MVS_0304 | | | 78.73 15 | 78.75 14 | 78.66 29 | 80.82 100 | 57.62 82 | 85.31 29 | 81.31 111 | 70.51 1 | 74.17 52 | 91.24 14 | 54.99 44 | 89.56 16 | 82.29 1 | 88.13 34 | 88.80 6 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 17 | 86.83 8 | 65.51 11 | 83.81 10 | 90.51 22 | 63.71 12 | 89.23 19 | 81.51 2 | 88.44 27 | 88.09 20 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MP-MVS-pluss | | | 78.35 19 | 78.46 17 | 78.03 39 | 84.96 52 | 59.52 52 | 82.93 58 | 85.39 26 | 62.15 66 | 76.41 32 | 91.51 11 | 52.47 71 | 86.78 66 | 80.66 3 | 89.64 19 | 87.80 29 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 61 | 82.20 15 | 92.28 1 | 56.53 33 | 89.70 15 | 79.85 4 | 91.48 1 | 88.19 17 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 59 | 88.18 1 | 87.15 3 | 65.04 15 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 5 | 91.38 2 | 88.42 10 |
|
test_0728_THIRD | | | | | | | | | | 65.04 15 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 5 | 90.63 10 | 88.09 20 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 13 | 78.74 28 | 85.44 45 | 61.04 31 | 83.84 48 | 85.16 30 | 62.88 52 | 78.10 24 | 91.26 13 | 52.51 69 | 88.39 29 | 79.34 7 | 90.52 13 | 86.78 61 |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 8 | 90.65 8 | 87.85 26 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 8 | 90.65 8 | 87.85 26 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 59 | | 85.53 25 | 53.93 215 | 84.64 3 | | | | 79.07 10 | 90.87 5 | 88.37 12 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 60 | 65.37 12 | 78.78 22 | 90.64 18 | 58.63 24 | 87.24 50 | 79.00 11 | 90.37 14 | 85.26 120 |
|
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 27 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 50 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 12 | 88.32 31 | 86.79 60 |
|
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 17 | 84.37 35 | 85.03 34 | 66.96 4 | 77.58 27 | 90.06 35 | 59.47 20 | 89.13 21 | 78.67 13 | 89.73 16 | 87.03 52 |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 33 | 87.75 7 | 59.07 63 | 87.85 5 | 85.03 34 | 64.26 28 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 14 | 90.61 11 | 85.45 110 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 62 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 14 | 90.61 11 | 87.62 36 |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 68 | 87.82 7 | 86.78 10 | 64.18 31 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 16 | 90.87 5 | 88.23 15 |
|
test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 31 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 16 | 90.70 7 | 87.65 34 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 10 | 79.98 2 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 8 | 78.03 26 | 90.98 15 | 54.26 51 | 90.06 12 | 78.42 18 | 89.02 23 | 87.69 32 |
Skip Steuart: Steuart Systems R&D Blog. |
9.14 | | | | 78.75 14 | | 83.10 69 | | 84.15 42 | 88.26 1 | 59.90 105 | 78.57 23 | 90.36 26 | 57.51 30 | 86.86 63 | 77.39 19 | 89.52 21 | |
|
MTAPA | | | 76.90 33 | 76.42 34 | 78.35 34 | 86.08 37 | 63.57 2 | 74.92 198 | 80.97 122 | 65.13 14 | 75.77 34 | 90.88 16 | 48.63 112 | 86.66 69 | 77.23 20 | 88.17 33 | 84.81 132 |
|
MP-MVS |  | | 78.35 19 | 78.26 20 | 78.64 30 | 86.54 25 | 63.47 4 | 86.02 19 | 83.55 64 | 63.89 36 | 73.60 59 | 90.60 19 | 54.85 47 | 86.72 67 | 77.20 21 | 88.06 36 | 85.74 99 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 43 | 82.88 74 | 57.83 79 | 84.99 31 | 88.13 2 | 61.86 74 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 59 | 77.08 22 | 90.18 15 | 87.87 25 |
|
TSAR-MVS + MP. | | | 78.44 18 | 78.28 19 | 78.90 25 | 84.96 52 | 61.41 26 | 84.03 44 | 83.82 58 | 59.34 116 | 79.37 19 | 89.76 44 | 59.84 16 | 87.62 46 | 76.69 23 | 86.74 51 | 87.68 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 13 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 42 | 75.08 38 | 90.47 25 | 53.96 55 | 88.68 26 | 76.48 24 | 89.63 20 | 87.16 50 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 41 | 85.71 25 | 86.42 14 | 63.28 43 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 25 | 89.67 18 | 86.84 58 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SD-MVS | | | 77.70 25 | 77.62 25 | 77.93 41 | 84.47 59 | 61.88 21 | 84.55 33 | 83.87 56 | 60.37 95 | 79.89 18 | 89.38 48 | 54.97 45 | 85.58 96 | 76.12 26 | 84.94 61 | 86.33 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_fmvsmvis_n_1920 | | | 70.84 100 | 70.38 100 | 72.22 156 | 71.16 285 | 55.39 123 | 75.86 178 | 72.21 254 | 49.03 264 | 73.28 64 | 86.17 97 | 51.83 80 | 77.29 254 | 75.80 27 | 78.05 138 | 83.98 154 |
|
HPM-MVS |  | | 77.28 28 | 76.85 29 | 78.54 31 | 85.00 51 | 60.81 38 | 82.91 59 | 85.08 31 | 62.57 59 | 73.09 69 | 89.97 40 | 50.90 93 | 87.48 48 | 75.30 28 | 86.85 49 | 87.33 48 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test9_res | | | | | | | | | | | | | | | 75.28 29 | 88.31 32 | 83.81 161 |
|
train_agg | | | 76.27 38 | 76.15 36 | 76.64 54 | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 114 | 55.86 176 | 74.93 40 | 88.81 55 | 53.70 59 | 84.68 117 | 75.24 30 | 88.33 30 | 83.65 172 |
|
test_fmvsm_n_1920 | | | 71.73 88 | 71.14 88 | 73.50 126 | 72.52 266 | 56.53 100 | 75.60 181 | 76.16 203 | 48.11 275 | 77.22 28 | 85.56 113 | 53.10 66 | 77.43 251 | 74.86 31 | 77.14 150 | 86.55 66 |
|
GST-MVS | | | 78.14 21 | 77.85 23 | 78.99 24 | 86.05 38 | 61.82 22 | 85.84 20 | 85.21 29 | 63.56 40 | 74.29 51 | 90.03 37 | 52.56 68 | 88.53 28 | 74.79 32 | 88.34 29 | 86.63 64 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 21 | 79.83 6 | 83.60 63 | 61.62 23 | 84.17 41 | 86.85 6 | 63.23 45 | 73.84 57 | 90.25 31 | 57.68 27 | 89.96 13 | 74.62 33 | 89.03 22 | 87.89 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PC_three_1452 | | | | | | | | | | 55.09 196 | 84.46 4 | 89.84 42 | 66.68 5 | 89.41 17 | 74.24 34 | 91.38 2 | 88.42 10 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 18 | 84.92 56 | 60.32 44 | 83.03 56 | 85.33 27 | 62.86 53 | 80.17 17 | 90.03 37 | 61.76 14 | 88.95 23 | 74.21 35 | 88.67 26 | 88.12 19 |
|
NCCC | | | 78.58 16 | 78.31 18 | 79.39 11 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 42 | 66.73 7 | 74.67 47 | 89.38 48 | 55.30 41 | 89.18 20 | 74.19 36 | 87.34 42 | 86.38 68 |
|
ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 85 | 57.95 141 | 78.10 24 | 90.06 35 | 56.12 37 | 88.84 25 | 74.05 37 | 87.00 47 | |
|
HFP-MVS | | | 78.01 23 | 77.65 24 | 79.10 20 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 44 | 62.82 54 | 73.96 55 | 90.50 23 | 53.20 64 | 88.35 30 | 74.02 38 | 87.05 43 | 86.13 82 |
|
ACMMPR | | | 77.71 24 | 77.23 27 | 79.16 16 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 45 | 62.82 54 | 73.55 60 | 90.56 21 | 49.80 99 | 88.24 32 | 74.02 38 | 87.03 44 | 86.32 76 |
|
region2R | | | 77.67 26 | 77.18 28 | 79.15 17 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 47 | 62.81 56 | 73.30 62 | 90.58 20 | 49.90 97 | 88.21 33 | 73.78 40 | 87.03 44 | 86.29 79 |
|
MCST-MVS | | | 77.48 27 | 77.45 26 | 77.54 44 | 86.67 20 | 58.36 75 | 83.22 54 | 86.93 5 | 56.91 156 | 74.91 42 | 88.19 60 | 59.15 22 | 87.68 45 | 73.67 41 | 87.45 41 | 86.57 65 |
|
CP-MVS | | | 77.12 31 | 76.68 31 | 78.43 32 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 67 | 62.44 63 | 72.68 75 | 90.50 23 | 48.18 117 | 87.34 49 | 73.59 42 | 85.71 57 | 84.76 135 |
|
APD-MVS |  | | 78.02 22 | 78.04 22 | 77.98 40 | 86.44 27 | 60.81 38 | 85.52 26 | 84.36 43 | 60.61 88 | 79.05 21 | 90.30 29 | 55.54 40 | 88.32 31 | 73.48 43 | 87.03 44 | 84.83 131 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 41 | 67.01 1 | 90.33 11 | 73.16 44 | 91.15 4 | 88.23 15 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 45 | 87.93 39 | 84.33 142 |
|
casdiffmvs_mvg |  | | 76.14 40 | 76.30 35 | 75.66 70 | 76.46 209 | 51.83 176 | 79.67 108 | 85.08 31 | 65.02 18 | 75.84 33 | 88.58 59 | 59.42 21 | 85.08 107 | 72.75 46 | 83.93 71 | 90.08 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CANet | | | 76.46 36 | 75.93 39 | 78.06 38 | 81.29 92 | 57.53 84 | 82.35 68 | 83.31 73 | 67.78 2 | 70.09 99 | 86.34 94 | 54.92 46 | 88.90 24 | 72.68 47 | 84.55 64 | 87.76 31 |
|
PGM-MVS | | | 76.77 34 | 76.06 37 | 78.88 26 | 86.14 35 | 62.73 9 | 82.55 66 | 83.74 59 | 61.71 75 | 72.45 81 | 90.34 28 | 48.48 115 | 88.13 34 | 72.32 48 | 86.85 49 | 85.78 93 |
|
test_prior2 | | | | | | | | 81.75 79 | | 60.37 95 | 75.01 39 | 89.06 51 | 56.22 36 | | 72.19 49 | 88.96 24 | |
|
ACMMP |  | | 76.02 42 | 75.33 45 | 78.07 37 | 85.20 49 | 61.91 20 | 85.49 28 | 84.44 41 | 63.04 48 | 69.80 109 | 89.74 45 | 45.43 156 | 87.16 54 | 72.01 50 | 82.87 82 | 85.14 121 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EC-MVSNet | | | 75.84 44 | 75.87 41 | 75.74 68 | 78.86 141 | 52.65 158 | 83.73 49 | 86.08 17 | 63.47 41 | 72.77 74 | 87.25 76 | 53.13 65 | 87.93 39 | 71.97 51 | 85.57 59 | 86.66 63 |
|
CS-MVS | | | 76.25 39 | 75.98 38 | 77.06 49 | 80.15 115 | 55.63 117 | 84.51 34 | 83.90 53 | 63.24 44 | 73.30 62 | 87.27 75 | 55.06 43 | 86.30 82 | 71.78 52 | 84.58 63 | 89.25 4 |
|
mPP-MVS | | | 76.54 35 | 75.93 39 | 78.34 35 | 86.47 26 | 63.50 3 | 85.74 24 | 82.28 89 | 62.90 51 | 71.77 85 | 90.26 30 | 46.61 143 | 86.55 73 | 71.71 53 | 85.66 58 | 84.97 128 |
|
SR-MVS | | | 76.13 41 | 75.70 42 | 77.40 47 | 85.87 40 | 61.20 29 | 85.52 26 | 82.19 90 | 59.99 104 | 75.10 37 | 90.35 27 | 47.66 124 | 86.52 74 | 71.64 54 | 82.99 77 | 84.47 141 |
|
XVS | | | 77.17 30 | 76.56 33 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 22 | 72.17 82 | 90.01 39 | 47.95 119 | 88.01 37 | 71.55 55 | 86.74 51 | 86.37 70 |
|
X-MVStestdata | | | 70.21 113 | 67.28 161 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 22 | 72.17 82 | 6.49 381 | 47.95 119 | 88.01 37 | 71.55 55 | 86.74 51 | 86.37 70 |
|
dcpmvs_2 | | | 74.55 56 | 75.23 47 | 72.48 149 | 82.34 77 | 53.34 147 | 77.87 131 | 81.46 102 | 57.80 145 | 75.49 35 | 86.81 79 | 62.22 13 | 77.75 247 | 71.09 57 | 82.02 90 | 86.34 72 |
|
PHI-MVS | | | 75.87 43 | 75.36 44 | 77.41 45 | 80.62 106 | 55.91 112 | 84.28 38 | 85.78 20 | 56.08 174 | 73.41 61 | 86.58 89 | 50.94 92 | 88.54 27 | 70.79 58 | 89.71 17 | 87.79 30 |
|
diffmvs |  | | 70.69 104 | 70.43 98 | 71.46 167 | 69.45 306 | 48.95 217 | 72.93 230 | 78.46 167 | 57.27 150 | 71.69 86 | 83.97 144 | 51.48 84 | 77.92 244 | 70.70 59 | 77.95 140 | 87.53 39 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
h-mvs33 | | | 72.71 72 | 71.49 79 | 76.40 57 | 81.99 81 | 59.58 51 | 76.92 157 | 76.74 199 | 60.40 92 | 74.81 43 | 85.95 106 | 45.54 152 | 85.76 92 | 70.41 60 | 70.61 224 | 83.86 160 |
|
hse-mvs2 | | | 71.04 97 | 69.86 107 | 74.60 94 | 79.58 123 | 57.12 95 | 73.96 214 | 75.25 217 | 60.40 92 | 74.81 43 | 81.95 189 | 45.54 152 | 82.90 150 | 70.41 60 | 66.83 272 | 83.77 165 |
|
APD-MVS_3200maxsize | | | 74.96 48 | 74.39 54 | 76.67 53 | 82.20 78 | 58.24 76 | 83.67 50 | 83.29 74 | 58.41 130 | 73.71 58 | 90.14 32 | 45.62 149 | 85.99 86 | 69.64 62 | 82.85 83 | 85.78 93 |
|
baseline | | | 74.61 54 | 74.70 51 | 74.34 101 | 75.70 217 | 49.99 202 | 77.54 140 | 84.63 40 | 62.73 58 | 73.98 54 | 87.79 69 | 57.67 28 | 83.82 133 | 69.49 63 | 82.74 85 | 89.20 5 |
|
OPM-MVS | | | 74.73 52 | 74.25 55 | 76.19 60 | 80.81 101 | 59.01 66 | 82.60 65 | 83.64 61 | 63.74 38 | 72.52 78 | 87.49 70 | 47.18 134 | 85.88 89 | 69.47 64 | 80.78 98 | 83.66 171 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
casdiffmvs |  | | 74.80 50 | 74.89 50 | 74.53 97 | 75.59 221 | 50.37 194 | 78.17 127 | 85.06 33 | 62.80 57 | 74.40 49 | 87.86 67 | 57.88 26 | 83.61 137 | 69.46 65 | 82.79 84 | 89.59 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CDPH-MVS | | | 76.31 37 | 75.67 43 | 78.22 36 | 85.35 48 | 59.14 61 | 81.31 86 | 84.02 48 | 56.32 168 | 74.05 53 | 88.98 53 | 53.34 63 | 87.92 40 | 69.23 66 | 88.42 28 | 87.59 37 |
|
CPTT-MVS | | | 72.78 70 | 72.08 74 | 74.87 85 | 84.88 57 | 61.41 26 | 84.15 42 | 77.86 179 | 55.27 191 | 67.51 153 | 88.08 63 | 41.93 189 | 81.85 175 | 69.04 67 | 80.01 110 | 81.35 217 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 29 | 76.63 32 | 79.12 19 | 86.15 34 | 60.86 36 | 84.71 32 | 84.85 38 | 61.98 73 | 73.06 70 | 88.88 54 | 53.72 58 | 89.06 22 | 68.27 68 | 88.04 37 | 87.42 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 74.57 55 | 73.90 58 | 76.58 55 | 83.49 65 | 59.87 48 | 84.29 36 | 81.36 106 | 58.07 136 | 73.14 67 | 90.07 33 | 44.74 163 | 85.84 90 | 68.20 69 | 81.76 93 | 84.03 151 |
|
RE-MVS-def | | | | 73.71 62 | | 83.49 65 | 59.87 48 | 84.29 36 | 81.36 106 | 58.07 136 | 73.14 67 | 90.07 33 | 43.06 178 | | 68.20 69 | 81.76 93 | 84.03 151 |
|
HQP_MVS | | | 74.31 58 | 73.73 61 | 76.06 61 | 81.41 89 | 56.31 101 | 84.22 39 | 84.01 49 | 64.52 24 | 69.27 117 | 86.10 99 | 45.26 160 | 87.21 52 | 68.16 71 | 80.58 102 | 84.65 136 |
|
plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 52 | 68.16 71 | 80.58 102 | 84.65 136 |
|
mvsmamba | | | 71.15 95 | 69.54 112 | 75.99 62 | 77.61 183 | 53.46 144 | 81.95 77 | 75.11 222 | 57.73 146 | 66.95 163 | 85.96 105 | 37.14 240 | 87.56 47 | 67.94 73 | 75.49 166 | 86.97 53 |
|
CSCG | | | 76.92 32 | 76.75 30 | 77.41 45 | 83.96 62 | 59.60 50 | 82.95 57 | 86.50 13 | 60.78 86 | 75.27 36 | 84.83 123 | 60.76 15 | 86.56 72 | 67.86 74 | 87.87 40 | 86.06 84 |
|
CS-MVS-test | | | 75.62 46 | 75.31 46 | 76.56 56 | 80.63 105 | 55.13 126 | 83.88 47 | 85.22 28 | 62.05 70 | 71.49 89 | 86.03 102 | 53.83 57 | 86.36 80 | 67.74 75 | 86.91 48 | 88.19 17 |
|
LPG-MVS_test | | | 72.74 71 | 71.74 76 | 75.76 66 | 80.22 110 | 57.51 85 | 82.55 66 | 83.40 69 | 61.32 78 | 66.67 169 | 87.33 73 | 39.15 217 | 86.59 70 | 67.70 76 | 77.30 148 | 83.19 183 |
|
LGP-MVS_train | | | | | 75.76 66 | 80.22 110 | 57.51 85 | | 83.40 69 | 61.32 78 | 66.67 169 | 87.33 73 | 39.15 217 | 86.59 70 | 67.70 76 | 77.30 148 | 83.19 183 |
|
HPM-MVS_fast | | | 74.30 59 | 73.46 64 | 76.80 51 | 84.45 60 | 59.04 65 | 83.65 51 | 81.05 119 | 60.15 101 | 70.43 95 | 89.84 42 | 41.09 203 | 85.59 95 | 67.61 78 | 82.90 81 | 85.77 96 |
|
MVS_111021_HR | | | 74.02 60 | 73.46 64 | 75.69 69 | 83.01 72 | 60.63 40 | 77.29 148 | 78.40 172 | 61.18 81 | 70.58 94 | 85.97 104 | 54.18 53 | 84.00 130 | 67.52 79 | 82.98 79 | 82.45 197 |
|
ETV-MVS | | | 74.46 57 | 73.84 60 | 76.33 59 | 79.27 131 | 55.24 125 | 79.22 114 | 85.00 36 | 64.97 20 | 72.65 76 | 79.46 238 | 53.65 62 | 87.87 41 | 67.45 80 | 82.91 80 | 85.89 90 |
|
DELS-MVS | | | 74.76 51 | 74.46 53 | 75.65 71 | 77.84 172 | 52.25 168 | 75.59 182 | 84.17 46 | 63.76 37 | 73.15 66 | 82.79 164 | 59.58 19 | 86.80 65 | 67.24 81 | 86.04 56 | 87.89 23 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + GP. | | | 74.90 49 | 74.15 56 | 77.17 48 | 82.00 80 | 58.77 71 | 81.80 78 | 78.57 161 | 58.58 127 | 74.32 50 | 84.51 133 | 55.94 38 | 87.22 51 | 67.11 82 | 84.48 66 | 85.52 106 |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 83 | | |
|
HQP-MVS | | | 73.45 64 | 72.80 68 | 75.40 75 | 80.66 102 | 54.94 127 | 82.31 70 | 83.90 53 | 62.10 67 | 67.85 142 | 85.54 116 | 45.46 154 | 86.93 61 | 67.04 83 | 80.35 106 | 84.32 143 |
|
ACMP | | 63.53 6 | 72.30 78 | 71.20 87 | 75.59 74 | 80.28 108 | 57.54 83 | 82.74 62 | 82.84 84 | 60.58 89 | 65.24 200 | 86.18 96 | 39.25 215 | 86.03 85 | 66.95 85 | 76.79 155 | 83.22 181 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EI-MVSNet-Vis-set | | | 72.42 77 | 71.59 77 | 74.91 83 | 78.47 152 | 54.02 135 | 77.05 153 | 79.33 146 | 65.03 17 | 71.68 87 | 79.35 241 | 52.75 67 | 84.89 113 | 66.46 86 | 74.23 173 | 85.83 92 |
|
DPM-MVS | | | 75.47 47 | 75.00 48 | 76.88 50 | 81.38 91 | 59.16 58 | 79.94 101 | 85.71 22 | 56.59 164 | 72.46 79 | 86.76 80 | 56.89 31 | 87.86 42 | 66.36 87 | 88.91 25 | 83.64 173 |
|
patch_mono-2 | | | 69.85 120 | 71.09 89 | 66.16 249 | 79.11 137 | 54.80 131 | 71.97 246 | 74.31 233 | 53.50 220 | 70.90 92 | 84.17 137 | 57.63 29 | 63.31 320 | 66.17 88 | 82.02 90 | 80.38 234 |
|
MVSFormer | | | 71.50 92 | 70.38 100 | 74.88 84 | 78.76 144 | 57.15 93 | 82.79 60 | 78.48 165 | 51.26 244 | 69.49 112 | 83.22 158 | 43.99 171 | 83.24 143 | 66.06 89 | 79.37 118 | 84.23 146 |
|
test_djsdf | | | 69.45 134 | 67.74 142 | 74.58 95 | 74.57 238 | 54.92 129 | 82.79 60 | 78.48 165 | 51.26 244 | 65.41 193 | 83.49 156 | 38.37 224 | 83.24 143 | 66.06 89 | 69.25 251 | 85.56 105 |
|
canonicalmvs | | | 74.67 53 | 74.98 49 | 73.71 117 | 78.94 140 | 50.56 192 | 80.23 95 | 83.87 56 | 60.30 99 | 77.15 29 | 86.56 90 | 59.65 17 | 82.00 173 | 66.01 91 | 82.12 88 | 88.58 9 |
|
MVS_Test | | | 72.45 76 | 72.46 71 | 72.42 153 | 74.88 229 | 48.50 223 | 76.28 168 | 83.14 79 | 59.40 114 | 72.46 79 | 84.68 125 | 55.66 39 | 81.12 190 | 65.98 92 | 79.66 114 | 87.63 35 |
|
alignmvs | | | 73.86 62 | 73.99 57 | 73.45 129 | 78.20 160 | 50.50 193 | 78.57 122 | 82.43 87 | 59.40 114 | 76.57 30 | 86.71 84 | 56.42 35 | 81.23 189 | 65.84 93 | 81.79 92 | 88.62 7 |
|
nrg030 | | | 72.96 69 | 73.01 66 | 72.84 142 | 75.41 224 | 50.24 195 | 80.02 99 | 82.89 83 | 58.36 132 | 74.44 48 | 86.73 82 | 58.90 23 | 80.83 199 | 65.84 93 | 74.46 170 | 87.44 41 |
|
iter_conf05 | | | 69.40 136 | 67.62 146 | 74.73 86 | 77.84 172 | 51.13 180 | 79.28 113 | 73.71 242 | 54.62 206 | 68.17 134 | 83.59 151 | 28.68 315 | 87.16 54 | 65.74 95 | 76.95 152 | 85.91 88 |
|
MVS_111021_LR | | | 69.50 132 | 68.78 126 | 71.65 164 | 78.38 154 | 59.33 55 | 74.82 200 | 70.11 268 | 58.08 135 | 67.83 146 | 84.68 125 | 41.96 188 | 76.34 265 | 65.62 96 | 77.54 143 | 79.30 250 |
|
EI-MVSNet-UG-set | | | 71.92 84 | 71.06 90 | 74.52 98 | 77.98 169 | 53.56 141 | 76.62 161 | 79.16 147 | 64.40 26 | 71.18 90 | 78.95 246 | 52.19 75 | 84.66 119 | 65.47 97 | 73.57 183 | 85.32 117 |
|
iter_conf_final | | | 69.82 121 | 68.02 140 | 75.23 80 | 79.38 128 | 52.91 155 | 80.11 98 | 73.96 239 | 54.99 202 | 68.04 139 | 83.59 151 | 29.05 310 | 87.16 54 | 65.41 98 | 77.62 142 | 85.63 103 |
|
PS-MVSNAJss | | | 72.24 79 | 71.21 86 | 75.31 77 | 78.50 150 | 55.93 111 | 81.63 80 | 82.12 91 | 56.24 171 | 70.02 103 | 85.68 112 | 47.05 136 | 84.34 123 | 65.27 99 | 74.41 172 | 85.67 100 |
|
MSLP-MVS++ | | | 73.77 63 | 73.47 63 | 74.66 90 | 83.02 71 | 59.29 57 | 82.30 73 | 81.88 94 | 59.34 116 | 71.59 88 | 86.83 78 | 45.94 147 | 83.65 136 | 65.09 100 | 85.22 60 | 81.06 224 |
|
v2v482 | | | 70.50 108 | 69.45 116 | 73.66 119 | 72.62 263 | 50.03 201 | 77.58 137 | 80.51 129 | 59.90 105 | 69.52 111 | 82.14 185 | 47.53 127 | 84.88 115 | 65.07 101 | 70.17 232 | 86.09 83 |
|
jason | | | 69.65 128 | 68.39 135 | 73.43 131 | 78.27 159 | 56.88 97 | 77.12 151 | 73.71 242 | 46.53 292 | 69.34 116 | 83.22 158 | 43.37 175 | 79.18 223 | 64.77 102 | 79.20 123 | 84.23 146 |
jason: jason. |
anonymousdsp | | | 67.00 186 | 64.82 203 | 73.57 125 | 70.09 298 | 56.13 106 | 76.35 166 | 77.35 190 | 48.43 271 | 64.99 208 | 80.84 214 | 33.01 278 | 80.34 208 | 64.66 103 | 67.64 266 | 84.23 146 |
|
lupinMVS | | | 69.57 130 | 68.28 136 | 73.44 130 | 78.76 144 | 57.15 93 | 76.57 162 | 73.29 246 | 46.19 295 | 69.49 112 | 82.18 181 | 43.99 171 | 79.23 222 | 64.66 103 | 79.37 118 | 83.93 155 |
|
CLD-MVS | | | 73.33 65 | 72.68 69 | 75.29 79 | 78.82 143 | 53.33 148 | 78.23 126 | 84.79 39 | 61.30 80 | 70.41 96 | 81.04 206 | 52.41 72 | 87.12 57 | 64.61 105 | 82.49 87 | 85.41 114 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 68.65 148 | 67.35 159 | 72.56 147 | 68.93 312 | 50.18 197 | 72.90 231 | 79.47 143 | 56.92 155 | 69.45 114 | 80.26 222 | 46.29 145 | 82.99 147 | 64.07 106 | 67.82 264 | 84.53 138 |
|
3Dnovator+ | | 66.72 4 | 75.84 44 | 74.57 52 | 79.66 8 | 82.40 76 | 59.92 47 | 85.83 21 | 86.32 16 | 66.92 6 | 67.80 147 | 89.24 50 | 42.03 187 | 89.38 18 | 64.07 106 | 86.50 54 | 89.69 2 |
|
v1144 | | | 70.42 109 | 69.31 117 | 73.76 113 | 73.22 251 | 50.64 189 | 77.83 133 | 81.43 103 | 58.58 127 | 69.40 115 | 81.16 203 | 47.53 127 | 85.29 106 | 64.01 108 | 70.64 222 | 85.34 116 |
|
Effi-MVS+ | | | 73.31 66 | 72.54 70 | 75.62 72 | 77.87 171 | 53.64 139 | 79.62 110 | 79.61 140 | 61.63 76 | 72.02 84 | 82.61 169 | 56.44 34 | 85.97 87 | 63.99 109 | 79.07 126 | 87.25 49 |
|
SDMVSNet | | | 68.03 162 | 68.10 139 | 67.84 229 | 77.13 193 | 48.72 221 | 65.32 299 | 79.10 148 | 58.02 138 | 65.08 203 | 82.55 171 | 47.83 121 | 73.40 277 | 63.92 110 | 73.92 176 | 81.41 212 |
|
xiu_mvs_v1_base_debu | | | 68.58 150 | 67.28 161 | 72.48 149 | 78.19 161 | 57.19 90 | 75.28 187 | 75.09 223 | 51.61 235 | 70.04 100 | 81.41 200 | 32.79 281 | 79.02 230 | 63.81 111 | 77.31 145 | 81.22 219 |
|
xiu_mvs_v1_base | | | 68.58 150 | 67.28 161 | 72.48 149 | 78.19 161 | 57.19 90 | 75.28 187 | 75.09 223 | 51.61 235 | 70.04 100 | 81.41 200 | 32.79 281 | 79.02 230 | 63.81 111 | 77.31 145 | 81.22 219 |
|
xiu_mvs_v1_base_debi | | | 68.58 150 | 67.28 161 | 72.48 149 | 78.19 161 | 57.19 90 | 75.28 187 | 75.09 223 | 51.61 235 | 70.04 100 | 81.41 200 | 32.79 281 | 79.02 230 | 63.81 111 | 77.31 145 | 81.22 219 |
|
v8 | | | 70.33 111 | 69.28 118 | 73.49 127 | 73.15 253 | 50.22 196 | 78.62 121 | 80.78 125 | 60.79 85 | 66.45 173 | 82.11 187 | 49.35 102 | 84.98 110 | 63.58 114 | 68.71 258 | 85.28 118 |
|
jajsoiax | | | 68.25 158 | 66.45 174 | 73.66 119 | 75.62 219 | 55.49 121 | 80.82 90 | 78.51 164 | 52.33 230 | 64.33 215 | 84.11 139 | 28.28 317 | 81.81 177 | 63.48 115 | 70.62 223 | 83.67 169 |
|
mvs_tets | | | 68.18 160 | 66.36 180 | 73.63 122 | 75.61 220 | 55.35 124 | 80.77 91 | 78.56 162 | 52.48 229 | 64.27 217 | 84.10 140 | 27.45 323 | 81.84 176 | 63.45 116 | 70.56 225 | 83.69 168 |
|
bld_raw_dy_0_64 | | | 64.87 216 | 63.22 220 | 69.83 204 | 74.79 233 | 53.32 149 | 78.15 128 | 62.02 321 | 51.20 246 | 60.17 257 | 83.12 162 | 24.15 342 | 74.20 276 | 63.08 117 | 72.33 205 | 81.96 204 |
|
v144192 | | | 69.71 124 | 68.51 129 | 73.33 134 | 73.10 254 | 50.13 198 | 77.54 140 | 80.64 126 | 56.65 158 | 68.57 127 | 80.55 216 | 46.87 141 | 84.96 112 | 62.98 118 | 69.66 245 | 84.89 130 |
|
v1192 | | | 69.97 118 | 68.68 127 | 73.85 108 | 73.19 252 | 50.94 182 | 77.68 136 | 81.36 106 | 57.51 148 | 68.95 123 | 80.85 213 | 45.28 159 | 85.33 105 | 62.97 119 | 70.37 228 | 85.27 119 |
|
v10 | | | 70.21 113 | 69.02 122 | 73.81 110 | 73.51 250 | 50.92 184 | 78.74 118 | 81.39 104 | 60.05 103 | 66.39 174 | 81.83 192 | 47.58 126 | 85.41 104 | 62.80 120 | 68.86 257 | 85.09 124 |
|
OMC-MVS | | | 71.40 94 | 70.60 95 | 73.78 111 | 76.60 205 | 53.15 151 | 79.74 107 | 79.78 136 | 58.37 131 | 68.75 124 | 86.45 92 | 45.43 156 | 80.60 203 | 62.58 121 | 77.73 141 | 87.58 38 |
|
XVG-OURS-SEG-HR | | | 68.81 144 | 67.47 154 | 72.82 144 | 74.40 242 | 56.87 98 | 70.59 264 | 79.04 149 | 54.77 205 | 66.99 161 | 86.01 103 | 39.57 211 | 78.21 240 | 62.54 122 | 73.33 189 | 83.37 177 |
|
EPNet | | | 73.09 68 | 72.16 72 | 75.90 64 | 75.95 215 | 56.28 103 | 83.05 55 | 72.39 252 | 66.53 9 | 65.27 196 | 87.00 77 | 50.40 95 | 85.47 101 | 62.48 123 | 86.32 55 | 85.94 86 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1921920 | | | 69.47 133 | 68.17 137 | 73.36 133 | 73.06 255 | 50.10 199 | 77.39 143 | 80.56 127 | 56.58 165 | 68.59 125 | 80.37 218 | 44.72 164 | 84.98 110 | 62.47 124 | 69.82 240 | 85.00 126 |
|
c3_l | | | 68.33 156 | 67.56 147 | 70.62 188 | 70.87 287 | 46.21 247 | 74.47 207 | 78.80 155 | 56.22 172 | 66.19 177 | 78.53 253 | 51.88 78 | 81.40 183 | 62.08 125 | 69.04 254 | 84.25 145 |
|
AUN-MVS | | | 68.45 155 | 66.41 178 | 74.57 96 | 79.53 125 | 57.08 96 | 73.93 217 | 75.23 218 | 54.44 212 | 66.69 168 | 81.85 191 | 37.10 242 | 82.89 151 | 62.07 126 | 66.84 271 | 83.75 166 |
|
XVG-OURS | | | 68.76 147 | 67.37 157 | 72.90 141 | 74.32 244 | 57.22 88 | 70.09 271 | 78.81 154 | 55.24 192 | 67.79 148 | 85.81 111 | 36.54 247 | 78.28 239 | 62.04 127 | 75.74 163 | 83.19 183 |
|
v1240 | | | 69.24 139 | 67.91 141 | 73.25 137 | 73.02 257 | 49.82 203 | 77.21 150 | 80.54 128 | 56.43 167 | 68.34 131 | 80.51 217 | 43.33 176 | 84.99 108 | 62.03 128 | 69.77 243 | 84.95 129 |
|
ET-MVSNet_ETH3D | | | 67.96 165 | 65.72 192 | 74.68 89 | 76.67 203 | 55.62 119 | 75.11 192 | 74.74 227 | 52.91 224 | 60.03 259 | 80.12 224 | 33.68 271 | 82.64 162 | 61.86 129 | 76.34 158 | 85.78 93 |
|
VDD-MVS | | | 72.50 74 | 72.09 73 | 73.75 115 | 81.58 85 | 49.69 207 | 77.76 135 | 77.63 184 | 63.21 46 | 73.21 65 | 89.02 52 | 42.14 186 | 83.32 141 | 61.72 130 | 82.50 86 | 88.25 14 |
|
PS-MVSNAJ | | | 70.51 107 | 69.70 110 | 72.93 140 | 81.52 86 | 55.79 113 | 74.92 198 | 79.00 150 | 55.04 201 | 69.88 107 | 78.66 248 | 47.05 136 | 82.19 170 | 61.61 131 | 79.58 115 | 80.83 227 |
|
xiu_mvs_v2_base | | | 70.52 106 | 69.75 108 | 72.84 142 | 81.21 95 | 55.63 117 | 75.11 192 | 78.92 152 | 54.92 203 | 69.96 106 | 79.68 233 | 47.00 140 | 82.09 172 | 61.60 132 | 79.37 118 | 80.81 228 |
|
cl22 | | | 67.47 174 | 66.45 174 | 70.54 190 | 69.85 302 | 46.49 243 | 73.85 220 | 77.35 190 | 55.07 199 | 65.51 191 | 77.92 258 | 47.64 125 | 81.10 191 | 61.58 133 | 69.32 248 | 84.01 153 |
|
RRT_MVS | | | 69.42 135 | 67.49 153 | 75.21 81 | 78.01 168 | 52.56 162 | 82.23 74 | 78.15 175 | 55.84 178 | 65.65 188 | 85.07 120 | 30.86 296 | 86.83 64 | 61.56 134 | 70.00 235 | 86.24 81 |
|
miper_ehance_all_eth | | | 68.03 162 | 67.24 165 | 70.40 192 | 70.54 290 | 46.21 247 | 73.98 213 | 78.68 159 | 55.07 199 | 66.05 179 | 77.80 262 | 52.16 76 | 81.31 186 | 61.53 135 | 69.32 248 | 83.67 169 |
|
MG-MVS | | | 73.96 61 | 73.89 59 | 74.16 104 | 85.65 42 | 49.69 207 | 81.59 83 | 81.29 113 | 61.45 77 | 71.05 91 | 88.11 61 | 51.77 81 | 87.73 44 | 61.05 136 | 83.09 75 | 85.05 125 |
|
miper_enhance_ethall | | | 67.11 183 | 66.09 187 | 70.17 196 | 69.21 309 | 45.98 249 | 72.85 232 | 78.41 171 | 51.38 241 | 65.65 188 | 75.98 286 | 51.17 88 | 81.25 187 | 60.82 137 | 69.32 248 | 83.29 180 |
|
ACMM | | 61.98 7 | 70.80 103 | 69.73 109 | 74.02 105 | 80.59 107 | 58.59 73 | 82.68 63 | 82.02 93 | 55.46 188 | 67.18 158 | 84.39 135 | 38.51 222 | 83.17 145 | 60.65 138 | 76.10 160 | 80.30 235 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Effi-MVS+-dtu | | | 69.64 129 | 67.53 150 | 75.95 63 | 76.10 213 | 62.29 15 | 80.20 97 | 76.06 207 | 59.83 109 | 65.26 199 | 77.09 268 | 41.56 195 | 84.02 129 | 60.60 139 | 71.09 220 | 81.53 210 |
|
PVSNet_Blended_VisFu | | | 71.45 93 | 70.39 99 | 74.65 91 | 82.01 79 | 58.82 70 | 79.93 102 | 80.35 132 | 55.09 196 | 65.82 187 | 82.16 184 | 49.17 106 | 82.64 162 | 60.34 140 | 78.62 134 | 82.50 196 |
|
MVSTER | | | 67.16 182 | 65.58 195 | 71.88 158 | 70.37 294 | 49.70 205 | 70.25 270 | 78.45 168 | 51.52 238 | 69.16 121 | 80.37 218 | 38.45 223 | 82.50 165 | 60.19 141 | 71.46 216 | 83.44 176 |
|
EIA-MVS | | | 71.78 86 | 70.60 95 | 75.30 78 | 79.85 119 | 53.54 142 | 77.27 149 | 83.26 76 | 57.92 142 | 66.49 171 | 79.39 239 | 52.07 77 | 86.69 68 | 60.05 142 | 79.14 125 | 85.66 101 |
|
v148 | | | 68.24 159 | 67.19 167 | 71.40 171 | 70.43 292 | 47.77 232 | 75.76 180 | 77.03 194 | 58.91 120 | 67.36 154 | 80.10 225 | 48.60 114 | 81.89 174 | 60.01 143 | 66.52 275 | 84.53 138 |
|
test_vis1_n_1920 | | | 58.86 264 | 59.06 256 | 58.25 302 | 63.76 340 | 43.14 277 | 67.49 285 | 66.36 294 | 40.22 337 | 65.89 184 | 71.95 313 | 31.04 294 | 59.75 334 | 59.94 144 | 64.90 285 | 71.85 325 |
|
CANet_DTU | | | 68.18 160 | 67.71 145 | 69.59 207 | 74.83 231 | 46.24 246 | 78.66 120 | 76.85 196 | 59.60 110 | 63.45 225 | 82.09 188 | 35.25 255 | 77.41 252 | 59.88 145 | 78.76 131 | 85.14 121 |
|
IterMVS-LS | | | 69.22 140 | 68.48 130 | 71.43 170 | 74.44 241 | 49.40 211 | 76.23 169 | 77.55 185 | 59.60 110 | 65.85 186 | 81.59 198 | 51.28 86 | 81.58 181 | 59.87 146 | 69.90 239 | 83.30 178 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 69.27 138 | 68.44 134 | 71.73 161 | 74.47 239 | 49.39 212 | 75.20 190 | 78.45 168 | 59.60 110 | 69.16 121 | 76.51 278 | 51.29 85 | 82.50 165 | 59.86 147 | 71.45 217 | 83.30 178 |
|
3Dnovator | | 64.47 5 | 72.49 75 | 71.39 82 | 75.79 65 | 77.70 175 | 58.99 67 | 80.66 93 | 83.15 78 | 62.24 65 | 65.46 192 | 86.59 88 | 42.38 185 | 85.52 97 | 59.59 148 | 84.72 62 | 82.85 191 |
|
eth_miper_zixun_eth | | | 67.63 171 | 66.28 184 | 71.67 163 | 71.60 278 | 48.33 225 | 73.68 223 | 77.88 178 | 55.80 181 | 65.91 182 | 78.62 251 | 47.35 133 | 82.88 152 | 59.45 149 | 66.25 276 | 83.81 161 |
|
DIV-MVS_self_test | | | 67.18 180 | 66.26 185 | 69.94 199 | 70.20 295 | 45.74 251 | 73.29 226 | 76.83 197 | 55.10 194 | 65.27 196 | 79.58 234 | 47.38 132 | 80.53 204 | 59.43 150 | 69.22 252 | 83.54 174 |
|
cl____ | | | 67.18 180 | 66.26 185 | 69.94 199 | 70.20 295 | 45.74 251 | 73.30 225 | 76.83 197 | 55.10 194 | 65.27 196 | 79.57 235 | 47.39 131 | 80.53 204 | 59.41 151 | 69.22 252 | 83.53 175 |
|
旧先验2 | | | | | | | | 76.08 172 | | 45.32 302 | 76.55 31 | | | 65.56 315 | 58.75 152 | | |
|
VDDNet | | | 71.81 85 | 71.33 84 | 73.26 136 | 82.80 75 | 47.60 235 | 78.74 118 | 75.27 216 | 59.59 113 | 72.94 71 | 89.40 47 | 41.51 197 | 83.91 131 | 58.75 152 | 82.99 77 | 88.26 13 |
|
114514_t | | | 70.83 101 | 69.56 111 | 74.64 92 | 86.21 31 | 54.63 132 | 82.34 69 | 81.81 96 | 48.22 273 | 63.01 229 | 85.83 109 | 40.92 204 | 87.10 58 | 57.91 154 | 79.79 111 | 82.18 200 |
|
Vis-MVSNet |  | | 72.18 80 | 71.37 83 | 74.61 93 | 81.29 92 | 55.41 122 | 80.90 89 | 78.28 174 | 60.73 87 | 69.23 120 | 88.09 62 | 44.36 168 | 82.65 161 | 57.68 155 | 81.75 95 | 85.77 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_cas_vis1_n_1920 | | | 56.91 278 | 56.71 275 | 57.51 310 | 59.13 358 | 45.40 257 | 63.58 308 | 61.29 324 | 36.24 346 | 67.14 159 | 71.85 314 | 29.89 304 | 56.69 346 | 57.65 156 | 63.58 296 | 70.46 336 |
|
PAPM_NR | | | 72.63 73 | 71.80 75 | 75.13 82 | 81.72 84 | 53.42 146 | 79.91 103 | 83.28 75 | 59.14 118 | 66.31 176 | 85.90 107 | 51.86 79 | 86.06 83 | 57.45 157 | 80.62 100 | 85.91 88 |
|
LFMVS | | | 71.78 86 | 71.59 77 | 72.32 154 | 83.40 67 | 46.38 244 | 79.75 106 | 71.08 261 | 64.18 31 | 72.80 73 | 88.64 58 | 42.58 182 | 83.72 134 | 57.41 158 | 84.49 65 | 86.86 57 |
|
v7n | | | 69.01 142 | 67.36 158 | 73.98 106 | 72.51 267 | 52.65 158 | 78.54 124 | 81.30 112 | 60.26 100 | 62.67 233 | 81.62 195 | 43.61 173 | 84.49 120 | 57.01 159 | 68.70 259 | 84.79 133 |
|
GeoE | | | 71.01 98 | 70.15 104 | 73.60 124 | 79.57 124 | 52.17 169 | 78.93 116 | 78.12 176 | 58.02 138 | 67.76 150 | 83.87 145 | 52.36 73 | 82.72 159 | 56.90 160 | 75.79 162 | 85.92 87 |
|
FA-MVS(test-final) | | | 69.82 121 | 68.48 130 | 73.84 109 | 78.44 153 | 50.04 200 | 75.58 184 | 78.99 151 | 58.16 134 | 67.59 151 | 82.14 185 | 42.66 180 | 85.63 93 | 56.60 161 | 76.19 159 | 85.84 91 |
|
mvs_anonymous | | | 68.03 162 | 67.51 151 | 69.59 207 | 72.08 272 | 44.57 265 | 71.99 245 | 75.23 218 | 51.67 234 | 67.06 160 | 82.57 170 | 54.68 48 | 77.94 243 | 56.56 162 | 75.71 164 | 86.26 80 |
|
Patchmatch-RL test | | | 58.16 269 | 55.49 283 | 66.15 250 | 67.92 318 | 48.89 218 | 60.66 326 | 51.07 355 | 47.86 279 | 59.36 269 | 62.71 355 | 34.02 268 | 72.27 283 | 56.41 163 | 59.40 322 | 77.30 268 |
|
miper_lstm_enhance | | | 62.03 245 | 60.88 248 | 65.49 261 | 66.71 325 | 46.25 245 | 56.29 342 | 75.70 210 | 50.68 249 | 61.27 251 | 75.48 291 | 40.21 206 | 68.03 302 | 56.31 164 | 65.25 283 | 82.18 200 |
|
thisisatest0530 | | | 67.92 166 | 65.78 191 | 74.33 102 | 76.29 210 | 51.03 181 | 76.89 158 | 74.25 235 | 53.67 218 | 65.59 190 | 81.76 193 | 35.15 256 | 85.50 99 | 55.94 165 | 72.47 202 | 86.47 67 |
|
EPP-MVSNet | | | 72.16 82 | 71.31 85 | 74.71 87 | 78.68 147 | 49.70 205 | 82.10 75 | 81.65 98 | 60.40 92 | 65.94 181 | 85.84 108 | 51.74 82 | 86.37 79 | 55.93 166 | 79.55 117 | 88.07 22 |
|
PVSNet_BlendedMVS | | | 68.56 153 | 67.72 143 | 71.07 181 | 77.03 197 | 50.57 190 | 74.50 206 | 81.52 99 | 53.66 219 | 64.22 219 | 79.72 232 | 49.13 107 | 82.87 153 | 55.82 167 | 73.92 176 | 79.77 245 |
|
PVSNet_Blended | | | 68.59 149 | 67.72 143 | 71.19 177 | 77.03 197 | 50.57 190 | 72.51 238 | 81.52 99 | 51.91 233 | 64.22 219 | 77.77 264 | 49.13 107 | 82.87 153 | 55.82 167 | 79.58 115 | 80.14 238 |
|
PAPR | | | 71.72 89 | 70.82 93 | 74.41 100 | 81.20 96 | 51.17 179 | 79.55 111 | 83.33 72 | 55.81 180 | 66.93 164 | 84.61 129 | 50.95 91 | 86.06 83 | 55.79 169 | 79.20 123 | 86.00 85 |
|
tttt0517 | | | 67.83 168 | 65.66 193 | 74.33 102 | 76.69 202 | 50.82 186 | 77.86 132 | 73.99 238 | 54.54 210 | 64.64 212 | 82.53 174 | 35.06 257 | 85.50 99 | 55.71 170 | 69.91 238 | 86.67 62 |
|
IterMVS-SCA-FT | | | 62.49 238 | 61.52 239 | 65.40 262 | 71.99 274 | 50.80 187 | 71.15 258 | 69.63 271 | 45.71 301 | 60.61 254 | 77.93 257 | 37.45 233 | 65.99 313 | 55.67 171 | 63.50 297 | 79.42 248 |
|
tt0805 | | | 67.77 169 | 67.24 165 | 69.34 212 | 74.87 230 | 40.08 299 | 77.36 144 | 81.37 105 | 55.31 190 | 66.33 175 | 84.65 127 | 37.35 235 | 82.55 164 | 55.65 172 | 72.28 208 | 85.39 115 |
|
XVG-ACMP-BASELINE | | | 64.36 223 | 62.23 232 | 70.74 186 | 72.35 269 | 52.45 166 | 70.80 263 | 78.45 168 | 53.84 216 | 59.87 262 | 81.10 205 | 16.24 356 | 79.32 221 | 55.64 173 | 71.76 212 | 80.47 231 |
|
Anonymous20231211 | | | 69.28 137 | 68.47 132 | 71.73 161 | 80.28 108 | 47.18 239 | 79.98 100 | 82.37 88 | 54.61 207 | 67.24 156 | 84.01 142 | 39.43 212 | 82.41 168 | 55.45 174 | 72.83 197 | 85.62 104 |
|
GA-MVS | | | 65.53 207 | 63.70 213 | 71.02 182 | 70.87 287 | 48.10 227 | 70.48 266 | 74.40 231 | 56.69 157 | 64.70 211 | 76.77 273 | 33.66 272 | 81.10 191 | 55.42 175 | 70.32 230 | 83.87 159 |
|
test_yl | | | 69.69 125 | 69.13 119 | 71.36 172 | 78.37 155 | 45.74 251 | 74.71 202 | 80.20 133 | 57.91 143 | 70.01 104 | 83.83 146 | 42.44 183 | 82.87 153 | 54.97 176 | 79.72 112 | 85.48 108 |
|
DCV-MVSNet | | | 69.69 125 | 69.13 119 | 71.36 172 | 78.37 155 | 45.74 251 | 74.71 202 | 80.20 133 | 57.91 143 | 70.01 104 | 83.83 146 | 42.44 183 | 82.87 153 | 54.97 176 | 79.72 112 | 85.48 108 |
|
1314 | | | 64.61 220 | 63.21 221 | 68.80 219 | 71.87 276 | 47.46 236 | 73.95 215 | 78.39 173 | 42.88 323 | 59.97 260 | 76.60 277 | 38.11 228 | 79.39 220 | 54.84 178 | 72.32 206 | 79.55 246 |
|
Fast-Effi-MVS+-dtu | | | 67.37 175 | 65.33 198 | 73.48 128 | 72.94 258 | 57.78 81 | 77.47 142 | 76.88 195 | 57.60 147 | 61.97 244 | 76.85 272 | 39.31 213 | 80.49 207 | 54.72 179 | 70.28 231 | 82.17 202 |
|
UniMVSNet_NR-MVSNet | | | 71.11 96 | 71.00 91 | 71.44 168 | 79.20 133 | 44.13 267 | 76.02 176 | 82.60 86 | 66.48 10 | 68.20 132 | 84.60 130 | 56.82 32 | 82.82 157 | 54.62 180 | 70.43 226 | 87.36 47 |
|
DU-MVS | | | 70.01 116 | 69.53 113 | 71.44 168 | 78.05 166 | 44.13 267 | 75.01 195 | 81.51 101 | 64.37 27 | 68.20 132 | 84.52 131 | 49.12 109 | 82.82 157 | 54.62 180 | 70.43 226 | 87.37 45 |
|
FIs | | | 70.82 102 | 71.43 80 | 68.98 217 | 78.33 157 | 38.14 315 | 76.96 155 | 83.59 63 | 61.02 82 | 67.33 155 | 86.73 82 | 55.07 42 | 81.64 178 | 54.61 182 | 79.22 122 | 87.14 51 |
|
VPA-MVSNet | | | 69.02 141 | 69.47 115 | 67.69 231 | 77.42 187 | 41.00 297 | 74.04 212 | 79.68 138 | 60.06 102 | 69.26 119 | 84.81 124 | 51.06 90 | 77.58 249 | 54.44 183 | 74.43 171 | 84.48 140 |
|
Anonymous20240529 | | | 69.91 119 | 69.02 122 | 72.56 147 | 80.19 113 | 47.65 233 | 77.56 139 | 80.99 121 | 55.45 189 | 69.88 107 | 86.76 80 | 39.24 216 | 82.18 171 | 54.04 184 | 77.10 151 | 87.85 26 |
|
UniMVSNet (Re) | | | 70.63 105 | 70.20 102 | 71.89 157 | 78.55 149 | 45.29 258 | 75.94 177 | 82.92 81 | 63.68 39 | 68.16 135 | 83.59 151 | 53.89 56 | 83.49 140 | 53.97 185 | 71.12 219 | 86.89 56 |
|
D2MVS | | | 62.30 242 | 60.29 251 | 68.34 226 | 66.46 328 | 48.42 224 | 65.70 293 | 73.42 244 | 47.71 280 | 58.16 282 | 75.02 294 | 30.51 298 | 77.71 248 | 53.96 186 | 71.68 214 | 78.90 254 |
|
原ACMM1 | | | | | 74.69 88 | 85.39 47 | 59.40 53 | | 83.42 68 | 51.47 240 | 70.27 98 | 86.61 87 | 48.61 113 | 86.51 75 | 53.85 187 | 87.96 38 | 78.16 258 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 109 | 74.30 234 | 48.40 272 | | | | 80.78 201 | 53.62 188 | | 79.03 252 |
|
UA-Net | | | 73.13 67 | 72.93 67 | 73.76 113 | 83.58 64 | 51.66 177 | 78.75 117 | 77.66 183 | 67.75 3 | 72.61 77 | 89.42 46 | 49.82 98 | 83.29 142 | 53.61 189 | 83.14 74 | 86.32 76 |
|
VNet | | | 69.68 127 | 70.19 103 | 68.16 227 | 79.73 121 | 41.63 292 | 70.53 265 | 77.38 189 | 60.37 95 | 70.69 93 | 86.63 86 | 51.08 89 | 77.09 257 | 53.61 189 | 81.69 97 | 85.75 98 |
|
Fast-Effi-MVS+ | | | 70.28 112 | 69.12 121 | 73.73 116 | 78.50 150 | 51.50 178 | 75.01 195 | 79.46 144 | 56.16 173 | 68.59 125 | 79.55 236 | 53.97 54 | 84.05 126 | 53.34 191 | 77.53 144 | 85.65 102 |
|
testdata | | | | | 64.66 267 | 81.52 86 | 52.93 154 | | 65.29 300 | 46.09 296 | 73.88 56 | 87.46 71 | 38.08 229 | 66.26 312 | 53.31 192 | 78.48 135 | 74.78 297 |
|
thisisatest0515 | | | 65.83 203 | 63.50 216 | 72.82 144 | 73.75 248 | 49.50 210 | 71.32 253 | 73.12 248 | 49.39 260 | 63.82 221 | 76.50 280 | 34.95 259 | 84.84 116 | 53.20 193 | 75.49 166 | 84.13 150 |
|
MVS | | | 67.37 175 | 66.33 181 | 70.51 191 | 75.46 223 | 50.94 182 | 73.95 215 | 81.85 95 | 41.57 330 | 62.54 237 | 78.57 252 | 47.98 118 | 85.47 101 | 52.97 194 | 82.05 89 | 75.14 289 |
|
IterMVS | | | 62.79 237 | 61.27 242 | 67.35 236 | 69.37 307 | 52.04 173 | 71.17 256 | 68.24 283 | 52.63 228 | 59.82 263 | 76.91 271 | 37.32 236 | 72.36 281 | 52.80 195 | 63.19 300 | 77.66 264 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FC-MVSNet-test | | | 69.80 123 | 70.58 97 | 67.46 233 | 77.61 183 | 34.73 344 | 76.05 174 | 83.19 77 | 60.84 84 | 65.88 185 | 86.46 91 | 54.52 50 | 80.76 202 | 52.52 196 | 78.12 137 | 86.91 55 |
|
TranMVSNet+NR-MVSNet | | | 70.36 110 | 70.10 106 | 71.17 178 | 78.64 148 | 42.97 279 | 76.53 163 | 81.16 118 | 66.95 5 | 68.53 128 | 85.42 118 | 51.61 83 | 83.07 146 | 52.32 197 | 69.70 244 | 87.46 40 |
|
Baseline_NR-MVSNet | | | 67.05 184 | 67.56 147 | 65.50 260 | 75.65 218 | 37.70 321 | 75.42 185 | 74.65 229 | 59.90 105 | 68.14 136 | 83.15 161 | 49.12 109 | 77.20 255 | 52.23 198 | 69.78 241 | 81.60 209 |
|
UniMVSNet_ETH3D | | | 67.60 172 | 67.07 169 | 69.18 216 | 77.39 188 | 42.29 283 | 74.18 211 | 75.59 212 | 60.37 95 | 66.77 166 | 86.06 101 | 37.64 231 | 78.93 235 | 52.16 199 | 73.49 185 | 86.32 76 |
|
ECVR-MVS |  | | 67.72 170 | 67.51 151 | 68.35 225 | 79.46 126 | 36.29 338 | 74.79 201 | 66.93 290 | 58.72 123 | 67.19 157 | 88.05 64 | 36.10 248 | 81.38 184 | 52.07 200 | 84.25 67 | 87.39 43 |
|
test1111 | | | 67.21 177 | 67.14 168 | 67.42 234 | 79.24 132 | 34.76 343 | 73.89 219 | 65.65 297 | 58.71 125 | 66.96 162 | 87.95 66 | 36.09 249 | 80.53 204 | 52.03 201 | 83.79 72 | 86.97 53 |
|
test2506 | | | 65.33 211 | 64.61 204 | 67.50 232 | 79.46 126 | 34.19 348 | 74.43 208 | 51.92 351 | 58.72 123 | 66.75 167 | 88.05 64 | 25.99 333 | 80.92 197 | 51.94 202 | 84.25 67 | 87.39 43 |
|
API-MVS | | | 72.17 81 | 71.41 81 | 74.45 99 | 81.95 82 | 57.22 88 | 84.03 44 | 80.38 131 | 59.89 108 | 68.40 129 | 82.33 178 | 49.64 100 | 87.83 43 | 51.87 203 | 84.16 70 | 78.30 256 |
|
PCF-MVS | | 61.88 8 | 70.95 99 | 69.49 114 | 75.35 76 | 77.63 178 | 55.71 114 | 76.04 175 | 81.81 96 | 50.30 254 | 69.66 110 | 85.40 119 | 52.51 69 | 84.89 113 | 51.82 204 | 80.24 108 | 85.45 110 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DP-MVS Recon | | | 72.15 83 | 70.73 94 | 76.40 57 | 86.57 24 | 57.99 78 | 81.15 88 | 82.96 80 | 57.03 153 | 66.78 165 | 85.56 113 | 44.50 166 | 88.11 35 | 51.77 205 | 80.23 109 | 83.10 186 |
|
UGNet | | | 68.81 144 | 67.39 156 | 73.06 138 | 78.33 157 | 54.47 133 | 79.77 105 | 75.40 215 | 60.45 91 | 63.22 226 | 84.40 134 | 32.71 285 | 80.91 198 | 51.71 206 | 80.56 104 | 83.81 161 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MAR-MVS | | | 71.51 91 | 70.15 104 | 75.60 73 | 81.84 83 | 59.39 54 | 81.38 85 | 82.90 82 | 54.90 204 | 68.08 138 | 78.70 247 | 47.73 122 | 85.51 98 | 51.68 207 | 84.17 69 | 81.88 207 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VPNet | | | 67.52 173 | 68.11 138 | 65.74 258 | 79.18 134 | 36.80 330 | 72.17 243 | 72.83 249 | 62.04 71 | 67.79 148 | 85.83 109 | 48.88 111 | 76.60 262 | 51.30 208 | 72.97 196 | 83.81 161 |
|
test_fmvs1_n | | | 51.37 309 | 50.35 312 | 54.42 323 | 52.85 364 | 37.71 320 | 61.16 323 | 51.93 350 | 28.15 356 | 63.81 222 | 69.73 331 | 13.72 359 | 53.95 356 | 51.16 209 | 60.65 318 | 71.59 327 |
|
test_fmvs1 | | | 51.32 311 | 50.48 311 | 53.81 325 | 53.57 363 | 37.51 322 | 60.63 327 | 51.16 353 | 28.02 358 | 63.62 223 | 69.23 334 | 16.41 355 | 53.93 357 | 51.01 210 | 60.70 317 | 69.99 340 |
|
QAPM | | | 70.05 115 | 68.81 125 | 73.78 111 | 76.54 207 | 53.43 145 | 83.23 53 | 83.48 65 | 52.89 225 | 65.90 183 | 86.29 95 | 41.55 196 | 86.49 76 | 51.01 210 | 78.40 136 | 81.42 211 |
|
NR-MVSNet | | | 69.54 131 | 68.85 124 | 71.59 166 | 78.05 166 | 43.81 271 | 74.20 210 | 80.86 124 | 65.18 13 | 62.76 231 | 84.52 131 | 52.35 74 | 83.59 138 | 50.96 212 | 70.78 221 | 87.37 45 |
|
IB-MVS | | 56.42 12 | 65.40 210 | 62.73 227 | 73.40 132 | 74.89 228 | 52.78 157 | 73.09 229 | 75.13 221 | 55.69 183 | 58.48 280 | 73.73 303 | 32.86 280 | 86.32 81 | 50.63 213 | 70.11 233 | 81.10 223 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PM-MVS | | | 52.33 305 | 50.19 313 | 58.75 300 | 62.10 347 | 45.14 259 | 65.75 292 | 40.38 372 | 43.60 316 | 53.52 322 | 72.65 307 | 9.16 372 | 65.87 314 | 50.41 214 | 54.18 341 | 65.24 351 |
|
cascas | | | 65.98 201 | 63.42 217 | 73.64 121 | 77.26 191 | 52.58 161 | 72.26 242 | 77.21 192 | 48.56 268 | 61.21 252 | 74.60 298 | 32.57 289 | 85.82 91 | 50.38 215 | 76.75 156 | 82.52 195 |
|
IS-MVSNet | | | 71.57 90 | 71.00 91 | 73.27 135 | 78.86 141 | 45.63 255 | 80.22 96 | 78.69 158 | 64.14 34 | 66.46 172 | 87.36 72 | 49.30 103 | 85.60 94 | 50.26 216 | 83.71 73 | 88.59 8 |
|
WR-MVS | | | 68.47 154 | 68.47 132 | 68.44 224 | 80.20 112 | 39.84 301 | 73.75 222 | 76.07 206 | 64.68 21 | 68.11 137 | 83.63 150 | 50.39 96 | 79.14 228 | 49.78 217 | 69.66 245 | 86.34 72 |
|
CVMVSNet | | | 59.63 262 | 59.14 255 | 61.08 291 | 74.47 239 | 38.84 310 | 75.20 190 | 68.74 280 | 31.15 352 | 58.24 281 | 76.51 278 | 32.39 290 | 68.58 300 | 49.77 218 | 65.84 279 | 75.81 283 |
|
CostFormer | | | 64.04 224 | 62.51 228 | 68.61 222 | 71.88 275 | 45.77 250 | 71.30 254 | 70.60 266 | 47.55 282 | 64.31 216 | 76.61 276 | 41.63 193 | 79.62 217 | 49.74 219 | 69.00 255 | 80.42 232 |
|
æ–°å‡ ä½•1 | | | | | 70.76 185 | 85.66 41 | 61.13 30 | | 66.43 293 | 44.68 306 | 70.29 97 | 86.64 85 | 41.29 199 | 75.23 269 | 49.72 220 | 81.75 95 | 75.93 282 |
|
test-LLR | | | 58.15 270 | 58.13 266 | 58.22 303 | 68.57 313 | 44.80 261 | 65.46 296 | 57.92 334 | 50.08 256 | 55.44 299 | 69.82 329 | 32.62 286 | 57.44 342 | 49.66 221 | 73.62 181 | 72.41 318 |
|
test-mter | | | 56.42 282 | 55.82 281 | 58.22 303 | 68.57 313 | 44.80 261 | 65.46 296 | 57.92 334 | 39.94 340 | 55.44 299 | 69.82 329 | 21.92 347 | 57.44 342 | 49.66 221 | 73.62 181 | 72.41 318 |
|
Anonymous202405211 | | | 66.84 189 | 65.99 188 | 69.40 211 | 80.19 113 | 42.21 285 | 71.11 259 | 71.31 260 | 58.80 122 | 67.90 140 | 86.39 93 | 29.83 305 | 79.65 215 | 49.60 223 | 78.78 130 | 86.33 74 |
|
test_fmvs2 | | | 48.69 318 | 47.49 323 | 52.29 335 | 48.63 370 | 33.06 355 | 57.76 336 | 48.05 362 | 25.71 362 | 59.76 265 | 69.60 332 | 11.57 365 | 52.23 362 | 49.45 224 | 56.86 331 | 71.58 328 |
|
tpmrst | | | 58.24 268 | 58.70 259 | 56.84 311 | 66.97 322 | 34.32 346 | 69.57 275 | 61.14 325 | 47.17 289 | 58.58 279 | 71.60 315 | 41.28 200 | 60.41 330 | 49.20 225 | 62.84 302 | 75.78 284 |
|
test_vis1_n | | | 49.89 316 | 48.69 318 | 53.50 328 | 53.97 362 | 37.38 323 | 61.53 317 | 47.33 364 | 28.54 355 | 59.62 267 | 67.10 344 | 13.52 360 | 52.27 361 | 49.07 226 | 57.52 328 | 70.84 334 |
|
pm-mvs1 | | | 65.24 212 | 64.97 202 | 66.04 253 | 72.38 268 | 39.40 306 | 72.62 235 | 75.63 211 | 55.53 187 | 62.35 243 | 83.18 160 | 47.45 129 | 76.47 263 | 49.06 227 | 66.54 274 | 82.24 199 |
|
gm-plane-assit | | | | | | 71.40 283 | 41.72 291 | | | 48.85 267 | | 73.31 305 | | 82.48 167 | 48.90 228 | | |
|
CMPMVS |  | 42.80 21 | 57.81 273 | 55.97 280 | 63.32 275 | 60.98 353 | 47.38 237 | 64.66 304 | 69.50 273 | 32.06 351 | 46.83 347 | 77.80 262 | 29.50 307 | 71.36 286 | 48.68 229 | 73.75 179 | 71.21 331 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ab-mvs | | | 66.65 193 | 66.42 177 | 67.37 235 | 76.17 212 | 41.73 289 | 70.41 268 | 76.14 205 | 53.99 214 | 65.98 180 | 83.51 155 | 49.48 101 | 76.24 266 | 48.60 230 | 73.46 187 | 84.14 149 |
|
OurMVSNet-221017-0 | | | 61.37 253 | 58.63 260 | 69.61 206 | 72.05 273 | 48.06 228 | 73.93 217 | 72.51 251 | 47.23 288 | 54.74 308 | 80.92 210 | 21.49 350 | 81.24 188 | 48.57 231 | 56.22 335 | 79.53 247 |
|
OpenMVS |  | 61.03 9 | 68.85 143 | 67.56 147 | 72.70 146 | 74.26 245 | 53.99 136 | 81.21 87 | 81.34 110 | 52.70 226 | 62.75 232 | 85.55 115 | 38.86 220 | 84.14 125 | 48.41 232 | 83.01 76 | 79.97 240 |
|
baseline2 | | | 63.42 229 | 61.26 243 | 69.89 203 | 72.55 265 | 47.62 234 | 71.54 250 | 68.38 282 | 50.11 255 | 54.82 307 | 75.55 290 | 43.06 178 | 80.96 194 | 48.13 233 | 67.16 270 | 81.11 222 |
|
TESTMET0.1,1 | | | 55.28 290 | 54.90 287 | 56.42 313 | 66.56 326 | 43.67 272 | 65.46 296 | 56.27 341 | 39.18 342 | 53.83 317 | 67.44 341 | 24.21 341 | 55.46 353 | 48.04 234 | 73.11 194 | 70.13 339 |
|
test_fmvs3 | | | 44.30 325 | 42.55 327 | 49.55 340 | 42.83 374 | 27.15 371 | 53.03 349 | 44.93 367 | 22.03 369 | 53.69 320 | 64.94 350 | 4.21 379 | 49.63 364 | 47.47 235 | 49.82 352 | 71.88 324 |
|
K. test v3 | | | 60.47 257 | 57.11 269 | 70.56 189 | 73.74 249 | 48.22 226 | 75.10 194 | 62.55 317 | 58.27 133 | 53.62 321 | 76.31 281 | 27.81 320 | 81.59 180 | 47.42 236 | 39.18 366 | 81.88 207 |
|
pmmvs6 | | | 63.69 227 | 62.82 226 | 66.27 247 | 70.63 289 | 39.27 307 | 73.13 228 | 75.47 214 | 52.69 227 | 59.75 266 | 82.30 179 | 39.71 210 | 77.03 258 | 47.40 237 | 64.35 290 | 82.53 194 |
|
sd_testset | | | 64.46 222 | 64.45 205 | 64.51 269 | 77.13 193 | 42.25 284 | 62.67 312 | 72.11 255 | 58.02 138 | 65.08 203 | 82.55 171 | 41.22 202 | 69.88 295 | 47.32 238 | 73.92 176 | 81.41 212 |
|
baseline1 | | | 63.81 226 | 63.87 211 | 63.62 273 | 76.29 210 | 36.36 333 | 71.78 249 | 67.29 287 | 56.05 175 | 64.23 218 | 82.95 163 | 47.11 135 | 74.41 273 | 47.30 239 | 61.85 309 | 80.10 239 |
|
GBi-Net | | | 67.21 177 | 66.55 172 | 69.19 213 | 77.63 178 | 43.33 274 | 77.31 145 | 77.83 180 | 56.62 161 | 65.04 205 | 82.70 165 | 41.85 190 | 80.33 209 | 47.18 240 | 72.76 198 | 83.92 156 |
|
test1 | | | 67.21 177 | 66.55 172 | 69.19 213 | 77.63 178 | 43.33 274 | 77.31 145 | 77.83 180 | 56.62 161 | 65.04 205 | 82.70 165 | 41.85 190 | 80.33 209 | 47.18 240 | 72.76 198 | 83.92 156 |
|
FMVSNet3 | | | 66.32 199 | 65.61 194 | 68.46 223 | 76.48 208 | 42.34 282 | 74.98 197 | 77.15 193 | 55.83 179 | 65.04 205 | 81.16 203 | 39.91 207 | 80.14 213 | 47.18 240 | 72.76 198 | 82.90 190 |
|
FMVSNet2 | | | 66.93 187 | 66.31 183 | 68.79 220 | 77.63 178 | 42.98 278 | 76.11 171 | 77.47 186 | 56.62 161 | 65.22 202 | 82.17 183 | 41.85 190 | 80.18 212 | 47.05 243 | 72.72 201 | 83.20 182 |
|
testdata2 | | | | | | | | | | | | | | 72.18 285 | 46.95 244 | | |
|
BH-RMVSNet | | | 68.81 144 | 67.42 155 | 72.97 139 | 80.11 116 | 52.53 163 | 74.26 209 | 76.29 202 | 58.48 129 | 68.38 130 | 84.20 136 | 42.59 181 | 83.83 132 | 46.53 245 | 75.91 161 | 82.56 192 |
|
AdaColmap |  | | 69.99 117 | 68.66 128 | 73.97 107 | 84.94 54 | 57.83 79 | 82.63 64 | 78.71 157 | 56.28 170 | 64.34 214 | 84.14 138 | 41.57 194 | 87.06 60 | 46.45 246 | 78.88 127 | 77.02 273 |
|
EG-PatchMatch MVS | | | 64.71 218 | 62.87 224 | 70.22 193 | 77.68 176 | 53.48 143 | 77.99 130 | 78.82 153 | 53.37 221 | 56.03 295 | 77.41 267 | 24.75 340 | 84.04 127 | 46.37 247 | 73.42 188 | 73.14 308 |
|
1112_ss | | | 64.00 225 | 63.36 218 | 65.93 255 | 79.28 130 | 42.58 281 | 71.35 252 | 72.36 253 | 46.41 293 | 60.55 255 | 77.89 260 | 46.27 146 | 73.28 278 | 46.18 248 | 69.97 236 | 81.92 206 |
|
FMVSNet1 | | | 66.70 192 | 65.87 189 | 69.19 213 | 77.49 186 | 43.33 274 | 77.31 145 | 77.83 180 | 56.45 166 | 64.60 213 | 82.70 165 | 38.08 229 | 80.33 209 | 46.08 249 | 72.31 207 | 83.92 156 |
|
HyFIR lowres test | | | 65.67 205 | 63.01 223 | 73.67 118 | 79.97 118 | 55.65 116 | 69.07 278 | 75.52 213 | 42.68 324 | 63.53 224 | 77.95 256 | 40.43 205 | 81.64 178 | 46.01 250 | 71.91 211 | 83.73 167 |
|
lessismore_v0 | | | | | 69.91 201 | 71.42 282 | 47.80 230 | | 50.90 356 | | 50.39 337 | 75.56 289 | 27.43 324 | 81.33 185 | 45.91 251 | 34.10 372 | 80.59 230 |
|
CHOSEN 1792x2688 | | | 65.08 215 | 62.84 225 | 71.82 159 | 81.49 88 | 56.26 104 | 66.32 290 | 74.20 236 | 40.53 335 | 63.16 228 | 78.65 249 | 41.30 198 | 77.80 246 | 45.80 252 | 74.09 174 | 81.40 214 |
|
LCM-MVSNet-Re | | | 61.88 247 | 61.35 241 | 63.46 274 | 74.58 237 | 31.48 360 | 61.42 319 | 58.14 333 | 58.71 125 | 53.02 325 | 79.55 236 | 43.07 177 | 76.80 260 | 45.69 253 | 77.96 139 | 82.11 203 |
|
ambc | | | | | 65.13 265 | 63.72 342 | 37.07 327 | 47.66 360 | 78.78 156 | | 54.37 314 | 71.42 316 | 11.24 367 | 80.94 195 | 45.64 254 | 53.85 343 | 77.38 267 |
|
MS-PatchMatch | | | 62.42 240 | 61.46 240 | 65.31 264 | 75.21 227 | 52.10 170 | 72.05 244 | 74.05 237 | 46.41 293 | 57.42 288 | 74.36 299 | 34.35 265 | 77.57 250 | 45.62 255 | 73.67 180 | 66.26 349 |
|
ACMH+ | | 57.40 11 | 66.12 200 | 64.06 207 | 72.30 155 | 77.79 174 | 52.83 156 | 80.39 94 | 78.03 177 | 57.30 149 | 57.47 286 | 82.55 171 | 27.68 321 | 84.17 124 | 45.54 256 | 69.78 241 | 79.90 241 |
|
CR-MVSNet | | | 59.91 259 | 57.90 267 | 65.96 254 | 69.96 300 | 52.07 171 | 65.31 300 | 63.15 314 | 42.48 325 | 59.36 269 | 74.84 295 | 35.83 251 | 70.75 289 | 45.50 257 | 64.65 288 | 75.06 290 |
|
CDS-MVSNet | | | 66.80 190 | 65.37 196 | 71.10 180 | 78.98 139 | 53.13 153 | 73.27 227 | 71.07 262 | 52.15 232 | 64.72 210 | 80.23 223 | 43.56 174 | 77.10 256 | 45.48 258 | 78.88 127 | 83.05 187 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CP-MVSNet | | | 66.49 197 | 66.41 178 | 66.72 240 | 77.67 177 | 36.33 335 | 76.83 160 | 79.52 142 | 62.45 62 | 62.54 237 | 83.47 157 | 46.32 144 | 78.37 237 | 45.47 259 | 63.43 298 | 85.45 110 |
|
BH-untuned | | | 68.27 157 | 67.29 160 | 71.21 176 | 79.74 120 | 53.22 150 | 76.06 173 | 77.46 188 | 57.19 151 | 66.10 178 | 81.61 196 | 45.37 158 | 83.50 139 | 45.42 260 | 76.68 157 | 76.91 277 |
|
PS-CasMVS | | | 66.42 198 | 66.32 182 | 66.70 242 | 77.60 185 | 36.30 337 | 76.94 156 | 79.61 140 | 62.36 64 | 62.43 241 | 83.66 149 | 45.69 148 | 78.37 237 | 45.35 261 | 63.26 299 | 85.42 113 |
|
XXY-MVS | | | 60.68 255 | 61.67 237 | 57.70 309 | 70.43 292 | 38.45 313 | 64.19 306 | 66.47 292 | 48.05 277 | 63.22 226 | 80.86 212 | 49.28 104 | 60.47 329 | 45.25 262 | 67.28 269 | 74.19 303 |
|
HY-MVS | | 56.14 13 | 64.55 221 | 63.89 209 | 66.55 243 | 74.73 235 | 41.02 294 | 69.96 272 | 74.43 230 | 49.29 261 | 61.66 248 | 80.92 210 | 47.43 130 | 76.68 261 | 44.91 263 | 71.69 213 | 81.94 205 |
|
PEN-MVS | | | 66.60 194 | 66.45 174 | 67.04 238 | 77.11 195 | 36.56 332 | 77.03 154 | 80.42 130 | 62.95 49 | 62.51 239 | 84.03 141 | 46.69 142 | 79.07 229 | 44.22 264 | 63.08 301 | 85.51 107 |
|
test_post1 | | | | | | | | 68.67 279 | | | | 3.64 382 | 32.39 290 | 69.49 296 | 44.17 265 | | |
|
SCA | | | 60.49 256 | 58.38 262 | 66.80 239 | 74.14 247 | 48.06 228 | 63.35 309 | 63.23 313 | 49.13 263 | 59.33 272 | 72.10 310 | 37.45 233 | 74.27 274 | 44.17 265 | 62.57 304 | 78.05 260 |
|
PMMVS | | | 53.96 295 | 53.26 301 | 56.04 314 | 62.60 346 | 50.92 184 | 61.17 322 | 56.09 342 | 32.81 350 | 53.51 323 | 66.84 345 | 34.04 267 | 59.93 333 | 44.14 267 | 68.18 261 | 57.27 359 |
|
MVP-Stereo | | | 65.41 209 | 63.80 212 | 70.22 193 | 77.62 182 | 55.53 120 | 76.30 167 | 78.53 163 | 50.59 252 | 56.47 293 | 78.65 249 | 39.84 208 | 82.68 160 | 44.10 268 | 72.12 210 | 72.44 317 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FE-MVS | | | 65.91 202 | 63.33 219 | 73.63 122 | 77.36 189 | 51.95 175 | 72.62 235 | 75.81 208 | 53.70 217 | 65.31 194 | 78.96 245 | 28.81 314 | 86.39 78 | 43.93 269 | 73.48 186 | 82.55 193 |
|
CNLPA | | | 65.43 208 | 64.02 208 | 69.68 205 | 78.73 146 | 58.07 77 | 77.82 134 | 70.71 265 | 51.49 239 | 61.57 250 | 83.58 154 | 38.23 227 | 70.82 288 | 43.90 270 | 70.10 234 | 80.16 237 |
|
pmmvs4 | | | 61.48 252 | 59.39 253 | 67.76 230 | 71.57 279 | 53.86 137 | 71.42 251 | 65.34 299 | 44.20 311 | 59.46 268 | 77.92 258 | 35.90 250 | 74.71 271 | 43.87 271 | 64.87 286 | 74.71 298 |
|
Test_1112_low_res | | | 62.32 241 | 61.77 236 | 64.00 272 | 79.08 138 | 39.53 305 | 68.17 280 | 70.17 267 | 43.25 319 | 59.03 274 | 79.90 227 | 44.08 169 | 71.24 287 | 43.79 272 | 68.42 260 | 81.25 218 |
|
TransMVSNet (Re) | | | 64.72 217 | 64.33 206 | 65.87 257 | 75.22 226 | 38.56 312 | 74.66 204 | 75.08 226 | 58.90 121 | 61.79 247 | 82.63 168 | 51.18 87 | 78.07 242 | 43.63 273 | 55.87 336 | 80.99 225 |
|
pmmvs-eth3d | | | 58.81 265 | 56.31 279 | 66.30 246 | 67.61 319 | 52.42 167 | 72.30 241 | 64.76 303 | 43.55 317 | 54.94 306 | 74.19 301 | 28.95 311 | 72.60 280 | 43.31 274 | 57.21 330 | 73.88 306 |
|
SixPastTwentyTwo | | | 61.65 249 | 58.80 258 | 70.20 195 | 75.80 216 | 47.22 238 | 75.59 182 | 69.68 270 | 54.61 207 | 54.11 315 | 79.26 242 | 27.07 326 | 82.96 148 | 43.27 275 | 49.79 353 | 80.41 233 |
|
BH-w/o | | | 66.85 188 | 65.83 190 | 69.90 202 | 79.29 129 | 52.46 165 | 74.66 204 | 76.65 200 | 54.51 211 | 64.85 209 | 78.12 254 | 45.59 151 | 82.95 149 | 43.26 276 | 75.54 165 | 74.27 302 |
|
TR-MVS | | | 66.59 196 | 65.07 201 | 71.17 178 | 79.18 134 | 49.63 209 | 73.48 224 | 75.20 220 | 52.95 223 | 67.90 140 | 80.33 221 | 39.81 209 | 83.68 135 | 43.20 277 | 73.56 184 | 80.20 236 |
|
EU-MVSNet | | | 55.61 288 | 54.41 291 | 59.19 297 | 65.41 334 | 33.42 352 | 72.44 239 | 71.91 257 | 28.81 354 | 51.27 329 | 73.87 302 | 24.76 339 | 69.08 298 | 43.04 278 | 58.20 326 | 75.06 290 |
|
PatchmatchNet |  | | 59.84 260 | 58.24 263 | 64.65 268 | 73.05 256 | 46.70 242 | 69.42 276 | 62.18 319 | 47.55 282 | 58.88 275 | 71.96 312 | 34.49 263 | 69.16 297 | 42.99 279 | 63.60 295 | 78.07 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WR-MVS_H | | | 67.02 185 | 66.92 170 | 67.33 237 | 77.95 170 | 37.75 319 | 77.57 138 | 82.11 92 | 62.03 72 | 62.65 234 | 82.48 175 | 50.57 94 | 79.46 218 | 42.91 280 | 64.01 291 | 84.79 133 |
|
ACMH | | 55.70 15 | 65.20 213 | 63.57 215 | 70.07 197 | 78.07 165 | 52.01 174 | 79.48 112 | 79.69 137 | 55.75 182 | 56.59 292 | 80.98 208 | 27.12 325 | 80.94 195 | 42.90 281 | 71.58 215 | 77.25 271 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240521 | | | 55.30 289 | 54.41 291 | 57.96 306 | 60.92 355 | 41.73 289 | 71.09 260 | 71.06 263 | 41.18 331 | 48.65 341 | 73.31 305 | 16.93 354 | 59.25 336 | 42.54 282 | 64.01 291 | 72.90 310 |
|
WTY-MVS | | | 59.75 261 | 60.39 250 | 57.85 307 | 72.32 270 | 37.83 318 | 61.05 324 | 64.18 307 | 45.95 300 | 61.91 245 | 79.11 244 | 47.01 139 | 60.88 328 | 42.50 283 | 69.49 247 | 74.83 295 |
|
TAMVS | | | 66.78 191 | 65.27 199 | 71.33 175 | 79.16 136 | 53.67 138 | 73.84 221 | 69.59 272 | 52.32 231 | 65.28 195 | 81.72 194 | 44.49 167 | 77.40 253 | 42.32 284 | 78.66 133 | 82.92 188 |
|
LTVRE_ROB | | 55.42 16 | 63.15 235 | 61.23 244 | 68.92 218 | 76.57 206 | 47.80 230 | 59.92 328 | 76.39 201 | 54.35 213 | 58.67 277 | 82.46 176 | 29.44 308 | 81.49 182 | 42.12 285 | 71.14 218 | 77.46 266 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
sss | | | 56.17 285 | 56.57 276 | 54.96 318 | 66.93 323 | 36.32 336 | 57.94 335 | 61.69 322 | 41.67 328 | 58.64 278 | 75.32 293 | 38.72 221 | 56.25 349 | 42.04 286 | 66.19 277 | 72.31 321 |
|
UnsupCasMVSNet_eth | | | 53.16 304 | 52.47 302 | 55.23 317 | 59.45 357 | 33.39 353 | 59.43 330 | 69.13 277 | 45.98 297 | 50.35 338 | 72.32 309 | 29.30 309 | 58.26 340 | 42.02 287 | 44.30 359 | 74.05 304 |
|
tpm2 | | | 62.07 244 | 60.10 252 | 67.99 228 | 72.79 260 | 43.86 270 | 71.05 261 | 66.85 291 | 43.14 321 | 62.77 230 | 75.39 292 | 38.32 225 | 80.80 200 | 41.69 288 | 68.88 256 | 79.32 249 |
|
PLC |  | 56.13 14 | 65.09 214 | 63.21 221 | 70.72 187 | 81.04 98 | 54.87 130 | 78.57 122 | 77.47 186 | 48.51 269 | 55.71 296 | 81.89 190 | 33.71 270 | 79.71 214 | 41.66 289 | 70.37 228 | 77.58 265 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EPMVS | | | 53.96 295 | 53.69 298 | 54.79 320 | 66.12 331 | 31.96 359 | 62.34 315 | 49.05 358 | 44.42 310 | 55.54 297 | 71.33 318 | 30.22 301 | 56.70 345 | 41.65 290 | 62.54 305 | 75.71 285 |
|
DTE-MVSNet | | | 65.58 206 | 65.34 197 | 66.31 245 | 76.06 214 | 34.79 341 | 76.43 165 | 79.38 145 | 62.55 60 | 61.66 248 | 83.83 146 | 45.60 150 | 79.15 227 | 41.64 291 | 60.88 315 | 85.00 126 |
|
PAPM | | | 67.92 166 | 66.69 171 | 71.63 165 | 78.09 164 | 49.02 215 | 77.09 152 | 81.24 116 | 51.04 248 | 60.91 253 | 83.98 143 | 47.71 123 | 84.99 108 | 40.81 292 | 79.32 121 | 80.90 226 |
|
tpm | | | 57.34 275 | 58.16 264 | 54.86 319 | 71.80 277 | 34.77 342 | 67.47 286 | 56.04 343 | 48.20 274 | 60.10 258 | 76.92 270 | 37.17 239 | 53.41 358 | 40.76 293 | 65.01 284 | 76.40 280 |
|
KD-MVS_self_test | | | 55.22 291 | 53.89 297 | 59.21 296 | 57.80 361 | 27.47 370 | 57.75 337 | 74.32 232 | 47.38 284 | 50.90 332 | 70.00 328 | 28.45 316 | 70.30 293 | 40.44 294 | 57.92 327 | 79.87 242 |
|
F-COLMAP | | | 63.05 236 | 60.87 249 | 69.58 209 | 76.99 199 | 53.63 140 | 78.12 129 | 76.16 203 | 47.97 278 | 52.41 326 | 81.61 196 | 27.87 319 | 78.11 241 | 40.07 295 | 66.66 273 | 77.00 274 |
|
Patchmtry | | | 57.16 276 | 56.47 277 | 59.23 295 | 69.17 310 | 34.58 345 | 62.98 310 | 63.15 314 | 44.53 307 | 56.83 290 | 74.84 295 | 35.83 251 | 68.71 299 | 40.03 296 | 60.91 314 | 74.39 301 |
|
pmmvs5 | | | 56.47 281 | 55.68 282 | 58.86 299 | 61.41 350 | 36.71 331 | 66.37 289 | 62.75 316 | 40.38 336 | 53.70 318 | 76.62 275 | 34.56 261 | 67.05 306 | 40.02 297 | 65.27 282 | 72.83 311 |
|
EPNet_dtu | | | 61.90 246 | 61.97 235 | 61.68 286 | 72.89 259 | 39.78 302 | 75.85 179 | 65.62 298 | 55.09 196 | 54.56 311 | 79.36 240 | 37.59 232 | 67.02 307 | 39.80 298 | 76.95 152 | 78.25 257 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CL-MVSNet_self_test | | | 61.53 250 | 60.94 247 | 63.30 276 | 68.95 311 | 36.93 329 | 67.60 284 | 72.80 250 | 55.67 184 | 59.95 261 | 76.63 274 | 45.01 162 | 72.22 284 | 39.74 299 | 62.09 308 | 80.74 229 |
|
test_vis1_rt | | | 41.35 330 | 39.45 332 | 47.03 343 | 46.65 373 | 37.86 317 | 47.76 358 | 38.65 373 | 23.10 365 | 44.21 356 | 51.22 367 | 11.20 368 | 44.08 370 | 39.27 300 | 53.02 344 | 59.14 355 |
|
Vis-MVSNet (Re-imp) | | | 63.69 227 | 63.88 210 | 63.14 278 | 74.75 234 | 31.04 361 | 71.16 257 | 63.64 310 | 56.32 168 | 59.80 264 | 84.99 121 | 44.51 165 | 75.46 268 | 39.12 301 | 80.62 100 | 82.92 188 |
|
PVSNet | | 50.76 19 | 58.40 267 | 57.39 268 | 61.42 288 | 75.53 222 | 44.04 269 | 61.43 318 | 63.45 311 | 47.04 290 | 56.91 289 | 73.61 304 | 27.00 327 | 64.76 316 | 39.12 301 | 72.40 203 | 75.47 287 |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 373 | 61.22 321 | | 40.10 338 | 51.10 330 | | 32.97 279 | | 38.49 303 | | 78.61 255 |
|
our_test_3 | | | 56.49 280 | 54.42 290 | 62.68 282 | 69.51 304 | 45.48 256 | 66.08 291 | 61.49 323 | 44.11 314 | 50.73 335 | 69.60 332 | 33.05 277 | 68.15 301 | 38.38 304 | 56.86 331 | 74.40 300 |
|
tpm cat1 | | | 59.25 263 | 56.95 272 | 66.15 250 | 72.19 271 | 46.96 240 | 68.09 281 | 65.76 296 | 40.03 339 | 57.81 284 | 70.56 322 | 38.32 225 | 74.51 272 | 38.26 305 | 61.50 312 | 77.00 274 |
|
USDC | | | 56.35 283 | 54.24 294 | 62.69 281 | 64.74 336 | 40.31 298 | 65.05 302 | 73.83 240 | 43.93 315 | 47.58 343 | 77.71 265 | 15.36 358 | 75.05 270 | 38.19 306 | 61.81 310 | 72.70 312 |
|
MSDG | | | 61.81 248 | 59.23 254 | 69.55 210 | 72.64 262 | 52.63 160 | 70.45 267 | 75.81 208 | 51.38 241 | 53.70 318 | 76.11 282 | 29.52 306 | 81.08 193 | 37.70 307 | 65.79 280 | 74.93 294 |
|
MDTV_nov1_ep13 | | | | 57.00 271 | | 72.73 261 | 38.26 314 | 65.02 303 | 64.73 304 | 44.74 305 | 55.46 298 | 72.48 308 | 32.61 288 | 70.47 290 | 37.47 308 | 67.75 265 | |
|
gg-mvs-nofinetune | | | 57.86 272 | 56.43 278 | 62.18 284 | 72.62 263 | 35.35 340 | 66.57 287 | 56.33 340 | 50.65 250 | 57.64 285 | 57.10 361 | 30.65 297 | 76.36 264 | 37.38 309 | 78.88 127 | 74.82 296 |
|
dmvs_re | | | 56.77 279 | 56.83 274 | 56.61 312 | 69.23 308 | 41.02 294 | 58.37 333 | 64.18 307 | 50.59 252 | 57.45 287 | 71.42 316 | 35.54 253 | 58.94 337 | 37.23 310 | 67.45 267 | 69.87 341 |
|
RPSCF | | | 55.80 287 | 54.22 295 | 60.53 292 | 65.13 335 | 42.91 280 | 64.30 305 | 57.62 336 | 36.84 345 | 58.05 283 | 82.28 180 | 28.01 318 | 56.24 350 | 37.14 311 | 58.61 325 | 82.44 198 |
|
PatchT | | | 53.17 303 | 53.44 300 | 52.33 334 | 68.29 317 | 25.34 375 | 58.21 334 | 54.41 346 | 44.46 309 | 54.56 311 | 69.05 335 | 33.32 275 | 60.94 327 | 36.93 312 | 61.76 311 | 70.73 335 |
|
YYNet1 | | | 50.73 312 | 48.96 314 | 56.03 315 | 61.10 352 | 41.78 288 | 51.94 351 | 56.44 339 | 40.94 334 | 44.84 352 | 67.80 339 | 30.08 302 | 55.08 354 | 36.77 313 | 50.71 349 | 71.22 330 |
|
TAPA-MVS | | 59.36 10 | 66.60 194 | 65.20 200 | 70.81 184 | 76.63 204 | 48.75 219 | 76.52 164 | 80.04 135 | 50.64 251 | 65.24 200 | 84.93 122 | 39.15 217 | 78.54 236 | 36.77 313 | 76.88 154 | 85.14 121 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MDA-MVSNet_test_wron | | | 50.71 313 | 48.95 315 | 56.00 316 | 61.17 351 | 41.84 287 | 51.90 352 | 56.45 338 | 40.96 333 | 44.79 353 | 67.84 338 | 30.04 303 | 55.07 355 | 36.71 315 | 50.69 350 | 71.11 333 |
|
ppachtmachnet_test | | | 58.06 271 | 55.38 284 | 66.10 252 | 69.51 304 | 48.99 216 | 68.01 282 | 66.13 295 | 44.50 308 | 54.05 316 | 70.74 321 | 32.09 292 | 72.34 282 | 36.68 316 | 56.71 334 | 76.99 276 |
|
tpmvs | | | 58.47 266 | 56.95 272 | 63.03 280 | 70.20 295 | 41.21 293 | 67.90 283 | 67.23 288 | 49.62 259 | 54.73 309 | 70.84 320 | 34.14 266 | 76.24 266 | 36.64 317 | 61.29 313 | 71.64 326 |
|
CHOSEN 280x420 | | | 47.83 320 | 46.36 324 | 52.24 336 | 67.37 321 | 49.78 204 | 38.91 371 | 43.11 370 | 35.00 348 | 43.27 358 | 63.30 354 | 28.95 311 | 49.19 365 | 36.53 318 | 60.80 316 | 57.76 358 |
|
PatchMatch-RL | | | 56.25 284 | 54.55 289 | 61.32 290 | 77.06 196 | 56.07 108 | 65.57 295 | 54.10 348 | 44.13 313 | 53.49 324 | 71.27 319 | 25.20 337 | 66.78 308 | 36.52 319 | 63.66 294 | 61.12 353 |
|
RPMNet | | | 61.53 250 | 58.42 261 | 70.86 183 | 69.96 300 | 52.07 171 | 65.31 300 | 81.36 106 | 43.20 320 | 59.36 269 | 70.15 327 | 35.37 254 | 85.47 101 | 36.42 320 | 64.65 288 | 75.06 290 |
|
ITE_SJBPF | | | | | 62.09 285 | 66.16 330 | 44.55 266 | | 64.32 306 | 47.36 285 | 55.31 301 | 80.34 220 | 19.27 351 | 62.68 323 | 36.29 321 | 62.39 306 | 79.04 251 |
|
JIA-IIPM | | | 51.56 308 | 47.68 322 | 63.21 277 | 64.61 337 | 50.73 188 | 47.71 359 | 58.77 331 | 42.90 322 | 48.46 342 | 51.72 365 | 24.97 338 | 70.24 294 | 36.06 322 | 53.89 342 | 68.64 347 |
|
KD-MVS_2432*1600 | | | 53.45 299 | 51.50 307 | 59.30 293 | 62.82 343 | 37.14 325 | 55.33 343 | 71.79 258 | 47.34 286 | 55.09 304 | 70.52 323 | 21.91 348 | 70.45 291 | 35.72 323 | 42.97 361 | 70.31 337 |
|
miper_refine_blended | | | 53.45 299 | 51.50 307 | 59.30 293 | 62.82 343 | 37.14 325 | 55.33 343 | 71.79 258 | 47.34 286 | 55.09 304 | 70.52 323 | 21.91 348 | 70.45 291 | 35.72 323 | 42.97 361 | 70.31 337 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 258 | 58.14 265 | 65.69 259 | 70.47 291 | 44.82 260 | 75.33 186 | 70.86 264 | 45.04 303 | 56.06 294 | 76.00 283 | 26.89 328 | 79.65 215 | 35.36 325 | 67.29 268 | 72.60 313 |
|
GG-mvs-BLEND | | | | | 62.34 283 | 71.36 284 | 37.04 328 | 69.20 277 | 57.33 337 | | 54.73 309 | 65.48 349 | 30.37 299 | 77.82 245 | 34.82 326 | 74.93 169 | 72.17 322 |
|
UnsupCasMVSNet_bld | | | 50.07 315 | 48.87 316 | 53.66 326 | 60.97 354 | 33.67 351 | 57.62 338 | 64.56 305 | 39.47 341 | 47.38 344 | 64.02 353 | 27.47 322 | 59.32 335 | 34.69 327 | 43.68 360 | 67.98 348 |
|
MDA-MVSNet-bldmvs | | | 53.87 297 | 50.81 309 | 63.05 279 | 66.25 329 | 48.58 222 | 56.93 340 | 63.82 309 | 48.09 276 | 41.22 360 | 70.48 325 | 30.34 300 | 68.00 303 | 34.24 328 | 45.92 358 | 72.57 314 |
|
dp | | | 51.89 307 | 51.60 306 | 52.77 332 | 68.44 316 | 32.45 357 | 62.36 314 | 54.57 345 | 44.16 312 | 49.31 340 | 67.91 337 | 28.87 313 | 56.61 347 | 33.89 329 | 54.89 338 | 69.24 346 |
|
AllTest | | | 57.08 277 | 54.65 288 | 64.39 270 | 71.44 280 | 49.03 213 | 69.92 273 | 67.30 285 | 45.97 298 | 47.16 345 | 79.77 230 | 17.47 352 | 67.56 304 | 33.65 330 | 59.16 323 | 76.57 278 |
|
TestCases | | | | | 64.39 270 | 71.44 280 | 49.03 213 | | 67.30 285 | 45.97 298 | 47.16 345 | 79.77 230 | 17.47 352 | 67.56 304 | 33.65 330 | 59.16 323 | 76.57 278 |
|
test_vis3_rt | | | 32.09 340 | 30.20 344 | 37.76 355 | 35.36 384 | 27.48 369 | 40.60 370 | 28.29 382 | 16.69 374 | 32.52 368 | 40.53 373 | 1.96 385 | 37.40 377 | 33.64 332 | 42.21 363 | 48.39 365 |
|
FMVSNet5 | | | 55.86 286 | 54.93 286 | 58.66 301 | 71.05 286 | 36.35 334 | 64.18 307 | 62.48 318 | 46.76 291 | 50.66 336 | 74.73 297 | 25.80 334 | 64.04 318 | 33.11 333 | 65.57 281 | 75.59 286 |
|
mvsany_test1 | | | 39.38 332 | 38.16 335 | 43.02 350 | 49.05 368 | 34.28 347 | 44.16 367 | 25.94 383 | 22.74 367 | 46.57 349 | 62.21 356 | 23.85 343 | 41.16 375 | 33.01 334 | 35.91 369 | 53.63 362 |
|
DP-MVS | | | 65.68 204 | 63.66 214 | 71.75 160 | 84.93 55 | 56.87 98 | 80.74 92 | 73.16 247 | 53.06 222 | 59.09 273 | 82.35 177 | 36.79 246 | 85.94 88 | 32.82 335 | 69.96 237 | 72.45 316 |
|
PVSNet_0 | | 43.31 20 | 47.46 322 | 45.64 325 | 52.92 331 | 67.60 320 | 44.65 263 | 54.06 347 | 54.64 344 | 41.59 329 | 46.15 350 | 58.75 358 | 30.99 295 | 58.66 338 | 32.18 336 | 24.81 374 | 55.46 361 |
|
TinyColmap | | | 54.14 294 | 51.72 305 | 61.40 289 | 66.84 324 | 41.97 286 | 66.52 288 | 68.51 281 | 44.81 304 | 42.69 359 | 75.77 287 | 11.66 364 | 72.94 279 | 31.96 337 | 56.77 333 | 69.27 345 |
|
MIMVSNet | | | 57.35 274 | 57.07 270 | 58.22 303 | 74.21 246 | 37.18 324 | 62.46 313 | 60.88 326 | 48.88 266 | 55.29 302 | 75.99 285 | 31.68 293 | 62.04 325 | 31.87 338 | 72.35 204 | 75.43 288 |
|
thres100view900 | | | 63.28 232 | 62.41 230 | 65.89 256 | 77.31 190 | 38.66 311 | 72.65 233 | 69.11 278 | 57.07 152 | 62.45 240 | 81.03 207 | 37.01 244 | 79.17 224 | 31.84 339 | 73.25 191 | 79.83 243 |
|
tfpn200view9 | | | 63.18 234 | 62.18 233 | 66.21 248 | 76.85 200 | 39.62 303 | 71.96 247 | 69.44 274 | 56.63 159 | 62.61 235 | 79.83 228 | 37.18 237 | 79.17 224 | 31.84 339 | 73.25 191 | 79.83 243 |
|
thres400 | | | 63.31 230 | 62.18 233 | 66.72 240 | 76.85 200 | 39.62 303 | 71.96 247 | 69.44 274 | 56.63 159 | 62.61 235 | 79.83 228 | 37.18 237 | 79.17 224 | 31.84 339 | 73.25 191 | 81.36 215 |
|
pmmvs3 | | | 44.92 324 | 41.95 329 | 53.86 324 | 52.58 366 | 43.55 273 | 62.11 316 | 46.90 366 | 26.05 361 | 40.63 361 | 60.19 357 | 11.08 369 | 57.91 341 | 31.83 342 | 46.15 357 | 60.11 354 |
|
LF4IMVS | | | 42.95 326 | 42.26 328 | 45.04 345 | 48.30 371 | 32.50 356 | 54.80 345 | 48.49 360 | 28.03 357 | 40.51 362 | 70.16 326 | 9.24 371 | 43.89 371 | 31.63 343 | 49.18 355 | 58.72 356 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 254 | 58.81 257 | 68.64 221 | 74.63 236 | 52.51 164 | 78.42 125 | 73.30 245 | 49.92 258 | 50.96 331 | 81.51 199 | 23.06 344 | 79.40 219 | 31.63 343 | 65.85 278 | 74.01 305 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
new-patchmatchnet | | | 47.56 321 | 47.73 321 | 47.06 342 | 58.81 359 | 9.37 386 | 48.78 357 | 59.21 329 | 43.28 318 | 44.22 355 | 68.66 336 | 25.67 335 | 57.20 344 | 31.57 345 | 49.35 354 | 74.62 299 |
|
thres600view7 | | | 63.30 231 | 62.27 231 | 66.41 244 | 77.18 192 | 38.87 309 | 72.35 240 | 69.11 278 | 56.98 154 | 62.37 242 | 80.96 209 | 37.01 244 | 79.00 233 | 31.43 346 | 73.05 195 | 81.36 215 |
|
thres200 | | | 62.20 243 | 61.16 245 | 65.34 263 | 75.38 225 | 39.99 300 | 69.60 274 | 69.29 276 | 55.64 186 | 61.87 246 | 76.99 269 | 37.07 243 | 78.96 234 | 31.28 347 | 73.28 190 | 77.06 272 |
|
LCM-MVSNet | | | 40.30 331 | 35.88 337 | 53.57 327 | 42.24 375 | 29.15 365 | 45.21 365 | 60.53 327 | 22.23 368 | 28.02 370 | 50.98 368 | 3.72 381 | 61.78 326 | 31.22 348 | 38.76 367 | 69.78 342 |
|
test_f | | | 31.86 341 | 31.05 342 | 34.28 357 | 32.33 386 | 21.86 379 | 32.34 373 | 30.46 380 | 16.02 375 | 39.78 365 | 55.45 362 | 4.80 377 | 32.36 380 | 30.61 349 | 37.66 368 | 48.64 364 |
|
test0.0.03 1 | | | 53.32 302 | 53.59 299 | 52.50 333 | 62.81 345 | 29.45 364 | 59.51 329 | 54.11 347 | 50.08 256 | 54.40 313 | 74.31 300 | 32.62 286 | 55.92 351 | 30.50 350 | 63.95 293 | 72.15 323 |
|
Anonymous20231206 | | | 55.10 293 | 55.30 285 | 54.48 321 | 69.81 303 | 33.94 350 | 62.91 311 | 62.13 320 | 41.08 332 | 55.18 303 | 75.65 288 | 32.75 284 | 56.59 348 | 30.32 351 | 67.86 263 | 72.91 309 |
|
tfpnnormal | | | 62.47 239 | 61.63 238 | 64.99 266 | 74.81 232 | 39.01 308 | 71.22 255 | 73.72 241 | 55.22 193 | 60.21 256 | 80.09 226 | 41.26 201 | 76.98 259 | 30.02 352 | 68.09 262 | 78.97 253 |
|
test20.03 | | | 53.87 297 | 54.02 296 | 53.41 329 | 61.47 349 | 28.11 368 | 61.30 320 | 59.21 329 | 51.34 243 | 52.09 327 | 77.43 266 | 33.29 276 | 58.55 339 | 29.76 353 | 60.27 320 | 73.58 307 |
|
LS3D | | | 64.71 218 | 62.50 229 | 71.34 174 | 79.72 122 | 55.71 114 | 79.82 104 | 74.72 228 | 48.50 270 | 56.62 291 | 84.62 128 | 33.59 273 | 82.34 169 | 29.65 354 | 75.23 168 | 75.97 281 |
|
mvsany_test3 | | | 32.62 339 | 30.57 343 | 38.77 354 | 36.16 383 | 24.20 377 | 38.10 372 | 20.63 385 | 19.14 371 | 40.36 363 | 57.43 360 | 5.06 376 | 36.63 378 | 29.59 355 | 28.66 373 | 55.49 360 |
|
testgi | | | 51.90 306 | 52.37 303 | 50.51 339 | 60.39 356 | 23.55 378 | 58.42 332 | 58.15 332 | 49.03 264 | 51.83 328 | 79.21 243 | 22.39 345 | 55.59 352 | 29.24 356 | 62.64 303 | 72.40 320 |
|
MIMVSNet1 | | | 55.17 292 | 54.31 293 | 57.77 308 | 70.03 299 | 32.01 358 | 65.68 294 | 64.81 302 | 49.19 262 | 46.75 348 | 76.00 283 | 25.53 336 | 64.04 318 | 28.65 357 | 62.13 307 | 77.26 270 |
|
TDRefinement | | | 53.44 301 | 50.72 310 | 61.60 287 | 64.31 339 | 46.96 240 | 70.89 262 | 65.27 301 | 41.78 326 | 44.61 354 | 77.98 255 | 11.52 366 | 66.36 311 | 28.57 358 | 51.59 347 | 71.49 329 |
|
ADS-MVSNet2 | | | 51.33 310 | 48.76 317 | 59.07 298 | 66.02 332 | 44.60 264 | 50.90 353 | 59.76 328 | 36.90 343 | 50.74 333 | 66.18 347 | 26.38 329 | 63.11 321 | 27.17 359 | 54.76 339 | 69.50 343 |
|
ADS-MVSNet | | | 48.48 319 | 47.77 320 | 50.63 338 | 66.02 332 | 29.92 363 | 50.90 353 | 50.87 357 | 36.90 343 | 50.74 333 | 66.18 347 | 26.38 329 | 52.47 360 | 27.17 359 | 54.76 339 | 69.50 343 |
|
Patchmatch-test | | | 49.08 317 | 48.28 319 | 51.50 337 | 64.40 338 | 30.85 362 | 45.68 363 | 48.46 361 | 35.60 347 | 46.10 351 | 72.10 310 | 34.47 264 | 46.37 368 | 27.08 361 | 60.65 318 | 77.27 269 |
|
MVS-HIRNet | | | 45.52 323 | 44.48 326 | 48.65 341 | 68.49 315 | 34.05 349 | 59.41 331 | 44.50 368 | 27.03 359 | 37.96 366 | 50.47 369 | 26.16 332 | 64.10 317 | 26.74 362 | 59.52 321 | 47.82 368 |
|
test_0402 | | | 63.25 233 | 61.01 246 | 69.96 198 | 80.00 117 | 54.37 134 | 76.86 159 | 72.02 256 | 54.58 209 | 58.71 276 | 80.79 215 | 35.00 258 | 84.36 122 | 26.41 363 | 64.71 287 | 71.15 332 |
|
N_pmnet | | | 39.35 333 | 40.28 331 | 36.54 356 | 63.76 340 | 1.62 390 | 49.37 356 | 0.76 390 | 34.62 349 | 43.61 357 | 66.38 346 | 26.25 331 | 42.57 372 | 26.02 364 | 51.77 346 | 65.44 350 |
|
DSMNet-mixed | | | 39.30 334 | 38.72 333 | 41.03 351 | 51.22 367 | 19.66 381 | 45.53 364 | 31.35 379 | 15.83 376 | 39.80 364 | 67.42 343 | 22.19 346 | 45.13 369 | 22.43 365 | 52.69 345 | 58.31 357 |
|
dmvs_testset | | | 50.16 314 | 51.90 304 | 44.94 347 | 66.49 327 | 11.78 384 | 61.01 325 | 51.50 352 | 51.17 247 | 50.30 339 | 67.44 341 | 39.28 214 | 60.29 331 | 22.38 366 | 57.49 329 | 62.76 352 |
|
ANet_high | | | 41.38 329 | 37.47 336 | 53.11 330 | 39.73 380 | 24.45 376 | 56.94 339 | 69.69 269 | 47.65 281 | 26.04 372 | 52.32 364 | 12.44 362 | 62.38 324 | 21.80 367 | 10.61 381 | 72.49 315 |
|
new_pmnet | | | 34.13 338 | 34.29 339 | 33.64 358 | 52.63 365 | 18.23 383 | 44.43 366 | 33.90 378 | 22.81 366 | 30.89 369 | 53.18 363 | 10.48 370 | 35.72 379 | 20.77 368 | 39.51 365 | 46.98 369 |
|
APD_test1 | | | 37.39 335 | 34.94 338 | 44.72 348 | 48.88 369 | 33.19 354 | 52.95 350 | 44.00 369 | 19.49 370 | 27.28 371 | 58.59 359 | 3.18 383 | 52.84 359 | 18.92 369 | 41.17 364 | 48.14 367 |
|
EGC-MVSNET | | | 42.47 327 | 38.48 334 | 54.46 322 | 74.33 243 | 48.73 220 | 70.33 269 | 51.10 354 | 0.03 384 | 0.18 385 | 67.78 340 | 13.28 361 | 66.49 310 | 18.91 370 | 50.36 351 | 48.15 366 |
|
PMMVS2 | | | 27.40 344 | 25.91 347 | 31.87 360 | 39.46 381 | 6.57 387 | 31.17 374 | 28.52 381 | 23.96 363 | 20.45 376 | 48.94 372 | 4.20 380 | 37.94 376 | 16.51 371 | 19.97 376 | 51.09 363 |
|
test_method | | | 19.68 348 | 18.10 351 | 24.41 363 | 13.68 388 | 3.11 389 | 12.06 379 | 42.37 371 | 2.00 382 | 11.97 380 | 36.38 374 | 5.77 375 | 29.35 382 | 15.06 372 | 23.65 375 | 40.76 373 |
|
Gipuma |  | | 34.77 337 | 31.91 341 | 43.33 349 | 62.05 348 | 37.87 316 | 20.39 376 | 67.03 289 | 23.23 364 | 18.41 377 | 25.84 377 | 4.24 378 | 62.73 322 | 14.71 373 | 51.32 348 | 29.38 376 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FPMVS | | | 42.18 328 | 41.11 330 | 45.39 344 | 58.03 360 | 41.01 296 | 49.50 355 | 53.81 349 | 30.07 353 | 33.71 367 | 64.03 351 | 11.69 363 | 52.08 363 | 14.01 374 | 55.11 337 | 43.09 370 |
|
testf1 | | | 31.46 342 | 28.89 345 | 39.16 352 | 41.99 377 | 28.78 366 | 46.45 361 | 37.56 374 | 14.28 377 | 21.10 373 | 48.96 370 | 1.48 387 | 47.11 366 | 13.63 375 | 34.56 370 | 41.60 371 |
|
APD_test2 | | | 31.46 342 | 28.89 345 | 39.16 352 | 41.99 377 | 28.78 366 | 46.45 361 | 37.56 374 | 14.28 377 | 21.10 373 | 48.96 370 | 1.48 387 | 47.11 366 | 13.63 375 | 34.56 370 | 41.60 371 |
|
tmp_tt | | | 9.43 351 | 11.14 354 | 4.30 366 | 2.38 389 | 4.40 388 | 13.62 378 | 16.08 387 | 0.39 383 | 15.89 378 | 13.06 380 | 15.80 357 | 5.54 385 | 12.63 377 | 10.46 382 | 2.95 380 |
|
MVE |  | 17.77 23 | 21.41 347 | 17.77 352 | 32.34 359 | 34.34 385 | 25.44 374 | 16.11 377 | 24.11 384 | 11.19 379 | 13.22 379 | 31.92 375 | 1.58 386 | 30.95 381 | 10.47 378 | 17.03 377 | 40.62 374 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 23.77 345 | 22.73 349 | 26.90 361 | 42.02 376 | 20.67 380 | 42.66 368 | 35.70 376 | 17.43 372 | 10.28 382 | 25.05 378 | 6.42 374 | 42.39 373 | 10.28 379 | 14.71 378 | 17.63 377 |
|
PMVS |  | 28.69 22 | 36.22 336 | 33.29 340 | 45.02 346 | 36.82 382 | 35.98 339 | 54.68 346 | 48.74 359 | 26.31 360 | 21.02 375 | 51.61 366 | 2.88 384 | 60.10 332 | 9.99 380 | 47.58 356 | 38.99 375 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 22.97 346 | 21.84 350 | 26.36 362 | 40.20 379 | 19.53 382 | 41.95 369 | 34.64 377 | 17.09 373 | 9.73 383 | 22.83 379 | 7.29 373 | 42.22 374 | 9.18 381 | 13.66 379 | 17.32 378 |
|
DeepMVS_CX |  | | | | 12.03 365 | 17.97 387 | 10.91 385 | | 10.60 388 | 7.46 380 | 11.07 381 | 28.36 376 | 3.28 382 | 11.29 384 | 8.01 382 | 9.74 383 | 13.89 379 |
|
wuyk23d | | | 13.32 350 | 12.52 353 | 15.71 364 | 47.54 372 | 26.27 372 | 31.06 375 | 1.98 389 | 4.93 381 | 5.18 384 | 1.94 384 | 0.45 389 | 18.54 383 | 6.81 383 | 12.83 380 | 2.33 381 |
|
testmvs | | | 4.52 354 | 6.03 357 | 0.01 368 | 0.01 390 | 0.00 392 | 53.86 348 | 0.00 391 | 0.01 385 | 0.04 386 | 0.27 385 | 0.00 391 | 0.00 386 | 0.04 384 | 0.00 384 | 0.03 383 |
|
test123 | | | 4.73 353 | 6.30 356 | 0.02 367 | 0.01 390 | 0.01 391 | 56.36 341 | 0.00 391 | 0.01 385 | 0.04 386 | 0.21 386 | 0.01 390 | 0.00 386 | 0.03 385 | 0.00 384 | 0.04 382 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 17.50 349 | 23.34 348 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 78.63 160 | 0.00 387 | 0.00 388 | 82.18 181 | 49.25 105 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 3.92 355 | 5.23 358 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 47.05 136 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
ab-mvs-re | | | 6.49 352 | 8.65 355 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 77.89 260 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 392 | 0.00 380 | 0.00 391 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 391 | 0.00 386 | 0.00 386 | 0.00 384 | 0.00 384 |
|
FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 62 | 60.87 83 | 81.50 16 | | | | | | |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 56 | | 86.84 7 | 65.01 19 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 68 | | 86.78 10 | 64.20 30 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 46 | 79.66 139 | 59.00 119 | | | | | | | |
|
test0726 | | | | | | 87.75 7 | 59.07 63 | 87.86 4 | 86.83 8 | 64.26 28 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 260 |
|
test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 260 | | | | 78.05 260 |
|
sam_mvs | | | | | | | | | | | | | 33.43 274 | | | | |
|
MTGPA |  | | | | | | | | 80.97 122 | | | | | | | | |
|
test_post | | | | | | | | | | | | 3.55 383 | 33.90 269 | 66.52 309 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 351 | 34.50 262 | 74.27 274 | | | |
|
MTMP | | | | | | | | 86.03 18 | 17.08 386 | | | | | | | | |
|
TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 114 | 55.65 185 | 74.93 40 | 88.81 55 | 53.70 59 | 84.68 117 | | | |
|
test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 84 | 81.18 117 | 55.86 176 | 74.81 43 | 88.80 57 | 53.70 59 | 84.45 121 | | | |
|
agg_prior | | | | | | 85.04 50 | 59.96 46 | | 81.04 120 | | 74.68 46 | | | 84.04 127 | | | |
|
test_prior4 | | | | | | | 62.51 14 | 82.08 76 | | | | | | | | | |
|
test_prior | | | | | 76.69 52 | 84.20 61 | 57.27 87 | | 84.88 37 | | | | | 86.43 77 | | | 86.38 68 |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 170 | | | | | | | | | |
|
旧先验1 | | | | | | 83.04 70 | 53.15 151 | | 67.52 284 | | | 87.85 68 | 44.08 169 | | | 80.76 99 | 78.03 263 |
|
原ACMM2 | | | | | | | | 79.02 115 | | | | | | | | | |
|
test222 | | | | | | 83.14 68 | 58.68 72 | 72.57 237 | 63.45 311 | 41.78 326 | 67.56 152 | 86.12 98 | 37.13 241 | | | 78.73 132 | 74.98 293 |
|
segment_acmp | | | | | | | | | | | | | 54.23 52 | | | | |
|
testdata1 | | | | | | | | 72.65 233 | | 60.50 90 | | | | | | | |
|
test12 | | | | | 77.76 42 | 84.52 58 | 58.41 74 | | 83.36 71 | | 72.93 72 | | 54.61 49 | 88.05 36 | | 88.12 35 | 86.81 59 |
|
plane_prior7 | | | | | | 81.41 89 | 55.96 110 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 96 | 56.24 105 | | | | | | 45.26 160 | | | | |
|
plane_prior4 | | | | | | | | | | | | 86.10 99 | | | | | |
|
plane_prior3 | | | | | | | 56.09 107 | | | 63.92 35 | 69.27 117 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 39 | | 64.52 24 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 94 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 101 | 83.58 52 | | 63.19 47 | | | | | | 80.48 105 | |
|
n2 | | | | | | | | | 0.00 391 | | | | | | | | |
|
nn | | | | | | | | | 0.00 391 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 365 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 66 | | | | | | | | |
|
door | | | | | | | | | 47.60 363 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 127 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 102 | | 82.31 70 | | 62.10 67 | 67.85 142 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 102 | | 82.31 70 | | 62.10 67 | 67.85 142 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 142 | | | 86.93 61 | | | 84.32 143 |
|
HQP3-MVS | | | | | | | | | 83.90 53 | | | | | | | 80.35 106 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 154 | | | | |
|
NP-MVS | | | | | | 80.98 99 | 56.05 109 | | | | | 85.54 116 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 175 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 209 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 116 | | | | |
|