This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 799.56 7099.10 2799.81 39
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8799.39 22698.91 5899.78 5099.85 5499.36 299.94 6998.84 11899.88 5499.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7097.72 19299.76 5999.75 13999.13 1299.92 9899.07 8599.92 2799.85 35
MP-MVS-pluss99.37 5599.20 6999.88 599.90 499.87 1299.30 25199.52 10297.18 25199.60 11199.79 11798.79 4799.95 5998.83 12199.91 3499.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2999.89 499.90 499.86 1399.66 7399.47 17898.79 7099.68 7799.81 9298.43 8399.97 2198.88 10599.90 4299.83 49
HPM-MVScopyleft99.42 4499.28 5799.83 4099.90 499.72 4299.81 1999.54 8697.59 20699.68 7799.63 19998.91 3499.94 6998.58 15699.91 3499.84 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 10298.92 11199.65 7499.90 499.37 10299.02 32599.91 397.67 20099.59 11499.75 13995.90 17899.73 21599.53 3599.02 18799.86 32
MSP-MVS99.42 4499.27 6099.88 599.89 899.80 2799.67 6899.50 13698.70 7999.77 5499.49 25098.21 9599.95 5998.46 17399.77 11099.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 7999.10 7899.45 12799.89 898.52 21199.39 22399.94 198.73 7799.11 22199.89 3195.50 19199.94 6999.50 3999.97 799.89 19
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 9299.69 1898.12 14199.63 10199.84 6498.73 6099.96 3198.55 16599.83 8999.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7999.66 2898.13 14099.66 8699.68 17598.96 2499.96 3198.62 14799.87 5799.84 39
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 7399.46 18798.09 14699.48 13599.74 14498.29 9299.96 3197.93 21799.87 5799.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3999.30 5199.86 2199.88 1199.79 3099.69 5999.48 15898.12 14199.50 13199.75 13998.78 4899.97 2198.57 15999.89 5199.83 49
COLMAP_ROBcopyleft97.56 698.86 13498.75 13499.17 17399.88 1198.53 20799.34 24399.59 5897.55 21298.70 28899.89 3195.83 18099.90 12198.10 20199.90 4299.08 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2999.33 4199.87 1199.87 1599.81 2599.64 8299.67 2398.08 15099.55 12399.64 19398.91 3499.96 3198.72 13399.90 4299.82 54
ACMMP_NAP99.47 2999.34 3999.88 599.87 1599.86 1399.47 18799.48 15898.05 15799.76 5999.86 4998.82 4399.93 8798.82 12599.91 3499.84 39
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7399.67 2398.15 13699.68 7799.69 16999.06 1699.96 3198.69 13899.87 5799.84 39
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7399.67 2398.15 13699.67 8199.69 16998.95 2799.96 3198.69 13899.87 5799.84 39
PGM-MVS99.45 3599.31 4999.86 2199.87 1599.78 3699.58 11399.65 3397.84 17899.71 7199.80 10599.12 1399.97 2198.33 18599.87 5799.83 49
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12699.63 3999.48 399.98 699.83 6998.75 5599.99 499.97 199.96 1299.94 11
test_vis1_n_192098.63 16398.40 17099.31 14999.86 2097.94 24999.67 6899.62 4199.43 799.99 299.91 2087.29 372100.00 199.92 1199.92 2799.98 2
GST-MVS99.40 5199.24 6599.85 2899.86 2099.79 3099.60 9999.67 2397.97 16399.63 10199.68 17598.52 7799.95 5998.38 17899.86 6599.81 61
AllTest98.87 13198.72 13699.31 14999.86 2098.48 21799.56 12699.61 4897.85 17699.36 16799.85 5495.95 17399.85 15196.66 31399.83 8999.59 151
TestCases99.31 14999.86 2098.48 21799.61 4897.85 17699.36 16799.85 5495.95 17399.85 15196.66 31399.83 8999.59 151
PVSNet_Blended_VisFu99.36 5699.28 5799.61 8699.86 2099.07 14499.47 18799.93 297.66 20199.71 7199.86 4997.73 11299.96 3199.47 4699.82 9399.79 74
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 12099.37 24299.10 2799.81 3999.80 10598.94 2999.96 3198.93 9999.86 6599.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 9299.50 13699.10 2799.86 3099.82 7898.94 29
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5999.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6599.84 39
X-MVStestdata96.55 32495.45 34399.87 1199.85 2699.83 1699.69 5999.68 2098.98 4899.37 16464.01 41798.81 4499.94 6998.79 12699.86 6599.84 39
114514_t98.93 12698.67 14299.72 6699.85 2699.53 8399.62 9299.59 5892.65 38699.71 7199.78 12498.06 10399.90 12198.84 11899.91 3499.74 92
CSCG99.32 6199.32 4399.32 14899.85 2698.29 22699.71 5499.66 2898.11 14399.41 15399.80 10598.37 8999.96 3198.99 9199.96 1299.72 103
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12699.63 3999.47 499.98 699.82 7898.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15999.67 2399.13 2299.98 699.92 1496.60 14999.96 3199.95 799.96 1299.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 11399.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1799.90 16
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9999.48 15899.08 3399.91 1799.81 9299.20 799.96 3198.91 10299.85 7299.79 74
IU-MVS99.84 3299.88 899.32 27298.30 11699.84 3298.86 11399.85 7299.89 19
test_241102_ONE99.84 3299.90 299.48 15899.07 3599.91 1799.74 14499.20 799.76 204
test_0728_SECOND99.91 299.84 3299.89 499.57 12099.51 11699.96 3198.93 9999.86 6599.88 25
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 15299.65 3399.10 2799.98 699.92 1497.35 12299.96 3199.94 999.92 2799.95 9
dcpmvs_299.23 7799.58 798.16 30199.83 3994.68 36599.76 3699.52 10299.07 3599.98 699.88 3698.56 7499.93 8799.67 2299.98 499.87 30
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5999.52 10298.07 15199.53 12699.63 19998.93 3399.97 2198.74 13099.91 3499.83 49
test_fmvs1_n98.41 17498.14 18699.21 16999.82 4297.71 26299.74 4599.49 14699.32 1499.99 299.95 385.32 38299.97 2199.82 1699.84 8099.96 7
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10599.51 11698.62 8599.79 4599.83 6999.28 499.97 2198.48 16999.90 4299.84 39
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 18998.62 15296.99 35399.82 4291.58 39299.72 5199.44 20696.61 29899.66 8699.89 3195.92 17699.82 17897.46 26699.10 17999.57 158
DeepC-MVS98.35 299.30 6399.19 7099.64 7999.82 4299.23 12299.62 9299.55 7898.94 5499.63 10199.95 395.82 18199.94 6999.37 5299.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 1999.65 3398.78 7399.64 9899.88 3694.56 23499.93 8799.67 2298.26 23299.72 103
sd_testset98.75 15298.57 15999.29 15799.81 4698.26 22899.56 12699.62 4198.78 7399.64 9899.88 3692.02 30899.88 13799.54 3398.26 23299.72 103
test_cas_vis1_n_192099.16 8599.01 9799.61 8699.81 4698.86 17699.65 7999.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3299.91 3499.99 1
patch_mono-299.26 7199.62 598.16 30199.81 4694.59 36799.52 15299.64 3699.33 1399.73 6599.90 2799.00 2299.99 499.69 2099.98 499.89 19
test_one_060199.81 4699.88 899.49 14698.97 5199.65 9399.81 9299.09 14
test_part299.81 4699.83 1699.77 54
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18199.64 3699.45 599.92 1699.92 1498.62 7099.99 499.96 699.99 199.96 7
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10599.49 14697.03 26999.63 10199.69 16997.27 12699.96 3197.82 22899.84 8099.81 61
SF-MVS99.38 5499.24 6599.79 4999.79 5499.68 4899.57 12099.54 8697.82 18399.71 7199.80 10598.95 2799.93 8798.19 19599.84 8099.74 92
MCST-MVS99.43 4299.30 5199.82 4199.79 5499.74 4199.29 25699.40 22398.79 7099.52 12899.62 20498.91 3499.90 12198.64 14499.75 11599.82 54
DPE-MVScopyleft99.46 3199.32 4399.91 299.78 5699.88 899.36 23599.51 11698.73 7799.88 2199.84 6498.72 6199.96 3198.16 19999.87 5799.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6298.56 9099.73 6599.69 16998.55 7599.82 17899.69 2099.85 7299.48 183
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13499.60 9999.45 19899.01 4099.90 1999.83 6998.98 2399.93 8799.59 2799.95 1799.86 32
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13399.61 9899.45 19899.01 4099.89 2099.82 7899.01 1899.92 9899.56 3199.95 1799.85 35
Vis-MVSNetpermissive99.12 9898.97 10399.56 9699.78 5699.10 13899.68 6599.66 2898.49 9699.86 3099.87 4594.77 22199.84 15899.19 7299.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 7999.04 8799.64 7999.78 5699.27 11799.42 20899.54 8697.29 24299.41 15399.59 21398.42 8599.93 8798.19 19599.69 12699.73 97
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7099.02 3899.88 2199.85 5499.18 1099.96 3199.22 7099.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR99.41 4899.33 4199.65 7499.77 6299.51 8798.94 34599.85 698.82 6599.65 9399.74 14498.51 7899.80 19098.83 12199.89 5199.64 136
DP-MVS99.16 8598.95 10999.78 5299.77 6299.53 8399.41 21199.50 13697.03 26999.04 23799.88 3697.39 11899.92 9898.66 14299.90 4299.87 30
SR-MVS-dyc-post99.45 3599.31 4999.85 2899.76 6599.82 2299.63 8799.52 10298.38 10699.76 5999.82 7898.53 7699.95 5998.61 15099.81 9699.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8799.52 10298.38 10699.76 5999.82 7898.75 5598.61 15099.81 9699.77 82
save fliter99.76 6599.59 7099.14 29899.40 22399.00 43
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9899.90 199.55 7898.56 9099.78 5099.70 15998.65 6899.79 19399.65 2499.78 10799.41 204
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8799.54 8698.36 11099.79 4599.82 7898.86 3899.95 5998.62 14799.81 9699.78 80
PVSNet_BlendedMVS98.86 13498.80 12899.03 18899.76 6598.79 18599.28 26199.91 397.42 23199.67 8199.37 28697.53 11599.88 13798.98 9297.29 29098.42 349
PVSNet_Blended99.08 10898.97 10399.42 13299.76 6598.79 18598.78 36199.91 396.74 28699.67 8199.49 25097.53 11599.88 13798.98 9299.85 7299.60 147
MSDG98.98 12298.80 12899.53 10799.76 6599.19 12498.75 36499.55 7897.25 24599.47 13699.77 13297.82 10999.87 14296.93 30099.90 4299.54 163
SR-MVS99.43 4299.29 5599.86 2199.75 7399.83 1699.59 10599.62 4198.21 12999.73 6599.79 11798.68 6499.96 3198.44 17599.77 11099.79 74
HPM-MVS++copyleft99.39 5399.23 6799.87 1199.75 7399.84 1599.43 20199.51 11698.68 8299.27 18899.53 23798.64 6999.96 3198.44 17599.80 10099.79 74
新几何199.75 5899.75 7399.59 7099.54 8696.76 28599.29 18299.64 19398.43 8399.94 6996.92 30299.66 13199.72 103
test22299.75 7399.49 8998.91 34999.49 14696.42 31599.34 17399.65 18798.28 9399.69 12699.72 103
testdata99.54 9999.75 7398.95 16399.51 11697.07 26399.43 14699.70 15998.87 3799.94 6997.76 23599.64 13499.72 103
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29699.41 21796.60 30199.60 11199.55 22898.83 4299.90 12197.48 26399.83 8999.78 80
APD-MVScopyleft99.27 6999.08 8299.84 3999.75 7399.79 3099.50 16699.50 13697.16 25399.77 5499.82 7898.78 4899.94 6997.56 25699.86 6599.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test250696.81 32096.65 31697.29 34799.74 8092.21 39099.60 9985.06 42199.13 2299.77 5499.93 987.82 37099.85 15199.38 5199.38 15399.80 70
test111198.04 21498.11 19097.83 32799.74 8093.82 37599.58 11395.40 40899.12 2599.65 9399.93 990.73 33399.84 15899.43 4999.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31499.74 8094.37 37099.59 10594.98 40999.13 2299.66 8699.93 990.67 33499.84 15899.40 5099.38 15399.80 70
旧先验199.74 8099.59 7099.54 8699.69 16998.47 8099.68 12999.73 97
SD-MVS99.41 4899.52 1199.05 18699.74 8099.68 4899.46 19099.52 10299.11 2699.88 2199.91 2099.43 197.70 39398.72 13399.93 2599.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 9898.95 10999.65 7499.74 8099.70 4699.27 26699.57 6596.40 31799.42 14999.68 17598.75 5599.80 19097.98 21499.72 12199.44 199
PAPM_NR99.04 11398.84 12599.66 7099.74 8099.44 9699.39 22399.38 23497.70 19699.28 18399.28 31098.34 9099.85 15196.96 29799.45 14999.69 115
SMA-MVScopyleft99.44 3999.30 5199.85 2899.73 8799.83 1699.56 12699.47 17897.45 22599.78 5099.82 7899.18 1099.91 10998.79 12699.89 5199.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7499.73 8799.33 10699.47 17897.46 22299.12 21999.66 18698.67 6699.91 10997.70 24499.69 12699.71 112
IS-MVSNet99.05 11298.87 11999.57 9499.73 8799.32 10799.75 4199.20 30098.02 16199.56 11999.86 4996.54 15299.67 23998.09 20299.13 17599.73 97
PVSNet96.02 1798.85 14198.84 12598.89 21499.73 8797.28 27598.32 39299.60 5497.86 17399.50 13199.57 22296.75 14499.86 14598.56 16299.70 12599.54 163
9.1499.10 7899.72 9199.40 21999.51 11697.53 21699.64 9899.78 12498.84 4199.91 10997.63 24799.82 93
thres100view90097.76 26097.45 26798.69 24499.72 9197.86 25399.59 10598.74 36297.93 16699.26 19298.62 36791.75 31499.83 17193.22 37198.18 23998.37 355
thres600view797.86 24297.51 25898.92 20599.72 9197.95 24799.59 10598.74 36297.94 16599.27 18898.62 36791.75 31499.86 14593.73 36698.19 23898.96 255
DELS-MVS99.48 2699.42 2299.65 7499.72 9199.40 10199.05 31799.66 2899.14 2199.57 11899.80 10598.46 8199.94 6999.57 3099.84 8099.60 147
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4899.32 4399.66 7099.72 9199.47 9398.95 34399.85 698.82 6599.54 12499.73 15098.51 7899.74 20998.91 10299.88 5499.77 82
ZD-MVS99.71 9699.79 3099.61 4896.84 28299.56 11999.54 23398.58 7299.96 3196.93 30099.75 115
Anonymous2023121197.88 23897.54 25598.90 21199.71 9698.53 20799.48 18199.57 6594.16 37098.81 27199.68 17593.23 27399.42 28098.84 11894.42 35498.76 269
XVG-OURS-SEG-HR98.69 15798.62 15298.89 21499.71 9697.74 25699.12 30299.54 8698.44 10299.42 14999.71 15594.20 24899.92 9898.54 16698.90 19599.00 249
Vis-MVSNet (Re-imp)98.87 13198.72 13699.31 14999.71 9698.88 17299.80 2499.44 20697.91 16899.36 16799.78 12495.49 19299.43 27997.91 21899.11 17699.62 142
PatchMatch-RL98.84 14498.62 15299.52 11399.71 9699.28 11599.06 31599.77 997.74 19199.50 13199.53 23795.41 19399.84 15897.17 28799.64 13499.44 199
fmvsm_s_conf0.1_n99.29 6599.10 7899.86 2199.70 10199.65 5799.53 15199.62 4198.74 7699.99 299.95 394.53 23899.94 6999.89 1299.96 1299.97 4
h-mvs3397.70 27497.28 29598.97 19699.70 10197.27 27699.36 23599.45 19898.94 5499.66 8699.64 19394.93 20899.99 499.48 4484.36 40099.65 129
XVG-OURS98.73 15598.68 14198.88 21699.70 10197.73 25798.92 34799.55 7898.52 9499.45 13999.84 6495.27 19999.91 10998.08 20698.84 19999.00 249
TAPA-MVS97.07 1597.74 26697.34 28798.94 20199.70 10197.53 26799.25 27799.51 11691.90 38899.30 17999.63 19998.78 4899.64 25088.09 39799.87 5799.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs198.88 13098.79 13199.16 17499.69 10597.61 26699.55 13999.49 14699.32 1499.98 699.91 2091.41 32499.96 3199.82 1699.92 2799.90 16
tfpn200view997.72 27097.38 28098.72 24099.69 10597.96 24599.50 16698.73 36897.83 17999.17 21398.45 37291.67 31899.83 17193.22 37198.18 23998.37 355
thres40097.77 25997.38 28098.92 20599.69 10597.96 24599.50 16698.73 36897.83 17999.17 21398.45 37291.67 31899.83 17193.22 37198.18 23998.96 255
Test_1112_low_res98.89 12998.66 14599.57 9499.69 10598.95 16399.03 32299.47 17896.98 27199.15 21599.23 31896.77 14399.89 13298.83 12198.78 20499.86 32
MVSMamba_PlusPlus99.46 3199.41 2699.64 7999.68 10999.50 8899.75 4199.50 13698.27 11999.87 2699.92 1498.09 10199.94 6999.65 2499.95 1799.47 189
1112_ss98.98 12298.77 13299.59 8999.68 10999.02 14999.25 27799.48 15897.23 24899.13 21799.58 21796.93 13999.90 12198.87 10898.78 20499.84 39
MM99.40 5199.28 5799.74 6199.67 11199.31 11199.52 15298.87 34799.55 199.74 6399.80 10596.47 15599.98 1399.97 199.97 799.94 11
test_vis1_rt95.81 34095.65 33996.32 36699.67 11191.35 39399.49 17796.74 40298.25 12295.24 38198.10 38774.96 40299.90 12199.53 3598.85 19897.70 387
TEST999.67 11199.65 5799.05 31799.41 21796.22 32798.95 25199.49 25098.77 5199.91 109
train_agg99.02 11698.77 13299.77 5599.67 11199.65 5799.05 31799.41 21796.28 32198.95 25199.49 25098.76 5299.91 10997.63 24799.72 12199.75 88
test_899.67 11199.61 6799.03 32299.41 21796.28 32198.93 25499.48 25598.76 5299.91 109
agg_prior99.67 11199.62 6599.40 22398.87 26499.91 109
mamv499.33 5999.42 2299.07 18299.67 11197.73 25799.42 20899.60 5498.15 13699.94 1599.91 2098.42 8599.94 6999.72 1899.96 1299.54 163
test_prior99.68 6899.67 11199.48 9199.56 7099.83 17199.74 92
TSAR-MVS + GP.99.36 5699.36 3599.36 14099.67 11198.61 20199.07 31299.33 26299.00 4399.82 3899.81 9299.06 1699.84 15899.09 8399.42 15199.65 129
OMC-MVS99.08 10899.04 8799.20 17099.67 11198.22 23099.28 26199.52 10298.07 15199.66 8699.81 9297.79 11099.78 19897.79 23099.81 9699.60 147
Anonymous2024052998.09 20497.68 24099.34 14299.66 12198.44 22099.40 21999.43 21293.67 37499.22 19999.89 3190.23 34099.93 8799.26 6898.33 22699.66 125
tttt051798.42 17298.14 18699.28 16199.66 12198.38 22499.74 4596.85 39997.68 19899.79 4599.74 14491.39 32599.89 13298.83 12199.56 14299.57 158
CHOSEN 280x42099.12 9899.13 7599.08 18199.66 12197.89 25098.43 38699.71 1398.88 5999.62 10599.76 13696.63 14899.70 23199.46 4799.99 199.66 125
casdiffmvs_mvgpermissive99.15 8799.02 9399.55 9899.66 12199.09 13999.64 8299.56 7098.26 12199.45 13999.87 4596.03 17099.81 18399.54 3399.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8799.02 9399.53 10799.66 12199.14 13499.72 5199.48 15898.35 11199.42 14999.84 6496.07 16899.79 19399.51 3899.14 17499.67 122
PLCcopyleft97.94 499.02 11698.85 12399.53 10799.66 12199.01 15199.24 27999.52 10296.85 28199.27 18899.48 25598.25 9499.91 10997.76 23599.62 13799.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive99.13 9298.98 10299.56 9699.65 12799.16 12999.56 12699.50 13698.33 11499.41 15399.86 4995.92 17699.83 17199.45 4899.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.13 9298.99 9999.53 10799.65 12799.06 14599.81 1999.33 26297.43 22999.60 11199.88 3697.14 12899.84 15899.13 7898.94 19099.69 115
thres20097.61 28597.28 29598.62 24899.64 12998.03 23999.26 27598.74 36297.68 19899.09 22798.32 37891.66 32099.81 18392.88 37698.22 23498.03 373
test1299.75 5899.64 12999.61 6799.29 28499.21 20298.38 8899.89 13299.74 11899.74 92
ab-mvs98.86 13498.63 14799.54 9999.64 12999.19 12499.44 19799.54 8697.77 18799.30 17999.81 9294.20 24899.93 8799.17 7698.82 20199.49 182
DPM-MVS98.95 12598.71 13899.66 7099.63 13299.55 7898.64 37599.10 31197.93 16699.42 14999.55 22898.67 6699.80 19095.80 33299.68 12999.61 144
thisisatest053098.35 18198.03 20199.31 14999.63 13298.56 20499.54 14396.75 40197.53 21699.73 6599.65 18791.25 32899.89 13298.62 14799.56 14299.48 183
xiu_mvs_v1_base_debu99.29 6599.27 6099.34 14299.63 13298.97 15699.12 30299.51 11698.86 6099.84 3299.47 25898.18 9799.99 499.50 3999.31 16199.08 238
xiu_mvs_v1_base99.29 6599.27 6099.34 14299.63 13298.97 15699.12 30299.51 11698.86 6099.84 3299.47 25898.18 9799.99 499.50 3999.31 16199.08 238
xiu_mvs_v1_base_debi99.29 6599.27 6099.34 14299.63 13298.97 15699.12 30299.51 11698.86 6099.84 3299.47 25898.18 9799.99 499.50 3999.31 16199.08 238
DeepC-MVS_fast98.69 199.49 2299.39 2999.77 5599.63 13299.59 7099.36 23599.46 18799.07 3599.79 4599.82 7898.85 3999.92 9898.68 14099.87 5799.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4499.29 5599.80 4699.62 13899.55 7899.50 16699.70 1598.79 7099.77 5499.96 197.45 11799.96 3198.92 10199.90 4299.89 19
CNVR-MVS99.42 4499.30 5199.78 5299.62 13899.71 4499.26 27599.52 10298.82 6599.39 16099.71 15598.96 2499.85 15198.59 15599.80 10099.77 82
WTY-MVS99.06 11098.88 11899.61 8699.62 13899.16 12999.37 23099.56 7098.04 15899.53 12699.62 20496.84 14099.94 6998.85 11598.49 22099.72 103
sss99.17 8399.05 8599.53 10799.62 13898.97 15699.36 23599.62 4197.83 17999.67 8199.65 18797.37 12199.95 5999.19 7299.19 16999.68 119
mvsany_test199.50 2099.46 2099.62 8599.61 14299.09 13998.94 34599.48 15899.10 2799.96 1499.91 2098.85 3999.96 3199.72 1899.58 14199.82 54
GeoE98.85 14198.62 15299.53 10799.61 14299.08 14299.80 2499.51 11697.10 26199.31 17699.78 12495.23 20399.77 20098.21 19399.03 18599.75 88
diffmvspermissive99.14 9099.02 9399.51 11599.61 14298.96 16099.28 26199.49 14698.46 9899.72 7099.71 15596.50 15499.88 13799.31 6099.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC99.34 5899.19 7099.79 4999.61 14299.65 5799.30 25199.48 15898.86 6099.21 20299.63 19998.72 6199.90 12198.25 19199.63 13699.80 70
PCF-MVS97.08 1497.66 28197.06 30699.47 12499.61 14299.09 13998.04 40099.25 29191.24 39198.51 31099.70 15994.55 23699.91 10992.76 37999.85 7299.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 3199.47 1799.44 13199.60 14799.16 12999.41 21199.71 1398.98 4899.45 13999.78 12499.19 999.54 26499.28 6499.84 8099.63 140
DeepPCF-MVS98.18 398.81 14599.37 3397.12 35199.60 14791.75 39198.61 37699.44 20699.35 1299.83 3799.85 5498.70 6399.81 18399.02 8999.91 3499.81 61
tt080597.97 22897.77 22998.57 25499.59 14996.61 31999.45 19199.08 31498.21 12998.88 26199.80 10588.66 35799.70 23198.58 15697.72 25999.39 207
IterMVS-LS98.46 16998.42 16898.58 25399.59 14998.00 24199.37 23099.43 21296.94 27799.07 22999.59 21397.87 10799.03 34498.32 18795.62 32998.71 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 24997.77 22998.02 31199.58 15196.27 33199.02 32599.48 15897.22 24998.71 28299.70 15992.75 28499.13 33097.46 26696.00 31798.67 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 9098.99 9999.59 8999.58 15199.41 10099.16 29399.44 20698.45 9999.19 20899.49 25098.08 10299.89 13297.73 23999.75 11599.48 183
Anonymous20240521198.30 18597.98 20699.26 16399.57 15398.16 23299.41 21198.55 37696.03 34299.19 20899.74 14491.87 31199.92 9899.16 7798.29 23199.70 113
IterMVS-SCA-FT97.82 25297.75 23498.06 30899.57 15396.36 32799.02 32599.49 14697.18 25198.71 28299.72 15492.72 28799.14 32797.44 26895.86 32398.67 299
PS-MVSNAJ99.32 6199.32 4399.30 15499.57 15398.94 16698.97 33999.46 18798.92 5799.71 7199.24 31799.01 1899.98 1399.35 5399.66 13198.97 253
MG-MVS99.13 9299.02 9399.45 12799.57 15398.63 19899.07 31299.34 25598.99 4599.61 10899.82 7897.98 10699.87 14297.00 29399.80 10099.85 35
OPU-MVS99.64 7999.56 15799.72 4299.60 9999.70 15999.27 599.42 28098.24 19299.80 10099.79 74
EC-MVSNet99.44 3999.39 2999.58 9299.56 15799.49 8999.88 399.58 6298.38 10699.73 6599.69 16998.20 9699.70 23199.64 2699.82 9399.54 163
PHI-MVS99.30 6399.17 7299.70 6799.56 15799.52 8699.58 11399.80 897.12 25799.62 10599.73 15098.58 7299.90 12198.61 15099.91 3499.68 119
AdaColmapbinary99.01 12098.80 12899.66 7099.56 15799.54 8099.18 29199.70 1598.18 13499.35 17099.63 19996.32 16199.90 12197.48 26399.77 11099.55 161
dmvs_re98.08 20698.16 18397.85 32499.55 16194.67 36699.70 5598.92 33698.15 13699.06 23499.35 29293.67 26999.25 30997.77 23497.25 29199.64 136
FA-MVS(test-final)98.75 15298.53 16399.41 13399.55 16199.05 14799.80 2499.01 32596.59 30399.58 11599.59 21395.39 19499.90 12197.78 23199.49 14799.28 221
balanced_conf0399.46 3199.39 2999.67 6999.55 16199.58 7599.74 4599.51 11698.42 10399.87 2699.84 6498.05 10499.91 10999.58 2999.94 2399.52 170
FE-MVS98.48 16798.17 18299.40 13499.54 16498.96 16099.68 6598.81 35495.54 34899.62 10599.70 15993.82 26499.93 8797.35 27499.46 14899.32 218
test_vis1_n97.92 23497.44 27299.34 14299.53 16598.08 23799.74 4599.49 14699.15 20100.00 199.94 679.51 40199.98 1399.88 1399.76 11399.97 4
APD_test195.87 33896.49 32094.00 37399.53 16584.01 40299.54 14399.32 27295.91 34497.99 33999.85 5485.49 38099.88 13791.96 38298.84 19998.12 367
ET-MVSNet_ETH3D96.49 32695.64 34099.05 18699.53 16598.82 18298.84 35597.51 39597.63 20384.77 40499.21 32292.09 30798.91 36398.98 9292.21 38199.41 204
xiu_mvs_v2_base99.26 7199.25 6499.29 15799.53 16598.91 17099.02 32599.45 19898.80 6999.71 7199.26 31598.94 2999.98 1399.34 5799.23 16698.98 252
fmvsm_s_conf0.1_n_a99.26 7199.06 8499.85 2899.52 16999.62 6599.54 14399.62 4198.69 8099.99 299.96 194.47 24099.94 6999.88 1399.92 2799.98 2
LFMVS97.90 23797.35 28499.54 9999.52 16999.01 15199.39 22398.24 38397.10 26199.65 9399.79 11784.79 38599.91 10999.28 6498.38 22399.69 115
VNet99.11 10298.90 11499.73 6499.52 16999.56 7699.41 21199.39 22699.01 4099.74 6399.78 12495.56 18999.92 9899.52 3798.18 23999.72 103
DVP-MVS++99.59 899.50 1399.88 599.51 17299.88 899.87 799.51 11698.99 4599.88 2199.81 9299.27 599.96 3198.85 11599.80 10099.81 61
MSC_two_6792asdad99.87 1199.51 17299.76 3799.33 26299.96 3198.87 10899.84 8099.89 19
No_MVS99.87 1199.51 17299.76 3799.33 26299.96 3198.87 10899.84 8099.89 19
Fast-Effi-MVS+98.70 15698.43 16799.51 11599.51 17299.28 11599.52 15299.47 17896.11 33799.01 24099.34 29696.20 16599.84 15897.88 22098.82 20199.39 207
MVSFormer99.17 8399.12 7699.29 15799.51 17298.94 16699.88 399.46 18797.55 21299.80 4399.65 18797.39 11899.28 30499.03 8799.85 7299.65 129
lupinMVS99.13 9299.01 9799.46 12699.51 17298.94 16699.05 31799.16 30597.86 17399.80 4399.56 22597.39 11899.86 14598.94 9699.85 7299.58 155
GBi-Net97.68 27797.48 26198.29 29199.51 17297.26 27899.43 20199.48 15896.49 30799.07 22999.32 30390.26 33798.98 35197.10 28896.65 30198.62 320
test197.68 27797.48 26198.29 29199.51 17297.26 27899.43 20199.48 15896.49 30799.07 22999.32 30390.26 33798.98 35197.10 28896.65 30198.62 320
FMVSNet297.72 27097.36 28298.80 23499.51 17298.84 17899.45 19199.42 21496.49 30798.86 26899.29 30890.26 33798.98 35196.44 31996.56 30498.58 334
thisisatest051598.14 19997.79 22499.19 17199.50 18198.50 21498.61 37696.82 40096.95 27599.54 12499.43 26791.66 32099.86 14598.08 20699.51 14699.22 227
baseline198.31 18397.95 21099.38 13999.50 18198.74 18899.59 10598.93 33398.41 10499.14 21699.60 21194.59 23299.79 19398.48 16993.29 37099.61 144
hse-mvs297.50 29397.14 30198.59 25099.49 18397.05 29199.28 26199.22 29698.94 5499.66 8699.42 26994.93 20899.65 24799.48 4483.80 40299.08 238
EIA-MVS99.18 8199.09 8199.45 12799.49 18399.18 12699.67 6899.53 9797.66 20199.40 15899.44 26598.10 10099.81 18398.94 9699.62 13799.35 213
test_yl98.86 13498.63 14799.54 9999.49 18399.18 12699.50 16699.07 31798.22 12799.61 10899.51 24495.37 19599.84 15898.60 15398.33 22699.59 151
DCV-MVSNet98.86 13498.63 14799.54 9999.49 18399.18 12699.50 16699.07 31798.22 12799.61 10899.51 24495.37 19599.84 15898.60 15398.33 22699.59 151
VDDNet97.55 28897.02 30799.16 17499.49 18398.12 23699.38 22899.30 28095.35 35099.68 7799.90 2782.62 39499.93 8799.31 6098.13 24399.42 201
MVS_Test99.10 10698.97 10399.48 12199.49 18399.14 13499.67 6899.34 25597.31 24099.58 11599.76 13697.65 11499.82 17898.87 10899.07 18299.46 194
BH-untuned98.42 17298.36 17198.59 25099.49 18396.70 31299.27 26699.13 30997.24 24798.80 27399.38 28395.75 18399.74 20997.07 29199.16 17099.33 217
AUN-MVS96.88 31896.31 32498.59 25099.48 19097.04 29499.27 26699.22 29697.44 22898.51 31099.41 27391.97 30999.66 24297.71 24283.83 40199.07 243
VDD-MVS97.73 26897.35 28498.88 21699.47 19197.12 28499.34 24398.85 34998.19 13199.67 8199.85 5482.98 39299.92 9899.49 4398.32 23099.60 147
mvsmamba99.06 11098.96 10799.36 14099.47 19198.64 19799.70 5599.05 32097.61 20599.65 9399.83 6996.54 15299.92 9899.19 7299.62 13799.51 177
ETV-MVS99.26 7199.21 6899.40 13499.46 19399.30 11399.56 12699.52 10298.52 9499.44 14499.27 31398.41 8799.86 14599.10 8299.59 14099.04 245
Effi-MVS+98.81 14598.59 15899.48 12199.46 19399.12 13798.08 39999.50 13697.50 22099.38 16299.41 27396.37 16099.81 18399.11 8098.54 21799.51 177
RRT-MVS98.91 12898.75 13499.39 13899.46 19398.61 20199.76 3699.50 13698.06 15599.81 3999.88 3693.91 26199.94 6999.11 8099.27 16499.61 144
jason99.13 9299.03 8999.45 12799.46 19398.87 17399.12 30299.26 28998.03 16099.79 4599.65 18797.02 13599.85 15199.02 8999.90 4299.65 129
jason: jason.
TAMVS99.12 9899.08 8299.24 16699.46 19398.55 20599.51 15999.46 18798.09 14699.45 13999.82 7898.34 9099.51 26598.70 13598.93 19199.67 122
ACMH+97.24 1097.92 23497.78 22798.32 28899.46 19396.68 31699.56 12699.54 8698.41 10497.79 34899.87 4590.18 34199.66 24298.05 21097.18 29598.62 320
MIMVSNet97.73 26897.45 26798.57 25499.45 19997.50 26899.02 32598.98 32896.11 33799.41 15399.14 32890.28 33698.74 37195.74 33398.93 19199.47 189
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20099.65 5799.50 16699.61 4899.45 599.87 2699.92 1497.31 12399.97 2199.95 799.99 199.97 4
test_fmvs297.25 30897.30 29297.09 35299.43 20193.31 38399.73 4998.87 34798.83 6499.28 18399.80 10584.45 38799.66 24297.88 22097.45 28198.30 357
alignmvs98.81 14598.56 16199.58 9299.43 20199.42 9899.51 15998.96 33198.61 8699.35 17098.92 35494.78 21899.77 20099.35 5398.11 24499.54 163
MGCFI-Net99.01 12098.85 12399.50 12099.42 20399.26 11899.82 1599.48 15898.60 8799.28 18398.81 35997.04 13499.76 20499.29 6397.87 25399.47 189
sasdasda99.02 11698.86 12199.51 11599.42 20399.32 10799.80 2499.48 15898.63 8399.31 17698.81 35997.09 13099.75 20799.27 6697.90 25099.47 189
canonicalmvs99.02 11698.86 12199.51 11599.42 20399.32 10799.80 2499.48 15898.63 8399.31 17698.81 35997.09 13099.75 20799.27 6697.90 25099.47 189
HY-MVS97.30 798.85 14198.64 14699.47 12499.42 20399.08 14299.62 9299.36 24397.39 23499.28 18399.68 17596.44 15899.92 9898.37 18098.22 23499.40 206
CDS-MVSNet99.09 10799.03 8999.25 16499.42 20398.73 18999.45 19199.46 18798.11 14399.46 13899.77 13298.01 10599.37 28798.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 7599.14 7499.59 8999.41 20899.16 12999.35 24099.57 6598.82 6599.51 13099.61 20896.46 15699.95 5999.59 2799.98 499.65 129
Fast-Effi-MVS+-dtu98.77 15198.83 12798.60 24999.41 20896.99 29899.52 15299.49 14698.11 14399.24 19499.34 29696.96 13899.79 19397.95 21699.45 14999.02 248
BH-RMVSNet98.41 17498.08 19599.40 13499.41 20898.83 18199.30 25198.77 35897.70 19698.94 25399.65 18792.91 28299.74 20996.52 31799.55 14499.64 136
ACMM97.58 598.37 18098.34 17398.48 26599.41 20897.10 28599.56 12699.45 19898.53 9399.04 23799.85 5493.00 27899.71 22598.74 13097.45 28198.64 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20397.99 20598.44 27699.41 20896.96 30299.60 9999.56 7098.09 14698.15 33299.91 2090.87 33299.70 23198.88 10597.45 28198.67 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 30596.81 31398.87 22099.40 21397.46 26999.51 15999.53 9795.86 34598.54 30999.77 13282.44 39599.66 24298.68 14097.52 27399.50 181
PAPR98.63 16398.34 17399.51 11599.40 21399.03 14898.80 35999.36 24396.33 31899.00 24499.12 33298.46 8199.84 15895.23 34799.37 16099.66 125
API-MVS99.04 11399.03 8999.06 18499.40 21399.31 11199.55 13999.56 7098.54 9299.33 17499.39 28198.76 5299.78 19896.98 29599.78 10798.07 370
dongtai93.26 36092.93 36494.25 37299.39 21685.68 40097.68 40393.27 41492.87 38396.85 36999.39 28182.33 39697.48 39576.78 40897.80 25699.58 155
FMVSNet398.03 21697.76 23398.84 22799.39 21698.98 15399.40 21999.38 23496.67 29199.07 22999.28 31092.93 27998.98 35197.10 28896.65 30198.56 336
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21899.37 10299.58 11399.62 4199.41 999.87 2699.92 1498.81 44100.00 199.97 199.93 2599.94 11
GA-MVS97.85 24397.47 26499.00 19299.38 21897.99 24298.57 37999.15 30697.04 26898.90 25899.30 30689.83 34499.38 28496.70 31098.33 22699.62 142
mvs_anonymous99.03 11598.99 9999.16 17499.38 21898.52 21199.51 15999.38 23497.79 18499.38 16299.81 9297.30 12499.45 27099.35 5398.99 18899.51 177
testing397.28 30696.76 31598.82 22999.37 22198.07 23899.45 19199.36 24397.56 21197.89 34398.95 34983.70 39098.82 36796.03 32698.56 21599.58 155
ACMP97.20 1198.06 20897.94 21298.45 27399.37 22197.01 29699.44 19799.49 14697.54 21598.45 31499.79 11791.95 31099.72 21997.91 21897.49 27998.62 320
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 13498.63 14799.54 9999.37 22199.66 5399.45 19199.54 8696.61 29899.01 24099.40 27797.09 13099.86 14597.68 24699.53 14599.10 233
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 28297.50 25998.13 30599.36 22496.45 32499.42 20899.48 15897.76 18897.87 34499.45 26491.09 32998.81 36894.53 35698.52 21899.13 232
EI-MVSNet98.67 15998.67 14298.68 24599.35 22597.97 24399.50 16699.38 23496.93 27899.20 20599.83 6997.87 10799.36 29198.38 17897.56 26998.71 278
CVMVSNet98.57 16598.67 14298.30 29099.35 22595.59 34599.50 16699.55 7898.60 8799.39 16099.83 6994.48 23999.45 27098.75 12998.56 21599.85 35
BH-w/o98.00 22397.89 21998.32 28899.35 22596.20 33499.01 33098.90 34296.42 31598.38 31799.00 34395.26 20199.72 21996.06 32598.61 20999.03 246
MVSTER98.49 16698.32 17599.00 19299.35 22599.02 14999.54 14399.38 23497.41 23299.20 20599.73 15093.86 26399.36 29198.87 10897.56 26998.62 320
miper_lstm_enhance98.00 22397.91 21498.28 29599.34 22997.43 27098.88 35199.36 24396.48 31098.80 27399.55 22895.98 17198.91 36397.27 27795.50 33498.51 339
Effi-MVS+-dtu98.78 14998.89 11798.47 27099.33 23096.91 30499.57 12099.30 28098.47 9799.41 15398.99 34496.78 14299.74 20998.73 13299.38 15398.74 274
CANet_DTU98.97 12498.87 11999.25 16499.33 23098.42 22399.08 31199.30 28099.16 1999.43 14699.75 13995.27 19999.97 2198.56 16299.95 1799.36 212
ADS-MVSNet298.02 21898.07 19897.87 32399.33 23095.19 35799.23 28199.08 31496.24 32599.10 22499.67 18194.11 25298.93 36296.81 30599.05 18399.48 183
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23096.48 32399.23 28199.15 30696.24 32599.10 22499.67 18194.11 25299.71 22596.81 30599.05 18399.48 183
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23097.05 29199.58 11399.55 7897.46 22299.24 19499.83 6992.58 29499.72 21998.09 20297.51 27498.68 292
LGP-MVS_train98.49 26399.33 23097.05 29199.55 7897.46 22299.24 19499.83 6992.58 29499.72 21998.09 20297.51 27498.68 292
FMVSNet196.84 31996.36 32398.29 29199.32 23697.26 27899.43 20199.48 15895.11 35498.55 30899.32 30383.95 38998.98 35195.81 33196.26 31198.62 320
PVSNet_094.43 1996.09 33595.47 34297.94 31899.31 23794.34 37297.81 40199.70 1597.12 25797.46 35298.75 36489.71 34599.79 19397.69 24581.69 40499.68 119
c3_l98.12 20298.04 20098.38 28399.30 23897.69 26398.81 35899.33 26296.67 29198.83 26999.34 29697.11 12998.99 35097.58 25195.34 33698.48 341
SCA98.19 19398.16 18398.27 29699.30 23895.55 34699.07 31298.97 32997.57 20999.43 14699.57 22292.72 28799.74 20997.58 25199.20 16899.52 170
LCM-MVSNet-Re97.83 24998.15 18596.87 35999.30 23892.25 38999.59 10598.26 38197.43 22996.20 37599.13 32996.27 16398.73 37298.17 19898.99 18899.64 136
MVS-HIRNet95.75 34195.16 34697.51 34199.30 23893.69 37998.88 35195.78 40685.09 40398.78 27692.65 40691.29 32799.37 28794.85 35399.85 7299.46 194
HQP_MVS98.27 18898.22 18198.44 27699.29 24296.97 30099.39 22399.47 17898.97 5199.11 22199.61 20892.71 28999.69 23697.78 23197.63 26298.67 299
plane_prior799.29 24297.03 295
ITE_SJBPF98.08 30799.29 24296.37 32698.92 33698.34 11298.83 26999.75 13991.09 32999.62 25695.82 33097.40 28798.25 361
DeepMVS_CXcopyleft93.34 37699.29 24282.27 40599.22 29685.15 40296.33 37399.05 33790.97 33199.73 21593.57 36897.77 25898.01 374
CLD-MVS98.16 19798.10 19198.33 28699.29 24296.82 30998.75 36499.44 20697.83 17999.13 21799.55 22892.92 28099.67 23998.32 18797.69 26098.48 341
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 24796.98 29992.71 289
PMMVS98.80 14898.62 15299.34 14299.27 24798.70 19198.76 36399.31 27697.34 23799.21 20299.07 33497.20 12799.82 17898.56 16298.87 19699.52 170
eth_miper_zixun_eth98.05 21397.96 20898.33 28699.26 24997.38 27298.56 38199.31 27696.65 29398.88 26199.52 24096.58 15099.12 33497.39 27195.53 33398.47 343
D2MVS98.41 17498.50 16498.15 30499.26 24996.62 31899.40 21999.61 4897.71 19398.98 24699.36 28996.04 16999.67 23998.70 13597.41 28698.15 366
plane_prior199.26 249
XXY-MVS98.38 17898.09 19499.24 16699.26 24999.32 10799.56 12699.55 7897.45 22598.71 28299.83 6993.23 27399.63 25598.88 10596.32 31098.76 269
UBG97.85 24397.48 26198.95 19999.25 25397.64 26499.24 27998.74 36297.90 16998.64 29898.20 38288.65 35899.81 18398.27 19098.40 22299.42 201
cl____98.01 22197.84 22298.55 25999.25 25397.97 24398.71 36899.34 25596.47 31298.59 30699.54 23395.65 18799.21 32197.21 28095.77 32498.46 346
WBMVS97.74 26697.50 25998.46 27199.24 25597.43 27099.21 28799.42 21497.45 22598.96 25099.41 27388.83 35399.23 31298.94 9696.02 31598.71 278
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24798.71 36899.35 25096.50 30698.60 30599.54 23395.72 18599.03 34497.21 28095.77 32498.46 346
ETVMVS97.50 29396.90 31199.29 15799.23 25798.78 18799.32 24698.90 34297.52 21898.56 30798.09 38884.72 38699.69 23697.86 22397.88 25299.39 207
miper_ehance_all_eth98.18 19598.10 19198.41 27999.23 25797.72 25998.72 36799.31 27696.60 30198.88 26199.29 30897.29 12599.13 33097.60 24995.99 31898.38 354
NP-MVS99.23 25796.92 30399.40 277
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28199.23 25796.80 31099.70 5599.60 5497.12 25798.18 33199.70 15991.73 31699.72 21998.39 17797.45 28198.68 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UGNet98.87 13198.69 14099.40 13499.22 26198.72 19099.44 19799.68 2099.24 1799.18 21299.42 26992.74 28699.96 3199.34 5799.94 2399.53 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 24797.44 27299.01 19099.21 26298.94 16699.48 18199.57 6598.38 10699.28 18399.73 15088.89 35299.39 28299.19 7293.27 37198.71 278
IB-MVS95.67 1896.22 33095.44 34498.57 25499.21 26296.70 31298.65 37497.74 39396.71 28897.27 35898.54 37086.03 37699.92 9898.47 17286.30 39899.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1197.50 29397.10 30498.71 24299.20 26496.91 30499.29 25698.82 35297.89 17098.21 32998.40 37485.63 37999.83 17198.45 17498.04 24699.37 211
tfpnnormal97.84 24797.47 26498.98 19499.20 26499.22 12399.64 8299.61 4896.32 31998.27 32599.70 15993.35 27299.44 27595.69 33595.40 33598.27 359
QAPM98.67 15998.30 17799.80 4699.20 26499.67 5199.77 3399.72 1194.74 36498.73 28099.90 2795.78 18299.98 1396.96 29799.88 5499.76 87
HQP-NCC99.19 26798.98 33698.24 12398.66 291
ACMP_Plane99.19 26798.98 33698.24 12398.66 291
HQP-MVS98.02 21897.90 21598.37 28499.19 26796.83 30798.98 33699.39 22698.24 12398.66 29199.40 27792.47 29899.64 25097.19 28497.58 26798.64 311
testing9197.44 30097.02 30798.71 24299.18 27096.89 30699.19 28999.04 32197.78 18698.31 32198.29 37985.41 38199.85 15198.01 21297.95 24899.39 207
testing9997.36 30396.94 31098.63 24799.18 27096.70 31299.30 25198.93 33397.71 19398.23 32698.26 38084.92 38499.84 15898.04 21197.85 25599.35 213
Patchmatch-test97.93 23197.65 24398.77 23799.18 27097.07 28999.03 32299.14 30896.16 33298.74 27999.57 22294.56 23499.72 21993.36 37099.11 17699.52 170
FIs98.78 14998.63 14799.23 16899.18 27099.54 8099.83 1499.59 5898.28 11798.79 27599.81 9296.75 14499.37 28799.08 8496.38 30898.78 264
baseline297.87 24097.55 25298.82 22999.18 27098.02 24099.41 21196.58 40596.97 27296.51 37199.17 32493.43 27099.57 26097.71 24299.03 18598.86 259
CR-MVSNet98.17 19697.93 21398.87 22099.18 27098.49 21599.22 28599.33 26296.96 27399.56 11999.38 28394.33 24499.00 34994.83 35498.58 21299.14 230
RPMNet96.72 32195.90 33499.19 17199.18 27098.49 21599.22 28599.52 10288.72 40099.56 11997.38 39494.08 25499.95 5986.87 40298.58 21299.14 230
LS3D99.27 6999.12 7699.74 6199.18 27099.75 3999.56 12699.57 6598.45 9999.49 13499.85 5497.77 11199.94 6998.33 18599.84 8099.52 170
tpm cat197.39 30297.36 28297.50 34299.17 27893.73 37799.43 20199.31 27691.27 39098.71 28299.08 33394.31 24699.77 20096.41 32198.50 21999.00 249
3Dnovator+97.12 1399.18 8198.97 10399.82 4199.17 27899.68 4899.81 1999.51 11699.20 1898.72 28199.89 3195.68 18699.97 2198.86 11399.86 6599.81 61
testing22297.16 31196.50 31999.16 17499.16 28098.47 21999.27 26698.66 37297.71 19398.23 32698.15 38382.28 39799.84 15897.36 27397.66 26199.18 229
VPA-MVSNet98.29 18697.95 21099.30 15499.16 28099.54 8099.50 16699.58 6298.27 11999.35 17099.37 28692.53 29699.65 24799.35 5394.46 35298.72 276
tpmrst98.33 18298.48 16597.90 32199.16 28094.78 36399.31 24999.11 31097.27 24399.45 13999.59 21395.33 19799.84 15898.48 16998.61 20999.09 237
PatchmatchNetpermissive98.31 18398.36 17198.19 29999.16 28095.32 35499.27 26698.92 33697.37 23599.37 16499.58 21794.90 21199.70 23197.43 26999.21 16799.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 30097.34 28797.74 33399.15 28494.36 37199.45 19198.94 33293.45 37998.90 25899.44 26591.35 32699.59 25997.31 27598.07 24599.29 220
CostFormer97.72 27097.73 23697.71 33499.15 28494.02 37499.54 14399.02 32494.67 36599.04 23799.35 29292.35 30499.77 20098.50 16897.94 24999.34 216
TransMVSNet (Re)97.15 31296.58 31798.86 22399.12 28698.85 17799.49 17798.91 34095.48 34997.16 36299.80 10593.38 27199.11 33594.16 36391.73 38298.62 320
3Dnovator97.25 999.24 7699.05 8599.81 4499.12 28699.66 5399.84 1199.74 1099.09 3298.92 25599.90 2795.94 17599.98 1398.95 9599.92 2799.79 74
XVG-ACMP-BASELINE97.83 24997.71 23898.20 29899.11 28896.33 32899.41 21199.52 10298.06 15599.05 23699.50 24789.64 34799.73 21597.73 23997.38 28898.53 337
FMVSNet596.43 32896.19 32797.15 34899.11 28895.89 34099.32 24699.52 10294.47 36998.34 32099.07 33487.54 37197.07 39892.61 38095.72 32798.47 343
MDTV_nov1_ep1398.32 17599.11 28894.44 36999.27 26698.74 36297.51 21999.40 15899.62 20494.78 21899.76 20497.59 25098.81 203
dmvs_testset95.02 34796.12 32891.72 38299.10 29180.43 41099.58 11397.87 39097.47 22195.22 38298.82 35893.99 25695.18 40788.09 39794.91 34799.56 160
Patchmtry97.75 26497.40 27998.81 23299.10 29198.87 17399.11 30899.33 26294.83 36298.81 27199.38 28394.33 24499.02 34696.10 32495.57 33198.53 337
dp97.75 26497.80 22397.59 33999.10 29193.71 37899.32 24698.88 34596.48 31099.08 22899.55 22892.67 29299.82 17896.52 31798.58 21299.24 226
UWE-MVS97.58 28797.29 29498.48 26599.09 29496.25 33299.01 33096.61 40497.86 17399.19 20899.01 34288.72 35499.90 12197.38 27298.69 20799.28 221
cl2297.85 24397.64 24698.48 26599.09 29497.87 25198.60 37899.33 26297.11 26098.87 26499.22 31992.38 30399.17 32598.21 19395.99 31898.42 349
Baseline_NR-MVSNet97.76 26097.45 26798.68 24599.09 29498.29 22699.41 21198.85 34995.65 34798.63 30099.67 18194.82 21499.10 33798.07 20992.89 37598.64 311
FC-MVSNet-test98.75 15298.62 15299.15 17899.08 29799.45 9599.86 1099.60 5498.23 12698.70 28899.82 7896.80 14199.22 31699.07 8596.38 30898.79 263
USDC97.34 30497.20 29997.75 33299.07 29895.20 35698.51 38399.04 32197.99 16298.31 32199.86 4989.02 35099.55 26395.67 33797.36 28998.49 340
TinyColmap97.12 31396.89 31297.83 32799.07 29895.52 34998.57 37998.74 36297.58 20897.81 34799.79 11788.16 36599.56 26195.10 34897.21 29398.39 353
pm-mvs197.68 27797.28 29598.88 21699.06 30098.62 19999.50 16699.45 19896.32 31997.87 34499.79 11792.47 29899.35 29497.54 25893.54 36898.67 299
TR-MVS97.76 26097.41 27898.82 22999.06 30097.87 25198.87 35398.56 37596.63 29798.68 29099.22 31992.49 29799.65 24795.40 34397.79 25798.95 257
PAPM97.59 28697.09 30599.07 18299.06 30098.26 22898.30 39399.10 31194.88 36098.08 33499.34 29696.27 16399.64 25089.87 39098.92 19399.31 219
nrg03098.64 16298.42 16899.28 16199.05 30399.69 4799.81 1999.46 18798.04 15899.01 24099.82 7896.69 14699.38 28499.34 5794.59 35198.78 264
tpmvs97.98 22598.02 20397.84 32699.04 30494.73 36499.31 24999.20 30096.10 34198.76 27899.42 26994.94 20799.81 18396.97 29698.45 22198.97 253
OpenMVScopyleft96.50 1698.47 16898.12 18999.52 11399.04 30499.53 8399.82 1599.72 1194.56 36798.08 33499.88 3694.73 22499.98 1397.47 26599.76 11399.06 244
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 17899.70 5599.59 5897.27 24398.40 31699.19 32395.53 19099.23 31298.34 18493.78 36698.61 329
tpm97.67 28097.55 25298.03 30999.02 30695.01 36099.43 20198.54 37796.44 31399.12 21999.34 29691.83 31399.60 25897.75 23796.46 30699.48 183
Syy-MVS97.09 31597.14 30196.95 35699.00 30892.73 38799.29 25699.39 22697.06 26597.41 35398.15 38393.92 26098.68 37391.71 38398.34 22499.45 197
myMVS_eth3d96.89 31796.37 32298.43 27899.00 30897.16 28299.29 25699.39 22697.06 26597.41 35398.15 38383.46 39198.68 37395.27 34698.34 22499.45 197
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17799.51 11697.95 16498.97 24899.13 32996.30 16299.38 28498.36 18293.34 36998.66 307
v1097.85 24397.52 25698.86 22398.99 31198.67 19399.75 4199.41 21795.70 34698.98 24699.41 27394.75 22399.23 31296.01 32894.63 35098.67 299
PS-CasMVS97.93 23197.59 25198.95 19998.99 31199.06 14599.68 6599.52 10297.13 25598.31 32199.68 17592.44 30299.05 34198.51 16794.08 36198.75 271
PatchT97.03 31696.44 32198.79 23598.99 31198.34 22599.16 29399.07 31792.13 38799.52 12897.31 39794.54 23798.98 35188.54 39598.73 20699.03 246
V4298.06 20897.79 22498.86 22398.98 31498.84 17899.69 5999.34 25596.53 30599.30 17999.37 28694.67 22999.32 29997.57 25594.66 34998.42 349
LF4IMVS97.52 29097.46 26697.70 33598.98 31495.55 34699.29 25698.82 35298.07 15198.66 29199.64 19389.97 34299.61 25797.01 29296.68 30097.94 381
CP-MVSNet98.09 20497.78 22799.01 19098.97 31699.24 12199.67 6899.46 18797.25 24598.48 31399.64 19393.79 26599.06 34098.63 14694.10 36098.74 274
miper_enhance_ethall98.16 19798.08 19598.41 27998.96 31797.72 25998.45 38599.32 27296.95 27598.97 24899.17 32497.06 13399.22 31697.86 22395.99 31898.29 358
v897.95 23097.63 24798.93 20398.95 31898.81 18499.80 2499.41 21796.03 34299.10 22499.42 26994.92 21099.30 30296.94 29994.08 36198.66 307
MVStest196.08 33695.48 34197.89 32298.93 31996.70 31299.56 12699.35 25092.69 38591.81 39999.46 26289.90 34398.96 36095.00 35192.61 37998.00 377
TESTMET0.1,197.55 28897.27 29898.40 28198.93 31996.53 32198.67 37097.61 39496.96 27398.64 29899.28 31088.63 36099.45 27097.30 27699.38 15399.21 228
MVS_030499.15 8798.96 10799.73 6498.92 32199.37 10299.37 23096.92 39899.51 299.66 8699.78 12496.69 14699.97 2199.84 1599.97 799.84 39
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19798.92 32198.98 15399.48 18199.53 9797.76 18898.71 28299.46 26296.43 15999.22 31698.57 15992.87 37698.69 287
v2v48298.06 20897.77 22998.92 20598.90 32398.82 18299.57 12099.36 24396.65 29399.19 20899.35 29294.20 24899.25 30997.72 24194.97 34498.69 287
131498.68 15898.54 16299.11 18098.89 32498.65 19599.27 26699.49 14696.89 27997.99 33999.56 22597.72 11399.83 17197.74 23899.27 16498.84 261
OPM-MVS98.19 19398.10 19198.45 27398.88 32597.07 28999.28 26199.38 23498.57 8999.22 19999.81 9292.12 30699.66 24298.08 20697.54 27198.61 329
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 25497.44 27298.91 20998.88 32598.68 19299.51 15999.34 25596.18 33099.20 20599.34 29694.03 25599.36 29195.32 34595.18 33998.69 287
EPMVS97.82 25297.65 24398.35 28598.88 32595.98 33899.49 17794.71 41197.57 20999.26 19299.48 25592.46 30199.71 22597.87 22299.08 18199.35 213
v114497.98 22597.69 23998.85 22698.87 32898.66 19499.54 14399.35 25096.27 32399.23 19899.35 29294.67 22999.23 31296.73 30895.16 34098.68 292
DU-MVS98.08 20697.79 22498.96 19798.87 32898.98 15399.41 21199.45 19897.87 17298.71 28299.50 24794.82 21499.22 31698.57 15992.87 37698.68 292
NR-MVSNet97.97 22897.61 24999.02 18998.87 32899.26 11899.47 18799.42 21497.63 20397.08 36499.50 24795.07 20699.13 33097.86 22393.59 36798.68 292
WR-MVS98.06 20897.73 23699.06 18498.86 33199.25 12099.19 28999.35 25097.30 24198.66 29199.43 26793.94 25899.21 32198.58 15694.28 35698.71 278
v124097.69 27597.32 29098.79 23598.85 33298.43 22199.48 18199.36 24396.11 33799.27 18899.36 28993.76 26799.24 31194.46 35795.23 33898.70 283
test_040296.64 32396.24 32597.85 32498.85 33296.43 32599.44 19799.26 28993.52 37696.98 36699.52 24088.52 36199.20 32392.58 38197.50 27697.93 382
v14419297.92 23497.60 25098.87 22098.83 33498.65 19599.55 13999.34 25596.20 32899.32 17599.40 27794.36 24399.26 30896.37 32295.03 34398.70 283
v192192097.80 25697.45 26798.84 22798.80 33598.53 20799.52 15299.34 25596.15 33499.24 19499.47 25893.98 25799.29 30395.40 34395.13 34198.69 287
gg-mvs-nofinetune96.17 33395.32 34598.73 23998.79 33698.14 23499.38 22894.09 41291.07 39398.07 33791.04 41089.62 34899.35 29496.75 30799.09 18098.68 292
test-LLR98.06 20897.90 21598.55 25998.79 33697.10 28598.67 37097.75 39197.34 23798.61 30398.85 35694.45 24199.45 27097.25 27899.38 15399.10 233
test-mter97.49 29897.13 30398.55 25998.79 33697.10 28598.67 37097.75 39196.65 29398.61 30398.85 35688.23 36499.45 27097.25 27899.38 15399.10 233
kuosan90.92 36890.11 37393.34 37698.78 33985.59 40198.15 39893.16 41689.37 39792.07 39798.38 37581.48 39995.19 40662.54 41597.04 29799.25 225
WB-MVSnew97.65 28297.65 24397.63 33698.78 33997.62 26599.13 29998.33 38097.36 23699.07 22998.94 35095.64 18899.15 32692.95 37598.68 20896.12 402
PS-MVSNAJss98.92 12798.92 11198.90 21198.78 33998.53 20799.78 3199.54 8698.07 15199.00 24499.76 13699.01 1899.37 28799.13 7897.23 29298.81 262
MVS97.28 30696.55 31899.48 12198.78 33998.95 16399.27 26699.39 22683.53 40498.08 33499.54 23396.97 13799.87 14294.23 36199.16 17099.63 140
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33998.62 19999.65 7999.49 14697.76 18898.49 31299.60 21194.23 24798.97 35898.00 21392.90 37498.70 283
m2depth97.80 25697.63 24798.29 29198.77 34497.38 27299.64 8299.36 24398.78 7396.30 37499.58 21792.34 30599.39 28298.36 18295.58 33098.10 368
PEN-MVS97.76 26097.44 27298.72 24098.77 34498.54 20699.78 3199.51 11697.06 26598.29 32499.64 19392.63 29398.89 36698.09 20293.16 37298.72 276
v7n97.87 24097.52 25698.92 20598.76 34698.58 20399.84 1199.46 18796.20 32898.91 25699.70 15994.89 21299.44 27596.03 32693.89 36498.75 271
v14897.79 25897.55 25298.50 26298.74 34797.72 25999.54 14399.33 26296.26 32498.90 25899.51 24494.68 22899.14 32797.83 22793.15 37398.63 318
JIA-IIPM97.50 29397.02 30798.93 20398.73 34897.80 25599.30 25198.97 32991.73 38998.91 25694.86 40495.10 20599.71 22597.58 25197.98 24799.28 221
Gipumacopyleft90.99 36790.15 37293.51 37598.73 34890.12 39593.98 40899.45 19879.32 40692.28 39694.91 40369.61 40497.98 38787.42 39995.67 32892.45 406
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 22598.03 20197.81 33098.72 35096.65 31799.66 7399.66 2898.09 14698.35 31999.82 7895.25 20298.01 38697.41 27095.30 33798.78 264
K. test v397.10 31496.79 31498.01 31298.72 35096.33 32899.87 797.05 39797.59 20696.16 37699.80 10588.71 35599.04 34296.69 31196.55 30598.65 309
OurMVSNet-221017-097.88 23897.77 22998.19 29998.71 35296.53 32199.88 399.00 32697.79 18498.78 27699.94 691.68 31799.35 29497.21 28096.99 29998.69 287
test_djsdf98.67 15998.57 15998.98 19498.70 35398.91 17099.88 399.46 18797.55 21299.22 19999.88 3695.73 18499.28 30499.03 8797.62 26498.75 271
pmmvs696.53 32596.09 33097.82 32998.69 35495.47 35099.37 23099.47 17893.46 37897.41 35399.78 12487.06 37499.33 29796.92 30292.70 37898.65 309
lessismore_v097.79 33198.69 35495.44 35294.75 41095.71 38099.87 4588.69 35699.32 29995.89 32994.93 34698.62 320
mvs_tets98.40 17798.23 18098.91 20998.67 35698.51 21399.66 7399.53 9798.19 13198.65 29799.81 9292.75 28499.44 27599.31 6097.48 28098.77 267
SixPastTwentyTwo97.50 29397.33 28998.03 30998.65 35796.23 33399.77 3398.68 37197.14 25497.90 34299.93 990.45 33599.18 32497.00 29396.43 30798.67 299
UnsupCasMVSNet_eth96.44 32796.12 32897.40 34498.65 35795.65 34399.36 23599.51 11697.13 25596.04 37898.99 34488.40 36298.17 38296.71 30990.27 39098.40 352
DTE-MVSNet97.51 29297.19 30098.46 27198.63 35998.13 23599.84 1199.48 15896.68 29097.97 34199.67 18192.92 28098.56 37596.88 30492.60 38098.70 283
our_test_397.65 28297.68 24097.55 34098.62 36094.97 36198.84 35599.30 28096.83 28498.19 33099.34 29697.01 13699.02 34695.00 35196.01 31698.64 311
ppachtmachnet_test97.49 29897.45 26797.61 33898.62 36095.24 35598.80 35999.46 18796.11 33798.22 32899.62 20496.45 15798.97 35893.77 36595.97 32198.61 329
pmmvs498.13 20097.90 21598.81 23298.61 36298.87 17398.99 33399.21 29996.44 31399.06 23499.58 21795.90 17899.11 33597.18 28696.11 31498.46 346
jajsoiax98.43 17198.28 17898.88 21698.60 36398.43 22199.82 1599.53 9798.19 13198.63 30099.80 10593.22 27599.44 27599.22 7097.50 27698.77 267
cascas97.69 27597.43 27698.48 26598.60 36397.30 27498.18 39799.39 22692.96 38298.41 31598.78 36393.77 26699.27 30798.16 19998.61 20998.86 259
MonoMVSNet98.38 17898.47 16698.12 30698.59 36596.19 33599.72 5198.79 35797.89 17099.44 14499.52 24096.13 16698.90 36598.64 14497.54 27199.28 221
pmmvs597.52 29097.30 29298.16 30198.57 36696.73 31199.27 26698.90 34296.14 33598.37 31899.53 23791.54 32399.14 32797.51 26095.87 32298.63 318
GG-mvs-BLEND98.45 27398.55 36798.16 23299.43 20193.68 41397.23 35998.46 37189.30 34999.22 31695.43 34298.22 23497.98 379
gm-plane-assit98.54 36892.96 38594.65 36699.15 32799.64 25097.56 256
anonymousdsp98.44 17098.28 17898.94 20198.50 36998.96 16099.77 3399.50 13697.07 26398.87 26499.77 13294.76 22299.28 30498.66 14297.60 26598.57 335
N_pmnet94.95 35095.83 33692.31 38098.47 37079.33 41299.12 30292.81 41893.87 37297.68 34999.13 32993.87 26299.01 34891.38 38596.19 31298.59 333
MS-PatchMatch97.24 31097.32 29096.99 35398.45 37193.51 38298.82 35799.32 27297.41 23298.13 33399.30 30688.99 35199.56 26195.68 33699.80 10097.90 384
test_fmvsmconf0.01_n99.22 7899.03 8999.79 4998.42 37299.48 9199.55 13999.51 11699.39 1099.78 5099.93 994.80 21699.95 5999.93 1099.95 1799.94 11
test0.0.03 197.71 27397.42 27798.56 25798.41 37397.82 25498.78 36198.63 37397.34 23798.05 33898.98 34694.45 24198.98 35195.04 35097.15 29698.89 258
EPNet_dtu98.03 21697.96 20898.23 29798.27 37495.54 34899.23 28198.75 35999.02 3897.82 34699.71 15596.11 16799.48 26693.04 37499.65 13399.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 34993.98 35697.92 31998.24 37597.27 27699.15 29699.33 26293.80 37380.09 41199.03 33988.31 36397.86 39093.49 36994.36 35598.62 320
MDA-MVSNet_test_wron95.45 34394.60 35098.01 31298.16 37697.21 28199.11 30899.24 29393.49 37780.73 41098.98 34693.02 27798.18 38194.22 36294.45 35398.64 311
new_pmnet96.38 32996.03 33197.41 34398.13 37795.16 35999.05 31799.20 30093.94 37197.39 35698.79 36291.61 32299.04 34290.43 38895.77 32498.05 372
EGC-MVSNET82.80 37577.86 38197.62 33797.91 37896.12 33699.33 24599.28 2868.40 41825.05 41999.27 31384.11 38899.33 29789.20 39298.22 23497.42 392
YYNet195.36 34594.51 35297.92 31997.89 37997.10 28599.10 31099.23 29493.26 38080.77 40999.04 33892.81 28398.02 38594.30 35894.18 35898.64 311
DSMNet-mixed97.25 30897.35 28496.95 35697.84 38093.61 38199.57 12096.63 40396.13 33698.87 26498.61 36994.59 23297.70 39395.08 34998.86 19799.55 161
testf190.42 36990.68 37089.65 38997.78 38173.97 41799.13 29998.81 35489.62 39591.80 40098.93 35162.23 40998.80 36986.61 40391.17 38496.19 400
APD_test290.42 36990.68 37089.65 38997.78 38173.97 41799.13 29998.81 35489.62 39591.80 40098.93 35162.23 40998.80 36986.61 40391.17 38496.19 400
EG-PatchMatch MVS95.97 33795.69 33896.81 36097.78 38192.79 38699.16 29398.93 33396.16 33294.08 38999.22 31982.72 39399.47 26795.67 33797.50 27698.17 364
Anonymous2024052196.20 33295.89 33597.13 35097.72 38494.96 36299.79 3099.29 28493.01 38197.20 36199.03 33989.69 34698.36 37991.16 38696.13 31398.07 370
MVP-Stereo97.81 25497.75 23497.99 31597.53 38596.60 32098.96 34098.85 34997.22 24997.23 35999.36 28995.28 19899.46 26995.51 33999.78 10797.92 383
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 33495.96 33396.63 36297.44 38695.45 35199.51 15999.38 23496.55 30496.16 37699.25 31693.76 26796.17 40387.35 40094.22 35798.27 359
UnsupCasMVSNet_bld93.53 35992.51 36596.58 36497.38 38793.82 37598.24 39499.48 15891.10 39293.10 39396.66 39974.89 40398.37 37894.03 36487.71 39697.56 390
MIMVSNet195.51 34295.04 34796.92 35897.38 38795.60 34499.52 15299.50 13693.65 37596.97 36799.17 32485.28 38396.56 40288.36 39695.55 33298.60 332
OpenMVS_ROBcopyleft92.34 2094.38 35593.70 36196.41 36597.38 38793.17 38499.06 31598.75 35986.58 40194.84 38798.26 38081.53 39899.32 29989.01 39397.87 25396.76 395
Anonymous2023120696.22 33096.03 33196.79 36197.31 39094.14 37399.63 8799.08 31496.17 33197.04 36599.06 33693.94 25897.76 39286.96 40195.06 34298.47 343
CMPMVSbinary69.68 2394.13 35694.90 34891.84 38197.24 39180.01 41198.52 38299.48 15889.01 39891.99 39899.67 18185.67 37899.13 33095.44 34197.03 29896.39 399
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 13498.71 13899.30 15497.20 39298.18 23199.62 9298.91 34099.28 1698.63 30099.81 9295.96 17299.99 499.24 6999.72 12199.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 35193.72 35997.31 34597.19 39395.82 34198.34 38999.20 30095.00 35897.57 35098.35 37687.95 36798.10 38392.87 37777.00 40898.01 374
miper_refine_blended94.62 35193.72 35997.31 34597.19 39395.82 34198.34 38999.20 30095.00 35897.57 35098.35 37687.95 36798.10 38392.87 37777.00 40898.01 374
KD-MVS_self_test95.00 34894.34 35396.96 35597.07 39595.39 35399.56 12699.44 20695.11 35497.13 36397.32 39691.86 31297.27 39790.35 38981.23 40598.23 363
mvs5depth96.66 32296.22 32697.97 31697.00 39696.28 33098.66 37399.03 32396.61 29896.93 36899.79 11787.20 37399.47 26796.65 31594.13 35998.16 365
test_fmvs392.10 36491.77 36793.08 37896.19 39786.25 39899.82 1598.62 37496.65 29395.19 38496.90 39855.05 41395.93 40596.63 31690.92 38897.06 394
CL-MVSNet_self_test94.49 35393.97 35796.08 36796.16 39893.67 38098.33 39199.38 23495.13 35297.33 35798.15 38392.69 29196.57 40188.67 39479.87 40697.99 378
test_method91.10 36691.36 36890.31 38695.85 39973.72 41994.89 40799.25 29168.39 41095.82 37999.02 34180.50 40098.95 36193.64 36794.89 34898.25 361
mvsany_test393.77 35893.45 36294.74 37195.78 40088.01 39799.64 8298.25 38298.28 11794.31 38897.97 39068.89 40598.51 37797.50 26190.37 38997.71 385
Patchmatch-RL test95.84 33995.81 33795.95 36895.61 40190.57 39498.24 39498.39 37995.10 35695.20 38398.67 36694.78 21897.77 39196.28 32390.02 39199.51 177
PM-MVS92.96 36292.23 36695.14 37095.61 40189.98 39699.37 23098.21 38494.80 36395.04 38697.69 39165.06 40697.90 38994.30 35889.98 39297.54 391
pmmvs-eth3d95.34 34694.73 34997.15 34895.53 40395.94 33999.35 24099.10 31195.13 35293.55 39197.54 39288.15 36697.91 38894.58 35589.69 39397.61 388
test_f91.90 36591.26 36993.84 37495.52 40485.92 39999.69 5998.53 37895.31 35193.87 39096.37 40155.33 41298.27 38095.70 33490.98 38797.32 393
WB-MVS93.10 36194.10 35490.12 38795.51 40581.88 40799.73 4999.27 28895.05 35793.09 39498.91 35594.70 22791.89 41176.62 40994.02 36396.58 397
new-patchmatchnet94.48 35494.08 35595.67 36995.08 40692.41 38899.18 29199.28 28694.55 36893.49 39297.37 39587.86 36997.01 39991.57 38488.36 39497.61 388
SSC-MVS92.73 36393.73 35889.72 38895.02 40781.38 40899.76 3699.23 29494.87 36192.80 39598.93 35194.71 22691.37 41274.49 41193.80 36596.42 398
pmmvs394.09 35793.25 36396.60 36394.76 40894.49 36898.92 34798.18 38689.66 39496.48 37298.06 38986.28 37597.33 39689.68 39187.20 39797.97 380
test_vis3_rt87.04 37185.81 37490.73 38593.99 40981.96 40699.76 3690.23 42092.81 38481.35 40891.56 40840.06 41799.07 33994.27 36088.23 39591.15 408
ambc93.06 37992.68 41082.36 40498.47 38498.73 36895.09 38597.41 39355.55 41199.10 33796.42 32091.32 38397.71 385
EMVS80.02 37879.22 38082.43 39691.19 41176.40 41497.55 40592.49 41966.36 41383.01 40791.27 40964.63 40785.79 41565.82 41460.65 41285.08 411
E-PMN80.61 37779.88 37982.81 39490.75 41276.38 41597.69 40295.76 40766.44 41283.52 40592.25 40762.54 40887.16 41468.53 41361.40 41184.89 412
PMMVS286.87 37285.37 37691.35 38490.21 41383.80 40398.89 35097.45 39683.13 40591.67 40295.03 40248.49 41594.70 40885.86 40577.62 40795.54 403
TDRefinement95.42 34494.57 35197.97 31689.83 41496.11 33799.48 18198.75 35996.74 28696.68 37099.88 3688.65 35899.71 22598.37 18082.74 40398.09 369
LCM-MVSNet86.80 37385.22 37791.53 38387.81 41580.96 40998.23 39698.99 32771.05 40890.13 40396.51 40048.45 41696.88 40090.51 38785.30 39996.76 395
FPMVS84.93 37485.65 37582.75 39586.77 41663.39 42198.35 38898.92 33674.11 40783.39 40698.98 34650.85 41492.40 41084.54 40694.97 34492.46 405
wuyk23d40.18 38241.29 38736.84 39886.18 41749.12 42379.73 41122.81 42327.64 41525.46 41828.45 41821.98 42148.89 41755.80 41623.56 41712.51 415
MVEpermissive76.82 2176.91 38074.31 38484.70 39285.38 41876.05 41696.88 40693.17 41567.39 41171.28 41389.01 41221.66 42387.69 41371.74 41272.29 41090.35 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 37974.86 38384.62 39375.88 41977.61 41397.63 40493.15 41788.81 39964.27 41489.29 41136.51 41883.93 41675.89 41052.31 41392.33 407
PMVScopyleft70.75 2275.98 38174.97 38279.01 39770.98 42055.18 42293.37 40998.21 38465.08 41461.78 41593.83 40521.74 42292.53 40978.59 40791.12 38689.34 410
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 37581.52 37886.66 39166.61 42168.44 42092.79 41097.92 38868.96 40980.04 41299.85 5485.77 37796.15 40497.86 22343.89 41495.39 404
test12339.01 38442.50 38628.53 39939.17 42220.91 42498.75 36419.17 42419.83 41738.57 41666.67 41433.16 41915.42 41837.50 41829.66 41649.26 413
testmvs39.17 38343.78 38525.37 40036.04 42316.84 42598.36 38726.56 42220.06 41638.51 41767.32 41329.64 42015.30 41937.59 41739.90 41543.98 414
test_blank0.13 3880.17 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4201.57 4190.00 4240.00 4200.00 4190.00 4180.00 416
eth-test20.00 424
eth-test0.00 424
uanet_test0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
cdsmvs_eth3d_5k24.64 38532.85 3880.00 4010.00 4240.00 4260.00 41299.51 1160.00 4190.00 42099.56 22596.58 1500.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas8.27 38711.03 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 42099.01 180.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
ab-mvs-re8.30 38611.06 3890.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42099.58 2170.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.02 3890.03 3920.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.27 4200.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS97.16 28295.47 340
PC_three_145298.18 13499.84 3299.70 15999.31 398.52 37698.30 18999.80 10099.81 61
test_241102_TWO99.48 15899.08 3399.88 2199.81 9298.94 2999.96 3198.91 10299.84 8099.88 25
test_0728_THIRD98.99 4599.81 3999.80 10599.09 1499.96 3198.85 11599.90 4299.88 25
GSMVS99.52 170
sam_mvs194.86 21399.52 170
sam_mvs94.72 225
MTGPAbinary99.47 178
test_post199.23 28165.14 41694.18 25199.71 22597.58 251
test_post65.99 41594.65 23199.73 215
patchmatchnet-post98.70 36594.79 21799.74 209
MTMP99.54 14398.88 345
test9_res97.49 26299.72 12199.75 88
agg_prior297.21 28099.73 12099.75 88
test_prior499.56 7698.99 333
test_prior298.96 34098.34 11299.01 24099.52 24098.68 6497.96 21599.74 118
旧先验298.96 34096.70 28999.47 13699.94 6998.19 195
新几何299.01 330
无先验98.99 33399.51 11696.89 27999.93 8797.53 25999.72 103
原ACMM298.95 343
testdata299.95 5996.67 312
segment_acmp98.96 24
testdata198.85 35498.32 115
plane_prior599.47 17899.69 23697.78 23197.63 26298.67 299
plane_prior499.61 208
plane_prior397.00 29798.69 8099.11 221
plane_prior299.39 22398.97 51
plane_prior96.97 30099.21 28798.45 9997.60 265
n20.00 425
nn0.00 425
door-mid98.05 387
test1199.35 250
door97.92 388
HQP5-MVS96.83 307
BP-MVS97.19 284
HQP4-MVS98.66 29199.64 25098.64 311
HQP3-MVS99.39 22697.58 267
HQP2-MVS92.47 298
MDTV_nov1_ep13_2view95.18 35899.35 24096.84 28299.58 11595.19 20497.82 22899.46 194
ACMMP++_ref97.19 294
ACMMP++97.43 285
Test By Simon98.75 55