This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37798.86 298.53 8699.44 2794.38 8999.94 899.86 199.70 5999.90 3
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 8999.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 180
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12997.25 9198.82 12699.34 1098.75 399.80 599.61 495.16 7099.95 799.70 699.80 2299.93 1
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11899.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18396.15 14698.97 8499.15 2898.55 798.45 9199.55 694.26 9399.97 199.65 799.66 6698.57 214
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23797.15 9698.84 12298.97 4298.75 399.43 2799.54 893.29 10599.93 2599.64 999.79 2899.89 5
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11699.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14298.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7799.77 27
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16495.24 19298.87 11399.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 139
fmvsm_s_conf0.1_n_a98.08 6198.04 6198.21 11997.66 24395.39 18298.89 10499.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
test_vis1_n_192096.71 13696.84 11696.31 26899.11 10489.74 33999.05 6598.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
mamv497.13 11998.11 5694.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12898.90 11896.25 2699.55 15399.27 1599.76 4099.27 129
test_vis1_n95.47 19295.13 19296.49 25297.77 23290.41 33099.27 2798.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
iter_conf0598.16 6098.02 6298.59 8298.96 12297.07 9898.90 9998.57 15294.81 17297.84 12798.90 11895.22 6899.59 14099.15 1799.84 1299.12 156
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1899.86 199.82 16
test_fmvs196.42 14896.67 12895.66 29498.82 13688.53 36298.80 13598.20 22996.39 9599.64 1799.20 6780.35 33599.67 12699.04 1999.57 8598.78 193
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15188.32 36699.26 2898.22 22696.40 9499.67 1499.26 5773.91 37799.70 11999.02 2099.50 9998.87 184
dcpmvs_298.08 6198.59 1496.56 24499.57 3390.34 33299.15 4998.38 19996.82 7399.29 3499.49 1795.78 4499.57 14398.94 2199.86 199.77 27
EC-MVSNet98.21 5898.11 5698.49 9398.34 18197.26 9099.61 598.43 18996.78 7498.87 6298.84 12593.72 10099.01 22698.91 2299.50 9999.19 144
bld_raw_dy_0_6497.09 12296.76 12498.08 13398.89 12796.54 12598.17 23798.52 16688.80 36295.67 21598.83 12793.32 10399.48 16698.86 2399.75 4598.21 231
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2399.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6199.14 8195.25 6599.15 20298.83 2599.56 9199.20 140
CANet98.05 6397.76 7198.90 6798.73 14197.27 8698.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2699.65 6999.51 89
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5499.10 8695.73 4599.13 20598.71 2799.49 10199.09 160
VDD-MVS95.82 17795.23 18897.61 17198.84 13593.98 24898.68 16397.40 31695.02 16097.95 11999.34 4874.37 37699.78 10198.64 2896.80 20999.08 164
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6399.36 4295.41 5499.78 10198.62 2999.65 6999.80 18
iter_conf05_1198.04 6497.94 6698.34 10798.60 15996.38 13499.24 3198.57 15295.90 11398.99 5298.79 13392.97 10999.47 16998.58 3099.85 599.17 150
test_cas_vis1_n_192097.38 10697.36 9397.45 17798.95 12393.25 27999.00 7898.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3199.66 6699.26 132
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13998.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3199.54 9499.73 42
CHOSEN 280x42097.18 11697.18 10297.20 19198.81 13793.27 27795.78 37699.15 2895.25 14796.79 17998.11 20392.29 12199.07 21698.56 3399.85 599.25 134
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
VNet97.79 7697.40 9198.96 6298.88 12997.55 7598.63 17498.93 5096.74 7899.02 4898.84 12590.33 17499.83 6998.53 3496.66 21399.50 91
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17698.52 4099.70 5999.47 100
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4098.56 15499.51 89
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4299.72 5699.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4299.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4299.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 4299.81 1599.84 12
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4699.81 1599.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4699.80 2299.83 13
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7699.88 5698.42 4899.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsany_test197.69 8297.70 7397.66 16898.24 19094.18 24497.53 30197.53 30295.52 13199.66 1599.51 1394.30 9199.56 14698.38 4998.62 15099.23 136
MVSMamba_pp98.02 6597.82 6898.61 7998.25 18997.32 8398.73 15098.56 15696.18 10398.84 6398.72 14392.90 11099.45 17298.37 5099.85 599.07 168
alignmvs97.56 9497.07 10799.01 5698.66 15298.37 4098.83 12498.06 26496.74 7898.00 11797.65 24590.80 16599.48 16698.37 5096.56 21799.19 144
IU-MVS99.71 1999.23 798.64 13795.28 14599.63 1898.35 5299.81 1599.83 13
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
MGCFI-Net97.62 8897.19 10198.92 6498.66 15298.20 4999.32 2298.38 19996.69 8197.58 14997.42 26592.10 13099.50 16098.28 5596.25 23499.08 164
sasdasda97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
canonicalmvs97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17096.59 12198.92 9798.44 18596.20 10197.76 13199.20 6791.66 14299.23 19298.27 5898.41 16399.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvspermissive97.58 9297.40 9198.13 12798.32 18695.81 16898.06 25098.37 20196.20 10198.74 7198.89 12091.31 15499.25 18998.16 6098.52 15599.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18396.14 14798.82 12698.32 20896.38 9697.95 11999.21 6591.23 15699.23 19298.12 6198.37 16499.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline97.64 8697.44 8998.25 11698.35 17696.20 14399.00 7898.32 20896.33 9898.03 11199.17 7491.35 15199.16 19998.10 6298.29 17099.39 112
MP-MVS-pluss98.31 5697.92 6799.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 13999.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
VDDNet95.36 20394.53 22097.86 14598.10 20795.13 19898.85 11897.75 28390.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21698.81 189
mvsmamba96.57 14396.32 14197.32 18796.60 31696.43 13099.54 697.98 26996.49 8895.20 22498.64 15090.82 16398.55 27697.97 6893.65 27496.98 267
h-mvs3396.17 15995.62 17297.81 15099.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14389.76 18199.86 6297.95 6981.59 38199.11 158
hse-mvs295.71 18195.30 18696.93 21298.50 16693.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18199.02 22497.95 6980.91 38698.22 229
SDMVSNet96.85 13196.42 13698.14 12499.30 6896.38 13499.21 4099.23 2095.92 11195.96 21098.76 14085.88 26899.44 17497.93 7195.59 24698.60 209
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13196.78 1699.83 6997.93 7199.61 7799.74 37
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11399.39 3294.81 7999.96 497.91 7399.79 2899.77 27
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7599.62 13797.91 7399.75 4599.50 91
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5799.92 3197.89 7599.75 4599.79 19
PS-MVSNAJ97.73 7897.77 7097.62 17098.68 15095.58 17397.34 31698.51 16997.29 4498.66 7997.88 22394.51 8399.90 4597.87 7699.17 12597.39 255
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7799.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7799.74 5099.78 21
xiu_mvs_v2_base97.66 8597.70 7397.56 17498.61 15895.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9099.80 8897.84 7998.66 14997.41 253
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12498.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7999.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13496.00 3699.79 9897.79 8199.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8399.13 8296.05 3499.94 897.77 8299.86 199.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8299.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6199.80 8897.73 8499.67 6499.72 45
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8599.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6297.72 8599.65 6999.71 49
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2799.84 6797.72 8599.73 5399.67 65
LFMVS95.86 17494.98 20198.47 9598.87 13196.32 13998.84 12296.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8597.20 19999.46 104
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8999.63 7499.72 45
PHI-MVS98.34 5398.06 5999.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8999.76 4099.59 79
HPM-MVScopyleft98.36 5098.10 5899.13 4899.74 797.82 6899.53 798.80 9394.63 18098.61 8298.97 10595.13 7299.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1299.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETV-MVS97.96 6797.81 6998.40 10498.42 17097.27 8698.73 15098.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13698.58 213
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4699.94 897.62 9399.79 2899.78 21
jason97.32 10997.08 10698.06 13697.45 26295.59 17297.87 27497.91 27694.79 17398.55 8598.83 12791.12 15899.23 19297.58 9699.60 7999.34 116
jason: jason.
lupinMVS97.44 10197.22 10098.12 13098.07 20895.76 16997.68 29097.76 28294.50 18898.79 6798.61 15292.34 11999.30 18597.58 9699.59 8199.31 122
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19098.94 5499.20 6795.16 7099.74 11197.58 9699.85 599.77 27
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11998.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 4099.94 897.55 10099.79 2899.78 21
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12795.70 4699.92 3197.53 10299.67 6499.66 68
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
nrg03096.28 15695.72 16397.96 14296.90 30098.15 5499.39 1198.31 21095.47 13394.42 24898.35 17992.09 13198.69 26497.50 10489.05 33797.04 264
test_vis1_rt91.29 32890.65 32893.19 35497.45 26286.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 20997.48 10595.58 24894.22 377
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16698.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
mvs_anonymous96.70 13796.53 13497.18 19498.19 19893.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 17999.31 122
EIA-MVS97.75 7797.58 7798.27 11298.38 17396.44 12999.01 7698.60 14295.88 11597.26 15597.53 25694.97 7699.33 18397.38 10999.20 12399.05 169
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
VPA-MVSNet95.75 17995.11 19597.69 16297.24 27597.27 8698.94 9399.23 2095.13 15295.51 21797.32 27085.73 27098.91 24197.33 11189.55 32996.89 280
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 18097.24 11299.73 5399.70 53
3Dnovator94.51 597.46 9796.93 11299.07 5397.78 23197.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
ACMMPcopyleft98.23 5797.95 6599.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8799.93 2597.14 11498.85 14099.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16398.63 17499.16 2794.48 18997.67 14098.88 12192.80 11299.91 3997.11 11599.12 12699.50 91
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7898.55 15995.73 12293.21 30198.38 17683.45 31698.63 27097.09 11694.00 26596.91 277
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12398.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
9.1498.06 5999.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
EPNet97.28 11096.87 11598.51 9094.98 36896.14 14798.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 12996.49 13598.14 12499.33 5995.56 17497.38 31099.65 292.34 28697.61 14798.20 19789.29 19299.10 21396.97 12097.60 19299.77 27
3Dnovator+94.38 697.43 10296.78 12099.38 1897.83 22898.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5198.52 16695.74 12093.22 30098.36 17883.87 31298.65 26996.95 12294.04 26396.91 277
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17298.22 19396.20 14397.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 171
MVSFormer97.57 9397.49 8497.84 14698.07 20895.76 16999.47 898.40 19394.98 16298.79 6798.83 12792.34 11998.41 29896.91 12399.59 8199.34 116
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 898.40 19394.98 16294.58 23897.86 22489.16 19698.41 29896.91 12394.12 26296.88 281
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7191.80 40096.96 6798.10 10599.26 5781.31 32599.51 15996.90 12699.04 12899.59 79
test_prior297.80 28196.12 10697.89 12698.69 14595.96 3896.89 12799.60 79
EPP-MVSNet97.46 9797.28 9697.99 13998.64 15595.38 18399.33 2198.31 21093.61 23697.19 15799.07 9594.05 9699.23 19296.89 12798.43 16299.37 114
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4898.50 17495.87 11693.84 27898.34 18394.51 8398.61 27196.88 12993.45 28097.06 263
PVSNet_BlendedMVS96.73 13596.60 13097.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12197.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12198.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6892.45 39996.99 6698.03 11199.27 5681.40 32499.48 16696.87 13299.04 12899.63 73
Effi-MVS+97.12 12096.69 12698.39 10598.19 19896.72 11497.37 31298.43 18993.71 22597.65 14498.02 20992.20 12799.25 18996.87 13297.79 18499.19 144
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16098.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
test_yl97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
DCV-MVSNet97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13599.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6379.47 41396.96 6798.36 9699.26 5777.21 35899.52 15896.78 13899.04 12899.59 79
XVG-OURS-SEG-HR96.51 14596.34 13997.02 20598.77 13993.76 25497.79 28398.50 17495.45 13496.94 16899.09 9287.87 23399.55 15396.76 13995.83 24597.74 243
MP-MVScopyleft98.33 5598.01 6399.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12499.23 6294.54 8299.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13498.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
MVSTER96.06 16395.72 16397.08 20298.23 19295.93 16198.73 15098.27 21994.86 16995.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
UGNet96.78 13496.30 14298.19 12398.24 19095.89 16598.88 10998.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10198.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 5298.00 6499.42 1699.51 3998.72 2198.80 13598.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 22594.19 23997.40 18397.16 28496.57 12298.71 15698.97 4295.67 12594.84 23198.24 19580.36 33498.67 26896.46 14587.32 35796.96 269
sss97.39 10596.98 11198.61 7998.60 15996.61 11898.22 22598.93 5093.97 20798.01 11698.48 16691.98 13499.85 6396.45 14698.15 17299.39 112
MVS_Test97.28 11097.00 10998.13 12798.33 18395.97 15598.74 14698.07 25994.27 19598.44 9398.07 20592.48 11699.26 18896.43 14798.19 17199.16 151
FIs96.51 14596.12 14897.67 16597.13 28697.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 265
test9_res96.39 14999.57 8599.69 56
Anonymous2024052995.10 21894.22 23797.75 15699.01 11394.26 24198.87 11398.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25199.12 156
test_fmvs293.43 30193.58 28492.95 35696.97 29483.91 38299.19 4497.24 32595.74 12095.20 22498.27 19169.65 38398.72 26396.26 15193.73 27196.24 344
PMMVS96.60 13996.33 14097.41 18197.90 22593.93 24997.35 31598.41 19192.84 26997.76 13197.45 26191.10 16099.20 19696.26 15197.91 17999.11 158
CLD-MVS95.62 18795.34 18196.46 25897.52 25693.75 25697.27 32298.46 18195.53 13094.42 24898.00 21286.21 26298.97 22896.25 15394.37 25296.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 20894.49 22297.67 16599.00 11493.75 25698.70 16097.04 33790.66 33196.49 19398.80 13178.13 35099.83 6996.21 15495.36 25099.44 107
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
HQP_MVS96.14 16195.90 15796.85 21897.42 26494.60 22798.80 13598.56 15697.28 4595.34 21998.28 18887.09 24699.03 22196.07 15594.27 25496.92 272
plane_prior598.56 15699.03 22196.07 15594.27 25496.92 272
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5598.81 8692.34 28698.09 10699.08 9493.01 10899.92 3196.06 15899.77 3499.75 35
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10898.94 11395.34 5999.65 12996.04 15999.42 11099.19 144
FC-MVSNet-test96.42 14896.05 15097.53 17596.95 29597.27 8699.36 1499.23 2095.83 11793.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 266
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15296.23 14299.22 3799.00 3996.63 8498.04 11099.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 14895.71 16698.55 8598.63 15696.75 11297.88 27398.74 10893.84 21496.54 19198.18 19985.34 27899.75 10995.93 16296.35 22399.15 152
WTY-MVS97.37 10896.92 11398.72 7398.86 13296.89 10798.31 21598.71 11695.26 14697.67 14098.56 16092.21 12699.78 10195.89 16396.85 20899.48 98
XVG-OURS96.55 14496.41 13796.99 20698.75 14093.76 25497.50 30498.52 16695.67 12596.83 17499.30 5288.95 20699.53 15595.88 16496.26 23397.69 246
agg_prior295.87 16599.57 8599.68 61
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30396.97 10198.74 14699.24 1795.16 15193.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16898.99 4195.43 13593.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
UniMVSNet (Re)95.78 17895.19 19097.58 17296.99 29397.47 8098.79 14099.18 2595.60 12793.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
cascas94.63 24793.86 26696.93 21296.91 29994.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24895.80 16896.98 20697.66 247
testing1195.00 22394.28 23497.16 19697.96 22093.36 27598.09 24797.06 33694.94 16795.33 22296.15 34376.89 36299.40 17695.77 17096.30 22798.72 196
Effi-MVS+-dtu96.29 15496.56 13195.51 29997.89 22690.22 33398.80 13598.10 25296.57 8796.45 19696.66 32490.81 16498.91 24195.72 17197.99 17697.40 254
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25993.54 26398.99 8198.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
LGP-MVS_train96.47 25597.46 25993.54 26398.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20087.85 37298.75 14395.66 37495.11 15488.96 36096.85 31690.26 17697.65 35195.65 17598.44 16099.22 138
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16499.14 5198.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26496.50 331
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23898.82 12699.08 3295.92 11195.96 21098.76 14082.83 31899.32 18495.56 17795.59 24698.60 209
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12495.93 3999.72 11395.56 17799.69 6199.68 61
CostFormer94.95 23094.73 21295.60 29797.28 27389.06 35197.53 30196.89 34989.66 35096.82 17696.72 32286.05 26598.95 23795.53 17996.13 23998.79 190
ACMM93.85 995.69 18495.38 17996.61 23797.61 24693.84 25298.91 9898.44 18595.25 14794.28 25598.47 16786.04 26799.12 20795.50 18093.95 26796.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24193.48 26798.73 15098.44 18594.94 16792.53 32298.53 16184.50 29899.14 20495.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tttt051796.07 16295.51 17497.78 15298.41 17294.84 21299.28 2594.33 38894.26 19697.64 14598.64 15084.05 30799.47 16995.34 18297.60 19299.03 170
TAMVS97.02 12496.79 11997.70 16198.06 21195.31 18998.52 18998.31 21093.95 20897.05 16598.61 15293.49 10298.52 28095.33 18397.81 18399.29 127
BP-MVS95.30 184
HQP-MVS95.72 18095.40 17596.69 22897.20 27994.25 24298.05 25198.46 18196.43 9194.45 24397.73 23686.75 25298.96 23295.30 18494.18 25896.86 285
thisisatest053096.01 16495.36 18097.97 14098.38 17395.52 17798.88 10994.19 39094.04 20197.64 14598.31 18683.82 31499.46 17195.29 18697.70 18998.93 181
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
tpmrst95.63 18695.69 16995.44 30397.54 25388.54 36196.97 34197.56 29593.50 23997.52 15196.93 31189.49 18599.16 19995.25 18896.42 22298.64 207
CDS-MVSNet96.99 12596.69 12697.90 14498.05 21295.98 15098.20 22898.33 20793.67 23296.95 16798.49 16593.54 10198.42 29195.24 18997.74 18799.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13485.15 28299.05 21795.21 19094.20 25796.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16298.28 22098.59 14595.52 13197.97 11899.10 8693.28 10699.49 16195.09 19198.88 13799.19 144
testing9994.83 23594.08 24797.07 20397.94 22193.13 28398.10 24697.17 32894.86 16995.34 21996.00 35076.31 36599.40 17695.08 19295.90 24298.68 201
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28293.38 27398.74 14698.57 15291.21 32593.81 27998.58 15772.85 38098.77 26095.05 19393.93 26898.77 195
CANet_DTU96.96 12696.55 13298.21 11998.17 20396.07 14997.98 25998.21 22797.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11798.66 205
testing9194.98 22794.25 23697.20 19197.94 22193.41 27098.00 25797.58 29294.99 16195.45 21896.04 34777.20 35999.42 17594.97 19596.02 24198.78 193
UA-Net97.96 6797.62 7598.98 5998.86 13297.47 8098.89 10499.08 3296.67 8298.72 7499.54 893.15 10799.81 8194.87 19698.83 14199.65 69
114514_t96.93 12796.27 14398.92 6499.50 4197.63 7298.85 11898.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26794.83 19889.02 33996.88 281
XXY-MVS95.20 21394.45 22797.46 17696.75 30996.56 12398.86 11698.65 13693.30 24993.27 29998.27 19184.85 28798.87 24894.82 19991.26 30896.96 269
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15597.75 28598.78 10096.89 7098.46 8899.22 6493.90 9999.68 12594.81 20099.52 9799.67 65
tt080594.54 25393.85 26796.63 23497.98 21893.06 28798.77 14297.84 27993.67 23293.80 28098.04 20876.88 36398.96 23294.79 20192.86 28997.86 240
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
EI-MVSNet95.96 16695.83 15996.36 26497.93 22393.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
thisisatest051595.61 19094.89 20697.76 15598.15 20495.15 19796.77 35794.41 38692.95 26597.18 15897.43 26384.78 28999.45 17294.63 20497.73 18898.68 201
IterMVS-LS95.46 19395.21 18996.22 27298.12 20593.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 15895.73 16297.79 15197.13 28695.55 17698.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16194.62 20698.44 16098.32 226
baseline195.84 17595.12 19498.01 13898.49 16895.98 15098.73 15097.03 33895.37 14096.22 20198.19 19889.96 17999.16 19994.60 20787.48 35398.90 183
IS-MVSNet97.22 11296.88 11498.25 11698.85 13496.36 13799.19 4497.97 27095.39 13797.23 15698.99 10491.11 15998.93 23894.60 20798.59 15299.47 100
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9398.74 14698.95 4694.96 16489.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25893.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15594.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS93.96 896.82 13396.23 14698.57 8398.46 16997.00 10098.14 23998.21 22793.95 20896.72 18097.99 21391.58 14399.76 10794.51 21196.54 21898.95 179
D2MVS95.18 21495.08 19695.48 30097.10 28892.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18698.73 26294.48 21293.60 27795.65 359
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
AdaColmapbinary97.15 11896.70 12598.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17498.68 14690.69 16899.76 10794.36 21499.29 12198.98 175
AUN-MVS94.53 25593.73 27796.92 21598.50 16693.52 26698.34 20998.10 25293.83 21695.94 21297.98 21585.59 27399.03 22194.35 21580.94 38598.22 229
1112_ss96.63 13896.00 15398.50 9198.56 16196.37 13698.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14294.35 21596.51 21999.56 85
CP-MVSNet94.94 23294.30 23396.83 21996.72 31195.56 17499.11 5698.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14396.80 17898.53 16193.32 10399.72 11394.31 21899.31 12099.02 171
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8899.82 7694.27 21999.44 10899.58 83
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13397.80 23388.86 20799.69 12494.26 22099.01 13199.15 152
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25593.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16195.94 15897.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14694.17 22296.50 22099.58 83
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13799.03 7199.03 3795.04 15993.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
FA-MVS(test-final)96.41 15195.94 15597.82 14998.21 19495.20 19497.80 28197.58 29293.21 25297.36 15397.70 23989.47 18799.56 14694.12 22497.99 17698.71 199
API-MVS97.41 10497.25 9797.91 14398.70 14696.80 10998.82 12698.69 12194.53 18598.11 10498.28 18894.50 8699.57 14394.12 22499.49 10197.37 257
cl2294.68 24294.19 23996.13 27598.11 20693.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
PLCcopyleft95.07 497.20 11596.78 12098.44 9999.29 7396.31 14198.14 23998.76 10492.41 28496.39 19898.31 18694.92 7899.78 10194.06 22798.77 14499.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16494.22 25997.90 22079.18 34299.11 20994.05 22893.85 26996.48 334
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
F-COLMAP97.09 12296.80 11797.97 14099.45 5294.95 20898.55 18798.62 14193.02 26296.17 20398.58 15794.01 9799.81 8193.95 22998.90 13599.14 154
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12589.89 18093.91 23199.18 149
baseline295.11 21794.52 22196.87 21796.65 31593.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19793.88 23297.41 19797.87 239
原ACMM198.65 7799.32 6296.62 11698.67 12993.27 25197.81 12998.97 10595.18 6999.83 6993.84 23399.46 10799.50 91
RPSCF94.87 23495.40 17593.26 35298.89 12782.06 39098.33 21098.06 26490.30 34096.56 18799.26 5787.09 24699.49 16193.82 23496.32 22598.24 227
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13398.63 17498.60 14295.18 15097.06 16498.06 20694.26 9399.57 14393.80 23598.87 13999.52 86
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24593.26 27898.81 13498.49 17993.43 24389.74 35498.53 16181.91 32199.08 21593.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 23993.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
MAR-MVS96.91 12896.40 13898.45 9798.69 14996.90 10598.66 16898.68 12492.40 28597.07 16397.96 21691.54 14799.75 10993.68 23798.92 13498.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 13096.55 13297.83 14798.73 14195.46 17999.20 4298.30 21694.96 16496.60 18698.87 12290.05 17798.59 27493.67 23998.60 15199.46 104
LS3D97.16 11796.66 12998.68 7598.53 16597.19 9498.93 9598.90 5792.83 27095.99 20899.37 3892.12 12999.87 5893.67 23999.57 8598.97 176
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 19099.13 5499.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
c3_l94.79 23794.43 22995.89 28697.75 23393.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
CVMVSNet95.43 19696.04 15193.57 34697.93 22383.62 38498.12 24298.59 14595.68 12496.56 18799.02 9887.51 23997.51 35893.56 24397.44 19599.60 77
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10497.43 31495.29 14492.18 33198.52 16482.86 31798.59 27493.46 24491.76 30096.74 294
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24491.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28397.32 8399.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 244
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19793.32 248
WR-MVS_H95.05 22194.46 22596.81 22196.86 30295.82 16799.24 3199.24 1793.87 21392.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 154
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23691.74 30598.69 16298.15 24295.56 12994.92 22997.68 24488.98 20498.79 25893.19 25197.78 18597.20 261
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29789.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 23993.09 25398.50 15798.85 185
test-LLR95.10 21894.87 20795.80 28996.77 30689.70 34096.91 34695.21 37895.11 15494.83 23395.72 35887.71 23598.97 22893.06 25498.50 15798.72 196
test-mter94.08 29093.51 28895.80 28996.77 30689.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22893.06 25498.50 15798.72 196
BH-untuned95.95 16795.72 16396.65 23098.55 16392.26 29498.23 22497.79 28193.73 22294.62 23798.01 21188.97 20599.00 22793.04 25698.51 15698.68 201
EPMVS94.99 22594.48 22396.52 25097.22 27791.75 30497.23 32391.66 40194.11 19897.28 15496.81 31885.70 27198.84 25193.04 25697.28 19898.97 176
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15897.40 30897.67 28690.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
GeoE96.58 14296.07 14998.10 13298.35 17695.89 16599.34 1798.12 24693.12 25896.09 20498.87 12289.71 18398.97 22892.95 25998.08 17599.43 109
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 18895.97 15598.58 18098.25 22491.74 30395.29 22397.23 27791.03 16299.15 20292.90 26197.96 17898.97 176
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8498.09 25692.32 28894.31 25497.06 29488.39 21898.55 27692.90 26188.87 34196.34 340
DP-MVS96.59 14095.93 15698.57 8399.34 5796.19 14598.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13799.68 61
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21492.79 26477.98 39495.04 369
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23092.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21792.75 26592.40 29496.55 320
cl____94.51 25794.01 25396.02 27897.58 24893.40 27297.05 33797.96 27291.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25293.38 27397.05 33797.94 27391.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17197.93 12398.58 15795.07 7499.71 11892.60 26799.34 11899.43 109
test_post196.68 36130.43 41287.85 23498.69 26492.59 269
SCA95.46 19395.13 19296.46 25897.67 24191.29 31397.33 31797.60 29194.68 17796.92 17197.10 28383.97 30998.89 24592.59 26998.32 16999.20 140
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 27092.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4799.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23390.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
IterMVS94.09 28993.85 26794.80 32597.99 21690.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21890.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
tpm294.19 27993.76 27595.46 30297.23 27689.04 35297.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26192.43 27796.23 23698.59 211
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21687.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 225
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30995.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16797.88 238
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9098.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6294.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
GBi-Net94.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet394.97 22994.26 23597.11 20098.18 20096.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24890.72 32496.84 35597.52 30394.06 20097.08 16196.96 30789.24 19498.90 24492.03 28598.37 16499.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UWE-MVS94.30 27193.89 26495.53 29897.83 22888.95 35597.52 30393.25 39494.44 19196.63 18397.07 29078.70 34499.28 18791.99 28697.56 19498.36 223
QAPM96.29 15495.40 17598.96 6297.85 22797.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10398.95 11294.60 8199.89 4791.97 28899.47 10499.59 79
MDTV_nov1_ep1395.40 17597.48 25788.34 36596.85 35497.29 32193.74 22197.48 15297.26 27389.18 19599.05 21791.92 28997.43 196
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 267
GA-MVS94.81 23694.03 25097.14 19797.15 28593.86 25196.76 35897.58 29294.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23499.09 160
PatchMatch-RL96.59 14096.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17198.06 20688.50 21799.65 12991.77 29299.00 13298.66 205
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6598.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
testdata299.89 4791.65 295
BH-w/o95.38 20095.08 19696.26 27198.34 18191.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25191.55 29697.70 18998.16 233
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25691.47 29791.92 29995.12 366
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25991.35 29895.58 24898.34 224
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
FE-MVS95.62 18794.90 20597.78 15298.37 17594.92 20997.17 33197.38 31890.95 32997.73 13697.70 23985.32 28099.63 13491.18 30098.33 16798.79 190
testing22294.12 28693.03 30097.37 18698.02 21394.66 21997.94 26396.65 36094.63 18095.78 21395.76 35371.49 38198.92 23991.17 30195.88 24398.52 215
ETVMVS94.50 25893.44 29197.68 16498.18 20095.35 18698.19 23197.11 33093.73 22296.40 19795.39 36374.53 37398.84 25191.10 30296.31 22698.84 187
FMVSNet294.47 26293.61 28397.04 20498.21 19496.43 13098.79 14098.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
tpmvs94.60 24894.36 23295.33 30797.46 25988.60 36096.88 35297.68 28591.29 32093.80 28096.42 33488.58 21199.24 19191.06 30596.04 24098.17 232
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26794.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22091.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 13296.24 14598.65 7798.72 14596.92 10497.36 31498.57 15293.33 24696.67 18197.57 25394.30 9199.56 14691.05 30798.59 15299.47 100
dmvs_re94.48 26194.18 24195.37 30597.68 24090.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14396.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17497.09 262
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27586.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
BH-RMVSNet95.92 17195.32 18497.69 16298.32 18694.64 22198.19 23197.45 31294.56 18396.03 20698.61 15285.02 28399.12 20790.68 31299.06 12799.30 125
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8198.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
MVS94.67 24593.54 28798.08 13396.88 30196.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16698.04 235
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21488.74 35896.04 37097.30 32090.15 34196.47 19496.64 32787.89 23197.56 35690.08 31997.06 20199.02 171
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21491.91 30196.04 37097.74 28490.15 34196.47 19496.64 32787.89 23198.96 23290.08 31997.06 20199.02 171
MSDG95.93 17095.30 18697.83 14798.90 12695.36 18496.83 35698.37 20191.32 31894.43 24798.73 14290.27 17599.60 13990.05 32198.82 14298.52 215
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
dp94.15 28393.90 26294.90 31997.31 27286.82 37796.97 34197.19 32791.22 32496.02 20796.61 32985.51 27499.02 22490.00 32394.30 25398.85 185
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27189.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 23294.20 23897.17 19597.75 23394.14 24597.59 29897.02 34092.28 29095.75 21497.64 24783.88 31198.96 23289.77 32596.15 23898.40 220
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26489.75 32699.38 11695.25 363
ITE_SJBPF95.44 30397.42 26491.32 31297.50 30595.09 15793.59 28498.35 17981.70 32298.88 24789.71 32793.39 28296.12 348
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28791.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20396.74 294
USDC93.33 30592.71 30695.21 30996.83 30490.83 32296.91 34697.50 30593.84 21490.72 34698.14 20177.69 35398.82 25589.51 33293.21 28695.97 352
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2898.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
FMVSNet193.19 31092.07 31796.56 24497.54 25395.00 20298.82 12698.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
tpm cat193.36 30292.80 30495.07 31597.58 24887.97 37096.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20589.24 33695.87 24498.10 234
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
WAC-MVS90.94 31888.66 342
thres600view795.49 19194.77 20997.67 16598.98 11995.02 20198.85 11896.90 34795.38 13896.63 18396.90 31284.29 29999.59 14088.65 34396.33 22498.40 220
testing393.19 31092.48 31295.30 30898.07 20892.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20097.63 248
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26890.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20397.60 249
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20998.87 11396.90 34795.38 13896.61 18596.88 31384.29 29999.56 14688.11 34696.29 22897.76 241
tfpn200view995.32 20794.62 21697.43 17998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22897.76 241
thres40095.38 20094.62 21697.65 16998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22898.40 220
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28791.97 29891.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
thres20095.25 20994.57 21897.28 18898.81 13794.92 20998.20 22897.11 33095.24 14996.54 19196.22 34184.58 29699.53 15587.93 35096.50 22097.39 255
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 28089.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
CR-MVSNet94.76 23994.15 24396.59 24097.00 29193.43 26894.96 38297.56 29592.46 27996.93 16996.24 33788.15 22397.88 34587.38 35296.65 21498.46 218
Patchmtry93.22 30892.35 31495.84 28896.77 30693.09 28694.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15492.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 251
TinyColmap92.31 32191.53 32294.65 33096.92 29789.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25686.74 35592.51 29395.41 361
MIMVSNet93.26 30792.21 31696.41 26197.73 23793.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23698.92 182
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 9996.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18698.59 211
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14397.54 30195.60 12791.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 245
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14399.09 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 32390.92 32694.49 33497.21 27892.09 29798.00 25797.55 30089.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
tfpnnormal93.66 29792.70 30796.55 24896.94 29695.94 15898.97 8499.19 2491.04 32791.38 34097.34 26884.94 28598.61 27185.45 36589.02 33995.11 367
Patchmatch-test94.42 26593.68 28196.63 23497.60 24791.76 30394.83 38697.49 30789.45 35494.14 26397.10 28388.99 20198.83 25485.37 36698.13 17399.29 127
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27790.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
WB-MVSnew94.19 27994.04 24994.66 32996.82 30592.14 29597.86 27595.96 37093.50 23995.64 21696.77 32088.06 22797.99 33584.87 36896.86 20793.85 385
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15796.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13398.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27390.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24882.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14597.43 252
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
PAPM94.95 23094.00 25497.78 15297.04 29095.65 17196.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25082.61 37997.61 19198.84 187
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
TAPA-MVS93.98 795.35 20494.56 21997.74 15799.13 10194.83 21498.33 21098.64 13786.62 37196.29 20098.61 15294.00 9899.29 18680.00 38599.41 11199.09 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 37297.09 28972.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29593.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
PatchT93.06 31391.97 31996.35 26596.69 31292.67 29094.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21298.49 217
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
test_040291.32 32790.27 33394.48 33596.60 31691.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
Syy-MVS92.55 31892.61 30992.38 35997.39 26883.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20397.60 249
RPMNet92.81 31591.34 32497.24 18997.00 29193.43 26894.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21498.46 218
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 830.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 140
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 140
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post31.83 41188.83 20898.91 241
patchmatchnet-post95.10 36889.42 18998.89 245
MTMP98.89 10494.14 391
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13498.68 14696.20 2999.80 88
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13898.66 14996.20 2999.80 88
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
test_prior498.01 6197.86 275
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
新几何297.64 294
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
原ACMM297.67 291
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10898.96 11094.14 9599.53 9699.61 75
segment_acmp96.85 14
testdata197.32 31896.34 97
test1299.18 4299.16 9898.19 5098.53 16398.07 10795.13 7299.72 11399.56 9199.63 73
plane_prior797.42 26494.63 222
plane_prior697.35 27194.61 22587.09 246
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 219
plane_prior298.80 13597.28 45
plane_prior197.37 270
plane_prior94.60 22798.44 20196.74 7894.22 256
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
HQP-NCC97.20 27998.05 25196.43 9194.45 243
ACMP_Plane97.20 27998.05 25196.43 9194.45 243
HQP4-MVS94.45 24398.96 23296.87 283
HQP3-MVS98.46 18194.18 258
HQP2-MVS86.75 252
NP-MVS97.28 27394.51 23097.73 236
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 80