This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS198.86 185.54 6798.29 197.49 689.79 4796.29 18
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
IU-MVS98.77 586.00 5096.84 6581.26 27397.26 795.50 2399.13 399.03 8
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
region2R94.43 2394.27 3194.92 2098.65 886.67 3096.92 2497.23 3488.60 8593.58 5897.27 3785.22 5599.54 2092.21 6998.74 3198.56 25
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2896.94 2097.32 2788.63 8393.53 6197.26 3985.04 5999.54 2092.35 6598.78 2698.50 27
HFP-MVS94.52 1994.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8393.65 5697.21 4186.10 4599.49 2692.35 6598.77 2898.30 48
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
test_part298.55 1287.22 1996.40 17
XVS94.45 2194.32 2594.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 5098.47 33
X-MVStestdata88.31 17786.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 41385.02 6099.49 2691.99 7998.56 5098.47 33
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 2096.85 2897.32 2788.24 9593.15 6697.04 5286.17 4499.62 292.40 6298.81 2398.52 26
mPP-MVS93.99 4193.78 4894.63 4098.50 1685.90 6096.87 2696.91 5888.70 8191.83 10697.17 4683.96 7499.55 1691.44 9298.64 4598.43 38
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2898.04 6899.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2894.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6991.98 9797.19 4485.43 5399.56 1292.06 7898.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2194.20 3595.19 1398.46 1987.50 1695.00 12597.12 4187.13 12592.51 8796.30 8389.24 1799.34 3493.46 4298.62 4698.73 18
PGM-MVS93.96 4393.72 5194.68 3898.43 2086.22 4795.30 10497.78 187.45 12193.26 6397.33 3584.62 6799.51 2490.75 10498.57 4998.32 47
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6797.56 2684.30 7099.56 1293.43 4398.75 3098.47 33
GST-MVS94.21 3193.97 4394.90 2398.41 2286.82 2496.54 3697.19 3588.24 9593.26 6396.83 6185.48 5299.59 891.43 9398.40 5498.30 48
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13392.62 8496.80 6584.85 6599.17 4792.43 6098.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8792.73 8197.23 4085.20 5699.32 3892.15 7298.83 2298.25 58
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 9697.51 589.13 6697.14 997.91 1891.64 799.62 294.61 3099.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 6193.22 6293.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9299.07 5390.51 10798.40 5497.92 80
DP-MVS Recon91.95 8491.28 9193.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13495.82 10582.30 9699.03 5884.57 17596.48 10696.91 133
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7196.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 5996.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 3198.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 5096.83 6188.12 2499.55 1693.41 4598.94 1698.28 51
CPTT-MVS91.99 8391.80 8492.55 11598.24 3181.98 16396.76 3096.49 9781.89 25590.24 12796.44 8178.59 14198.61 10889.68 11197.85 7497.06 122
SR-MVS94.23 3094.17 3794.43 4798.21 3285.78 6396.40 3896.90 5988.20 9894.33 4197.40 3284.75 6699.03 5893.35 4697.99 6998.48 30
MP-MVS-pluss94.21 3194.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3398.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4496.91 5787.57 3199.26 4291.99 7998.44 53
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2999.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3297.08 4989.49 1599.33 3795.10 2598.85 2098.66 21
114514_t89.51 14088.50 15392.54 11698.11 3681.99 16295.16 11796.36 10570.19 38385.81 21195.25 12776.70 16098.63 10582.07 21696.86 9797.00 127
ACMMPcopyleft93.24 6592.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9190.15 13297.03 5381.44 10999.51 2490.85 10395.74 11598.04 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 2994.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3597.18 4587.31 3599.07 5391.90 8598.61 4898.28 51
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6693.05 6593.76 6698.04 4084.07 9896.22 4897.37 2184.15 19790.05 13395.66 11287.77 2699.15 5089.91 11098.27 5898.07 69
ACMMP_NAP94.74 1694.56 1995.28 1098.02 4187.70 1195.68 8697.34 2388.28 9495.30 3397.67 2585.90 4799.54 2093.91 3798.95 1598.60 23
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
SR-MVS-dyc-post93.82 4593.82 4593.82 6297.92 4384.57 8296.28 4396.76 7587.46 11993.75 5497.43 3084.24 7199.01 6392.73 5497.80 7697.88 81
RE-MVS-def93.68 5397.92 4384.57 8296.28 4396.76 7587.46 11993.75 5497.43 3082.94 8592.73 5497.80 7697.88 81
APD-MVS_3200maxsize93.78 4693.77 4993.80 6497.92 4384.19 9696.30 4196.87 6286.96 12993.92 5297.47 2883.88 7598.96 7792.71 5797.87 7398.26 57
save fliter97.85 4685.63 6695.21 11396.82 6889.44 54
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3497.48 1087.76 11495.71 2797.70 2488.28 2399.35 3393.89 3898.78 2698.48 30
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 5196.58 7687.74 2799.44 2992.83 5398.40 5498.62 22
9.1494.47 2097.79 4996.08 6097.44 1586.13 15495.10 3497.40 3288.34 2299.22 4493.25 4798.70 34
CDPH-MVS92.83 7392.30 7994.44 4597.79 4986.11 4994.06 19096.66 8580.09 28792.77 7896.63 7386.62 3899.04 5787.40 13898.66 4198.17 63
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
dcpmvs_293.49 5394.19 3691.38 16997.69 5476.78 29094.25 17496.29 10988.33 9194.46 3996.88 5888.07 2598.64 10393.62 4198.09 6598.73 18
DP-MVS87.25 21785.36 25292.90 9697.65 5583.24 12294.81 13892.00 30574.99 34781.92 30595.00 13872.66 21699.05 5566.92 36092.33 18896.40 152
PAPM_NR91.22 9890.78 10292.52 11797.60 5681.46 17694.37 17096.24 11786.39 14587.41 17594.80 14882.06 10498.48 11682.80 20195.37 12697.61 97
patch_mono-293.74 4894.32 2592.01 13597.54 5778.37 25793.40 22097.19 3588.02 10394.99 3697.21 4188.35 2198.44 12694.07 3598.09 6599.23 1
TEST997.53 5886.49 3794.07 18896.78 7281.61 26592.77 7896.20 8787.71 2899.12 51
train_agg93.44 5693.08 6494.52 4497.53 5886.49 3794.07 18896.78 7281.86 25692.77 7896.20 8787.63 2999.12 5192.14 7398.69 3597.94 77
test_897.49 6086.30 4594.02 19396.76 7581.86 25692.70 8296.20 8787.63 2999.02 61
DeepC-MVS_fast89.43 294.04 3893.79 4794.80 3397.48 6186.78 2695.65 9196.89 6089.40 5692.81 7696.97 5485.37 5499.24 4390.87 10298.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 13189.07 13792.37 12497.41 6283.03 13494.42 16395.92 14582.81 23286.34 20194.65 15573.89 20099.02 6180.69 24295.51 11995.05 207
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
原ACMM192.01 13597.34 6481.05 18796.81 7078.89 30390.45 12495.92 10082.65 8998.84 8880.68 24398.26 5996.14 163
MSLP-MVS++93.72 4994.08 3892.65 11097.31 6583.43 11695.79 8197.33 2590.03 3693.58 5896.96 5584.87 6497.76 17992.19 7198.66 4196.76 139
新几何193.10 8397.30 6684.35 9495.56 17471.09 37991.26 11796.24 8582.87 8798.86 8479.19 26498.10 6496.07 169
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 68
PLCcopyleft84.53 789.06 15788.03 16692.15 13397.27 6882.69 14894.29 17295.44 18679.71 29284.01 27194.18 17376.68 16198.75 9477.28 28293.41 16795.02 208
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 4997.11 4390.42 2796.95 1397.27 3789.53 1496.91 25594.38 3298.85 2098.03 73
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6397.86 83
MG-MVS91.77 8791.70 8792.00 13897.08 7180.03 21893.60 21495.18 20087.85 11190.89 12096.47 8082.06 10498.36 13185.07 16797.04 9097.62 96
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3197.46 2988.98 1999.40 3094.12 3498.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5593.31 5993.84 6196.99 7284.84 7593.24 23297.24 3288.76 7891.60 11195.85 10386.07 4698.66 10191.91 8398.16 6198.03 73
CNLPA89.07 15687.98 16792.34 12596.87 7484.78 7894.08 18793.24 27181.41 26984.46 25595.13 13575.57 17696.62 26577.21 28393.84 15795.61 191
PHI-MVS93.89 4493.65 5594.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 6096.28 8485.60 5099.31 3992.45 5998.79 2498.12 67
旧先验196.79 7681.81 16695.67 16696.81 6386.69 3797.66 8196.97 129
LFMVS90.08 12389.13 13692.95 9496.71 7782.32 15896.08 6089.91 35686.79 13492.15 9496.81 6362.60 31998.34 13487.18 14293.90 15598.19 61
CS-MVS-test94.02 3994.29 2893.24 7696.69 7883.24 12297.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13693.03 5098.62 4698.13 65
Anonymous20240521187.68 19386.13 22492.31 12796.66 7980.74 19794.87 13391.49 32280.47 28389.46 14195.44 11954.72 36898.23 14282.19 21289.89 21997.97 75
TAPA-MVS84.62 688.16 18187.01 19191.62 15996.64 8080.65 19894.39 16696.21 12276.38 33286.19 20595.44 11979.75 12498.08 16162.75 37795.29 12896.13 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 11889.37 13093.07 8796.61 8184.48 8795.68 8695.67 16682.36 24087.85 16692.85 21876.63 16298.80 9080.01 25296.68 10195.91 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 8291.91 8393.24 7696.59 8283.43 11694.84 13696.44 9889.19 6494.08 4995.90 10177.85 15298.17 14688.90 12093.38 16898.13 65
TSAR-MVS + GP.93.66 5093.41 5894.41 4996.59 8286.78 2694.40 16493.93 25589.77 4894.21 4395.59 11587.35 3498.61 10892.72 5696.15 11197.83 86
MVSMamba_PlusPlus93.44 5693.54 5793.14 8196.58 8483.05 13396.06 6496.50 9684.42 19494.09 4695.56 11685.01 6398.69 10094.96 2698.66 4197.67 94
CS-MVS94.12 3794.44 2293.17 7996.55 8583.08 13297.63 396.95 5491.71 1193.50 6296.21 8685.61 4998.24 14193.64 4098.17 6098.19 61
test22296.55 8581.70 16892.22 26795.01 20768.36 38690.20 12996.14 9280.26 11997.80 7696.05 172
Anonymous2024052988.09 18386.59 20692.58 11496.53 8781.92 16595.99 7095.84 15374.11 35689.06 14795.21 13061.44 32898.81 8983.67 18987.47 26097.01 126
Anonymous2023121186.59 24485.13 25790.98 19196.52 8881.50 17296.14 5696.16 12373.78 35983.65 27992.15 24263.26 31697.37 22182.82 20081.74 31994.06 255
DeepPCF-MVS89.96 194.20 3394.77 1792.49 11896.52 8880.00 22094.00 19697.08 4490.05 3595.65 2997.29 3689.66 1398.97 7593.95 3698.71 3298.50 27
testdata90.49 20596.40 9077.89 26995.37 19272.51 37193.63 5796.69 6682.08 10397.65 18783.08 19397.39 8495.94 174
PVSNet_Blended_VisFu91.38 9490.91 9992.80 10196.39 9183.17 12594.87 13396.66 8583.29 22089.27 14394.46 16280.29 11899.17 4787.57 13695.37 12696.05 172
API-MVS90.66 11190.07 11392.45 12096.36 9284.57 8296.06 6495.22 19982.39 23889.13 14494.27 17080.32 11798.46 12080.16 25196.71 10094.33 243
F-COLMAP87.95 18686.80 19691.40 16896.35 9380.88 19394.73 14395.45 18479.65 29382.04 30394.61 15671.13 23098.50 11476.24 29591.05 20394.80 221
VDD-MVS90.74 10789.92 11993.20 7896.27 9483.02 13595.73 8393.86 25988.42 9092.53 8596.84 6062.09 32198.64 10390.95 10092.62 18397.93 79
OMC-MVS91.23 9790.62 10493.08 8596.27 9484.07 9893.52 21695.93 14486.95 13089.51 13896.13 9378.50 14398.35 13385.84 16192.90 17796.83 138
DPM-MVS92.58 7791.74 8695.08 1596.19 9689.31 592.66 25196.56 9383.44 21591.68 11095.04 13786.60 4098.99 7085.60 16397.92 7296.93 131
CHOSEN 1792x268888.84 16287.69 17392.30 12896.14 9781.42 17890.01 32295.86 15274.52 35287.41 17593.94 18275.46 17798.36 13180.36 24795.53 11897.12 120
balanced_conf0393.98 4294.22 3293.26 7596.13 9883.29 12196.27 4596.52 9489.82 4395.56 3095.51 11784.50 6898.79 9194.83 2798.86 1997.72 91
thres100view90087.63 19886.71 19990.38 21396.12 9978.55 25095.03 12491.58 31887.15 12488.06 16292.29 23868.91 26998.10 15170.13 33891.10 19894.48 238
PVSNet_BlendedMVS89.98 12689.70 12190.82 19496.12 9981.25 18193.92 20196.83 6683.49 21489.10 14592.26 23981.04 11398.85 8686.72 15087.86 25592.35 326
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9981.25 18192.55 25596.83 6682.04 24889.10 14592.56 22981.04 11398.85 8686.72 15095.91 11395.84 179
UA-Net92.83 7392.54 7693.68 6896.10 10284.71 7995.66 8996.39 10391.92 793.22 6596.49 7983.16 8198.87 8284.47 17795.47 12297.45 105
MM95.10 1194.91 1395.68 596.09 10388.34 996.68 3394.37 23995.08 194.68 3797.72 2382.94 8599.64 197.85 198.76 2999.06 7
thres600view787.65 19586.67 20190.59 19896.08 10478.72 24694.88 13291.58 31887.06 12788.08 16192.30 23768.91 26998.10 15170.05 34191.10 19894.96 212
DeepC-MVS88.79 393.31 6292.99 6794.26 5296.07 10585.83 6194.89 13196.99 4889.02 7289.56 13797.37 3482.51 9199.38 3192.20 7098.30 5797.57 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 18786.32 21792.59 11396.07 10582.92 13995.23 11194.92 21575.66 33982.89 29295.98 9872.48 21999.21 4568.43 34895.23 13195.64 188
h-mvs3390.80 10590.15 11192.75 10496.01 10782.66 14995.43 9895.53 17889.80 4493.08 6895.64 11375.77 16999.00 6892.07 7578.05 35696.60 145
SDMVSNet90.19 12189.61 12491.93 14396.00 10883.09 13192.89 24595.98 14088.73 7986.85 18895.20 13172.09 22397.08 24188.90 12089.85 22195.63 189
sd_testset88.59 17187.85 17190.83 19396.00 10880.42 20592.35 26194.71 22988.73 7986.85 18895.20 13167.31 27996.43 28479.64 25789.85 22195.63 189
HyFIR lowres test88.09 18386.81 19591.93 14396.00 10880.63 19990.01 32295.79 15673.42 36387.68 17192.10 24773.86 20197.96 17080.75 24191.70 19297.19 114
tfpn200view987.58 20286.64 20290.41 21095.99 11178.64 24894.58 15191.98 30786.94 13188.09 15991.77 25769.18 26598.10 15170.13 33891.10 19894.48 238
thres40087.62 20086.64 20290.57 19995.99 11178.64 24894.58 15191.98 30786.94 13188.09 15991.77 25769.18 26598.10 15170.13 33891.10 19894.96 212
MVS_111021_LR92.47 7992.29 8092.98 9195.99 11184.43 9193.08 23796.09 13188.20 9891.12 11895.72 11181.33 11197.76 17991.74 8797.37 8596.75 140
PatchMatch-RL86.77 23985.54 24690.47 20995.88 11482.71 14790.54 30692.31 29579.82 29184.32 26391.57 26968.77 27196.39 28673.16 31993.48 16692.32 327
EPP-MVSNet91.70 9091.56 8892.13 13495.88 11480.50 20397.33 795.25 19686.15 15189.76 13695.60 11483.42 7998.32 13887.37 14093.25 17197.56 101
IS-MVSNet91.43 9391.09 9692.46 11995.87 11681.38 17996.95 1993.69 26589.72 5089.50 14095.98 9878.57 14297.77 17883.02 19596.50 10598.22 60
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5497.64 289.85 4297.19 897.89 1986.28 4398.71 9997.11 698.08 6797.17 115
PAPR90.02 12589.27 13592.29 12995.78 11880.95 19192.68 25096.22 11981.91 25286.66 19293.75 19482.23 9898.44 12679.40 26394.79 13797.48 103
Vis-MVSNet (Re-imp)89.59 13889.44 12790.03 22695.74 11975.85 30495.61 9390.80 34087.66 11887.83 16795.40 12276.79 15896.46 28278.37 26996.73 9997.80 87
test_yl90.69 10990.02 11792.71 10695.72 12082.41 15694.11 18395.12 20285.63 16391.49 11294.70 15074.75 18498.42 12986.13 15692.53 18597.31 107
DCV-MVSNet90.69 10990.02 11792.71 10695.72 12082.41 15694.11 18395.12 20285.63 16391.49 11294.70 15074.75 18498.42 12986.13 15692.53 18597.31 107
sasdasda93.27 6392.75 7194.85 2595.70 12287.66 1296.33 3996.41 10190.00 3794.09 4694.60 15782.33 9498.62 10692.40 6292.86 17898.27 53
canonicalmvs93.27 6392.75 7194.85 2595.70 12287.66 1296.33 3996.41 10190.00 3794.09 4694.60 15782.33 9498.62 10692.40 6292.86 17898.27 53
mamv490.92 10291.78 8588.33 28395.67 12470.75 36492.92 24496.02 13981.90 25388.11 15895.34 12385.88 4896.97 25095.22 2495.01 13397.26 110
CANet93.54 5293.20 6394.55 4395.65 12585.73 6594.94 12896.69 8491.89 890.69 12295.88 10281.99 10699.54 2093.14 4997.95 7198.39 39
3Dnovator+87.14 492.42 8091.37 8995.55 795.63 12688.73 697.07 1896.77 7490.84 1684.02 27096.62 7475.95 16899.34 3487.77 13397.68 8098.59 24
MGCFI-Net93.03 7092.63 7494.23 5395.62 12785.92 5796.08 6096.33 10789.86 4193.89 5394.66 15482.11 10198.50 11492.33 6792.82 18198.27 53
fmvsm_s_conf0.5_n93.76 4794.06 4192.86 9895.62 12783.17 12596.14 5696.12 12888.13 10195.82 2698.04 1683.43 7798.48 11696.97 996.23 10996.92 132
test250687.21 22186.28 21990.02 22895.62 12773.64 32796.25 4771.38 41187.89 10990.45 12496.65 7055.29 36598.09 15986.03 15896.94 9298.33 44
ECVR-MVScopyleft89.09 15588.53 15190.77 19695.62 12775.89 30396.16 5284.22 38987.89 10990.20 12996.65 7063.19 31798.10 15185.90 15996.94 9298.33 44
alignmvs93.08 6992.50 7794.81 3295.62 12787.61 1595.99 7096.07 13389.77 4894.12 4594.87 14380.56 11598.66 10192.42 6193.10 17498.15 64
test111189.10 15388.64 14890.48 20695.53 13274.97 31296.08 6084.89 38788.13 10190.16 13196.65 7063.29 31598.10 15186.14 15496.90 9498.39 39
WTY-MVS89.60 13788.92 14191.67 15895.47 13381.15 18592.38 25994.78 22683.11 22489.06 14794.32 16578.67 14096.61 26881.57 22890.89 20597.24 111
DELS-MVS93.43 6093.25 6193.97 5695.42 13485.04 7293.06 23997.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5297.65 95
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20087.21 22186.24 22190.12 22295.36 13578.53 25193.26 23092.10 30186.42 14488.00 16491.11 28269.24 26498.00 16769.58 34291.04 20493.83 268
Vis-MVSNetpermissive91.75 8891.23 9293.29 7395.32 13683.78 10596.14 5695.98 14089.89 3990.45 12496.58 7675.09 18098.31 13984.75 17396.90 9497.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n_a94.20 3394.40 2393.60 6995.29 13784.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9697.07 797.02 9197.07 121
fmvsm_l_conf0.5_n94.29 2794.46 2193.79 6595.28 13885.43 6895.68 8696.43 9986.56 14096.84 1497.81 2287.56 3298.77 9397.14 596.82 9897.16 119
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13879.45 23292.89 24593.07 27685.45 16886.91 18494.84 14770.35 24497.76 17973.97 31394.59 14395.85 178
COLMAP_ROBcopyleft80.39 1683.96 29382.04 30289.74 24095.28 13879.75 22694.25 17492.28 29675.17 34578.02 34793.77 19258.60 35197.84 17665.06 36985.92 27391.63 339
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9990.92 9891.96 14195.26 14182.60 15292.09 27295.70 16486.27 14791.84 10492.46 23179.70 12698.99 7089.08 11895.86 11494.29 244
BH-untuned88.60 17088.13 16590.01 22995.24 14278.50 25393.29 22894.15 24884.75 18784.46 25593.40 19975.76 17197.40 21777.59 27994.52 14694.12 250
EC-MVSNet93.44 5693.71 5292.63 11195.21 14382.43 15397.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14793.68 3998.14 6297.31 107
ETV-MVS92.74 7592.66 7392.97 9295.20 14484.04 10095.07 12196.51 9590.73 2292.96 7091.19 27684.06 7298.34 13491.72 8896.54 10396.54 150
mvsmamba90.33 11789.69 12292.25 13295.17 14581.64 16995.27 10993.36 27084.88 18189.51 13894.27 17069.29 26397.42 20989.34 11596.12 11297.68 93
GeoE90.05 12489.43 12891.90 14895.16 14680.37 20695.80 8094.65 23283.90 20287.55 17494.75 14978.18 14797.62 19181.28 23193.63 15997.71 92
EIA-MVS91.95 8491.94 8291.98 13995.16 14680.01 21995.36 9996.73 7988.44 8889.34 14292.16 24183.82 7698.45 12489.35 11497.06 8997.48 103
ab-mvs89.41 14588.35 15792.60 11295.15 14882.65 15092.20 26895.60 17383.97 20188.55 15393.70 19574.16 19698.21 14582.46 20689.37 22996.94 130
VDDNet89.56 13988.49 15592.76 10395.07 14982.09 16096.30 4193.19 27381.05 27891.88 10296.86 5961.16 33698.33 13688.43 12692.49 18797.84 85
fmvsm_s_conf0.5_n_a93.57 5193.76 5093.00 9095.02 15083.67 10896.19 4996.10 13087.27 12395.98 2498.05 1383.07 8498.45 12496.68 1195.51 11996.88 135
AllTest83.42 30081.39 30689.52 25095.01 15177.79 27493.12 23490.89 33877.41 32376.12 35993.34 20054.08 37197.51 19868.31 34984.27 28693.26 292
TestCases89.52 25095.01 15177.79 27490.89 33877.41 32376.12 35993.34 20054.08 37197.51 19868.31 34984.27 28693.26 292
EI-MVSNet-Vis-set93.01 7192.92 6893.29 7395.01 15183.51 11594.48 15695.77 15790.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 106
xiu_mvs_v2_base91.13 10090.89 10091.86 14994.97 15482.42 15492.24 26695.64 17186.11 15591.74 10993.14 21179.67 12998.89 8189.06 11995.46 12394.28 245
tttt051788.61 16987.78 17291.11 18194.96 15577.81 27295.35 10089.69 36085.09 17788.05 16394.59 15966.93 28598.48 11683.27 19292.13 19097.03 125
baseline188.10 18287.28 18490.57 19994.96 15580.07 21494.27 17391.29 32786.74 13687.41 17594.00 17976.77 15996.20 29580.77 24079.31 35295.44 193
Test_1112_low_res87.65 19586.51 21091.08 18294.94 15779.28 24091.77 27894.30 24276.04 33783.51 28392.37 23477.86 15197.73 18378.69 26889.13 23596.22 159
1112_ss88.42 17387.33 18291.72 15694.92 15880.98 18992.97 24294.54 23378.16 31983.82 27493.88 18778.78 13897.91 17479.45 25989.41 22896.26 158
QAPM89.51 14088.15 16493.59 7094.92 15884.58 8196.82 2996.70 8378.43 31383.41 28596.19 9073.18 21199.30 4077.11 28596.54 10396.89 134
MVS_030494.18 3693.80 4695.34 994.91 16087.62 1495.97 7293.01 27892.58 394.22 4297.20 4380.56 11599.59 897.04 898.68 3798.81 17
BH-w/o87.57 20387.05 18989.12 26094.90 16177.90 26892.41 25793.51 26782.89 23183.70 27791.34 27075.75 17297.07 24375.49 29993.49 16492.39 324
thisisatest053088.67 16787.61 17591.86 14994.87 16280.07 21494.63 14989.90 35784.00 20088.46 15593.78 19166.88 28798.46 12083.30 19192.65 18297.06 122
EI-MVSNet-UG-set92.74 7592.62 7593.12 8294.86 16383.20 12494.40 16495.74 16090.71 2392.05 9596.60 7584.00 7398.99 7091.55 9093.63 15997.17 115
HY-MVS83.01 1289.03 15887.94 16992.29 12994.86 16382.77 14192.08 27394.49 23481.52 26886.93 18292.79 22478.32 14698.23 14279.93 25390.55 20895.88 177
hse-mvs289.88 13289.34 13191.51 16394.83 16581.12 18693.94 19993.91 25889.80 4493.08 6893.60 19675.77 16997.66 18692.07 7577.07 36395.74 184
AUN-MVS87.78 19186.54 20991.48 16594.82 16681.05 18793.91 20393.93 25583.00 22786.93 18293.53 19769.50 25797.67 18486.14 15477.12 36295.73 186
Fast-Effi-MVS+89.41 14588.64 14891.71 15794.74 16780.81 19593.54 21595.10 20483.11 22486.82 19090.67 29779.74 12597.75 18280.51 24693.55 16196.57 148
ACMP84.23 889.01 16088.35 15790.99 18994.73 16881.27 18095.07 12195.89 15086.48 14183.67 27894.30 16669.33 25997.99 16887.10 14788.55 24093.72 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34787.12 36692.75 28578.80 30684.95 24490.53 29964.43 30896.71 26274.74 30893.86 15696.06 171
LCM-MVSNet-Re88.30 17888.32 16088.27 28494.71 17072.41 34693.15 23390.98 33487.77 11379.25 33891.96 25378.35 14595.75 31783.04 19495.62 11796.65 144
HQP_MVS90.60 11590.19 10991.82 15294.70 17182.73 14595.85 7796.22 11990.81 1786.91 18494.86 14474.23 19298.12 14988.15 12789.99 21594.63 224
plane_prior794.70 17182.74 144
ACMH+81.04 1485.05 27783.46 28689.82 23694.66 17379.37 23494.44 16194.12 25182.19 24478.04 34692.82 22158.23 35297.54 19573.77 31682.90 30492.54 317
ACMM84.12 989.14 15288.48 15691.12 17894.65 17481.22 18395.31 10296.12 12885.31 17185.92 20994.34 16370.19 24798.06 16385.65 16288.86 23894.08 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5497.35 2289.37 5796.03 2398.11 586.36 4199.01 6397.45 297.83 7597.96 76
plane_prior194.59 176
casdiffmvs_mvgpermissive92.96 7292.83 7093.35 7294.59 17683.40 11895.00 12596.34 10690.30 3092.05 9596.05 9583.43 7798.15 14892.07 7595.67 11698.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator86.66 591.73 8990.82 10194.44 4594.59 17686.37 4197.18 1297.02 4789.20 6384.31 26596.66 6973.74 20499.17 4786.74 14897.96 7097.79 88
FA-MVS(test-final)89.66 13588.91 14291.93 14394.57 17980.27 20791.36 28894.74 22884.87 18289.82 13592.61 22874.72 18798.47 11983.97 18393.53 16297.04 124
FE-MVS87.40 21086.02 23091.57 16194.56 18079.69 22890.27 30993.72 26480.57 28188.80 15091.62 26565.32 30298.59 11074.97 30794.33 15196.44 151
plane_prior694.52 18182.75 14274.23 192
UGNet89.95 12888.95 14092.95 9494.51 18283.31 12095.70 8595.23 19789.37 5787.58 17293.94 18264.00 31098.78 9283.92 18496.31 10896.74 141
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 14388.90 14391.12 17894.47 18381.49 17495.30 10496.14 12486.73 13785.45 22695.16 13369.89 25098.10 15187.70 13489.23 23393.77 274
LGP-MVS_train91.12 17894.47 18381.49 17496.14 12486.73 13785.45 22695.16 13369.89 25098.10 15187.70 13489.23 23393.77 274
baseline92.39 8192.29 8092.69 10994.46 18581.77 16794.14 18096.27 11389.22 6291.88 10296.00 9682.35 9397.99 16891.05 9695.27 13098.30 48
ACMH80.38 1785.36 26983.68 28390.39 21194.45 18680.63 19994.73 14394.85 22082.09 24577.24 35192.65 22660.01 34297.58 19272.25 32384.87 28192.96 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21594.44 18781.50 17292.31 26594.89 21683.03 22679.63 33592.67 22569.69 25397.79 17771.20 32786.26 27291.72 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testing9187.11 22686.18 22289.92 23294.43 18875.38 31191.53 28592.27 29786.48 14186.50 19390.24 30561.19 33497.53 19682.10 21490.88 20696.84 137
casdiffmvspermissive92.51 7892.43 7892.74 10594.41 18981.98 16394.54 15496.23 11889.57 5291.96 9996.17 9182.58 9098.01 16690.95 10095.45 12498.23 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.43 28782.92 29688.97 26694.37 19074.67 31591.23 29488.35 36983.37 21886.06 20889.04 33155.38 36395.67 32067.12 35691.34 19696.58 147
MVS_Test91.31 9691.11 9491.93 14394.37 19080.14 21193.46 21995.80 15586.46 14391.35 11693.77 19282.21 9998.09 15987.57 13694.95 13497.55 102
NP-MVS94.37 19082.42 15493.98 180
TR-MVS86.78 23685.76 24289.82 23694.37 19078.41 25592.47 25692.83 28281.11 27786.36 19992.40 23368.73 27297.48 20073.75 31789.85 22193.57 282
Effi-MVS+91.59 9291.11 9493.01 8994.35 19483.39 11994.60 15095.10 20487.10 12690.57 12393.10 21381.43 11098.07 16289.29 11694.48 14797.59 99
testing1186.44 25185.35 25389.69 24494.29 19575.40 31091.30 29090.53 34384.76 18685.06 24190.13 31158.95 35097.45 20482.08 21591.09 20296.21 161
RRT-MVS90.85 10490.70 10391.30 17294.25 19676.83 28994.85 13596.13 12789.04 6990.23 12894.88 14270.15 24898.72 9791.86 8694.88 13598.34 42
testing9986.72 24085.73 24589.69 24494.23 19774.91 31491.35 28990.97 33586.14 15286.36 19990.22 30659.41 34697.48 20082.24 21190.66 20796.69 143
CLD-MVS89.47 14288.90 14391.18 17794.22 19882.07 16192.13 27096.09 13187.90 10785.37 23592.45 23274.38 19097.56 19487.15 14390.43 21093.93 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UBG85.51 26584.57 27188.35 28094.21 19971.78 35190.07 32089.66 36282.28 24285.91 21089.01 33261.30 32997.06 24476.58 29192.06 19196.22 159
HQP-NCC94.17 20094.39 16688.81 7585.43 229
ACMP_Plane94.17 20094.39 16688.81 7585.43 229
HQP-MVS89.80 13389.28 13491.34 17194.17 20081.56 17094.39 16696.04 13688.81 7585.43 22993.97 18173.83 20297.96 17087.11 14589.77 22494.50 235
testing22284.84 28283.32 28789.43 25494.15 20375.94 30291.09 29789.41 36584.90 18085.78 21289.44 32652.70 37696.28 29370.80 33391.57 19496.07 169
WBMVS84.97 27984.18 27487.34 30694.14 20471.62 35590.20 31692.35 29281.61 26584.06 26890.76 29361.82 32496.52 27678.93 26683.81 28993.89 260
XVG-OURS89.40 14788.70 14791.52 16294.06 20581.46 17691.27 29296.07 13386.14 15288.89 14995.77 10868.73 27297.26 22987.39 13989.96 21795.83 180
sss88.93 16188.26 16390.94 19294.05 20680.78 19691.71 28095.38 19081.55 26788.63 15293.91 18675.04 18195.47 32982.47 20591.61 19396.57 148
PCF-MVS84.11 1087.74 19286.08 22892.70 10894.02 20784.43 9189.27 33595.87 15173.62 36184.43 25794.33 16478.48 14498.86 8470.27 33494.45 14894.81 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 21585.98 23291.08 18294.01 20883.10 12895.14 11894.94 21083.57 21084.37 25891.64 26166.59 29296.34 29078.23 27385.36 27793.79 269
test187.26 21585.98 23291.08 18294.01 20883.10 12895.14 11894.94 21083.57 21084.37 25891.64 26166.59 29296.34 29078.23 27385.36 27793.79 269
FMVSNet287.19 22385.82 23891.30 17294.01 20883.67 10894.79 13994.94 21083.57 21083.88 27392.05 25166.59 29296.51 27777.56 28085.01 28093.73 277
XVG-OURS-SEG-HR89.95 12889.45 12691.47 16694.00 21181.21 18491.87 27696.06 13585.78 15888.55 15395.73 11074.67 18897.27 22788.71 12389.64 22695.91 175
FIs90.51 11690.35 10690.99 18993.99 21280.98 18995.73 8397.54 489.15 6586.72 19194.68 15281.83 10897.24 23185.18 16688.31 24894.76 222
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12193.97 21384.46 8893.32 22395.46 18185.17 17292.25 9094.03 17470.59 23998.57 11190.97 9794.67 13994.18 246
xiu_mvs_v1_base90.64 11290.05 11492.40 12193.97 21384.46 8893.32 22395.46 18185.17 17292.25 9094.03 17470.59 23998.57 11190.97 9794.67 13994.18 246
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12193.97 21384.46 8893.32 22395.46 18185.17 17292.25 9094.03 17470.59 23998.57 11190.97 9794.67 13994.18 246
VPA-MVSNet89.62 13688.96 13991.60 16093.86 21682.89 14095.46 9797.33 2587.91 10688.43 15693.31 20374.17 19597.40 21787.32 14182.86 30594.52 232
MVSFormer91.68 9191.30 9092.80 10193.86 21683.88 10395.96 7395.90 14884.66 19091.76 10794.91 14077.92 14997.30 22389.64 11297.11 8797.24 111
lupinMVS90.92 10290.21 10893.03 8893.86 21683.88 10392.81 24893.86 25979.84 29091.76 10794.29 16777.92 14998.04 16490.48 10897.11 8797.17 115
IterMVS-LS88.36 17687.91 17089.70 24393.80 21978.29 26093.73 20895.08 20685.73 16084.75 24791.90 25579.88 12296.92 25483.83 18582.51 30693.89 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 28183.09 29290.14 22193.80 21980.05 21689.18 33893.09 27578.89 30378.19 34491.91 25465.86 30197.27 22768.47 34788.45 24493.11 301
FMVSNet387.40 21086.11 22691.30 17293.79 22183.64 11094.20 17894.81 22483.89 20384.37 25891.87 25668.45 27596.56 27378.23 27385.36 27793.70 279
fmvsm_s_conf0.1_n93.46 5493.66 5492.85 9993.75 22283.13 12796.02 6895.74 16087.68 11695.89 2598.17 282.78 8898.46 12096.71 1096.17 11096.98 128
FC-MVSNet-test90.27 11990.18 11090.53 20193.71 22379.85 22595.77 8297.59 389.31 5986.27 20294.67 15381.93 10797.01 24884.26 17988.09 25194.71 223
TAMVS89.21 15188.29 16191.96 14193.71 22382.62 15193.30 22794.19 24682.22 24387.78 16993.94 18278.83 13696.95 25277.70 27892.98 17696.32 154
ET-MVSNet_ETH3D87.51 20585.91 23692.32 12693.70 22583.93 10192.33 26390.94 33684.16 19672.09 37992.52 23069.90 24995.85 31189.20 11788.36 24797.17 115
test_fmvsmvis_n_192093.44 5693.55 5693.10 8393.67 22684.26 9595.83 7996.14 12489.00 7392.43 8997.50 2783.37 8098.72 9796.61 1297.44 8396.32 154
CDS-MVSNet89.45 14388.51 15292.29 12993.62 22783.61 11393.01 24094.68 23181.95 25087.82 16893.24 20778.69 13996.99 24980.34 24893.23 17296.28 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 13389.07 13792.01 13593.60 22884.52 8594.78 14097.47 1189.26 6186.44 19892.32 23682.10 10297.39 22084.81 17280.84 33494.12 250
VPNet88.20 18087.47 17990.39 21193.56 22979.46 23194.04 19195.54 17788.67 8286.96 18194.58 16069.33 25997.15 23684.05 18280.53 33994.56 230
thisisatest051587.33 21385.99 23191.37 17093.49 23079.55 22990.63 30589.56 36480.17 28587.56 17390.86 28767.07 28498.28 14081.50 22993.02 17596.29 156
mvs_anonymous89.37 14989.32 13289.51 25293.47 23174.22 32191.65 28394.83 22282.91 23085.45 22693.79 19081.23 11296.36 28986.47 15294.09 15297.94 77
CANet_DTU90.26 12089.41 12992.81 10093.46 23283.01 13693.48 21794.47 23589.43 5587.76 17094.23 17270.54 24399.03 5884.97 16896.39 10796.38 153
testing380.46 32979.59 32683.06 35893.44 23364.64 38993.33 22285.47 38484.34 19579.93 33190.84 28944.35 39492.39 36957.06 39287.56 25992.16 331
UniMVSNet_NR-MVSNet89.92 13089.29 13391.81 15493.39 23483.72 10694.43 16297.12 4189.80 4486.46 19593.32 20283.16 8197.23 23284.92 16981.02 33094.49 237
Effi-MVS+-dtu88.65 16888.35 15789.54 24993.33 23576.39 29794.47 15994.36 24087.70 11585.43 22989.56 32573.45 20797.26 22985.57 16491.28 19794.97 209
WR-MVS88.38 17487.67 17490.52 20393.30 23680.18 20993.26 23095.96 14388.57 8685.47 22592.81 22276.12 16496.91 25581.24 23282.29 31094.47 240
WR-MVS_H87.80 19087.37 18189.10 26193.23 23778.12 26395.61 9397.30 2987.90 10783.72 27692.01 25279.65 13096.01 30376.36 29280.54 33893.16 299
test_040281.30 32279.17 33287.67 29893.19 23878.17 26292.98 24191.71 31275.25 34476.02 36190.31 30459.23 34796.37 28750.22 39783.63 29488.47 382
OPM-MVS90.12 12289.56 12591.82 15293.14 23983.90 10294.16 17995.74 16088.96 7487.86 16595.43 12172.48 21997.91 17488.10 13190.18 21493.65 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet87.63 19887.26 18688.74 27293.12 24076.59 29495.29 10696.58 9188.43 8983.49 28492.98 21675.28 17895.83 31278.97 26581.15 32693.79 269
diffmvspermissive91.37 9591.23 9291.77 15593.09 24180.27 20792.36 26095.52 17987.03 12891.40 11594.93 13980.08 12097.44 20792.13 7494.56 14497.61 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
nrg03091.08 10190.39 10593.17 7993.07 24286.91 2296.41 3796.26 11488.30 9388.37 15794.85 14682.19 10097.64 18991.09 9582.95 30094.96 212
UWE-MVS83.69 29983.09 29285.48 33993.06 24365.27 38790.92 30086.14 37979.90 28986.26 20390.72 29657.17 35695.81 31471.03 33292.62 18395.35 198
PAPM86.68 24185.39 25090.53 20193.05 24479.33 23989.79 32594.77 22778.82 30581.95 30493.24 20776.81 15797.30 22366.94 35893.16 17394.95 215
DU-MVS89.34 15088.50 15391.85 15193.04 24583.72 10694.47 15996.59 9089.50 5386.46 19593.29 20577.25 15497.23 23284.92 16981.02 33094.59 227
NR-MVSNet88.58 17287.47 17991.93 14393.04 24584.16 9794.77 14196.25 11689.05 6880.04 32993.29 20579.02 13597.05 24681.71 22780.05 34494.59 227
jason90.80 10590.10 11292.90 9693.04 24583.53 11493.08 23794.15 24880.22 28491.41 11494.91 14076.87 15697.93 17390.28 10996.90 9497.24 111
jason: jason.
PS-CasMVS87.32 21486.88 19288.63 27592.99 24876.33 29995.33 10196.61 8988.22 9783.30 28993.07 21473.03 21395.79 31678.36 27081.00 33293.75 276
test_vis1_n_192089.39 14889.84 12088.04 29192.97 24972.64 34194.71 14596.03 13886.18 15091.94 10196.56 7861.63 32595.74 31893.42 4495.11 13295.74 184
MVSTER88.84 16288.29 16190.51 20492.95 25080.44 20493.73 20895.01 20784.66 19087.15 17993.12 21272.79 21597.21 23487.86 13287.36 26393.87 264
RPSCF85.07 27684.27 27387.48 30492.91 25170.62 36691.69 28292.46 29076.20 33682.67 29595.22 12863.94 31197.29 22677.51 28185.80 27494.53 231
FMVSNet185.85 26084.11 27691.08 18292.81 25283.10 12895.14 11894.94 21081.64 26382.68 29491.64 26159.01 34996.34 29075.37 30183.78 29093.79 269
tfpnnormal84.72 28483.23 29089.20 25892.79 25380.05 21694.48 15695.81 15482.38 23981.08 31491.21 27569.01 26896.95 25261.69 37980.59 33790.58 362
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8592.70 25485.39 6996.57 3596.43 9978.74 30880.85 31696.07 9469.64 25499.01 6378.01 27696.65 10294.83 219
TranMVSNet+NR-MVSNet88.84 16287.95 16891.49 16492.68 25583.01 13694.92 13096.31 10889.88 4085.53 22093.85 18976.63 16296.96 25181.91 22079.87 34794.50 235
MVS87.44 20886.10 22791.44 16792.61 25683.62 11192.63 25295.66 16867.26 38881.47 30892.15 24277.95 14898.22 14479.71 25595.48 12192.47 320
fmvsm_s_conf0.1_n_a93.19 6793.26 6092.97 9292.49 25783.62 11196.02 6895.72 16386.78 13596.04 2298.19 182.30 9698.43 12896.38 1395.42 12596.86 136
CHOSEN 280x42085.15 27583.99 27988.65 27492.47 25878.40 25679.68 40192.76 28474.90 34981.41 31089.59 32369.85 25295.51 32579.92 25495.29 12892.03 332
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5992.46 25984.80 7796.18 5196.82 6889.29 6095.68 2898.11 585.10 5798.99 7097.38 397.75 7997.86 83
UniMVSNet_ETH3D87.53 20486.37 21491.00 18892.44 26078.96 24594.74 14295.61 17284.07 19985.36 23694.52 16159.78 34497.34 22282.93 19687.88 25496.71 142
131487.51 20586.57 20790.34 21592.42 26179.74 22792.63 25295.35 19478.35 31480.14 32691.62 26574.05 19797.15 23681.05 23393.53 16294.12 250
cl2286.78 23685.98 23289.18 25992.34 26277.62 27990.84 30294.13 25081.33 27183.97 27290.15 31073.96 19996.60 27084.19 18082.94 30193.33 290
PEN-MVS86.80 23586.27 22088.40 27892.32 26375.71 30695.18 11596.38 10487.97 10482.82 29393.15 21073.39 20995.92 30776.15 29679.03 35493.59 281
tt080586.92 23185.74 24490.48 20692.22 26479.98 22195.63 9294.88 21883.83 20584.74 24892.80 22357.61 35497.67 18485.48 16584.42 28493.79 269
c3_l87.14 22586.50 21189.04 26392.20 26577.26 28391.22 29594.70 23082.01 24984.34 26290.43 30278.81 13796.61 26883.70 18881.09 32793.25 294
SCA86.32 25385.18 25689.73 24292.15 26676.60 29391.12 29691.69 31483.53 21385.50 22388.81 33666.79 28896.48 27976.65 28890.35 21296.12 165
XXY-MVS87.65 19586.85 19490.03 22692.14 26780.60 20193.76 20795.23 19782.94 22984.60 25094.02 17774.27 19195.49 32881.04 23483.68 29394.01 258
miper_ehance_all_eth87.22 22086.62 20589.02 26492.13 26877.40 28290.91 30194.81 22481.28 27284.32 26390.08 31379.26 13296.62 26583.81 18682.94 30193.04 304
IB-MVS80.51 1585.24 27483.26 28991.19 17692.13 26879.86 22491.75 27991.29 32783.28 22180.66 31988.49 34261.28 33098.46 12080.99 23779.46 35095.25 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 25284.98 26090.80 19592.10 27080.92 19290.24 31395.91 14773.10 36683.57 28288.39 34365.15 30497.46 20384.90 17191.43 19594.03 257
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24792.04 27177.68 27894.03 19293.94 25485.81 15782.42 29691.32 27370.33 24597.06 24480.33 24990.23 21394.14 249
cl____86.52 24785.78 23988.75 27092.03 27276.46 29590.74 30394.30 24281.83 25883.34 28790.78 29275.74 17496.57 27181.74 22581.54 32193.22 296
DIV-MVS_self_test86.53 24685.78 23988.75 27092.02 27376.45 29690.74 30394.30 24281.83 25883.34 28790.82 29075.75 17296.57 27181.73 22681.52 32293.24 295
eth_miper_zixun_eth86.50 24885.77 24188.68 27391.94 27475.81 30590.47 30794.89 21682.05 24684.05 26990.46 30175.96 16796.77 25982.76 20279.36 35193.46 288
Syy-MVS80.07 33379.78 32180.94 36791.92 27559.93 39889.75 32787.40 37681.72 26078.82 34087.20 36066.29 29691.29 37947.06 39987.84 25691.60 340
myMVS_eth3d79.67 33878.79 33782.32 36491.92 27564.08 39089.75 32787.40 37681.72 26078.82 34087.20 36045.33 39291.29 37959.09 38787.84 25691.60 340
PS-MVSNAJss89.97 12789.62 12391.02 18691.90 27780.85 19495.26 11095.98 14086.26 14886.21 20494.29 16779.70 12697.65 18788.87 12288.10 24994.57 229
ITE_SJBPF88.24 28691.88 27877.05 28692.92 27985.54 16680.13 32793.30 20457.29 35596.20 29572.46 32284.71 28291.49 343
EI-MVSNet89.10 15388.86 14589.80 23991.84 27978.30 25993.70 21195.01 20785.73 16087.15 17995.28 12579.87 12397.21 23483.81 18687.36 26393.88 263
CVMVSNet84.69 28584.79 26684.37 35091.84 27964.92 38893.70 21191.47 32366.19 39086.16 20695.28 12567.18 28393.33 36080.89 23990.42 21194.88 217
dmvs_re84.20 29083.22 29187.14 31691.83 28177.81 27290.04 32190.19 34884.70 18981.49 30789.17 32964.37 30991.13 38171.58 32585.65 27692.46 321
MVS-HIRNet73.70 35672.20 35978.18 37491.81 28256.42 40682.94 39282.58 39355.24 40068.88 38766.48 40355.32 36495.13 33358.12 38988.42 24583.01 391
PatchmatchNetpermissive85.85 26084.70 26789.29 25691.76 28375.54 30788.49 34791.30 32681.63 26485.05 24288.70 34071.71 22496.24 29474.61 31089.05 23696.08 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 28783.06 29488.54 27691.72 28478.44 25495.18 11592.82 28382.73 23479.67 33492.12 24473.49 20695.96 30571.10 33168.73 38591.21 349
IterMVS-SCA-FT85.45 26684.53 27288.18 28891.71 28576.87 28890.19 31792.65 28885.40 16981.44 30990.54 29866.79 28895.00 33781.04 23481.05 32892.66 315
TinyColmap79.76 33777.69 34085.97 33391.71 28573.12 33289.55 32990.36 34675.03 34672.03 38090.19 30846.22 39196.19 29763.11 37581.03 32988.59 381
MDTV_nov1_ep1383.56 28591.69 28769.93 37087.75 35991.54 32078.60 31084.86 24588.90 33569.54 25696.03 30170.25 33588.93 237
miper_enhance_ethall86.90 23286.18 22289.06 26291.66 28877.58 28090.22 31594.82 22379.16 29984.48 25489.10 33079.19 13496.66 26384.06 18182.94 30192.94 307
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28974.92 31394.93 12995.75 15987.36 12282.26 29893.04 21572.85 21495.82 31374.04 31277.46 36093.20 297
MIMVSNet82.59 30680.53 31188.76 26991.51 29078.32 25886.57 37090.13 35079.32 29580.70 31888.69 34152.98 37593.07 36566.03 36488.86 23894.90 216
WB-MVSnew83.77 29783.28 28885.26 34491.48 29171.03 36091.89 27487.98 37078.91 30184.78 24690.22 30669.11 26794.02 34964.70 37090.44 20990.71 357
pm-mvs186.61 24285.54 24689.82 23691.44 29280.18 20995.28 10894.85 22083.84 20481.66 30692.62 22772.45 22196.48 27979.67 25678.06 35592.82 312
Baseline_NR-MVSNet87.07 22786.63 20488.40 27891.44 29277.87 27094.23 17792.57 28984.12 19885.74 21492.08 24877.25 15496.04 30082.29 21079.94 34591.30 347
IterMVS84.88 28083.98 28087.60 29991.44 29276.03 30190.18 31892.41 29183.24 22281.06 31590.42 30366.60 29194.28 34679.46 25880.98 33392.48 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch85.05 27784.16 27587.73 29791.42 29578.51 25291.25 29393.53 26677.50 32280.15 32591.58 26761.99 32295.51 32575.69 29894.35 15089.16 375
tpm284.08 29182.94 29587.48 30491.39 29671.27 35689.23 33790.37 34571.95 37584.64 24989.33 32767.30 28096.55 27575.17 30387.09 26794.63 224
v887.50 20786.71 19989.89 23391.37 29779.40 23394.50 15595.38 19084.81 18583.60 28191.33 27176.05 16597.42 20982.84 19980.51 34192.84 311
ADS-MVSNet281.66 31579.71 32487.50 30291.35 29874.19 32283.33 38988.48 36872.90 36882.24 29985.77 37264.98 30593.20 36364.57 37183.74 29195.12 204
ADS-MVSNet81.56 31779.78 32186.90 32191.35 29871.82 34983.33 38989.16 36672.90 36882.24 29985.77 37264.98 30593.76 35464.57 37183.74 29195.12 204
GA-MVS86.61 24285.27 25590.66 19791.33 30078.71 24790.40 30893.81 26285.34 17085.12 23989.57 32461.25 33197.11 24080.99 23789.59 22796.15 162
miper_lstm_enhance85.27 27384.59 27087.31 30791.28 30174.63 31687.69 36094.09 25281.20 27681.36 31189.85 31974.97 18394.30 34581.03 23679.84 34893.01 305
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25391.20 30278.00 26591.70 28195.55 17585.05 17882.97 29192.25 24054.49 36997.48 20082.93 19687.45 26292.89 309
v1087.25 21786.38 21389.85 23491.19 30379.50 23094.48 15695.45 18483.79 20683.62 28091.19 27675.13 17997.42 20981.94 21980.60 33692.63 316
FMVSNet581.52 31879.60 32587.27 30891.17 30477.95 26691.49 28692.26 29876.87 32876.16 35887.91 35251.67 37792.34 37067.74 35381.16 32491.52 342
USDC82.76 30381.26 30887.26 30991.17 30474.55 31789.27 33593.39 26978.26 31775.30 36592.08 24854.43 37096.63 26471.64 32485.79 27590.61 359
CostFormer85.77 26284.94 26288.26 28591.16 30672.58 34489.47 33391.04 33376.26 33586.45 19789.97 31670.74 23796.86 25882.35 20887.07 26895.34 199
test_cas_vis1_n_192088.83 16588.85 14688.78 26891.15 30776.72 29193.85 20494.93 21483.23 22392.81 7696.00 9661.17 33594.45 34091.67 8994.84 13695.17 203
baseline286.50 24885.39 25089.84 23591.12 30876.70 29291.88 27588.58 36782.35 24179.95 33090.95 28673.42 20897.63 19080.27 25089.95 21895.19 202
tpm cat181.96 30980.27 31587.01 31791.09 30971.02 36187.38 36491.53 32166.25 38980.17 32486.35 36868.22 27796.15 29869.16 34382.29 31093.86 266
tpmvs83.35 30282.07 30187.20 31491.07 31071.00 36288.31 35091.70 31378.91 30180.49 32287.18 36269.30 26297.08 24168.12 35283.56 29593.51 286
v114487.61 20186.79 19790.06 22591.01 31179.34 23693.95 19895.42 18983.36 21985.66 21691.31 27474.98 18297.42 20983.37 19082.06 31293.42 289
v2v48287.84 18887.06 18890.17 21890.99 31279.23 24394.00 19695.13 20184.87 18285.53 22092.07 25074.45 18997.45 20484.71 17481.75 31893.85 267
SixPastTwentyTwo83.91 29582.90 29786.92 32090.99 31270.67 36593.48 21791.99 30685.54 16677.62 35092.11 24660.59 33896.87 25776.05 29777.75 35793.20 297
test-LLR85.87 25985.41 24987.25 31090.95 31471.67 35389.55 32989.88 35883.41 21684.54 25287.95 35067.25 28195.11 33481.82 22293.37 16994.97 209
test-mter84.54 28683.64 28487.25 31090.95 31471.67 35389.55 32989.88 35879.17 29884.54 25287.95 35055.56 36195.11 33481.82 22293.37 16994.97 209
v14887.04 22886.32 21789.21 25790.94 31677.26 28393.71 21094.43 23684.84 18484.36 26190.80 29176.04 16697.05 24682.12 21379.60 34993.31 291
mvs_tets88.06 18587.28 18490.38 21390.94 31679.88 22395.22 11295.66 16885.10 17684.21 26793.94 18263.53 31397.40 21788.50 12588.40 24693.87 264
MVP-Stereo85.97 25784.86 26489.32 25590.92 31882.19 15992.11 27194.19 24678.76 30778.77 34391.63 26468.38 27696.56 27375.01 30693.95 15489.20 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 32079.30 32887.58 30090.92 31874.16 32380.99 39687.68 37470.52 38176.63 35688.81 33671.21 22992.76 36760.01 38586.93 26995.83 180
jajsoiax88.24 17987.50 17790.48 20690.89 32080.14 21195.31 10295.65 17084.97 17984.24 26694.02 17765.31 30397.42 20988.56 12488.52 24293.89 260
tpmrst85.35 27084.99 25986.43 32990.88 32167.88 37788.71 34491.43 32480.13 28686.08 20788.80 33873.05 21296.02 30282.48 20483.40 29995.40 195
gg-mvs-nofinetune81.77 31279.37 32788.99 26590.85 32277.73 27786.29 37179.63 40074.88 35083.19 29069.05 40260.34 33996.11 29975.46 30094.64 14293.11 301
D2MVS85.90 25885.09 25888.35 28090.79 32377.42 28191.83 27795.70 16480.77 28080.08 32890.02 31466.74 29096.37 28781.88 22187.97 25391.26 348
OurMVSNet-221017-085.35 27084.64 26987.49 30390.77 32472.59 34394.01 19494.40 23884.72 18879.62 33693.17 20961.91 32396.72 26081.99 21881.16 32493.16 299
v119287.25 21786.33 21690.00 23090.76 32579.04 24493.80 20595.48 18082.57 23685.48 22491.18 27873.38 21097.42 20982.30 20982.06 31293.53 283
test_djsdf89.03 15888.64 14890.21 21790.74 32679.28 24095.96 7395.90 14884.66 19085.33 23792.94 21774.02 19897.30 22389.64 11288.53 24194.05 256
v7n86.81 23485.76 24289.95 23190.72 32779.25 24295.07 12195.92 14584.45 19382.29 29790.86 28772.60 21897.53 19679.42 26280.52 34093.08 303
PVSNet_073.20 2077.22 34974.83 35584.37 35090.70 32871.10 35983.09 39189.67 36172.81 37073.93 37383.13 38360.79 33793.70 35668.54 34650.84 40488.30 383
v14419287.19 22386.35 21589.74 24090.64 32978.24 26193.92 20195.43 18781.93 25185.51 22291.05 28474.21 19497.45 20482.86 19881.56 32093.53 283
test_fmvs187.34 21287.56 17686.68 32690.59 33071.80 35094.01 19494.04 25378.30 31591.97 9895.22 12856.28 35993.71 35592.89 5294.71 13894.52 232
V4287.68 19386.86 19390.15 22090.58 33180.14 21194.24 17695.28 19583.66 20885.67 21591.33 27174.73 18697.41 21584.43 17881.83 31692.89 309
CR-MVSNet85.35 27083.76 28290.12 22290.58 33179.34 23685.24 37991.96 30978.27 31685.55 21887.87 35371.03 23295.61 32173.96 31489.36 23095.40 195
RPMNet83.95 29481.53 30591.21 17590.58 33179.34 23685.24 37996.76 7571.44 37785.55 21882.97 38670.87 23598.91 8061.01 38189.36 23095.40 195
v192192086.97 23086.06 22989.69 24490.53 33478.11 26493.80 20595.43 18781.90 25385.33 23791.05 28472.66 21697.41 21582.05 21781.80 31793.53 283
v124086.78 23685.85 23789.56 24890.45 33577.79 27493.61 21395.37 19281.65 26285.43 22991.15 28071.50 22797.43 20881.47 23082.05 31493.47 287
tpm84.73 28384.02 27886.87 32390.33 33668.90 37389.06 34089.94 35580.85 27985.75 21389.86 31868.54 27495.97 30477.76 27784.05 28895.75 183
EG-PatchMatch MVS82.37 30880.34 31488.46 27790.27 33779.35 23592.80 24994.33 24177.14 32773.26 37690.18 30947.47 38796.72 26070.25 33587.32 26589.30 371
EPNet_dtu86.49 25085.94 23588.14 28990.24 33872.82 33694.11 18392.20 29986.66 13979.42 33792.36 23573.52 20595.81 31471.26 32693.66 15895.80 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 29682.70 30087.51 30190.23 33972.67 33988.62 34681.96 39581.37 27085.01 24388.34 34466.31 29594.45 34075.30 30287.12 26695.43 194
EPNet91.79 8691.02 9794.10 5490.10 34085.25 7196.03 6792.05 30392.83 287.39 17895.78 10779.39 13199.01 6388.13 12997.48 8298.05 71
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 30581.27 30786.89 32290.09 34170.94 36384.06 38690.15 34974.91 34885.63 21783.57 38169.37 25894.87 33965.19 36688.50 24394.84 218
Patchmtry82.71 30480.93 31088.06 29090.05 34276.37 29884.74 38491.96 30972.28 37481.32 31287.87 35371.03 23295.50 32768.97 34480.15 34392.32 327
pmmvs485.43 26783.86 28190.16 21990.02 34382.97 13890.27 30992.67 28775.93 33880.73 31791.74 25971.05 23195.73 31978.85 26783.46 29791.78 336
TESTMET0.1,183.74 29882.85 29886.42 33089.96 34471.21 35889.55 32987.88 37177.41 32383.37 28687.31 35856.71 35793.65 35780.62 24492.85 18094.40 241
dp81.47 31980.23 31685.17 34589.92 34565.49 38586.74 36890.10 35176.30 33481.10 31387.12 36362.81 31895.92 30768.13 35179.88 34694.09 253
K. test v381.59 31680.15 31885.91 33689.89 34669.42 37292.57 25487.71 37385.56 16573.44 37589.71 32255.58 36095.52 32477.17 28469.76 37992.78 313
MDA-MVSNet-bldmvs78.85 34376.31 34886.46 32789.76 34773.88 32488.79 34390.42 34479.16 29959.18 39888.33 34560.20 34094.04 34862.00 37868.96 38391.48 344
test_fmvs1_n87.03 22987.04 19086.97 31889.74 34871.86 34894.55 15394.43 23678.47 31191.95 10095.50 11851.16 37993.81 35393.02 5194.56 14495.26 200
GG-mvs-BLEND87.94 29489.73 34977.91 26787.80 35578.23 40480.58 32083.86 37959.88 34395.33 33171.20 32792.22 18990.60 361
EGC-MVSNET61.97 36856.37 37378.77 37289.63 35073.50 32889.12 33982.79 3920.21 4181.24 41984.80 37639.48 39790.04 38644.13 40175.94 36872.79 400
gm-plane-assit89.60 35168.00 37577.28 32688.99 33397.57 19379.44 260
MonoMVSNet86.89 23386.55 20887.92 29589.46 35273.75 32594.12 18193.10 27487.82 11285.10 24090.76 29369.59 25594.94 33886.47 15282.50 30795.07 206
test_fmvsmconf0.01_n93.19 6793.02 6693.71 6789.25 35384.42 9396.06 6496.29 10989.06 6794.68 3798.13 379.22 13398.98 7497.22 497.24 8697.74 90
anonymousdsp87.84 18887.09 18790.12 22289.13 35480.54 20294.67 14795.55 17582.05 24683.82 27492.12 24471.47 22897.15 23687.15 14387.80 25892.67 314
N_pmnet68.89 36268.44 36470.23 38289.07 35528.79 42188.06 35219.50 42169.47 38471.86 38184.93 37561.24 33291.75 37654.70 39477.15 36190.15 363
pmmvs584.21 28982.84 29988.34 28288.95 35676.94 28792.41 25791.91 31175.63 34080.28 32391.18 27864.59 30795.57 32277.09 28683.47 29692.53 318
PMMVS85.71 26384.96 26187.95 29388.90 35777.09 28588.68 34590.06 35272.32 37386.47 19490.76 29372.15 22294.40 34281.78 22493.49 16492.36 325
JIA-IIPM81.04 32378.98 33687.25 31088.64 35873.48 32981.75 39589.61 36373.19 36582.05 30273.71 39866.07 30095.87 31071.18 32984.60 28392.41 323
test_vis1_n86.56 24586.49 21286.78 32588.51 35972.69 33894.68 14693.78 26379.55 29490.70 12195.31 12448.75 38493.28 36193.15 4893.99 15394.38 242
Gipumacopyleft57.99 37454.91 37667.24 38888.51 35965.59 38452.21 40990.33 34743.58 40642.84 40951.18 41020.29 41285.07 40034.77 40770.45 37751.05 409
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 32180.95 30982.42 36388.50 36163.67 39293.32 22391.33 32564.02 39380.57 32192.83 22061.21 33392.27 37176.34 29380.38 34291.32 346
our_test_381.93 31080.46 31386.33 33188.46 36273.48 32988.46 34891.11 32976.46 33076.69 35588.25 34666.89 28694.36 34368.75 34579.08 35391.14 351
ppachtmachnet_test81.84 31180.07 31987.15 31588.46 36274.43 32089.04 34192.16 30075.33 34377.75 34888.99 33366.20 29795.37 33065.12 36877.60 35891.65 338
lessismore_v086.04 33288.46 36268.78 37480.59 39873.01 37790.11 31255.39 36296.43 28475.06 30565.06 39092.90 308
test0.0.03 182.41 30781.69 30384.59 34888.23 36572.89 33590.24 31387.83 37283.41 21679.86 33289.78 32067.25 28188.99 39265.18 36783.42 29891.90 335
MDA-MVSNet_test_wron79.21 34277.19 34485.29 34288.22 36672.77 33785.87 37390.06 35274.34 35362.62 39587.56 35666.14 29891.99 37466.90 36173.01 37191.10 354
YYNet179.22 34177.20 34385.28 34388.20 36772.66 34085.87 37390.05 35474.33 35462.70 39387.61 35566.09 29992.03 37266.94 35872.97 37291.15 350
pmmvs683.42 30081.60 30488.87 26788.01 36877.87 27094.96 12794.24 24574.67 35178.80 34291.09 28360.17 34196.49 27877.06 28775.40 36992.23 329
testgi80.94 32780.20 31783.18 35687.96 36966.29 38291.28 29190.70 34283.70 20778.12 34592.84 21951.37 37890.82 38363.34 37482.46 30892.43 322
mvsany_test185.42 26885.30 25485.77 33787.95 37075.41 30987.61 36380.97 39776.82 32988.68 15195.83 10477.44 15390.82 38385.90 15986.51 27091.08 355
Anonymous2023120681.03 32479.77 32384.82 34787.85 37170.26 36891.42 28792.08 30273.67 36077.75 34889.25 32862.43 32093.08 36461.50 38082.00 31591.12 352
dmvs_testset74.57 35575.81 35370.86 38187.72 37240.47 41687.05 36777.90 40682.75 23371.15 38485.47 37467.98 27884.12 40345.26 40076.98 36488.00 384
test_fmvs283.98 29284.03 27783.83 35587.16 37367.53 38193.93 20092.89 28077.62 32186.89 18793.53 19747.18 38892.02 37390.54 10586.51 27091.93 334
OpenMVS_ROBcopyleft74.94 1979.51 33977.03 34686.93 31987.00 37476.23 30092.33 26390.74 34168.93 38574.52 37088.23 34749.58 38296.62 26557.64 39084.29 28587.94 385
LF4IMVS80.37 33179.07 33584.27 35286.64 37569.87 37189.39 33491.05 33276.38 33274.97 36790.00 31547.85 38694.25 34774.55 31180.82 33588.69 380
MIMVSNet179.38 34077.28 34285.69 33886.35 37673.67 32691.61 28492.75 28578.11 32072.64 37888.12 34848.16 38591.97 37560.32 38277.49 35991.43 345
KD-MVS_2432*160078.50 34476.02 35185.93 33486.22 37774.47 31884.80 38292.33 29379.29 29676.98 35385.92 37053.81 37393.97 35067.39 35457.42 39989.36 369
miper_refine_blended78.50 34476.02 35185.93 33486.22 37774.47 31884.80 38292.33 29379.29 29676.98 35385.92 37053.81 37393.97 35067.39 35457.42 39989.36 369
CL-MVSNet_self_test81.74 31380.53 31185.36 34185.96 37972.45 34590.25 31193.07 27681.24 27479.85 33387.29 35970.93 23492.52 36866.95 35769.23 38191.11 353
test_vis1_rt77.96 34776.46 34782.48 36285.89 38071.74 35290.25 31178.89 40171.03 38071.30 38381.35 39042.49 39691.05 38284.55 17682.37 30984.65 388
test20.0379.95 33579.08 33482.55 36085.79 38167.74 37991.09 29791.08 33081.23 27574.48 37189.96 31761.63 32590.15 38560.08 38376.38 36589.76 366
Anonymous2024052180.44 33079.21 33084.11 35385.75 38267.89 37692.86 24793.23 27275.61 34175.59 36487.47 35750.03 38094.33 34471.14 33081.21 32390.12 364
KD-MVS_self_test80.20 33279.24 32983.07 35785.64 38365.29 38691.01 29993.93 25578.71 30976.32 35786.40 36759.20 34892.93 36672.59 32169.35 38091.00 356
Patchmatch-RL test81.67 31479.96 32086.81 32485.42 38471.23 35782.17 39487.50 37578.47 31177.19 35282.50 38870.81 23693.48 35882.66 20372.89 37395.71 187
UnsupCasMVSNet_eth80.07 33378.27 33985.46 34085.24 38572.63 34288.45 34994.87 21982.99 22871.64 38288.07 34956.34 35891.75 37673.48 31863.36 39392.01 333
pmmvs-eth3d80.97 32678.72 33887.74 29684.99 38679.97 22290.11 31991.65 31675.36 34273.51 37486.03 36959.45 34593.96 35275.17 30372.21 37489.29 373
mvs5depth80.98 32579.15 33386.45 32884.57 38773.29 33187.79 35691.67 31580.52 28282.20 30189.72 32155.14 36695.93 30673.93 31566.83 38790.12 364
CMPMVSbinary59.16 2180.52 32879.20 33184.48 34983.98 38867.63 38089.95 32493.84 26164.79 39266.81 39091.14 28157.93 35395.17 33276.25 29488.10 24990.65 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 35373.27 35785.09 34683.79 38972.92 33485.65 37693.47 26871.52 37668.84 38879.08 39349.77 38193.21 36266.81 36260.52 39689.13 377
PM-MVS78.11 34676.12 35084.09 35483.54 39070.08 36988.97 34285.27 38679.93 28874.73 36986.43 36634.70 40293.48 35879.43 26172.06 37588.72 379
dongtai58.82 37358.24 37160.56 39083.13 39145.09 41482.32 39348.22 42067.61 38761.70 39769.15 40138.75 39876.05 40932.01 40841.31 40860.55 405
DSMNet-mixed76.94 35076.29 34978.89 37183.10 39256.11 40787.78 35779.77 39960.65 39775.64 36388.71 33961.56 32788.34 39360.07 38489.29 23292.21 330
new_pmnet72.15 35870.13 36178.20 37382.95 39365.68 38383.91 38782.40 39462.94 39564.47 39279.82 39242.85 39586.26 39857.41 39174.44 37082.65 393
new-patchmatchnet76.41 35275.17 35480.13 36882.65 39459.61 39987.66 36191.08 33078.23 31869.85 38683.22 38254.76 36791.63 37864.14 37364.89 39189.16 375
m2depth76.55 35174.64 35682.29 36582.25 39567.81 37889.76 32685.69 38270.35 38275.76 36291.69 26046.88 38989.77 38766.16 36363.23 39489.30 371
WB-MVS67.92 36367.49 36569.21 38581.09 39641.17 41588.03 35378.00 40573.50 36262.63 39483.11 38563.94 31186.52 39625.66 41151.45 40379.94 396
SSC-MVS67.06 36466.56 36668.56 38780.54 39740.06 41787.77 35877.37 40872.38 37261.75 39682.66 38763.37 31486.45 39724.48 41248.69 40679.16 398
APD_test169.04 36166.26 36777.36 37680.51 39862.79 39585.46 37883.51 39154.11 40259.14 39984.79 37723.40 40989.61 38855.22 39370.24 37879.68 397
ambc83.06 35879.99 39963.51 39377.47 40292.86 28174.34 37284.45 37828.74 40395.06 33673.06 32068.89 38490.61 359
test_fmvs377.67 34877.16 34579.22 37079.52 40061.14 39692.34 26291.64 31773.98 35778.86 33986.59 36427.38 40687.03 39488.12 13075.97 36789.50 368
TDRefinement79.81 33677.34 34187.22 31379.24 40175.48 30893.12 23492.03 30476.45 33175.01 36691.58 26749.19 38396.44 28370.22 33769.18 38289.75 367
MVStest172.91 35769.70 36282.54 36178.14 40273.05 33388.21 35186.21 37860.69 39664.70 39190.53 29946.44 39085.70 39958.78 38853.62 40188.87 378
kuosan53.51 37553.30 37854.13 39476.06 40345.36 41380.11 40048.36 41959.63 39854.84 40063.43 40737.41 39962.07 41420.73 41439.10 40954.96 408
pmmvs371.81 36068.71 36381.11 36675.86 40470.42 36786.74 36883.66 39058.95 39968.64 38980.89 39136.93 40089.52 38963.10 37663.59 39283.39 389
mvsany_test374.95 35473.26 35880.02 36974.61 40563.16 39485.53 37778.42 40274.16 35574.89 36886.46 36536.02 40189.09 39182.39 20766.91 38687.82 386
DeepMVS_CXcopyleft56.31 39374.23 40651.81 40956.67 41744.85 40548.54 40575.16 39627.87 40558.74 41540.92 40552.22 40258.39 407
test_f71.95 35970.87 36075.21 37774.21 40759.37 40085.07 38185.82 38165.25 39170.42 38583.13 38323.62 40782.93 40578.32 27171.94 37683.33 390
test_vis3_rt65.12 36662.60 36872.69 37971.44 40860.71 39787.17 36565.55 41263.80 39453.22 40265.65 40514.54 41689.44 39076.65 28865.38 38967.91 403
FPMVS64.63 36762.55 36970.88 38070.80 40956.71 40284.42 38584.42 38851.78 40349.57 40381.61 38923.49 40881.48 40640.61 40676.25 36674.46 399
testf159.54 37056.11 37469.85 38369.28 41056.61 40480.37 39876.55 40942.58 40745.68 40675.61 39411.26 41784.18 40143.20 40360.44 39768.75 401
APD_test259.54 37056.11 37469.85 38369.28 41056.61 40480.37 39876.55 40942.58 40745.68 40675.61 39411.26 41784.18 40143.20 40360.44 39768.75 401
PMMVS259.60 36956.40 37269.21 38568.83 41246.58 41173.02 40677.48 40755.07 40149.21 40472.95 40017.43 41480.04 40749.32 39844.33 40780.99 395
wuyk23d21.27 38320.48 38623.63 39868.59 41336.41 41949.57 4106.85 4229.37 4147.89 4164.46 4184.03 42131.37 41617.47 41616.07 4153.12 413
E-PMN43.23 37942.29 38146.03 39565.58 41437.41 41873.51 40464.62 41333.99 41028.47 41447.87 41119.90 41367.91 41122.23 41324.45 41132.77 410
LCM-MVSNet66.00 36562.16 37077.51 37564.51 41558.29 40183.87 38890.90 33748.17 40454.69 40173.31 39916.83 41586.75 39565.47 36561.67 39587.48 387
EMVS42.07 38041.12 38244.92 39663.45 41635.56 42073.65 40363.48 41433.05 41126.88 41545.45 41221.27 41167.14 41219.80 41523.02 41332.06 411
MVEpermissive39.65 2343.39 37838.59 38457.77 39156.52 41748.77 41055.38 40858.64 41629.33 41228.96 41352.65 4094.68 42064.62 41328.11 41033.07 41059.93 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 37254.22 37772.86 37856.50 41856.67 40380.75 39786.00 38073.09 36737.39 41064.63 40622.17 41079.49 40843.51 40223.96 41282.43 394
test_method50.52 37748.47 37956.66 39252.26 41918.98 42341.51 41181.40 39610.10 41344.59 40875.01 39728.51 40468.16 41053.54 39549.31 40582.83 392
PMVScopyleft47.18 2252.22 37648.46 38063.48 38945.72 42046.20 41273.41 40578.31 40341.03 40930.06 41265.68 4046.05 41983.43 40430.04 40965.86 38860.80 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 38139.24 38324.84 39714.87 42123.90 42262.71 40751.51 4186.58 41536.66 41162.08 40844.37 39330.34 41752.40 39622.00 41420.27 412
testmvs8.92 38411.52 3871.12 4001.06 4220.46 42586.02 3720.65 4230.62 4162.74 4179.52 4160.31 4230.45 4192.38 4170.39 4162.46 415
test1238.76 38511.22 3881.39 3990.85 4230.97 42485.76 3750.35 4240.54 4172.45 4188.14 4170.60 4220.48 4182.16 4180.17 4172.71 414
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
eth-test20.00 424
eth-test0.00 424
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
cdsmvs_eth3d_5k22.14 38229.52 3850.00 4010.00 4240.00 4260.00 41295.76 1580.00 4190.00 42094.29 16775.66 1750.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas6.64 3878.86 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41979.70 1260.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
ab-mvs-re7.82 38610.43 3890.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42093.88 1870.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS64.08 39059.14 386
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16492.70 5899.02 1298.86 11
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
GSMVS96.12 165
sam_mvs171.70 22596.12 165
sam_mvs70.60 238
MTGPAbinary96.97 50
test_post188.00 3549.81 41569.31 26195.53 32376.65 288
test_post10.29 41470.57 24295.91 309
patchmatchnet-post83.76 38071.53 22696.48 279
MTMP96.16 5260.64 415
test9_res91.91 8398.71 3298.07 69
agg_prior290.54 10598.68 3798.27 53
test_prior485.96 5494.11 183
test_prior294.12 18187.67 11792.63 8396.39 8286.62 3891.50 9198.67 40
旧先验293.36 22171.25 37894.37 4097.13 23986.74 148
新几何293.11 236
无先验93.28 22996.26 11473.95 35899.05 5580.56 24596.59 146
原ACMM292.94 243
testdata298.75 9478.30 272
segment_acmp87.16 36
testdata192.15 26987.94 105
plane_prior596.22 11998.12 14988.15 12789.99 21594.63 224
plane_prior494.86 144
plane_prior382.75 14290.26 3386.91 184
plane_prior295.85 7790.81 17
plane_prior82.73 14595.21 11389.66 5189.88 220
n20.00 425
nn0.00 425
door-mid85.49 383
test1196.57 92
door85.33 385
HQP5-MVS81.56 170
BP-MVS87.11 145
HQP4-MVS85.43 22997.96 17094.51 234
HQP3-MVS96.04 13689.77 224
HQP2-MVS73.83 202
MDTV_nov1_ep13_2view55.91 40887.62 36273.32 36484.59 25170.33 24574.65 30995.50 192
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 121