This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DROMVSNet98.21 5798.11 4998.49 9898.34 17197.26 10099.61 398.43 18396.78 6198.87 5098.84 11393.72 10499.01 20698.91 199.50 9299.19 140
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
CANet98.05 5897.76 6598.90 7498.73 13897.27 9698.35 18698.78 9897.37 3097.72 12598.96 9991.53 14399.92 2498.79 399.65 6299.51 96
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 18198.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
VDD-MVS95.82 16395.23 17497.61 16398.84 13293.98 23998.68 13897.40 30295.02 14497.95 11099.34 3374.37 35499.78 9998.64 496.80 19299.08 157
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19798.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 18198.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
CS-MVS97.94 6497.90 6098.06 13098.04 19896.85 11599.04 5898.39 19196.17 8698.50 7598.29 17494.60 8599.02 20398.61 899.43 10198.30 205
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 20098.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13493.27 26695.78 34299.15 1895.25 13096.79 16598.11 18992.29 12099.07 19498.56 1099.85 399.25 134
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
VNet97.79 7297.40 8498.96 7098.88 12797.55 8698.63 14798.93 3896.74 6499.02 3898.84 11390.33 16799.83 5998.53 1196.66 19699.50 98
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 13199.05 2497.28 3498.84 5199.28 4296.47 2199.40 16198.52 1799.70 5599.47 105
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22598.29 21297.19 4398.99 4299.02 8696.22 2399.67 12598.52 1798.56 14499.51 96
DVP-MVS++99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7698.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5099.94 398.47 1999.81 1099.84 6
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18398.76 10297.49 1899.20 2599.21 5396.08 3299.79 9598.42 2599.73 4599.75 30
DELS-MVS98.40 4398.20 4598.99 6699.00 11797.66 8197.75 25898.89 4797.71 898.33 8798.97 9394.97 7799.88 4698.42 2599.76 3499.42 115
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18398.81 7997.48 1999.21 2499.21 5396.13 3099.80 8398.40 2799.73 4599.75 30
alignmvs97.56 8797.07 9799.01 6598.66 14798.37 4698.83 10398.06 25796.74 6498.00 10897.65 23090.80 15899.48 15598.37 2896.56 20099.19 140
IU-MVS99.71 2199.23 798.64 14095.28 12899.63 498.35 2999.81 1099.83 7
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5999.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25299.00 11789.54 32597.43 27698.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
canonicalmvs97.67 7797.23 9098.98 6898.70 14398.38 4099.34 1598.39 19196.76 6397.67 12897.40 25192.26 12199.49 15198.28 3296.28 21299.08 157
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8798.85 6797.28 3499.72 399.39 1696.63 1897.60 33098.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvs97.58 8597.40 8498.13 12398.32 17595.81 16898.06 22898.37 19596.20 8598.74 5898.89 10791.31 14899.25 17098.16 3498.52 14599.34 119
casdiffmvs97.63 8097.41 8398.28 11198.33 17396.14 14798.82 10698.32 20296.38 7997.95 11099.21 5391.23 15099.23 17398.12 3598.37 15399.48 103
baseline97.64 7997.44 8298.25 11598.35 16696.20 14499.00 7098.32 20296.33 8198.03 10099.17 6191.35 14699.16 17998.10 3698.29 15899.39 116
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17798.78 9894.10 17797.69 12799.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CS-MVS-test97.90 6797.83 6298.11 12698.14 19096.49 13199.35 1398.40 18896.31 8298.27 9098.31 17194.42 9499.05 19598.07 3899.20 11398.80 177
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 8098.80 9093.67 20799.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 17198.81 7997.72 698.76 5799.16 6697.05 1399.78 9998.06 3999.66 6199.69 55
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 24299.58 397.20 4298.33 8799.00 9195.99 3899.64 12998.05 4199.76 3499.69 55
VDDNet95.36 18794.53 20497.86 14098.10 19395.13 19398.85 9997.75 27490.46 30798.36 8499.39 1673.27 35699.64 12997.98 4296.58 19998.81 176
h-mvs3396.17 14695.62 15797.81 14599.03 11394.45 22498.64 14698.75 10597.48 1998.67 6398.72 12789.76 17499.86 5297.95 4381.59 35099.11 152
hse-mvs295.71 16795.30 17296.93 19898.50 15893.53 25698.36 18598.10 24397.48 1998.67 6397.99 19889.76 17499.02 20397.95 4380.91 35498.22 207
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 18098.68 12497.04 5198.52 7498.80 11896.78 1599.83 5997.93 4599.61 7199.74 35
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 16198.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8798.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23899.58 397.14 4698.44 8099.01 9095.03 7699.62 13497.91 4699.75 4099.50 98
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10698.81 7995.80 10099.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14695.58 17397.34 28598.51 16697.29 3398.66 6797.88 20994.51 8899.90 3697.87 5099.17 11697.39 229
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7399.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5795.90 4399.89 3897.85 5299.74 4399.78 15
X-MVStestdata94.06 27192.30 29199.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 37195.90 4399.89 3897.85 5299.74 4399.78 15
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 15295.46 17997.44 27498.46 17697.15 4598.65 6898.15 18694.33 9599.80 8397.84 5498.66 14097.41 227
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10398.75 10596.96 5596.89 15999.50 490.46 16499.87 4797.84 5499.76 3499.52 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 12096.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9598.60 7199.13 7096.05 3599.94 397.77 5799.86 199.77 22
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8399.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20698.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5898.81 7995.12 13799.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
LFMVS95.86 16094.98 18698.47 10098.87 12896.32 14098.84 10296.02 34093.40 21798.62 6999.20 5774.99 35099.63 13297.72 6097.20 18699.46 109
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 7099.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5899.09 2093.32 22098.83 5399.10 7596.54 1999.83 5997.70 6599.76 3499.59 85
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 16298.61 7098.97 9395.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17998.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETV-MVS97.96 6097.81 6398.40 10698.42 16297.27 9698.73 12698.55 15796.84 5998.38 8397.44 24895.39 5899.35 16497.62 6998.89 12798.58 194
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 9298.94 4399.17 6196.06 3399.92 2497.62 6999.78 2599.75 30
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 9298.93 4799.19 6095.70 4799.94 397.62 6999.79 2199.78 15
jason97.32 10297.08 9698.06 13097.45 24195.59 17297.87 24897.91 26894.79 15398.55 7398.83 11591.12 15199.23 17397.58 7299.60 7299.34 119
jason: jason.
lupinMVS97.44 9497.22 9198.12 12598.07 19495.76 16997.68 26297.76 27394.50 16798.79 5498.61 13692.34 11899.30 16797.58 7299.59 7599.31 125
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16998.94 4399.20 5795.16 7299.74 11097.58 7299.85 399.77 22
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 10198.31 8999.10 7595.46 5499.93 1897.57 7599.81 1099.74 35
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8798.94 4399.17 6195.91 4299.94 397.55 7699.79 2199.78 15
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16898.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 13098.66 13597.51 1798.15 9198.83 11595.70 4799.92 2497.53 7899.67 5899.66 69
PC_three_145295.08 14299.60 599.16 6697.86 298.47 26397.52 7999.72 5299.74 35
nrg03096.28 14395.72 14897.96 13796.90 27798.15 6199.39 898.31 20495.47 11694.42 22698.35 16492.09 12898.69 24097.50 8089.05 31097.04 239
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 23197.02 15298.92 10595.36 6199.91 3397.43 8199.64 6699.52 92
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8398.35 8699.23 5095.46 5499.94 397.42 8299.81 1099.77 22
mvs_anonymous96.70 12696.53 12497.18 18298.19 18493.78 24498.31 19598.19 22394.01 18294.47 22098.27 17892.08 12998.46 26497.39 8397.91 16799.31 125
EIA-MVS97.75 7397.58 7098.27 11298.38 16496.44 13499.01 6898.60 14595.88 9797.26 14197.53 24194.97 7799.33 16697.38 8499.20 11399.05 159
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 17298.76 10297.82 598.45 7998.93 10396.65 1799.83 5997.38 8499.41 10399.71 48
VPA-MVSNet95.75 16595.11 18097.69 15697.24 25297.27 9698.94 8299.23 1295.13 13695.51 19797.32 25485.73 26198.91 21997.33 8689.55 30296.89 255
OPU-MVS99.37 2399.24 9499.05 1499.02 6699.16 6697.81 399.37 16397.24 8799.73 4599.70 52
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 21297.64 8299.35 1399.06 2297.02 5293.75 25899.16 6689.25 18599.92 2497.22 8899.75 4099.64 74
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7598.96 3295.65 10898.94 4399.17 6196.06 3399.92 2497.21 8999.78 2599.75 30
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6299.41 695.98 9497.60 13599.36 2894.45 9299.93 1897.14 9098.85 13199.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14799.16 1794.48 16897.67 12898.88 10892.80 11399.91 3397.11 9199.12 11799.50 98
mvs_tets95.41 18395.00 18496.65 21695.58 32994.42 22699.00 7098.55 15795.73 10393.21 27698.38 16183.45 30098.63 24797.09 9294.00 24096.91 252
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10498.73 6099.06 8495.27 6799.93 1897.07 9399.63 6899.72 44
9.1498.06 5199.47 5098.71 13198.82 7394.36 17199.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
EPNet97.28 10396.87 10698.51 9594.98 33996.14 14798.90 8797.02 31998.28 195.99 19399.11 7391.36 14599.89 3896.98 9599.19 11599.50 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27999.65 292.34 25697.61 13498.20 18389.29 18499.10 19196.97 9697.60 18099.77 22
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 21098.52 3299.37 1098.71 11797.09 5092.99 28499.13 7089.36 18299.89 3896.97 9699.57 7999.71 48
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8899.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
jajsoiax95.45 17995.03 18396.73 21095.42 33694.63 21599.14 4198.52 16395.74 10293.22 27598.36 16383.87 29698.65 24696.95 9994.04 23896.91 252
ET-MVSNet_ETH3D94.13 26492.98 27997.58 16498.22 18096.20 14497.31 28895.37 34894.53 16479.56 36097.63 23486.51 24797.53 33396.91 10090.74 28799.02 161
MVSFormer97.57 8697.49 7897.84 14198.07 19495.76 16999.47 598.40 18894.98 14598.79 5498.83 11592.34 11898.41 27696.91 10099.59 7599.34 119
test_djsdf96.00 15295.69 15496.93 19895.72 32595.49 17899.47 598.40 18894.98 14594.58 21697.86 21189.16 18898.41 27696.91 10094.12 23796.88 256
ECVR-MVScopyleft95.95 15495.71 15196.65 21699.02 11490.86 30599.03 6291.80 36896.96 5598.10 9499.26 4581.31 31099.51 15096.90 10399.04 11999.59 85
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25498.84 6896.12 9097.89 11798.69 12895.96 3999.70 11896.89 10499.60 7299.65 71
test_prior297.80 25496.12 9097.89 11798.69 12895.96 3996.89 10499.60 72
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14995.38 18199.33 1898.31 20493.61 21097.19 14399.07 8394.05 9999.23 17396.89 10498.43 15299.37 118
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32395.08 19599.16 3998.50 17195.87 9893.84 25498.34 16894.51 8898.61 24896.88 10793.45 25397.06 238
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20399.26 894.28 17297.94 11297.46 24592.74 11499.81 7496.88 10793.32 25696.20 322
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 29099.26 893.13 22897.94 11298.21 18292.74 11499.81 7496.88 10799.40 10599.27 132
test111195.94 15695.78 14696.41 24498.99 12090.12 31799.04 5892.45 36796.99 5498.03 10099.27 4481.40 30999.48 15596.87 11099.04 11999.63 77
Effi-MVS+97.12 11296.69 11698.39 10798.19 18496.72 12097.37 28198.43 18393.71 20097.65 13198.02 19492.20 12599.25 17096.87 11097.79 17299.19 140
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22999.71 193.57 21197.09 14698.91 10688.17 21499.89 3896.87 11099.56 8499.81 10
test_yl97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 14198.84 6894.66 16199.11 3299.25 4895.46 5499.81 7496.80 11599.73 4599.63 77
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 7299.49 595.43 11899.03 3799.32 3595.56 5099.94 396.80 11599.77 2899.78 15
test250694.44 24693.91 24396.04 26199.02 11488.99 33599.06 5579.47 37896.96 5598.36 8499.26 4577.21 34199.52 14996.78 11799.04 11999.59 85
RRT_test8_iter0594.56 23694.19 22395.67 27897.60 22491.34 29698.93 8498.42 18594.75 15493.39 27097.87 21079.00 32798.61 24896.78 11790.99 28597.07 237
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13693.76 24597.79 25698.50 17195.45 11796.94 15499.09 8087.87 22499.55 14596.76 11995.83 22297.74 220
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8997.92 11599.23 5094.54 8799.94 396.74 12099.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25398.72 11393.16 22797.57 13698.66 13396.14 2999.81 7496.63 12199.56 8499.66 69
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 24098.73 11192.98 23397.74 12398.68 13096.20 2699.80 8396.59 12299.57 7999.68 61
MVSTER96.06 14995.72 14897.08 18998.23 17995.93 16198.73 12698.27 21394.86 15195.07 20298.09 19088.21 21298.54 25696.59 12293.46 25196.79 265
bset_n11_16_dypcd94.89 21694.27 21996.76 20894.41 34795.15 19195.67 34395.64 34795.53 11294.65 21497.52 24287.10 23798.29 29296.58 12491.35 27796.83 263
UGNet96.78 12496.30 13098.19 12098.24 17895.89 16598.88 9498.93 3897.39 2796.81 16397.84 21482.60 30299.90 3696.53 12599.49 9398.79 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11398.82 7394.52 16699.23 2399.25 4895.54 5299.80 8396.52 12699.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 20894.19 22397.40 17497.16 26196.57 12798.71 13198.97 3095.67 10694.84 20898.24 18180.36 31998.67 24496.46 12787.32 33096.96 244
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18998.68 12493.18 22598.68 6299.13 7094.62 8499.83 5996.45 12899.55 8799.52 92
sss97.39 9896.98 10298.61 8698.60 15396.61 12498.22 20598.93 3893.97 18598.01 10698.48 15091.98 13199.85 5396.45 12898.15 16099.39 116
MVS_Test97.28 10397.00 10098.13 12398.33 17395.97 15598.74 12298.07 25294.27 17398.44 8098.07 19192.48 11699.26 16996.43 13098.19 15999.16 146
FIs96.51 13496.12 13697.67 15897.13 26397.54 8799.36 1199.22 1495.89 9694.03 24698.35 16491.98 13198.44 26796.40 13192.76 26397.01 240
test9_res96.39 13299.57 7999.69 55
Anonymous2024052995.10 20294.22 22197.75 15099.01 11694.26 23398.87 9698.83 7185.79 34896.64 16898.97 9378.73 32899.85 5396.27 13394.89 22699.12 151
PMMVS96.60 12896.33 12997.41 17297.90 20693.93 24097.35 28498.41 18692.84 24097.76 12197.45 24791.10 15399.20 17696.26 13497.91 16799.11 152
CLD-MVS95.62 17395.34 16796.46 24197.52 23493.75 24797.27 29198.46 17695.53 11294.42 22698.00 19786.21 25498.97 20896.25 13594.37 22796.66 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 19294.49 20697.67 15899.00 11793.75 24798.70 13597.04 31690.66 30396.49 17998.80 11878.13 33399.83 5996.21 13695.36 22599.44 112
RRT_MVS96.04 15095.53 15897.56 16697.07 26797.32 9398.57 15898.09 24895.15 13595.02 20498.44 15388.20 21398.58 25496.17 13793.09 26096.79 265
ZD-MVS99.46 5398.70 2398.79 9593.21 22498.67 6398.97 9395.70 4799.83 5996.07 13899.58 78
HQP_MVS96.14 14795.90 14396.85 20497.42 24294.60 22098.80 11398.56 15597.28 3495.34 19898.28 17587.09 23899.03 20096.07 13894.27 22996.92 247
plane_prior598.56 15599.03 20096.07 13894.27 22996.92 247
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25698.09 9599.08 8293.01 11199.92 2496.06 14199.77 2899.75 30
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18998.89 4792.62 24598.05 9798.94 10295.34 6299.65 12796.04 14299.42 10299.19 140
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 27297.27 9699.36 1199.23 1295.83 9993.93 24898.37 16292.00 13098.32 28596.02 14392.72 26497.00 241
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14796.23 14399.22 3099.00 2796.63 6998.04 9999.21 5388.05 21999.35 16496.01 14499.21 11299.45 111
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 13795.71 15198.55 9098.63 15096.75 11997.88 24798.74 10793.84 19196.54 17698.18 18585.34 26999.75 10895.93 14596.35 20699.15 147
WTY-MVS97.37 10096.92 10498.72 8098.86 12996.89 11498.31 19598.71 11795.26 12997.67 12898.56 14492.21 12499.78 9995.89 14696.85 19199.48 103
XVG-OURS96.55 13396.41 12696.99 19298.75 13793.76 24597.50 27398.52 16395.67 10696.83 16099.30 4088.95 19899.53 14695.88 14796.26 21397.69 223
agg_prior295.87 14899.57 7999.68 61
UniMVSNet_NR-MVSNet95.71 16795.15 17797.40 17496.84 28096.97 10898.74 12299.24 1095.16 13493.88 25197.72 22591.68 13698.31 28795.81 14987.25 33196.92 247
DU-MVS95.42 18194.76 19497.40 17496.53 29596.97 10898.66 14498.99 2995.43 11893.88 25197.69 22688.57 20498.31 28795.81 14987.25 33196.92 247
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10398.86 6395.48 11598.91 4999.17 6195.48 5399.93 1895.80 15199.53 8999.76 28
UniMVSNet (Re)95.78 16495.19 17697.58 16496.99 27197.47 8998.79 11799.18 1695.60 10993.92 24997.04 27991.68 13698.48 26095.80 15187.66 32696.79 265
cascas94.63 23193.86 24796.93 19896.91 27694.27 23296.00 33998.51 16685.55 34994.54 21796.23 32084.20 28998.87 22695.80 15196.98 19097.66 224
Effi-MVS+-dtu96.29 14196.56 12195.51 28197.89 20790.22 31698.80 11398.10 24396.57 7196.45 18296.66 30490.81 15698.91 21995.72 15497.99 16597.40 228
mvs-test196.60 12896.68 11896.37 24797.89 20791.81 28698.56 15998.10 24396.57 7196.52 17897.94 20390.81 15699.45 15995.72 15498.01 16497.86 217
LPG-MVS_test95.62 17395.34 16796.47 23897.46 23793.54 25498.99 7298.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
LGP-MVS_train96.47 23897.46 23793.54 25498.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
旧先验297.57 27191.30 29198.67 6399.80 8395.70 158
LCM-MVSNet-Re95.22 19595.32 17094.91 29998.18 18687.85 35098.75 11995.66 34695.11 13888.96 33696.85 29790.26 16997.65 32895.65 15998.44 15099.22 136
anonymousdsp95.42 18194.91 18996.94 19795.10 33895.90 16499.14 4198.41 18693.75 19593.16 27797.46 24587.50 23298.41 27695.63 16094.03 23996.50 308
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 24298.67 13292.57 24898.77 5698.85 11195.93 4199.72 11295.56 16199.69 5699.68 61
CostFormer94.95 21294.73 19695.60 28097.28 25089.06 33297.53 27296.89 32789.66 32396.82 16296.72 30286.05 25798.95 21695.53 16296.13 21898.79 178
ACMM93.85 995.69 17095.38 16596.61 22297.61 22393.84 24398.91 8698.44 18095.25 13094.28 23298.47 15186.04 25999.12 18595.50 16393.95 24296.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 18994.98 18696.43 24397.67 21993.48 25898.73 12698.44 18094.94 15092.53 29798.53 14584.50 28399.14 18395.48 16494.00 24096.66 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tttt051796.07 14895.51 16097.78 14798.41 16394.84 20699.28 2194.33 35994.26 17497.64 13298.64 13584.05 29199.47 15795.34 16597.60 18099.03 160
TAMVS97.02 11596.79 10997.70 15598.06 19695.31 18698.52 16398.31 20493.95 18697.05 15198.61 13693.49 10698.52 25895.33 16697.81 17199.29 130
BP-MVS95.30 167
HQP-MVS95.72 16695.40 16196.69 21497.20 25694.25 23498.05 22998.46 17696.43 7694.45 22197.73 22386.75 24498.96 21295.30 16794.18 23396.86 260
thisisatest053096.01 15195.36 16697.97 13598.38 16495.52 17798.88 9494.19 36194.04 17997.64 13298.31 17183.82 29899.46 15895.29 16997.70 17798.93 170
WR-MVS95.15 19994.46 20997.22 17996.67 29096.45 13398.21 20698.81 7994.15 17593.16 27797.69 22687.51 23098.30 28995.29 16988.62 31696.90 254
tpmrst95.63 17295.69 15495.44 28597.54 23188.54 34196.97 30797.56 28493.50 21397.52 13896.93 29289.49 17899.16 17995.25 17196.42 20598.64 190
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19795.98 15098.20 20998.33 20193.67 20796.95 15398.49 14993.54 10598.42 26995.24 17297.74 17599.31 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 17095.33 16996.76 20896.16 31294.63 21598.43 17798.39 19196.64 6895.02 20498.78 12085.15 27199.05 19595.21 17394.20 23296.60 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 20098.59 14795.52 11497.97 10999.10 7593.28 10999.49 15195.09 17498.88 12899.19 140
UniMVSNet_ETH3D94.24 25793.33 27396.97 19597.19 25993.38 26398.74 12298.57 15391.21 29793.81 25598.58 14172.85 35798.77 23795.05 17593.93 24398.77 180
CANet_DTU96.96 11796.55 12298.21 11798.17 18896.07 14997.98 23698.21 22097.24 4097.13 14598.93 10386.88 24399.91 3395.00 17699.37 10798.66 188
UA-Net97.96 6097.62 6898.98 6898.86 12997.47 8998.89 9199.08 2196.67 6798.72 6199.54 193.15 11099.81 7494.87 17798.83 13299.65 71
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9998.90 4584.80 35197.77 12099.11 7392.84 11299.66 12694.85 17899.77 2899.47 105
Anonymous2023121194.10 26793.26 27696.61 22299.11 10994.28 23199.01 6898.88 5086.43 34292.81 28797.57 23881.66 30898.68 24394.83 17989.02 31296.88 256
XXY-MVS95.20 19794.45 21197.46 16996.75 28596.56 12898.86 9898.65 13993.30 22293.27 27498.27 17884.85 27698.87 22694.82 18091.26 28196.96 244
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25898.78 9896.89 5898.46 7699.22 5293.90 10399.68 12494.81 18199.52 9199.67 65
test_part194.82 21893.82 24997.82 14498.84 13297.82 7799.03 6298.81 7992.31 26092.51 29997.89 20881.96 30598.67 24494.80 18288.24 31996.98 242
EI-MVSNet95.96 15395.83 14596.36 24897.93 20493.70 25198.12 22398.27 21393.70 20295.07 20299.02 8692.23 12398.54 25694.68 18393.46 25196.84 261
thisisatest051595.61 17594.89 19097.76 14998.15 18995.15 19196.77 32394.41 35792.95 23597.18 14497.43 24984.78 27799.45 15994.63 18497.73 17698.68 185
IterMVS-LS95.46 17795.21 17596.22 25598.12 19193.72 25098.32 19498.13 23793.71 20094.26 23397.31 25592.24 12298.10 30494.63 18490.12 29396.84 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 14595.73 14797.79 14697.13 26395.55 17698.19 21398.59 14793.47 21492.03 31097.82 21891.33 14799.49 15194.62 18698.44 15098.32 204
baseline195.84 16195.12 17998.01 13398.49 16095.98 15098.73 12697.03 31795.37 12396.22 18698.19 18489.96 17299.16 17994.60 18787.48 32798.90 172
IS-MVSNet97.22 10596.88 10598.25 11598.85 13196.36 13899.19 3697.97 26295.39 12097.23 14298.99 9291.11 15298.93 21794.60 18798.59 14299.47 105
NR-MVSNet94.98 21094.16 22697.44 17096.53 29597.22 10298.74 12298.95 3494.96 14789.25 33597.69 22689.32 18398.18 29894.59 18987.40 32996.92 247
IB-MVS91.98 1793.27 28491.97 29597.19 18197.47 23693.41 26197.09 30295.99 34193.32 22092.47 30195.73 33178.06 33499.53 14694.59 18982.98 34598.62 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test94.82 21894.36 21696.20 25697.35 24790.79 30898.34 18796.57 33892.91 23795.33 20096.44 31482.00 30499.12 18594.52 19195.78 22398.70 183
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 16197.00 10798.14 22098.21 22093.95 18696.72 16697.99 19891.58 13899.76 10694.51 19296.54 20198.95 169
D2MVS95.18 19895.08 18195.48 28297.10 26592.07 28298.30 19799.13 1994.02 18192.90 28596.73 30189.48 17998.73 23994.48 19393.60 25095.65 335
Baseline_NR-MVSNet94.35 25093.81 25095.96 26696.20 30894.05 23898.61 15096.67 33691.44 28493.85 25397.60 23588.57 20498.14 30194.39 19486.93 33495.68 334
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23398.89 4794.44 17096.83 16098.68 13090.69 16199.76 10694.36 19599.29 11198.98 165
AUN-MVS94.53 23993.73 25896.92 20198.50 15893.52 25798.34 18798.10 24393.83 19395.94 19597.98 20085.59 26499.03 20094.35 19680.94 35398.22 207
1112_ss96.63 12796.00 14198.50 9698.56 15496.37 13798.18 21798.10 24392.92 23694.84 20898.43 15492.14 12699.58 13794.35 19696.51 20299.56 91
CP-MVSNet94.94 21494.30 21896.83 20596.72 28795.56 17499.11 4798.95 3493.89 18892.42 30397.90 20687.19 23698.12 30394.32 19888.21 32096.82 264
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22798.53 16195.32 12696.80 16498.53 14593.32 10899.72 11294.31 19999.31 11099.02 161
testdata98.26 11499.20 9995.36 18298.68 12491.89 27198.60 7199.10 7594.44 9399.82 6794.27 20099.44 10099.58 89
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33598.68 12493.69 20397.75 12297.80 22088.86 19999.69 12394.26 20199.01 12299.15 147
miper_enhance_ethall95.10 20294.75 19596.12 26097.53 23393.73 24996.61 32998.08 25092.20 26593.89 25096.65 30692.44 11798.30 28994.21 20291.16 28296.34 316
Test_1112_low_res96.34 14095.66 15698.36 10898.56 15495.94 15897.71 26098.07 25292.10 26694.79 21297.29 25691.75 13599.56 14094.17 20396.50 20399.58 89
TranMVSNet+NR-MVSNet95.14 20094.48 20797.11 18796.45 30096.36 13899.03 6299.03 2595.04 14393.58 26197.93 20488.27 21198.03 31194.13 20486.90 33696.95 246
API-MVS97.41 9797.25 8997.91 13898.70 14396.80 11698.82 10698.69 12194.53 16498.11 9398.28 17594.50 9199.57 13894.12 20599.49 9397.37 231
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20998.81 7991.63 27998.44 8098.85 11193.98 10299.82 6794.11 20699.69 5699.64 74
cl2294.68 22694.19 22396.13 25998.11 19293.60 25296.94 30998.31 20492.43 25393.32 27396.87 29686.51 24798.28 29494.10 20791.16 28296.51 306
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 22098.76 10292.41 25496.39 18398.31 17194.92 7999.78 9994.06 20898.77 13599.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 23894.14 22895.75 27696.55 29491.65 29298.11 22598.44 18094.96 14794.22 23697.90 20679.18 32699.11 18894.05 20993.85 24496.48 310
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 16198.62 14493.02 23296.17 18898.58 14194.01 10099.81 7493.95 21098.90 12699.14 149
MDTV_nov1_ep13_2view84.26 35896.89 31790.97 30197.90 11689.89 17393.91 21199.18 145
baseline295.11 20194.52 20596.87 20396.65 29193.56 25398.27 20294.10 36393.45 21592.02 31197.43 24987.45 23499.19 17793.88 21297.41 18497.87 216
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22397.81 11998.97 9395.18 7199.83 5993.84 21399.46 9899.50 98
RPSCF94.87 21795.40 16193.26 33098.89 12682.06 36498.33 18998.06 25790.30 31296.56 17299.26 4587.09 23899.49 15193.82 21496.32 20898.24 206
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14798.60 14595.18 13397.06 15098.06 19294.26 9799.57 13893.80 21598.87 13099.52 92
ACMH92.88 1694.55 23793.95 24096.34 25097.63 22293.26 26798.81 11298.49 17593.43 21689.74 33098.53 14581.91 30699.08 19393.69 21693.30 25796.70 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 20694.69 19895.97 26597.70 21893.31 26597.02 30598.07 25292.23 26293.51 26696.96 28891.85 13398.15 30093.68 21791.16 28296.44 313
MAR-MVS96.91 11996.40 12798.45 10198.69 14596.90 11298.66 14498.68 12492.40 25597.07 14997.96 20191.54 14299.75 10893.68 21798.92 12598.69 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13895.46 17999.20 3498.30 21094.96 14796.60 17198.87 10990.05 17098.59 25293.67 21998.60 14199.46 109
LS3D97.16 11096.66 11998.68 8298.53 15797.19 10398.93 8498.90 4592.83 24195.99 19399.37 2492.12 12799.87 4793.67 21999.57 7998.97 166
PS-CasMVS94.67 22993.99 23896.71 21196.68 28995.26 18799.13 4499.03 2593.68 20592.33 30497.95 20285.35 26898.10 30493.59 22188.16 32296.79 265
c3_l94.79 22194.43 21395.89 27097.75 21393.12 27297.16 29998.03 25992.23 26293.46 26997.05 27891.39 14498.01 31293.58 22289.21 30896.53 300
CVMVSNet95.43 18096.04 13993.57 32497.93 20483.62 35998.12 22398.59 14795.68 10596.56 17299.02 8687.51 23097.51 33493.56 22397.44 18299.60 83
OurMVSNet-221017-094.21 25894.00 23694.85 30295.60 32889.22 33098.89 9197.43 30095.29 12792.18 30798.52 14882.86 30198.59 25293.46 22491.76 27296.74 271
eth_miper_zixun_eth94.68 22694.41 21495.47 28397.64 22191.71 29196.73 32698.07 25292.71 24393.64 25997.21 26290.54 16398.17 29993.38 22589.76 29796.54 298
OpenMVScopyleft93.04 1395.83 16295.00 18498.32 11097.18 26097.32 9399.21 3398.97 3089.96 31791.14 31899.05 8586.64 24699.92 2493.38 22599.47 9597.73 221
无先验97.58 27098.72 11391.38 28599.87 4793.36 22799.60 83
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21398.68 12490.14 31598.01 10698.97 9394.80 8299.87 4793.36 22799.46 9899.61 80
gm-plane-assit95.88 32187.47 35189.74 32296.94 29199.19 17793.32 229
WR-MVS_H95.05 20594.46 20996.81 20696.86 27995.82 16799.24 2599.24 1093.87 19092.53 29796.84 29890.37 16598.24 29693.24 23087.93 32396.38 315
tpm94.13 26493.80 25195.12 29396.50 29787.91 34997.44 27495.89 34592.62 24596.37 18496.30 31784.13 29098.30 28993.24 23091.66 27599.14 149
Fast-Effi-MVS+-dtu95.87 15995.85 14495.91 26897.74 21691.74 29098.69 13798.15 23495.56 11194.92 20697.68 22988.98 19698.79 23593.19 23297.78 17397.20 235
pmmvs593.65 27892.97 28095.68 27795.49 33292.37 27898.20 20997.28 30789.66 32392.58 29597.26 25782.14 30398.09 30693.18 23390.95 28696.58 291
TESTMET0.1,194.18 26293.69 26195.63 27996.92 27489.12 33196.91 31294.78 35493.17 22694.88 20796.45 31378.52 32998.92 21893.09 23498.50 14798.85 173
test-LLR95.10 20294.87 19195.80 27396.77 28289.70 32196.91 31295.21 34995.11 13894.83 21095.72 33387.71 22698.97 20893.06 23598.50 14798.72 181
test-mter94.08 26993.51 26895.80 27396.77 28289.70 32196.91 31295.21 34992.89 23894.83 21095.72 33377.69 33698.97 20893.06 23598.50 14798.72 181
BH-untuned95.95 15495.72 14896.65 21698.55 15692.26 27998.23 20497.79 27293.73 19894.62 21598.01 19688.97 19799.00 20793.04 23798.51 14698.68 185
EPMVS94.99 20894.48 20796.52 23497.22 25491.75 28997.23 29291.66 36994.11 17697.28 14096.81 29985.70 26298.84 22993.04 23797.28 18598.97 166
pmmvs494.69 22493.99 23896.81 20695.74 32495.94 15897.40 27797.67 27790.42 30993.37 27197.59 23689.08 19198.20 29792.97 23991.67 27496.30 320
GeoE96.58 13296.07 13798.10 12798.35 16695.89 16599.34 1598.12 23893.12 22996.09 18998.87 10989.71 17698.97 20892.95 24098.08 16399.43 113
v2v48294.69 22494.03 23296.65 21696.17 31094.79 21198.67 14198.08 25092.72 24294.00 24797.16 26487.69 22998.45 26592.91 24188.87 31496.72 274
Fast-Effi-MVS+96.28 14395.70 15398.03 13298.29 17795.97 15598.58 15398.25 21891.74 27495.29 20197.23 26091.03 15599.15 18292.90 24297.96 16698.97 166
V4294.78 22294.14 22896.70 21396.33 30595.22 18898.97 7698.09 24892.32 25894.31 23197.06 27688.39 20998.55 25592.90 24288.87 31496.34 316
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13598.39 19189.45 32694.52 21899.35 3091.85 13399.85 5392.89 24498.88 12899.68 61
TDRefinement91.06 30789.68 31295.21 29085.35 36991.49 29598.51 16797.07 31491.47 28288.83 33997.84 21477.31 34099.09 19292.79 24577.98 35795.04 345
ACMH+92.99 1494.30 25393.77 25495.88 27197.81 21192.04 28498.71 13198.37 19593.99 18490.60 32498.47 15180.86 31699.05 19592.75 24692.40 26696.55 297
cl____94.51 24194.01 23596.02 26297.58 22693.40 26297.05 30397.96 26491.73 27692.76 28997.08 27289.06 19298.13 30292.61 24790.29 29296.52 303
DIV-MVS_self_test94.52 24094.03 23295.99 26397.57 23093.38 26397.05 30397.94 26591.74 27492.81 28797.10 26689.12 18998.07 30892.60 24890.30 29196.53 300
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29898.35 19894.85 15297.93 11498.58 14195.07 7599.71 11792.60 24899.34 10899.43 113
test_post196.68 32730.43 37587.85 22598.69 24092.59 250
SCA95.46 17795.13 17896.46 24197.67 21991.29 30097.33 28697.60 28294.68 15896.92 15797.10 26683.97 29398.89 22392.59 25098.32 15799.20 137
v14894.29 25493.76 25695.91 26896.10 31392.93 27498.58 15397.97 26292.59 24793.47 26896.95 29088.53 20798.32 28592.56 25287.06 33396.49 309
PEN-MVS94.42 24793.73 25896.49 23696.28 30694.84 20699.17 3899.00 2793.51 21292.23 30697.83 21786.10 25697.90 32092.55 25386.92 33596.74 271
Patchmatch-RL test91.49 30290.85 30393.41 32691.37 36284.40 35792.81 35995.93 34491.87 27287.25 34494.87 34388.99 19396.53 35192.54 25482.00 34799.30 128
miper_lstm_enhance94.33 25194.07 23195.11 29497.75 21390.97 30497.22 29398.03 25991.67 27892.76 28996.97 28690.03 17197.78 32692.51 25589.64 29996.56 295
IterMVS94.09 26893.85 24894.80 30597.99 20190.35 31597.18 29698.12 23893.68 20592.46 30297.34 25284.05 29197.41 33592.51 25591.33 27896.62 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26693.87 24694.85 30297.98 20390.56 31397.18 29698.11 24193.75 19592.58 29597.48 24483.97 29397.41 33592.48 25791.30 27996.58 291
tpm294.19 26093.76 25695.46 28497.23 25389.04 33397.31 28896.85 33187.08 33996.21 18796.79 30083.75 29998.74 23892.43 25896.23 21598.59 192
PVSNet_088.72 1991.28 30490.03 31095.00 29797.99 20187.29 35394.84 35298.50 17192.06 26789.86 32995.19 33979.81 32299.39 16292.27 25969.79 36498.33 203
gg-mvs-nofinetune92.21 29890.58 30597.13 18596.75 28595.09 19495.85 34089.40 37285.43 35094.50 21981.98 36580.80 31798.40 28292.16 26098.33 15697.88 215
pm-mvs193.94 27493.06 27896.59 22596.49 29895.16 18998.95 8098.03 25992.32 25891.08 31997.84 21484.54 28298.41 27692.16 26086.13 34296.19 323
K. test v392.55 29591.91 29794.48 31495.64 32789.24 32999.07 5494.88 35394.04 17986.78 34697.59 23677.64 33997.64 32992.08 26289.43 30596.57 293
GBi-Net94.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
test194.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
FMVSNet394.97 21194.26 22097.11 18798.18 18696.62 12298.56 15998.26 21793.67 20794.09 24297.10 26684.25 28698.01 31292.08 26292.14 26796.70 278
PatchmatchNetpermissive95.71 16795.52 15996.29 25397.58 22690.72 31096.84 32197.52 29194.06 17897.08 14796.96 28889.24 18698.90 22292.03 26698.37 15399.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM96.29 14195.40 16198.96 7097.85 20997.60 8599.23 2698.93 3889.76 32193.11 28199.02 8689.11 19099.93 1891.99 26799.62 7099.34 119
新几何199.16 5399.34 6498.01 6798.69 12190.06 31698.13 9298.95 10194.60 8599.89 3891.97 26899.47 9599.59 85
MDTV_nov1_ep1395.40 16197.48 23588.34 34496.85 32097.29 30693.74 19797.48 13997.26 25789.18 18799.05 19591.92 26997.43 183
EU-MVSNet93.66 27694.14 22892.25 33795.96 31983.38 36098.52 16398.12 23894.69 15792.61 29498.13 18887.36 23596.39 35391.82 27090.00 29596.98 242
GA-MVS94.81 22094.03 23297.14 18497.15 26293.86 24296.76 32497.58 28394.00 18394.76 21397.04 27980.91 31498.48 26091.79 27196.25 21499.09 154
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 24299.06 2293.72 19996.92 15798.06 19288.50 20899.65 12791.77 27299.00 12398.66 188
v114494.59 23493.92 24196.60 22496.21 30794.78 21298.59 15198.14 23691.86 27394.21 23797.02 28187.97 22098.41 27691.72 27389.57 30096.61 288
v894.47 24493.77 25496.57 22896.36 30394.83 20899.05 5798.19 22391.92 27093.16 27796.97 28688.82 20198.48 26091.69 27487.79 32496.39 314
testdata299.89 3891.65 275
BH-w/o95.38 18495.08 18196.26 25498.34 17191.79 28797.70 26197.43 30092.87 23994.24 23597.22 26188.66 20298.84 22991.55 27697.70 17798.16 210
LF4IMVS93.14 28992.79 28394.20 31995.88 32188.67 33997.66 26497.07 31493.81 19491.71 31397.65 23077.96 33598.81 23391.47 27791.92 27195.12 342
JIA-IIPM93.35 28192.49 28895.92 26796.48 29990.65 31195.01 34896.96 32185.93 34696.08 19087.33 36287.70 22898.78 23691.35 27895.58 22498.34 202
FMVSNet294.47 24493.61 26497.04 19098.21 18196.43 13598.79 11798.27 21392.46 24993.50 26797.09 27081.16 31198.00 31491.09 27991.93 27096.70 278
v14419294.39 24993.70 26096.48 23796.06 31594.35 23098.58 15398.16 23391.45 28394.33 23097.02 28187.50 23298.45 26591.08 28089.11 30996.63 286
tpmvs94.60 23294.36 21695.33 28897.46 23788.60 34096.88 31897.68 27691.29 29293.80 25696.42 31588.58 20399.24 17291.06 28196.04 22098.17 209
LTVRE_ROB92.95 1594.60 23293.90 24496.68 21597.41 24594.42 22698.52 16398.59 14791.69 27791.21 31798.35 16484.87 27599.04 19991.06 28193.44 25496.60 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 12296.24 13398.65 8498.72 14296.92 11197.36 28398.57 15393.33 21996.67 16797.57 23894.30 9699.56 14091.05 28398.59 14299.47 105
SixPastTwentyTwo93.34 28292.86 28194.75 30695.67 32689.41 32898.75 11996.67 33693.89 18890.15 32898.25 18080.87 31598.27 29590.90 28490.64 28896.57 293
MVS_030492.81 29292.01 29495.23 28997.46 23791.33 29898.17 21898.81 7991.13 29993.80 25695.68 33666.08 36498.06 30990.79 28596.13 21896.32 319
COLMAP_ROBcopyleft93.27 1295.33 19094.87 19196.71 21199.29 8093.24 26898.58 15398.11 24189.92 31893.57 26299.10 7586.37 25299.79 9590.78 28698.10 16297.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 30090.63 30495.17 29294.69 34691.24 30198.67 14197.92 26786.14 34489.62 33197.56 24075.79 34798.34 28390.75 28784.56 34495.94 329
BH-RMVSNet95.92 15895.32 17097.69 15698.32 17594.64 21498.19 21397.45 29894.56 16396.03 19198.61 13685.02 27299.12 18590.68 28899.06 11899.30 128
DTE-MVSNet93.98 27393.26 27696.14 25896.06 31594.39 22899.20 3498.86 6393.06 23091.78 31297.81 21985.87 26097.58 33190.53 28986.17 34096.46 312
v1094.29 25493.55 26696.51 23596.39 30294.80 21098.99 7298.19 22391.35 28893.02 28396.99 28488.09 21798.41 27690.50 29088.41 31896.33 318
ambc89.49 34286.66 36775.78 36792.66 36096.72 33386.55 34892.50 35646.01 36997.90 32090.32 29182.09 34694.80 349
lessismore_v094.45 31794.93 34188.44 34391.03 37086.77 34797.64 23276.23 34598.42 26990.31 29285.64 34396.51 306
v119294.32 25293.58 26596.53 23396.10 31394.45 22498.50 16898.17 23191.54 28194.19 23897.06 27686.95 24298.43 26890.14 29389.57 30096.70 278
MVS94.67 22993.54 26798.08 12896.88 27896.56 12898.19 21398.50 17178.05 36092.69 29298.02 19491.07 15499.63 13290.09 29498.36 15598.04 212
ADS-MVSNet294.58 23594.40 21595.11 29498.00 19988.74 33896.04 33697.30 30590.15 31396.47 18096.64 30787.89 22297.56 33290.08 29597.06 18799.02 161
ADS-MVSNet95.00 20794.45 21196.63 22098.00 19991.91 28596.04 33697.74 27590.15 31396.47 18096.64 30787.89 22298.96 21290.08 29597.06 18799.02 161
MSDG95.93 15795.30 17297.83 14298.90 12595.36 18296.83 32298.37 19591.32 29094.43 22598.73 12690.27 16899.60 13590.05 29798.82 13398.52 195
v192192094.20 25993.47 27096.40 24695.98 31894.08 23798.52 16398.15 23491.33 28994.25 23497.20 26386.41 25198.42 26990.04 29889.39 30696.69 283
dp94.15 26393.90 24494.90 30097.31 24986.82 35596.97 30797.19 31191.22 29696.02 19296.61 30985.51 26599.02 20390.00 29994.30 22898.85 173
CMPMVSbinary66.06 2189.70 31789.67 31389.78 34193.19 35676.56 36697.00 30698.35 19880.97 35781.57 35897.75 22274.75 35198.61 24889.85 30093.63 24894.17 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 21494.20 22297.17 18397.75 21394.14 23697.59 26997.02 31992.28 26195.75 19697.64 23283.88 29598.96 21289.77 30196.15 21798.40 199
MS-PatchMatch93.84 27593.63 26394.46 31696.18 30989.45 32697.76 25798.27 21392.23 26292.13 30897.49 24379.50 32398.69 24089.75 30299.38 10695.25 339
ITE_SJBPF95.44 28597.42 24291.32 29997.50 29395.09 14193.59 26098.35 16481.70 30798.88 22589.71 30393.39 25596.12 324
MVP-Stereo94.28 25693.92 24195.35 28794.95 34092.60 27797.97 23797.65 27891.61 28090.68 32397.09 27086.32 25398.42 26989.70 30499.34 10895.02 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 19494.65 19996.99 19299.25 8893.21 26998.59 15198.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
GG-mvs-BLEND96.59 22596.34 30494.98 20096.51 33288.58 37393.10 28294.34 34980.34 32098.05 31089.53 30796.99 18996.74 271
USDC93.33 28392.71 28495.21 29096.83 28190.83 30796.91 31297.50 29393.84 19190.72 32298.14 18777.69 33698.82 23289.51 30893.21 25995.97 328
v7n94.19 26093.43 27196.47 23895.90 32094.38 22999.26 2398.34 20091.99 26892.76 28997.13 26588.31 21098.52 25889.48 30987.70 32596.52 303
PM-MVS87.77 32486.55 32891.40 34091.03 36483.36 36196.92 31095.18 35191.28 29386.48 34993.42 35253.27 36896.74 34589.43 31081.97 34894.11 353
FMVSNet193.19 28892.07 29396.56 22997.54 23195.00 19798.82 10698.18 22690.38 31092.27 30597.07 27373.68 35597.95 31689.36 31191.30 27996.72 274
tpm cat193.36 28092.80 28295.07 29697.58 22687.97 34896.76 32497.86 27082.17 35693.53 26396.04 32686.13 25599.13 18489.24 31295.87 22198.10 211
UnsupCasMVSNet_eth90.99 30889.92 31194.19 32094.08 35089.83 31997.13 30198.67 13293.69 20385.83 35196.19 32375.15 34996.74 34589.14 31379.41 35596.00 327
v124094.06 27193.29 27596.34 25096.03 31793.90 24198.44 17598.17 23191.18 29894.13 24197.01 28386.05 25798.42 26989.13 31489.50 30496.70 278
tmp_tt68.90 33566.97 33774.68 35250.78 37959.95 37587.13 36483.47 37638.80 37262.21 36896.23 32064.70 36576.91 37488.91 31530.49 37287.19 364
pmmvs-eth3d90.36 31389.05 31894.32 31891.10 36392.12 28097.63 26896.95 32288.86 33184.91 35493.13 35378.32 33096.74 34588.70 31681.81 34994.09 354
thres600view795.49 17694.77 19397.67 15898.98 12195.02 19698.85 9996.90 32595.38 12196.63 16996.90 29384.29 28499.59 13688.65 31796.33 20798.40 199
thres100view90095.38 18494.70 19797.41 17298.98 12194.92 20498.87 9696.90 32595.38 12196.61 17096.88 29484.29 28499.56 14088.11 31896.29 20997.76 218
tfpn200view995.32 19194.62 20097.43 17198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20997.76 218
thres40095.38 18494.62 20097.65 16198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20998.40 199
our_test_393.65 27893.30 27494.69 30795.45 33489.68 32396.91 31297.65 27891.97 26991.66 31496.88 29489.67 17797.93 31988.02 32191.49 27696.48 310
thres20095.25 19394.57 20297.28 17798.81 13494.92 20498.20 20997.11 31295.24 13296.54 17696.22 32284.58 28199.53 14687.93 32296.50 20397.39 229
EG-PatchMatch MVS91.13 30690.12 30994.17 32194.73 34589.00 33498.13 22297.81 27189.22 32985.32 35396.46 31267.71 36198.42 26987.89 32393.82 24595.08 344
CR-MVSNet94.76 22394.15 22796.59 22597.00 26993.43 25994.96 34997.56 28492.46 24996.93 15596.24 31888.15 21597.88 32487.38 32496.65 19798.46 197
Patchmtry93.22 28692.35 29095.84 27296.77 28293.09 27394.66 35497.56 28487.37 33892.90 28596.24 31888.15 21597.90 32087.37 32590.10 29496.53 300
test0.0.03 194.08 26993.51 26895.80 27395.53 33192.89 27597.38 27995.97 34295.11 13892.51 29996.66 30487.71 22696.94 34287.03 32693.67 24697.57 225
TinyColmap92.31 29791.53 29894.65 30996.92 27489.75 32096.92 31096.68 33590.45 30889.62 33197.85 21376.06 34698.81 23386.74 32792.51 26595.41 337
MIMVSNet93.26 28592.21 29296.41 24497.73 21793.13 27195.65 34497.03 31791.27 29494.04 24596.06 32575.33 34897.19 33886.56 32896.23 21598.92 171
TransMVSNet (Re)92.67 29491.51 29996.15 25796.58 29394.65 21398.90 8796.73 33290.86 30289.46 33497.86 21185.62 26398.09 30686.45 32981.12 35195.71 333
DSMNet-mixed92.52 29692.58 28792.33 33594.15 34982.65 36298.30 19794.26 36089.08 33092.65 29395.73 33185.01 27395.76 35686.24 33097.76 17498.59 192
testgi93.06 29092.45 28994.88 30196.43 30189.90 31898.75 11997.54 29095.60 10991.63 31597.91 20574.46 35397.02 34086.10 33193.67 24697.72 222
YYNet190.70 31189.39 31494.62 31094.79 34490.65 31197.20 29497.46 29687.54 33772.54 36495.74 32986.51 24796.66 34986.00 33286.76 33896.54 298
MDA-MVSNet_test_wron90.71 31089.38 31594.68 30894.83 34290.78 30997.19 29597.46 29687.60 33672.41 36595.72 33386.51 24796.71 34885.92 33386.80 33796.56 295
UnsupCasMVSNet_bld87.17 32585.12 32993.31 32991.94 36088.77 33794.92 35198.30 21084.30 35382.30 35790.04 35963.96 36697.25 33785.85 33474.47 36393.93 357
EPNet_dtu95.21 19694.95 18895.99 26396.17 31090.45 31498.16 21997.27 30896.77 6293.14 28098.33 16990.34 16698.42 26985.57 33598.81 13499.09 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 29990.92 30294.49 31397.21 25592.09 28198.00 23597.55 28989.31 32890.86 32195.61 33774.48 35295.32 35985.57 33589.70 29896.07 326
tfpnnormal93.66 27692.70 28596.55 23296.94 27395.94 15898.97 7699.19 1591.04 30091.38 31697.34 25284.94 27498.61 24885.45 33789.02 31295.11 343
Patchmatch-test94.42 24793.68 26296.63 22097.60 22491.76 28894.83 35397.49 29589.45 32694.14 24097.10 26688.99 19398.83 23185.37 33898.13 16199.29 130
ppachtmachnet_test93.22 28692.63 28694.97 29895.45 33490.84 30696.88 31897.88 26990.60 30492.08 30997.26 25788.08 21897.86 32585.12 33990.33 29096.22 321
KD-MVS_2432*160089.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
miper_refine_blended89.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
PCF-MVS93.45 1194.68 22693.43 27198.42 10598.62 15196.77 11895.48 34798.20 22284.63 35293.34 27298.32 17088.55 20699.81 7484.80 34298.96 12498.68 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_method79.03 32878.17 33181.63 34886.06 36854.40 37882.75 36796.89 32739.54 37180.98 35995.57 33858.37 36794.73 36284.74 34378.61 35695.75 332
KD-MVS_self_test90.38 31289.38 31593.40 32792.85 35888.94 33697.95 23897.94 26590.35 31190.25 32693.96 35079.82 32195.94 35584.62 34476.69 35995.33 338
Anonymous2024052191.18 30590.44 30693.42 32593.70 35488.47 34298.94 8297.56 28488.46 33389.56 33395.08 34277.15 34396.97 34183.92 34589.55 30294.82 348
MDA-MVSNet-bldmvs89.97 31688.35 32194.83 30495.21 33791.34 29697.64 26597.51 29288.36 33471.17 36696.13 32479.22 32596.63 35083.65 34686.27 33996.52 303
MVS-HIRNet89.46 32188.40 32092.64 33397.58 22682.15 36394.16 35893.05 36675.73 36290.90 32082.52 36479.42 32498.33 28483.53 34798.68 13697.43 226
new-patchmatchnet88.50 32387.45 32691.67 33990.31 36585.89 35697.16 29997.33 30489.47 32583.63 35692.77 35476.38 34495.06 36182.70 34877.29 35894.06 355
PAPM94.95 21294.00 23697.78 14797.04 26895.65 17196.03 33898.25 21891.23 29594.19 23897.80 22091.27 14998.86 22882.61 34997.61 17998.84 175
LCM-MVSNet78.70 32976.24 33486.08 34477.26 37571.99 37094.34 35696.72 33361.62 36676.53 36189.33 36033.91 37592.78 36681.85 35074.60 36293.46 358
new_pmnet90.06 31589.00 31993.22 33194.18 34888.32 34596.42 33496.89 32786.19 34385.67 35293.62 35177.18 34297.10 33981.61 35189.29 30794.23 351
pmmvs386.67 32784.86 33092.11 33888.16 36687.19 35496.63 32894.75 35579.88 35887.22 34592.75 35566.56 36395.20 36081.24 35276.56 36093.96 356
CL-MVSNet_self_test90.11 31489.14 31793.02 33291.86 36188.23 34696.51 33298.07 25290.49 30590.49 32594.41 34584.75 27895.34 35880.79 35374.95 36195.50 336
N_pmnet87.12 32687.77 32585.17 34695.46 33361.92 37397.37 28170.66 37985.83 34788.73 34096.04 32685.33 27097.76 32780.02 35490.48 28995.84 330
TAPA-MVS93.98 795.35 18894.56 20397.74 15199.13 10794.83 20898.33 18998.64 14086.62 34096.29 18598.61 13694.00 10199.29 16880.00 35599.41 10399.09 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 34397.09 26672.30 36995.17 35275.92 36184.34 35595.19 33970.58 35895.35 35779.98 35689.04 31192.68 360
Anonymous2023120691.66 30191.10 30193.33 32894.02 35387.35 35298.58 15397.26 30990.48 30690.16 32796.31 31683.83 29796.53 35179.36 35789.90 29696.12 324
test20.0390.89 30990.38 30792.43 33493.48 35588.14 34798.33 18997.56 28493.40 21787.96 34296.71 30380.69 31894.13 36479.15 35886.17 34095.01 347
PatchT93.06 29091.97 29596.35 24996.69 28892.67 27694.48 35597.08 31386.62 34097.08 14792.23 35787.94 22197.90 32078.89 35996.69 19598.49 196
MIMVSNet189.67 31888.28 32293.82 32292.81 35991.08 30398.01 23397.45 29887.95 33587.90 34395.87 32867.63 36294.56 36378.73 36088.18 32195.83 331
test_040291.32 30390.27 30894.48 31496.60 29291.12 30298.50 16897.22 31086.10 34588.30 34196.98 28577.65 33897.99 31578.13 36192.94 26294.34 350
OpenMVS_ROBcopyleft86.42 2089.00 32287.43 32793.69 32393.08 35789.42 32797.91 24296.89 32778.58 35985.86 35094.69 34469.48 35998.29 29277.13 36293.29 25893.36 359
RPMNet92.81 29291.34 30097.24 17897.00 26993.43 25994.96 34998.80 9082.27 35596.93 15592.12 35886.98 24199.82 6776.32 36396.65 19798.46 197
PMMVS277.95 33175.44 33585.46 34582.54 37074.95 36894.23 35793.08 36572.80 36374.68 36287.38 36136.36 37491.56 36773.95 36463.94 36789.87 362
EGC-MVSNET75.22 33369.54 33692.28 33694.81 34389.58 32497.64 26596.50 3391.82 3765.57 37795.74 32968.21 36096.26 35473.80 36591.71 27390.99 361
FPMVS77.62 33277.14 33279.05 35079.25 37360.97 37495.79 34195.94 34365.96 36467.93 36794.40 34637.73 37388.88 36968.83 36688.46 31787.29 363
Gipumacopyleft78.40 33076.75 33383.38 34795.54 33080.43 36579.42 36897.40 30264.67 36573.46 36380.82 36645.65 37093.14 36566.32 36787.43 32876.56 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 33465.37 33880.22 34965.99 37771.96 37190.91 36390.09 37182.62 35449.93 37278.39 36729.36 37681.75 37062.49 36838.52 37186.95 365
PMVScopyleft61.03 2365.95 33663.57 34073.09 35357.90 37851.22 37985.05 36693.93 36454.45 36744.32 37383.57 36313.22 37789.15 36858.68 36981.00 35278.91 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive62.14 2263.28 33959.38 34274.99 35174.33 37665.47 37285.55 36580.50 37752.02 36951.10 37175.00 37010.91 38080.50 37151.60 37053.40 36878.99 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 33764.25 33967.02 35482.28 37159.36 37691.83 36285.63 37452.69 36860.22 36977.28 36841.06 37280.12 37246.15 37141.14 36961.57 370
EMVS64.07 33863.26 34166.53 35581.73 37258.81 37791.85 36184.75 37551.93 37059.09 37075.13 36943.32 37179.09 37342.03 37239.47 37061.69 369
wuyk23d30.17 34030.18 34430.16 35678.61 37443.29 38066.79 36914.21 38017.31 37314.82 37611.93 37611.55 37941.43 37537.08 37319.30 3735.76 373
test12320.95 34323.72 34612.64 35713.54 3818.19 38196.55 3316.13 3827.48 37516.74 37537.98 37312.97 3786.05 37616.69 3745.43 37523.68 371
testmvs21.48 34224.95 34511.09 35814.89 3806.47 38296.56 3309.87 3817.55 37417.93 37439.02 3729.43 3815.90 37716.56 37512.72 37420.91 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.98 34131.98 3430.00 3590.00 3820.00 3830.00 37098.59 1470.00 3770.00 37898.61 13690.60 1620.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.88 34510.50 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37794.51 880.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.20 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.43 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
save fliter99.46 5398.38 4098.21 20698.71 11797.95 3
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
GSMVS99.20 137
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18099.20 137
sam_mvs88.99 193
MTGPAbinary98.74 107
test_post31.83 37488.83 20098.91 219
patchmatchnet-post95.10 34189.42 18198.89 223
MTMP98.89 9194.14 362
TEST999.31 7298.50 3497.92 24098.73 11192.63 24497.74 12398.68 13096.20 2699.80 83
test_899.29 8098.44 3697.89 24698.72 11392.98 23397.70 12698.66 13396.20 2699.80 83
agg_prior99.30 7798.38 4098.72 11397.57 13699.81 74
test_prior498.01 6797.86 249
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
新几何297.64 265
旧先验199.29 8097.48 8898.70 12099.09 8095.56 5099.47 9599.61 80
原ACMM297.67 263
test22299.23 9597.17 10497.40 27798.66 13588.68 33298.05 9798.96 9994.14 9899.53 8999.61 80
segment_acmp96.85 14
testdata197.32 28796.34 80
test1299.18 5099.16 10498.19 5798.53 16198.07 9695.13 7399.72 11299.56 8499.63 77
plane_prior797.42 24294.63 215
plane_prior697.35 24794.61 21887.09 238
plane_prior498.28 175
plane_prior394.61 21897.02 5295.34 198
plane_prior298.80 11397.28 34
plane_prior197.37 246
plane_prior94.60 22098.44 17596.74 6494.22 231
n20.00 383
nn0.00 383
door-mid94.37 358
test1198.66 135
door94.64 356
HQP5-MVS94.25 234
HQP-NCC97.20 25698.05 22996.43 7694.45 221
ACMP_Plane97.20 25698.05 22996.43 7694.45 221
HQP4-MVS94.45 22198.96 21296.87 258
HQP3-MVS98.46 17694.18 233
HQP2-MVS86.75 244
NP-MVS97.28 25094.51 22397.73 223
ACMMP++_ref92.97 261
ACMMP++93.61 249
Test By Simon94.64 83