28
PVSNet_BlendedMVS68.56 16667.72 15871.07 19377.03 20850.57 20174.50 21781.52 10553.66 23064.22 23379.72 24449.13 12382.87 15555.82 18073.92 19279.77 261
PVSNet_Blended68.59 16267.72 15871.19 18877.03 20850.57 20172.51 24981.52 10551.91 24564.22 23377.77 28049.13 12382.87 15555.82 18079.58 12280.14 253
PAPR71.72 9970.82 10374.41 10281.20 9751.17 19179.55 11283.33 7855.81 18666.93 17784.61 14450.95 10686.06 8555.79 18279.20 13086.00 94
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19777.86 13973.99 24754.54 21764.64 22582.53 18635.06 27685.50 10155.71 18369.91 25586.67 70
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29050.80 19871.15 27069.63 28045.71 32360.61 27377.93 27237.45 25265.99 33455.67 18463.50 31879.42 264
tt080567.77 18267.24 17869.34 22474.87 24240.08 31377.36 15281.37 11155.31 19766.33 18884.65 14237.35 25482.55 16655.65 18572.28 22385.39 123
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28452.45 17570.80 27578.45 17553.84 22759.87 28181.10 21716.24 38279.32 22755.64 18671.76 22780.47 246
Anonymous2023121169.28 15068.47 14771.73 17180.28 11147.18 25179.98 10082.37 9454.61 21467.24 16984.01 15739.43 23182.41 17055.45 18772.83 21385.62 112
GA-MVS65.53 22063.70 22771.02 19470.87 30848.10 23970.48 27874.40 24056.69 16364.70 22476.77 29233.66 29381.10 19455.42 18870.32 24683.87 170
test_yl69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
131464.61 23263.21 23568.80 23171.87 29247.46 24873.95 22678.39 18042.88 34759.97 27976.60 29738.11 24779.39 22654.84 19172.32 22179.55 262
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 20157.60 15361.97 26176.85 29139.31 23280.49 21054.72 19270.28 24782.17 217
UniMVSNet_NR-MVSNet71.11 10671.00 10171.44 17979.20 13644.13 27976.02 18682.60 9266.48 1168.20 14784.60 14556.82 3682.82 15954.62 19370.43 24287.36 53
DU-MVS70.01 12869.53 12571.44 17978.05 17344.13 27975.01 20681.51 10764.37 2868.20 14784.52 14649.12 12582.82 15954.62 19370.43 24287.37 51
FIs70.82 11371.43 8968.98 22978.33 16338.14 33276.96 16483.59 6861.02 8367.33 16886.73 8855.07 4681.64 18154.61 19579.22 12987.14 57
VPA-MVSNet69.02 15469.47 12767.69 24377.42 19841.00 31074.04 22379.68 14560.06 10469.26 13484.81 13951.06 10577.58 25654.44 19674.43 18684.48 151
Anonymous2024052969.91 13169.02 13472.56 15380.19 11647.65 24577.56 14780.99 12855.45 19669.88 12286.76 8639.24 23582.18 17354.04 19777.10 16287.85 32
UniMVSNet (Re)70.63 11670.20 11471.89 16578.55 15345.29 27075.94 18782.92 8763.68 4068.16 14983.59 16653.89 6483.49 14253.97 19871.12 23586.89 62
D2MVS62.30 25760.29 26768.34 23866.46 35148.42 23665.70 31273.42 25147.71 30158.16 30275.02 31530.51 32177.71 25553.96 19971.68 22978.90 271
原ACMM174.69 9085.39 4759.40 5483.42 7451.47 25270.27 11386.61 9448.61 12986.51 7753.85 20087.96 3978.16 275
无先验79.66 11074.30 24348.40 29280.78 20453.62 20179.03 269
UA-Net73.13 7272.93 7273.76 11883.58 6451.66 18978.75 11777.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
VNet69.68 13870.19 11568.16 23979.73 12541.63 30570.53 27777.38 19560.37 9670.69 10886.63 9351.08 10477.09 26453.61 20281.69 10485.75 107
Fast-Effi-MVS+70.28 12469.12 13373.73 12178.50 15451.50 19075.01 20679.46 15156.16 18068.59 14079.55 24853.97 6184.05 12853.34 20477.53 15285.65 111
testdata64.66 28381.52 8752.93 16365.29 31346.09 31873.88 6487.46 7638.08 24866.26 33353.31 20578.48 14274.78 317
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22271.32 26573.12 25549.39 27763.82 23576.50 30034.95 27884.84 11853.20 20675.49 18084.13 161
MVS67.37 18866.33 19470.51 20375.46 23450.94 19373.95 22681.85 10141.57 35462.54 25478.57 26547.98 13485.47 10352.97 20782.05 9575.14 309
IterMVS62.79 25261.27 25867.35 24869.37 32952.04 18271.17 26868.24 29352.63 23959.82 28276.91 29037.32 25572.36 29752.80 20863.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test69.80 13470.58 10867.46 24577.61 19234.73 36376.05 18483.19 8360.84 8565.88 19886.46 10154.52 5580.76 20552.52 20978.12 14686.91 61
TranMVSNet+NR-MVSNet70.36 12270.10 11871.17 19078.64 15242.97 29276.53 17381.16 12566.95 668.53 14385.42 13351.61 9883.07 14852.32 21069.70 26187.46 46
Baseline_NR-MVSNet67.05 19767.56 16165.50 27575.65 22937.70 33875.42 19674.65 23859.90 10768.14 15083.15 17449.12 12577.20 26252.23 21169.78 25881.60 223
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29674.18 22275.59 21860.37 9666.77 17986.06 11337.64 25078.93 24152.16 21273.49 20186.32 85
ECVR-MVScopyleft67.72 18367.51 16568.35 23779.46 13036.29 35574.79 21266.93 30158.72 12867.19 17088.05 6636.10 26781.38 18752.07 21384.25 7287.39 49
test111167.21 19067.14 18167.42 24679.24 13534.76 36273.89 23065.65 31058.71 13066.96 17587.95 6936.09 26880.53 20752.03 21483.79 7786.97 59
test250665.33 22464.61 21767.50 24479.46 13034.19 36774.43 21951.92 37458.72 12866.75 18088.05 6625.99 35780.92 20051.94 21584.25 7287.39 49
API-MVS72.17 8971.41 9074.45 10181.95 8357.22 8984.03 4580.38 13859.89 11068.40 14482.33 19049.64 11687.83 4751.87 21684.16 7578.30 273
PCF-MVS61.88 870.95 11069.49 12675.35 8077.63 18755.71 11776.04 18581.81 10250.30 26869.66 12585.40 13452.51 8184.89 11551.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 9270.73 10576.40 5986.57 2457.99 7981.15 8882.96 8657.03 15966.78 17885.56 12844.50 18388.11 3951.77 21880.23 11683.10 198
UGNet68.81 15767.39 16973.06 14478.33 16354.47 13779.77 10675.40 22260.45 9263.22 24084.40 14932.71 30680.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8582.90 8854.90 21168.08 15278.70 26047.73 13885.51 10051.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VPNet67.52 18668.11 15465.74 27279.18 13736.80 34772.17 25472.83 25662.04 7267.79 16185.83 12348.88 12776.60 27651.30 22172.97 21283.81 172
test_fmvs1_n51.37 33250.35 33554.42 34552.85 39137.71 33761.16 34551.93 37328.15 38363.81 23669.73 35413.72 38653.95 38051.16 22260.65 34071.59 347
test_fmvs151.32 33450.48 33453.81 34753.57 38937.51 33960.63 34951.16 37628.02 38563.62 23769.23 35716.41 38153.93 38151.01 22360.70 33969.99 362
QAPM70.05 12768.81 13873.78 11676.54 21853.43 15483.23 5483.48 7052.89 23665.90 19686.29 10541.55 21386.49 7851.01 22378.40 14481.42 225
NR-MVSNet69.54 14368.85 13671.59 17678.05 17343.81 28374.20 22180.86 13165.18 1462.76 24884.52 14652.35 8683.59 14050.96 22570.78 23787.37 51
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16773.09 24075.13 22955.69 18958.48 30073.73 32432.86 30186.32 8350.63 22670.11 25081.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PM-MVS52.33 32850.19 33658.75 31962.10 37245.14 27165.75 31140.38 39743.60 33953.52 34572.65 3289.16 39965.87 33550.41 22754.18 36365.24 374
cascas65.98 21463.42 23173.64 12777.26 20252.58 17172.26 25377.21 19848.56 28761.21 27074.60 31932.57 31185.82 9350.38 22876.75 16682.52 208
IS-MVSNet71.57 10071.00 10173.27 14178.86 14545.63 26780.22 9778.69 16564.14 3566.46 18587.36 7749.30 11985.60 9650.26 22983.71 7888.59 11
WR-MVS68.47 16768.47 14768.44 23680.20 11539.84 31673.75 23376.07 21264.68 2268.11 15183.63 16550.39 11179.14 23449.78 23069.66 26286.34 81
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32675.20 20168.74 29031.15 37958.24 30176.51 29832.39 31368.58 31949.77 23165.84 29875.81 302
CostFormer64.04 23862.51 24268.61 23471.88 29145.77 26271.30 26670.60 27347.55 30364.31 22976.61 29641.63 21079.62 22349.74 23269.00 27280.42 247
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11286.64 9141.29 21675.23 28649.72 23381.75 10275.93 301
test-LLR58.15 28958.13 28558.22 32368.57 33544.80 27365.46 31757.92 35350.08 27055.44 32269.82 35232.62 30857.44 36649.66 23473.62 19772.41 338
test-mter56.42 30355.82 30358.22 32368.57 33544.80 27365.46 31757.92 35339.94 36555.44 32269.82 35221.92 37057.44 36649.66 23473.62 19772.41 338
Anonymous20240521166.84 20265.99 20169.40 22380.19 11642.21 29871.11 27171.31 26758.80 12767.90 15386.39 10329.83 32879.65 22149.60 23678.78 13786.33 83
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 35948.05 38525.71 38959.76 28469.60 35511.57 39252.23 38649.45 23756.86 35371.58 348
tpmrst58.24 28758.70 27856.84 33166.97 34534.32 36569.57 28861.14 34347.17 31058.58 29971.60 33841.28 21760.41 35249.20 23862.84 32375.78 303
test_vis1_n49.89 33948.69 34153.50 35053.97 38837.38 34061.53 33947.33 38728.54 38259.62 28667.10 36813.52 38752.27 38549.07 23957.52 35070.84 356
pm-mvs165.24 22564.97 21566.04 26772.38 28339.40 32272.62 24675.63 21755.53 19362.35 26083.18 17347.45 14676.47 27949.06 24066.54 29382.24 214
gm-plane-assit71.40 30041.72 30448.85 28573.31 32682.48 16948.90 241
CMPMVSbinary42.80 2157.81 29255.97 30163.32 29160.98 37947.38 24964.66 32669.50 28332.06 37846.83 37077.80 27729.50 33171.36 30448.68 24273.75 19571.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30270.41 28076.14 21153.99 22565.98 19383.51 16849.48 11776.24 28248.60 24373.46 20384.14 160
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28948.06 24073.93 22872.51 25847.23 30954.74 33180.92 22221.49 37481.24 19148.57 24456.22 35779.53 263
OpenMVScopyleft61.03 968.85 15667.56 16172.70 15274.26 25853.99 14381.21 8781.34 11652.70 23762.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
testing9164.46 23463.80 22566.47 25678.43 15840.06 31467.63 30069.59 28159.06 12363.18 24278.05 26934.05 28676.99 26648.30 24675.87 17482.37 212
testing9964.05 23763.29 23466.34 25878.17 17039.76 31867.33 30568.00 29458.60 13263.03 24578.10 26832.57 31176.94 26848.22 24775.58 17882.34 213
baseline263.42 24361.26 25969.89 21572.55 27847.62 24671.54 26268.38 29250.11 26954.82 33075.55 31143.06 19580.96 19748.13 24867.16 28981.11 236
TESTMET0.1,155.28 31254.90 30956.42 33366.56 34943.67 28465.46 31756.27 36339.18 36753.83 34067.44 36424.21 36555.46 37748.04 24973.11 21070.13 361
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38847.47 25049.82 37571.88 344
K. test v360.47 27357.11 28970.56 20173.74 26248.22 23875.10 20562.55 33258.27 13953.62 34476.31 30127.81 34381.59 18347.42 25139.18 38981.88 221
pmmvs663.69 24162.82 24066.27 26170.63 31039.27 32373.13 23975.47 22152.69 23859.75 28582.30 19139.71 22977.03 26547.40 25264.35 31182.53 207
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29762.67 33472.11 26258.02 14465.08 21582.55 18341.22 21969.88 31447.32 25373.92 19281.41 226
baseline163.81 24063.87 22463.62 28976.29 22136.36 35071.78 26067.29 29856.05 18264.23 23282.95 17547.11 15274.41 29047.30 25461.85 33180.10 254
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29574.98 20877.15 19955.83 18565.04 21881.16 21539.91 22580.14 21947.18 25572.76 21482.90 202
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29176.11 18177.47 19256.62 16765.22 21482.17 19541.85 20780.18 21847.05 25872.72 21783.20 193
testdata272.18 30146.95 259
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11952.53 17274.26 22076.29 20858.48 13568.38 14584.20 15142.59 19883.83 13446.53 26075.91 17382.56 205
AdaColmapbinary69.99 12968.66 14273.97 11284.94 5457.83 8082.63 6578.71 16456.28 17764.34 22784.14 15341.57 21187.06 6346.45 26178.88 13477.02 292
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15277.99 13678.82 16053.37 23256.03 31877.41 28524.75 36484.04 12946.37 26273.42 20473.14 328
1112_ss64.00 23963.36 23265.93 26979.28 13342.58 29471.35 26472.36 26046.41 31560.55 27477.89 27546.27 16373.28 29446.18 26369.97 25381.92 220
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28677.31 15377.83 18656.45 17264.60 22682.70 17738.08 24880.33 21246.08 26472.31 22283.92 167
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12155.65 11969.07 29275.52 22042.68 34863.53 23877.95 27140.43 22381.64 18146.01 26571.91 22683.73 178
lessismore_v069.91 21371.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18845.91 26634.10 39580.59 245
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24540.53 36063.16 24378.65 26241.30 21577.80 25345.80 26774.09 18981.40 228
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 38061.42 34158.14 35258.71 13053.02 34879.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
ambc65.13 28163.72 36537.07 34447.66 38778.78 16354.37 33771.42 33911.24 39480.94 19845.64 26953.85 36577.38 286
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17972.05 25574.05 24646.41 31557.42 30874.36 32034.35 28477.57 25745.62 27073.67 19666.26 372
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18052.83 16680.39 9478.03 18357.30 15557.47 30682.55 18327.68 34484.17 12645.54 27169.78 25879.90 256
testing1162.81 25161.90 25065.54 27478.38 15940.76 31167.59 30266.78 30355.48 19460.13 27677.11 28631.67 31776.79 27145.53 27274.45 18579.06 267
CR-MVSNet59.91 27657.90 28765.96 26869.96 32152.07 18065.31 32163.15 32942.48 34959.36 28874.84 31635.83 27070.75 30745.50 27364.65 30775.06 310
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14253.13 16173.27 23871.07 26952.15 24464.72 22380.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35276.83 17079.52 14962.45 6362.54 25483.47 17046.32 16178.37 24345.47 27563.43 31985.45 118
BH-untuned68.27 17067.29 17371.21 18779.74 12453.22 15876.06 18377.46 19457.19 15766.10 19181.61 20845.37 17583.50 14145.42 27676.68 16776.91 296
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35476.94 16579.61 14762.36 6562.43 25883.66 16445.69 16578.37 24345.35 27763.26 32085.42 121
XXY-MVS60.68 27161.67 25257.70 32970.43 31338.45 33064.19 32866.47 30448.05 29763.22 24080.86 22449.28 12060.47 35145.25 27867.28 28874.19 323
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30769.96 28474.43 23949.29 27961.66 26680.92 22247.43 14776.68 27544.91 27971.69 22881.94 219
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34977.03 16380.42 13762.95 5062.51 25684.03 15646.69 15979.07 23544.22 28063.08 32285.51 115
test_post168.67 2943.64 40932.39 31369.49 31544.17 281
SCA60.49 27258.38 28166.80 25174.14 26048.06 24063.35 33163.23 32849.13 28159.33 29172.10 33337.45 25274.27 29144.17 28162.57 32578.05 277
PMMVS53.96 31853.26 32456.04 33462.60 37050.92 19561.17 34456.09 36432.81 37753.51 34666.84 36934.04 28759.93 35544.14 28368.18 28057.27 384
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17778.53 17050.59 26656.47 31678.65 26239.84 22782.68 16244.10 28472.12 22572.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18572.62 24675.81 21453.70 22865.31 20678.96 25828.81 33786.39 8043.93 28573.48 20282.55 206
CNLPA65.43 22164.02 22169.68 21778.73 15058.07 7877.82 14270.71 27251.49 25161.57 26883.58 16738.23 24670.82 30643.90 28670.10 25180.16 252
pmmvs461.48 26859.39 27167.76 24271.57 29553.86 14471.42 26365.34 31244.20 33459.46 28777.92 27335.90 26974.71 28843.87 28764.87 30574.71 318
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32168.17 29670.17 27543.25 34359.03 29379.90 23944.08 18671.24 30543.79 28868.42 27981.25 232
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32874.66 21575.08 23458.90 12661.79 26482.63 18051.18 10278.07 24843.63 28955.87 35880.99 240
pmmvs-eth3d58.81 28456.31 29966.30 26067.61 34252.42 17672.30 25264.76 31643.55 34054.94 32974.19 32228.95 33472.60 29643.31 29057.21 35273.88 326
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 25075.59 19369.68 27954.61 21454.11 33879.26 25527.07 35082.96 15043.27 29149.79 37680.41 248
BH-w/o66.85 20165.83 20369.90 21479.29 13252.46 17474.66 21576.65 20654.51 21864.85 22278.12 26745.59 16882.95 15143.26 29275.54 17974.27 322
TR-MVS66.59 20965.07 21471.17 19079.18 13749.63 22173.48 23575.20 22852.95 23467.90 15380.33 23339.81 22883.68 13743.20 29373.56 20080.20 251
EU-MVSNet55.61 31054.41 31459.19 31665.41 35733.42 37272.44 25071.91 26428.81 38151.27 35273.87 32324.76 36369.08 31743.04 29458.20 34875.06 310
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25469.42 28962.18 33847.55 30358.88 29471.96 33534.49 28269.16 31642.99 29563.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31284.79 144
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17252.01 18379.48 11379.69 14455.75 18856.59 31380.98 22027.12 34980.94 19842.90 29771.58 23077.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052155.30 31154.41 31457.96 32660.92 38141.73 30271.09 27271.06 27041.18 35548.65 36473.31 32616.93 37959.25 35842.54 29864.01 31272.90 330
WTY-MVS59.75 27860.39 26657.85 32772.32 28537.83 33561.05 34664.18 32145.95 32261.91 26279.11 25747.01 15660.88 35042.50 29969.49 26474.83 315
TAMVS66.78 20465.27 21271.33 18679.16 13953.67 14773.84 23269.59 28152.32 24265.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24259.92 35076.39 20754.35 22058.67 29682.46 18829.44 33281.49 18542.12 30171.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 30656.57 29654.96 34066.93 34636.32 35357.94 35861.69 34041.67 35258.64 29775.32 31438.72 24056.25 37342.04 30266.19 29672.31 341
UnsupCasMVSNet_eth53.16 32752.47 32555.23 33959.45 38333.39 37359.43 35269.13 28745.98 31950.35 36172.32 33029.30 33358.26 36442.02 30344.30 38274.05 324
tpm262.07 26060.10 26867.99 24072.79 27343.86 28271.05 27366.85 30243.14 34562.77 24775.39 31338.32 24480.80 20341.69 30468.88 27379.32 265
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12377.47 19248.51 28955.71 31981.89 20233.71 29179.71 22041.66 30570.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 31853.69 32154.79 34266.12 35431.96 37962.34 33749.05 38144.42 33355.54 32071.33 34130.22 32456.70 36941.65 30662.54 32675.71 304
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 36076.43 17579.38 15262.55 6161.66 26683.83 16145.60 16779.15 23341.64 30760.88 33785.00 136
PAPM67.92 17966.69 18471.63 17578.09 17149.02 22777.09 16181.24 12251.04 26060.91 27283.98 15847.71 13984.99 11040.81 30879.32 12880.90 241
tpm57.34 29458.16 28354.86 34171.80 29334.77 36167.47 30456.04 36548.20 29460.10 27776.92 28937.17 25853.41 38240.76 30965.01 30376.40 299
KD-MVS_self_test55.22 31353.89 32059.21 31557.80 38727.47 39157.75 36074.32 24147.38 30550.90 35570.00 35128.45 33970.30 31240.44 31057.92 34979.87 257
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14978.12 13376.16 20947.97 29852.41 34981.61 20827.87 34278.11 24740.07 31166.66 29277.00 293
Patchmtry57.16 29556.47 29759.23 31469.17 33234.58 36462.98 33263.15 32944.53 33056.83 31174.84 31635.83 27068.71 31840.03 31260.91 33674.39 321
pmmvs556.47 30255.68 30458.86 31861.41 37536.71 34866.37 30862.75 33140.38 36153.70 34176.62 29534.56 28067.05 32740.02 31365.27 30172.83 331
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31775.85 18965.62 31155.09 20454.56 33479.36 25337.59 25167.02 32839.80 31476.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33336.93 34667.60 30172.80 25755.67 19059.95 28076.63 29445.01 17972.22 30039.74 31562.09 33080.74 244
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39539.27 31653.02 36759.14 379
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38171.16 26963.64 32556.32 17559.80 28384.99 13644.51 18275.46 28539.12 31780.62 10782.92 200
PVSNet50.76 1958.40 28657.39 28861.42 30575.53 23344.04 28161.43 34063.45 32647.04 31156.91 31073.61 32527.00 35164.76 33839.12 31772.40 21975.47 307
MDTV_nov1_ep13_2view25.89 39761.22 34340.10 36351.10 35332.97 30038.49 31978.61 272
our_test_356.49 30154.42 31362.68 29869.51 32645.48 26866.08 31061.49 34144.11 33750.73 35869.60 35533.05 29868.15 32038.38 32056.86 35374.40 320
tpm cat159.25 28256.95 29266.15 26472.19 28746.96 25268.09 29765.76 30940.03 36457.81 30470.56 34538.32 24474.51 28938.26 32161.50 33477.00 293
USDC56.35 30454.24 31762.69 29764.74 35940.31 31265.05 32373.83 24843.93 33847.58 36677.71 28115.36 38575.05 28738.19 32261.81 33272.70 332
MSDG61.81 26459.23 27269.55 22272.64 27552.63 17070.45 27975.81 21451.38 25353.70 34176.11 30229.52 33081.08 19637.70 32365.79 29974.93 314
MDTV_nov1_ep1357.00 29172.73 27438.26 33165.02 32464.73 31744.74 32855.46 32172.48 32932.61 31070.47 30837.47 32467.75 284
gg-mvs-nofinetune57.86 29156.43 29862.18 30072.62 27635.35 35866.57 30656.33 36250.65 26457.64 30557.10 38630.65 32076.36 28037.38 32578.88 13474.82 316
dmvs_re56.77 29956.83 29456.61 33269.23 33041.02 30758.37 35564.18 32150.59 26657.45 30771.42 33935.54 27258.94 36037.23 32667.45 28669.87 363
RPSCF55.80 30954.22 31860.53 31065.13 35842.91 29364.30 32757.62 35536.84 37158.05 30382.28 19228.01 34156.24 37437.14 32758.61 34782.44 211
testing22262.29 25861.31 25765.25 28077.87 17738.53 32968.34 29566.31 30756.37 17463.15 24477.58 28328.47 33876.18 28437.04 32876.65 16881.05 239
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35654.41 36944.46 33254.56 33469.05 35833.32 29660.94 34936.93 32961.76 33370.73 357
YYNet150.73 33548.96 33756.03 33561.10 37741.78 30151.94 37756.44 36040.94 35844.84 37567.80 36230.08 32555.08 37836.77 33050.71 37271.22 352
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23176.52 17480.04 14250.64 26565.24 21284.93 13739.15 23678.54 24236.77 33076.88 16485.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33661.17 37641.84 30051.90 37856.45 35940.96 35744.79 37667.84 36130.04 32655.07 37936.71 33250.69 37371.11 355
ppachtmachnet_test58.06 29055.38 30666.10 26669.51 32648.99 22868.01 29866.13 30844.50 33154.05 33970.74 34432.09 31572.34 29836.68 33356.71 35676.99 295
tpmvs58.47 28556.95 29263.03 29670.20 31641.21 30667.90 29967.23 29949.62 27554.73 33270.84 34334.14 28576.24 28236.64 33461.29 33571.64 346
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 38936.53 33560.80 33857.76 383
PatchMatch-RL56.25 30554.55 31261.32 30877.06 20756.07 10965.57 31454.10 37144.13 33653.49 34771.27 34225.20 36166.78 32936.52 33663.66 31561.12 376
RPMNet61.53 26658.42 28070.86 19569.96 32152.07 18065.31 32181.36 11243.20 34459.36 28870.15 35035.37 27385.47 10336.42 33764.65 30775.06 310
ITE_SJBPF62.09 30166.16 35344.55 27864.32 31947.36 30655.31 32480.34 23219.27 37662.68 34536.29 33862.39 32779.04 268
JIA-IIPM51.56 33147.68 34563.21 29364.61 36050.73 19947.71 38658.77 35042.90 34648.46 36551.72 39024.97 36270.24 31336.06 33953.89 36468.64 369
KD-MVS_2432*160053.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
miper_refine_blended53.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31244.82 27275.33 19770.86 27145.04 32656.06 31776.00 30326.89 35279.65 22135.36 34267.29 28772.60 333
GG-mvs-BLEND62.34 29971.36 30137.04 34569.20 29157.33 35854.73 33265.48 37430.37 32277.82 25234.82 34374.93 18372.17 342
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34860.97 38033.67 37157.62 36164.56 31839.47 36647.38 36764.02 37827.47 34559.32 35734.69 34443.68 38367.98 370
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29566.25 35248.58 23456.93 36563.82 32348.09 29641.22 38370.48 34830.34 32368.00 32434.24 34545.92 38172.57 334
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33654.57 36844.16 33549.31 36367.91 36028.87 33656.61 37133.89 34654.89 36069.24 368
AllTest57.08 29654.65 31064.39 28671.44 29749.03 22569.92 28567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
TestCases64.39 28671.44 29749.03 22567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 37069.04 29363.82 32348.56 28764.27 23077.64 28227.20 34870.40 31133.56 35076.24 17079.83 258
FMVSNet555.86 30854.93 30858.66 32071.05 30636.35 35164.18 32962.48 33346.76 31350.66 35974.73 31825.80 35864.04 34033.11 35165.57 30075.59 305
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23359.09 29282.35 18936.79 26585.94 9032.82 35369.96 25472.45 336
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35346.15 37358.75 38330.99 31958.66 36132.18 35424.81 39855.46 386
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35964.94 32559.35 34754.06 22461.08 27176.67 29329.54 32971.87 30232.16 35574.07 19078.01 281
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35769.34 29064.28 32046.88 31261.76 26575.79 30740.61 22265.20 33732.16 35571.21 23377.70 282
TinyColmap54.14 31751.72 32861.40 30666.84 34741.97 29966.52 30768.51 29144.81 32742.69 38275.77 30811.66 39172.94 29531.96 35756.77 35569.27 367
MIMVSNet57.35 29357.07 29058.22 32374.21 25937.18 34162.46 33560.88 34448.88 28455.29 32575.99 30531.68 31662.04 34731.87 35872.35 22075.43 308
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32772.65 24469.11 28857.07 15862.45 25781.03 21937.01 26379.17 23031.84 35973.25 20779.83 258
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20779.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20781.36 229
pmmvs344.92 34741.95 35453.86 34652.58 39343.55 28562.11 33846.90 38926.05 38840.63 38460.19 38211.08 39657.91 36531.83 36246.15 38060.11 377
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39631.63 36349.18 37858.72 380
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17378.42 12673.30 25249.92 27350.96 35481.51 21123.06 36779.40 22531.63 36365.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34843.28 34244.22 37868.66 35925.67 35957.20 36831.57 36549.35 37774.62 319
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32572.35 25169.11 28856.98 16062.37 25980.96 22137.01 26379.00 23931.43 36673.05 21181.36 229
thres20062.20 25961.16 26165.34 27875.38 23639.99 31569.60 28769.29 28655.64 19261.87 26376.99 28837.07 26278.96 24031.28 36773.28 20677.06 291
LCM-MVSNet40.30 35635.88 36253.57 34942.24 40229.15 38545.21 39260.53 34522.23 39528.02 39750.98 3933.72 40861.78 34831.22 36838.76 39069.78 364
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35154.11 37050.08 27054.40 33674.31 32132.62 30855.92 37530.50 37063.95 31472.15 343
Anonymous2023120655.10 31555.30 30754.48 34369.81 32533.94 36962.91 33362.13 33941.08 35655.18 32675.65 30932.75 30556.59 37230.32 37167.86 28272.91 329
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32471.22 26773.72 24955.22 20060.21 27580.09 23841.26 21876.98 26730.02 37268.09 28178.97 270
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34259.21 34851.34 25552.09 35077.43 28433.29 29758.55 36229.76 37360.27 34273.58 327
LS3D64.71 23062.50 24371.34 18579.72 12655.71 11779.82 10574.72 23648.50 29056.62 31284.62 14333.59 29482.34 17129.65 37475.23 18275.97 300
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35458.15 35149.03 28251.83 35179.21 25622.39 36855.59 37629.24 37662.64 32472.40 340
MIMVSNet155.17 31454.31 31657.77 32870.03 32032.01 37865.68 31364.81 31549.19 28046.75 37176.00 30325.53 36064.04 34028.65 37762.13 32977.26 289
TDRefinement53.44 32450.72 33361.60 30364.31 36246.96 25270.89 27465.27 31441.78 35044.61 37777.98 27011.52 39366.36 33228.57 37851.59 37071.49 349
WAC-MVS27.31 39227.77 379
myMVS_eth3d54.86 31654.61 31155.61 33774.69 24727.31 39265.52 31557.49 35650.97 26156.52 31472.18 33121.87 37368.09 32127.70 38064.59 30971.44 350
ADS-MVSNet251.33 33348.76 34059.07 31766.02 35544.60 27650.90 38059.76 34636.90 36950.74 35666.18 37226.38 35363.11 34327.17 38154.76 36169.50 365
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38427.17 38154.76 36169.50 365
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39327.08 38360.65 34077.27 288
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35344.50 39227.03 38637.96 39250.47 39426.16 35664.10 33926.74 38459.52 34347.82 393
test_040263.25 24761.01 26269.96 21080.00 12054.37 14076.86 16972.02 26354.58 21658.71 29580.79 22735.00 27784.36 12426.41 38564.71 30671.15 354
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
testing356.54 30055.92 30258.41 32177.52 19527.93 38969.72 28656.36 36154.75 21358.63 29877.80 27720.88 37571.75 30325.31 38762.25 32875.53 306
Syy-MVS56.00 30756.23 30055.32 33874.69 24726.44 39565.52 31557.49 35650.97 26156.52 31472.18 33139.89 22668.09 32124.20 38864.59 30971.44 350
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34751.50 37551.17 25950.30 36267.44 36439.28 23360.29 35322.38 39057.49 35162.76 375
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27847.65 30226.04 39952.32 38912.44 38962.38 34621.80 39110.61 40872.49 335
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38318.92 39341.17 38748.14 392
EGC-MVSNET42.47 35138.48 35954.46 34474.33 25648.73 23270.33 28151.10 3770.03 4110.18 41267.78 36313.28 38866.49 33118.91 39450.36 37448.15 391
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30023.23 39118.41 40425.84 4044.24 40562.73 34414.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38714.01 39855.11 35943.09 395
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 35939.33 39048.65 39816.91 38048.34 39012.18 40219.05 40235.44 401
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35745.20 39045.42 32440.44 38667.26 36734.01 28958.98 35911.96 40324.88 39759.20 378
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34138.30 39166.45 37032.67 30758.42 36310.98 40421.91 40057.99 382
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39810.28 40614.71 40517.63 404
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3549.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 3999.18 40813.66 40617.32 405
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1670.00 4140.00 41582.18 19349.25 1210.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
FOURS186.12 3660.82 3788.18 183.61 6760.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 419
eth-test0.00 419
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4779.66 14659.00 124
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 277
sam_mvs33.43 295
MTGPAbinary80.97 129
test_post3.55 41033.90 29066.52 330
patchmatchnet-post64.03 37634.50 28174.27 291
MTMP86.03 1917.08 413
TEST985.58 4361.59 2481.62 8181.26 12055.65 19174.93 4588.81 5653.70 6984.68 119
test_885.40 4660.96 3481.54 8481.18 12355.86 18374.81 4988.80 5853.70 6984.45 123
agg_prior85.04 5059.96 4781.04 12774.68 5284.04 129
test_prior462.51 1482.08 76
test_prior76.69 5384.20 6157.27 8884.88 3886.43 7986.38 77
新几何276.12 180
旧先验183.04 7053.15 15967.52 29587.85 7144.08 18680.76 10678.03 280
原ACMM279.02 115
test22283.14 6858.68 7372.57 24863.45 32641.78 35067.56 16586.12 11037.13 26078.73 13974.98 313
segment_acmp54.23 58
testdata172.65 24460.50 91
test1277.76 4384.52 5858.41 7583.36 7772.93 8354.61 5488.05 4088.12 3586.81 65
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior486.10 111
plane_prior356.09 10863.92 3669.27 132
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
test1183.47 72
door47.60 386
HQP5-MVS54.94 131
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
HQP4-MVS67.85 15586.93 6484.32 154
HQP3-MVS83.90 5780.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 131
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 132