This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
IU-MVS87.77 459.15 6085.53 2553.93 22584.64 379.07 1190.87 588.37 13
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n72.81 7272.33 7474.24 10669.89 32055.81 11578.22 12975.40 21754.17 22275.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test_fmvsmconf0.01_n72.17 8471.50 8274.16 10767.96 33755.58 12378.06 13574.67 23254.19 22174.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
test_fmvsmconf_n73.01 7072.59 7174.27 10571.28 30055.88 11478.21 13075.56 21454.31 22074.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
9.1478.75 1583.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n70.99 10370.82 9771.48 17571.45 29354.40 13877.18 15970.46 27148.67 28475.17 3886.86 8253.77 6176.86 26676.33 3077.51 14883.17 194
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmvis_n_192070.84 10570.38 10572.22 16071.16 30155.39 12775.86 18872.21 25849.03 28073.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
fmvsm_s_conf0.5_n69.58 13668.84 13171.79 16772.31 28352.90 16477.90 13762.43 33249.97 27072.85 8285.90 11652.21 8176.49 27475.75 3370.26 24585.97 91
fmvsm_s_conf0.1_n69.41 14468.60 13771.83 16571.07 30252.88 16577.85 14062.44 33149.58 27472.97 7986.22 10351.68 9176.48 27575.53 3470.10 24886.14 86
fmvsm_l_conf0.5_n_a70.50 11370.27 10771.18 18771.30 29954.09 14076.89 16769.87 27447.90 29774.37 5586.49 9753.07 7176.69 27175.41 3577.11 15682.76 201
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test9_res75.28 3788.31 3283.81 169
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11555.86 18074.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
fmvsm_s_conf0.5_n_a69.54 13868.74 13471.93 16272.47 27953.82 14478.25 12762.26 33449.78 27273.12 7686.21 10452.66 7376.79 26875.02 3968.88 27185.18 128
test_fmvsm_n_192071.73 9271.14 9273.50 13072.52 27756.53 10175.60 19176.16 20448.11 29377.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
fmvsm_s_conf0.1_n_a69.32 14668.44 14371.96 16170.91 30453.78 14578.12 13362.30 33349.35 27673.20 7286.55 9651.99 8576.79 26874.83 4168.68 27685.32 123
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PC_three_145255.09 20184.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
ZD-MVS86.64 2160.38 4382.70 8657.95 14478.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 15974.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
agg_prior273.09 5587.93 4084.33 150
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7176.46 21751.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet75.84 4575.87 4275.74 6978.86 14252.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11967.28 17179.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 40347.95 12988.01 3871.55 6586.74 5286.37 74
dcpmvs_274.55 5775.23 4872.48 15382.34 7753.34 15577.87 13881.46 10357.80 14875.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 17873.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
diffmvspermissive70.69 10970.43 10371.46 17669.45 32548.95 22772.93 24078.46 16857.27 15371.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3372.71 7571.49 8376.40 5881.99 8259.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23783.86 168
hse-mvs271.04 10169.86 11374.60 9579.58 12457.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28983.77 173
APD-MVS_3200maxsize74.96 4974.39 5576.67 5482.20 7858.24 7783.67 5183.29 7558.41 13373.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
baseline74.61 5574.70 5274.34 10275.70 22549.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
OPM-MVS74.73 5374.25 5676.19 6180.81 10259.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvspermissive74.80 5174.89 5174.53 9875.59 22950.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17274.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
CPTT-MVS72.78 7372.08 7774.87 8684.88 5761.41 2684.15 4377.86 18055.27 19667.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 229
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post74.57 5673.90 5976.58 5683.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6383.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
HQP_MVS74.31 5973.73 6276.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
mvsmamba71.15 9969.54 11875.99 6377.61 18953.46 15281.95 7875.11 22557.73 14966.95 17385.96 11437.14 25287.56 4867.94 8375.49 17686.97 54
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
LPG-MVS_test72.74 7471.74 7975.76 6780.22 11157.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11157.51 8683.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
HPM-MVS_fast74.30 6073.46 6576.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
MVS_111021_HR74.02 6173.46 6575.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
ETV-MVS74.46 5873.84 6176.33 6079.27 13255.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
DELS-MVS74.76 5274.46 5475.65 7277.84 17752.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.74.90 5074.15 5777.17 4982.00 8158.77 7281.80 7978.57 16258.58 13074.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
BP-MVS67.04 93
HQP-MVS73.45 6572.80 6975.40 7680.66 10354.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
ACMP63.53 672.30 8171.20 9175.59 7580.28 10957.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22786.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet-Vis-set72.42 8071.59 8074.91 8478.47 15354.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 18485.83 98
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16772.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
patch_mono-269.85 12671.09 9366.16 26179.11 13854.80 13571.97 25674.31 23753.50 23070.90 10284.17 14757.63 2963.31 34066.17 9882.02 9180.38 247
MVSFormer71.50 9670.38 10574.88 8578.76 14557.15 9482.79 6178.48 16651.26 25469.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
test_djsdf69.45 14267.74 15274.58 9674.57 24954.92 13382.79 6178.48 16651.26 25465.41 20383.49 16638.37 23683.24 14466.06 9969.25 26685.56 111
canonicalmvs74.67 5474.98 5073.71 12178.94 14150.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
MVS_Test72.45 7972.46 7372.42 15774.88 23848.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
alignmvs73.86 6373.99 5873.45 13378.20 16350.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
nrg03072.96 7173.01 6772.84 14675.41 23250.24 20580.02 10082.89 8458.36 13574.44 5386.73 8758.90 2380.83 20065.84 10374.46 18087.44 42
iter_conf0569.40 14567.62 15674.73 8777.84 17751.13 19079.28 11473.71 24654.62 21268.17 14483.59 16128.68 33387.16 5565.74 10576.95 15885.91 94
MVS_111021_LR69.50 14068.78 13371.65 17278.38 15659.33 5674.82 21070.11 27358.08 13867.83 15684.68 13541.96 19876.34 27865.62 10677.54 14679.30 264
EI-MVSNet-UG-set71.92 8871.06 9474.52 9977.98 17353.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 19585.32 123
iter_conf_final69.82 12768.02 15075.23 8179.38 12952.91 16380.11 9973.96 24354.99 20768.04 14983.59 16129.05 32887.16 5565.41 10877.62 14585.63 109
PS-MVSNAJss72.24 8271.21 9075.31 7878.50 15155.93 11281.63 8182.12 9256.24 17570.02 11385.68 12247.05 14684.34 12465.27 10974.41 18385.67 106
MSLP-MVS++73.77 6473.47 6474.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 236
v2v48270.50 11369.45 12273.66 12372.62 27450.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 24686.09 88
jason69.65 13468.39 14573.43 13578.27 16256.88 9877.12 16073.71 24646.53 31269.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
anonymousdsp67.00 19664.82 21373.57 12970.09 31656.13 10776.35 17677.35 19148.43 28964.99 21880.84 22433.01 29280.34 20964.66 11367.64 28384.23 154
lupinMVS69.57 13768.28 14673.44 13478.76 14557.15 9476.57 17273.29 25046.19 31569.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
CLD-MVS73.33 6672.68 7075.29 8078.82 14453.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4268.65 15867.35 16972.56 15168.93 33150.18 20772.90 24179.47 14456.92 15869.45 12480.26 23246.29 15582.99 14864.07 11667.82 28184.53 146
3Dnovator+66.72 475.84 4574.57 5379.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
v114470.42 11569.31 12373.76 11773.22 26250.64 19977.83 14181.43 10458.58 13069.40 12581.16 21347.53 13785.29 10764.01 11870.64 23585.34 122
Effi-MVS+73.31 6772.54 7275.62 7377.87 17553.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
SDMVSNet68.03 17268.10 14967.84 23977.13 20148.72 23165.32 31879.10 14958.02 14165.08 21382.55 18147.83 13173.40 29163.92 12073.92 18881.41 224
xiu_mvs_v1_base_debu68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base_debi68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
v870.33 11769.28 12473.49 13173.15 26450.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 27485.28 125
jajsoiax68.25 16866.45 18473.66 12375.62 22755.49 12580.82 9178.51 16552.33 24064.33 22584.11 14928.28 33681.81 17863.48 12570.62 23683.67 177
mvs_tets68.18 17066.36 19073.63 12675.61 22855.35 12880.77 9278.56 16352.48 23964.27 22784.10 15027.45 34281.84 17763.45 12670.56 23883.69 176
bld_raw_dy_0_6464.87 22663.22 23269.83 21474.79 24253.32 15778.15 13262.02 33751.20 25660.17 27383.12 17224.15 36274.20 29063.08 12772.33 21781.96 216
v14419269.71 13068.51 13873.33 13873.10 26550.13 20877.54 14880.64 12756.65 16168.57 13780.55 22646.87 15184.96 11362.98 12869.66 26084.89 138
v119269.97 12468.68 13573.85 11273.19 26350.94 19277.68 14481.36 10757.51 15168.95 13380.85 22345.28 16985.33 10662.97 12970.37 24185.27 126
v1070.21 11969.02 12873.81 11473.51 26150.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 27385.09 132
OMC-MVS71.40 9870.60 10073.78 11576.60 21353.15 15979.74 10879.78 13758.37 13468.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
XVG-OURS-SEG-HR68.81 15467.47 16472.82 14874.40 25356.87 9970.59 27479.04 15054.77 21066.99 17186.01 11239.57 22378.21 24462.54 13273.33 20183.37 185
EPNet73.09 6972.16 7575.90 6575.95 22356.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192069.47 14168.17 14773.36 13773.06 26650.10 20977.39 15180.56 12856.58 16868.59 13580.37 22844.72 17484.98 11162.47 13469.82 25585.00 134
c3_l68.33 16667.56 15770.62 19870.87 30546.21 25774.47 21778.80 15656.22 17666.19 18778.53 26351.88 8681.40 18462.08 13569.04 26984.25 153
AUN-MVS68.45 16566.41 18874.57 9779.53 12657.08 9773.93 22775.23 22154.44 21866.69 17881.85 20137.10 25482.89 15262.07 13666.84 28883.75 174
XVG-OURS68.76 15767.37 16772.90 14574.32 25557.22 8970.09 28178.81 15555.24 19767.79 15885.81 12136.54 25978.28 24362.04 13775.74 17283.19 191
v124069.24 14967.91 15173.25 14173.02 26849.82 21377.21 15880.54 12956.43 17068.34 14180.51 22743.33 18684.99 10962.03 13869.77 25884.95 137
ET-MVSNet_ETH3D67.96 17565.72 20274.68 9076.67 21155.62 12275.11 20274.74 23052.91 23460.03 27680.12 23433.68 28582.64 16361.86 13976.34 16585.78 99
VDD-MVS72.50 7772.09 7673.75 11981.58 8649.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
PS-MVSNAJ70.51 11269.70 11672.93 14481.52 8755.79 11674.92 20879.00 15155.04 20669.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 240
xiu_mvs_v2_base70.52 11169.75 11472.84 14681.21 9655.63 12075.11 20278.92 15354.92 20869.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 241
cl2267.47 18466.45 18470.54 20069.85 32146.49 25373.85 23077.35 19155.07 20465.51 20177.92 27047.64 13581.10 19261.58 14369.32 26384.01 161
RRT_MVS69.42 14367.49 16375.21 8278.01 17252.56 17282.23 7578.15 17655.84 18265.65 19885.07 13030.86 31386.83 6561.56 14470.00 25086.24 85
miper_ehance_all_eth68.03 17267.24 17570.40 20270.54 30846.21 25773.98 22378.68 16055.07 20466.05 18977.80 27452.16 8381.31 18761.53 14569.32 26383.67 177
MG-MVS73.96 6273.89 6074.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
miper_enhance_ethall67.11 19366.09 19770.17 20669.21 32845.98 25972.85 24278.41 17251.38 25165.65 19875.98 30351.17 9781.25 18860.82 14769.32 26383.29 188
ACMM61.98 770.80 10869.73 11574.02 10980.59 10858.59 7482.68 6482.02 9455.46 19367.18 16884.39 14538.51 23483.17 14660.65 14876.10 16880.30 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu69.64 13567.53 16075.95 6476.10 22162.29 1580.20 9876.06 20859.83 11065.26 20977.09 28441.56 20584.02 13060.60 14971.09 23381.53 222
PVSNet_Blended_VisFu71.45 9770.39 10474.65 9282.01 8058.82 7179.93 10380.35 13355.09 20165.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
MVSTER67.16 19265.58 20571.88 16470.37 31249.70 21570.25 28078.45 16951.52 24869.16 13180.37 22838.45 23582.50 16660.19 15171.46 22883.44 184
EIA-MVS71.78 9070.60 10075.30 7979.85 12053.54 15077.27 15783.26 7757.92 14566.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
v14868.24 16967.19 17771.40 18070.43 31047.77 24275.76 19077.03 19558.91 12267.36 16480.10 23548.60 12481.89 17560.01 15366.52 29284.53 146
test_vis1_n_192058.86 28159.06 27258.25 32063.76 36043.14 28767.49 30166.36 30340.22 35965.89 19471.95 33331.04 31159.75 35459.94 15464.90 30271.85 343
CANet_DTU68.18 17067.71 15569.59 21774.83 24046.24 25678.66 12176.85 19759.60 11163.45 23682.09 19835.25 26777.41 25659.88 15578.76 13285.14 129
IterMVS-LS69.22 15068.48 13971.43 17974.44 25249.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 25483.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.27 14868.44 14371.73 16974.47 25049.39 22275.20 20078.45 16959.60 11169.16 13176.51 29551.29 9482.50 16659.86 15771.45 22983.30 186
3Dnovator64.47 572.49 7871.39 8675.79 6677.70 18058.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
eth_miper_zixun_eth67.63 18166.28 19471.67 17171.60 29148.33 23573.68 23377.88 17955.80 18565.91 19278.62 26147.35 14382.88 15359.45 15966.25 29383.81 169
DIV-MVS_self_test67.18 19066.26 19569.94 20970.20 31345.74 26173.29 23676.83 19855.10 19965.27 20679.58 24447.38 14280.53 20559.43 16069.22 26783.54 182
cl____67.18 19066.26 19569.94 20970.20 31345.74 26173.30 23576.83 19855.10 19965.27 20679.57 24547.39 14180.53 20559.41 16169.22 26783.53 183
旧先验276.08 18245.32 32376.55 3265.56 33458.75 162
VDDNet71.81 8971.33 8873.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
114514_t70.83 10669.56 11774.64 9386.21 3154.63 13682.34 7081.81 9748.22 29163.01 24385.83 11940.92 21487.10 5957.91 16479.79 11282.18 212
Vis-MVSNetpermissive72.18 8371.37 8774.61 9481.29 9355.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192056.91 29556.71 29257.51 32859.13 38045.40 26763.58 32861.29 34036.24 36867.14 16971.85 33429.89 32156.69 36857.65 16663.58 31570.46 356
PAPM_NR72.63 7671.80 7875.13 8381.72 8553.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
LFMVS71.78 9071.59 8072.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
v7n69.01 15267.36 16873.98 11072.51 27852.65 16878.54 12581.30 11360.26 10162.67 24781.62 20543.61 18384.49 12157.01 16968.70 27584.79 141
GeoE71.01 10270.15 11073.60 12879.57 12552.17 17978.93 11778.12 17758.02 14167.76 16083.87 15552.36 7982.72 16056.90 17075.79 17185.92 93
FA-MVS(test-final)69.82 12768.48 13973.84 11378.44 15450.04 21075.58 19478.99 15258.16 13767.59 16182.14 19542.66 19085.63 9456.60 17176.19 16785.84 97
mvs_anonymous68.03 17267.51 16169.59 21772.08 28544.57 27571.99 25575.23 22151.67 24467.06 17082.57 18054.68 5077.94 24756.56 17275.71 17386.26 84
Patchmatch-RL test58.16 28655.49 30266.15 26267.92 33848.89 22860.66 34651.07 37547.86 29859.36 28662.71 37734.02 28172.27 29756.41 17359.40 34277.30 285
miper_lstm_enhance62.03 25960.88 26265.49 27466.71 34546.25 25556.29 36475.70 21150.68 26161.27 26675.48 30940.21 21768.03 32156.31 17465.25 30082.18 212
thisisatest053067.92 17665.78 20174.33 10376.29 21851.03 19176.89 16774.25 23953.67 22865.59 20081.76 20335.15 26885.50 10055.94 17572.47 21486.47 71
EPP-MVSNet72.16 8671.31 8974.71 8878.68 14849.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
PVSNet_BlendedMVS68.56 16367.72 15371.07 19177.03 20550.57 20074.50 21681.52 10053.66 22964.22 23079.72 24249.13 11782.87 15455.82 17773.92 18879.77 259
PVSNet_Blended68.59 15967.72 15371.19 18677.03 20550.57 20072.51 24881.52 10051.91 24364.22 23077.77 27749.13 11782.87 15455.82 17779.58 11680.14 251
PAPR71.72 9370.82 9774.41 10181.20 9751.17 18979.55 11283.33 7355.81 18466.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
tttt051767.83 17865.66 20374.33 10376.69 21050.82 19677.86 13973.99 24254.54 21664.64 22282.53 18435.06 26985.50 10055.71 18069.91 25386.67 65
IterMVS-SCA-FT62.49 25161.52 25265.40 27571.99 28750.80 19771.15 26869.63 27745.71 32160.61 27077.93 26937.45 24565.99 33255.67 18163.50 31679.42 262
tt080567.77 17967.24 17569.34 22274.87 23940.08 31077.36 15281.37 10655.31 19566.33 18584.65 13737.35 24782.55 16555.65 18272.28 22085.39 121
XVG-ACMP-BASELINE64.36 23462.23 24470.74 19672.35 28152.45 17670.80 27378.45 16953.84 22659.87 27981.10 21516.24 37879.32 22555.64 18371.76 22480.47 244
Anonymous2023121169.28 14768.47 14171.73 16980.28 10947.18 24979.98 10182.37 8954.61 21367.24 16684.01 15239.43 22482.41 16955.45 18472.83 20985.62 110
GA-MVS65.53 21763.70 22471.02 19270.87 30548.10 23770.48 27674.40 23556.69 16064.70 22176.77 28933.66 28681.10 19255.42 18570.32 24383.87 167
test_yl69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
131464.61 23063.21 23368.80 22971.87 28947.46 24673.95 22578.39 17442.88 34559.97 27776.60 29438.11 24079.39 22454.84 18872.32 21879.55 260
Fast-Effi-MVS+-dtu67.37 18565.33 20873.48 13272.94 26957.78 8277.47 15076.88 19657.60 15061.97 25876.85 28839.31 22580.49 20854.72 18970.28 24482.17 214
UniMVSNet_NR-MVSNet71.11 10071.00 9571.44 17779.20 13444.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23987.36 48
DU-MVS70.01 12269.53 11971.44 17778.05 17044.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23987.37 46
FIs70.82 10771.43 8468.98 22778.33 16038.14 32976.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
VPA-MVSNet69.02 15169.47 12167.69 24177.42 19541.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 18284.48 148
Anonymous2024052969.91 12569.02 12872.56 15180.19 11447.65 24377.56 14780.99 12255.45 19469.88 11786.76 8539.24 22882.18 17254.04 19477.10 15787.85 27
UniMVSNet (Re)70.63 11070.20 10871.89 16378.55 15045.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 23286.89 57
D2MVS62.30 25560.29 26568.34 23666.46 34848.42 23465.70 31073.42 24847.71 29958.16 30075.02 31230.51 31577.71 25253.96 19671.68 22678.90 269
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 25070.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 273
无先验79.66 11074.30 23848.40 29080.78 20253.62 19879.03 267
UA-Net73.13 6872.93 6873.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
VNet69.68 13370.19 10968.16 23779.73 12241.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
Fast-Effi-MVS+70.28 11869.12 12773.73 12078.50 15151.50 18875.01 20579.46 14556.16 17768.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
testdata64.66 28181.52 8752.93 16265.29 31046.09 31673.88 6287.46 7538.08 24166.26 33153.31 20278.48 13674.78 315
thisisatest051565.83 21363.50 22772.82 14873.75 25949.50 22071.32 26373.12 25249.39 27563.82 23276.50 29734.95 27184.84 11753.20 20375.49 17684.13 158
MVS67.37 18566.33 19170.51 20175.46 23150.94 19273.95 22581.85 9641.57 35262.54 25178.57 26247.98 12885.47 10252.97 20482.05 9075.14 307
IterMVS62.79 25061.27 25667.35 24669.37 32652.04 18371.17 26668.24 29052.63 23859.82 28076.91 28737.32 24872.36 29552.80 20563.19 31977.66 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test69.80 12970.58 10267.46 24377.61 18934.73 36076.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
TranMVSNet+NR-MVSNet70.36 11670.10 11271.17 18878.64 14942.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25987.46 41
Baseline_NR-MVSNet67.05 19467.56 15765.50 27375.65 22637.70 33575.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 25681.60 221
UniMVSNet_ETH3D67.60 18267.07 17969.18 22677.39 19642.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24378.93 23952.16 20973.49 19786.32 80
ECVR-MVScopyleft67.72 18067.51 16168.35 23579.46 12736.29 35274.79 21166.93 29858.72 12567.19 16788.05 6636.10 26081.38 18552.07 21084.25 6887.39 44
test111167.21 18767.14 17867.42 24479.24 13334.76 35973.89 22965.65 30758.71 12766.96 17287.95 6936.09 26180.53 20552.03 21183.79 7386.97 54
test250665.33 22164.61 21467.50 24279.46 12734.19 36474.43 21851.92 37158.72 12566.75 17788.05 6625.99 35380.92 19851.94 21284.25 6887.39 44
API-MVS72.17 8471.41 8574.45 10081.95 8357.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 271
PCF-MVS61.88 870.95 10469.49 12075.35 7777.63 18455.71 11776.04 18581.81 9750.30 26669.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 8770.73 9976.40 5886.57 2457.99 7981.15 8982.96 8157.03 15666.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
UGNet68.81 15467.39 16673.06 14278.33 16054.47 13779.77 10675.40 21760.45 9263.22 23784.40 14432.71 29980.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS71.51 9570.15 11075.60 7481.84 8459.39 5581.38 8682.90 8354.90 20968.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VPNet67.52 18368.11 14865.74 27079.18 13536.80 34472.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27351.30 21872.97 20883.81 169
test_fmvs1_n51.37 32950.35 33254.42 34352.85 38637.71 33461.16 34351.93 37028.15 37863.81 23369.73 35113.72 38153.95 37851.16 21960.65 33871.59 345
test_fmvs151.32 33150.48 33153.81 34553.57 38537.51 33660.63 34751.16 37328.02 38063.62 23469.23 35416.41 37753.93 37951.01 22060.70 33769.99 360
QAPM70.05 12168.81 13273.78 11576.54 21553.43 15383.23 5483.48 6652.89 23565.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 223
NR-MVSNet69.54 13868.85 13071.59 17478.05 17043.81 28174.20 22080.86 12565.18 1462.76 24584.52 14152.35 8083.59 13950.96 22270.78 23487.37 46
IB-MVS56.42 1265.40 22062.73 23973.40 13674.89 23752.78 16773.09 23975.13 22455.69 18758.48 29873.73 32132.86 29486.32 8250.63 22370.11 24781.10 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PM-MVS52.33 32550.19 33358.75 31762.10 36945.14 26965.75 30940.38 39443.60 33753.52 34272.65 3259.16 39465.87 33350.41 22454.18 36165.24 371
cascas65.98 21163.42 22873.64 12577.26 19952.58 17172.26 25277.21 19348.56 28561.21 26774.60 31632.57 30485.82 9250.38 22576.75 16282.52 205
IS-MVSNet71.57 9471.00 9573.27 13978.86 14245.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
WR-MVS68.47 16468.47 14168.44 23480.20 11339.84 31373.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 26086.34 76
CVMVSNet59.63 27859.14 27161.08 30774.47 25038.84 32375.20 20068.74 28731.15 37458.24 29976.51 29532.39 30668.58 31749.77 22865.84 29675.81 300
CostFormer64.04 23662.51 24068.61 23271.88 28845.77 26071.30 26470.60 27047.55 30164.31 22676.61 29341.63 20379.62 22149.74 22969.00 27080.42 245
新几何170.76 19585.66 4161.13 3066.43 30244.68 32770.29 10786.64 9041.29 20975.23 28349.72 23081.75 9675.93 299
test-LLR58.15 28758.13 28358.22 32168.57 33244.80 27165.46 31557.92 35150.08 26855.44 31969.82 34932.62 30157.44 36449.66 23173.62 19372.41 336
test-mter56.42 30055.82 30058.22 32168.57 33244.80 27165.46 31557.92 35139.94 36255.44 31969.82 34921.92 36757.44 36449.66 23173.62 19372.41 336
Anonymous20240521166.84 19965.99 19869.40 22180.19 11442.21 29571.11 26971.31 26458.80 12467.90 15086.39 10029.83 32279.65 21949.60 23378.78 13186.33 78
test_fmvs248.69 33847.49 34352.29 35548.63 39233.06 37257.76 35748.05 38225.71 38459.76 28269.60 35211.57 38752.23 38449.45 23456.86 35171.58 346
tpmrst58.24 28558.70 27656.84 32966.97 34234.32 36269.57 28661.14 34147.17 30858.58 29771.60 33541.28 21060.41 35049.20 23562.84 32175.78 301
test_vis1_n49.89 33648.69 33853.50 34853.97 38437.38 33761.53 33747.33 38428.54 37759.62 28467.10 36513.52 38252.27 38349.07 23657.52 34870.84 354
pm-mvs165.24 22264.97 21266.04 26572.38 28039.40 31972.62 24575.63 21255.53 19162.35 25783.18 17047.45 13976.47 27649.06 23766.54 29182.24 211
gm-plane-assit71.40 29741.72 30148.85 28373.31 32382.48 16848.90 238
CMPMVSbinary42.80 2157.81 29055.97 29863.32 28960.98 37547.38 24764.66 32469.50 28032.06 37346.83 36777.80 27429.50 32571.36 30248.68 23973.75 19171.21 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ab-mvs66.65 20366.42 18767.37 24576.17 22041.73 29970.41 27876.14 20653.99 22465.98 19083.51 16549.48 11176.24 27948.60 24073.46 19984.14 157
OurMVSNet-221017-061.37 26758.63 27769.61 21672.05 28648.06 23873.93 22772.51 25547.23 30754.74 32880.92 22021.49 37181.24 18948.57 24156.22 35579.53 261
OpenMVScopyleft61.03 968.85 15367.56 15772.70 15074.26 25653.99 14281.21 8881.34 11152.70 23662.75 24685.55 12538.86 23284.14 12648.41 24283.01 7779.97 253
testing9164.46 23263.80 22266.47 25478.43 15540.06 31167.63 29869.59 27859.06 12063.18 23978.05 26634.05 27976.99 26348.30 24375.87 17082.37 209
testing9964.05 23563.29 23166.34 25678.17 16739.76 31567.33 30368.00 29158.60 12963.03 24278.10 26532.57 30476.94 26548.22 24475.58 17482.34 210
baseline263.42 24161.26 25769.89 21372.55 27647.62 24471.54 26068.38 28950.11 26754.82 32775.55 30843.06 18880.96 19548.13 24567.16 28781.11 234
TESTMET0.1,155.28 30954.90 30656.42 33166.56 34643.67 28265.46 31556.27 36139.18 36453.83 33767.44 36124.21 36155.46 37548.04 24673.11 20670.13 359
test_fmvs344.30 34542.55 34849.55 36042.83 39627.15 39153.03 37144.93 38822.03 39153.69 34064.94 3724.21 40149.63 38647.47 24749.82 37271.88 342
K. test v360.47 27157.11 28670.56 19973.74 26048.22 23675.10 20462.55 32958.27 13653.62 34176.31 29827.81 33981.59 18147.42 24839.18 38681.88 219
pmmvs663.69 23962.82 23866.27 25970.63 30739.27 32073.13 23875.47 21652.69 23759.75 28382.30 18939.71 22277.03 26247.40 24964.35 30982.53 204
sd_testset64.46 23264.45 21564.51 28377.13 20142.25 29462.67 33272.11 25958.02 14165.08 21382.55 18141.22 21269.88 31247.32 25073.92 18881.41 224
baseline163.81 23863.87 22163.62 28776.29 21836.36 34771.78 25967.29 29556.05 17964.23 22982.95 17347.11 14574.41 28747.30 25161.85 32980.10 252
GBi-Net67.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
test167.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
FMVSNet366.32 20965.61 20468.46 23376.48 21642.34 29274.98 20777.15 19455.83 18365.04 21581.16 21339.91 21880.14 21747.18 25272.76 21082.90 199
FMVSNet266.93 19766.31 19368.79 23077.63 18442.98 28876.11 18177.47 18756.62 16465.22 21282.17 19341.85 20080.18 21647.05 25572.72 21383.20 190
testdata272.18 29946.95 256
BH-RMVSNet68.81 15467.42 16572.97 14380.11 11752.53 17374.26 21976.29 20358.48 13268.38 14084.20 14642.59 19183.83 13346.53 25775.91 16982.56 202
AdaColmapbinary69.99 12368.66 13673.97 11184.94 5457.83 8082.63 6578.71 15856.28 17464.34 22484.14 14841.57 20487.06 6146.45 25878.88 12877.02 290
EG-PatchMatch MVS64.71 22862.87 23670.22 20377.68 18153.48 15177.99 13678.82 15453.37 23156.03 31577.41 28224.75 36084.04 12846.37 25973.42 20073.14 326
1112_ss64.00 23763.36 22965.93 26779.28 13142.58 29171.35 26272.36 25746.41 31360.55 27177.89 27246.27 15673.28 29246.18 26069.97 25181.92 218
FMVSNet166.70 20265.87 19969.19 22377.49 19343.33 28477.31 15377.83 18156.45 16964.60 22382.70 17538.08 24180.33 21046.08 26172.31 21983.92 164
HyFIR lowres test65.67 21563.01 23573.67 12279.97 11955.65 11969.07 29075.52 21542.68 34663.53 23577.95 26840.43 21681.64 17946.01 26271.91 22383.73 175
lessismore_v069.91 21171.42 29647.80 24050.90 37650.39 35775.56 30727.43 34381.33 18645.91 26334.10 39280.59 243
CHOSEN 1792x268865.08 22562.84 23771.82 16681.49 8956.26 10566.32 30774.20 24040.53 35763.16 24078.65 25941.30 20877.80 25045.80 26474.09 18581.40 226
LCM-MVSNet-Re61.88 26161.35 25463.46 28874.58 24831.48 37761.42 33958.14 35058.71 12753.02 34579.55 24643.07 18776.80 26745.69 26577.96 14282.11 215
ambc65.13 27963.72 36237.07 34147.66 38278.78 15754.37 33471.42 33611.24 38980.94 19645.64 26653.85 36377.38 284
MS-PatchMatch62.42 25361.46 25365.31 27775.21 23552.10 18072.05 25474.05 24146.41 31357.42 30674.36 31734.35 27777.57 25445.62 26773.67 19266.26 369
ACMH+57.40 1166.12 21064.06 21772.30 15977.79 17952.83 16680.39 9578.03 17857.30 15257.47 30482.55 18127.68 34084.17 12545.54 26869.78 25679.90 254
testing1162.81 24961.90 24865.54 27278.38 15640.76 30867.59 30066.78 30055.48 19260.13 27477.11 28331.67 31076.79 26845.53 26974.45 18179.06 265
CR-MVSNet59.91 27457.90 28465.96 26669.96 31852.07 18165.31 31963.15 32642.48 34759.36 28674.84 31335.83 26370.75 30545.50 27064.65 30575.06 308
CDS-MVSNet66.80 20065.37 20671.10 19078.98 14053.13 16173.27 23771.07 26652.15 24264.72 22080.23 23343.56 18477.10 26045.48 27178.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CP-MVSNet66.49 20766.41 18866.72 25077.67 18236.33 34976.83 17079.52 14362.45 6362.54 25183.47 16746.32 15478.37 24145.47 27263.43 31785.45 116
BH-untuned68.27 16767.29 17071.21 18579.74 12153.22 15876.06 18377.46 18957.19 15466.10 18881.61 20645.37 16883.50 14045.42 27376.68 16376.91 294
PS-CasMVS66.42 20866.32 19266.70 25277.60 19136.30 35176.94 16579.61 14162.36 6562.43 25583.66 15945.69 15878.37 24145.35 27463.26 31885.42 119
XXY-MVS60.68 26961.67 25057.70 32770.43 31038.45 32764.19 32666.47 30148.05 29563.22 23780.86 22249.28 11460.47 34945.25 27567.28 28674.19 321
HY-MVS56.14 1364.55 23163.89 21966.55 25374.73 24441.02 30469.96 28274.43 23449.29 27761.66 26380.92 22047.43 14076.68 27244.91 27671.69 22581.94 217
PEN-MVS66.60 20466.45 18467.04 24877.11 20336.56 34677.03 16380.42 13162.95 5062.51 25384.03 15146.69 15279.07 23344.22 27763.08 32085.51 113
test_post168.67 2923.64 40432.39 30669.49 31344.17 278
SCA60.49 27058.38 27966.80 24974.14 25848.06 23863.35 32963.23 32549.13 27959.33 28972.10 33037.45 24574.27 28844.17 27862.57 32378.05 275
PMMVS53.96 31553.26 32156.04 33262.60 36750.92 19461.17 34256.09 36232.81 37253.51 34366.84 36634.04 28059.93 35344.14 28068.18 27857.27 381
MVP-Stereo65.41 21963.80 22270.22 20377.62 18855.53 12476.30 17778.53 16450.59 26456.47 31378.65 25939.84 22082.68 16144.10 28172.12 22272.44 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS65.91 21263.33 23073.63 12677.36 19751.95 18572.62 24575.81 20953.70 22765.31 20478.96 25528.81 33286.39 7943.93 28273.48 19882.55 203
CNLPA65.43 21864.02 21869.68 21578.73 14758.07 7877.82 14270.71 26951.49 24961.57 26583.58 16438.23 23970.82 30443.90 28370.10 24880.16 250
pmmvs461.48 26659.39 26967.76 24071.57 29253.86 14371.42 26165.34 30944.20 33259.46 28577.92 27035.90 26274.71 28543.87 28464.87 30374.71 316
Test_1112_low_res62.32 25461.77 24964.00 28679.08 13939.53 31868.17 29470.17 27243.25 34159.03 29179.90 23744.08 17971.24 30343.79 28568.42 27781.25 230
TransMVSNet (Re)64.72 22764.33 21665.87 26975.22 23438.56 32574.66 21475.08 22958.90 12361.79 26182.63 17851.18 9678.07 24643.63 28655.87 35680.99 238
pmmvs-eth3d58.81 28256.31 29666.30 25867.61 33952.42 17772.30 25164.76 31343.55 33854.94 32674.19 31928.95 32972.60 29443.31 28757.21 35073.88 324
SixPastTwentyTwo61.65 26358.80 27570.20 20575.80 22447.22 24875.59 19269.68 27654.61 21354.11 33579.26 25227.07 34682.96 14943.27 28849.79 37380.41 246
BH-w/o66.85 19865.83 20069.90 21279.29 13052.46 17574.66 21476.65 20154.51 21764.85 21978.12 26445.59 16182.95 15043.26 28975.54 17574.27 320
TR-MVS66.59 20665.07 21171.17 18879.18 13549.63 21973.48 23475.20 22352.95 23367.90 15080.33 23139.81 22183.68 13643.20 29073.56 19680.20 249
EU-MVSNet55.61 30754.41 31159.19 31465.41 35433.42 36972.44 24971.91 26128.81 37651.27 34973.87 32024.76 35969.08 31543.04 29158.20 34675.06 308
PatchmatchNetpermissive59.84 27558.24 28064.65 28273.05 26746.70 25269.42 28762.18 33547.55 30158.88 29271.96 33234.49 27569.16 31442.99 29263.60 31478.07 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WR-MVS_H67.02 19566.92 18067.33 24777.95 17437.75 33377.57 14682.11 9362.03 7362.65 24882.48 18550.57 10379.46 22242.91 29364.01 31084.79 141
ACMH55.70 1565.20 22363.57 22670.07 20778.07 16952.01 18479.48 11379.69 13855.75 18656.59 31080.98 21827.12 34580.94 19642.90 29471.58 22777.25 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052155.30 30854.41 31157.96 32460.92 37741.73 29971.09 27071.06 26741.18 35348.65 36173.31 32316.93 37659.25 35642.54 29564.01 31072.90 328
WTY-MVS59.75 27660.39 26457.85 32572.32 28237.83 33261.05 34464.18 31845.95 32061.91 25979.11 25447.01 14960.88 34842.50 29669.49 26274.83 313
TAMVS66.78 20165.27 20971.33 18479.16 13753.67 14673.84 23169.59 27852.32 24165.28 20581.72 20444.49 17777.40 25742.32 29778.66 13482.92 197
LTVRE_ROB55.42 1663.15 24761.23 25868.92 22876.57 21447.80 24059.92 34876.39 20254.35 21958.67 29482.46 18629.44 32681.49 18342.12 29871.14 23177.46 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 30356.57 29354.96 33866.93 34336.32 35057.94 35661.69 33841.67 35058.64 29575.32 31138.72 23356.25 37142.04 29966.19 29472.31 339
UnsupCasMVSNet_eth53.16 32452.47 32255.23 33759.45 37933.39 37059.43 35069.13 28445.98 31750.35 35872.32 32729.30 32758.26 36242.02 30044.30 37974.05 322
tpm262.07 25860.10 26667.99 23872.79 27143.86 28071.05 27166.85 29943.14 34362.77 24475.39 31038.32 23780.80 20141.69 30168.88 27179.32 263
PLCcopyleft56.13 1465.09 22463.21 23370.72 19781.04 9954.87 13478.57 12377.47 18748.51 28755.71 31681.89 20033.71 28479.71 21841.66 30270.37 24177.58 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 31553.69 31854.79 34066.12 35131.96 37662.34 33549.05 37844.42 33155.54 31771.33 33830.22 31856.70 36741.65 30362.54 32475.71 302
DTE-MVSNet65.58 21665.34 20766.31 25776.06 22234.79 35776.43 17579.38 14662.55 6161.66 26383.83 15645.60 16079.15 23141.64 30460.88 33585.00 134
PAPM67.92 17666.69 18171.63 17378.09 16849.02 22577.09 16181.24 11751.04 25860.91 26983.98 15347.71 13384.99 10940.81 30579.32 12280.90 239
tpm57.34 29258.16 28154.86 33971.80 29034.77 35867.47 30256.04 36348.20 29260.10 27576.92 28637.17 25153.41 38040.76 30665.01 30176.40 297
KD-MVS_self_test55.22 31053.89 31759.21 31357.80 38327.47 38857.75 35874.32 23647.38 30350.90 35270.00 34828.45 33570.30 31040.44 30757.92 34779.87 255
F-COLMAP63.05 24860.87 26369.58 21976.99 20753.63 14878.12 13376.16 20447.97 29652.41 34681.61 20627.87 33878.11 24540.07 30866.66 29077.00 291
Patchmtry57.16 29356.47 29459.23 31269.17 32934.58 36162.98 33063.15 32644.53 32856.83 30874.84 31335.83 26368.71 31640.03 30960.91 33474.39 319
pmmvs556.47 29955.68 30158.86 31661.41 37236.71 34566.37 30662.75 32840.38 35853.70 33876.62 29234.56 27367.05 32540.02 31065.27 29972.83 329
EPNet_dtu61.90 26061.97 24761.68 30072.89 27039.78 31475.85 18965.62 30855.09 20154.56 33179.36 25037.59 24467.02 32639.80 31176.95 15878.25 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CL-MVSNet_self_test61.53 26460.94 26163.30 29068.95 33036.93 34367.60 29972.80 25455.67 18859.95 27876.63 29145.01 17272.22 29839.74 31262.09 32880.74 242
test_vis1_rt41.35 35239.45 35447.03 36346.65 39537.86 33147.76 38038.65 39523.10 38744.21 37651.22 38911.20 39044.08 39239.27 31353.02 36459.14 376
Vis-MVSNet (Re-imp)63.69 23963.88 22063.14 29274.75 24331.04 37871.16 26763.64 32256.32 17259.80 28184.99 13144.51 17575.46 28239.12 31480.62 10182.92 197
PVSNet50.76 1958.40 28457.39 28561.42 30375.53 23044.04 27961.43 33863.45 32347.04 30956.91 30773.61 32227.00 34764.76 33639.12 31472.40 21575.47 305
MDTV_nov1_ep13_2view25.89 39461.22 34140.10 36051.10 35032.97 29338.49 31678.61 270
our_test_356.49 29854.42 31062.68 29669.51 32345.48 26666.08 30861.49 33944.11 33550.73 35569.60 35233.05 29168.15 31838.38 31756.86 35174.40 318
tpm cat159.25 28056.95 28966.15 26272.19 28446.96 25068.09 29565.76 30640.03 36157.81 30270.56 34238.32 23774.51 28638.26 31861.50 33277.00 291
USDC56.35 30154.24 31462.69 29564.74 35640.31 30965.05 32173.83 24443.93 33647.58 36377.71 27815.36 38075.05 28438.19 31961.81 33072.70 330
MSDG61.81 26259.23 27069.55 22072.64 27352.63 17070.45 27775.81 20951.38 25153.70 33876.11 29929.52 32481.08 19437.70 32065.79 29774.93 312
MDTV_nov1_ep1357.00 28872.73 27238.26 32865.02 32264.73 31444.74 32655.46 31872.48 32632.61 30370.47 30637.47 32167.75 282
gg-mvs-nofinetune57.86 28956.43 29562.18 29872.62 27435.35 35566.57 30456.33 36050.65 26257.64 30357.10 38330.65 31476.36 27737.38 32278.88 12874.82 314
dmvs_re56.77 29656.83 29156.61 33069.23 32741.02 30458.37 35364.18 31850.59 26457.45 30571.42 33635.54 26558.94 35837.23 32367.45 28469.87 361
RPSCF55.80 30654.22 31560.53 30865.13 35542.91 29064.30 32557.62 35336.84 36758.05 30182.28 19028.01 33756.24 37237.14 32458.61 34582.44 208
testing22262.29 25661.31 25565.25 27877.87 17538.53 32668.34 29366.31 30456.37 17163.15 24177.58 28028.47 33476.18 28137.04 32576.65 16481.05 237
PatchT53.17 32353.44 32052.33 35468.29 33625.34 39658.21 35454.41 36644.46 33054.56 33169.05 35533.32 28960.94 34736.93 32661.76 33170.73 355
YYNet150.73 33248.96 33456.03 33361.10 37441.78 29851.94 37356.44 35840.94 35644.84 37267.80 35930.08 31955.08 37636.77 32750.71 36971.22 350
TAPA-MVS59.36 1066.60 20465.20 21070.81 19476.63 21248.75 22976.52 17480.04 13650.64 26365.24 21084.93 13239.15 22978.54 24036.77 32776.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet_test_wron50.71 33348.95 33556.00 33461.17 37341.84 29751.90 37456.45 35740.96 35544.79 37367.84 35830.04 32055.07 37736.71 32950.69 37071.11 353
ppachtmachnet_test58.06 28855.38 30366.10 26469.51 32348.99 22668.01 29666.13 30544.50 32954.05 33670.74 34132.09 30872.34 29636.68 33056.71 35476.99 293
tpmvs58.47 28356.95 28963.03 29470.20 31341.21 30367.90 29767.23 29649.62 27354.73 32970.84 34034.14 27876.24 27936.64 33161.29 33371.64 344
CHOSEN 280x42047.83 34046.36 34452.24 35667.37 34149.78 21438.91 39343.11 39235.00 37043.27 37863.30 37628.95 32949.19 38736.53 33260.80 33657.76 380
PatchMatch-RL56.25 30254.55 30961.32 30677.06 20456.07 10965.57 31254.10 36844.13 33453.49 34471.27 33925.20 35766.78 32736.52 33363.66 31361.12 373
RPMNet61.53 26458.42 27870.86 19369.96 31852.07 18165.31 31981.36 10743.20 34259.36 28670.15 34735.37 26685.47 10236.42 33464.65 30575.06 308
ITE_SJBPF62.09 29966.16 35044.55 27664.32 31647.36 30455.31 32180.34 23019.27 37362.68 34336.29 33562.39 32579.04 266
JIA-IIPM51.56 32847.68 34263.21 29164.61 35750.73 19847.71 38158.77 34842.90 34448.46 36251.72 38724.97 35870.24 31136.06 33653.89 36268.64 367
KD-MVS_2432*160053.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
miper_refine_blended53.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
OpenMVS_ROBcopyleft52.78 1860.03 27358.14 28265.69 27170.47 30944.82 27075.33 19670.86 26845.04 32456.06 31476.00 30026.89 34879.65 21935.36 33967.29 28572.60 331
GG-mvs-BLEND62.34 29771.36 29837.04 34269.20 28957.33 35654.73 32965.48 37130.37 31677.82 24934.82 34074.93 17972.17 340
UnsupCasMVSNet_bld50.07 33548.87 33653.66 34660.97 37633.67 36857.62 35964.56 31539.47 36347.38 36464.02 37527.47 34159.32 35534.69 34143.68 38067.98 368
MDA-MVSNet-bldmvs53.87 31750.81 32963.05 29366.25 34948.58 23256.93 36263.82 32048.09 29441.22 38070.48 34530.34 31768.00 32234.24 34245.92 37872.57 332
dp51.89 32751.60 32652.77 35268.44 33532.45 37462.36 33454.57 36544.16 33349.31 36067.91 35728.87 33156.61 36933.89 34354.89 35869.24 366
AllTest57.08 29454.65 30764.39 28471.44 29449.03 22369.92 28367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
TestCases64.39 28471.44 29449.03 22367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
test_vis3_rt32.09 36230.20 36637.76 37735.36 40627.48 38740.60 39228.29 40416.69 39632.52 39040.53 3951.96 40737.40 39933.64 34642.21 38348.39 387
UWE-MVS60.18 27259.78 26761.39 30577.67 18233.92 36769.04 29163.82 32048.56 28564.27 22777.64 27927.20 34470.40 30933.56 34776.24 16679.83 256
FMVSNet555.86 30554.93 30558.66 31871.05 30336.35 34864.18 32762.48 33046.76 31150.66 35674.73 31525.80 35464.04 33833.11 34865.57 29875.59 303
mvsany_test139.38 35438.16 35743.02 37049.05 39034.28 36344.16 38925.94 40522.74 38946.57 36962.21 37823.85 36341.16 39733.01 34935.91 38953.63 384
DP-MVS65.68 21463.66 22571.75 16884.93 5556.87 9980.74 9373.16 25153.06 23259.09 29082.35 18736.79 25885.94 8932.82 35069.96 25272.45 334
PVSNet_043.31 2047.46 34245.64 34552.92 35167.60 34044.65 27354.06 36954.64 36441.59 35146.15 37058.75 38030.99 31258.66 35932.18 35124.81 39555.46 383
ETVMVS59.51 27958.81 27361.58 30277.46 19434.87 35664.94 32359.35 34554.06 22361.08 26876.67 29029.54 32371.87 30032.16 35274.07 18678.01 279
WB-MVSnew59.66 27759.69 26859.56 30975.19 23635.78 35469.34 28864.28 31746.88 31061.76 26275.79 30440.61 21565.20 33532.16 35271.21 23077.70 280
TinyColmap54.14 31451.72 32561.40 30466.84 34441.97 29666.52 30568.51 28844.81 32542.69 37975.77 30511.66 38672.94 29331.96 35456.77 35369.27 365
MIMVSNet57.35 29157.07 28758.22 32174.21 25737.18 33862.46 33360.88 34248.88 28255.29 32275.99 30231.68 30962.04 34531.87 35572.35 21675.43 306
thres100view90063.28 24462.41 24265.89 26877.31 19838.66 32472.65 24369.11 28557.07 15562.45 25481.03 21737.01 25679.17 22831.84 35673.25 20379.83 256
tfpn200view963.18 24662.18 24566.21 26076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20379.83 256
thres40063.31 24262.18 24566.72 25076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20381.36 227
pmmvs344.92 34441.95 35153.86 34452.58 38843.55 28362.11 33646.90 38626.05 38340.63 38160.19 37911.08 39157.91 36331.83 35946.15 37760.11 374
LF4IMVS42.95 34742.26 34945.04 36548.30 39332.50 37354.80 36748.49 38028.03 37940.51 38270.16 3469.24 39343.89 39331.63 36049.18 37558.72 377
COLMAP_ROBcopyleft52.97 1761.27 26858.81 27368.64 23174.63 24752.51 17478.42 12673.30 24949.92 27150.96 35181.51 20923.06 36479.40 22331.63 36065.85 29574.01 323
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet47.56 34147.73 34147.06 36258.81 3819.37 40848.78 37959.21 34643.28 34044.22 37568.66 35625.67 35557.20 36631.57 36249.35 37474.62 317
thres600view763.30 24362.27 24366.41 25577.18 20038.87 32272.35 25069.11 28556.98 15762.37 25680.96 21937.01 25679.00 23731.43 36373.05 20781.36 227
thres20062.20 25761.16 25965.34 27675.38 23339.99 31269.60 28569.29 28355.64 19061.87 26076.99 28537.07 25578.96 23831.28 36473.28 20277.06 289
LCM-MVSNet40.30 35335.88 35953.57 34742.24 39729.15 38245.21 38760.53 34322.23 39028.02 39250.98 3903.72 40361.78 34631.22 36538.76 38769.78 362
test_f31.86 36331.05 36434.28 37932.33 40821.86 40032.34 39530.46 40216.02 39739.78 38655.45 3844.80 39932.36 40230.61 36637.66 38848.64 386
test0.0.03 153.32 32253.59 31952.50 35362.81 36629.45 38159.51 34954.11 36750.08 26854.40 33374.31 31832.62 30155.92 37330.50 36763.95 31272.15 341
Anonymous2023120655.10 31255.30 30454.48 34169.81 32233.94 36662.91 33162.13 33641.08 35455.18 32375.65 30632.75 29856.59 37030.32 36867.86 28072.91 327
tfpnnormal62.47 25261.63 25164.99 28074.81 24139.01 32171.22 26573.72 24555.22 19860.21 27280.09 23641.26 21176.98 26430.02 36968.09 27978.97 268
test20.0353.87 31754.02 31653.41 34961.47 37128.11 38561.30 34059.21 34651.34 25352.09 34777.43 28133.29 29058.55 36029.76 37060.27 34073.58 325
LS3D64.71 22862.50 24171.34 18379.72 12355.71 11779.82 10574.72 23148.50 28856.62 30984.62 13833.59 28782.34 17029.65 37175.23 17875.97 298
mvsany_test332.62 36130.57 36538.77 37636.16 40524.20 39838.10 39420.63 40719.14 39340.36 38457.43 3825.06 39836.63 40029.59 37228.66 39355.49 382
testgi51.90 32652.37 32350.51 35960.39 37823.55 39958.42 35258.15 34949.03 28051.83 34879.21 25322.39 36555.59 37429.24 37362.64 32272.40 338
MIMVSNet155.17 31154.31 31357.77 32670.03 31732.01 37565.68 31164.81 31249.19 27846.75 36876.00 30025.53 35664.04 33828.65 37462.13 32777.26 287
TDRefinement53.44 32150.72 33061.60 30164.31 35946.96 25070.89 27265.27 31141.78 34844.61 37477.98 26711.52 38866.36 33028.57 37551.59 36771.49 347
WAC-MVS27.31 38927.77 376
myMVS_eth3d54.86 31354.61 30855.61 33574.69 24527.31 38965.52 31357.49 35450.97 25956.52 31172.18 32821.87 37068.09 31927.70 37764.59 30771.44 348
ADS-MVSNet251.33 33048.76 33759.07 31566.02 35244.60 27450.90 37559.76 34436.90 36550.74 35366.18 36926.38 34963.11 34127.17 37854.76 35969.50 363
ADS-MVSNet48.48 33947.77 34050.63 35866.02 35229.92 38050.90 37550.87 37736.90 36550.74 35366.18 36926.38 34952.47 38227.17 37854.76 35969.50 363
Patchmatch-test49.08 33748.28 33951.50 35764.40 35830.85 37945.68 38548.46 38135.60 36946.10 37172.10 33034.47 27646.37 39027.08 38060.65 33877.27 286
MVS-HIRNet45.52 34344.48 34648.65 36168.49 33434.05 36559.41 35144.50 38927.03 38137.96 38850.47 39126.16 35264.10 33726.74 38159.52 34147.82 390
test_040263.25 24561.01 26069.96 20880.00 11854.37 13976.86 16972.02 26054.58 21558.71 29380.79 22535.00 27084.36 12326.41 38264.71 30471.15 352
N_pmnet39.35 35540.28 35336.54 37863.76 3601.62 41349.37 3780.76 41234.62 37143.61 37766.38 36826.25 35142.57 39426.02 38351.77 36665.44 370
testing356.54 29755.92 29958.41 31977.52 19227.93 38669.72 28456.36 35954.75 21158.63 29677.80 27420.88 37271.75 30125.31 38462.25 32675.53 304
Syy-MVS56.00 30456.23 29755.32 33674.69 24526.44 39265.52 31357.49 35450.97 25956.52 31172.18 32839.89 21968.09 31924.20 38564.59 30771.44 348
DSMNet-mixed39.30 35638.72 35541.03 37351.22 38919.66 40245.53 38631.35 40115.83 39839.80 38567.42 36322.19 36645.13 39122.43 38652.69 36558.31 378
dmvs_testset50.16 33451.90 32444.94 36766.49 34711.78 40561.01 34551.50 37251.17 25750.30 35967.44 36139.28 22660.29 35122.38 38757.49 34962.76 372
ANet_high41.38 35137.47 35853.11 35039.73 40224.45 39756.94 36169.69 27547.65 30026.04 39452.32 38612.44 38462.38 34421.80 38810.61 40372.49 333
new_pmnet34.13 36034.29 36133.64 38052.63 38718.23 40444.43 38833.90 40022.81 38830.89 39153.18 38510.48 39235.72 40120.77 38939.51 38546.98 391
APD_test137.39 35734.94 36044.72 36848.88 39133.19 37152.95 37244.00 39119.49 39227.28 39358.59 3813.18 40552.84 38118.92 39041.17 38448.14 389
EGC-MVSNET42.47 34838.48 35654.46 34274.33 25448.73 23070.33 27951.10 3740.03 4060.18 40767.78 36013.28 38366.49 32918.91 39150.36 37148.15 388
PMMVS227.40 36625.91 36931.87 38239.46 4036.57 41031.17 39628.52 40323.96 38520.45 39848.94 3944.20 40237.94 39816.51 39219.97 39851.09 385
test_method19.68 37018.10 37324.41 38513.68 4103.11 41212.06 40142.37 3932.00 40411.97 40236.38 3965.77 39729.35 40415.06 39323.65 39640.76 395
Gipumacopyleft34.77 35931.91 36343.33 36962.05 37037.87 33020.39 39867.03 29723.23 38618.41 39925.84 3994.24 40062.73 34214.71 39451.32 36829.38 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS42.18 34941.11 35245.39 36458.03 38241.01 30649.50 37753.81 36930.07 37533.71 38964.03 37311.69 38552.08 38514.01 39555.11 35743.09 392
testf131.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
APD_test231.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
tmp_tt9.43 37311.14 3764.30 3882.38 4114.40 41113.62 40016.08 4090.39 40515.89 40013.06 40215.80 3795.54 40712.63 39810.46 4042.95 402
WB-MVS43.26 34643.41 34742.83 37163.32 36310.32 40758.17 35545.20 38745.42 32240.44 38367.26 36434.01 28258.98 35711.96 39924.88 39459.20 375
SSC-MVS41.96 35041.99 35041.90 37262.46 3689.28 40957.41 36044.32 39043.38 33938.30 38766.45 36732.67 30058.42 36110.98 40021.91 39757.99 379
MVEpermissive17.77 2321.41 36917.77 37432.34 38134.34 40725.44 39516.11 39924.11 40611.19 40113.22 40131.92 3971.58 40830.95 40310.47 40117.03 39940.62 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 36722.73 37126.90 38342.02 39820.67 40142.66 39035.70 39817.43 39410.28 40425.05 4006.42 39642.39 39510.28 40214.71 40017.63 399
PMVScopyleft28.69 2236.22 35833.29 36245.02 36636.82 40435.98 35354.68 36848.74 37926.31 38221.02 39751.61 3882.88 40660.10 3529.99 40347.58 37638.99 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS22.97 36821.84 37226.36 38440.20 40119.53 40341.95 39134.64 39917.09 3959.73 40522.83 4017.29 39542.22 3969.18 40413.66 40117.32 400
DeepMVS_CXcopyleft12.03 38717.97 40910.91 40610.60 4107.46 40211.07 40328.36 3983.28 40411.29 4068.01 4059.74 40513.89 401
wuyk23d13.32 37212.52 37515.71 38647.54 39426.27 39331.06 3971.98 4114.93 4035.18 4061.94 4060.45 41118.54 4056.81 40612.83 4022.33 403
testmvs4.52 3766.03 3790.01 3900.01 4120.00 41553.86 3700.00 4130.01 4070.04 4080.27 4070.00 4130.00 4080.04 4070.00 4060.03 405
test1234.73 3756.30 3780.02 3890.01 4120.01 41456.36 3630.00 4130.01 4070.04 4080.21 4080.01 4120.00 4080.03 4080.00 4060.04 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k17.50 37123.34 3700.00 3910.00 4140.00 4150.00 40278.63 1610.00 4090.00 41082.18 19149.25 1150.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.92 3775.23 3800.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 40947.05 1460.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
ab-mvs-re6.49 3748.65 3770.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 41077.89 2720.00 4130.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 414
eth-test0.00 414
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4779.66 14059.00 121
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 275
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27278.05 275
sam_mvs33.43 288
MTGPAbinary80.97 123
test_post3.55 40533.90 28366.52 328
patchmatchnet-post64.03 37334.50 27474.27 288
MTMP86.03 1917.08 408
TEST985.58 4361.59 2481.62 8281.26 11555.65 18974.93 4388.81 5653.70 6384.68 118
test_885.40 4660.96 3481.54 8581.18 11855.86 18074.81 4788.80 5853.70 6384.45 122
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
新几何276.12 180
旧先验183.04 7053.15 15967.52 29287.85 7144.08 17980.76 10078.03 278
原ACMM279.02 116
test22283.14 6858.68 7372.57 24763.45 32341.78 34867.56 16286.12 10737.13 25378.73 13374.98 311
segment_acmp54.23 54
testdata172.65 24360.50 91
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 170
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 413
nn0.00 413
door-mid47.19 385
test1183.47 67
door47.60 383
HQP5-MVS54.94 131
HQP-NCC80.66 10382.31 7162.10 6867.85 152
ACMP_Plane80.66 10382.31 7162.10 6867.85 152
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 10056.05 11085.54 126
ACMMP++_ref74.07 186
ACMMP++72.16 221
Test By Simon48.33 126