This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16499.09 25198.84 5893.32 16696.74 16999.72 8386.04 221100.00 198.01 11799.43 11199.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11299.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3598.35 16589.90 27298.36 12399.79 5791.18 15799.99 3698.37 10199.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7998.44 12392.06 21798.40 12299.84 4195.68 40100.00 198.19 10799.71 8499.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11299.83 7399.99 23
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12199.97 2898.39 15594.43 11998.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21192.06 24499.15 5799.94 1397.50 9099.94 6998.42 14396.22 7399.41 6941.37 40794.34 7699.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10698.33 17093.97 14499.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14399.82 13698.43 13194.56 11597.52 14799.70 8794.40 7199.98 4397.00 15199.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18599.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4098.43 13199.63 4499.85 108
FOURS199.92 3197.66 8399.95 5398.36 16395.58 8799.52 60
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7698.39 15594.04 14298.80 10099.74 7892.98 116100.00 198.16 10999.76 8199.93 76
TEST999.92 3198.92 2899.96 3598.43 13193.90 14999.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3598.43 13194.35 12499.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3598.43 13194.35 12499.69 3799.85 3095.94 3499.85 108
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10899.75 15699.50 1893.90 14999.37 7499.76 6593.24 110100.00 197.75 13599.96 4699.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14399.18 24699.45 1994.84 10696.41 17999.71 8591.40 15199.99 3697.99 11998.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10698.36 16394.08 13799.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24198.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 63
CSCG97.10 10697.04 9897.27 18199.89 4591.92 26599.90 9199.07 3488.67 29595.26 20199.82 4693.17 11299.98 4398.15 11099.47 10599.90 83
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6998.44 12394.31 12798.50 11799.82 4693.06 11499.99 3698.30 10599.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 16999.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11898.38 15993.19 17099.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1598.80 6290.78 25899.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22298.28 17995.76 8297.18 15799.88 2192.74 124100.00 198.67 8899.88 6999.99 23
LS3D95.84 15895.11 16898.02 13599.85 5495.10 18598.74 29398.50 11287.22 31693.66 21999.86 2687.45 20599.95 6990.94 25899.81 7999.02 201
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13099.90 9198.17 19192.61 19498.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12399.40 21898.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
save fliter99.82 5898.79 3899.96 3598.40 15297.66 21
PLCcopyleft95.54 397.93 6597.89 6798.05 13499.82 5894.77 19599.92 7998.46 11793.93 14797.20 15699.27 13495.44 4699.97 5397.41 14099.51 10399.41 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12299.82 13698.30 17793.95 14699.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13399.36 22798.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10199.30 11799.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13199.76 15398.31 17494.43 11999.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12699.88 10398.16 19591.75 22798.94 9399.54 11291.82 14999.65 14797.62 13899.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9198.21 18693.53 15999.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9897.23 9097.41 17299.76 6693.36 23499.65 18197.95 21496.03 7797.41 15199.70 8789.61 18199.51 15296.73 16098.25 15099.38 166
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5599.82 4694.40 71100.00 191.21 25099.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15998.18 19093.35 16496.45 17699.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10794.06 14099.62 4799.85 3094.97 5999.96 6195.11 18099.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12099.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
F-COLMAP96.93 11596.95 10196.87 19199.71 7591.74 27099.85 12197.95 21493.11 17395.72 19499.16 14592.35 13699.94 7795.32 17899.35 11598.92 204
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22499.67 7786.91 34399.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11799.90 9199.51 1797.60 2299.20 8299.36 12893.71 9799.91 8997.99 11998.71 13899.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
PVSNet_BlendedMVS96.05 15295.82 14796.72 19699.59 8196.99 10999.95 5399.10 3194.06 14098.27 12795.80 29189.00 19299.95 6999.12 5887.53 28493.24 342
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 109100.00 199.10 3195.38 9298.27 12799.08 14889.00 19299.95 6999.12 5899.25 11999.57 139
PatchMatch-RL96.04 15395.40 15797.95 13899.59 8195.22 18199.52 20399.07 3493.96 14596.49 17598.35 21682.28 25099.82 12090.15 27499.22 12298.81 211
dcpmvs_297.42 9398.09 5495.42 22999.58 8587.24 33999.23 24296.95 31294.28 12998.93 9499.73 8094.39 7499.16 17499.89 1699.82 7799.86 89
test22299.55 8697.41 9699.34 22898.55 9891.86 22299.27 8199.83 4393.84 9499.95 4999.99 23
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11499.87 10698.14 19993.78 15296.55 17499.69 8992.28 13899.98 4397.13 14799.44 10999.93 76
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21298.87 5291.68 22898.84 9799.85 3092.34 13799.99 3698.44 9899.96 46100.00 1
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15199.95 5399.65 1294.73 10999.04 8999.21 14184.48 23699.95 6994.92 18698.74 13799.58 138
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9998.27 18188.48 29999.06 8899.66 9890.30 17399.64 14896.32 16499.97 4299.96 64
cl2293.77 21593.25 21895.33 23399.49 9194.43 19999.61 18998.09 20190.38 26389.16 28795.61 29890.56 16997.34 27791.93 24284.45 30594.21 288
testdata98.42 11399.47 9295.33 17598.56 9293.78 15299.79 2699.85 3093.64 9999.94 7794.97 18499.94 54100.00 1
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19499.05 26298.76 6392.65 19298.66 11099.82 4688.52 19799.98 4398.12 11199.63 8999.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19293.42 21197.91 14399.46 9494.04 21298.93 27497.48 25981.15 36690.04 26099.55 11087.02 21199.95 6988.97 28498.11 15499.73 105
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 9099.09 14799.35 198.21 24199.73 3299.78 8099.77 101
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21499.94 5499.98 48
TAPA-MVS92.12 894.42 19793.60 20496.90 19099.33 9891.78 26999.78 14598.00 20889.89 27394.52 20799.47 11691.97 14599.18 17269.90 38099.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6797.94 6397.70 15699.28 10095.20 18299.98 1597.15 29195.53 8999.62 4799.79 5792.08 14398.38 22498.75 8499.28 11899.52 149
test_fmvsm_n_192098.44 4198.61 2397.92 14199.27 10195.18 183100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 221
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18599.27 2791.43 23797.88 14198.99 15795.84 3899.84 11698.82 7995.32 21699.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 14999.66 17998.06 20496.37 7094.37 21099.49 11583.29 24699.90 9197.63 13799.61 9499.55 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13199.24 13992.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7697.91 6597.43 17199.10 10994.42 20099.99 597.10 29695.07 9899.68 3899.75 7192.95 11798.34 22898.38 10099.14 12499.54 145
Anonymous20240521193.10 23391.99 24596.40 20699.10 10989.65 31498.88 27997.93 21683.71 35394.00 21698.75 18668.79 34799.88 10295.08 18291.71 24499.68 111
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15799.06 11194.41 20199.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 220
HyFIR lowres test96.66 13096.43 12297.36 17799.05 11293.91 21799.70 17399.80 390.54 26196.26 18298.08 22392.15 14198.23 24096.84 15995.46 21199.93 76
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15898.74 29397.98 21187.81 30998.47 11899.39 12567.43 35699.53 15098.01 11795.20 21999.67 115
AllTest92.48 24791.64 25095.00 24399.01 11488.43 32898.94 27396.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
TestCases95.00 24399.01 11488.43 32896.82 32786.50 32588.71 29398.47 21274.73 32399.88 10285.39 32296.18 19396.71 248
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33482.30 36288.43 30099.01 15476.97 29999.85 10886.11 31896.50 18894.86 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17295.68 15294.36 27298.99 11784.98 35299.96 3596.65 33697.60 2299.73 3398.96 16371.58 33699.93 8598.31 10499.37 11498.17 228
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8498.32 12597.41 24293.32 10599.77 12898.08 11595.75 20799.81 94
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12799.18 8598.88 17486.26 22099.89 9698.93 6994.32 22899.69 110
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12199.71 793.17 17196.26 18298.88 17489.87 17899.51 15294.26 20494.91 22199.31 176
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.27 182
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14599.71 792.86 17996.02 18798.87 17789.33 18599.50 15493.84 21194.57 22499.16 189
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34297.56 27090.82 26180.27 34094.15 296
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
SDMVSNet94.80 18293.96 19597.33 17998.92 12595.42 17199.59 19198.99 3792.41 20692.55 23497.85 23275.81 31398.93 18397.90 12591.62 24597.64 239
sd_testset93.55 22292.83 22695.74 22298.92 12590.89 28998.24 32198.85 5692.41 20692.55 23497.85 23271.07 34198.68 20093.93 20891.62 24597.64 239
EPNet_dtu95.71 16295.39 15896.66 19898.92 12593.41 23199.57 19598.90 4796.19 7597.52 14798.56 20492.65 12597.36 27577.89 36398.33 14599.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9999.52 1595.58 8798.24 13099.39 12593.33 10499.74 13497.98 12195.58 21099.78 100
CHOSEN 1792x268896.81 11996.53 11997.64 15998.91 12993.07 23699.65 18199.80 395.64 8595.39 19898.86 17984.35 23999.90 9196.98 15399.16 12399.95 71
thres100view90096.74 12595.92 14399.18 5098.90 13098.77 4099.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.84 21194.57 22499.27 182
thres600view796.69 12895.87 14699.14 5998.90 13098.78 3999.74 15999.71 792.59 19695.84 19098.86 17989.25 18799.50 15493.44 22394.50 22799.16 189
MSDG94.37 19993.36 21597.40 17398.88 13293.95 21699.37 22597.38 26885.75 33690.80 25399.17 14484.11 24199.88 10286.35 31598.43 14398.36 226
h-mvs3394.92 18094.36 18496.59 20098.85 13391.29 28198.93 27498.94 4195.90 7898.77 10298.42 21590.89 16599.77 12897.80 12870.76 37498.72 217
Anonymous2024052992.10 25590.65 26696.47 20198.82 13490.61 29498.72 29598.67 7375.54 38293.90 21898.58 20266.23 36099.90 9194.70 19590.67 24798.90 207
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 11999.92 7998.64 7694.51 11696.38 18098.49 20889.05 19199.88 10297.10 14998.34 14499.43 162
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20198.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 218
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12697.63 23897.25 3799.20 8299.64 10181.36 25999.98 4392.77 23498.89 13198.28 227
mvsany_test197.82 7297.90 6697.55 16498.77 13893.04 23999.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 598.44 12394.40 12398.41 12099.47 11693.65 9899.42 16298.57 9494.26 23099.67 115
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20398.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 218
miper_enhance_ethall94.36 20193.98 19495.49 22598.68 14295.24 17999.73 16497.29 27893.28 16889.86 26595.97 28994.37 7597.05 29892.20 23884.45 30594.19 289
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9998.57 8991.10 24898.17 13298.59 19993.86 9398.19 24295.64 17595.24 21899.28 181
test250697.53 8697.19 9298.58 9898.66 14496.90 11398.81 28899.77 594.93 10197.95 13798.96 16392.51 13199.20 16994.93 18598.15 15199.64 121
ECVR-MVScopyleft95.66 16595.05 17097.51 16798.66 14493.71 22198.85 28598.45 11894.93 10196.86 16598.96 16375.22 31999.20 16995.34 17798.15 15199.64 121
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15198.63 14694.26 20699.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 197
iter_conf05_1196.12 14995.46 15598.10 12998.62 14795.52 167100.00 196.30 34896.54 6099.81 1599.80 5169.19 34699.10 17698.92 7099.91 6699.68 111
bld_raw_dy_0_6494.22 20592.97 22297.98 13698.62 14795.09 18699.89 9993.09 38996.55 5992.59 23299.80 5168.57 35099.19 17198.92 7088.69 26499.68 111
testing22297.08 11096.75 11098.06 13398.56 14996.82 11599.85 12198.61 8292.53 20098.84 9798.84 18393.36 10298.30 23295.84 17294.30 22999.05 199
test111195.57 16794.98 17397.37 17598.56 14993.37 23398.86 28398.45 11894.95 10096.63 17198.95 16875.21 32099.11 17595.02 18398.14 15399.64 121
MVSTER95.53 16895.22 16496.45 20398.56 14997.72 7899.91 8497.67 23692.38 20891.39 24597.14 24997.24 1797.30 28194.80 19187.85 27994.34 280
VDD-MVS93.77 21592.94 22396.27 21098.55 15290.22 30398.77 29297.79 23090.85 25496.82 16799.42 12061.18 37799.77 12898.95 6794.13 23198.82 210
tpmvs94.28 20393.57 20696.40 20698.55 15291.50 27995.70 37398.55 9887.47 31192.15 23894.26 34891.42 15098.95 18288.15 29495.85 20398.76 213
UGNet95.33 17394.57 18197.62 16298.55 15294.85 19098.67 30199.32 2695.75 8396.80 16896.27 28072.18 33399.96 6194.58 19899.05 12998.04 232
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15295.99 14797.91 33497.31 27590.35 26589.48 27699.22 14085.19 22999.89 9690.40 27198.47 14299.41 164
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12096.72 11197.00 18698.51 15693.70 22299.71 16998.60 8492.96 17597.09 15898.34 21796.67 2798.85 18692.11 24096.50 18898.44 223
test_vis1_n_192095.44 17095.31 16195.82 22098.50 15788.74 32299.98 1597.30 27697.84 1699.85 999.19 14266.82 35899.97 5398.82 7999.46 10798.76 213
BH-w/o95.71 16295.38 15996.68 19798.49 15892.28 25699.84 12697.50 25792.12 21492.06 24198.79 18484.69 23498.67 20195.29 17999.66 8799.09 195
baseline195.78 15994.86 17598.54 10398.47 15998.07 6599.06 25897.99 20992.68 19094.13 21598.62 19893.28 10898.69 19993.79 21685.76 29398.84 209
iter_conf0596.07 15195.95 14096.44 20598.43 16097.52 8799.91 8496.85 32394.16 13392.49 23697.98 22998.20 497.34 27797.26 14488.29 27294.45 270
EPMVS96.53 13496.01 13198.09 13198.43 16096.12 14596.36 36099.43 2193.53 15997.64 14595.04 32694.41 7098.38 22491.13 25298.11 15499.75 103
sss97.57 8597.03 9999.18 5098.37 16298.04 6799.73 16499.38 2393.46 16198.76 10499.06 15091.21 15399.89 9696.33 16397.01 18099.62 126
testing1197.48 8897.27 8898.10 12998.36 16396.02 14699.92 7998.45 11893.45 16398.15 13398.70 18995.48 4599.22 16597.85 12795.05 22099.07 198
BH-untuned95.18 17494.83 17696.22 21198.36 16391.22 28299.80 14297.32 27490.91 25291.08 24998.67 19183.51 24398.54 20794.23 20599.61 9498.92 204
testing9197.16 10496.90 10397.97 13798.35 16595.67 16199.91 8498.42 14392.91 17897.33 15398.72 18794.81 6299.21 16696.98 15394.63 22399.03 200
testing9997.17 10396.91 10297.95 13898.35 16595.70 15899.91 8498.43 13192.94 17697.36 15298.72 18794.83 6199.21 16697.00 15194.64 22298.95 203
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15998.30 16797.99 6999.99 597.61 24394.35 12471.57 38599.45 11996.23 3195.34 35596.91 15885.14 30099.59 132
AUN-MVS93.28 22792.60 23295.34 23298.29 16890.09 30699.31 23298.56 9291.80 22696.35 18198.00 22689.38 18498.28 23592.46 23569.22 37997.64 239
FMVSNet392.69 24391.58 25295.99 21598.29 16897.42 9599.26 24097.62 24089.80 27489.68 26995.32 31681.62 25796.27 33587.01 31185.65 29494.29 282
PMMVS96.76 12396.76 10996.76 19498.28 17092.10 26099.91 8497.98 21194.12 13599.53 5899.39 12586.93 21398.73 19496.95 15697.73 16199.45 159
hse-mvs294.38 19894.08 19295.31 23498.27 17190.02 30899.29 23798.56 9295.90 7898.77 10298.00 22690.89 16598.26 23997.80 12869.20 38097.64 239
PVSNet_088.03 1991.80 26290.27 27596.38 20898.27 17190.46 29899.94 6999.61 1493.99 14386.26 33197.39 24471.13 34099.89 9698.77 8267.05 38598.79 212
UA-Net96.54 13395.96 13898.27 12098.23 17395.71 15798.00 33298.45 11893.72 15598.41 12099.27 13488.71 19699.66 14691.19 25197.69 16299.44 161
test_cas_vis1_n_192096.59 13296.23 12697.65 15898.22 17494.23 20799.99 597.25 28297.77 1799.58 5499.08 14877.10 29699.97 5397.64 13699.45 10898.74 215
FE-MVS95.70 16495.01 17297.79 14898.21 17594.57 19695.03 37498.69 6888.90 29097.50 14996.19 28292.60 12899.49 15889.99 27697.94 16099.31 176
GG-mvs-BLEND98.54 10398.21 17598.01 6893.87 37998.52 10497.92 13897.92 23199.02 297.94 25898.17 10899.58 9799.67 115
mvs_anonymous95.65 16695.03 17197.53 16598.19 17795.74 15599.33 22997.49 25890.87 25390.47 25697.10 25188.23 19897.16 28995.92 17097.66 16499.68 111
MVS_Test96.46 13695.74 14898.61 9498.18 17897.23 9999.31 23297.15 29191.07 24998.84 9797.05 25588.17 19998.97 18094.39 20097.50 16699.61 129
BH-RMVSNet95.18 17494.31 18797.80 14698.17 17995.23 18099.76 15397.53 25392.52 20294.27 21399.25 13876.84 30198.80 18890.89 26099.54 9999.35 171
RPSCF91.80 26292.79 22888.83 35098.15 18069.87 38898.11 32896.60 33883.93 35194.33 21199.27 13479.60 27999.46 16191.99 24193.16 24197.18 246
ETV-MVS97.92 6697.80 7098.25 12198.14 18196.48 12499.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18799.02 6698.54 14099.46 157
IS-MVSNet96.29 14695.90 14497.45 16998.13 18294.80 19399.08 25397.61 24392.02 21995.54 19798.96 16390.64 16898.08 24793.73 21997.41 17099.47 156
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18396.41 12799.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
ab-mvs94.69 18793.42 21198.51 10698.07 18496.26 13496.49 35898.68 7090.31 26694.54 20697.00 25776.30 30899.71 13895.98 16993.38 23999.56 140
XVG-OURS-SEG-HR94.79 18394.70 18095.08 24098.05 18589.19 31799.08 25397.54 25193.66 15694.87 20499.58 10878.78 28799.79 12397.31 14293.40 23896.25 252
EIA-MVS97.53 8697.46 8097.76 15398.04 18694.84 19199.98 1597.61 24394.41 12297.90 13999.59 10692.40 13598.87 18498.04 11699.13 12599.59 132
XVG-OURS94.82 18194.74 17995.06 24198.00 18789.19 31799.08 25397.55 24994.10 13694.71 20599.62 10480.51 27199.74 13496.04 16893.06 24396.25 252
dp95.05 17794.43 18396.91 18997.99 18892.73 24696.29 36397.98 21189.70 27595.93 18994.67 33993.83 9598.45 21386.91 31496.53 18799.54 145
tpmrst96.27 14895.98 13497.13 18397.96 18993.15 23596.34 36198.17 19192.07 21598.71 10895.12 32493.91 9098.73 19494.91 18896.62 18599.50 153
TR-MVS94.54 19293.56 20797.49 16897.96 18994.34 20498.71 29697.51 25690.30 26794.51 20898.69 19075.56 31498.77 19192.82 23395.99 19799.35 171
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17897.93 19194.82 19299.47 21298.15 19891.83 22395.09 20299.11 14691.37 15297.47 27393.47 22297.43 16799.74 104
MDTV_nov1_ep1395.69 15097.90 19294.15 20995.98 36998.44 12393.12 17297.98 13695.74 29395.10 5198.58 20490.02 27596.92 182
Fast-Effi-MVS+95.02 17894.19 18997.52 16697.88 19394.55 19799.97 2897.08 29988.85 29294.47 20997.96 23084.59 23598.41 21689.84 27897.10 17599.59 132
ADS-MVSNet293.80 21493.88 19893.55 30197.87 19485.94 34694.24 37596.84 32490.07 26996.43 17794.48 34490.29 17495.37 35487.44 30197.23 17299.36 169
ADS-MVSNet94.79 18394.02 19397.11 18597.87 19493.79 21894.24 37598.16 19590.07 26996.43 17794.48 34490.29 17498.19 24287.44 30197.23 17299.36 169
Effi-MVS+96.30 14595.69 15098.16 12497.85 19696.26 13497.41 34197.21 28490.37 26498.65 11198.58 20286.61 21698.70 19897.11 14897.37 17199.52 149
PatchmatchNetpermissive95.94 15595.45 15697.39 17497.83 19794.41 20196.05 36798.40 15292.86 17997.09 15895.28 32194.21 8298.07 24989.26 28298.11 15499.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19093.61 20297.74 15597.82 19896.26 13499.96 3597.78 23185.76 33494.00 21697.54 23976.95 30099.21 16697.23 14595.43 21397.76 238
1112_ss96.01 15495.20 16598.42 11397.80 19996.41 12799.65 18196.66 33592.71 18792.88 22999.40 12392.16 14099.30 16391.92 24393.66 23599.55 141
Test_1112_low_res95.72 16094.83 17698.42 11397.79 20096.41 12799.65 18196.65 33692.70 18892.86 23096.13 28592.15 14199.30 16391.88 24493.64 23699.55 141
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20182.54 36399.59 19197.06 30194.92 10395.29 20095.37 31485.81 22297.89 25994.80 19197.07 17696.23 254
tpm cat193.51 22392.52 23796.47 20197.77 20191.47 28096.13 36598.06 20480.98 36792.91 22893.78 35289.66 17998.87 18487.03 31096.39 19199.09 195
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20395.62 16396.31 36298.17 19191.42 23996.26 18296.13 28590.56 16999.47 16092.18 23997.07 17699.35 171
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20398.14 6299.31 23297.86 22596.43 6499.62 4799.69 8985.56 22499.68 14299.05 6098.31 14697.83 234
EPP-MVSNet96.69 12896.60 11696.96 18897.74 20393.05 23899.37 22598.56 9288.75 29395.83 19299.01 15496.01 3298.56 20596.92 15797.20 17499.25 184
gg-mvs-nofinetune93.51 22391.86 24998.47 10897.72 20897.96 7292.62 38398.51 10774.70 38597.33 15369.59 39898.91 397.79 26297.77 13399.56 9899.67 115
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20895.69 16099.99 598.81 6094.28 12992.70 23196.90 25995.08 5299.17 17396.07 16773.88 36999.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9497.02 10098.59 9797.71 21097.52 8799.97 2898.54 10191.83 22397.45 15099.04 15197.50 899.10 17694.75 19396.37 19299.16 189
Syy-MVS90.00 30190.63 26788.11 35797.68 21174.66 38599.71 16998.35 16590.79 25692.10 23998.67 19179.10 28593.09 37763.35 39195.95 20096.59 250
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21190.97 28499.71 16998.35 16590.79 25692.10 23998.67 19192.46 13493.09 37787.13 30795.95 20096.59 250
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21183.70 35899.90 9196.57 33997.40 2899.67 3998.88 17461.82 37499.92 8898.23 10699.13 12598.14 231
diffmvspermissive97.00 11296.64 11498.09 13197.64 21496.17 14299.81 13897.19 28594.67 11398.95 9299.28 13186.43 21798.76 19298.37 10197.42 16999.33 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16095.15 16797.45 16997.62 21594.28 20599.28 23898.24 18394.27 13196.84 16698.94 17079.39 28098.76 19293.25 22498.49 14199.30 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10696.72 11198.22 12297.60 21696.70 11899.92 7998.54 10191.11 24797.07 16098.97 16197.47 1199.03 17893.73 21996.09 19598.92 204
miper_ehance_all_eth93.16 23092.60 23294.82 25097.57 21793.56 22699.50 20797.07 30088.75 29388.85 29295.52 30490.97 16196.74 31690.77 26284.45 30594.17 290
testing393.92 20994.23 18892.99 31597.54 21890.23 30299.99 599.16 3090.57 26091.33 24898.63 19792.99 11592.52 38182.46 34095.39 21496.22 255
LCM-MVSNet-Re92.31 25192.60 23291.43 33097.53 21979.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24495.48 35297.22 14697.58 16599.54 145
GBi-Net90.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
test190.88 27889.82 28494.08 27997.53 21991.97 26198.43 31296.95 31287.05 31789.68 26994.72 33571.34 33796.11 34087.01 31185.65 29494.17 290
FMVSNet291.02 27589.56 28995.41 23097.53 21995.74 15598.98 26897.41 26687.05 31788.43 30095.00 32971.34 33796.24 33785.12 32485.21 29994.25 285
tttt051796.85 11796.49 12097.92 14197.48 22395.89 15099.85 12198.54 10190.72 25996.63 17198.93 17297.47 1199.02 17993.03 23195.76 20698.85 208
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14597.44 22495.47 16899.86 11897.29 27893.35 16496.03 18699.19 14285.39 22798.72 19697.89 12697.04 17899.49 155
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9697.24 8997.80 14697.41 22595.64 16299.99 597.06 30194.59 11499.63 4499.32 13089.20 19098.14 24498.76 8399.23 12199.62 126
c3_l92.53 24691.87 24894.52 26297.40 22692.99 24099.40 21896.93 31787.86 30788.69 29595.44 30889.95 17796.44 32890.45 26880.69 33694.14 299
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16397.38 22794.40 20399.90 9198.64 7696.47 6399.51 6299.65 10084.99 23299.93 8599.22 5599.09 12798.46 222
CDS-MVSNet96.34 14296.07 12997.13 18397.37 22894.96 18899.53 20297.91 22091.55 23195.37 19998.32 21895.05 5497.13 29293.80 21595.75 20799.30 178
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22996.48 12499.96 3598.29 17891.93 22095.77 19398.07 22495.54 4298.29 23390.55 26698.89 13199.70 108
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 23089.18 31999.38 22396.79 32986.70 32487.47 31395.22 32290.00 17695.86 34988.26 29281.37 32694.15 296
baseline96.43 13795.98 13497.76 15397.34 23095.17 18499.51 20597.17 28893.92 14896.90 16499.28 13185.37 22898.64 20297.50 13996.86 18499.46 157
cl____92.31 25191.58 25294.52 26297.33 23292.77 24299.57 19596.78 33086.97 32187.56 31195.51 30589.43 18396.62 32188.60 28782.44 31894.16 295
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23392.74 24499.58 19396.75 33186.99 32087.64 30995.54 30289.55 18296.50 32588.58 28882.44 31894.17 290
casdiffmvspermissive96.42 13995.97 13797.77 15197.30 23494.98 18799.84 12697.09 29893.75 15496.58 17399.26 13785.07 23098.78 19097.77 13397.04 17899.54 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20193.48 20996.99 18797.29 23593.54 22799.96 3596.72 33388.35 30293.43 22098.94 17082.05 25198.05 25088.12 29696.48 19099.37 168
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23690.68 29298.83 28696.97 31188.57 29889.19 28695.73 29589.24 18996.69 31989.97 27781.55 32494.15 296
MVSFormer96.94 11496.60 11697.95 13897.28 23697.70 8199.55 19997.27 28091.17 24499.43 6799.54 11290.92 16296.89 30994.67 19699.62 9099.25 184
lupinMVS97.85 6997.60 7698.62 9397.28 23697.70 8199.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19798.40 9999.62 9099.45 159
SCA94.69 18793.81 20097.33 17997.10 23994.44 19898.86 28398.32 17293.30 16796.17 18595.59 30076.48 30697.95 25691.06 25497.43 16799.59 132
TAMVS95.85 15795.58 15396.65 19997.07 24093.50 22899.17 24797.82 22991.39 24195.02 20398.01 22592.20 13997.30 28193.75 21895.83 20499.14 192
Fast-Effi-MVS+-dtu93.72 21893.86 19993.29 30697.06 24186.16 34499.80 14296.83 32592.66 19192.58 23397.83 23481.39 25897.67 26789.75 27996.87 18396.05 257
CostFormer96.10 15095.88 14596.78 19397.03 24292.55 25297.08 34997.83 22890.04 27198.72 10794.89 33395.01 5698.29 23396.54 16295.77 20599.50 153
test_fmvsmvis_n_192097.67 8397.59 7897.91 14397.02 24395.34 17499.95 5398.45 11897.87 1597.02 16199.59 10689.64 18099.98 4399.41 4899.34 11698.42 224
test-LLR96.47 13596.04 13097.78 14997.02 24395.44 16999.96 3598.21 18694.07 13895.55 19596.38 27693.90 9198.27 23790.42 26998.83 13599.64 121
test-mter96.39 14095.93 14297.78 14997.02 24395.44 16999.96 3598.21 18691.81 22595.55 19596.38 27695.17 4998.27 23790.42 26998.83 13599.64 121
gm-plane-assit96.97 24693.76 22091.47 23598.96 16398.79 18994.92 186
WB-MVSnew92.90 23792.77 22993.26 30896.95 24793.63 22499.71 16998.16 19591.49 23294.28 21298.14 22181.33 26096.48 32679.47 35595.46 21189.68 378
QAPM95.40 17194.17 19099.10 6496.92 24897.71 7999.40 21898.68 7089.31 27888.94 29098.89 17382.48 24999.96 6193.12 23099.83 7399.62 126
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24994.04 21297.17 34697.12 29484.93 34481.96 35192.41 36392.48 13294.51 36579.23 35652.68 39792.56 352
tpm295.47 16995.18 16696.35 20996.91 24991.70 27496.96 35297.93 21688.04 30698.44 11995.40 31093.32 10597.97 25394.00 20795.61 20999.38 166
FMVSNet588.32 31787.47 31990.88 33396.90 25288.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27791.16 38676.39 37081.51 32593.09 344
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25398.64 5299.72 16798.24 18395.27 9688.42 30298.98 15982.76 24899.94 7797.10 14999.83 7399.96 64
Patchmatch-test92.65 24591.50 25596.10 21496.85 25490.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5598.00 25277.41 36596.98 18199.82 92
MVS96.60 13195.56 15499.72 1396.85 25499.22 2098.31 31898.94 4191.57 23090.90 25299.61 10586.66 21599.96 6197.36 14199.88 6999.99 23
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25697.47 9399.45 21598.81 6095.52 9089.39 27799.00 15681.97 25299.95 6997.27 14399.83 7399.84 90
EI-MVSNet93.73 21793.40 21494.74 25196.80 25792.69 24799.06 25897.67 23688.96 28791.39 24599.02 15288.75 19597.30 28191.07 25387.85 27994.22 286
CVMVSNet94.68 18994.94 17493.89 29096.80 25786.92 34299.06 25898.98 3894.45 11794.23 21499.02 15285.60 22395.31 35690.91 25995.39 21499.43 162
IterMVS-LS92.69 24392.11 24294.43 27096.80 25792.74 24499.45 21596.89 32088.98 28589.65 27295.38 31388.77 19496.34 33290.98 25782.04 32194.22 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27790.17 27993.12 31196.78 26090.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30495.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11895.96 13899.48 3496.74 26198.52 5698.31 31898.86 5395.82 8089.91 26398.98 15987.49 20499.96 6197.80 12899.73 8399.96 64
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26289.96 30998.89 27796.99 30788.95 28886.63 32395.67 29676.48 30695.00 35987.04 30984.04 31193.84 323
MVS-HIRNet86.22 32783.19 34095.31 23496.71 26390.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34597.49 27275.12 37297.99 15998.15 229
VDDNet93.12 23291.91 24796.76 19496.67 26492.65 25098.69 29998.21 18682.81 35997.75 14499.28 13161.57 37599.48 15998.09 11494.09 23298.15 229
dmvs_re93.20 22993.15 21993.34 30496.54 26583.81 35798.71 29698.51 10791.39 24192.37 23798.56 20478.66 28997.83 26193.89 20989.74 24898.38 225
MIMVSNet90.30 29388.67 30795.17 23996.45 26691.64 27692.39 38497.15 29185.99 33190.50 25593.19 35966.95 35794.86 36282.01 34493.43 23799.01 202
CR-MVSNet93.45 22692.62 23195.94 21696.29 26792.66 24892.01 38696.23 34992.62 19396.94 16293.31 35791.04 15996.03 34579.23 35695.96 19899.13 193
RPMNet89.76 30587.28 32097.19 18296.29 26792.66 24892.01 38698.31 17470.19 39196.94 16285.87 39087.25 20899.78 12562.69 39295.96 19899.13 193
tt080591.28 27090.18 27894.60 25796.26 26987.55 33698.39 31698.72 6589.00 28489.22 28398.47 21262.98 37198.96 18190.57 26588.00 27897.28 245
Patchmtry89.70 30688.49 30993.33 30596.24 27089.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 15996.03 34580.18 35482.10 32094.02 306
test_vis1_rt86.87 32586.05 32789.34 34696.12 27178.07 38199.87 10683.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16593.11 24290.03 375
JIA-IIPM91.76 26590.70 26594.94 24596.11 27287.51 33793.16 38298.13 20075.79 38197.58 14677.68 39592.84 12097.97 25388.47 29196.54 18699.33 174
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27397.48 9299.56 19798.57 8990.46 26286.51 32598.95 16878.57 29099.94 7793.86 21099.74 8297.57 243
PAPM98.60 3098.42 3199.14 5996.05 27498.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 20899.45 4599.89 6799.96 64
CLD-MVS94.06 20893.90 19794.55 26196.02 27590.69 29199.98 1597.72 23296.62 5891.05 25198.85 18277.21 29598.47 20998.11 11289.51 25494.48 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29088.75 30695.25 23695.99 27690.16 30491.22 39097.54 25176.80 37797.26 15586.01 38991.88 14696.07 34466.16 38895.91 20299.51 151
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27686.12 34598.81 28897.18 28789.38 27783.14 34797.76 23668.42 35298.43 21489.11 28386.05 29293.78 326
DeepMVS_CXcopyleft82.92 36795.98 27858.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24782.57 33985.29 29792.03 360
ACMP92.05 992.74 24192.42 23993.73 29395.91 27988.72 32399.81 13897.53 25394.13 13487.00 31998.23 21974.07 32798.47 20996.22 16688.86 26193.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22193.03 22195.35 23195.86 28086.94 34199.87 10696.36 34696.85 4699.54 5798.79 18452.41 38799.83 11898.64 9198.97 13099.29 180
HQP-NCC95.78 28199.87 10696.82 4893.37 221
ACMP_Plane95.78 28199.87 10696.82 4893.37 221
HQP-MVS94.61 19194.50 18294.92 24695.78 28191.85 26699.87 10697.89 22196.82 4893.37 22198.65 19480.65 26998.39 22097.92 12389.60 24994.53 260
NP-MVS95.77 28491.79 26898.65 194
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28596.20 13999.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
plane_prior695.76 28591.72 27380.47 273
ACMM91.95 1092.88 23892.52 23793.98 28695.75 28789.08 32099.77 14897.52 25593.00 17489.95 26297.99 22876.17 31098.46 21293.63 22188.87 26094.39 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21192.84 22596.80 19295.73 28893.57 22599.88 10397.24 28392.57 19892.92 22796.66 26878.73 28897.67 26787.75 29994.06 23399.17 188
plane_prior195.73 288
jason97.24 10096.86 10598.38 11695.73 28897.32 9799.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20597.94 12299.47 10599.25 184
jason: jason.
HQP_MVS94.49 19594.36 18494.87 24795.71 29191.74 27099.84 12697.87 22396.38 6793.01 22598.59 19980.47 27398.37 22697.79 13189.55 25294.52 262
plane_prior795.71 29191.59 278
ITE_SJBPF92.38 32195.69 29385.14 35095.71 35992.81 18289.33 28098.11 22270.23 34398.42 21585.91 32088.16 27593.59 334
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16195.65 29494.21 20899.83 13398.50 11296.27 7299.65 4199.64 10184.72 23399.93 8599.04 6398.84 13498.74 215
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29588.64 32698.55 30597.45 26089.03 28281.62 35497.61 23869.75 34498.41 21689.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12796.49 12097.37 17595.63 29695.96 14899.74 15998.88 5192.94 17691.61 24398.97 16197.72 698.62 20394.83 19098.08 15797.53 244
FMVSNet188.50 31686.64 32294.08 27995.62 29791.97 26198.43 31296.95 31283.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 290
LPG-MVS_test92.96 23592.71 23093.71 29595.43 29888.67 32499.75 15697.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
LGP-MVS_train93.71 29595.43 29888.67 32497.62 24092.81 18290.05 25898.49 20875.24 31798.40 21895.84 17289.12 25694.07 303
tpm93.70 21993.41 21394.58 25995.36 30087.41 33897.01 35096.90 31990.85 25496.72 17094.14 34990.40 17296.84 31290.75 26388.54 26999.51 151
D2MVS92.76 24092.59 23593.27 30795.13 30189.54 31699.69 17499.38 2392.26 21187.59 31094.61 34185.05 23197.79 26291.59 24788.01 27792.47 355
VPA-MVSNet92.70 24291.55 25496.16 21295.09 30296.20 13998.88 27999.00 3691.02 25191.82 24295.29 32076.05 31297.96 25595.62 17681.19 32794.30 281
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30390.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 32898.28 23584.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32286.51 32391.94 32695.05 30485.57 34897.65 33894.08 38184.40 34981.82 35396.85 26362.14 37398.33 22980.25 35386.37 29191.91 362
test0.0.03 193.86 21093.61 20294.64 25595.02 30592.18 25999.93 7698.58 8794.07 13887.96 30698.50 20793.90 9194.96 36081.33 34793.17 24096.78 247
UniMVSNet (Re)93.07 23492.13 24195.88 21794.84 30696.24 13899.88 10398.98 3892.49 20489.25 28195.40 31087.09 21097.14 29193.13 22978.16 35094.26 283
USDC90.00 30188.96 30293.10 31394.81 30788.16 33298.71 29695.54 36493.66 15683.75 34597.20 24865.58 36298.31 23183.96 33287.49 28592.85 349
VPNet91.81 25990.46 26995.85 21994.74 30895.54 16698.98 26898.59 8692.14 21390.77 25497.44 24168.73 34997.54 27194.89 18977.89 35294.46 265
FIs94.10 20693.43 21096.11 21394.70 30996.82 11599.58 19398.93 4592.54 19989.34 27997.31 24587.62 20397.10 29594.22 20686.58 28994.40 272
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 31088.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26991.41 24888.59 26897.77 237
UniMVSNet_NR-MVSNet92.95 23692.11 24295.49 22594.61 31195.28 17799.83 13399.08 3391.49 23289.21 28496.86 26287.14 20996.73 31793.20 22577.52 35594.46 265
test_fmvs289.47 30989.70 28688.77 35394.54 31275.74 38299.83 13394.70 37794.71 11091.08 24996.82 26754.46 38497.78 26492.87 23288.27 27392.80 350
WR-MVS92.31 25191.25 25995.48 22894.45 31395.29 17699.60 19098.68 7090.10 26888.07 30596.89 26080.68 26896.80 31593.14 22879.67 34394.36 276
nrg03093.51 22392.53 23696.45 20394.36 31497.20 10099.81 13897.16 29091.60 22989.86 26597.46 24086.37 21897.68 26695.88 17180.31 33994.46 265
tfpnnormal89.29 31287.61 31894.34 27394.35 31594.13 21098.95 27298.94 4183.94 35084.47 34195.51 30574.84 32297.39 27477.05 36880.41 33791.48 365
FC-MVSNet-test93.81 21393.15 21995.80 22194.30 31696.20 13999.42 21798.89 4992.33 21089.03 28997.27 24787.39 20696.83 31393.20 22586.48 29094.36 276
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31785.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 25183.62 33499.62 9091.60 363
WR-MVS_H91.30 26890.35 27294.15 27694.17 31892.62 25199.17 24798.94 4188.87 29186.48 32794.46 34684.36 23796.61 32288.19 29378.51 34893.21 343
DU-MVS92.46 24891.45 25795.49 22594.05 31995.28 17799.81 13898.74 6492.25 21289.21 28496.64 27081.66 25596.73 31793.20 22577.52 35594.46 265
NR-MVSNet91.56 26790.22 27695.60 22394.05 31995.76 15498.25 32098.70 6791.16 24680.78 35996.64 27083.23 24796.57 32391.41 24877.73 35494.46 265
CP-MVSNet91.23 27290.22 27694.26 27493.96 32192.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28396.37 33090.29 27278.95 34594.02 306
XXY-MVS91.82 25890.46 26995.88 21793.91 32295.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32697.89 25991.66 24684.07 30994.35 279
PS-CasMVS90.63 28589.51 29293.99 28593.83 32391.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31596.31 33488.83 28578.86 34793.95 314
test_040285.58 32983.94 33490.50 33793.81 32485.04 35198.55 30595.20 37176.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32585.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 22092.29 23788.61 26693.89 319
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24793.69 32693.98 21599.69 17498.65 7491.03 25088.44 29896.83 26680.05 27696.18 33890.26 27376.89 36394.45 270
mvsmamba94.10 20693.72 20195.25 23693.57 32794.13 21099.67 17896.45 34493.63 15891.34 24797.77 23586.29 21997.22 28796.65 16188.10 27694.40 272
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32891.03 28398.54 30794.05 38383.69 35481.09 35796.16 28375.32 31696.40 32976.69 36968.41 38192.06 359
v1090.25 29588.82 30494.57 26093.53 32993.43 23099.08 25396.87 32285.00 34387.34 31794.51 34280.93 26597.02 30482.85 33879.23 34493.26 341
testgi89.01 31488.04 31591.90 32793.49 33084.89 35399.73 16495.66 36193.89 15185.14 33898.17 22059.68 37894.66 36477.73 36488.88 25996.16 256
v890.54 28789.17 29794.66 25493.43 33193.40 23299.20 24496.94 31685.76 33487.56 31194.51 34281.96 25397.19 28884.94 32678.25 34993.38 339
V4291.28 27090.12 28194.74 25193.42 33293.46 22999.68 17697.02 30487.36 31389.85 26795.05 32581.31 26197.34 27787.34 30480.07 34193.40 337
pm-mvs189.36 31187.81 31794.01 28393.40 33391.93 26498.62 30496.48 34386.25 32983.86 34496.14 28473.68 32997.04 30086.16 31775.73 36793.04 346
RRT_MVS93.14 23192.92 22493.78 29293.31 33490.04 30799.66 17997.69 23492.53 20088.91 29197.76 23684.36 23796.93 30795.10 18186.99 28794.37 275
v114491.09 27489.83 28394.87 24793.25 33593.69 22399.62 18896.98 30986.83 32389.64 27394.99 33080.94 26497.05 29885.08 32581.16 32893.87 321
v119290.62 28689.25 29694.72 25393.13 33693.07 23699.50 20797.02 30486.33 32889.56 27595.01 32779.22 28297.09 29782.34 34281.16 32894.01 308
v2v48291.30 26890.07 28295.01 24293.13 33693.79 21899.77 14897.02 30488.05 30589.25 28195.37 31480.73 26797.15 29087.28 30580.04 34294.09 302
OPM-MVS93.21 22892.80 22794.44 26893.12 33890.85 29099.77 14897.61 24396.19 7591.56 24498.65 19475.16 32198.47 20993.78 21789.39 25593.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28189.52 29194.59 25893.11 33992.77 24299.56 19796.99 30786.38 32789.82 26894.95 33280.50 27297.10 29583.98 33180.41 33793.90 318
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30295.94 34887.07 30876.91 36293.89 319
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22396.92 31885.89 33289.36 27894.87 33477.89 29497.03 30280.66 35081.08 33194.01 308
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15696.89 32087.51 31088.27 30395.01 32781.67 25497.04 30087.40 30377.17 36093.75 327
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20996.98 30986.10 33089.61 27495.30 31778.55 29197.03 30282.17 34380.89 33594.01 308
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14893.94 38484.69 34889.04 28895.66 29781.66 25596.52 32490.99 25676.98 36191.97 361
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20595.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
pmmvs492.10 25591.07 26295.18 23892.82 34694.96 18899.48 21196.83 32587.45 31288.66 29696.56 27483.78 24296.83 31389.29 28184.77 30393.75 327
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37491.44 23686.29 33097.11 25065.30 36598.11 24688.53 29085.25 29892.07 358
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 30995.30 35783.56 33575.74 36693.41 336
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26693.31 37686.20 31681.91 32294.26 283
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38773.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22996.35 34787.84 30885.30 33794.99 33084.14 24096.09 34380.38 35184.56 30493.71 332
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22996.73 33285.49 33985.90 33595.77 29281.09 26396.00 34776.00 37182.49 31793.30 340
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27597.13 29281.14 34878.12 35193.49 335
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20679.25 28186.65 39566.85 38682.69 31595.57 258
PS-MVSNAJss93.64 22093.31 21694.61 25692.11 35592.19 25899.12 24997.38 26892.51 20388.45 29796.99 25891.20 15497.29 28494.36 20187.71 28194.36 276
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15995.58 36385.88 33387.24 31895.74 29373.41 33096.48 32688.54 28983.56 31293.95 314
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29795.76 35068.14 38482.81 31492.64 351
test_djsdf92.83 23992.29 24094.47 26691.90 35892.46 25399.55 19997.27 28091.17 24489.96 26196.07 28881.10 26296.89 30994.67 19688.91 25894.05 305
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37288.97 28682.26 35096.89 26071.75 33596.67 32084.00 33082.98 31393.72 331
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36791.48 23485.65 33697.31 24572.66 33197.29 28488.15 29484.83 30293.97 313
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33497.32 28094.75 19388.68 26594.11 301
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37347.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14095.74 14898.32 11891.47 36495.56 16599.84 12697.30 27697.74 1897.89 14099.35 12979.62 27899.85 10899.25 5499.24 12099.55 141
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33297.36 27594.53 19988.77 26294.13 300
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29297.27 28683.78 33399.70 8591.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24496.52 34179.70 37257.12 39792.69 36179.11 28493.86 37177.10 36777.46 35793.86 322
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24396.55 34079.60 37357.26 39692.72 36079.09 28693.78 37277.25 36677.37 35893.84 323
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29396.92 30892.38 23688.73 26393.39 338
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29479.16 35988.61 26690.96 368
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3850.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 23087.88 29888.41 27189.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31191.95 38478.46 36196.05 19697.92 233
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36885.43 34082.82 34893.92 35074.40 32593.44 37566.99 38581.83 32393.08 345
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37073.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 27090.34 372
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34889.11 39066.52 38775.82 36591.00 367
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34582.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30391.40 38569.53 38160.36 39492.40 356
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8093.63 37387.75 29969.61 37699.79 97
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37683.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38888.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 36982.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38081.30 36569.43 38890.70 37377.02 29882.06 39935.71 40468.11 38383.13 390
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38280.42 36968.75 38990.14 37576.54 30581.66 40033.25 40566.34 38782.19 391
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
ambc83.23 36677.17 39962.61 39287.38 39594.55 37976.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37884.73 34780.21 36196.12 28763.56 36998.39 22087.92 29763.97 39090.95 369
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37551.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38644.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17618.47 41220.74 40564.59 39098.48 21110.95 41017.09 40956.66 39811.01 40555.94 402
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9683.37 2450.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1540.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1230.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
GSMVS99.59 132
sam_mvs194.72 6499.59 132
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11197.74 26591.06 254
test_post63.35 40394.43 6998.13 245
patchmatchnet-post91.70 36895.12 5097.95 256
MTMP99.87 10696.49 342
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
旧先验299.46 21494.21 13299.85 999.95 6996.96 155
新几何299.40 218
无先验99.49 20998.71 6693.46 161100.00 194.36 20199.99 23
原ACMM299.90 91
testdata299.99 3690.54 267
segment_acmp96.68 25
testdata199.28 23896.35 71
plane_prior597.87 22398.37 22697.79 13189.55 25294.52 262
plane_prior498.59 199
plane_prior391.64 27696.63 5693.01 225
plane_prior299.84 12696.38 67
plane_prior91.74 27099.86 11896.76 5289.59 251
n20.00 415
nn0.00 415
door-mid89.69 399
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
BP-MVS97.92 123
HQP4-MVS93.37 22198.39 22094.53 260
HQP3-MVS97.89 22189.60 249
HQP2-MVS80.65 269
MDTV_nov1_ep13_2view96.26 13496.11 36691.89 22198.06 13494.40 7194.30 20399.67 115
ACMMP++_ref87.04 286
ACMMP++88.23 274
Test By Simon92.82 122