DELS-MVS | | | 98.19 49 | 98.77 57 | 97.52 51 | 98.29 61 | 99.71 9 | 99.12 41 | 94.58 63 | 98.80 100 | 95.38 48 | 96.24 115 | 98.24 71 | 97.92 96 | 99.06 38 | 99.52 1 | 99.82 10 | 99.79 39 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepC-MVS | | 97.63 4 | 98.33 46 | 98.57 60 | 98.04 42 | 98.62 57 | 99.65 17 | 99.45 25 | 98.15 24 | 99.51 16 | 92.80 95 | 95.74 125 | 96.44 89 | 99.46 21 | 99.37 19 | 99.50 2 | 99.78 28 | 99.81 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 96.92 7 | 98.67 37 | 99.05 42 | 98.23 38 | 99.57 27 | 99.45 61 | 99.11 42 | 94.66 59 | 99.69 3 | 96.80 33 | 96.55 110 | 99.61 52 | 99.40 25 | 98.87 52 | 99.49 3 | 99.85 3 | 99.66 103 |
|
MSLP-MVS++ | | | 99.15 18 | 99.24 31 | 99.04 15 | 99.52 32 | 99.49 56 | 99.09 44 | 98.07 30 | 99.37 25 | 98.47 9 | 97.79 77 | 99.89 34 | 99.50 17 | 98.93 45 | 99.45 4 | 99.61 117 | 99.76 58 |
|
IS_MVSNet | | | 97.86 58 | 98.86 53 | 96.68 74 | 96.02 100 | 99.72 6 | 98.35 75 | 93.37 85 | 98.75 110 | 94.01 72 | 96.88 99 | 98.40 68 | 98.48 80 | 99.09 35 | 99.42 5 | 99.83 8 | 99.80 31 |
|
Vis-MVSNet (Re-imp) | | | 97.40 74 | 98.89 52 | 95.66 101 | 95.99 103 | 99.62 29 | 97.82 94 | 93.22 88 | 98.82 97 | 91.40 109 | 96.94 96 | 98.56 66 | 95.70 153 | 99.14 33 | 99.41 6 | 99.79 25 | 99.75 65 |
|
PHI-MVS | | | 99.08 22 | 99.43 18 | 98.67 29 | 99.15 46 | 99.59 41 | 99.11 42 | 97.35 40 | 99.14 55 | 97.30 27 | 99.44 11 | 99.96 12 | 99.32 30 | 98.89 50 | 99.39 7 | 99.79 25 | 99.58 116 |
|
APD-MVS |  | | 99.25 12 | 99.38 20 | 99.09 11 | 99.69 8 | 99.58 44 | 99.56 17 | 98.32 7 | 98.85 90 | 97.87 20 | 98.91 39 | 99.92 28 | 99.30 33 | 99.45 15 | 99.38 8 | 99.79 25 | 99.58 116 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepPCF-MVS | | 97.74 3 | 98.34 45 | 99.46 12 | 97.04 63 | 98.82 52 | 99.33 83 | 96.28 140 | 97.47 39 | 99.58 8 | 94.70 59 | 98.99 33 | 99.85 40 | 97.24 114 | 99.55 10 | 99.34 9 | 97.73 198 | 99.56 122 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 13 | 98.85 25 | 99.55 29 | 99.37 74 | 99.64 8 | 98.05 32 | 99.53 13 | 96.58 35 | 98.93 37 | 99.92 28 | 99.49 19 | 99.46 14 | 99.32 10 | 99.80 24 | 99.64 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS |  | | 99.38 5 | 99.60 2 | 99.12 9 | 99.76 2 | 99.62 29 | 99.39 29 | 98.23 19 | 99.52 15 | 98.03 17 | 99.45 10 | 99.98 1 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 89 | 99.76 58 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 42 | 98.32 34 | 99.53 30 | 99.34 80 | 99.06 46 | 94.61 60 | 99.65 4 | 97.49 24 | 96.75 100 | 99.86 37 | 99.44 23 | 98.78 57 | 99.30 11 | 99.81 16 | 99.67 99 |
|
QAPM | | | 98.62 40 | 99.04 45 | 98.13 39 | 99.57 27 | 99.48 57 | 99.17 38 | 94.78 56 | 99.57 9 | 96.16 38 | 96.73 101 | 99.80 43 | 99.33 29 | 98.79 56 | 99.29 13 | 99.75 39 | 99.64 110 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 5 | 99.75 1 | 98.34 4 | 99.56 10 | 98.72 7 | 99.57 6 | 99.97 7 | 99.53 16 | 99.65 2 | 99.25 14 | 99.84 5 | 99.77 53 |
|
ACMMPR | | | 99.30 9 | 99.54 6 | 99.03 16 | 99.66 16 | 99.64 22 | 99.68 4 | 98.25 14 | 99.56 10 | 97.12 30 | 99.19 19 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 14 | 99.72 58 | 99.77 53 |
|
HFP-MVS | | | 99.32 7 | 99.53 8 | 99.07 13 | 99.69 8 | 99.59 41 | 99.63 11 | 98.31 8 | 99.56 10 | 97.37 26 | 99.27 16 | 99.97 7 | 99.70 3 | 99.35 21 | 99.24 16 | 99.71 68 | 99.76 58 |
|
UA-Net | | | 97.13 80 | 99.14 35 | 94.78 109 | 97.21 79 | 99.38 71 | 97.56 103 | 92.04 98 | 98.48 123 | 88.03 124 | 98.39 62 | 99.91 31 | 94.03 184 | 99.33 23 | 99.23 17 | 99.81 16 | 99.25 153 |
|
LS3D | | | 97.79 59 | 98.25 70 | 97.26 57 | 98.40 59 | 99.63 25 | 99.53 18 | 98.63 1 | 99.25 42 | 88.13 123 | 96.93 97 | 94.14 119 | 99.19 38 | 99.14 33 | 99.23 17 | 99.69 80 | 99.42 141 |
|
X-MVS | | | 98.93 29 | 99.37 21 | 98.42 32 | 99.67 13 | 99.62 29 | 99.60 15 | 98.15 24 | 99.08 65 | 93.81 78 | 98.46 59 | 99.95 17 | 99.59 10 | 99.49 13 | 99.21 19 | 99.68 89 | 99.75 65 |
|
PGM-MVS | | | 98.86 31 | 99.35 25 | 98.29 35 | 99.77 1 | 99.63 25 | 99.67 5 | 95.63 46 | 98.66 113 | 95.27 49 | 99.11 25 | 99.82 42 | 99.67 4 | 99.33 23 | 99.19 20 | 99.73 51 | 99.74 69 |
|
SteuartSystems-ACMMP | | | 99.20 15 | 99.51 10 | 98.83 27 | 99.66 16 | 99.66 15 | 99.71 3 | 98.12 28 | 99.14 55 | 96.62 34 | 99.16 21 | 99.98 1 | 99.12 45 | 99.63 3 | 99.19 20 | 99.78 28 | 99.83 23 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + MP. | | | 99.27 10 | 99.57 4 | 98.92 23 | 98.78 54 | 99.53 50 | 99.72 2 | 98.11 29 | 99.73 2 | 97.43 25 | 99.15 22 | 99.96 12 | 99.59 10 | 99.73 1 | 99.07 22 | 99.88 1 | 99.82 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 99.25 12 | 99.50 11 | 98.96 21 | 98.79 53 | 99.55 48 | 99.33 32 | 98.29 11 | 99.75 1 | 97.96 19 | 99.15 22 | 99.95 17 | 99.61 6 | 99.17 31 | 99.06 23 | 99.81 16 | 99.84 19 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DVP-MVS | | | 99.45 2 | 99.54 6 | 99.35 1 | 99.72 7 | 99.76 1 | 99.63 11 | 98.37 2 | 99.63 6 | 99.03 3 | 98.95 36 | 99.98 1 | 99.60 7 | 99.60 6 | 99.05 24 | 99.74 44 | 99.79 39 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 99.34 6 | 99.52 9 | 99.14 8 | 99.68 12 | 99.75 4 | 99.64 8 | 98.31 8 | 99.44 20 | 98.10 14 | 99.28 15 | 99.98 1 | 99.30 33 | 99.34 22 | 99.05 24 | 99.81 16 | 99.79 39 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
canonicalmvs | | | 97.31 75 | 97.81 91 | 96.72 73 | 96.20 98 | 99.45 61 | 98.21 81 | 91.60 107 | 99.22 44 | 95.39 47 | 98.48 57 | 90.95 137 | 99.16 43 | 97.66 128 | 99.05 24 | 99.76 35 | 99.90 3 |
|
OpenMVS |  | 96.23 11 | 97.95 57 | 98.45 65 | 97.35 52 | 99.52 32 | 99.42 66 | 98.91 53 | 94.61 60 | 98.87 87 | 92.24 104 | 94.61 136 | 99.05 61 | 99.10 47 | 98.64 67 | 99.05 24 | 99.74 44 | 99.51 133 |
|
Vis-MVSNet |  | | 96.16 109 | 98.22 74 | 93.75 125 | 95.33 129 | 99.70 11 | 97.27 112 | 90.85 121 | 98.30 131 | 85.51 142 | 95.72 127 | 96.45 87 | 93.69 190 | 98.70 64 | 99.00 28 | 99.84 5 | 99.69 93 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CANet | | | 98.46 42 | 99.16 34 | 97.64 49 | 98.48 58 | 99.64 22 | 99.35 31 | 94.71 58 | 99.53 13 | 95.17 51 | 97.63 83 | 99.59 53 | 98.38 82 | 98.88 51 | 98.99 29 | 99.74 44 | 99.86 15 |
|
CDPH-MVS | | | 98.41 43 | 99.10 38 | 97.61 50 | 99.32 43 | 99.36 75 | 99.49 21 | 96.15 45 | 98.82 97 | 91.82 106 | 98.41 60 | 99.66 51 | 99.10 47 | 98.93 45 | 98.97 30 | 99.75 39 | 99.58 116 |
|
DPE-MVS |  | | 99.39 4 | 99.55 5 | 99.20 4 | 99.63 21 | 99.71 9 | 99.66 6 | 98.33 6 | 99.29 34 | 98.40 12 | 99.64 4 | 99.98 1 | 99.31 31 | 99.56 9 | 98.96 31 | 99.85 3 | 99.70 89 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + ACMM | | | 98.77 33 | 99.45 13 | 97.98 44 | 99.37 37 | 99.46 59 | 99.44 27 | 98.13 27 | 99.65 4 | 92.30 102 | 98.91 39 | 99.95 17 | 99.05 50 | 99.42 17 | 98.95 32 | 99.58 135 | 99.82 24 |
|
EPP-MVSNet | | | 97.75 62 | 98.71 58 | 96.63 78 | 95.68 115 | 99.56 47 | 97.51 104 | 93.10 92 | 99.22 44 | 94.99 55 | 97.18 92 | 97.30 81 | 98.65 71 | 98.83 53 | 98.93 33 | 99.84 5 | 99.92 1 |
|
CHOSEN 280x420 | | | 97.99 56 | 99.24 31 | 96.53 80 | 98.34 60 | 99.61 34 | 98.36 74 | 89.80 140 | 99.27 37 | 95.08 53 | 99.81 1 | 98.58 65 | 98.64 72 | 99.02 40 | 98.92 34 | 98.93 183 | 99.48 137 |
|
CSCG | | | 98.90 30 | 98.93 51 | 98.85 25 | 99.75 3 | 99.72 6 | 99.49 21 | 96.58 43 | 99.38 23 | 98.05 16 | 98.97 34 | 97.87 74 | 99.49 19 | 97.78 121 | 98.92 34 | 99.78 28 | 99.90 3 |
|
CHOSEN 1792x2688 | | | 96.41 102 | 96.99 120 | 95.74 99 | 98.01 66 | 99.72 6 | 97.70 100 | 90.78 124 | 99.13 60 | 90.03 116 | 87.35 191 | 95.36 103 | 98.33 83 | 98.59 75 | 98.91 36 | 99.59 131 | 99.87 12 |
|
MVS_111021_LR | | | 98.67 37 | 99.41 19 | 97.81 47 | 99.37 37 | 99.53 50 | 98.51 66 | 95.52 48 | 99.27 37 | 94.85 56 | 99.56 7 | 99.69 50 | 99.04 51 | 99.36 20 | 98.88 37 | 99.60 125 | 99.58 116 |
|
MVS_0304 | | | 98.14 51 | 99.03 46 | 97.10 60 | 98.05 65 | 99.63 25 | 99.27 34 | 94.33 65 | 99.63 6 | 93.06 90 | 97.32 86 | 99.05 61 | 98.09 89 | 98.82 54 | 98.87 38 | 99.81 16 | 99.89 6 |
|
CP-MVS | | | 99.27 10 | 99.44 16 | 99.08 12 | 99.62 23 | 99.58 44 | 99.53 18 | 98.16 22 | 99.21 46 | 97.79 21 | 99.15 22 | 99.96 12 | 99.59 10 | 99.54 11 | 98.86 39 | 99.78 28 | 99.74 69 |
|
MAR-MVS | | | 97.71 63 | 98.04 82 | 97.32 53 | 99.35 41 | 98.91 108 | 97.65 101 | 91.68 105 | 98.00 143 | 97.01 31 | 97.72 81 | 94.83 109 | 98.85 65 | 98.44 84 | 98.86 39 | 99.41 164 | 99.52 129 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
xxxxxxxxxxxxxcwj | | | 98.14 51 | 97.38 105 | 99.03 16 | 99.65 18 | 99.41 68 | 98.87 54 | 98.24 17 | 99.14 55 | 98.73 5 | 99.11 25 | 86.38 163 | 98.92 58 | 99.22 27 | 98.84 41 | 99.76 35 | 99.56 122 |
|
SF-MVS | | | 99.18 16 | 99.32 26 | 99.03 16 | 99.65 18 | 99.41 68 | 98.87 54 | 98.24 17 | 99.14 55 | 98.73 5 | 99.11 25 | 99.92 28 | 98.92 58 | 99.22 27 | 98.84 41 | 99.76 35 | 99.56 122 |
|
SED-MVS | | | 99.44 3 | 99.58 3 | 99.28 3 | 99.69 8 | 99.76 1 | 99.62 14 | 98.35 3 | 99.51 16 | 99.05 2 | 99.60 5 | 99.98 1 | 99.28 35 | 99.61 5 | 98.83 43 | 99.70 77 | 99.77 53 |
|
MVS_111021_HR | | | 98.59 41 | 99.36 22 | 97.68 48 | 99.42 35 | 99.61 34 | 98.14 84 | 94.81 55 | 99.31 31 | 95.00 54 | 99.51 8 | 99.79 45 | 99.00 54 | 98.94 44 | 98.83 43 | 99.69 80 | 99.57 121 |
|
CNLPA | | | 99.03 27 | 99.05 42 | 99.01 20 | 99.27 44 | 99.22 93 | 99.03 48 | 97.98 33 | 99.34 29 | 99.00 4 | 98.25 66 | 99.71 49 | 99.31 31 | 98.80 55 | 98.82 45 | 99.48 154 | 99.17 157 |
|
FMVSNet2 | | | 96.64 98 | 97.50 97 | 95.63 102 | 93.81 149 | 97.98 158 | 98.09 86 | 90.87 120 | 98.99 77 | 93.48 84 | 93.17 152 | 95.25 104 | 97.89 97 | 98.63 68 | 98.80 46 | 99.68 89 | 99.67 99 |
|
MP-MVS |  | | 99.07 23 | 99.36 22 | 98.74 28 | 99.63 21 | 99.57 46 | 99.66 6 | 98.25 14 | 99.00 76 | 95.62 43 | 98.97 34 | 99.94 25 | 99.54 15 | 99.51 12 | 98.79 47 | 99.71 68 | 99.73 73 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CS-MVS | | | 98.06 53 | 99.12 36 | 96.82 72 | 95.83 108 | 99.66 15 | 98.93 52 | 93.12 91 | 98.95 79 | 94.29 69 | 98.55 54 | 99.05 61 | 98.94 56 | 99.05 39 | 98.78 48 | 99.83 8 | 99.80 31 |
|
ETV-MVS | | | 98.05 54 | 99.25 30 | 96.65 76 | 95.61 117 | 99.61 34 | 98.26 80 | 93.52 81 | 98.90 86 | 93.74 81 | 99.32 14 | 99.20 58 | 98.90 61 | 99.21 29 | 98.72 49 | 99.87 2 | 99.79 39 |
|
TSAR-MVS + GP. | | | 98.66 39 | 99.36 22 | 97.85 46 | 97.16 81 | 99.46 59 | 99.03 48 | 94.59 62 | 99.09 63 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 26 | 98.95 43 | 98.69 50 | 99.75 39 | 99.65 106 |
|
ACMMP_NAP | | | 99.05 25 | 99.45 13 | 98.58 31 | 99.73 5 | 99.60 39 | 99.64 8 | 98.28 12 | 99.23 43 | 94.57 60 | 99.35 13 | 99.97 7 | 99.55 14 | 99.63 3 | 98.66 51 | 99.70 77 | 99.74 69 |
|
OMC-MVS | | | 98.84 32 | 99.01 48 | 98.65 30 | 99.39 36 | 99.23 92 | 99.22 35 | 96.70 42 | 99.40 22 | 97.77 22 | 97.89 76 | 99.80 43 | 99.21 36 | 99.02 40 | 98.65 52 | 99.57 139 | 99.07 164 |
|
FMVSNet3 | | | 97.02 83 | 98.12 79 | 95.73 100 | 93.59 155 | 97.98 158 | 98.34 76 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.63 106 | 98.61 70 | 98.62 53 | 99.61 117 | 99.65 106 |
|
CNVR-MVS | | | 99.23 14 | 99.28 28 | 99.17 5 | 99.65 18 | 99.34 80 | 99.46 24 | 98.21 20 | 99.28 35 | 98.47 9 | 98.89 41 | 99.94 25 | 99.50 17 | 99.42 17 | 98.61 54 | 99.73 51 | 99.52 129 |
|
baseline | | | 97.45 72 | 98.70 59 | 95.99 94 | 95.89 105 | 99.36 75 | 98.29 77 | 91.37 113 | 99.21 46 | 92.99 93 | 98.40 61 | 96.87 86 | 97.96 94 | 98.60 73 | 98.60 55 | 99.42 163 | 99.86 15 |
|
zzz-MVS | | | 99.31 8 | 99.44 16 | 99.16 6 | 99.73 5 | 99.65 17 | 99.63 11 | 98.26 13 | 99.27 37 | 98.01 18 | 99.27 16 | 99.97 7 | 99.60 7 | 99.59 7 | 98.58 56 | 99.71 68 | 99.73 73 |
|
MVS_Test | | | 97.30 76 | 98.54 61 | 95.87 95 | 95.74 111 | 99.28 87 | 98.19 82 | 91.40 112 | 99.18 50 | 91.59 108 | 98.17 68 | 96.18 94 | 98.63 73 | 98.61 70 | 98.55 57 | 99.66 102 | 99.78 45 |
|
EPNet | | | 98.05 54 | 98.86 53 | 97.10 60 | 99.02 49 | 99.43 65 | 98.47 67 | 94.73 57 | 99.05 71 | 95.62 43 | 98.93 37 | 97.62 78 | 95.48 161 | 98.59 75 | 98.55 57 | 99.29 173 | 99.84 19 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CVMVSNet | | | 95.33 127 | 97.09 116 | 93.27 140 | 95.23 130 | 98.39 146 | 95.49 153 | 92.58 95 | 97.71 158 | 83.00 157 | 94.44 139 | 93.28 127 | 93.92 187 | 97.79 120 | 98.54 59 | 99.41 164 | 99.45 139 |
|
casdiffmvs | | | 96.93 86 | 97.43 103 | 96.34 85 | 95.70 113 | 99.50 55 | 97.75 98 | 93.22 88 | 98.98 78 | 92.64 96 | 94.97 132 | 91.71 135 | 98.93 57 | 98.62 69 | 98.52 60 | 99.82 10 | 99.72 84 |
|
PVSNet_Blended_VisFu | | | 97.41 73 | 98.49 64 | 96.15 88 | 97.49 71 | 99.76 1 | 96.02 144 | 93.75 77 | 99.26 40 | 93.38 86 | 93.73 144 | 99.35 56 | 96.47 136 | 98.96 42 | 98.46 61 | 99.77 33 | 99.90 3 |
|
DCV-MVSNet | | | 97.56 68 | 98.36 67 | 96.62 79 | 96.44 89 | 98.36 148 | 98.37 72 | 91.73 104 | 99.11 61 | 94.80 57 | 98.36 63 | 96.28 92 | 98.60 75 | 98.12 96 | 98.44 62 | 99.76 35 | 99.87 12 |
|
baseline1 | | | 97.58 67 | 98.05 81 | 97.02 66 | 96.21 97 | 99.45 61 | 97.71 99 | 93.71 79 | 98.47 124 | 95.75 42 | 98.78 45 | 93.20 129 | 98.91 60 | 98.52 79 | 98.44 62 | 99.81 16 | 99.53 126 |
|
NCCC | | | 99.05 25 | 99.08 39 | 99.02 19 | 99.62 23 | 99.38 71 | 99.43 28 | 98.21 20 | 99.36 27 | 97.66 23 | 97.79 77 | 99.90 32 | 99.45 22 | 99.17 31 | 98.43 64 | 99.77 33 | 99.51 133 |
|
PVSNet_BlendedMVS | | | 97.51 70 | 97.71 92 | 97.28 55 | 98.06 63 | 99.61 34 | 97.31 110 | 95.02 52 | 99.08 65 | 95.51 45 | 98.05 70 | 90.11 140 | 98.07 90 | 98.91 48 | 98.40 65 | 99.72 58 | 99.78 45 |
|
PVSNet_Blended | | | 97.51 70 | 97.71 92 | 97.28 55 | 98.06 63 | 99.61 34 | 97.31 110 | 95.02 52 | 99.08 65 | 95.51 45 | 98.05 70 | 90.11 140 | 98.07 90 | 98.91 48 | 98.40 65 | 99.72 58 | 99.78 45 |
|
train_agg | | | 98.73 35 | 99.11 37 | 98.28 36 | 99.36 39 | 99.35 78 | 99.48 23 | 97.96 34 | 98.83 95 | 93.86 77 | 98.70 51 | 99.86 37 | 99.44 23 | 99.08 37 | 98.38 67 | 99.61 117 | 99.58 116 |
|
CDS-MVSNet | | | 96.59 101 | 98.02 84 | 94.92 108 | 94.45 142 | 98.96 106 | 97.46 106 | 91.75 103 | 97.86 152 | 90.07 115 | 96.02 118 | 97.25 82 | 96.21 140 | 98.04 107 | 98.38 67 | 99.60 125 | 99.65 106 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HPM-MVS++ |  | | 99.10 21 | 99.30 27 | 98.86 24 | 99.69 8 | 99.48 57 | 99.59 16 | 98.34 4 | 99.26 40 | 96.55 37 | 99.10 28 | 99.96 12 | 99.36 27 | 99.25 26 | 98.37 69 | 99.64 110 | 99.66 103 |
|
MCST-MVS | | | 99.11 20 | 99.27 29 | 98.93 22 | 99.67 13 | 99.33 83 | 99.51 20 | 98.31 8 | 99.28 35 | 96.57 36 | 99.10 28 | 99.90 32 | 99.71 2 | 99.19 30 | 98.35 70 | 99.82 10 | 99.71 87 |
|
MSDG | | | 98.27 48 | 98.29 69 | 98.24 37 | 99.20 45 | 99.22 93 | 99.20 36 | 97.82 36 | 99.37 25 | 94.43 65 | 95.90 121 | 97.31 80 | 99.12 45 | 98.76 59 | 98.35 70 | 99.67 97 | 99.14 161 |
|
test0.0.03 1 | | | 96.69 95 | 98.12 79 | 95.01 107 | 95.49 124 | 98.99 103 | 95.86 146 | 90.82 122 | 98.38 127 | 92.54 100 | 96.66 104 | 97.33 79 | 95.75 151 | 97.75 124 | 98.34 72 | 99.60 125 | 99.40 145 |
|
GBi-Net | | | 96.98 84 | 98.00 85 | 95.78 96 | 93.81 149 | 97.98 158 | 98.09 86 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.89 97 | 98.07 102 | 98.34 72 | 99.68 89 | 99.67 99 |
|
test1 | | | 96.98 84 | 98.00 85 | 95.78 96 | 93.81 149 | 97.98 158 | 98.09 86 | 91.32 114 | 98.80 100 | 93.92 74 | 97.21 89 | 95.94 99 | 97.89 97 | 98.07 102 | 98.34 72 | 99.68 89 | 99.67 99 |
|
FMVSNet1 | | | 95.77 116 | 96.41 140 | 95.03 106 | 93.42 156 | 97.86 165 | 97.11 121 | 89.89 137 | 98.53 120 | 92.00 105 | 89.17 175 | 93.23 128 | 98.15 87 | 98.07 102 | 98.34 72 | 99.61 117 | 99.69 93 |
|
EIA-MVS | | | 97.70 64 | 98.78 56 | 96.44 84 | 95.72 112 | 99.65 17 | 98.14 84 | 93.72 78 | 98.30 131 | 92.31 101 | 98.63 52 | 97.90 73 | 98.97 55 | 98.92 47 | 98.30 76 | 99.78 28 | 99.80 31 |
|
UGNet | | | 97.66 65 | 99.07 41 | 96.01 93 | 97.19 80 | 99.65 17 | 97.09 122 | 93.39 83 | 99.35 28 | 94.40 67 | 98.79 44 | 99.59 53 | 94.24 181 | 98.04 107 | 98.29 77 | 99.73 51 | 99.80 31 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
IterMVS-LS | | | 96.12 110 | 97.48 99 | 94.53 112 | 95.19 131 | 97.56 183 | 97.15 118 | 89.19 147 | 99.08 65 | 88.23 122 | 94.97 132 | 94.73 111 | 97.84 102 | 97.86 118 | 98.26 78 | 99.60 125 | 99.88 10 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Anonymous202405211 | | | | 97.40 104 | | 96.45 88 | 99.54 49 | 98.08 89 | 93.79 74 | 98.24 135 | | 93.55 145 | 94.41 115 | 98.88 64 | 98.04 107 | 98.24 79 | 99.75 39 | 99.76 58 |
|
EPNet_dtu | | | 96.30 105 | 98.53 62 | 93.70 128 | 98.97 50 | 98.24 152 | 97.36 108 | 94.23 67 | 98.85 90 | 79.18 179 | 99.19 19 | 98.47 67 | 94.09 183 | 97.89 116 | 98.21 80 | 98.39 189 | 98.85 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CPTT-MVS | | | 99.14 19 | 99.20 33 | 99.06 14 | 99.58 26 | 99.53 50 | 99.45 25 | 97.80 37 | 99.19 49 | 98.32 13 | 98.58 53 | 99.95 17 | 99.60 7 | 99.28 25 | 98.20 81 | 99.64 110 | 99.69 93 |
|
HyFIR lowres test | | | 95.99 112 | 96.56 128 | 95.32 104 | 97.99 67 | 99.65 17 | 96.54 133 | 88.86 149 | 98.44 125 | 89.77 119 | 84.14 201 | 97.05 84 | 99.03 52 | 98.55 77 | 98.19 82 | 99.73 51 | 99.86 15 |
|
diffmvs | | | 96.83 88 | 97.33 108 | 96.25 86 | 95.76 110 | 99.34 80 | 98.06 90 | 93.22 88 | 99.43 21 | 92.30 102 | 96.90 98 | 89.83 145 | 98.55 77 | 98.00 110 | 98.14 83 | 99.64 110 | 99.70 89 |
|
TAPA-MVS | | 97.53 5 | 98.41 43 | 98.84 55 | 97.91 45 | 99.08 48 | 99.33 83 | 99.15 39 | 97.13 41 | 99.34 29 | 93.20 87 | 97.75 79 | 99.19 59 | 99.20 37 | 98.66 65 | 98.13 84 | 99.66 102 | 99.48 137 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 97.93 2 | 99.02 28 | 98.94 50 | 99.11 10 | 99.46 34 | 99.24 91 | 99.06 46 | 97.96 34 | 99.31 31 | 99.16 1 | 97.90 75 | 99.79 45 | 99.36 27 | 98.71 63 | 98.12 85 | 99.65 106 | 99.52 129 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DPM-MVS | | | 98.31 47 | 98.53 62 | 98.05 41 | 98.76 55 | 98.77 115 | 99.13 40 | 98.07 30 | 99.10 62 | 94.27 71 | 96.70 102 | 99.84 41 | 98.70 68 | 97.90 115 | 98.11 86 | 99.40 166 | 99.28 150 |
|
Anonymous20231211 | | | 97.10 81 | 97.06 118 | 97.14 59 | 96.32 91 | 99.52 53 | 98.16 83 | 93.76 75 | 98.84 94 | 95.98 40 | 90.92 163 | 94.58 114 | 98.90 61 | 97.72 126 | 98.10 87 | 99.71 68 | 99.75 65 |
|
gg-mvs-nofinetune | | | 90.85 191 | 94.14 170 | 87.02 197 | 94.89 137 | 99.25 89 | 98.64 62 | 76.29 211 | 88.24 212 | 57.50 216 | 79.93 207 | 95.45 102 | 95.18 170 | 98.77 58 | 98.07 88 | 99.62 115 | 99.24 154 |
|
CANet_DTU | | | 96.64 98 | 99.08 39 | 93.81 124 | 97.10 82 | 99.42 66 | 98.85 56 | 90.01 134 | 99.31 31 | 79.98 175 | 99.78 2 | 99.10 60 | 97.42 111 | 98.35 86 | 98.05 89 | 99.47 156 | 99.53 126 |
|
Fast-Effi-MVS+ | | | 95.38 125 | 96.52 131 | 94.05 121 | 94.15 144 | 99.14 98 | 97.24 114 | 86.79 169 | 98.53 120 | 87.62 129 | 94.51 137 | 87.06 152 | 98.76 66 | 98.60 73 | 98.04 90 | 99.72 58 | 99.77 53 |
|
GG-mvs-BLEND | | | 69.11 208 | 98.13 78 | 35.26 213 | 3.49 222 | 98.20 154 | 94.89 164 | 2.38 219 | 98.42 126 | 5.82 223 | 96.37 113 | 98.60 64 | 5.97 218 | 98.75 61 | 97.98 91 | 99.01 182 | 98.61 175 |
|
Effi-MVS+ | | | 95.81 115 | 97.31 112 | 94.06 120 | 95.09 132 | 99.35 78 | 97.24 114 | 88.22 158 | 98.54 119 | 85.38 143 | 98.52 55 | 88.68 147 | 98.70 68 | 98.32 87 | 97.93 92 | 99.74 44 | 99.84 19 |
|
GeoE | | | 95.98 114 | 97.24 114 | 94.51 113 | 95.02 134 | 99.38 71 | 98.02 91 | 87.86 163 | 98.37 128 | 87.86 127 | 92.99 157 | 93.54 124 | 98.56 76 | 98.61 70 | 97.92 93 | 99.73 51 | 99.85 18 |
|
MIMVSNet | | | 94.49 145 | 97.59 96 | 90.87 179 | 91.74 180 | 98.70 124 | 94.68 173 | 78.73 205 | 97.98 144 | 83.71 151 | 97.71 82 | 94.81 110 | 96.96 120 | 97.97 111 | 97.92 93 | 99.40 166 | 98.04 187 |
|
DI_MVS_plusplus_trai | | | 96.90 87 | 97.49 98 | 96.21 87 | 95.61 117 | 99.40 70 | 98.72 61 | 92.11 96 | 99.14 55 | 92.98 94 | 93.08 155 | 95.14 105 | 98.13 88 | 98.05 106 | 97.91 95 | 99.74 44 | 99.73 73 |
|
testgi | | | 95.67 118 | 97.48 99 | 93.56 131 | 95.07 133 | 99.00 101 | 95.33 157 | 88.47 155 | 98.80 100 | 86.90 133 | 97.30 87 | 92.33 131 | 95.97 148 | 97.66 128 | 97.91 95 | 99.60 125 | 99.38 146 |
|
thres100view900 | | | 96.72 93 | 96.47 135 | 97.00 69 | 96.31 92 | 99.52 53 | 98.28 78 | 94.01 69 | 97.35 164 | 94.52 61 | 95.90 121 | 86.93 155 | 99.09 49 | 98.07 102 | 97.87 97 | 99.81 16 | 99.63 112 |
|
COLMAP_ROB |  | 96.15 12 | 97.78 60 | 98.17 76 | 97.32 53 | 98.84 51 | 99.45 61 | 99.28 33 | 95.43 49 | 99.48 18 | 91.80 107 | 94.83 135 | 98.36 69 | 98.90 61 | 98.09 99 | 97.85 98 | 99.68 89 | 99.15 158 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AdaColmap |  | | 99.06 24 | 98.98 49 | 99.15 7 | 99.60 25 | 99.30 86 | 99.38 30 | 98.16 22 | 99.02 74 | 98.55 8 | 98.71 50 | 99.57 55 | 99.58 13 | 99.09 35 | 97.84 99 | 99.64 110 | 99.36 147 |
|
thres200 | | | 96.76 90 | 96.53 130 | 97.03 64 | 96.31 92 | 99.67 12 | 98.37 72 | 93.99 71 | 97.68 159 | 94.49 63 | 95.83 124 | 86.77 157 | 99.18 40 | 98.26 89 | 97.82 100 | 99.82 10 | 99.66 103 |
|
tfpn200view9 | | | 96.75 91 | 96.51 132 | 97.03 64 | 96.31 92 | 99.67 12 | 98.41 69 | 93.99 71 | 97.35 164 | 94.52 61 | 95.90 121 | 86.93 155 | 99.14 44 | 98.26 89 | 97.80 101 | 99.82 10 | 99.70 89 |
|
thres400 | | | 96.71 94 | 96.45 137 | 97.02 66 | 96.28 95 | 99.63 25 | 98.41 69 | 94.00 70 | 97.82 154 | 94.42 66 | 95.74 125 | 86.26 164 | 99.18 40 | 98.20 93 | 97.79 102 | 99.81 16 | 99.70 89 |
|
FC-MVSNet-train | | | 97.04 82 | 97.91 88 | 96.03 92 | 96.00 102 | 98.41 144 | 96.53 135 | 93.42 82 | 99.04 73 | 93.02 92 | 98.03 72 | 94.32 117 | 97.47 110 | 97.93 113 | 97.77 103 | 99.75 39 | 99.88 10 |
|
baseline2 | | | 96.36 104 | 97.82 90 | 94.65 111 | 94.60 141 | 99.09 99 | 96.45 137 | 89.63 142 | 98.36 129 | 91.29 111 | 97.60 84 | 94.13 120 | 96.37 137 | 98.45 82 | 97.70 104 | 99.54 148 | 99.41 142 |
|
IterMVS-SCA-FT | | | 94.89 134 | 97.87 89 | 91.42 167 | 94.86 138 | 97.70 169 | 97.24 114 | 84.88 183 | 98.93 83 | 75.74 191 | 94.26 140 | 98.25 70 | 96.69 127 | 98.52 79 | 97.68 105 | 99.10 181 | 99.73 73 |
|
thres600view7 | | | 96.69 95 | 96.43 139 | 97.00 69 | 96.28 95 | 99.67 12 | 98.41 69 | 93.99 71 | 97.85 153 | 94.29 69 | 95.96 119 | 85.91 167 | 99.19 38 | 98.26 89 | 97.63 106 | 99.82 10 | 99.73 73 |
|
PMMVS | | | 97.52 69 | 98.39 66 | 96.51 82 | 95.82 109 | 98.73 122 | 97.80 95 | 93.05 93 | 98.76 107 | 94.39 68 | 99.07 31 | 97.03 85 | 98.55 77 | 98.31 88 | 97.61 107 | 99.43 161 | 99.21 156 |
|
IterMVS | | | 94.81 136 | 97.71 92 | 91.42 167 | 94.83 139 | 97.63 176 | 97.38 107 | 85.08 180 | 98.93 83 | 75.67 192 | 94.02 141 | 97.64 76 | 96.66 130 | 98.45 82 | 97.60 108 | 98.90 184 | 99.72 84 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 95.74 117 | 98.04 82 | 93.06 142 | 93.92 145 | 99.16 96 | 97.90 92 | 88.16 160 | 99.07 70 | 82.02 163 | 98.02 73 | 94.32 117 | 96.74 126 | 98.53 78 | 97.56 109 | 99.61 117 | 99.62 113 |
|
gm-plane-assit | | | 89.44 198 | 92.82 195 | 85.49 201 | 91.37 193 | 95.34 207 | 79.55 215 | 82.12 190 | 91.68 211 | 64.79 213 | 87.98 187 | 80.26 199 | 95.66 154 | 98.51 81 | 97.56 109 | 99.45 158 | 98.41 180 |
|
LGP-MVS_train | | | 96.23 106 | 96.89 122 | 95.46 103 | 97.32 75 | 98.77 115 | 98.81 58 | 93.60 80 | 98.58 116 | 85.52 141 | 99.08 30 | 86.67 159 | 97.83 103 | 97.87 117 | 97.51 111 | 99.69 80 | 99.73 73 |
|
ACMMP |  | | 98.74 34 | 99.03 46 | 98.40 33 | 99.36 39 | 99.64 22 | 99.20 36 | 97.75 38 | 98.82 97 | 95.24 50 | 98.85 42 | 99.87 36 | 99.17 42 | 98.74 62 | 97.50 112 | 99.71 68 | 99.76 58 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CR-MVSNet | | | 94.57 144 | 97.34 107 | 91.33 170 | 94.90 136 | 98.59 131 | 97.15 118 | 79.14 201 | 97.98 144 | 80.42 171 | 96.59 109 | 93.50 126 | 96.85 123 | 98.10 97 | 97.49 113 | 99.50 153 | 99.15 158 |
|
PatchT | | | 93.96 153 | 97.36 106 | 90.00 186 | 94.76 140 | 98.65 126 | 90.11 201 | 78.57 206 | 97.96 147 | 80.42 171 | 96.07 117 | 94.10 121 | 96.85 123 | 98.10 97 | 97.49 113 | 99.26 175 | 99.15 158 |
|
FC-MVSNet-test | | | 96.07 111 | 97.94 87 | 93.89 122 | 93.60 154 | 98.67 125 | 96.62 132 | 90.30 133 | 98.76 107 | 88.62 120 | 95.57 130 | 97.63 77 | 94.48 177 | 97.97 111 | 97.48 115 | 99.71 68 | 99.52 129 |
|
UniMVSNet_ETH3D | | | 93.15 164 | 92.33 197 | 94.11 119 | 93.91 146 | 98.61 130 | 94.81 168 | 90.98 119 | 97.06 173 | 87.51 130 | 82.27 205 | 76.33 211 | 97.87 101 | 94.79 194 | 97.47 116 | 99.56 142 | 99.81 29 |
|
PCF-MVS | | 97.50 6 | 98.18 50 | 98.35 68 | 97.99 43 | 98.65 56 | 99.36 75 | 98.94 51 | 98.14 26 | 98.59 115 | 93.62 82 | 96.61 106 | 99.76 48 | 99.03 52 | 97.77 122 | 97.45 117 | 99.57 139 | 98.89 172 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PatchMatch-RL | | | 97.77 61 | 98.25 70 | 97.21 58 | 99.11 47 | 99.25 89 | 97.06 124 | 94.09 68 | 98.72 111 | 95.14 52 | 98.47 58 | 96.29 91 | 98.43 81 | 98.65 66 | 97.44 118 | 99.45 158 | 98.94 167 |
|
TAMVS | | | 95.53 121 | 96.50 134 | 94.39 116 | 93.86 148 | 99.03 100 | 96.67 130 | 89.55 144 | 97.33 166 | 90.64 113 | 93.02 156 | 91.58 136 | 96.21 140 | 97.72 126 | 97.43 119 | 99.43 161 | 99.36 147 |
|
LTVRE_ROB | | 93.20 16 | 92.84 169 | 94.92 156 | 90.43 183 | 92.83 158 | 98.63 127 | 97.08 123 | 87.87 162 | 97.91 149 | 68.42 209 | 93.54 146 | 79.46 205 | 96.62 131 | 97.55 134 | 97.40 120 | 99.74 44 | 99.92 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_part1 | | | 95.56 120 | 95.38 152 | 95.78 96 | 96.07 99 | 98.16 155 | 97.57 102 | 90.78 124 | 97.43 163 | 93.04 91 | 89.12 178 | 89.41 146 | 97.93 95 | 96.38 165 | 97.38 121 | 99.29 173 | 99.78 45 |
|
MVSTER | | | 97.16 79 | 97.71 92 | 96.52 81 | 95.97 104 | 98.48 137 | 98.63 63 | 92.10 97 | 98.68 112 | 95.96 41 | 99.23 18 | 91.79 134 | 96.87 122 | 98.76 59 | 97.37 122 | 99.57 139 | 99.68 98 |
|
Baseline_NR-MVSNet | | | 93.87 155 | 93.98 177 | 93.75 125 | 91.66 182 | 97.02 196 | 95.53 152 | 91.52 111 | 97.16 172 | 87.77 128 | 87.93 189 | 83.69 179 | 96.35 138 | 95.10 190 | 97.23 123 | 99.68 89 | 99.73 73 |
|
FMVSNet5 | | | 95.42 123 | 96.47 135 | 94.20 117 | 92.26 168 | 95.99 204 | 95.66 149 | 87.15 167 | 97.87 151 | 93.46 85 | 96.68 103 | 93.79 123 | 97.52 107 | 97.10 151 | 97.21 124 | 99.11 180 | 96.62 204 |
|
pm-mvs1 | | | 94.27 146 | 95.57 150 | 92.75 145 | 92.58 161 | 98.13 156 | 94.87 166 | 90.71 127 | 96.70 183 | 83.78 148 | 89.94 171 | 89.85 144 | 94.96 174 | 97.58 133 | 97.07 125 | 99.61 117 | 99.72 84 |
|
Fast-Effi-MVS+-dtu | | | 95.38 125 | 98.20 75 | 92.09 153 | 93.91 146 | 98.87 109 | 97.35 109 | 85.01 182 | 99.08 65 | 81.09 167 | 98.10 69 | 96.36 90 | 95.62 156 | 98.43 85 | 97.03 126 | 99.55 144 | 99.50 135 |
|
TransMVSNet (Re) | | | 93.45 160 | 94.08 173 | 92.72 146 | 92.83 158 | 97.62 179 | 94.94 162 | 91.54 110 | 95.65 200 | 83.06 156 | 88.93 179 | 83.53 181 | 94.25 180 | 97.41 138 | 97.03 126 | 99.67 97 | 98.40 183 |
|
DU-MVS | | | 93.98 152 | 94.44 167 | 93.44 135 | 91.66 182 | 97.77 166 | 95.03 159 | 91.57 108 | 97.17 170 | 86.12 135 | 93.13 153 | 81.13 195 | 96.60 132 | 95.10 190 | 97.01 128 | 99.67 97 | 99.80 31 |
|
TSAR-MVS + COLMAP | | | 96.79 89 | 96.55 129 | 97.06 62 | 97.70 70 | 98.46 139 | 99.07 45 | 96.23 44 | 99.38 23 | 91.32 110 | 98.80 43 | 85.61 169 | 98.69 70 | 97.64 131 | 96.92 129 | 99.37 168 | 99.06 165 |
|
CLD-MVS | | | 96.74 92 | 96.51 132 | 97.01 68 | 96.71 86 | 98.62 128 | 98.73 60 | 94.38 64 | 98.94 82 | 94.46 64 | 97.33 85 | 87.03 153 | 98.07 90 | 97.20 147 | 96.87 130 | 99.72 58 | 99.54 125 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TranMVSNet+NR-MVSNet | | | 93.67 158 | 94.14 170 | 93.13 141 | 91.28 196 | 97.58 181 | 95.60 151 | 91.97 100 | 97.06 173 | 84.05 144 | 90.64 168 | 82.22 190 | 96.17 143 | 94.94 193 | 96.78 131 | 99.69 80 | 99.78 45 |
|
RPMNet | | | 94.66 138 | 97.16 115 | 91.75 163 | 94.98 135 | 98.59 131 | 97.00 125 | 78.37 207 | 97.98 144 | 83.78 148 | 96.27 114 | 94.09 122 | 96.91 121 | 97.36 140 | 96.73 132 | 99.48 154 | 99.09 163 |
|
UniMVSNet_NR-MVSNet | | | 94.59 142 | 95.47 151 | 93.55 132 | 91.85 177 | 97.89 164 | 95.03 159 | 92.00 99 | 97.33 166 | 86.12 135 | 93.19 151 | 87.29 151 | 96.60 132 | 96.12 174 | 96.70 133 | 99.72 58 | 99.80 31 |
|
ET-MVSNet_ETH3D | | | 96.17 108 | 96.99 120 | 95.21 105 | 88.53 205 | 98.54 134 | 98.28 78 | 92.61 94 | 98.85 90 | 93.60 83 | 99.06 32 | 90.39 139 | 98.63 73 | 95.98 179 | 96.68 134 | 99.61 117 | 99.41 142 |
|
ACMH | | 95.42 14 | 95.27 128 | 95.96 144 | 94.45 115 | 96.83 85 | 98.78 114 | 94.72 171 | 91.67 106 | 98.95 79 | 86.82 134 | 96.42 112 | 83.67 180 | 97.00 118 | 97.48 137 | 96.68 134 | 99.69 80 | 99.76 58 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OPM-MVS | | | 96.22 107 | 95.85 148 | 96.65 76 | 97.75 68 | 98.54 134 | 99.00 50 | 95.53 47 | 96.88 177 | 89.88 117 | 95.95 120 | 86.46 162 | 98.07 90 | 97.65 130 | 96.63 136 | 99.67 97 | 98.83 174 |
|
ACMP | | 96.25 10 | 96.62 100 | 96.72 125 | 96.50 83 | 96.96 84 | 98.75 119 | 97.80 95 | 94.30 66 | 98.85 90 | 93.12 89 | 98.78 45 | 86.61 160 | 97.23 115 | 97.73 125 | 96.61 137 | 99.62 115 | 99.71 87 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH+ | | 95.51 13 | 95.40 124 | 96.00 142 | 94.70 110 | 96.33 90 | 98.79 112 | 96.79 128 | 91.32 114 | 98.77 106 | 87.18 131 | 95.60 129 | 85.46 170 | 96.97 119 | 97.15 148 | 96.59 138 | 99.59 131 | 99.65 106 |
|
CP-MVSNet | | | 93.25 163 | 94.00 176 | 92.38 148 | 91.65 184 | 97.56 183 | 94.38 180 | 89.20 146 | 96.05 194 | 83.16 155 | 89.51 173 | 81.97 191 | 96.16 144 | 96.43 163 | 96.56 139 | 99.71 68 | 99.89 6 |
|
HQP-MVS | | | 96.37 103 | 96.58 127 | 96.13 89 | 97.31 77 | 98.44 141 | 98.45 68 | 95.22 50 | 98.86 88 | 88.58 121 | 98.33 64 | 87.00 154 | 97.67 105 | 97.23 145 | 96.56 139 | 99.56 142 | 99.62 113 |
|
PS-CasMVS | | | 92.72 174 | 93.36 188 | 91.98 157 | 91.62 186 | 97.52 185 | 94.13 184 | 88.98 148 | 95.94 197 | 81.51 166 | 87.35 191 | 79.95 202 | 95.91 149 | 96.37 166 | 96.49 141 | 99.70 77 | 99.89 6 |
|
Anonymous20231206 | | | 90.70 193 | 93.93 178 | 86.92 198 | 90.21 203 | 96.79 199 | 90.30 200 | 86.61 173 | 96.05 194 | 69.25 207 | 88.46 183 | 84.86 176 | 85.86 205 | 97.11 150 | 96.47 142 | 99.30 172 | 97.80 191 |
|
MVS-HIRNet | | | 92.51 177 | 95.97 143 | 88.48 194 | 93.73 152 | 98.37 147 | 90.33 199 | 75.36 213 | 98.32 130 | 77.78 185 | 89.15 176 | 94.87 108 | 95.14 171 | 97.62 132 | 96.39 143 | 98.51 186 | 97.11 197 |
|
DTE-MVSNet | | | 92.42 182 | 92.85 193 | 91.91 160 | 90.87 199 | 96.97 197 | 94.53 179 | 89.81 138 | 95.86 199 | 81.59 165 | 88.83 180 | 77.88 209 | 95.01 173 | 94.34 197 | 96.35 144 | 99.64 110 | 99.73 73 |
|
ACMM | | 96.26 9 | 96.67 97 | 96.69 126 | 96.66 75 | 97.29 78 | 98.46 139 | 96.48 136 | 95.09 51 | 99.21 46 | 93.19 88 | 98.78 45 | 86.73 158 | 98.17 84 | 97.84 119 | 96.32 145 | 99.74 44 | 99.49 136 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EU-MVSNet | | | 92.80 171 | 94.76 161 | 90.51 181 | 91.88 175 | 96.74 201 | 92.48 191 | 88.69 152 | 96.21 189 | 79.00 180 | 91.51 159 | 87.82 149 | 91.83 199 | 95.87 181 | 96.27 146 | 99.21 176 | 98.92 171 |
|
PEN-MVS | | | 92.72 174 | 93.20 190 | 92.15 152 | 91.29 194 | 97.31 193 | 94.67 174 | 89.81 138 | 96.19 190 | 81.83 164 | 88.58 182 | 79.06 206 | 95.61 157 | 95.21 187 | 96.27 146 | 99.72 58 | 99.82 24 |
|
TinyColmap | | | 94.00 151 | 94.35 168 | 93.60 129 | 95.89 105 | 98.26 150 | 97.49 105 | 88.82 150 | 98.56 118 | 83.21 154 | 91.28 162 | 80.48 198 | 96.68 128 | 97.34 141 | 96.26 148 | 99.53 150 | 98.24 184 |
|
test-mter | | | 94.86 135 | 97.32 109 | 92.00 156 | 92.41 165 | 98.82 111 | 96.18 143 | 86.35 175 | 98.05 141 | 82.28 161 | 96.48 111 | 94.39 116 | 95.46 163 | 98.17 95 | 96.20 149 | 99.32 171 | 99.13 162 |
|
NR-MVSNet | | | 94.01 150 | 94.51 165 | 93.44 135 | 92.56 162 | 97.77 166 | 95.67 148 | 91.57 108 | 97.17 170 | 85.84 138 | 93.13 153 | 80.53 197 | 95.29 167 | 97.01 152 | 96.17 150 | 99.69 80 | 99.75 65 |
|
tfpnnormal | | | 93.85 157 | 94.12 172 | 93.54 133 | 93.22 157 | 98.24 152 | 95.45 154 | 91.96 101 | 94.61 203 | 83.91 146 | 90.74 165 | 81.75 193 | 97.04 117 | 97.49 136 | 96.16 151 | 99.68 89 | 99.84 19 |
|
USDC | | | 94.26 147 | 94.83 159 | 93.59 130 | 96.02 100 | 98.44 141 | 97.84 93 | 88.65 153 | 98.86 88 | 82.73 160 | 94.02 141 | 80.56 196 | 96.76 125 | 97.28 144 | 96.15 152 | 99.55 144 | 98.50 178 |
|
thisisatest0530 | | | 97.23 77 | 98.25 70 | 96.05 90 | 95.60 119 | 99.59 41 | 96.96 126 | 93.23 86 | 99.17 51 | 92.60 98 | 98.75 48 | 96.19 93 | 98.17 84 | 98.19 94 | 96.10 153 | 99.72 58 | 99.77 53 |
|
tttt0517 | | | 97.23 77 | 98.24 73 | 96.04 91 | 95.60 119 | 99.60 39 | 96.94 127 | 93.23 86 | 99.15 52 | 92.56 99 | 98.74 49 | 96.12 96 | 98.17 84 | 98.21 92 | 96.10 153 | 99.73 51 | 99.78 45 |
|
test-LLR | | | 95.50 122 | 97.32 109 | 93.37 137 | 95.49 124 | 98.74 120 | 96.44 138 | 90.82 122 | 98.18 136 | 82.75 158 | 96.60 107 | 94.67 112 | 95.54 159 | 98.09 99 | 96.00 155 | 99.20 177 | 98.93 168 |
|
TESTMET0.1,1 | | | 94.95 132 | 97.32 109 | 92.20 151 | 92.62 160 | 98.74 120 | 96.44 138 | 86.67 171 | 98.18 136 | 82.75 158 | 96.60 107 | 94.67 112 | 95.54 159 | 98.09 99 | 96.00 155 | 99.20 177 | 98.93 168 |
|
EG-PatchMatch MVS | | | 92.45 178 | 93.92 179 | 90.72 180 | 92.56 162 | 98.43 143 | 94.88 165 | 84.54 185 | 97.18 169 | 79.55 177 | 86.12 198 | 83.23 184 | 93.15 194 | 97.22 146 | 96.00 155 | 99.67 97 | 99.27 152 |
|
UniMVSNet (Re) | | | 94.58 143 | 95.34 153 | 93.71 127 | 92.25 169 | 98.08 157 | 94.97 161 | 91.29 118 | 97.03 175 | 87.94 125 | 93.97 143 | 86.25 165 | 96.07 145 | 96.27 171 | 95.97 158 | 99.72 58 | 99.79 39 |
|
anonymousdsp | | | 93.12 165 | 95.86 147 | 89.93 188 | 91.09 197 | 98.25 151 | 95.12 158 | 85.08 180 | 97.44 162 | 73.30 199 | 90.89 164 | 90.78 138 | 95.25 169 | 97.91 114 | 95.96 159 | 99.71 68 | 99.82 24 |
|
WR-MVS_H | | | 93.54 159 | 94.67 163 | 92.22 149 | 91.95 173 | 97.91 163 | 94.58 177 | 88.75 151 | 96.64 184 | 83.88 147 | 90.66 167 | 85.13 173 | 94.40 178 | 96.54 161 | 95.91 160 | 99.73 51 | 99.89 6 |
|
WR-MVS | | | 93.43 162 | 94.48 166 | 92.21 150 | 91.52 189 | 97.69 171 | 94.66 175 | 89.98 135 | 96.86 178 | 83.43 152 | 90.12 169 | 85.03 174 | 93.94 186 | 96.02 178 | 95.82 161 | 99.71 68 | 99.82 24 |
|
IB-MVS | | 93.96 15 | 95.02 131 | 96.44 138 | 93.36 138 | 97.05 83 | 99.28 87 | 90.43 198 | 93.39 83 | 98.02 142 | 96.02 39 | 94.92 134 | 92.07 133 | 83.52 207 | 95.38 184 | 95.82 161 | 99.72 58 | 99.59 115 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pmmvs6 | | | 91.90 189 | 92.53 196 | 91.17 173 | 91.81 178 | 97.63 176 | 93.23 186 | 88.37 157 | 93.43 208 | 80.61 169 | 77.32 209 | 87.47 150 | 94.12 182 | 96.58 159 | 95.72 163 | 98.88 185 | 99.53 126 |
|
MS-PatchMatch | | | 95.99 112 | 97.26 113 | 94.51 113 | 97.46 72 | 98.76 118 | 97.27 112 | 86.97 168 | 99.09 63 | 89.83 118 | 93.51 147 | 97.78 75 | 96.18 142 | 97.53 135 | 95.71 164 | 99.35 169 | 98.41 180 |
|
MDTV_nov1_ep13 | | | 95.57 119 | 97.48 99 | 93.35 139 | 95.43 126 | 98.97 105 | 97.19 117 | 83.72 189 | 98.92 85 | 87.91 126 | 97.75 79 | 96.12 96 | 97.88 100 | 96.84 156 | 95.64 165 | 97.96 194 | 98.10 186 |
|
MIMVSNet1 | | | 88.61 199 | 90.68 201 | 86.19 200 | 81.56 212 | 95.30 208 | 87.78 207 | 85.98 177 | 94.19 206 | 72.30 205 | 78.84 208 | 78.90 207 | 90.06 200 | 96.59 158 | 95.47 166 | 99.46 157 | 95.49 206 |
|
RPSCF | | | 97.61 66 | 98.16 77 | 96.96 71 | 98.10 62 | 99.00 101 | 98.84 57 | 93.76 75 | 99.45 19 | 94.78 58 | 99.39 12 | 99.31 57 | 98.53 79 | 96.61 157 | 95.43 167 | 97.74 196 | 97.93 190 |
|
pmmvs4 | | | 95.09 129 | 95.90 145 | 94.14 118 | 92.29 167 | 97.70 169 | 95.45 154 | 90.31 131 | 98.60 114 | 90.70 112 | 93.25 150 | 89.90 143 | 96.67 129 | 97.13 149 | 95.42 168 | 99.44 160 | 99.28 150 |
|
GA-MVS | | | 93.93 154 | 96.31 141 | 91.16 174 | 93.61 153 | 98.79 112 | 95.39 156 | 90.69 128 | 98.25 134 | 73.28 200 | 96.15 116 | 88.42 148 | 94.39 179 | 97.76 123 | 95.35 169 | 99.58 135 | 99.45 139 |
|
v10 | | | 92.79 172 | 94.06 174 | 91.31 171 | 91.78 179 | 97.29 195 | 94.87 166 | 86.10 176 | 96.97 176 | 79.82 176 | 88.16 185 | 84.56 177 | 95.63 155 | 96.33 169 | 95.31 170 | 99.65 106 | 99.80 31 |
|
v1192 | | | 92.43 181 | 93.61 183 | 91.05 175 | 91.53 188 | 97.43 189 | 94.61 176 | 87.99 161 | 96.60 185 | 76.72 187 | 87.11 193 | 82.74 188 | 95.85 150 | 96.35 168 | 95.30 171 | 99.60 125 | 99.74 69 |
|
test_method | | | 87.27 202 | 91.58 198 | 82.25 205 | 75.65 216 | 87.52 215 | 86.81 209 | 72.60 214 | 97.51 161 | 73.20 201 | 85.07 200 | 79.97 201 | 88.69 202 | 97.31 142 | 95.24 172 | 96.53 208 | 98.41 180 |
|
v1144 | | | 92.81 170 | 94.03 175 | 91.40 169 | 91.68 181 | 97.60 180 | 94.73 170 | 88.40 156 | 96.71 182 | 78.48 182 | 88.14 186 | 84.46 178 | 95.45 164 | 96.31 170 | 95.22 173 | 99.65 106 | 99.76 58 |
|
v1240 | | | 91.99 188 | 93.33 189 | 90.44 182 | 91.29 194 | 97.30 194 | 94.25 182 | 86.79 169 | 96.43 188 | 75.49 194 | 86.34 197 | 81.85 192 | 95.29 167 | 96.42 164 | 95.22 173 | 99.52 151 | 99.73 73 |
|
v144192 | | | 92.38 183 | 93.55 186 | 91.00 176 | 91.44 190 | 97.47 188 | 94.27 181 | 87.41 166 | 96.52 187 | 78.03 183 | 87.50 190 | 82.65 189 | 95.32 166 | 95.82 182 | 95.15 175 | 99.55 144 | 99.78 45 |
|
v1921920 | | | 92.36 185 | 93.57 184 | 90.94 177 | 91.39 192 | 97.39 191 | 94.70 172 | 87.63 165 | 96.60 185 | 76.63 188 | 86.98 194 | 82.89 186 | 95.75 151 | 96.26 172 | 95.14 176 | 99.55 144 | 99.73 73 |
|
test20.03 | | | 90.65 194 | 93.71 182 | 87.09 196 | 90.44 201 | 96.24 202 | 89.74 204 | 85.46 179 | 95.59 201 | 72.99 203 | 90.68 166 | 85.33 171 | 84.41 206 | 95.94 180 | 95.10 177 | 99.52 151 | 97.06 199 |
|
pmmvs5 | | | 92.71 176 | 94.27 169 | 90.90 178 | 91.42 191 | 97.74 168 | 93.23 186 | 86.66 172 | 95.99 196 | 78.96 181 | 91.45 160 | 83.44 182 | 95.55 158 | 97.30 143 | 95.05 178 | 99.58 135 | 98.93 168 |
|
v7n | | | 91.61 190 | 92.95 191 | 90.04 185 | 90.56 200 | 97.69 171 | 93.74 185 | 85.59 178 | 95.89 198 | 76.95 186 | 86.60 196 | 78.60 208 | 93.76 189 | 97.01 152 | 94.99 179 | 99.65 106 | 99.87 12 |
|
v2v482 | | | 92.77 173 | 93.52 187 | 91.90 161 | 91.59 187 | 97.63 176 | 94.57 178 | 90.31 131 | 96.80 181 | 79.22 178 | 88.74 181 | 81.55 194 | 96.04 147 | 95.26 186 | 94.97 180 | 99.66 102 | 99.69 93 |
|
SCA | | | 94.95 132 | 97.44 102 | 92.04 154 | 95.55 121 | 99.16 96 | 96.26 141 | 79.30 200 | 99.02 74 | 85.73 140 | 98.18 67 | 97.13 83 | 97.69 104 | 96.03 177 | 94.91 181 | 97.69 199 | 97.65 192 |
|
v8 | | | 92.87 168 | 93.87 181 | 91.72 165 | 92.05 171 | 97.50 186 | 94.79 169 | 88.20 159 | 96.85 179 | 80.11 174 | 90.01 170 | 82.86 187 | 95.48 161 | 95.15 189 | 94.90 182 | 99.66 102 | 99.80 31 |
|
V42 | | | 93.05 166 | 93.90 180 | 92.04 154 | 91.91 174 | 97.66 173 | 94.91 163 | 89.91 136 | 96.85 179 | 80.58 170 | 89.66 172 | 83.43 183 | 95.37 165 | 95.03 192 | 94.90 182 | 99.59 131 | 99.78 45 |
|
SixPastTwentyTwo | | | 93.44 161 | 95.32 154 | 91.24 172 | 92.11 170 | 98.40 145 | 92.77 189 | 88.64 154 | 98.09 140 | 77.83 184 | 93.51 147 | 85.74 168 | 96.52 135 | 96.91 154 | 94.89 184 | 99.59 131 | 99.73 73 |
|
tpm | | | 92.38 183 | 94.79 160 | 89.56 190 | 94.30 143 | 97.50 186 | 94.24 183 | 78.97 204 | 97.72 157 | 74.93 196 | 97.97 74 | 82.91 185 | 96.60 132 | 93.65 199 | 94.81 185 | 98.33 190 | 98.98 166 |
|
EPMVS | | | 95.05 130 | 96.86 124 | 92.94 144 | 95.84 107 | 98.96 106 | 96.68 129 | 79.87 196 | 99.05 71 | 90.15 114 | 97.12 93 | 95.99 98 | 97.49 109 | 95.17 188 | 94.75 186 | 97.59 200 | 96.96 200 |
|
thisisatest0515 | | | 94.61 141 | 96.89 122 | 91.95 158 | 92.00 172 | 98.47 138 | 92.01 193 | 90.73 126 | 98.18 136 | 83.96 145 | 94.51 137 | 95.13 106 | 93.38 191 | 97.38 139 | 94.74 187 | 99.61 117 | 99.79 39 |
|
v148 | | | 92.36 185 | 92.88 192 | 91.75 163 | 91.63 185 | 97.66 173 | 92.64 190 | 90.55 129 | 96.09 192 | 83.34 153 | 88.19 184 | 80.00 200 | 92.74 195 | 93.98 198 | 94.58 188 | 99.58 135 | 99.69 93 |
|
TDRefinement | | | 93.04 167 | 93.57 184 | 92.41 147 | 96.58 87 | 98.77 115 | 97.78 97 | 91.96 101 | 98.12 139 | 80.84 168 | 89.13 177 | 79.87 203 | 87.78 203 | 96.44 162 | 94.50 189 | 99.54 148 | 98.15 185 |
|
ADS-MVSNet | | | 94.65 139 | 97.04 119 | 91.88 162 | 95.68 115 | 98.99 103 | 95.89 145 | 79.03 203 | 99.15 52 | 85.81 139 | 96.96 95 | 98.21 72 | 97.10 116 | 94.48 196 | 94.24 190 | 97.74 196 | 97.21 196 |
|
PatchmatchNet |  | | 94.70 137 | 97.08 117 | 91.92 159 | 95.53 122 | 98.85 110 | 95.77 147 | 79.54 198 | 98.95 79 | 85.98 137 | 98.52 55 | 96.45 87 | 97.39 112 | 95.32 185 | 94.09 191 | 97.32 202 | 97.38 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PM-MVS | | | 89.55 197 | 90.30 202 | 88.67 193 | 87.06 206 | 95.60 205 | 90.88 196 | 84.51 186 | 96.14 191 | 75.75 190 | 86.89 195 | 63.47 217 | 94.64 176 | 96.85 155 | 93.89 192 | 99.17 179 | 99.29 149 |
|
pmmvs-eth3d | | | 89.81 196 | 89.65 203 | 90.00 186 | 86.94 207 | 95.38 206 | 91.08 194 | 86.39 174 | 94.57 204 | 82.27 162 | 83.03 204 | 64.94 214 | 93.96 185 | 96.57 160 | 93.82 193 | 99.35 169 | 99.24 154 |
|
MDTV_nov1_ep13_2view | | | 92.44 179 | 95.66 149 | 88.68 192 | 91.05 198 | 97.92 162 | 92.17 192 | 79.64 197 | 98.83 95 | 76.20 189 | 91.45 160 | 93.51 125 | 95.04 172 | 95.68 183 | 93.70 194 | 97.96 194 | 98.53 177 |
|
new_pmnet | | | 90.45 195 | 92.84 194 | 87.66 195 | 88.96 204 | 96.16 203 | 88.71 206 | 84.66 184 | 97.56 160 | 71.91 206 | 85.60 199 | 86.58 161 | 93.28 192 | 96.07 176 | 93.54 195 | 98.46 187 | 94.39 208 |
|
N_pmnet | | | 92.21 187 | 94.60 164 | 89.42 191 | 91.88 175 | 97.38 192 | 89.15 205 | 89.74 141 | 97.89 150 | 73.75 198 | 87.94 188 | 92.23 132 | 93.85 188 | 96.10 175 | 93.20 196 | 98.15 193 | 97.43 194 |
|
CostFormer | | | 94.25 148 | 94.88 158 | 93.51 134 | 95.43 126 | 98.34 149 | 96.21 142 | 80.64 193 | 97.94 148 | 94.01 72 | 98.30 65 | 86.20 166 | 97.52 107 | 92.71 201 | 92.69 197 | 97.23 205 | 98.02 188 |
|
pmmvs3 | | | 88.19 200 | 91.27 199 | 84.60 203 | 85.60 209 | 93.66 210 | 85.68 210 | 81.13 191 | 92.36 210 | 63.66 215 | 89.51 173 | 77.10 210 | 93.22 193 | 96.37 166 | 92.40 198 | 98.30 191 | 97.46 193 |
|
tpmrst | | | 93.86 156 | 95.88 146 | 91.50 166 | 95.69 114 | 98.62 128 | 95.64 150 | 79.41 199 | 98.80 100 | 83.76 150 | 95.63 128 | 96.13 95 | 97.25 113 | 92.92 200 | 92.31 199 | 97.27 203 | 96.74 201 |
|
MDA-MVSNet-bldmvs | | | 87.84 201 | 89.22 204 | 86.23 199 | 81.74 211 | 96.77 200 | 83.74 211 | 89.57 143 | 94.50 205 | 72.83 204 | 96.64 105 | 64.47 216 | 92.71 196 | 81.43 211 | 92.28 200 | 96.81 207 | 98.47 179 |
|
Gipuma |  | | 81.40 205 | 81.78 207 | 80.96 207 | 83.21 210 | 85.61 216 | 79.73 214 | 76.25 212 | 97.33 166 | 64.21 214 | 55.32 213 | 55.55 218 | 86.04 204 | 92.43 204 | 92.20 201 | 96.32 210 | 93.99 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pmnet_mix02 | | | 92.44 179 | 94.68 162 | 89.83 189 | 92.46 164 | 97.65 175 | 89.92 203 | 90.49 130 | 98.76 107 | 73.05 202 | 91.78 158 | 90.08 142 | 94.86 175 | 94.53 195 | 91.94 202 | 98.21 192 | 98.01 189 |
|
ambc | | | | 80.99 208 | | 80.04 214 | 90.84 211 | 90.91 195 | | 96.09 192 | 74.18 197 | 62.81 212 | 30.59 223 | 82.44 208 | 96.25 173 | 91.77 203 | 95.91 211 | 98.56 176 |
|
dps | | | 94.63 140 | 95.31 155 | 93.84 123 | 95.53 122 | 98.71 123 | 96.54 133 | 80.12 195 | 97.81 156 | 97.21 28 | 96.98 94 | 92.37 130 | 96.34 139 | 92.46 203 | 91.77 203 | 97.26 204 | 97.08 198 |
|
tpm cat1 | | | 94.06 149 | 94.90 157 | 93.06 142 | 95.42 128 | 98.52 136 | 96.64 131 | 80.67 192 | 97.82 154 | 92.63 97 | 93.39 149 | 95.00 107 | 96.06 146 | 91.36 206 | 91.58 205 | 96.98 206 | 96.66 203 |
|
CMPMVS |  | 70.31 18 | 90.74 192 | 91.06 200 | 90.36 184 | 97.32 75 | 97.43 189 | 92.97 188 | 87.82 164 | 93.50 207 | 75.34 195 | 83.27 203 | 84.90 175 | 92.19 198 | 92.64 202 | 91.21 206 | 96.50 209 | 94.46 207 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new-patchmatchnet | | | 86.12 203 | 87.30 205 | 84.74 202 | 86.92 208 | 95.19 209 | 83.57 212 | 84.42 187 | 92.67 209 | 65.66 210 | 80.32 206 | 64.72 215 | 89.41 201 | 92.33 205 | 89.21 207 | 98.43 188 | 96.69 202 |
|
PMMVS2 | | | 77.26 206 | 79.47 209 | 74.70 209 | 76.00 215 | 88.37 214 | 74.22 216 | 76.34 210 | 78.31 214 | 54.13 217 | 69.96 211 | 52.50 219 | 70.14 213 | 84.83 209 | 88.71 208 | 97.35 201 | 93.58 210 |
|
MVE |  | 67.97 19 | 65.53 211 | 67.43 213 | 63.31 212 | 59.33 219 | 74.20 217 | 53.09 221 | 70.43 215 | 66.27 217 | 43.13 218 | 45.98 217 | 30.62 222 | 70.65 212 | 79.34 213 | 86.30 209 | 83.25 218 | 89.33 211 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 82.25 205 | 97.73 69 | 88.71 213 | 80.18 213 | 68.65 216 | 99.15 52 | 86.98 132 | 99.47 9 | 85.31 172 | 68.35 214 | 87.51 208 | 83.81 210 | 91.64 213 | |
|
E-PMN | | | 68.30 209 | 68.43 211 | 68.15 210 | 74.70 218 | 71.56 219 | 55.64 219 | 77.24 208 | 77.48 216 | 39.46 219 | 51.95 216 | 41.68 221 | 73.28 211 | 70.65 214 | 79.51 211 | 88.61 216 | 86.20 214 |
|
FPMVS | | | 83.82 204 | 84.61 206 | 82.90 204 | 90.39 202 | 90.71 212 | 90.85 197 | 84.10 188 | 95.47 202 | 65.15 211 | 83.44 202 | 74.46 212 | 75.48 209 | 81.63 210 | 79.42 212 | 91.42 214 | 87.14 212 |
|
PMVS |  | 72.60 17 | 76.39 207 | 77.66 210 | 74.92 208 | 81.04 213 | 69.37 220 | 68.47 217 | 80.54 194 | 85.39 213 | 65.07 212 | 73.52 210 | 72.91 213 | 65.67 215 | 80.35 212 | 76.81 213 | 88.71 215 | 85.25 215 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 68.12 210 | 68.11 212 | 68.14 211 | 75.51 217 | 71.76 218 | 55.38 220 | 77.20 209 | 77.78 215 | 37.79 220 | 53.59 214 | 43.61 220 | 74.72 210 | 67.05 215 | 76.70 214 | 88.27 217 | 86.24 213 |
|
testmvs | | | 31.24 212 | 40.15 214 | 20.86 214 | 12.61 220 | 17.99 221 | 25.16 222 | 13.30 217 | 48.42 218 | 24.82 221 | 53.07 215 | 30.13 224 | 28.47 216 | 42.73 216 | 37.65 215 | 20.79 219 | 51.04 216 |
|
test123 | | | 26.75 213 | 34.25 215 | 18.01 215 | 7.93 221 | 17.18 222 | 24.85 223 | 12.36 218 | 44.83 219 | 16.52 222 | 41.80 218 | 18.10 225 | 28.29 217 | 33.08 217 | 34.79 216 | 18.10 220 | 49.95 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 69.05 208 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.79 45 | | | | | |
|
SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
our_test_3 | | | | | | 92.30 166 | 97.58 181 | 90.09 202 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 7 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 12 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 218 | | | | | | | | | | |
|
XVS | | | | | | 97.42 73 | 99.62 29 | 98.59 64 | | | 93.81 78 | | 99.95 17 | | | | 99.69 80 | |
|
X-MVStestdata | | | | | | 97.42 73 | 99.62 29 | 98.59 64 | | | 93.81 78 | | 99.95 17 | | | | 99.69 80 | |
|
abl_6 | | | | | 98.09 40 | 99.33 42 | 99.22 93 | 98.79 59 | 94.96 54 | 98.52 122 | 97.00 32 | 97.30 87 | 99.86 37 | 98.76 66 | | | 99.69 80 | 99.41 142 |
|
mPP-MVS | | | | | | 99.53 30 | | | | | | | 99.89 34 | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 117 | | | | | | | | |
|
Patchmtry | | | | | | | 98.59 131 | 97.15 118 | 79.14 201 | | 80.42 171 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.85 198 | 87.43 208 | 89.27 145 | 98.30 131 | 75.55 193 | 95.05 131 | 79.47 204 | 92.62 197 | 89.48 207 | | 95.18 212 | 95.96 205 |
|