| FOURS1 | | | | | | 98.86 1 | 85.54 67 | 98.29 1 | 97.49 6 | 89.79 47 | 96.29 18 | | | | | | |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 39 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 21 | 99.08 7 | 98.99 9 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 39 | 98.78 3 | 85.93 55 | 97.09 16 | 96.73 79 | 90.27 31 | 97.04 11 | 98.05 13 | 91.47 8 | 99.55 16 | 95.62 21 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.78 3 | 85.93 55 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 3 | 91.47 8 | | | | |
|
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 33 | 98.77 5 | 85.99 52 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 9 | 92.31 4 | 99.58 10 | 95.66 17 | 99.13 3 | 98.84 14 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 50 | | 96.84 65 | 81.26 273 | 97.26 7 | | | | 95.50 23 | 99.13 3 | 99.03 8 |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 52 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 17 | 92.31 4 | 99.38 31 | | | |
|
| region2R | | | 94.43 23 | 94.27 31 | 94.92 20 | 98.65 8 | 86.67 30 | 96.92 24 | 97.23 34 | 88.60 85 | 93.58 58 | 97.27 37 | 85.22 55 | 99.54 20 | 92.21 69 | 98.74 31 | 98.56 25 |
|
| ACMMPR | | | 94.43 23 | 94.28 29 | 94.91 21 | 98.63 9 | 86.69 28 | 96.94 20 | 97.32 27 | 88.63 83 | 93.53 61 | 97.26 39 | 85.04 59 | 99.54 20 | 92.35 65 | 98.78 26 | 98.50 27 |
|
| HFP-MVS | | | 94.52 19 | 94.40 23 | 94.86 24 | 98.61 10 | 86.81 25 | 96.94 20 | 97.34 23 | 88.63 83 | 93.65 56 | 97.21 41 | 86.10 45 | 99.49 26 | 92.35 65 | 98.77 28 | 98.30 48 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 61 | | 97.44 15 | 91.05 14 | 96.78 15 | 98.06 11 | 91.45 11 | | | | |
|
| test_part2 | | | | | | 98.55 12 | 87.22 19 | | | | 96.40 17 | | | | | | |
|
| XVS | | | 94.45 21 | 94.32 25 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 73 | 97.16 47 | 85.02 60 | 99.49 26 | 91.99 79 | 98.56 50 | 98.47 33 |
|
| X-MVStestdata | | | 88.31 177 | 86.13 224 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 73 | 23.41 413 | 85.02 60 | 99.49 26 | 91.99 79 | 98.56 50 | 98.47 33 |
|
| ZNCC-MVS | | | 94.47 20 | 94.28 29 | 95.03 16 | 98.52 15 | 86.96 20 | 96.85 28 | 97.32 27 | 88.24 95 | 93.15 66 | 97.04 52 | 86.17 44 | 99.62 2 | 92.40 62 | 98.81 23 | 98.52 26 |
|
| mPP-MVS | | | 93.99 41 | 93.78 48 | 94.63 40 | 98.50 16 | 85.90 60 | 96.87 26 | 96.91 58 | 88.70 81 | 91.83 106 | 97.17 46 | 83.96 74 | 99.55 16 | 91.44 92 | 98.64 45 | 98.43 38 |
|
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 36 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 20 | 96.69 66 | 89.90 12 | 99.30 40 | 94.70 28 | 98.04 68 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MP-MVS |  | | 94.25 28 | 94.07 39 | 94.77 35 | 98.47 18 | 86.31 44 | 96.71 31 | 96.98 49 | 89.04 69 | 91.98 97 | 97.19 44 | 85.43 53 | 99.56 12 | 92.06 78 | 98.79 24 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MCST-MVS | | | 94.45 21 | 94.20 35 | 95.19 13 | 98.46 19 | 87.50 16 | 95.00 125 | 97.12 41 | 87.13 125 | 92.51 87 | 96.30 83 | 89.24 17 | 99.34 34 | 93.46 42 | 98.62 46 | 98.73 18 |
|
| PGM-MVS | | | 93.96 43 | 93.72 51 | 94.68 38 | 98.43 20 | 86.22 47 | 95.30 104 | 97.78 1 | 87.45 121 | 93.26 63 | 97.33 35 | 84.62 67 | 99.51 24 | 90.75 104 | 98.57 49 | 98.32 47 |
|
| MTAPA | | | 94.42 25 | 94.22 32 | 95.00 18 | 98.42 21 | 86.95 21 | 94.36 171 | 96.97 50 | 91.07 13 | 93.14 67 | 97.56 26 | 84.30 70 | 99.56 12 | 93.43 43 | 98.75 30 | 98.47 33 |
|
| GST-MVS | | | 94.21 31 | 93.97 43 | 94.90 23 | 98.41 22 | 86.82 24 | 96.54 36 | 97.19 35 | 88.24 95 | 93.26 63 | 96.83 61 | 85.48 52 | 99.59 8 | 91.43 93 | 98.40 54 | 98.30 48 |
|
| HPM-MVS |  | | 94.02 39 | 93.88 44 | 94.43 47 | 98.39 23 | 85.78 63 | 97.25 10 | 97.07 45 | 86.90 133 | 92.62 84 | 96.80 65 | 84.85 65 | 99.17 47 | 92.43 60 | 98.65 44 | 98.33 44 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 94.34 26 | 94.21 34 | 94.74 37 | 98.39 23 | 86.64 32 | 97.60 4 | 97.24 32 | 88.53 87 | 92.73 81 | 97.23 40 | 85.20 56 | 99.32 38 | 92.15 72 | 98.83 22 | 98.25 58 |
|
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 11 | 98.36 25 | 87.28 18 | 95.56 96 | 97.51 5 | 89.13 66 | 97.14 9 | 97.91 18 | 91.64 7 | 99.62 2 | 94.61 30 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HPM-MVS_fast | | | 93.40 61 | 93.22 62 | 93.94 58 | 98.36 25 | 84.83 76 | 97.15 13 | 96.80 71 | 85.77 159 | 92.47 88 | 97.13 48 | 82.38 92 | 99.07 53 | 90.51 107 | 98.40 54 | 97.92 80 |
|
| DP-MVS Recon | | | 91.95 84 | 91.28 91 | 93.96 57 | 98.33 27 | 85.92 57 | 94.66 148 | 96.66 85 | 82.69 235 | 90.03 134 | 95.82 105 | 82.30 96 | 99.03 58 | 84.57 175 | 96.48 106 | 96.91 133 |
|
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 46 | 97.46 6 | 97.40 20 | 89.03 71 | 96.20 19 | 98.10 7 | 89.39 16 | 99.34 34 | 95.88 16 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| TSAR-MVS + MP. | | | 94.85 14 | 94.94 12 | 94.58 42 | 98.25 29 | 86.33 42 | 96.11 59 | 96.62 88 | 88.14 100 | 96.10 20 | 96.96 55 | 89.09 18 | 98.94 78 | 94.48 31 | 98.68 37 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 75 | 96.96 52 | 91.75 9 | 94.02 50 | 96.83 61 | 88.12 24 | 99.55 16 | 93.41 45 | 98.94 16 | 98.28 51 |
|
| CPTT-MVS | | | 91.99 83 | 91.80 84 | 92.55 115 | 98.24 31 | 81.98 163 | 96.76 30 | 96.49 97 | 81.89 255 | 90.24 127 | 96.44 81 | 78.59 141 | 98.61 108 | 89.68 111 | 97.85 74 | 97.06 122 |
|
| SR-MVS | | | 94.23 30 | 94.17 37 | 94.43 47 | 98.21 32 | 85.78 63 | 96.40 38 | 96.90 59 | 88.20 98 | 94.33 41 | 97.40 32 | 84.75 66 | 99.03 58 | 93.35 46 | 97.99 69 | 98.48 30 |
|
| MP-MVS-pluss | | | 94.21 31 | 94.00 42 | 94.85 25 | 98.17 33 | 86.65 31 | 94.82 137 | 97.17 39 | 86.26 148 | 92.83 75 | 97.87 20 | 85.57 51 | 99.56 12 | 94.37 33 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ZD-MVS | | | | | | 98.15 34 | 86.62 33 | | 97.07 45 | 83.63 209 | 94.19 44 | 96.91 57 | 87.57 31 | 99.26 42 | 91.99 79 | 98.44 53 | |
|
| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 46 | 97.28 31 | 85.90 156 | 97.67 3 | 98.10 7 | 88.41 20 | 99.56 12 | 94.66 29 | 99.19 1 | 98.71 20 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 106 | 96.96 52 | 92.09 6 | 95.32 32 | 97.08 49 | 89.49 15 | 99.33 37 | 95.10 25 | 98.85 20 | 98.66 21 |
|
| 114514_t | | | 89.51 140 | 88.50 153 | 92.54 116 | 98.11 36 | 81.99 162 | 95.16 117 | 96.36 105 | 70.19 383 | 85.81 211 | 95.25 127 | 76.70 160 | 98.63 105 | 82.07 216 | 96.86 97 | 97.00 127 |
|
| ACMMP |  | | 93.24 65 | 92.88 69 | 94.30 51 | 98.09 38 | 85.33 70 | 96.86 27 | 97.45 14 | 88.33 91 | 90.15 132 | 97.03 53 | 81.44 109 | 99.51 24 | 90.85 103 | 95.74 115 | 98.04 72 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APD-MVS |  | | 94.24 29 | 94.07 39 | 94.75 36 | 98.06 39 | 86.90 23 | 95.88 76 | 96.94 55 | 85.68 162 | 95.05 35 | 97.18 45 | 87.31 35 | 99.07 53 | 91.90 85 | 98.61 48 | 98.28 51 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CSCG | | | 93.23 66 | 93.05 65 | 93.76 66 | 98.04 40 | 84.07 98 | 96.22 48 | 97.37 21 | 84.15 197 | 90.05 133 | 95.66 112 | 87.77 26 | 99.15 50 | 89.91 110 | 98.27 58 | 98.07 69 |
|
| ACMMP_NAP | | | 94.74 16 | 94.56 19 | 95.28 10 | 98.02 41 | 87.70 11 | 95.68 86 | 97.34 23 | 88.28 94 | 95.30 33 | 97.67 25 | 85.90 47 | 99.54 20 | 93.91 37 | 98.95 15 | 98.60 23 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 49 | 92.59 2 | 98.94 78 | 92.25 68 | 98.99 14 | 98.84 14 |
|
| SR-MVS-dyc-post | | | 93.82 45 | 93.82 45 | 93.82 62 | 97.92 43 | 84.57 82 | 96.28 43 | 96.76 75 | 87.46 119 | 93.75 54 | 97.43 30 | 84.24 71 | 99.01 63 | 92.73 54 | 97.80 76 | 97.88 81 |
|
| RE-MVS-def | | | | 93.68 53 | | 97.92 43 | 84.57 82 | 96.28 43 | 96.76 75 | 87.46 119 | 93.75 54 | 97.43 30 | 82.94 85 | | 92.73 54 | 97.80 76 | 97.88 81 |
|
| APD-MVS_3200maxsize | | | 93.78 46 | 93.77 49 | 93.80 64 | 97.92 43 | 84.19 96 | 96.30 41 | 96.87 62 | 86.96 129 | 93.92 52 | 97.47 28 | 83.88 75 | 98.96 77 | 92.71 57 | 97.87 73 | 98.26 57 |
|
| save fliter | | | | | | 97.85 46 | 85.63 66 | 95.21 113 | 96.82 68 | 89.44 54 | | | | | | | |
|
| SF-MVS | | | 94.97 12 | 94.90 15 | 95.20 12 | 97.84 47 | 87.76 10 | 96.65 34 | 97.48 10 | 87.76 114 | 95.71 27 | 97.70 24 | 88.28 23 | 99.35 33 | 93.89 38 | 98.78 26 | 98.48 30 |
|
| NCCC | | | 94.81 15 | 94.69 18 | 95.17 14 | 97.83 48 | 87.46 17 | 95.66 89 | 96.93 56 | 92.34 4 | 93.94 51 | 96.58 76 | 87.74 27 | 99.44 29 | 92.83 53 | 98.40 54 | 98.62 22 |
|
| 9.14 | | | | 94.47 20 | | 97.79 49 | | 96.08 60 | 97.44 15 | 86.13 154 | 95.10 34 | 97.40 32 | 88.34 22 | 99.22 44 | 93.25 47 | 98.70 34 | |
|
| CDPH-MVS | | | 92.83 73 | 92.30 79 | 94.44 45 | 97.79 49 | 86.11 49 | 94.06 190 | 96.66 85 | 80.09 287 | 92.77 78 | 96.63 73 | 86.62 38 | 99.04 57 | 87.40 138 | 98.66 41 | 98.17 63 |
|
| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 31 | 97.78 51 | 86.00 50 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 11 | 92.59 2 | 99.61 4 | 95.64 19 | 99.02 12 | 98.86 11 |
|
| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| dcpmvs_2 | | | 93.49 53 | 94.19 36 | 91.38 169 | 97.69 54 | 76.78 290 | 94.25 174 | 96.29 109 | 88.33 91 | 94.46 39 | 96.88 58 | 88.07 25 | 98.64 103 | 93.62 41 | 98.09 65 | 98.73 18 |
|
| DP-MVS | | | 87.25 217 | 85.36 252 | 92.90 96 | 97.65 55 | 83.24 122 | 94.81 138 | 92.00 305 | 74.99 347 | 81.92 305 | 95.00 138 | 72.66 216 | 99.05 55 | 66.92 360 | 92.33 188 | 96.40 152 |
|
| PAPM_NR | | | 91.22 98 | 90.78 102 | 92.52 117 | 97.60 56 | 81.46 176 | 94.37 170 | 96.24 117 | 86.39 145 | 87.41 175 | 94.80 148 | 82.06 104 | 98.48 116 | 82.80 201 | 95.37 126 | 97.61 97 |
|
| patch_mono-2 | | | 93.74 48 | 94.32 25 | 92.01 135 | 97.54 57 | 78.37 257 | 93.40 220 | 97.19 35 | 88.02 103 | 94.99 36 | 97.21 41 | 88.35 21 | 98.44 126 | 94.07 35 | 98.09 65 | 99.23 1 |
|
| TEST9 | | | | | | 97.53 58 | 86.49 37 | 94.07 188 | 96.78 72 | 81.61 265 | 92.77 78 | 96.20 87 | 87.71 28 | 99.12 51 | | | |
|
| train_agg | | | 93.44 56 | 93.08 64 | 94.52 44 | 97.53 58 | 86.49 37 | 94.07 188 | 96.78 72 | 81.86 256 | 92.77 78 | 96.20 87 | 87.63 29 | 99.12 51 | 92.14 73 | 98.69 35 | 97.94 77 |
|
| test_8 | | | | | | 97.49 60 | 86.30 45 | 94.02 193 | 96.76 75 | 81.86 256 | 92.70 82 | 96.20 87 | 87.63 29 | 99.02 61 | | | |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 38 | 93.79 47 | 94.80 33 | 97.48 61 | 86.78 26 | 95.65 91 | 96.89 60 | 89.40 56 | 92.81 76 | 96.97 54 | 85.37 54 | 99.24 43 | 90.87 102 | 98.69 35 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 89.89 131 | 89.07 137 | 92.37 124 | 97.41 62 | 83.03 134 | 94.42 163 | 95.92 145 | 82.81 232 | 86.34 201 | 94.65 155 | 73.89 200 | 99.02 61 | 80.69 242 | 95.51 119 | 95.05 207 |
|
| agg_prior | | | | | | 97.38 63 | 85.92 57 | | 96.72 81 | | 92.16 93 | | | 98.97 75 | | | |
|
| 原ACMM1 | | | | | 92.01 135 | 97.34 64 | 81.05 187 | | 96.81 70 | 78.89 303 | 90.45 124 | 95.92 100 | 82.65 89 | 98.84 88 | 80.68 243 | 98.26 59 | 96.14 163 |
|
| MSLP-MVS++ | | | 93.72 49 | 94.08 38 | 92.65 110 | 97.31 65 | 83.43 116 | 95.79 81 | 97.33 25 | 90.03 36 | 93.58 58 | 96.96 55 | 84.87 64 | 97.76 179 | 92.19 71 | 98.66 41 | 96.76 139 |
|
| 新几何1 | | | | | 93.10 83 | 97.30 66 | 84.35 94 | | 95.56 174 | 71.09 379 | 91.26 117 | 96.24 85 | 82.87 87 | 98.86 84 | 79.19 264 | 98.10 64 | 96.07 169 |
|
| test_prior | | | | | 93.82 62 | 97.29 67 | 84.49 86 | | 96.88 61 | | | | | 98.87 82 | | | 98.11 68 |
|
| PLC |  | 84.53 7 | 89.06 157 | 88.03 166 | 92.15 133 | 97.27 68 | 82.69 148 | 94.29 172 | 95.44 186 | 79.71 292 | 84.01 271 | 94.18 173 | 76.68 161 | 98.75 94 | 77.28 282 | 93.41 167 | 95.02 208 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| SD-MVS | | | 94.96 13 | 95.33 8 | 93.88 59 | 97.25 69 | 86.69 28 | 96.19 49 | 97.11 43 | 90.42 27 | 96.95 13 | 97.27 37 | 89.53 14 | 96.91 255 | 94.38 32 | 98.85 20 | 98.03 73 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test12 | | | | | 94.34 50 | 97.13 70 | 86.15 48 | | 96.29 109 | | 91.04 119 | | 85.08 58 | 99.01 63 | | 98.13 63 | 97.86 83 |
|
| MG-MVS | | | 91.77 87 | 91.70 87 | 92.00 138 | 97.08 71 | 80.03 218 | 93.60 214 | 95.18 200 | 87.85 111 | 90.89 120 | 96.47 80 | 82.06 104 | 98.36 131 | 85.07 167 | 97.04 90 | 97.62 96 |
|
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 72 | 86.33 42 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 31 | 97.46 29 | 88.98 19 | 99.40 30 | 94.12 34 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MVS_111021_HR | | | 93.45 55 | 93.31 59 | 93.84 61 | 96.99 72 | 84.84 75 | 93.24 232 | 97.24 32 | 88.76 78 | 91.60 111 | 95.85 103 | 86.07 46 | 98.66 101 | 91.91 83 | 98.16 61 | 98.03 73 |
|
| CNLPA | | | 89.07 156 | 87.98 167 | 92.34 125 | 96.87 74 | 84.78 78 | 94.08 187 | 93.24 271 | 81.41 269 | 84.46 255 | 95.13 135 | 75.57 176 | 96.62 265 | 77.21 283 | 93.84 157 | 95.61 191 |
|
| PHI-MVS | | | 93.89 44 | 93.65 55 | 94.62 41 | 96.84 75 | 86.43 39 | 96.69 32 | 97.49 6 | 85.15 175 | 93.56 60 | 96.28 84 | 85.60 50 | 99.31 39 | 92.45 59 | 98.79 24 | 98.12 67 |
|
| 旧先验1 | | | | | | 96.79 76 | 81.81 166 | | 95.67 166 | | | 96.81 63 | 86.69 37 | | | 97.66 81 | 96.97 129 |
|
| LFMVS | | | 90.08 123 | 89.13 136 | 92.95 94 | 96.71 77 | 82.32 158 | 96.08 60 | 89.91 356 | 86.79 134 | 92.15 94 | 96.81 63 | 62.60 319 | 98.34 134 | 87.18 142 | 93.90 155 | 98.19 61 |
|
| CS-MVS-test | | | 94.02 39 | 94.29 28 | 93.24 76 | 96.69 78 | 83.24 122 | 97.49 5 | 96.92 57 | 92.14 5 | 92.90 71 | 95.77 108 | 85.02 60 | 98.33 136 | 93.03 50 | 98.62 46 | 98.13 65 |
|
| Anonymous202405211 | | | 87.68 193 | 86.13 224 | 92.31 127 | 96.66 79 | 80.74 197 | 94.87 133 | 91.49 322 | 80.47 283 | 89.46 141 | 95.44 119 | 54.72 368 | 98.23 142 | 82.19 212 | 89.89 219 | 97.97 75 |
|
| TAPA-MVS | | 84.62 6 | 88.16 181 | 87.01 191 | 91.62 159 | 96.64 80 | 80.65 198 | 94.39 166 | 96.21 122 | 76.38 332 | 86.19 205 | 95.44 119 | 79.75 124 | 98.08 161 | 62.75 377 | 95.29 128 | 96.13 164 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MAR-MVS | | | 90.30 118 | 89.37 130 | 93.07 87 | 96.61 81 | 84.48 87 | 95.68 86 | 95.67 166 | 82.36 240 | 87.85 166 | 92.85 218 | 76.63 162 | 98.80 90 | 80.01 252 | 96.68 101 | 95.91 175 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| VNet | | | 92.24 82 | 91.91 83 | 93.24 76 | 96.59 82 | 83.43 116 | 94.84 136 | 96.44 98 | 89.19 64 | 94.08 49 | 95.90 101 | 77.85 152 | 98.17 146 | 88.90 120 | 93.38 168 | 98.13 65 |
|
| TSAR-MVS + GP. | | | 93.66 50 | 93.41 58 | 94.41 49 | 96.59 82 | 86.78 26 | 94.40 164 | 93.93 255 | 89.77 48 | 94.21 43 | 95.59 115 | 87.35 34 | 98.61 108 | 92.72 56 | 96.15 111 | 97.83 86 |
|
| MVSMamba_PlusPlus | | | 93.44 56 | 93.54 57 | 93.14 81 | 96.58 84 | 83.05 133 | 96.06 64 | 96.50 96 | 84.42 194 | 94.09 46 | 95.56 116 | 85.01 63 | 98.69 100 | 94.96 26 | 98.66 41 | 97.67 94 |
|
| CS-MVS | | | 94.12 37 | 94.44 22 | 93.17 79 | 96.55 85 | 83.08 132 | 97.63 3 | 96.95 54 | 91.71 11 | 93.50 62 | 96.21 86 | 85.61 49 | 98.24 141 | 93.64 40 | 98.17 60 | 98.19 61 |
|
| test222 | | | | | | 96.55 85 | 81.70 168 | 92.22 267 | 95.01 207 | 68.36 386 | 90.20 129 | 96.14 92 | 80.26 119 | | | 97.80 76 | 96.05 172 |
|
| Anonymous20240529 | | | 88.09 183 | 86.59 206 | 92.58 114 | 96.53 87 | 81.92 165 | 95.99 70 | 95.84 153 | 74.11 356 | 89.06 147 | 95.21 130 | 61.44 328 | 98.81 89 | 83.67 189 | 87.47 260 | 97.01 126 |
|
| Anonymous20231211 | | | 86.59 244 | 85.13 257 | 90.98 191 | 96.52 88 | 81.50 172 | 96.14 56 | 96.16 123 | 73.78 359 | 83.65 279 | 92.15 242 | 63.26 316 | 97.37 221 | 82.82 200 | 81.74 319 | 94.06 255 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 33 | 94.77 17 | 92.49 118 | 96.52 88 | 80.00 220 | 94.00 196 | 97.08 44 | 90.05 35 | 95.65 29 | 97.29 36 | 89.66 13 | 98.97 75 | 93.95 36 | 98.71 32 | 98.50 27 |
|
| testdata | | | | | 90.49 205 | 96.40 90 | 77.89 269 | | 95.37 192 | 72.51 371 | 93.63 57 | 96.69 66 | 82.08 103 | 97.65 187 | 83.08 193 | 97.39 84 | 95.94 174 |
|
| PVSNet_Blended_VisFu | | | 91.38 94 | 90.91 99 | 92.80 101 | 96.39 91 | 83.17 125 | 94.87 133 | 96.66 85 | 83.29 220 | 89.27 143 | 94.46 162 | 80.29 118 | 99.17 47 | 87.57 136 | 95.37 126 | 96.05 172 |
|
| API-MVS | | | 90.66 111 | 90.07 113 | 92.45 120 | 96.36 92 | 84.57 82 | 96.06 64 | 95.22 199 | 82.39 238 | 89.13 144 | 94.27 170 | 80.32 117 | 98.46 120 | 80.16 251 | 96.71 100 | 94.33 243 |
|
| F-COLMAP | | | 87.95 186 | 86.80 196 | 91.40 168 | 96.35 93 | 80.88 193 | 94.73 143 | 95.45 184 | 79.65 293 | 82.04 303 | 94.61 156 | 71.13 230 | 98.50 114 | 76.24 295 | 91.05 203 | 94.80 221 |
|
| VDD-MVS | | | 90.74 107 | 89.92 119 | 93.20 78 | 96.27 94 | 83.02 135 | 95.73 83 | 93.86 259 | 88.42 90 | 92.53 85 | 96.84 60 | 62.09 321 | 98.64 103 | 90.95 100 | 92.62 183 | 97.93 79 |
|
| OMC-MVS | | | 91.23 97 | 90.62 104 | 93.08 85 | 96.27 94 | 84.07 98 | 93.52 216 | 95.93 144 | 86.95 130 | 89.51 138 | 96.13 93 | 78.50 143 | 98.35 133 | 85.84 161 | 92.90 177 | 96.83 138 |
|
| DPM-MVS | | | 92.58 77 | 91.74 86 | 95.08 15 | 96.19 96 | 89.31 5 | 92.66 251 | 96.56 93 | 83.44 215 | 91.68 110 | 95.04 137 | 86.60 40 | 98.99 70 | 85.60 163 | 97.92 72 | 96.93 131 |
|
| CHOSEN 1792x2688 | | | 88.84 162 | 87.69 173 | 92.30 128 | 96.14 97 | 81.42 178 | 90.01 322 | 95.86 152 | 74.52 352 | 87.41 175 | 93.94 182 | 75.46 177 | 98.36 131 | 80.36 247 | 95.53 118 | 97.12 120 |
|
| balanced_conf03 | | | 93.98 42 | 94.22 32 | 93.26 75 | 96.13 98 | 83.29 121 | 96.27 45 | 96.52 94 | 89.82 43 | 95.56 30 | 95.51 117 | 84.50 68 | 98.79 91 | 94.83 27 | 98.86 19 | 97.72 91 |
|
| thres100view900 | | | 87.63 198 | 86.71 199 | 90.38 213 | 96.12 99 | 78.55 250 | 95.03 124 | 91.58 318 | 87.15 124 | 88.06 162 | 92.29 238 | 68.91 269 | 98.10 151 | 70.13 338 | 91.10 198 | 94.48 238 |
|
| PVSNet_BlendedMVS | | | 89.98 126 | 89.70 121 | 90.82 194 | 96.12 99 | 81.25 181 | 93.92 201 | 96.83 66 | 83.49 214 | 89.10 145 | 92.26 239 | 81.04 113 | 98.85 86 | 86.72 150 | 87.86 255 | 92.35 326 |
|
| PVSNet_Blended | | | 90.73 108 | 90.32 107 | 91.98 139 | 96.12 99 | 81.25 181 | 92.55 255 | 96.83 66 | 82.04 248 | 89.10 145 | 92.56 229 | 81.04 113 | 98.85 86 | 86.72 150 | 95.91 113 | 95.84 179 |
|
| UA-Net | | | 92.83 73 | 92.54 76 | 93.68 68 | 96.10 102 | 84.71 79 | 95.66 89 | 96.39 103 | 91.92 7 | 93.22 65 | 96.49 79 | 83.16 81 | 98.87 82 | 84.47 177 | 95.47 122 | 97.45 105 |
|
| MM | | | 95.10 11 | 94.91 13 | 95.68 5 | 96.09 103 | 88.34 9 | 96.68 33 | 94.37 239 | 95.08 1 | 94.68 37 | 97.72 23 | 82.94 85 | 99.64 1 | 97.85 1 | 98.76 29 | 99.06 7 |
|
| thres600view7 | | | 87.65 195 | 86.67 201 | 90.59 198 | 96.08 104 | 78.72 246 | 94.88 132 | 91.58 318 | 87.06 127 | 88.08 161 | 92.30 237 | 68.91 269 | 98.10 151 | 70.05 341 | 91.10 198 | 94.96 212 |
|
| DeepC-MVS | | 88.79 3 | 93.31 62 | 92.99 67 | 94.26 52 | 96.07 105 | 85.83 61 | 94.89 131 | 96.99 48 | 89.02 72 | 89.56 137 | 97.37 34 | 82.51 91 | 99.38 31 | 92.20 70 | 98.30 57 | 97.57 100 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| LS3D | | | 87.89 187 | 86.32 217 | 92.59 113 | 96.07 105 | 82.92 139 | 95.23 111 | 94.92 215 | 75.66 339 | 82.89 292 | 95.98 98 | 72.48 219 | 99.21 45 | 68.43 348 | 95.23 131 | 95.64 188 |
|
| h-mvs33 | | | 90.80 105 | 90.15 111 | 92.75 104 | 96.01 107 | 82.66 149 | 95.43 98 | 95.53 178 | 89.80 44 | 93.08 68 | 95.64 113 | 75.77 169 | 99.00 68 | 92.07 75 | 78.05 356 | 96.60 145 |
|
| SDMVSNet | | | 90.19 121 | 89.61 124 | 91.93 143 | 96.00 108 | 83.09 131 | 92.89 245 | 95.98 140 | 88.73 79 | 86.85 188 | 95.20 131 | 72.09 223 | 97.08 241 | 88.90 120 | 89.85 221 | 95.63 189 |
|
| sd_testset | | | 88.59 171 | 87.85 171 | 90.83 193 | 96.00 108 | 80.42 205 | 92.35 261 | 94.71 229 | 88.73 79 | 86.85 188 | 95.20 131 | 67.31 279 | 96.43 284 | 79.64 257 | 89.85 221 | 95.63 189 |
|
| HyFIR lowres test | | | 88.09 183 | 86.81 195 | 91.93 143 | 96.00 108 | 80.63 199 | 90.01 322 | 95.79 156 | 73.42 363 | 87.68 171 | 92.10 247 | 73.86 201 | 97.96 170 | 80.75 241 | 91.70 192 | 97.19 114 |
|
| tfpn200view9 | | | 87.58 202 | 86.64 202 | 90.41 210 | 95.99 111 | 78.64 248 | 94.58 151 | 91.98 307 | 86.94 131 | 88.09 159 | 91.77 257 | 69.18 265 | 98.10 151 | 70.13 338 | 91.10 198 | 94.48 238 |
|
| thres400 | | | 87.62 200 | 86.64 202 | 90.57 199 | 95.99 111 | 78.64 248 | 94.58 151 | 91.98 307 | 86.94 131 | 88.09 159 | 91.77 257 | 69.18 265 | 98.10 151 | 70.13 338 | 91.10 198 | 94.96 212 |
|
| MVS_111021_LR | | | 92.47 79 | 92.29 80 | 92.98 91 | 95.99 111 | 84.43 91 | 93.08 237 | 96.09 131 | 88.20 98 | 91.12 118 | 95.72 111 | 81.33 111 | 97.76 179 | 91.74 87 | 97.37 85 | 96.75 140 |
|
| PatchMatch-RL | | | 86.77 239 | 85.54 246 | 90.47 209 | 95.88 114 | 82.71 147 | 90.54 306 | 92.31 295 | 79.82 291 | 84.32 263 | 91.57 269 | 68.77 271 | 96.39 286 | 73.16 319 | 93.48 166 | 92.32 327 |
|
| EPP-MVSNet | | | 91.70 90 | 91.56 88 | 92.13 134 | 95.88 114 | 80.50 203 | 97.33 7 | 95.25 196 | 86.15 151 | 89.76 136 | 95.60 114 | 83.42 79 | 98.32 138 | 87.37 140 | 93.25 171 | 97.56 101 |
|
| IS-MVSNet | | | 91.43 93 | 91.09 96 | 92.46 119 | 95.87 116 | 81.38 179 | 96.95 19 | 93.69 265 | 89.72 50 | 89.50 140 | 95.98 98 | 78.57 142 | 97.77 178 | 83.02 195 | 96.50 105 | 98.22 60 |
|
| test_fmvsm_n_1920 | | | 94.71 17 | 95.11 10 | 93.50 71 | 95.79 117 | 84.62 80 | 96.15 54 | 97.64 2 | 89.85 42 | 97.19 8 | 97.89 19 | 86.28 43 | 98.71 99 | 97.11 6 | 98.08 67 | 97.17 115 |
|
| PAPR | | | 90.02 125 | 89.27 135 | 92.29 129 | 95.78 118 | 80.95 191 | 92.68 250 | 96.22 119 | 81.91 252 | 86.66 192 | 93.75 194 | 82.23 98 | 98.44 126 | 79.40 263 | 94.79 137 | 97.48 103 |
|
| Vis-MVSNet (Re-imp) | | | 89.59 138 | 89.44 127 | 90.03 226 | 95.74 119 | 75.85 304 | 95.61 93 | 90.80 340 | 87.66 118 | 87.83 167 | 95.40 122 | 76.79 158 | 96.46 282 | 78.37 269 | 96.73 99 | 97.80 87 |
|
| test_yl | | | 90.69 109 | 90.02 117 | 92.71 106 | 95.72 120 | 82.41 156 | 94.11 183 | 95.12 202 | 85.63 163 | 91.49 112 | 94.70 150 | 74.75 184 | 98.42 129 | 86.13 156 | 92.53 185 | 97.31 107 |
|
| DCV-MVSNet | | | 90.69 109 | 90.02 117 | 92.71 106 | 95.72 120 | 82.41 156 | 94.11 183 | 95.12 202 | 85.63 163 | 91.49 112 | 94.70 150 | 74.75 184 | 98.42 129 | 86.13 156 | 92.53 185 | 97.31 107 |
|
| sasdasda | | | 93.27 63 | 92.75 71 | 94.85 25 | 95.70 122 | 87.66 12 | 96.33 39 | 96.41 101 | 90.00 37 | 94.09 46 | 94.60 157 | 82.33 94 | 98.62 106 | 92.40 62 | 92.86 178 | 98.27 53 |
|
| canonicalmvs | | | 93.27 63 | 92.75 71 | 94.85 25 | 95.70 122 | 87.66 12 | 96.33 39 | 96.41 101 | 90.00 37 | 94.09 46 | 94.60 157 | 82.33 94 | 98.62 106 | 92.40 62 | 92.86 178 | 98.27 53 |
|
| mamv4 | | | 90.92 102 | 91.78 85 | 88.33 283 | 95.67 124 | 70.75 364 | 92.92 244 | 96.02 139 | 81.90 253 | 88.11 158 | 95.34 123 | 85.88 48 | 96.97 250 | 95.22 24 | 95.01 133 | 97.26 110 |
|
| CANet | | | 93.54 52 | 93.20 63 | 94.55 43 | 95.65 125 | 85.73 65 | 94.94 128 | 96.69 84 | 91.89 8 | 90.69 122 | 95.88 102 | 81.99 106 | 99.54 20 | 93.14 49 | 97.95 71 | 98.39 39 |
|
| 3Dnovator+ | | 87.14 4 | 92.42 80 | 91.37 89 | 95.55 7 | 95.63 126 | 88.73 6 | 97.07 18 | 96.77 74 | 90.84 16 | 84.02 270 | 96.62 74 | 75.95 168 | 99.34 34 | 87.77 133 | 97.68 80 | 98.59 24 |
|
| MGCFI-Net | | | 93.03 70 | 92.63 74 | 94.23 53 | 95.62 127 | 85.92 57 | 96.08 60 | 96.33 107 | 89.86 41 | 93.89 53 | 94.66 154 | 82.11 101 | 98.50 114 | 92.33 67 | 92.82 181 | 98.27 53 |
|
| fmvsm_s_conf0.5_n | | | 93.76 47 | 94.06 41 | 92.86 98 | 95.62 127 | 83.17 125 | 96.14 56 | 96.12 128 | 88.13 101 | 95.82 26 | 98.04 16 | 83.43 77 | 98.48 116 | 96.97 9 | 96.23 109 | 96.92 132 |
|
| test2506 | | | 87.21 221 | 86.28 219 | 90.02 228 | 95.62 127 | 73.64 327 | 96.25 47 | 71.38 411 | 87.89 109 | 90.45 124 | 96.65 70 | 55.29 365 | 98.09 159 | 86.03 158 | 96.94 92 | 98.33 44 |
|
| ECVR-MVS |  | | 89.09 155 | 88.53 151 | 90.77 196 | 95.62 127 | 75.89 303 | 96.16 52 | 84.22 389 | 87.89 109 | 90.20 129 | 96.65 70 | 63.19 317 | 98.10 151 | 85.90 159 | 96.94 92 | 98.33 44 |
|
| alignmvs | | | 93.08 69 | 92.50 77 | 94.81 32 | 95.62 127 | 87.61 15 | 95.99 70 | 96.07 133 | 89.77 48 | 94.12 45 | 94.87 143 | 80.56 115 | 98.66 101 | 92.42 61 | 93.10 174 | 98.15 64 |
|
| test1111 | | | 89.10 153 | 88.64 148 | 90.48 206 | 95.53 132 | 74.97 312 | 96.08 60 | 84.89 387 | 88.13 101 | 90.16 131 | 96.65 70 | 63.29 315 | 98.10 151 | 86.14 154 | 96.90 94 | 98.39 39 |
|
| WTY-MVS | | | 89.60 137 | 88.92 141 | 91.67 158 | 95.47 133 | 81.15 185 | 92.38 259 | 94.78 226 | 83.11 224 | 89.06 147 | 94.32 165 | 78.67 140 | 96.61 268 | 81.57 228 | 90.89 205 | 97.24 111 |
|
| DELS-MVS | | | 93.43 60 | 93.25 61 | 93.97 56 | 95.42 134 | 85.04 72 | 93.06 239 | 97.13 40 | 90.74 21 | 91.84 104 | 95.09 136 | 86.32 42 | 99.21 45 | 91.22 94 | 98.45 52 | 97.65 95 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| thres200 | | | 87.21 221 | 86.24 221 | 90.12 222 | 95.36 135 | 78.53 251 | 93.26 230 | 92.10 301 | 86.42 144 | 88.00 164 | 91.11 282 | 69.24 264 | 98.00 167 | 69.58 342 | 91.04 204 | 93.83 268 |
|
| Vis-MVSNet |  | | 91.75 88 | 91.23 92 | 93.29 73 | 95.32 136 | 83.78 105 | 96.14 56 | 95.98 140 | 89.89 39 | 90.45 124 | 96.58 76 | 75.09 180 | 98.31 139 | 84.75 173 | 96.90 94 | 97.78 89 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| fmvsm_l_conf0.5_n_a | | | 94.20 33 | 94.40 23 | 93.60 69 | 95.29 137 | 84.98 73 | 95.61 93 | 96.28 112 | 86.31 146 | 96.75 16 | 97.86 21 | 87.40 33 | 98.74 96 | 97.07 7 | 97.02 91 | 97.07 121 |
|
| fmvsm_l_conf0.5_n | | | 94.29 27 | 94.46 21 | 93.79 65 | 95.28 138 | 85.43 68 | 95.68 86 | 96.43 99 | 86.56 140 | 96.84 14 | 97.81 22 | 87.56 32 | 98.77 93 | 97.14 5 | 96.82 98 | 97.16 119 |
|
| BH-RMVSNet | | | 88.37 175 | 87.48 178 | 91.02 186 | 95.28 138 | 79.45 232 | 92.89 245 | 93.07 276 | 85.45 168 | 86.91 184 | 94.84 147 | 70.35 244 | 97.76 179 | 73.97 313 | 94.59 143 | 95.85 178 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 293 | 82.04 302 | 89.74 240 | 95.28 138 | 79.75 226 | 94.25 174 | 92.28 296 | 75.17 345 | 78.02 347 | 93.77 192 | 58.60 351 | 97.84 176 | 65.06 369 | 85.92 273 | 91.63 339 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PS-MVSNAJ | | | 91.18 99 | 90.92 98 | 91.96 141 | 95.26 141 | 82.60 152 | 92.09 272 | 95.70 164 | 86.27 147 | 91.84 104 | 92.46 231 | 79.70 126 | 98.99 70 | 89.08 118 | 95.86 114 | 94.29 244 |
|
| BH-untuned | | | 88.60 170 | 88.13 165 | 90.01 229 | 95.24 142 | 78.50 253 | 93.29 228 | 94.15 248 | 84.75 187 | 84.46 255 | 93.40 199 | 75.76 171 | 97.40 217 | 77.59 279 | 94.52 146 | 94.12 250 |
|
| EC-MVSNet | | | 93.44 56 | 93.71 52 | 92.63 111 | 95.21 143 | 82.43 153 | 97.27 9 | 96.71 82 | 90.57 26 | 92.88 72 | 95.80 106 | 83.16 81 | 98.16 147 | 93.68 39 | 98.14 62 | 97.31 107 |
|
| ETV-MVS | | | 92.74 75 | 92.66 73 | 92.97 92 | 95.20 144 | 84.04 100 | 95.07 121 | 96.51 95 | 90.73 22 | 92.96 70 | 91.19 276 | 84.06 72 | 98.34 134 | 91.72 88 | 96.54 103 | 96.54 150 |
|
| mvsmamba | | | 90.33 117 | 89.69 122 | 92.25 132 | 95.17 145 | 81.64 169 | 95.27 109 | 93.36 270 | 84.88 181 | 89.51 138 | 94.27 170 | 69.29 263 | 97.42 209 | 89.34 115 | 96.12 112 | 97.68 93 |
|
| GeoE | | | 90.05 124 | 89.43 128 | 91.90 148 | 95.16 146 | 80.37 206 | 95.80 80 | 94.65 232 | 83.90 202 | 87.55 174 | 94.75 149 | 78.18 147 | 97.62 191 | 81.28 231 | 93.63 159 | 97.71 92 |
|
| EIA-MVS | | | 91.95 84 | 91.94 82 | 91.98 139 | 95.16 146 | 80.01 219 | 95.36 99 | 96.73 79 | 88.44 88 | 89.34 142 | 92.16 241 | 83.82 76 | 98.45 124 | 89.35 114 | 97.06 89 | 97.48 103 |
|
| ab-mvs | | | 89.41 145 | 88.35 157 | 92.60 112 | 95.15 148 | 82.65 150 | 92.20 268 | 95.60 173 | 83.97 201 | 88.55 153 | 93.70 195 | 74.16 196 | 98.21 145 | 82.46 206 | 89.37 229 | 96.94 130 |
|
| VDDNet | | | 89.56 139 | 88.49 155 | 92.76 103 | 95.07 149 | 82.09 160 | 96.30 41 | 93.19 273 | 81.05 278 | 91.88 102 | 96.86 59 | 61.16 336 | 98.33 136 | 88.43 126 | 92.49 187 | 97.84 85 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 51 | 93.76 50 | 93.00 90 | 95.02 150 | 83.67 108 | 96.19 49 | 96.10 130 | 87.27 123 | 95.98 24 | 98.05 13 | 83.07 84 | 98.45 124 | 96.68 11 | 95.51 119 | 96.88 135 |
|
| AllTest | | | 83.42 300 | 81.39 306 | 89.52 250 | 95.01 151 | 77.79 274 | 93.12 234 | 90.89 338 | 77.41 323 | 76.12 359 | 93.34 200 | 54.08 371 | 97.51 198 | 68.31 349 | 84.27 286 | 93.26 292 |
|
| TestCases | | | | | 89.52 250 | 95.01 151 | 77.79 274 | | 90.89 338 | 77.41 323 | 76.12 359 | 93.34 200 | 54.08 371 | 97.51 198 | 68.31 349 | 84.27 286 | 93.26 292 |
|
| EI-MVSNet-Vis-set | | | 93.01 71 | 92.92 68 | 93.29 73 | 95.01 151 | 83.51 115 | 94.48 156 | 95.77 157 | 90.87 15 | 92.52 86 | 96.67 68 | 84.50 68 | 99.00 68 | 91.99 79 | 94.44 149 | 97.36 106 |
|
| xiu_mvs_v2_base | | | 91.13 100 | 90.89 100 | 91.86 149 | 94.97 154 | 82.42 154 | 92.24 266 | 95.64 171 | 86.11 155 | 91.74 109 | 93.14 211 | 79.67 129 | 98.89 81 | 89.06 119 | 95.46 123 | 94.28 245 |
|
| tttt0517 | | | 88.61 169 | 87.78 172 | 91.11 181 | 94.96 155 | 77.81 272 | 95.35 100 | 89.69 360 | 85.09 177 | 88.05 163 | 94.59 159 | 66.93 285 | 98.48 116 | 83.27 192 | 92.13 190 | 97.03 125 |
|
| baseline1 | | | 88.10 182 | 87.28 184 | 90.57 199 | 94.96 155 | 80.07 214 | 94.27 173 | 91.29 327 | 86.74 136 | 87.41 175 | 94.00 179 | 76.77 159 | 96.20 295 | 80.77 240 | 79.31 352 | 95.44 193 |
|
| Test_1112_low_res | | | 87.65 195 | 86.51 210 | 91.08 182 | 94.94 157 | 79.28 240 | 91.77 278 | 94.30 242 | 76.04 337 | 83.51 283 | 92.37 234 | 77.86 151 | 97.73 183 | 78.69 268 | 89.13 235 | 96.22 159 |
|
| 1112_ss | | | 88.42 173 | 87.33 182 | 91.72 156 | 94.92 158 | 80.98 189 | 92.97 242 | 94.54 233 | 78.16 319 | 83.82 274 | 93.88 187 | 78.78 138 | 97.91 174 | 79.45 259 | 89.41 228 | 96.26 158 |
|
| QAPM | | | 89.51 140 | 88.15 164 | 93.59 70 | 94.92 158 | 84.58 81 | 96.82 29 | 96.70 83 | 78.43 313 | 83.41 285 | 96.19 90 | 73.18 211 | 99.30 40 | 77.11 285 | 96.54 103 | 96.89 134 |
|
| MVS_0304 | | | 94.18 36 | 93.80 46 | 95.34 9 | 94.91 160 | 87.62 14 | 95.97 72 | 93.01 278 | 92.58 3 | 94.22 42 | 97.20 43 | 80.56 115 | 99.59 8 | 97.04 8 | 98.68 37 | 98.81 17 |
|
| BH-w/o | | | 87.57 203 | 87.05 189 | 89.12 260 | 94.90 161 | 77.90 268 | 92.41 257 | 93.51 267 | 82.89 231 | 83.70 277 | 91.34 270 | 75.75 172 | 97.07 243 | 75.49 299 | 93.49 164 | 92.39 324 |
|
| thisisatest0530 | | | 88.67 167 | 87.61 175 | 91.86 149 | 94.87 162 | 80.07 214 | 94.63 149 | 89.90 357 | 84.00 200 | 88.46 155 | 93.78 191 | 66.88 287 | 98.46 120 | 83.30 191 | 92.65 182 | 97.06 122 |
|
| EI-MVSNet-UG-set | | | 92.74 75 | 92.62 75 | 93.12 82 | 94.86 163 | 83.20 124 | 94.40 164 | 95.74 160 | 90.71 23 | 92.05 95 | 96.60 75 | 84.00 73 | 98.99 70 | 91.55 90 | 93.63 159 | 97.17 115 |
|
| HY-MVS | | 83.01 12 | 89.03 158 | 87.94 169 | 92.29 129 | 94.86 163 | 82.77 141 | 92.08 273 | 94.49 234 | 81.52 268 | 86.93 182 | 92.79 224 | 78.32 146 | 98.23 142 | 79.93 253 | 90.55 208 | 95.88 177 |
|
| hse-mvs2 | | | 89.88 132 | 89.34 131 | 91.51 163 | 94.83 165 | 81.12 186 | 93.94 199 | 93.91 258 | 89.80 44 | 93.08 68 | 93.60 196 | 75.77 169 | 97.66 186 | 92.07 75 | 77.07 363 | 95.74 184 |
|
| AUN-MVS | | | 87.78 191 | 86.54 209 | 91.48 165 | 94.82 166 | 81.05 187 | 93.91 203 | 93.93 255 | 83.00 227 | 86.93 182 | 93.53 197 | 69.50 257 | 97.67 184 | 86.14 154 | 77.12 362 | 95.73 186 |
|
| Fast-Effi-MVS+ | | | 89.41 145 | 88.64 148 | 91.71 157 | 94.74 167 | 80.81 195 | 93.54 215 | 95.10 204 | 83.11 224 | 86.82 190 | 90.67 297 | 79.74 125 | 97.75 182 | 80.51 246 | 93.55 161 | 96.57 148 |
|
| ACMP | | 84.23 8 | 89.01 160 | 88.35 157 | 90.99 189 | 94.73 168 | 81.27 180 | 95.07 121 | 95.89 150 | 86.48 141 | 83.67 278 | 94.30 166 | 69.33 259 | 97.99 168 | 87.10 147 | 88.55 240 | 93.72 278 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PVSNet | | 78.82 18 | 85.55 264 | 84.65 268 | 88.23 287 | 94.72 169 | 71.93 347 | 87.12 366 | 92.75 285 | 78.80 306 | 84.95 244 | 90.53 299 | 64.43 308 | 96.71 262 | 74.74 308 | 93.86 156 | 96.06 171 |
|
| LCM-MVSNet-Re | | | 88.30 178 | 88.32 160 | 88.27 284 | 94.71 170 | 72.41 346 | 93.15 233 | 90.98 334 | 87.77 113 | 79.25 338 | 91.96 253 | 78.35 145 | 95.75 317 | 83.04 194 | 95.62 117 | 96.65 144 |
|
| HQP_MVS | | | 90.60 115 | 90.19 109 | 91.82 152 | 94.70 171 | 82.73 145 | 95.85 77 | 96.22 119 | 90.81 17 | 86.91 184 | 94.86 144 | 74.23 192 | 98.12 149 | 88.15 127 | 89.99 215 | 94.63 224 |
|
| plane_prior7 | | | | | | 94.70 171 | 82.74 144 | | | | | | | | | | |
|
| ACMH+ | | 81.04 14 | 85.05 277 | 83.46 286 | 89.82 236 | 94.66 173 | 79.37 234 | 94.44 161 | 94.12 251 | 82.19 244 | 78.04 346 | 92.82 221 | 58.23 352 | 97.54 195 | 73.77 316 | 82.90 304 | 92.54 317 |
|
| ACMM | | 84.12 9 | 89.14 152 | 88.48 156 | 91.12 178 | 94.65 174 | 81.22 183 | 95.31 102 | 96.12 128 | 85.31 171 | 85.92 209 | 94.34 163 | 70.19 247 | 98.06 163 | 85.65 162 | 88.86 238 | 94.08 254 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_fmvsmconf_n | | | 94.60 18 | 94.81 16 | 93.98 55 | 94.62 175 | 84.96 74 | 96.15 54 | 97.35 22 | 89.37 57 | 96.03 23 | 98.11 5 | 86.36 41 | 99.01 63 | 97.45 2 | 97.83 75 | 97.96 76 |
|
| plane_prior1 | | | | | | 94.59 176 | | | | | | | | | | | |
|
| casdiffmvs_mvg |  | | 92.96 72 | 92.83 70 | 93.35 72 | 94.59 176 | 83.40 118 | 95.00 125 | 96.34 106 | 90.30 30 | 92.05 95 | 96.05 95 | 83.43 77 | 98.15 148 | 92.07 75 | 95.67 116 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator | | 86.66 5 | 91.73 89 | 90.82 101 | 94.44 45 | 94.59 176 | 86.37 41 | 97.18 12 | 97.02 47 | 89.20 63 | 84.31 265 | 96.66 69 | 73.74 204 | 99.17 47 | 86.74 148 | 97.96 70 | 97.79 88 |
|
| FA-MVS(test-final) | | | 89.66 135 | 88.91 142 | 91.93 143 | 94.57 179 | 80.27 207 | 91.36 288 | 94.74 228 | 84.87 182 | 89.82 135 | 92.61 228 | 74.72 187 | 98.47 119 | 83.97 183 | 93.53 162 | 97.04 124 |
|
| FE-MVS | | | 87.40 210 | 86.02 230 | 91.57 161 | 94.56 180 | 79.69 228 | 90.27 309 | 93.72 264 | 80.57 281 | 88.80 150 | 91.62 265 | 65.32 302 | 98.59 110 | 74.97 307 | 94.33 151 | 96.44 151 |
|
| plane_prior6 | | | | | | 94.52 181 | 82.75 142 | | | | | | 74.23 192 | | | | |
|
| UGNet | | | 89.95 128 | 88.95 140 | 92.95 94 | 94.51 182 | 83.31 120 | 95.70 85 | 95.23 197 | 89.37 57 | 87.58 172 | 93.94 182 | 64.00 310 | 98.78 92 | 83.92 184 | 96.31 108 | 96.74 141 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LPG-MVS_test | | | 89.45 143 | 88.90 143 | 91.12 178 | 94.47 183 | 81.49 174 | 95.30 104 | 96.14 124 | 86.73 137 | 85.45 226 | 95.16 133 | 69.89 250 | 98.10 151 | 87.70 134 | 89.23 233 | 93.77 274 |
|
| LGP-MVS_train | | | | | 91.12 178 | 94.47 183 | 81.49 174 | | 96.14 124 | 86.73 137 | 85.45 226 | 95.16 133 | 69.89 250 | 98.10 151 | 87.70 134 | 89.23 233 | 93.77 274 |
|
| baseline | | | 92.39 81 | 92.29 80 | 92.69 109 | 94.46 185 | 81.77 167 | 94.14 180 | 96.27 113 | 89.22 62 | 91.88 102 | 96.00 96 | 82.35 93 | 97.99 168 | 91.05 96 | 95.27 130 | 98.30 48 |
|
| ACMH | | 80.38 17 | 85.36 269 | 83.68 283 | 90.39 211 | 94.45 186 | 80.63 199 | 94.73 143 | 94.85 220 | 82.09 245 | 77.24 351 | 92.65 226 | 60.01 342 | 97.58 192 | 72.25 323 | 84.87 281 | 92.96 306 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LTVRE_ROB | | 82.13 13 | 86.26 254 | 84.90 263 | 90.34 215 | 94.44 187 | 81.50 172 | 92.31 265 | 94.89 216 | 83.03 226 | 79.63 335 | 92.67 225 | 69.69 253 | 97.79 177 | 71.20 327 | 86.26 272 | 91.72 337 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| testing91 | | | 87.11 226 | 86.18 222 | 89.92 232 | 94.43 188 | 75.38 311 | 91.53 285 | 92.27 297 | 86.48 141 | 86.50 193 | 90.24 305 | 61.19 334 | 97.53 196 | 82.10 214 | 90.88 206 | 96.84 137 |
|
| casdiffmvs |  | | 92.51 78 | 92.43 78 | 92.74 105 | 94.41 189 | 81.98 163 | 94.54 154 | 96.23 118 | 89.57 52 | 91.96 99 | 96.17 91 | 82.58 90 | 98.01 166 | 90.95 100 | 95.45 124 | 98.23 59 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ETVMVS | | | 84.43 287 | 82.92 296 | 88.97 266 | 94.37 190 | 74.67 315 | 91.23 294 | 88.35 369 | 83.37 218 | 86.06 208 | 89.04 331 | 55.38 363 | 95.67 320 | 67.12 356 | 91.34 196 | 96.58 147 |
|
| MVS_Test | | | 91.31 96 | 91.11 94 | 91.93 143 | 94.37 190 | 80.14 211 | 93.46 219 | 95.80 155 | 86.46 143 | 91.35 116 | 93.77 192 | 82.21 99 | 98.09 159 | 87.57 136 | 94.95 134 | 97.55 102 |
|
| NP-MVS | | | | | | 94.37 190 | 82.42 154 | | | | | 93.98 180 | | | | | |
|
| TR-MVS | | | 86.78 236 | 85.76 242 | 89.82 236 | 94.37 190 | 78.41 255 | 92.47 256 | 92.83 282 | 81.11 277 | 86.36 199 | 92.40 233 | 68.73 272 | 97.48 200 | 73.75 317 | 89.85 221 | 93.57 282 |
|
| Effi-MVS+ | | | 91.59 92 | 91.11 94 | 93.01 89 | 94.35 194 | 83.39 119 | 94.60 150 | 95.10 204 | 87.10 126 | 90.57 123 | 93.10 213 | 81.43 110 | 98.07 162 | 89.29 116 | 94.48 147 | 97.59 99 |
|
| testing11 | | | 86.44 251 | 85.35 253 | 89.69 244 | 94.29 195 | 75.40 310 | 91.30 290 | 90.53 343 | 84.76 186 | 85.06 241 | 90.13 311 | 58.95 350 | 97.45 204 | 82.08 215 | 91.09 202 | 96.21 161 |
|
| RRT-MVS | | | 90.85 104 | 90.70 103 | 91.30 172 | 94.25 196 | 76.83 289 | 94.85 135 | 96.13 127 | 89.04 69 | 90.23 128 | 94.88 142 | 70.15 248 | 98.72 97 | 91.86 86 | 94.88 135 | 98.34 42 |
|
| testing99 | | | 86.72 240 | 85.73 245 | 89.69 244 | 94.23 197 | 74.91 314 | 91.35 289 | 90.97 335 | 86.14 152 | 86.36 199 | 90.22 306 | 59.41 346 | 97.48 200 | 82.24 211 | 90.66 207 | 96.69 143 |
|
| CLD-MVS | | | 89.47 142 | 88.90 143 | 91.18 177 | 94.22 198 | 82.07 161 | 92.13 270 | 96.09 131 | 87.90 107 | 85.37 235 | 92.45 232 | 74.38 190 | 97.56 194 | 87.15 143 | 90.43 210 | 93.93 259 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| UBG | | | 85.51 265 | 84.57 271 | 88.35 280 | 94.21 199 | 71.78 351 | 90.07 320 | 89.66 362 | 82.28 242 | 85.91 210 | 89.01 332 | 61.30 329 | 97.06 244 | 76.58 291 | 92.06 191 | 96.22 159 |
|
| HQP-NCC | | | | | | 94.17 200 | | 94.39 166 | | 88.81 75 | 85.43 229 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 200 | | 94.39 166 | | 88.81 75 | 85.43 229 | | | | | | |
|
| HQP-MVS | | | 89.80 133 | 89.28 134 | 91.34 171 | 94.17 200 | 81.56 170 | 94.39 166 | 96.04 136 | 88.81 75 | 85.43 229 | 93.97 181 | 73.83 202 | 97.96 170 | 87.11 145 | 89.77 224 | 94.50 235 |
|
| testing222 | | | 84.84 282 | 83.32 287 | 89.43 254 | 94.15 203 | 75.94 302 | 91.09 297 | 89.41 365 | 84.90 180 | 85.78 212 | 89.44 326 | 52.70 376 | 96.28 293 | 70.80 333 | 91.57 194 | 96.07 169 |
|
| WBMVS | | | 84.97 279 | 84.18 274 | 87.34 306 | 94.14 204 | 71.62 355 | 90.20 316 | 92.35 292 | 81.61 265 | 84.06 268 | 90.76 293 | 61.82 324 | 96.52 276 | 78.93 266 | 83.81 289 | 93.89 260 |
|
| XVG-OURS | | | 89.40 147 | 88.70 147 | 91.52 162 | 94.06 205 | 81.46 176 | 91.27 292 | 96.07 133 | 86.14 152 | 88.89 149 | 95.77 108 | 68.73 272 | 97.26 229 | 87.39 139 | 89.96 217 | 95.83 180 |
|
| sss | | | 88.93 161 | 88.26 163 | 90.94 192 | 94.05 206 | 80.78 196 | 91.71 280 | 95.38 190 | 81.55 267 | 88.63 152 | 93.91 186 | 75.04 181 | 95.47 329 | 82.47 205 | 91.61 193 | 96.57 148 |
|
| PCF-MVS | | 84.11 10 | 87.74 192 | 86.08 228 | 92.70 108 | 94.02 207 | 84.43 91 | 89.27 335 | 95.87 151 | 73.62 361 | 84.43 257 | 94.33 164 | 78.48 144 | 98.86 84 | 70.27 334 | 94.45 148 | 94.81 220 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| GBi-Net | | | 87.26 215 | 85.98 232 | 91.08 182 | 94.01 208 | 83.10 128 | 95.14 118 | 94.94 210 | 83.57 210 | 84.37 258 | 91.64 261 | 66.59 292 | 96.34 290 | 78.23 273 | 85.36 277 | 93.79 269 |
|
| test1 | | | 87.26 215 | 85.98 232 | 91.08 182 | 94.01 208 | 83.10 128 | 95.14 118 | 94.94 210 | 83.57 210 | 84.37 258 | 91.64 261 | 66.59 292 | 96.34 290 | 78.23 273 | 85.36 277 | 93.79 269 |
|
| FMVSNet2 | | | 87.19 223 | 85.82 238 | 91.30 172 | 94.01 208 | 83.67 108 | 94.79 139 | 94.94 210 | 83.57 210 | 83.88 273 | 92.05 251 | 66.59 292 | 96.51 277 | 77.56 280 | 85.01 280 | 93.73 277 |
|
| XVG-OURS-SEG-HR | | | 89.95 128 | 89.45 126 | 91.47 166 | 94.00 211 | 81.21 184 | 91.87 276 | 96.06 135 | 85.78 158 | 88.55 153 | 95.73 110 | 74.67 188 | 97.27 227 | 88.71 123 | 89.64 226 | 95.91 175 |
|
| FIs | | | 90.51 116 | 90.35 106 | 90.99 189 | 93.99 212 | 80.98 189 | 95.73 83 | 97.54 4 | 89.15 65 | 86.72 191 | 94.68 152 | 81.83 108 | 97.24 231 | 85.18 166 | 88.31 248 | 94.76 222 |
|
| xiu_mvs_v1_base_debu | | | 90.64 112 | 90.05 114 | 92.40 121 | 93.97 213 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 172 | 92.25 90 | 94.03 174 | 70.59 239 | 98.57 111 | 90.97 97 | 94.67 139 | 94.18 246 |
|
| xiu_mvs_v1_base | | | 90.64 112 | 90.05 114 | 92.40 121 | 93.97 213 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 172 | 92.25 90 | 94.03 174 | 70.59 239 | 98.57 111 | 90.97 97 | 94.67 139 | 94.18 246 |
|
| xiu_mvs_v1_base_debi | | | 90.64 112 | 90.05 114 | 92.40 121 | 93.97 213 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 172 | 92.25 90 | 94.03 174 | 70.59 239 | 98.57 111 | 90.97 97 | 94.67 139 | 94.18 246 |
|
| VPA-MVSNet | | | 89.62 136 | 88.96 139 | 91.60 160 | 93.86 216 | 82.89 140 | 95.46 97 | 97.33 25 | 87.91 106 | 88.43 156 | 93.31 203 | 74.17 195 | 97.40 217 | 87.32 141 | 82.86 305 | 94.52 232 |
|
| MVSFormer | | | 91.68 91 | 91.30 90 | 92.80 101 | 93.86 216 | 83.88 103 | 95.96 73 | 95.90 148 | 84.66 190 | 91.76 107 | 94.91 140 | 77.92 149 | 97.30 223 | 89.64 112 | 97.11 87 | 97.24 111 |
|
| lupinMVS | | | 90.92 102 | 90.21 108 | 93.03 88 | 93.86 216 | 83.88 103 | 92.81 248 | 93.86 259 | 79.84 290 | 91.76 107 | 94.29 167 | 77.92 149 | 98.04 164 | 90.48 108 | 97.11 87 | 97.17 115 |
|
| IterMVS-LS | | | 88.36 176 | 87.91 170 | 89.70 243 | 93.80 219 | 78.29 260 | 93.73 208 | 95.08 206 | 85.73 160 | 84.75 247 | 91.90 255 | 79.88 122 | 96.92 254 | 83.83 185 | 82.51 306 | 93.89 260 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MSDG | | | 84.86 281 | 83.09 292 | 90.14 221 | 93.80 219 | 80.05 216 | 89.18 338 | 93.09 275 | 78.89 303 | 78.19 344 | 91.91 254 | 65.86 301 | 97.27 227 | 68.47 347 | 88.45 244 | 93.11 301 |
|
| FMVSNet3 | | | 87.40 210 | 86.11 226 | 91.30 172 | 93.79 221 | 83.64 110 | 94.20 178 | 94.81 224 | 83.89 203 | 84.37 258 | 91.87 256 | 68.45 275 | 96.56 273 | 78.23 273 | 85.36 277 | 93.70 279 |
|
| fmvsm_s_conf0.1_n | | | 93.46 54 | 93.66 54 | 92.85 99 | 93.75 222 | 83.13 127 | 96.02 68 | 95.74 160 | 87.68 116 | 95.89 25 | 98.17 2 | 82.78 88 | 98.46 120 | 96.71 10 | 96.17 110 | 96.98 128 |
|
| FC-MVSNet-test | | | 90.27 119 | 90.18 110 | 90.53 201 | 93.71 223 | 79.85 225 | 95.77 82 | 97.59 3 | 89.31 59 | 86.27 202 | 94.67 153 | 81.93 107 | 97.01 248 | 84.26 179 | 88.09 251 | 94.71 223 |
|
| TAMVS | | | 89.21 151 | 88.29 161 | 91.96 141 | 93.71 223 | 82.62 151 | 93.30 227 | 94.19 246 | 82.22 243 | 87.78 169 | 93.94 182 | 78.83 136 | 96.95 252 | 77.70 278 | 92.98 176 | 96.32 154 |
|
| ET-MVSNet_ETH3D | | | 87.51 205 | 85.91 236 | 92.32 126 | 93.70 225 | 83.93 101 | 92.33 263 | 90.94 336 | 84.16 196 | 72.09 379 | 92.52 230 | 69.90 249 | 95.85 311 | 89.20 117 | 88.36 247 | 97.17 115 |
|
| test_fmvsmvis_n_1920 | | | 93.44 56 | 93.55 56 | 93.10 83 | 93.67 226 | 84.26 95 | 95.83 79 | 96.14 124 | 89.00 73 | 92.43 89 | 97.50 27 | 83.37 80 | 98.72 97 | 96.61 12 | 97.44 83 | 96.32 154 |
|
| CDS-MVSNet | | | 89.45 143 | 88.51 152 | 92.29 129 | 93.62 227 | 83.61 113 | 93.01 240 | 94.68 231 | 81.95 250 | 87.82 168 | 93.24 207 | 78.69 139 | 96.99 249 | 80.34 248 | 93.23 172 | 96.28 157 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| UniMVSNet (Re) | | | 89.80 133 | 89.07 137 | 92.01 135 | 93.60 228 | 84.52 85 | 94.78 140 | 97.47 11 | 89.26 61 | 86.44 198 | 92.32 236 | 82.10 102 | 97.39 220 | 84.81 172 | 80.84 334 | 94.12 250 |
|
| VPNet | | | 88.20 180 | 87.47 179 | 90.39 211 | 93.56 229 | 79.46 231 | 94.04 191 | 95.54 177 | 88.67 82 | 86.96 181 | 94.58 160 | 69.33 259 | 97.15 236 | 84.05 182 | 80.53 339 | 94.56 230 |
|
| thisisatest0515 | | | 87.33 213 | 85.99 231 | 91.37 170 | 93.49 230 | 79.55 229 | 90.63 305 | 89.56 364 | 80.17 285 | 87.56 173 | 90.86 287 | 67.07 284 | 98.28 140 | 81.50 229 | 93.02 175 | 96.29 156 |
|
| mvs_anonymous | | | 89.37 149 | 89.32 132 | 89.51 252 | 93.47 231 | 74.22 321 | 91.65 283 | 94.83 222 | 82.91 230 | 85.45 226 | 93.79 190 | 81.23 112 | 96.36 289 | 86.47 152 | 94.09 152 | 97.94 77 |
|
| CANet_DTU | | | 90.26 120 | 89.41 129 | 92.81 100 | 93.46 232 | 83.01 136 | 93.48 217 | 94.47 235 | 89.43 55 | 87.76 170 | 94.23 172 | 70.54 243 | 99.03 58 | 84.97 168 | 96.39 107 | 96.38 153 |
|
| testing3 | | | 80.46 329 | 79.59 326 | 83.06 358 | 93.44 233 | 64.64 389 | 93.33 222 | 85.47 384 | 84.34 195 | 79.93 331 | 90.84 289 | 44.35 394 | 92.39 369 | 57.06 392 | 87.56 259 | 92.16 331 |
|
| UniMVSNet_NR-MVSNet | | | 89.92 130 | 89.29 133 | 91.81 154 | 93.39 234 | 83.72 106 | 94.43 162 | 97.12 41 | 89.80 44 | 86.46 195 | 93.32 202 | 83.16 81 | 97.23 232 | 84.92 169 | 81.02 330 | 94.49 237 |
|
| Effi-MVS+-dtu | | | 88.65 168 | 88.35 157 | 89.54 249 | 93.33 235 | 76.39 297 | 94.47 159 | 94.36 240 | 87.70 115 | 85.43 229 | 89.56 325 | 73.45 207 | 97.26 229 | 85.57 164 | 91.28 197 | 94.97 209 |
|
| WR-MVS | | | 88.38 174 | 87.67 174 | 90.52 203 | 93.30 236 | 80.18 209 | 93.26 230 | 95.96 143 | 88.57 86 | 85.47 225 | 92.81 222 | 76.12 164 | 96.91 255 | 81.24 232 | 82.29 310 | 94.47 240 |
|
| WR-MVS_H | | | 87.80 190 | 87.37 181 | 89.10 261 | 93.23 237 | 78.12 263 | 95.61 93 | 97.30 29 | 87.90 107 | 83.72 276 | 92.01 252 | 79.65 130 | 96.01 303 | 76.36 292 | 80.54 338 | 93.16 299 |
|
| test_0402 | | | 81.30 322 | 79.17 332 | 87.67 298 | 93.19 238 | 78.17 262 | 92.98 241 | 91.71 312 | 75.25 344 | 76.02 361 | 90.31 304 | 59.23 347 | 96.37 287 | 50.22 397 | 83.63 294 | 88.47 382 |
|
| OPM-MVS | | | 90.12 122 | 89.56 125 | 91.82 152 | 93.14 239 | 83.90 102 | 94.16 179 | 95.74 160 | 88.96 74 | 87.86 165 | 95.43 121 | 72.48 219 | 97.91 174 | 88.10 131 | 90.18 214 | 93.65 280 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CP-MVSNet | | | 87.63 198 | 87.26 186 | 88.74 272 | 93.12 240 | 76.59 294 | 95.29 106 | 96.58 91 | 88.43 89 | 83.49 284 | 92.98 216 | 75.28 178 | 95.83 312 | 78.97 265 | 81.15 326 | 93.79 269 |
|
| diffmvs |  | | 91.37 95 | 91.23 92 | 91.77 155 | 93.09 241 | 80.27 207 | 92.36 260 | 95.52 179 | 87.03 128 | 91.40 115 | 94.93 139 | 80.08 120 | 97.44 207 | 92.13 74 | 94.56 144 | 97.61 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| nrg030 | | | 91.08 101 | 90.39 105 | 93.17 79 | 93.07 242 | 86.91 22 | 96.41 37 | 96.26 114 | 88.30 93 | 88.37 157 | 94.85 146 | 82.19 100 | 97.64 189 | 91.09 95 | 82.95 300 | 94.96 212 |
|
| UWE-MVS | | | 83.69 299 | 83.09 292 | 85.48 339 | 93.06 243 | 65.27 387 | 90.92 300 | 86.14 379 | 79.90 289 | 86.26 203 | 90.72 296 | 57.17 356 | 95.81 314 | 71.03 332 | 92.62 183 | 95.35 198 |
|
| PAPM | | | 86.68 241 | 85.39 250 | 90.53 201 | 93.05 244 | 79.33 239 | 89.79 325 | 94.77 227 | 78.82 305 | 81.95 304 | 93.24 207 | 76.81 157 | 97.30 223 | 66.94 358 | 93.16 173 | 94.95 215 |
|
| DU-MVS | | | 89.34 150 | 88.50 153 | 91.85 151 | 93.04 245 | 83.72 106 | 94.47 159 | 96.59 90 | 89.50 53 | 86.46 195 | 93.29 205 | 77.25 154 | 97.23 232 | 84.92 169 | 81.02 330 | 94.59 227 |
|
| NR-MVSNet | | | 88.58 172 | 87.47 179 | 91.93 143 | 93.04 245 | 84.16 97 | 94.77 141 | 96.25 116 | 89.05 68 | 80.04 329 | 93.29 205 | 79.02 135 | 97.05 246 | 81.71 227 | 80.05 344 | 94.59 227 |
|
| jason | | | 90.80 105 | 90.10 112 | 92.90 96 | 93.04 245 | 83.53 114 | 93.08 237 | 94.15 248 | 80.22 284 | 91.41 114 | 94.91 140 | 76.87 156 | 97.93 173 | 90.28 109 | 96.90 94 | 97.24 111 |
| jason: jason. |
| PS-CasMVS | | | 87.32 214 | 86.88 192 | 88.63 275 | 92.99 248 | 76.33 299 | 95.33 101 | 96.61 89 | 88.22 97 | 83.30 289 | 93.07 214 | 73.03 213 | 95.79 316 | 78.36 270 | 81.00 332 | 93.75 276 |
|
| test_vis1_n_1920 | | | 89.39 148 | 89.84 120 | 88.04 291 | 92.97 249 | 72.64 341 | 94.71 145 | 96.03 138 | 86.18 150 | 91.94 101 | 96.56 78 | 61.63 325 | 95.74 318 | 93.42 44 | 95.11 132 | 95.74 184 |
|
| MVSTER | | | 88.84 162 | 88.29 161 | 90.51 204 | 92.95 250 | 80.44 204 | 93.73 208 | 95.01 207 | 84.66 190 | 87.15 179 | 93.12 212 | 72.79 215 | 97.21 234 | 87.86 132 | 87.36 263 | 93.87 264 |
|
| RPSCF | | | 85.07 276 | 84.27 273 | 87.48 304 | 92.91 251 | 70.62 366 | 91.69 282 | 92.46 290 | 76.20 336 | 82.67 295 | 95.22 128 | 63.94 311 | 97.29 226 | 77.51 281 | 85.80 274 | 94.53 231 |
|
| FMVSNet1 | | | 85.85 260 | 84.11 276 | 91.08 182 | 92.81 252 | 83.10 128 | 95.14 118 | 94.94 210 | 81.64 263 | 82.68 294 | 91.64 261 | 59.01 349 | 96.34 290 | 75.37 301 | 83.78 290 | 93.79 269 |
|
| tfpnnormal | | | 84.72 284 | 83.23 290 | 89.20 258 | 92.79 253 | 80.05 216 | 94.48 156 | 95.81 154 | 82.38 239 | 81.08 314 | 91.21 275 | 69.01 268 | 96.95 252 | 61.69 379 | 80.59 337 | 90.58 362 |
|
| OpenMVS |  | 83.78 11 | 88.74 166 | 87.29 183 | 93.08 85 | 92.70 254 | 85.39 69 | 96.57 35 | 96.43 99 | 78.74 308 | 80.85 316 | 96.07 94 | 69.64 254 | 99.01 63 | 78.01 276 | 96.65 102 | 94.83 219 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 162 | 87.95 168 | 91.49 164 | 92.68 255 | 83.01 136 | 94.92 130 | 96.31 108 | 89.88 40 | 85.53 220 | 93.85 189 | 76.63 162 | 96.96 251 | 81.91 220 | 79.87 347 | 94.50 235 |
|
| MVS | | | 87.44 208 | 86.10 227 | 91.44 167 | 92.61 256 | 83.62 111 | 92.63 252 | 95.66 168 | 67.26 388 | 81.47 308 | 92.15 242 | 77.95 148 | 98.22 144 | 79.71 255 | 95.48 121 | 92.47 320 |
|
| fmvsm_s_conf0.1_n_a | | | 93.19 67 | 93.26 60 | 92.97 92 | 92.49 257 | 83.62 111 | 96.02 68 | 95.72 163 | 86.78 135 | 96.04 22 | 98.19 1 | 82.30 96 | 98.43 128 | 96.38 13 | 95.42 125 | 96.86 136 |
|
| CHOSEN 280x420 | | | 85.15 275 | 83.99 279 | 88.65 274 | 92.47 258 | 78.40 256 | 79.68 401 | 92.76 284 | 74.90 349 | 81.41 310 | 89.59 323 | 69.85 252 | 95.51 325 | 79.92 254 | 95.29 128 | 92.03 332 |
|
| test_fmvsmconf0.1_n | | | 94.20 33 | 94.31 27 | 93.88 59 | 92.46 259 | 84.80 77 | 96.18 51 | 96.82 68 | 89.29 60 | 95.68 28 | 98.11 5 | 85.10 57 | 98.99 70 | 97.38 3 | 97.75 79 | 97.86 83 |
|
| UniMVSNet_ETH3D | | | 87.53 204 | 86.37 214 | 91.00 188 | 92.44 260 | 78.96 245 | 94.74 142 | 95.61 172 | 84.07 199 | 85.36 236 | 94.52 161 | 59.78 344 | 97.34 222 | 82.93 196 | 87.88 254 | 96.71 142 |
|
| 1314 | | | 87.51 205 | 86.57 207 | 90.34 215 | 92.42 261 | 79.74 227 | 92.63 252 | 95.35 194 | 78.35 314 | 80.14 326 | 91.62 265 | 74.05 197 | 97.15 236 | 81.05 233 | 93.53 162 | 94.12 250 |
|
| cl22 | | | 86.78 236 | 85.98 232 | 89.18 259 | 92.34 262 | 77.62 279 | 90.84 302 | 94.13 250 | 81.33 271 | 83.97 272 | 90.15 310 | 73.96 199 | 96.60 270 | 84.19 180 | 82.94 301 | 93.33 290 |
|
| PEN-MVS | | | 86.80 235 | 86.27 220 | 88.40 278 | 92.32 263 | 75.71 306 | 95.18 115 | 96.38 104 | 87.97 104 | 82.82 293 | 93.15 210 | 73.39 209 | 95.92 307 | 76.15 296 | 79.03 354 | 93.59 281 |
|
| tt0805 | | | 86.92 231 | 85.74 244 | 90.48 206 | 92.22 264 | 79.98 221 | 95.63 92 | 94.88 218 | 83.83 205 | 84.74 248 | 92.80 223 | 57.61 354 | 97.67 184 | 85.48 165 | 84.42 284 | 93.79 269 |
|
| c3_l | | | 87.14 225 | 86.50 211 | 89.04 263 | 92.20 265 | 77.26 283 | 91.22 295 | 94.70 230 | 82.01 249 | 84.34 262 | 90.43 302 | 78.81 137 | 96.61 268 | 83.70 188 | 81.09 327 | 93.25 294 |
|
| SCA | | | 86.32 253 | 85.18 256 | 89.73 242 | 92.15 266 | 76.60 293 | 91.12 296 | 91.69 314 | 83.53 213 | 85.50 223 | 88.81 336 | 66.79 288 | 96.48 279 | 76.65 288 | 90.35 212 | 96.12 165 |
|
| XXY-MVS | | | 87.65 195 | 86.85 194 | 90.03 226 | 92.14 267 | 80.60 201 | 93.76 207 | 95.23 197 | 82.94 229 | 84.60 250 | 94.02 177 | 74.27 191 | 95.49 328 | 81.04 234 | 83.68 293 | 94.01 258 |
|
| miper_ehance_all_eth | | | 87.22 220 | 86.62 205 | 89.02 264 | 92.13 268 | 77.40 282 | 90.91 301 | 94.81 224 | 81.28 272 | 84.32 263 | 90.08 313 | 79.26 132 | 96.62 265 | 83.81 186 | 82.94 301 | 93.04 304 |
|
| IB-MVS | | 80.51 15 | 85.24 274 | 83.26 289 | 91.19 176 | 92.13 268 | 79.86 224 | 91.75 279 | 91.29 327 | 83.28 221 | 80.66 319 | 88.49 342 | 61.28 330 | 98.46 120 | 80.99 237 | 79.46 350 | 95.25 201 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| cascas | | | 86.43 252 | 84.98 260 | 90.80 195 | 92.10 270 | 80.92 192 | 90.24 313 | 95.91 147 | 73.10 366 | 83.57 282 | 88.39 343 | 65.15 304 | 97.46 203 | 84.90 171 | 91.43 195 | 94.03 257 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 208 | 86.72 198 | 89.63 247 | 92.04 271 | 77.68 278 | 94.03 192 | 93.94 254 | 85.81 157 | 82.42 296 | 91.32 273 | 70.33 245 | 97.06 244 | 80.33 249 | 90.23 213 | 94.14 249 |
|
| cl____ | | | 86.52 247 | 85.78 239 | 88.75 270 | 92.03 272 | 76.46 295 | 90.74 303 | 94.30 242 | 81.83 258 | 83.34 287 | 90.78 292 | 75.74 174 | 96.57 271 | 81.74 225 | 81.54 321 | 93.22 296 |
|
| DIV-MVS_self_test | | | 86.53 246 | 85.78 239 | 88.75 270 | 92.02 273 | 76.45 296 | 90.74 303 | 94.30 242 | 81.83 258 | 83.34 287 | 90.82 290 | 75.75 172 | 96.57 271 | 81.73 226 | 81.52 322 | 93.24 295 |
|
| eth_miper_zixun_eth | | | 86.50 248 | 85.77 241 | 88.68 273 | 91.94 274 | 75.81 305 | 90.47 307 | 94.89 216 | 82.05 246 | 84.05 269 | 90.46 301 | 75.96 167 | 96.77 259 | 82.76 202 | 79.36 351 | 93.46 288 |
|
| Syy-MVS | | | 80.07 333 | 79.78 321 | 80.94 367 | 91.92 275 | 59.93 398 | 89.75 327 | 87.40 376 | 81.72 260 | 78.82 340 | 87.20 360 | 66.29 296 | 91.29 379 | 47.06 399 | 87.84 256 | 91.60 340 |
|
| myMVS_eth3d | | | 79.67 338 | 78.79 337 | 82.32 364 | 91.92 275 | 64.08 390 | 89.75 327 | 87.40 376 | 81.72 260 | 78.82 340 | 87.20 360 | 45.33 392 | 91.29 379 | 59.09 387 | 87.84 256 | 91.60 340 |
|
| PS-MVSNAJss | | | 89.97 127 | 89.62 123 | 91.02 186 | 91.90 277 | 80.85 194 | 95.26 110 | 95.98 140 | 86.26 148 | 86.21 204 | 94.29 167 | 79.70 126 | 97.65 187 | 88.87 122 | 88.10 249 | 94.57 229 |
|
| ITE_SJBPF | | | | | 88.24 286 | 91.88 278 | 77.05 286 | | 92.92 279 | 85.54 166 | 80.13 327 | 93.30 204 | 57.29 355 | 96.20 295 | 72.46 322 | 84.71 282 | 91.49 343 |
|
| EI-MVSNet | | | 89.10 153 | 88.86 145 | 89.80 239 | 91.84 279 | 78.30 259 | 93.70 211 | 95.01 207 | 85.73 160 | 87.15 179 | 95.28 125 | 79.87 123 | 97.21 234 | 83.81 186 | 87.36 263 | 93.88 263 |
|
| CVMVSNet | | | 84.69 285 | 84.79 266 | 84.37 350 | 91.84 279 | 64.92 388 | 93.70 211 | 91.47 323 | 66.19 390 | 86.16 206 | 95.28 125 | 67.18 283 | 93.33 360 | 80.89 239 | 90.42 211 | 94.88 217 |
|
| dmvs_re | | | 84.20 290 | 83.22 291 | 87.14 316 | 91.83 281 | 77.81 272 | 90.04 321 | 90.19 348 | 84.70 189 | 81.49 307 | 89.17 329 | 64.37 309 | 91.13 381 | 71.58 325 | 85.65 276 | 92.46 321 |
|
| MVS-HIRNet | | | 73.70 356 | 72.20 359 | 78.18 374 | 91.81 282 | 56.42 406 | 82.94 392 | 82.58 393 | 55.24 400 | 68.88 387 | 66.48 403 | 55.32 364 | 95.13 333 | 58.12 389 | 88.42 245 | 83.01 391 |
|
| PatchmatchNet |  | | 85.85 260 | 84.70 267 | 89.29 256 | 91.76 283 | 75.54 307 | 88.49 347 | 91.30 326 | 81.63 264 | 85.05 242 | 88.70 340 | 71.71 224 | 96.24 294 | 74.61 310 | 89.05 236 | 96.08 168 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| TransMVSNet (Re) | | | 84.43 287 | 83.06 294 | 88.54 276 | 91.72 284 | 78.44 254 | 95.18 115 | 92.82 283 | 82.73 234 | 79.67 334 | 92.12 244 | 73.49 206 | 95.96 305 | 71.10 331 | 68.73 385 | 91.21 349 |
|
| IterMVS-SCA-FT | | | 85.45 266 | 84.53 272 | 88.18 288 | 91.71 285 | 76.87 288 | 90.19 317 | 92.65 288 | 85.40 169 | 81.44 309 | 90.54 298 | 66.79 288 | 95.00 337 | 81.04 234 | 81.05 328 | 92.66 315 |
|
| TinyColmap | | | 79.76 337 | 77.69 340 | 85.97 333 | 91.71 285 | 73.12 332 | 89.55 329 | 90.36 346 | 75.03 346 | 72.03 380 | 90.19 308 | 46.22 391 | 96.19 297 | 63.11 375 | 81.03 329 | 88.59 381 |
|
| MDTV_nov1_ep13 | | | | 83.56 285 | | 91.69 287 | 69.93 370 | 87.75 359 | 91.54 320 | 78.60 310 | 84.86 245 | 88.90 335 | 69.54 256 | 96.03 301 | 70.25 335 | 88.93 237 | |
|
| miper_enhance_ethall | | | 86.90 232 | 86.18 222 | 89.06 262 | 91.66 288 | 77.58 280 | 90.22 315 | 94.82 223 | 79.16 299 | 84.48 254 | 89.10 330 | 79.19 134 | 96.66 263 | 84.06 181 | 82.94 301 | 92.94 307 |
|
| DTE-MVSNet | | | 86.11 255 | 85.48 248 | 87.98 292 | 91.65 289 | 74.92 313 | 94.93 129 | 95.75 159 | 87.36 122 | 82.26 298 | 93.04 215 | 72.85 214 | 95.82 313 | 74.04 312 | 77.46 360 | 93.20 297 |
|
| MIMVSNet | | | 82.59 306 | 80.53 311 | 88.76 269 | 91.51 290 | 78.32 258 | 86.57 370 | 90.13 350 | 79.32 295 | 80.70 318 | 88.69 341 | 52.98 375 | 93.07 365 | 66.03 364 | 88.86 238 | 94.90 216 |
|
| WB-MVSnew | | | 83.77 297 | 83.28 288 | 85.26 344 | 91.48 291 | 71.03 360 | 91.89 274 | 87.98 370 | 78.91 301 | 84.78 246 | 90.22 306 | 69.11 267 | 94.02 349 | 64.70 370 | 90.44 209 | 90.71 357 |
|
| pm-mvs1 | | | 86.61 242 | 85.54 246 | 89.82 236 | 91.44 292 | 80.18 209 | 95.28 108 | 94.85 220 | 83.84 204 | 81.66 306 | 92.62 227 | 72.45 221 | 96.48 279 | 79.67 256 | 78.06 355 | 92.82 312 |
|
| Baseline_NR-MVSNet | | | 87.07 227 | 86.63 204 | 88.40 278 | 91.44 292 | 77.87 270 | 94.23 177 | 92.57 289 | 84.12 198 | 85.74 214 | 92.08 248 | 77.25 154 | 96.04 300 | 82.29 210 | 79.94 345 | 91.30 347 |
|
| IterMVS | | | 84.88 280 | 83.98 280 | 87.60 299 | 91.44 292 | 76.03 301 | 90.18 318 | 92.41 291 | 83.24 222 | 81.06 315 | 90.42 303 | 66.60 291 | 94.28 346 | 79.46 258 | 80.98 333 | 92.48 319 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MS-PatchMatch | | | 85.05 277 | 84.16 275 | 87.73 297 | 91.42 295 | 78.51 252 | 91.25 293 | 93.53 266 | 77.50 322 | 80.15 325 | 91.58 267 | 61.99 322 | 95.51 325 | 75.69 298 | 94.35 150 | 89.16 375 |
|
| tpm2 | | | 84.08 291 | 82.94 295 | 87.48 304 | 91.39 296 | 71.27 356 | 89.23 337 | 90.37 345 | 71.95 375 | 84.64 249 | 89.33 327 | 67.30 280 | 96.55 275 | 75.17 303 | 87.09 267 | 94.63 224 |
|
| v8 | | | 87.50 207 | 86.71 199 | 89.89 233 | 91.37 297 | 79.40 233 | 94.50 155 | 95.38 190 | 84.81 185 | 83.60 281 | 91.33 271 | 76.05 165 | 97.42 209 | 82.84 199 | 80.51 341 | 92.84 311 |
|
| ADS-MVSNet2 | | | 81.66 315 | 79.71 324 | 87.50 302 | 91.35 298 | 74.19 322 | 83.33 389 | 88.48 368 | 72.90 368 | 82.24 299 | 85.77 372 | 64.98 305 | 93.20 363 | 64.57 371 | 83.74 291 | 95.12 204 |
|
| ADS-MVSNet | | | 81.56 317 | 79.78 321 | 86.90 321 | 91.35 298 | 71.82 349 | 83.33 389 | 89.16 366 | 72.90 368 | 82.24 299 | 85.77 372 | 64.98 305 | 93.76 354 | 64.57 371 | 83.74 291 | 95.12 204 |
|
| GA-MVS | | | 86.61 242 | 85.27 255 | 90.66 197 | 91.33 300 | 78.71 247 | 90.40 308 | 93.81 262 | 85.34 170 | 85.12 239 | 89.57 324 | 61.25 331 | 97.11 240 | 80.99 237 | 89.59 227 | 96.15 162 |
|
| miper_lstm_enhance | | | 85.27 273 | 84.59 270 | 87.31 307 | 91.28 301 | 74.63 316 | 87.69 360 | 94.09 252 | 81.20 276 | 81.36 311 | 89.85 319 | 74.97 183 | 94.30 345 | 81.03 236 | 79.84 348 | 93.01 305 |
|
| XVG-ACMP-BASELINE | | | 86.00 256 | 84.84 265 | 89.45 253 | 91.20 302 | 78.00 265 | 91.70 281 | 95.55 175 | 85.05 178 | 82.97 291 | 92.25 240 | 54.49 369 | 97.48 200 | 82.93 196 | 87.45 262 | 92.89 309 |
|
| v10 | | | 87.25 217 | 86.38 213 | 89.85 234 | 91.19 303 | 79.50 230 | 94.48 156 | 95.45 184 | 83.79 206 | 83.62 280 | 91.19 276 | 75.13 179 | 97.42 209 | 81.94 219 | 80.60 336 | 92.63 316 |
|
| FMVSNet5 | | | 81.52 318 | 79.60 325 | 87.27 308 | 91.17 304 | 77.95 266 | 91.49 286 | 92.26 298 | 76.87 328 | 76.16 358 | 87.91 352 | 51.67 377 | 92.34 370 | 67.74 353 | 81.16 324 | 91.52 342 |
|
| USDC | | | 82.76 303 | 81.26 308 | 87.26 309 | 91.17 304 | 74.55 317 | 89.27 335 | 93.39 269 | 78.26 317 | 75.30 365 | 92.08 248 | 54.43 370 | 96.63 264 | 71.64 324 | 85.79 275 | 90.61 359 |
|
| CostFormer | | | 85.77 262 | 84.94 262 | 88.26 285 | 91.16 306 | 72.58 344 | 89.47 333 | 91.04 333 | 76.26 335 | 86.45 197 | 89.97 316 | 70.74 237 | 96.86 258 | 82.35 208 | 87.07 268 | 95.34 199 |
|
| test_cas_vis1_n_1920 | | | 88.83 165 | 88.85 146 | 88.78 268 | 91.15 307 | 76.72 291 | 93.85 204 | 94.93 214 | 83.23 223 | 92.81 76 | 96.00 96 | 61.17 335 | 94.45 340 | 91.67 89 | 94.84 136 | 95.17 203 |
|
| baseline2 | | | 86.50 248 | 85.39 250 | 89.84 235 | 91.12 308 | 76.70 292 | 91.88 275 | 88.58 367 | 82.35 241 | 79.95 330 | 90.95 286 | 73.42 208 | 97.63 190 | 80.27 250 | 89.95 218 | 95.19 202 |
|
| tpm cat1 | | | 81.96 309 | 80.27 315 | 87.01 317 | 91.09 309 | 71.02 361 | 87.38 364 | 91.53 321 | 66.25 389 | 80.17 324 | 86.35 368 | 68.22 277 | 96.15 298 | 69.16 343 | 82.29 310 | 93.86 266 |
|
| tpmvs | | | 83.35 302 | 82.07 301 | 87.20 314 | 91.07 310 | 71.00 362 | 88.31 350 | 91.70 313 | 78.91 301 | 80.49 322 | 87.18 362 | 69.30 262 | 97.08 241 | 68.12 352 | 83.56 295 | 93.51 286 |
|
| v1144 | | | 87.61 201 | 86.79 197 | 90.06 225 | 91.01 311 | 79.34 236 | 93.95 198 | 95.42 189 | 83.36 219 | 85.66 216 | 91.31 274 | 74.98 182 | 97.42 209 | 83.37 190 | 82.06 312 | 93.42 289 |
|
| v2v482 | | | 87.84 188 | 87.06 188 | 90.17 218 | 90.99 312 | 79.23 243 | 94.00 196 | 95.13 201 | 84.87 182 | 85.53 220 | 92.07 250 | 74.45 189 | 97.45 204 | 84.71 174 | 81.75 318 | 93.85 267 |
|
| SixPastTwentyTwo | | | 83.91 295 | 82.90 297 | 86.92 320 | 90.99 312 | 70.67 365 | 93.48 217 | 91.99 306 | 85.54 166 | 77.62 350 | 92.11 246 | 60.59 338 | 96.87 257 | 76.05 297 | 77.75 357 | 93.20 297 |
|
| test-LLR | | | 85.87 259 | 85.41 249 | 87.25 310 | 90.95 314 | 71.67 353 | 89.55 329 | 89.88 358 | 83.41 216 | 84.54 252 | 87.95 350 | 67.25 281 | 95.11 334 | 81.82 222 | 93.37 169 | 94.97 209 |
|
| test-mter | | | 84.54 286 | 83.64 284 | 87.25 310 | 90.95 314 | 71.67 353 | 89.55 329 | 89.88 358 | 79.17 298 | 84.54 252 | 87.95 350 | 55.56 361 | 95.11 334 | 81.82 222 | 93.37 169 | 94.97 209 |
|
| v148 | | | 87.04 228 | 86.32 217 | 89.21 257 | 90.94 316 | 77.26 283 | 93.71 210 | 94.43 236 | 84.84 184 | 84.36 261 | 90.80 291 | 76.04 166 | 97.05 246 | 82.12 213 | 79.60 349 | 93.31 291 |
|
| mvs_tets | | | 88.06 185 | 87.28 184 | 90.38 213 | 90.94 316 | 79.88 223 | 95.22 112 | 95.66 168 | 85.10 176 | 84.21 267 | 93.94 182 | 63.53 313 | 97.40 217 | 88.50 125 | 88.40 246 | 93.87 264 |
|
| MVP-Stereo | | | 85.97 257 | 84.86 264 | 89.32 255 | 90.92 318 | 82.19 159 | 92.11 271 | 94.19 246 | 78.76 307 | 78.77 343 | 91.63 264 | 68.38 276 | 96.56 273 | 75.01 306 | 93.95 154 | 89.20 374 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Patchmatch-test | | | 81.37 320 | 79.30 328 | 87.58 300 | 90.92 318 | 74.16 323 | 80.99 396 | 87.68 374 | 70.52 381 | 76.63 356 | 88.81 336 | 71.21 229 | 92.76 367 | 60.01 385 | 86.93 269 | 95.83 180 |
|
| jajsoiax | | | 88.24 179 | 87.50 177 | 90.48 206 | 90.89 320 | 80.14 211 | 95.31 102 | 95.65 170 | 84.97 179 | 84.24 266 | 94.02 177 | 65.31 303 | 97.42 209 | 88.56 124 | 88.52 242 | 93.89 260 |
|
| tpmrst | | | 85.35 270 | 84.99 259 | 86.43 329 | 90.88 321 | 67.88 377 | 88.71 344 | 91.43 324 | 80.13 286 | 86.08 207 | 88.80 338 | 73.05 212 | 96.02 302 | 82.48 204 | 83.40 299 | 95.40 195 |
|
| gg-mvs-nofinetune | | | 81.77 312 | 79.37 327 | 88.99 265 | 90.85 322 | 77.73 277 | 86.29 371 | 79.63 400 | 74.88 350 | 83.19 290 | 69.05 402 | 60.34 339 | 96.11 299 | 75.46 300 | 94.64 142 | 93.11 301 |
|
| D2MVS | | | 85.90 258 | 85.09 258 | 88.35 280 | 90.79 323 | 77.42 281 | 91.83 277 | 95.70 164 | 80.77 280 | 80.08 328 | 90.02 314 | 66.74 290 | 96.37 287 | 81.88 221 | 87.97 253 | 91.26 348 |
|
| OurMVSNet-221017-0 | | | 85.35 270 | 84.64 269 | 87.49 303 | 90.77 324 | 72.59 343 | 94.01 194 | 94.40 238 | 84.72 188 | 79.62 336 | 93.17 209 | 61.91 323 | 96.72 260 | 81.99 218 | 81.16 324 | 93.16 299 |
|
| v1192 | | | 87.25 217 | 86.33 216 | 90.00 230 | 90.76 325 | 79.04 244 | 93.80 205 | 95.48 180 | 82.57 236 | 85.48 224 | 91.18 278 | 73.38 210 | 97.42 209 | 82.30 209 | 82.06 312 | 93.53 283 |
|
| test_djsdf | | | 89.03 158 | 88.64 148 | 90.21 217 | 90.74 326 | 79.28 240 | 95.96 73 | 95.90 148 | 84.66 190 | 85.33 237 | 92.94 217 | 74.02 198 | 97.30 223 | 89.64 112 | 88.53 241 | 94.05 256 |
|
| v7n | | | 86.81 234 | 85.76 242 | 89.95 231 | 90.72 327 | 79.25 242 | 95.07 121 | 95.92 145 | 84.45 193 | 82.29 297 | 90.86 287 | 72.60 218 | 97.53 196 | 79.42 262 | 80.52 340 | 93.08 303 |
|
| PVSNet_0 | | 73.20 20 | 77.22 349 | 74.83 355 | 84.37 350 | 90.70 328 | 71.10 359 | 83.09 391 | 89.67 361 | 72.81 370 | 73.93 373 | 83.13 383 | 60.79 337 | 93.70 356 | 68.54 346 | 50.84 404 | 88.30 383 |
|
| v144192 | | | 87.19 223 | 86.35 215 | 89.74 240 | 90.64 329 | 78.24 261 | 93.92 201 | 95.43 187 | 81.93 251 | 85.51 222 | 91.05 284 | 74.21 194 | 97.45 204 | 82.86 198 | 81.56 320 | 93.53 283 |
|
| test_fmvs1 | | | 87.34 212 | 87.56 176 | 86.68 326 | 90.59 330 | 71.80 350 | 94.01 194 | 94.04 253 | 78.30 315 | 91.97 98 | 95.22 128 | 56.28 359 | 93.71 355 | 92.89 52 | 94.71 138 | 94.52 232 |
|
| V42 | | | 87.68 193 | 86.86 193 | 90.15 220 | 90.58 331 | 80.14 211 | 94.24 176 | 95.28 195 | 83.66 208 | 85.67 215 | 91.33 271 | 74.73 186 | 97.41 215 | 84.43 178 | 81.83 316 | 92.89 309 |
|
| CR-MVSNet | | | 85.35 270 | 83.76 282 | 90.12 222 | 90.58 331 | 79.34 236 | 85.24 379 | 91.96 309 | 78.27 316 | 85.55 218 | 87.87 353 | 71.03 232 | 95.61 321 | 73.96 314 | 89.36 230 | 95.40 195 |
|
| RPMNet | | | 83.95 294 | 81.53 305 | 91.21 175 | 90.58 331 | 79.34 236 | 85.24 379 | 96.76 75 | 71.44 377 | 85.55 218 | 82.97 386 | 70.87 235 | 98.91 80 | 61.01 381 | 89.36 230 | 95.40 195 |
|
| v1921920 | | | 86.97 230 | 86.06 229 | 89.69 244 | 90.53 334 | 78.11 264 | 93.80 205 | 95.43 187 | 81.90 253 | 85.33 237 | 91.05 284 | 72.66 216 | 97.41 215 | 82.05 217 | 81.80 317 | 93.53 283 |
|
| v1240 | | | 86.78 236 | 85.85 237 | 89.56 248 | 90.45 335 | 77.79 274 | 93.61 213 | 95.37 192 | 81.65 262 | 85.43 229 | 91.15 280 | 71.50 227 | 97.43 208 | 81.47 230 | 82.05 314 | 93.47 287 |
|
| tpm | | | 84.73 283 | 84.02 278 | 86.87 323 | 90.33 336 | 68.90 373 | 89.06 340 | 89.94 355 | 80.85 279 | 85.75 213 | 89.86 318 | 68.54 274 | 95.97 304 | 77.76 277 | 84.05 288 | 95.75 183 |
|
| EG-PatchMatch MVS | | | 82.37 308 | 80.34 314 | 88.46 277 | 90.27 337 | 79.35 235 | 92.80 249 | 94.33 241 | 77.14 327 | 73.26 376 | 90.18 309 | 47.47 387 | 96.72 260 | 70.25 335 | 87.32 265 | 89.30 371 |
|
| EPNet_dtu | | | 86.49 250 | 85.94 235 | 88.14 289 | 90.24 338 | 72.82 336 | 94.11 183 | 92.20 299 | 86.66 139 | 79.42 337 | 92.36 235 | 73.52 205 | 95.81 314 | 71.26 326 | 93.66 158 | 95.80 182 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EPMVS | | | 83.90 296 | 82.70 300 | 87.51 301 | 90.23 339 | 72.67 339 | 88.62 346 | 81.96 395 | 81.37 270 | 85.01 243 | 88.34 344 | 66.31 295 | 94.45 340 | 75.30 302 | 87.12 266 | 95.43 194 |
|
| EPNet | | | 91.79 86 | 91.02 97 | 94.10 54 | 90.10 340 | 85.25 71 | 96.03 67 | 92.05 303 | 92.83 2 | 87.39 178 | 95.78 107 | 79.39 131 | 99.01 63 | 88.13 129 | 97.48 82 | 98.05 71 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PatchT | | | 82.68 305 | 81.27 307 | 86.89 322 | 90.09 341 | 70.94 363 | 84.06 386 | 90.15 349 | 74.91 348 | 85.63 217 | 83.57 381 | 69.37 258 | 94.87 339 | 65.19 366 | 88.50 243 | 94.84 218 |
|
| Patchmtry | | | 82.71 304 | 80.93 310 | 88.06 290 | 90.05 342 | 76.37 298 | 84.74 384 | 91.96 309 | 72.28 374 | 81.32 312 | 87.87 353 | 71.03 232 | 95.50 327 | 68.97 344 | 80.15 343 | 92.32 327 |
|
| pmmvs4 | | | 85.43 267 | 83.86 281 | 90.16 219 | 90.02 343 | 82.97 138 | 90.27 309 | 92.67 287 | 75.93 338 | 80.73 317 | 91.74 259 | 71.05 231 | 95.73 319 | 78.85 267 | 83.46 297 | 91.78 336 |
|
| TESTMET0.1,1 | | | 83.74 298 | 82.85 298 | 86.42 330 | 89.96 344 | 71.21 358 | 89.55 329 | 87.88 371 | 77.41 323 | 83.37 286 | 87.31 358 | 56.71 357 | 93.65 357 | 80.62 244 | 92.85 180 | 94.40 241 |
|
| dp | | | 81.47 319 | 80.23 316 | 85.17 345 | 89.92 345 | 65.49 385 | 86.74 368 | 90.10 351 | 76.30 334 | 81.10 313 | 87.12 363 | 62.81 318 | 95.92 307 | 68.13 351 | 79.88 346 | 94.09 253 |
|
| K. test v3 | | | 81.59 316 | 80.15 318 | 85.91 336 | 89.89 346 | 69.42 372 | 92.57 254 | 87.71 373 | 85.56 165 | 73.44 375 | 89.71 322 | 55.58 360 | 95.52 324 | 77.17 284 | 69.76 379 | 92.78 313 |
|
| MDA-MVSNet-bldmvs | | | 78.85 343 | 76.31 348 | 86.46 327 | 89.76 347 | 73.88 324 | 88.79 343 | 90.42 344 | 79.16 299 | 59.18 398 | 88.33 345 | 60.20 340 | 94.04 348 | 62.00 378 | 68.96 383 | 91.48 344 |
|
| test_fmvs1_n | | | 87.03 229 | 87.04 190 | 86.97 318 | 89.74 348 | 71.86 348 | 94.55 153 | 94.43 236 | 78.47 311 | 91.95 100 | 95.50 118 | 51.16 379 | 93.81 353 | 93.02 51 | 94.56 144 | 95.26 200 |
|
| GG-mvs-BLEND | | | | | 87.94 294 | 89.73 349 | 77.91 267 | 87.80 355 | 78.23 404 | | 80.58 320 | 83.86 379 | 59.88 343 | 95.33 331 | 71.20 327 | 92.22 189 | 90.60 361 |
|
| EGC-MVSNET | | | 61.97 368 | 56.37 373 | 78.77 372 | 89.63 350 | 73.50 328 | 89.12 339 | 82.79 392 | 0.21 418 | 1.24 419 | 84.80 376 | 39.48 397 | 90.04 386 | 44.13 401 | 75.94 368 | 72.79 400 |
|
| gm-plane-assit | | | | | | 89.60 351 | 68.00 375 | | | 77.28 326 | | 88.99 333 | | 97.57 193 | 79.44 260 | | |
|
| MonoMVSNet | | | 86.89 233 | 86.55 208 | 87.92 295 | 89.46 352 | 73.75 325 | 94.12 181 | 93.10 274 | 87.82 112 | 85.10 240 | 90.76 293 | 69.59 255 | 94.94 338 | 86.47 152 | 82.50 307 | 95.07 206 |
|
| test_fmvsmconf0.01_n | | | 93.19 67 | 93.02 66 | 93.71 67 | 89.25 353 | 84.42 93 | 96.06 64 | 96.29 109 | 89.06 67 | 94.68 37 | 98.13 3 | 79.22 133 | 98.98 74 | 97.22 4 | 97.24 86 | 97.74 90 |
|
| anonymousdsp | | | 87.84 188 | 87.09 187 | 90.12 222 | 89.13 354 | 80.54 202 | 94.67 147 | 95.55 175 | 82.05 246 | 83.82 274 | 92.12 244 | 71.47 228 | 97.15 236 | 87.15 143 | 87.80 258 | 92.67 314 |
|
| N_pmnet | | | 68.89 362 | 68.44 364 | 70.23 382 | 89.07 355 | 28.79 421 | 88.06 352 | 19.50 421 | 69.47 384 | 71.86 381 | 84.93 375 | 61.24 332 | 91.75 376 | 54.70 394 | 77.15 361 | 90.15 363 |
|
| pmmvs5 | | | 84.21 289 | 82.84 299 | 88.34 282 | 88.95 356 | 76.94 287 | 92.41 257 | 91.91 311 | 75.63 340 | 80.28 323 | 91.18 278 | 64.59 307 | 95.57 322 | 77.09 286 | 83.47 296 | 92.53 318 |
|
| PMMVS | | | 85.71 263 | 84.96 261 | 87.95 293 | 88.90 357 | 77.09 285 | 88.68 345 | 90.06 352 | 72.32 373 | 86.47 194 | 90.76 293 | 72.15 222 | 94.40 342 | 81.78 224 | 93.49 164 | 92.36 325 |
|
| JIA-IIPM | | | 81.04 323 | 78.98 336 | 87.25 310 | 88.64 358 | 73.48 329 | 81.75 395 | 89.61 363 | 73.19 365 | 82.05 302 | 73.71 398 | 66.07 300 | 95.87 310 | 71.18 329 | 84.60 283 | 92.41 323 |
|
| test_vis1_n | | | 86.56 245 | 86.49 212 | 86.78 325 | 88.51 359 | 72.69 338 | 94.68 146 | 93.78 263 | 79.55 294 | 90.70 121 | 95.31 124 | 48.75 384 | 93.28 361 | 93.15 48 | 93.99 153 | 94.38 242 |
|
| Gipuma |  | | 57.99 374 | 54.91 376 | 67.24 388 | 88.51 359 | 65.59 384 | 52.21 409 | 90.33 347 | 43.58 406 | 42.84 409 | 51.18 410 | 20.29 412 | 85.07 400 | 34.77 407 | 70.45 377 | 51.05 409 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| EU-MVSNet | | | 81.32 321 | 80.95 309 | 82.42 363 | 88.50 361 | 63.67 392 | 93.32 223 | 91.33 325 | 64.02 393 | 80.57 321 | 92.83 220 | 61.21 333 | 92.27 371 | 76.34 293 | 80.38 342 | 91.32 346 |
|
| our_test_3 | | | 81.93 310 | 80.46 313 | 86.33 331 | 88.46 362 | 73.48 329 | 88.46 348 | 91.11 329 | 76.46 330 | 76.69 355 | 88.25 346 | 66.89 286 | 94.36 343 | 68.75 345 | 79.08 353 | 91.14 351 |
|
| ppachtmachnet_test | | | 81.84 311 | 80.07 319 | 87.15 315 | 88.46 362 | 74.43 320 | 89.04 341 | 92.16 300 | 75.33 343 | 77.75 348 | 88.99 333 | 66.20 297 | 95.37 330 | 65.12 368 | 77.60 358 | 91.65 338 |
|
| lessismore_v0 | | | | | 86.04 332 | 88.46 362 | 68.78 374 | | 80.59 398 | | 73.01 377 | 90.11 312 | 55.39 362 | 96.43 284 | 75.06 305 | 65.06 390 | 92.90 308 |
|
| test0.0.03 1 | | | 82.41 307 | 81.69 303 | 84.59 348 | 88.23 365 | 72.89 335 | 90.24 313 | 87.83 372 | 83.41 216 | 79.86 332 | 89.78 320 | 67.25 281 | 88.99 392 | 65.18 367 | 83.42 298 | 91.90 335 |
|
| MDA-MVSNet_test_wron | | | 79.21 342 | 77.19 344 | 85.29 342 | 88.22 366 | 72.77 337 | 85.87 373 | 90.06 352 | 74.34 353 | 62.62 395 | 87.56 356 | 66.14 298 | 91.99 374 | 66.90 361 | 73.01 371 | 91.10 354 |
|
| YYNet1 | | | 79.22 341 | 77.20 343 | 85.28 343 | 88.20 367 | 72.66 340 | 85.87 373 | 90.05 354 | 74.33 354 | 62.70 393 | 87.61 355 | 66.09 299 | 92.03 372 | 66.94 358 | 72.97 372 | 91.15 350 |
|
| pmmvs6 | | | 83.42 300 | 81.60 304 | 88.87 267 | 88.01 368 | 77.87 270 | 94.96 127 | 94.24 245 | 74.67 351 | 78.80 342 | 91.09 283 | 60.17 341 | 96.49 278 | 77.06 287 | 75.40 369 | 92.23 329 |
|
| testgi | | | 80.94 327 | 80.20 317 | 83.18 356 | 87.96 369 | 66.29 382 | 91.28 291 | 90.70 342 | 83.70 207 | 78.12 345 | 92.84 219 | 51.37 378 | 90.82 383 | 63.34 374 | 82.46 308 | 92.43 322 |
|
| mvsany_test1 | | | 85.42 268 | 85.30 254 | 85.77 337 | 87.95 370 | 75.41 309 | 87.61 363 | 80.97 397 | 76.82 329 | 88.68 151 | 95.83 104 | 77.44 153 | 90.82 383 | 85.90 159 | 86.51 270 | 91.08 355 |
|
| Anonymous20231206 | | | 81.03 324 | 79.77 323 | 84.82 347 | 87.85 371 | 70.26 368 | 91.42 287 | 92.08 302 | 73.67 360 | 77.75 348 | 89.25 328 | 62.43 320 | 93.08 364 | 61.50 380 | 82.00 315 | 91.12 352 |
|
| dmvs_testset | | | 74.57 355 | 75.81 353 | 70.86 381 | 87.72 372 | 40.47 416 | 87.05 367 | 77.90 406 | 82.75 233 | 71.15 384 | 85.47 374 | 67.98 278 | 84.12 403 | 45.26 400 | 76.98 364 | 88.00 384 |
|
| test_fmvs2 | | | 83.98 292 | 84.03 277 | 83.83 355 | 87.16 373 | 67.53 381 | 93.93 200 | 92.89 280 | 77.62 321 | 86.89 187 | 93.53 197 | 47.18 388 | 92.02 373 | 90.54 105 | 86.51 270 | 91.93 334 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 339 | 77.03 346 | 86.93 319 | 87.00 374 | 76.23 300 | 92.33 263 | 90.74 341 | 68.93 385 | 74.52 370 | 88.23 347 | 49.58 382 | 96.62 265 | 57.64 390 | 84.29 285 | 87.94 385 |
|
| LF4IMVS | | | 80.37 331 | 79.07 335 | 84.27 352 | 86.64 375 | 69.87 371 | 89.39 334 | 91.05 332 | 76.38 332 | 74.97 367 | 90.00 315 | 47.85 386 | 94.25 347 | 74.55 311 | 80.82 335 | 88.69 380 |
|
| MIMVSNet1 | | | 79.38 340 | 77.28 342 | 85.69 338 | 86.35 376 | 73.67 326 | 91.61 284 | 92.75 285 | 78.11 320 | 72.64 378 | 88.12 348 | 48.16 385 | 91.97 375 | 60.32 382 | 77.49 359 | 91.43 345 |
|
| KD-MVS_2432*1600 | | | 78.50 344 | 76.02 351 | 85.93 334 | 86.22 377 | 74.47 318 | 84.80 382 | 92.33 293 | 79.29 296 | 76.98 353 | 85.92 370 | 53.81 373 | 93.97 350 | 67.39 354 | 57.42 399 | 89.36 369 |
|
| miper_refine_blended | | | 78.50 344 | 76.02 351 | 85.93 334 | 86.22 377 | 74.47 318 | 84.80 382 | 92.33 293 | 79.29 296 | 76.98 353 | 85.92 370 | 53.81 373 | 93.97 350 | 67.39 354 | 57.42 399 | 89.36 369 |
|
| CL-MVSNet_self_test | | | 81.74 313 | 80.53 311 | 85.36 341 | 85.96 379 | 72.45 345 | 90.25 311 | 93.07 276 | 81.24 274 | 79.85 333 | 87.29 359 | 70.93 234 | 92.52 368 | 66.95 357 | 69.23 381 | 91.11 353 |
|
| test_vis1_rt | | | 77.96 347 | 76.46 347 | 82.48 362 | 85.89 380 | 71.74 352 | 90.25 311 | 78.89 401 | 71.03 380 | 71.30 383 | 81.35 390 | 42.49 396 | 91.05 382 | 84.55 176 | 82.37 309 | 84.65 388 |
|
| test20.03 | | | 79.95 335 | 79.08 334 | 82.55 360 | 85.79 381 | 67.74 379 | 91.09 297 | 91.08 330 | 81.23 275 | 74.48 371 | 89.96 317 | 61.63 325 | 90.15 385 | 60.08 383 | 76.38 365 | 89.76 366 |
|
| Anonymous20240521 | | | 80.44 330 | 79.21 330 | 84.11 353 | 85.75 382 | 67.89 376 | 92.86 247 | 93.23 272 | 75.61 341 | 75.59 364 | 87.47 357 | 50.03 380 | 94.33 344 | 71.14 330 | 81.21 323 | 90.12 364 |
|
| KD-MVS_self_test | | | 80.20 332 | 79.24 329 | 83.07 357 | 85.64 383 | 65.29 386 | 91.01 299 | 93.93 255 | 78.71 309 | 76.32 357 | 86.40 367 | 59.20 348 | 92.93 366 | 72.59 321 | 69.35 380 | 91.00 356 |
|
| Patchmatch-RL test | | | 81.67 314 | 79.96 320 | 86.81 324 | 85.42 384 | 71.23 357 | 82.17 394 | 87.50 375 | 78.47 311 | 77.19 352 | 82.50 388 | 70.81 236 | 93.48 358 | 82.66 203 | 72.89 373 | 95.71 187 |
|
| UnsupCasMVSNet_eth | | | 80.07 333 | 78.27 339 | 85.46 340 | 85.24 385 | 72.63 342 | 88.45 349 | 94.87 219 | 82.99 228 | 71.64 382 | 88.07 349 | 56.34 358 | 91.75 376 | 73.48 318 | 63.36 393 | 92.01 333 |
|
| pmmvs-eth3d | | | 80.97 326 | 78.72 338 | 87.74 296 | 84.99 386 | 79.97 222 | 90.11 319 | 91.65 316 | 75.36 342 | 73.51 374 | 86.03 369 | 59.45 345 | 93.96 352 | 75.17 303 | 72.21 374 | 89.29 373 |
|
| mvs5depth | | | 80.98 325 | 79.15 333 | 86.45 328 | 84.57 387 | 73.29 331 | 87.79 356 | 91.67 315 | 80.52 282 | 82.20 301 | 89.72 321 | 55.14 366 | 95.93 306 | 73.93 315 | 66.83 387 | 90.12 364 |
|
| CMPMVS |  | 59.16 21 | 80.52 328 | 79.20 331 | 84.48 349 | 83.98 388 | 67.63 380 | 89.95 324 | 93.84 261 | 64.79 392 | 66.81 390 | 91.14 281 | 57.93 353 | 95.17 332 | 76.25 294 | 88.10 249 | 90.65 358 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| UnsupCasMVSNet_bld | | | 76.23 353 | 73.27 357 | 85.09 346 | 83.79 389 | 72.92 334 | 85.65 376 | 93.47 268 | 71.52 376 | 68.84 388 | 79.08 393 | 49.77 381 | 93.21 362 | 66.81 362 | 60.52 396 | 89.13 377 |
|
| PM-MVS | | | 78.11 346 | 76.12 350 | 84.09 354 | 83.54 390 | 70.08 369 | 88.97 342 | 85.27 386 | 79.93 288 | 74.73 369 | 86.43 366 | 34.70 402 | 93.48 358 | 79.43 261 | 72.06 375 | 88.72 379 |
|
| dongtai | | | 58.82 373 | 58.24 371 | 60.56 390 | 83.13 391 | 45.09 414 | 82.32 393 | 48.22 420 | 67.61 387 | 61.70 397 | 69.15 401 | 38.75 398 | 76.05 409 | 32.01 408 | 41.31 408 | 60.55 405 |
|
| DSMNet-mixed | | | 76.94 350 | 76.29 349 | 78.89 371 | 83.10 392 | 56.11 407 | 87.78 357 | 79.77 399 | 60.65 397 | 75.64 363 | 88.71 339 | 61.56 327 | 88.34 393 | 60.07 384 | 89.29 232 | 92.21 330 |
|
| new_pmnet | | | 72.15 358 | 70.13 361 | 78.20 373 | 82.95 393 | 65.68 383 | 83.91 387 | 82.40 394 | 62.94 395 | 64.47 392 | 79.82 392 | 42.85 395 | 86.26 398 | 57.41 391 | 74.44 370 | 82.65 393 |
|
| new-patchmatchnet | | | 76.41 352 | 75.17 354 | 80.13 368 | 82.65 394 | 59.61 399 | 87.66 361 | 91.08 330 | 78.23 318 | 69.85 386 | 83.22 382 | 54.76 367 | 91.63 378 | 64.14 373 | 64.89 391 | 89.16 375 |
|
| m2depth | | | 76.55 351 | 74.64 356 | 82.29 365 | 82.25 395 | 67.81 378 | 89.76 326 | 85.69 382 | 70.35 382 | 75.76 362 | 91.69 260 | 46.88 389 | 89.77 387 | 66.16 363 | 63.23 394 | 89.30 371 |
|
| WB-MVS | | | 67.92 363 | 67.49 365 | 69.21 385 | 81.09 396 | 41.17 415 | 88.03 353 | 78.00 405 | 73.50 362 | 62.63 394 | 83.11 385 | 63.94 311 | 86.52 396 | 25.66 411 | 51.45 403 | 79.94 396 |
|
| SSC-MVS | | | 67.06 364 | 66.56 366 | 68.56 387 | 80.54 397 | 40.06 417 | 87.77 358 | 77.37 408 | 72.38 372 | 61.75 396 | 82.66 387 | 63.37 314 | 86.45 397 | 24.48 412 | 48.69 406 | 79.16 398 |
|
| APD_test1 | | | 69.04 361 | 66.26 367 | 77.36 376 | 80.51 398 | 62.79 395 | 85.46 378 | 83.51 391 | 54.11 402 | 59.14 399 | 84.79 377 | 23.40 409 | 89.61 388 | 55.22 393 | 70.24 378 | 79.68 397 |
|
| ambc | | | | | 83.06 358 | 79.99 399 | 63.51 393 | 77.47 402 | 92.86 281 | | 74.34 372 | 84.45 378 | 28.74 403 | 95.06 336 | 73.06 320 | 68.89 384 | 90.61 359 |
|
| test_fmvs3 | | | 77.67 348 | 77.16 345 | 79.22 370 | 79.52 400 | 61.14 396 | 92.34 262 | 91.64 317 | 73.98 357 | 78.86 339 | 86.59 364 | 27.38 406 | 87.03 394 | 88.12 130 | 75.97 367 | 89.50 368 |
|
| TDRefinement | | | 79.81 336 | 77.34 341 | 87.22 313 | 79.24 401 | 75.48 308 | 93.12 234 | 92.03 304 | 76.45 331 | 75.01 366 | 91.58 267 | 49.19 383 | 96.44 283 | 70.22 337 | 69.18 382 | 89.75 367 |
|
| MVStest1 | | | 72.91 357 | 69.70 362 | 82.54 361 | 78.14 402 | 73.05 333 | 88.21 351 | 86.21 378 | 60.69 396 | 64.70 391 | 90.53 299 | 46.44 390 | 85.70 399 | 58.78 388 | 53.62 401 | 88.87 378 |
|
| kuosan | | | 53.51 375 | 53.30 378 | 54.13 394 | 76.06 403 | 45.36 413 | 80.11 400 | 48.36 419 | 59.63 398 | 54.84 400 | 63.43 407 | 37.41 399 | 62.07 414 | 20.73 414 | 39.10 409 | 54.96 408 |
|
| pmmvs3 | | | 71.81 360 | 68.71 363 | 81.11 366 | 75.86 404 | 70.42 367 | 86.74 368 | 83.66 390 | 58.95 399 | 68.64 389 | 80.89 391 | 36.93 400 | 89.52 389 | 63.10 376 | 63.59 392 | 83.39 389 |
|
| mvsany_test3 | | | 74.95 354 | 73.26 358 | 80.02 369 | 74.61 405 | 63.16 394 | 85.53 377 | 78.42 402 | 74.16 355 | 74.89 368 | 86.46 365 | 36.02 401 | 89.09 391 | 82.39 207 | 66.91 386 | 87.82 386 |
|
| DeepMVS_CX |  | | | | 56.31 393 | 74.23 406 | 51.81 409 | | 56.67 417 | 44.85 405 | 48.54 405 | 75.16 396 | 27.87 405 | 58.74 415 | 40.92 405 | 52.22 402 | 58.39 407 |
|
| test_f | | | 71.95 359 | 70.87 360 | 75.21 377 | 74.21 407 | 59.37 400 | 85.07 381 | 85.82 381 | 65.25 391 | 70.42 385 | 83.13 383 | 23.62 407 | 82.93 405 | 78.32 271 | 71.94 376 | 83.33 390 |
|
| test_vis3_rt | | | 65.12 366 | 62.60 368 | 72.69 379 | 71.44 408 | 60.71 397 | 87.17 365 | 65.55 412 | 63.80 394 | 53.22 402 | 65.65 405 | 14.54 416 | 89.44 390 | 76.65 288 | 65.38 389 | 67.91 403 |
|
| FPMVS | | | 64.63 367 | 62.55 369 | 70.88 380 | 70.80 409 | 56.71 402 | 84.42 385 | 84.42 388 | 51.78 403 | 49.57 403 | 81.61 389 | 23.49 408 | 81.48 406 | 40.61 406 | 76.25 366 | 74.46 399 |
|
| testf1 | | | 59.54 370 | 56.11 374 | 69.85 383 | 69.28 410 | 56.61 404 | 80.37 398 | 76.55 409 | 42.58 407 | 45.68 406 | 75.61 394 | 11.26 417 | 84.18 401 | 43.20 403 | 60.44 397 | 68.75 401 |
|
| APD_test2 | | | 59.54 370 | 56.11 374 | 69.85 383 | 69.28 410 | 56.61 404 | 80.37 398 | 76.55 409 | 42.58 407 | 45.68 406 | 75.61 394 | 11.26 417 | 84.18 401 | 43.20 403 | 60.44 397 | 68.75 401 |
|
| PMMVS2 | | | 59.60 369 | 56.40 372 | 69.21 385 | 68.83 412 | 46.58 411 | 73.02 406 | 77.48 407 | 55.07 401 | 49.21 404 | 72.95 400 | 17.43 414 | 80.04 407 | 49.32 398 | 44.33 407 | 80.99 395 |
|
| wuyk23d | | | 21.27 383 | 20.48 386 | 23.63 398 | 68.59 413 | 36.41 419 | 49.57 410 | 6.85 422 | 9.37 414 | 7.89 416 | 4.46 418 | 4.03 421 | 31.37 416 | 17.47 416 | 16.07 415 | 3.12 413 |
|
| E-PMN | | | 43.23 379 | 42.29 381 | 46.03 395 | 65.58 414 | 37.41 418 | 73.51 404 | 64.62 413 | 33.99 410 | 28.47 414 | 47.87 411 | 19.90 413 | 67.91 411 | 22.23 413 | 24.45 411 | 32.77 410 |
|
| LCM-MVSNet | | | 66.00 365 | 62.16 370 | 77.51 375 | 64.51 415 | 58.29 401 | 83.87 388 | 90.90 337 | 48.17 404 | 54.69 401 | 73.31 399 | 16.83 415 | 86.75 395 | 65.47 365 | 61.67 395 | 87.48 387 |
|
| EMVS | | | 42.07 380 | 41.12 382 | 44.92 396 | 63.45 416 | 35.56 420 | 73.65 403 | 63.48 414 | 33.05 411 | 26.88 415 | 45.45 412 | 21.27 411 | 67.14 412 | 19.80 415 | 23.02 413 | 32.06 411 |
|
| MVE |  | 39.65 23 | 43.39 378 | 38.59 384 | 57.77 391 | 56.52 417 | 48.77 410 | 55.38 408 | 58.64 416 | 29.33 412 | 28.96 413 | 52.65 409 | 4.68 420 | 64.62 413 | 28.11 410 | 33.07 410 | 59.93 406 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 58.88 372 | 54.22 377 | 72.86 378 | 56.50 418 | 56.67 403 | 80.75 397 | 86.00 380 | 73.09 367 | 37.39 410 | 64.63 406 | 22.17 410 | 79.49 408 | 43.51 402 | 23.96 412 | 82.43 394 |
|
| test_method | | | 50.52 377 | 48.47 379 | 56.66 392 | 52.26 419 | 18.98 423 | 41.51 411 | 81.40 396 | 10.10 413 | 44.59 408 | 75.01 397 | 28.51 404 | 68.16 410 | 53.54 395 | 49.31 405 | 82.83 392 |
|
| PMVS |  | 47.18 22 | 52.22 376 | 48.46 380 | 63.48 389 | 45.72 420 | 46.20 412 | 73.41 405 | 78.31 403 | 41.03 409 | 30.06 412 | 65.68 404 | 6.05 419 | 83.43 404 | 30.04 409 | 65.86 388 | 60.80 404 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 35.64 381 | 39.24 383 | 24.84 397 | 14.87 421 | 23.90 422 | 62.71 407 | 51.51 418 | 6.58 415 | 36.66 411 | 62.08 408 | 44.37 393 | 30.34 417 | 52.40 396 | 22.00 414 | 20.27 412 |
|
| testmvs | | | 8.92 384 | 11.52 387 | 1.12 400 | 1.06 422 | 0.46 425 | 86.02 372 | 0.65 423 | 0.62 416 | 2.74 417 | 9.52 416 | 0.31 423 | 0.45 419 | 2.38 417 | 0.39 416 | 2.46 415 |
|
| test123 | | | 8.76 385 | 11.22 388 | 1.39 399 | 0.85 423 | 0.97 424 | 85.76 375 | 0.35 424 | 0.54 417 | 2.45 418 | 8.14 417 | 0.60 422 | 0.48 418 | 2.16 418 | 0.17 417 | 2.71 414 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| cdsmvs_eth3d_5k | | | 22.14 382 | 29.52 385 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 95.76 158 | 0.00 419 | 0.00 420 | 94.29 167 | 75.66 175 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 6.64 387 | 8.86 390 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 79.70 126 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| ab-mvs-re | | | 7.82 386 | 10.43 389 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 93.88 187 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| WAC-MVS | | | | | | | 64.08 390 | | | | | | | | 59.14 386 | | |
|
| PC_three_1452 | | | | | | | | | | 82.47 237 | 97.09 10 | 97.07 51 | 92.72 1 | 98.04 164 | 92.70 58 | 99.02 12 | 98.86 11 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 9 | 91.46 10 | 99.58 10 | 95.66 17 | 99.12 6 | 98.98 10 |
|
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 13 | 92.09 6 | 99.55 16 | 95.64 19 | 99.13 3 | 99.13 2 |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 165 |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 225 | | | | 96.12 165 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 238 | | | | |
|
| MTGPA |  | | | | | | | | 96.97 50 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 354 | | | | 9.81 415 | 69.31 261 | 95.53 323 | 76.65 288 | | |
|
| test_post | | | | | | | | | | | | 10.29 414 | 70.57 242 | 95.91 309 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 380 | 71.53 226 | 96.48 279 | | | |
|
| MTMP | | | | | | | | 96.16 52 | 60.64 415 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 83 | 98.71 32 | 98.07 69 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 105 | 98.68 37 | 98.27 53 |
|
| test_prior4 | | | | | | | 85.96 54 | 94.11 183 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 94.12 181 | | 87.67 117 | 92.63 83 | 96.39 82 | 86.62 38 | | 91.50 91 | 98.67 40 | |
|
| 旧先验2 | | | | | | | | 93.36 221 | | 71.25 378 | 94.37 40 | | | 97.13 239 | 86.74 148 | | |
|
| 新几何2 | | | | | | | | 93.11 236 | | | | | | | | | |
|
| 无先验 | | | | | | | | 93.28 229 | 96.26 114 | 73.95 358 | | | | 99.05 55 | 80.56 245 | | 96.59 146 |
|
| 原ACMM2 | | | | | | | | 92.94 243 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.75 94 | 78.30 272 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| testdata1 | | | | | | | | 92.15 269 | | 87.94 105 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 119 | | | | | 98.12 149 | 88.15 127 | 89.99 215 | 94.63 224 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 144 | | | | | |
|
| plane_prior3 | | | | | | | 82.75 142 | | | 90.26 33 | 86.91 184 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 77 | | 90.81 17 | | | | | | | |
|
| plane_prior | | | | | | | 82.73 145 | 95.21 113 | | 89.66 51 | | | | | | 89.88 220 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 383 | | | | | | | | |
|
| test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
| door | | | | | | | | | 85.33 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 170 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 229 | | | 97.96 170 | | | 94.51 234 |
|
| HQP3-MVS | | | | | | | | | 96.04 136 | | | | | | | 89.77 224 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 202 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 408 | 87.62 362 | | 73.32 364 | 84.59 251 | | 70.33 245 | | 74.65 309 | | 95.50 192 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 260 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 252 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 121 | | | | |
|