This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 9396.80 9798.51 10299.99 195.60 15699.09 23298.84 5293.32 15596.74 15399.72 7886.04 208100.00 198.01 10699.43 10799.94 71
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1298.69 6298.20 499.93 199.98 296.82 23100.00 199.75 25100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2298.64 7098.47 299.13 7899.92 1396.38 30100.00 199.74 27100.00 1100.00 1
mPP-MVS98.39 4498.20 4398.97 7199.97 396.92 10999.95 4698.38 14595.04 8898.61 10399.80 5193.39 95100.00 198.64 80100.00 199.98 48
CPTT-MVS97.64 7897.32 8198.58 9499.97 395.77 14799.96 2998.35 15189.90 25398.36 11399.79 5491.18 14899.99 3698.37 9099.99 2199.99 23
DP-MVS Recon98.41 4298.02 5499.56 2499.97 398.70 4599.92 7198.44 11192.06 20398.40 11299.84 4195.68 40100.00 198.19 9699.71 8399.97 56
PAPR98.52 3298.16 4699.58 2399.97 398.77 3999.95 4698.43 11995.35 8298.03 12399.75 6794.03 8299.98 4398.11 10199.83 7299.99 23
HFP-MVS98.56 2998.37 3399.14 5699.96 897.43 9199.95 4698.61 7594.77 9699.31 6999.85 3094.22 76100.00 198.70 7599.98 3299.98 48
region2R98.54 3098.37 3399.05 6399.96 897.18 9899.96 2998.55 8894.87 9499.45 5899.85 3094.07 81100.00 198.67 77100.00 199.98 48
ACMMPR98.50 3398.32 3799.05 6399.96 897.18 9899.95 4698.60 7694.77 9699.31 6999.84 4193.73 90100.00 198.70 7599.98 3299.98 48
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 2298.62 7498.02 999.90 299.95 397.33 17100.00 199.54 35100.00 1100.00 1
CP-MVS98.45 3798.32 3798.87 7699.96 896.62 11799.97 2298.39 14194.43 10898.90 8799.87 2494.30 74100.00 199.04 5599.99 2199.99 23
test_one_060199.94 1399.30 1198.41 13496.63 4999.75 2799.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 4698.43 119100.00 199.99 5100.00 1100.00 1
XVS98.70 2398.55 2399.15 5499.94 1397.50 8799.94 6298.42 13096.22 6299.41 6299.78 5894.34 7299.96 5798.92 6199.95 4999.99 23
X-MVStestdata93.83 19392.06 22599.15 5499.94 1397.50 8799.94 6298.42 13096.22 6299.41 6241.37 38894.34 7299.96 5798.92 6199.95 4999.99 23
test_prior99.43 3499.94 1398.49 5798.65 6899.80 11299.99 23
MSLP-MVS++99.13 899.01 1199.49 3199.94 1398.46 5899.98 1298.86 4997.10 3399.80 1599.94 495.92 36100.00 199.51 36100.00 1100.00 1
APDe-MVS99.06 1198.91 1499.51 2899.94 1398.76 4299.91 7598.39 14197.20 3299.46 5799.85 3095.53 4499.79 11499.86 18100.00 199.99 23
MP-MVScopyleft98.23 5497.97 5699.03 6599.94 1397.17 10199.95 4698.39 14194.70 10098.26 11999.81 5091.84 139100.00 198.85 6799.97 4299.93 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2598.36 3599.49 3199.94 1398.73 4399.87 9298.33 15493.97 13499.76 2699.87 2494.99 5799.75 12398.55 84100.00 199.98 48
PAPM_NR98.12 5797.93 6198.70 8499.94 1396.13 13899.82 12098.43 11994.56 10497.52 13499.70 8294.40 6799.98 4397.00 14099.98 3299.99 23
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2399.64 16599.44 1997.33 2599.00 8399.72 7894.03 8299.98 4398.73 74100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2998.43 11997.27 2899.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 998.41 13497.71 1499.84 10100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11997.26 3099.80 1599.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4698.32 15697.28 2699.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 81
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1499.96 2998.42 13097.28 2699.86 599.94 497.22 19
MSP-MVS99.09 999.12 598.98 7099.93 2497.24 9599.95 4698.42 13097.50 2199.52 5499.88 2197.43 1699.71 12999.50 3799.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 3998.43 11999.63 3999.85 100
FOURS199.92 3197.66 8099.95 4698.36 14995.58 7699.52 54
ZD-MVS99.92 3198.57 5398.52 9492.34 19599.31 6999.83 4395.06 5299.80 11299.70 3199.97 42
GST-MVS98.27 4997.97 5699.17 5099.92 3197.57 8299.93 6898.39 14194.04 13298.80 9099.74 7392.98 108100.00 198.16 9899.76 8099.93 73
TEST999.92 3198.92 2799.96 2998.43 11993.90 13999.71 3199.86 2695.88 3799.85 100
train_agg98.88 1798.65 1899.59 2299.92 3198.92 2799.96 2998.43 11994.35 11399.71 3199.86 2695.94 3499.85 10099.69 3299.98 3299.99 23
test_899.92 3198.88 3099.96 2998.43 11994.35 11399.69 3399.85 3095.94 3499.85 100
PGM-MVS98.34 4598.13 4898.99 6999.92 3197.00 10599.75 14099.50 1793.90 13999.37 6699.76 6293.24 103100.00 197.75 12399.96 4699.98 48
ACMMPcopyleft97.74 7597.44 7698.66 8799.92 3196.13 13899.18 22699.45 1894.84 9596.41 16399.71 8091.40 14299.99 3697.99 10898.03 14899.87 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4698.43 11996.48 5299.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 134100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 134100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1699.90 4299.02 2499.95 4698.56 8297.56 2099.44 5999.85 3095.38 46100.00 199.31 4599.99 2199.87 84
APD-MVScopyleft98.62 2698.35 3699.41 3799.90 4298.51 5699.87 9298.36 14994.08 12699.74 2899.73 7594.08 8099.74 12599.42 4199.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2098.54 2499.62 1999.90 4298.85 3399.24 22198.47 10498.14 699.08 7999.91 1493.09 106100.00 199.04 5599.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 2999.80 5197.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 9298.44 11197.48 2299.64 3899.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1799.49 56
CSCG97.10 9697.04 9097.27 16599.89 4591.92 24999.90 8099.07 3288.67 27695.26 18599.82 4693.17 10599.98 4398.15 9999.47 10199.90 80
ZNCC-MVS98.31 4698.03 5399.17 5099.88 4997.59 8199.94 6298.44 11194.31 11698.50 10799.82 4693.06 10799.99 3698.30 9499.99 2199.93 73
SR-MVS98.46 3698.30 4098.93 7499.88 4997.04 10399.84 11298.35 15194.92 9299.32 6899.80 5193.35 9699.78 11699.30 4699.95 4999.96 62
9.1498.38 3199.87 5199.91 7598.33 15493.22 15899.78 2499.89 1994.57 6499.85 10099.84 1999.97 42
SMA-MVScopyleft98.76 2198.48 2699.62 1999.87 5198.87 3199.86 10598.38 14593.19 15999.77 2599.94 495.54 42100.00 199.74 2799.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4298.21 4299.03 6599.86 5397.10 10299.98 1298.80 5690.78 24099.62 4199.78 5895.30 47100.00 199.80 2299.93 6099.99 23
MTAPA98.29 4897.96 5999.30 4199.85 5497.93 7299.39 20298.28 16395.76 7197.18 14299.88 2192.74 116100.00 198.67 7799.88 6899.99 23
LS3D95.84 14395.11 15398.02 12699.85 5495.10 17598.74 27498.50 10287.22 29793.66 20299.86 2687.45 19499.95 6490.94 24399.81 7899.02 189
HPM-MVScopyleft97.96 6097.72 6798.68 8599.84 5696.39 12699.90 8098.17 17592.61 18198.62 10299.57 10091.87 13899.67 13698.87 6699.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 4998.11 5098.75 8299.83 5796.59 11999.40 19898.51 9795.29 8498.51 10699.76 6293.60 9499.71 12998.53 8599.52 9799.95 69
save fliter99.82 5898.79 3799.96 2998.40 13897.66 16
PLCcopyleft95.54 397.93 6297.89 6498.05 12599.82 5894.77 18499.92 7198.46 10693.93 13797.20 14199.27 12395.44 4599.97 5397.41 12899.51 9999.41 157
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5298.08 5298.78 7999.81 6096.60 11899.82 12098.30 16193.95 13699.37 6699.77 6092.84 11299.76 12298.95 5899.92 6399.97 56
EI-MVSNet-UG-set98.14 5697.99 5598.60 9199.80 6196.27 12999.36 20798.50 10295.21 8698.30 11699.75 6793.29 10099.73 12898.37 9099.30 11299.81 90
SR-MVS-dyc-post98.31 4698.17 4598.71 8399.79 6296.37 12799.76 13798.31 15894.43 10899.40 6499.75 6793.28 10199.78 11698.90 6499.92 6399.97 56
RE-MVS-def98.13 4899.79 6296.37 12799.76 13798.31 15894.43 10899.40 6499.75 6792.95 10998.90 6499.92 6399.97 56
HPM-MVS_fast97.80 7197.50 7498.68 8599.79 6296.42 12299.88 8998.16 17991.75 21398.94 8599.54 10391.82 14099.65 13897.62 12699.99 2199.99 23
SF-MVS98.67 2498.40 2999.50 2999.77 6598.67 4699.90 8098.21 17093.53 14999.81 1399.89 1994.70 6299.86 9999.84 1999.93 6099.96 62
旧先验199.76 6697.52 8498.64 7099.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9097.23 8397.41 15699.76 6693.36 21899.65 16197.95 19696.03 6697.41 13899.70 8289.61 17199.51 14396.73 14798.25 14099.38 159
新几何199.42 3699.75 6898.27 6098.63 7392.69 17699.55 4999.82 4694.40 67100.00 191.21 23599.94 5499.99 23
MP-MVS-pluss98.07 5997.64 6999.38 4099.74 6998.41 5999.74 14398.18 17493.35 15396.45 16099.85 3092.64 11899.97 5398.91 6399.89 6699.77 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1498.77 1699.41 3799.74 6998.67 4699.77 13298.38 14596.73 4699.88 499.74 7394.89 5999.59 14099.80 2299.98 3299.97 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3499.74 6998.56 5498.40 13899.65 3794.76 6099.75 12399.98 3299.99 23
原ACMM198.96 7299.73 7296.99 10698.51 9794.06 12999.62 4199.85 3094.97 5899.96 5795.11 16599.95 4999.92 78
TSAR-MVS + GP.98.60 2798.51 2598.86 7799.73 7296.63 11699.97 2297.92 20198.07 798.76 9499.55 10195.00 5699.94 7299.91 1597.68 15399.99 23
CANet98.27 4997.82 6599.63 1699.72 7499.10 2299.98 1298.51 9797.00 3698.52 10599.71 8087.80 19099.95 6499.75 2599.38 10899.83 88
F-COLMAP96.93 10296.95 9396.87 17499.71 7591.74 25499.85 10897.95 19693.11 16295.72 17899.16 13492.35 12799.94 7295.32 16399.35 11098.92 191
SD-MVS98.92 1598.70 1799.56 2499.70 7698.73 4399.94 6298.34 15396.38 5799.81 1399.76 6294.59 6399.98 4399.84 1999.96 4699.97 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5399.12 595.59 20899.67 7786.91 32499.95 4698.89 4597.60 1799.90 299.76 6296.54 2899.98 4399.94 1199.82 7699.88 82
ACMMP_NAP98.49 3498.14 4799.54 2699.66 7898.62 5299.85 10898.37 14894.68 10199.53 5299.83 4392.87 111100.00 198.66 7999.84 7199.99 23
DeepPCF-MVS95.94 297.71 7698.98 1293.92 27299.63 7981.76 35199.96 2998.56 8299.47 199.19 7699.99 194.16 79100.00 199.92 1299.93 60100.00 1
EPNet98.49 3498.40 2998.77 8199.62 8096.80 11399.90 8099.51 1697.60 1799.20 7499.36 11893.71 9199.91 8297.99 10898.71 12899.61 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS96.05 13695.82 13496.72 17999.59 8196.99 10699.95 4699.10 2994.06 12998.27 11795.80 27289.00 18299.95 6499.12 5087.53 26593.24 324
PVSNet_Blended97.94 6197.64 6998.83 7899.59 8196.99 106100.00 199.10 2995.38 8198.27 11799.08 13789.00 18299.95 6499.12 5099.25 11499.57 133
PatchMatch-RL96.04 13795.40 14297.95 12799.59 8195.22 17199.52 18399.07 3293.96 13596.49 15998.35 19782.28 23599.82 11190.15 25999.22 11698.81 198
dcpmvs_297.42 8698.09 5195.42 21399.58 8487.24 32099.23 22296.95 29494.28 11898.93 8699.73 7594.39 7099.16 16199.89 1699.82 7699.86 86
test22299.55 8597.41 9399.34 20898.55 8891.86 20899.27 7399.83 4393.84 8899.95 4999.99 23
CNLPA97.76 7497.38 7798.92 7599.53 8696.84 11199.87 9298.14 18293.78 14296.55 15899.69 8492.28 12999.98 4397.13 13599.44 10599.93 73
API-MVS97.86 6597.66 6898.47 10499.52 8795.41 16299.47 19298.87 4891.68 21498.84 8899.85 3092.34 12899.99 3698.44 8799.96 46100.00 1
PVSNet91.05 1397.13 9596.69 10098.45 10699.52 8795.81 14599.95 4699.65 1194.73 9899.04 8199.21 13084.48 22199.95 6494.92 17198.74 12799.58 132
114514_t97.41 8796.83 9599.14 5699.51 8997.83 7399.89 8798.27 16588.48 28099.06 8099.66 9190.30 16399.64 13996.32 15199.97 4299.96 62
cl2293.77 19793.25 20195.33 21799.49 9094.43 18899.61 16998.09 18490.38 24489.16 26895.61 27990.56 16097.34 26091.93 22784.45 28694.21 269
testdata98.42 10999.47 9195.33 16598.56 8293.78 14299.79 2399.85 3093.64 9399.94 7294.97 16999.94 54100.00 1
MAR-MVS97.43 8297.19 8498.15 12199.47 9194.79 18399.05 24398.76 5792.65 17998.66 10099.82 4688.52 18799.98 4398.12 10099.63 8799.67 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 17793.42 19497.91 13199.46 9394.04 19798.93 25597.48 24181.15 34790.04 24199.55 10187.02 19999.95 6488.97 26998.11 14499.73 101
MVS_111021_LR98.42 4198.38 3198.53 10199.39 9495.79 14699.87 9299.86 296.70 4798.78 9199.79 5492.03 13599.90 8499.17 4999.86 7099.88 82
CHOSEN 280x42099.01 1399.03 1098.95 7399.38 9598.87 3198.46 29199.42 2197.03 3599.02 8299.09 13699.35 198.21 22599.73 2999.78 7999.77 97
MVS_111021_HR98.72 2298.62 2099.01 6899.36 9697.18 9899.93 6899.90 196.81 4498.67 9999.77 6093.92 8499.89 8899.27 4799.94 5499.96 62
DPM-MVS98.83 1998.46 2799.97 199.33 9799.92 199.96 2998.44 11197.96 1099.55 4999.94 497.18 21100.00 193.81 20099.94 5499.98 48
TAPA-MVS92.12 894.42 18193.60 18796.90 17399.33 9791.78 25399.78 12998.00 19089.89 25494.52 19199.47 10791.97 13699.18 15969.90 36199.52 9799.73 101
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6497.94 6097.70 14399.28 9995.20 17299.98 1297.15 27295.53 7899.62 4199.79 5492.08 13498.38 20998.75 7399.28 11399.52 142
test_fmvsm_n_192098.44 3898.61 2197.92 12999.27 10095.18 173100.00 198.90 4398.05 899.80 1599.73 7592.64 11899.99 3699.58 3499.51 9998.59 206
test_yl97.83 6797.37 7899.21 4499.18 10197.98 6999.64 16599.27 2691.43 22297.88 12898.99 14695.84 3899.84 10798.82 6895.32 20199.79 93
DCV-MVSNet97.83 6797.37 7899.21 4499.18 10197.98 6999.64 16599.27 2691.43 22297.88 12898.99 14695.84 3899.84 10798.82 6895.32 20199.79 93
MVS_030498.87 1898.61 2199.67 1599.18 10199.13 2199.87 9299.65 1198.17 598.75 9699.75 6792.76 11599.94 7299.88 1799.44 10599.94 71
DeepC-MVS94.51 496.92 10396.40 10998.45 10699.16 10495.90 14399.66 15998.06 18796.37 6094.37 19499.49 10683.29 23199.90 8497.63 12599.61 9299.55 135
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3098.22 4199.50 2999.15 10598.65 50100.00 198.58 7897.70 1598.21 12199.24 12892.58 12199.94 7298.63 8299.94 5499.92 78
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7297.91 6297.43 15599.10 10694.42 18999.99 497.10 27795.07 8799.68 3499.75 6792.95 10998.34 21398.38 8999.14 11899.54 138
Anonymous20240521193.10 21591.99 22796.40 18999.10 10689.65 29598.88 26097.93 19883.71 33494.00 19998.75 17468.79 32999.88 9495.08 16791.71 22499.68 107
HyFIR lowres test96.66 11696.43 10897.36 16199.05 10893.91 20299.70 15399.80 390.54 24296.26 16698.08 20292.15 13298.23 22496.84 14695.46 19899.93 73
LFMVS94.75 17193.56 19098.30 11499.03 10995.70 15298.74 27497.98 19387.81 29098.47 10899.39 11567.43 33799.53 14198.01 10695.20 20399.67 109
AllTest92.48 22991.64 23295.00 22799.01 11088.43 30998.94 25496.82 30986.50 30688.71 27498.47 19374.73 30699.88 9485.39 30596.18 18296.71 231
TestCases95.00 22799.01 11088.43 30996.82 30986.50 30688.71 27498.47 19374.73 30699.88 9485.39 30596.18 18296.71 231
COLMAP_ROBcopyleft90.47 1492.18 23691.49 23894.25 26099.00 11288.04 31598.42 29696.70 31682.30 34388.43 28199.01 14376.97 28299.85 10086.11 30296.50 17894.86 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 15795.68 13894.36 25798.99 11384.98 33399.96 2996.65 31897.60 1799.73 2998.96 15271.58 31999.93 8098.31 9399.37 10998.17 211
HY-MVS92.50 797.79 7297.17 8699.63 1698.98 11499.32 897.49 32099.52 1495.69 7398.32 11597.41 22393.32 9899.77 11998.08 10495.75 19499.81 90
VNet97.21 9496.57 10499.13 6098.97 11597.82 7499.03 24699.21 2894.31 11699.18 7798.88 16386.26 20799.89 8898.93 6094.32 20999.69 106
thres20096.96 10096.21 11399.22 4398.97 11598.84 3499.85 10899.71 693.17 16096.26 16698.88 16389.87 16899.51 14394.26 18994.91 20499.31 169
tfpn200view996.79 10795.99 11899.19 4698.94 11798.82 3599.78 12999.71 692.86 16596.02 17198.87 16689.33 17599.50 14593.84 19794.57 20599.27 174
thres40096.78 10895.99 11899.16 5298.94 11798.82 3599.78 12999.71 692.86 16596.02 17198.87 16689.33 17599.50 14593.84 19794.57 20599.16 181
Anonymous2023121189.86 28488.44 29194.13 26398.93 11990.68 27498.54 28898.26 16676.28 35986.73 30295.54 28370.60 32597.56 25390.82 24680.27 32194.15 277
canonicalmvs97.09 9896.32 11099.39 3998.93 11998.95 2699.72 15197.35 25294.45 10697.88 12899.42 11186.71 20199.52 14298.48 8693.97 21499.72 103
SDMVSNet94.80 16793.96 17897.33 16398.92 12195.42 16199.59 17198.99 3592.41 19292.55 21797.85 21275.81 29698.93 16997.90 11491.62 22597.64 222
sd_testset93.55 20492.83 20895.74 20698.92 12190.89 27198.24 30298.85 5192.41 19292.55 21797.85 21271.07 32498.68 18593.93 19491.62 22597.64 222
EPNet_dtu95.71 14795.39 14396.66 18198.92 12193.41 21599.57 17598.90 4396.19 6497.52 13498.56 18592.65 11797.36 25877.89 34498.33 13599.20 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 5897.60 7199.60 2198.92 12199.28 1699.89 8799.52 1495.58 7698.24 12099.39 11593.33 9799.74 12597.98 11095.58 19799.78 96
CHOSEN 1792x268896.81 10696.53 10597.64 14598.91 12593.07 22099.65 16199.80 395.64 7495.39 18298.86 16884.35 22499.90 8496.98 14199.16 11799.95 69
thres100view90096.74 11195.92 13099.18 4798.90 12698.77 3999.74 14399.71 692.59 18395.84 17498.86 16889.25 17799.50 14593.84 19794.57 20599.27 174
thres600view796.69 11495.87 13399.14 5698.90 12698.78 3899.74 14399.71 692.59 18395.84 17498.86 16889.25 17799.50 14593.44 20994.50 20899.16 181
MSDG94.37 18393.36 19897.40 15798.88 12893.95 20199.37 20597.38 25085.75 31790.80 23399.17 13384.11 22699.88 9486.35 29998.43 13398.36 209
h-mvs3394.92 16594.36 16896.59 18398.85 12991.29 26598.93 25598.94 3895.90 6798.77 9298.42 19690.89 15699.77 11997.80 11670.76 35598.72 203
Anonymous2024052992.10 23790.65 24896.47 18498.82 13090.61 27698.72 27698.67 6775.54 36393.90 20198.58 18366.23 34199.90 8494.70 18090.67 22798.90 194
PVSNet_Blended_VisFu97.27 9196.81 9698.66 8798.81 13196.67 11599.92 7198.64 7094.51 10596.38 16498.49 18989.05 18199.88 9497.10 13798.34 13499.43 155
PS-MVSNAJ98.44 3898.20 4399.16 5298.80 13298.92 2799.54 18198.17 17597.34 2499.85 799.85 3091.20 14599.89 8899.41 4299.67 8598.69 204
CANet_DTU96.76 10996.15 11498.60 9198.78 13397.53 8399.84 11297.63 22097.25 3199.20 7499.64 9381.36 24499.98 4392.77 22098.89 12398.28 210
mvsany_test197.82 6997.90 6397.55 14898.77 13493.04 22399.80 12697.93 19896.95 3899.61 4799.68 8890.92 15399.83 10999.18 4898.29 13999.80 92
alignmvs97.81 7097.33 8099.25 4298.77 13498.66 4899.99 498.44 11194.40 11298.41 11099.47 10793.65 9299.42 15398.57 8394.26 21099.67 109
SteuartSystems-ACMMP99.02 1298.97 1399.18 4798.72 13697.71 7699.98 1298.44 11196.85 3999.80 1599.91 1497.57 899.85 10099.44 4099.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5497.97 5699.02 6798.69 13798.66 4899.52 18398.08 18697.05 3499.86 599.86 2690.65 15899.71 12999.39 4498.63 12998.69 204
miper_enhance_ethall94.36 18593.98 17795.49 20998.68 13895.24 16999.73 14897.29 25993.28 15789.86 24695.97 27094.37 7197.05 28292.20 22484.45 28694.19 270
test250697.53 8097.19 8498.58 9498.66 13996.90 11098.81 26999.77 594.93 9097.95 12598.96 15292.51 12399.20 15794.93 17098.15 14199.64 115
ECVR-MVScopyleft95.66 15095.05 15597.51 15198.66 13993.71 20698.85 26698.45 10794.93 9096.86 14998.96 15275.22 30299.20 15795.34 16298.15 14199.64 115
test111195.57 15294.98 15897.37 15998.56 14193.37 21798.86 26498.45 10794.95 8996.63 15598.95 15775.21 30399.11 16295.02 16898.14 14399.64 115
MVSTER95.53 15395.22 14996.45 18698.56 14197.72 7599.91 7597.67 21892.38 19491.39 22697.14 23097.24 1897.30 26594.80 17687.85 25994.34 261
VDD-MVS93.77 19792.94 20596.27 19498.55 14390.22 28498.77 27397.79 21290.85 23896.82 15199.42 11161.18 35899.77 11998.95 5894.13 21198.82 197
tpmvs94.28 18793.57 18996.40 18998.55 14391.50 26395.70 35498.55 8887.47 29292.15 22194.26 32991.42 14198.95 16888.15 27995.85 19098.76 200
UGNet95.33 15894.57 16597.62 14798.55 14394.85 17998.67 28299.32 2595.75 7296.80 15296.27 26172.18 31699.96 5794.58 18399.05 12198.04 215
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 15994.10 17498.43 10898.55 14395.99 14197.91 31597.31 25790.35 24689.48 25799.22 12985.19 21699.89 8890.40 25698.47 13299.41 157
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192095.44 15595.31 14695.82 20498.50 14788.74 30399.98 1297.30 25897.84 1299.85 799.19 13166.82 33999.97 5398.82 6899.46 10398.76 200
BH-w/o95.71 14795.38 14496.68 18098.49 14892.28 24099.84 11297.50 23992.12 20092.06 22298.79 17284.69 21998.67 18695.29 16499.66 8699.09 187
baseline195.78 14494.86 16098.54 9998.47 14998.07 6499.06 23997.99 19192.68 17794.13 19898.62 18093.28 10198.69 18493.79 20285.76 27498.84 196
iter_conf0596.07 13595.95 12696.44 18898.43 15097.52 8499.91 7596.85 30594.16 12292.49 21997.98 20898.20 497.34 26097.26 13288.29 25294.45 251
EPMVS96.53 12096.01 11798.09 12398.43 15096.12 14096.36 34199.43 2093.53 14997.64 13295.04 30794.41 6698.38 20991.13 23798.11 14499.75 99
iter_conf_final96.01 13895.93 12896.28 19398.38 15297.03 10499.87 9297.03 28594.05 13192.61 21597.98 20898.01 597.34 26097.02 13988.39 25194.47 245
sss97.57 7997.03 9199.18 4798.37 15398.04 6699.73 14899.38 2293.46 15198.76 9499.06 13991.21 14499.89 8896.33 15097.01 17099.62 120
BH-untuned95.18 15994.83 16196.22 19598.36 15491.22 26699.80 12697.32 25690.91 23691.08 22998.67 17683.51 22898.54 19294.23 19099.61 9298.92 191
ET-MVSNet_ETH3D94.37 18393.28 20097.64 14598.30 15597.99 6899.99 497.61 22594.35 11371.57 36699.45 11096.23 3195.34 33996.91 14585.14 28199.59 126
AUN-MVS93.28 20992.60 21395.34 21698.29 15690.09 28799.31 21298.56 8291.80 21296.35 16598.00 20589.38 17498.28 21992.46 22169.22 36097.64 222
FMVSNet392.69 22591.58 23495.99 19998.29 15697.42 9299.26 22097.62 22289.80 25589.68 25095.32 29781.62 24296.27 31987.01 29585.65 27594.29 263
PMMVS96.76 10996.76 9896.76 17798.28 15892.10 24499.91 7597.98 19394.12 12499.53 5299.39 11586.93 20098.73 17996.95 14397.73 15199.45 152
hse-mvs294.38 18294.08 17595.31 21898.27 15990.02 28999.29 21798.56 8295.90 6798.77 9298.00 20590.89 15698.26 22397.80 11669.20 36197.64 222
PVSNet_088.03 1991.80 24490.27 25696.38 19198.27 15990.46 28099.94 6299.61 1393.99 13386.26 31297.39 22571.13 32399.89 8898.77 7167.05 36698.79 199
UA-Net96.54 11995.96 12498.27 11598.23 16195.71 15198.00 31398.45 10793.72 14598.41 11099.27 12388.71 18699.66 13791.19 23697.69 15299.44 154
test_cas_vis1_n_192096.59 11896.23 11297.65 14498.22 16294.23 19399.99 497.25 26397.77 1399.58 4899.08 13777.10 27999.97 5397.64 12499.45 10498.74 202
FE-MVS95.70 14995.01 15797.79 13698.21 16394.57 18595.03 35598.69 6288.90 27197.50 13696.19 26392.60 12099.49 14989.99 26197.94 15099.31 169
GG-mvs-BLEND98.54 9998.21 16398.01 6793.87 36098.52 9497.92 12697.92 21199.02 297.94 24198.17 9799.58 9499.67 109
mvs_anonymous95.65 15195.03 15697.53 14998.19 16595.74 14999.33 20997.49 24090.87 23790.47 23697.10 23288.23 18897.16 27395.92 15797.66 15499.68 107
MVS_Test96.46 12295.74 13598.61 9098.18 16697.23 9699.31 21297.15 27291.07 23398.84 8897.05 23688.17 18998.97 16694.39 18597.50 15699.61 123
BH-RMVSNet95.18 15994.31 17197.80 13498.17 16795.23 17099.76 13797.53 23592.52 18894.27 19699.25 12776.84 28498.80 17390.89 24599.54 9699.35 164
RPSCF91.80 24492.79 21088.83 33298.15 16869.87 36898.11 30996.60 32083.93 33294.33 19599.27 12379.60 26299.46 15291.99 22693.16 22197.18 229
ETV-MVS97.92 6397.80 6698.25 11698.14 16996.48 12099.98 1297.63 22095.61 7599.29 7299.46 10992.55 12298.82 17299.02 5798.54 13099.46 150
IS-MVSNet96.29 13195.90 13197.45 15398.13 17094.80 18299.08 23497.61 22592.02 20595.54 18198.96 15290.64 15998.08 23093.73 20597.41 16099.47 149
test_fmvsmconf_n98.43 4098.32 3798.78 7998.12 17196.41 12399.99 498.83 5398.22 399.67 3599.64 9391.11 14999.94 7299.67 3399.62 8899.98 48
ab-mvs94.69 17293.42 19498.51 10298.07 17296.26 13096.49 33998.68 6490.31 24794.54 19097.00 23876.30 29199.71 12995.98 15693.38 21999.56 134
XVG-OURS-SEG-HR94.79 16894.70 16495.08 22498.05 17389.19 29899.08 23497.54 23393.66 14694.87 18899.58 9978.78 26999.79 11497.31 13093.40 21896.25 233
EIA-MVS97.53 8097.46 7597.76 14098.04 17494.84 18099.98 1297.61 22594.41 11197.90 12799.59 9792.40 12698.87 17098.04 10599.13 11999.59 126
XVG-OURS94.82 16694.74 16395.06 22598.00 17589.19 29899.08 23497.55 23194.10 12594.71 18999.62 9580.51 25599.74 12596.04 15593.06 22396.25 233
dp95.05 16294.43 16796.91 17297.99 17692.73 23096.29 34497.98 19389.70 25695.93 17394.67 32093.83 8998.45 19886.91 29896.53 17799.54 138
tpmrst96.27 13395.98 12097.13 16797.96 17793.15 21996.34 34298.17 17592.07 20198.71 9895.12 30593.91 8598.73 17994.91 17396.62 17599.50 146
TR-MVS94.54 17793.56 19097.49 15297.96 17794.34 19198.71 27797.51 23890.30 24894.51 19298.69 17575.56 29798.77 17692.82 21995.99 18699.35 164
Vis-MVSNet (Re-imp)96.32 12895.98 12097.35 16297.93 17994.82 18199.47 19298.15 18191.83 20995.09 18699.11 13591.37 14397.47 25693.47 20897.43 15799.74 100
MDTV_nov1_ep1395.69 13697.90 18094.15 19495.98 35098.44 11193.12 16197.98 12495.74 27495.10 5098.58 18990.02 26096.92 172
Fast-Effi-MVS+95.02 16394.19 17297.52 15097.88 18194.55 18699.97 2297.08 28088.85 27394.47 19397.96 21084.59 22098.41 20189.84 26397.10 16599.59 126
ADS-MVSNet293.80 19693.88 18193.55 28697.87 18285.94 32794.24 35696.84 30690.07 25096.43 16194.48 32590.29 16495.37 33887.44 28697.23 16299.36 162
ADS-MVSNet94.79 16894.02 17697.11 16997.87 18293.79 20394.24 35698.16 17990.07 25096.43 16194.48 32590.29 16498.19 22687.44 28697.23 16299.36 162
Effi-MVS+96.30 13095.69 13698.16 11897.85 18496.26 13097.41 32297.21 26590.37 24598.65 10198.58 18386.61 20398.70 18397.11 13697.37 16199.52 142
PatchmatchNetpermissive95.94 14095.45 14197.39 15897.83 18594.41 19096.05 34898.40 13892.86 16597.09 14395.28 30294.21 7898.07 23289.26 26798.11 14499.70 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 17593.61 18597.74 14297.82 18696.26 13099.96 2997.78 21385.76 31594.00 19997.54 21976.95 28399.21 15697.23 13395.43 19997.76 221
1112_ss96.01 13895.20 15098.42 10997.80 18796.41 12399.65 16196.66 31792.71 17492.88 21299.40 11392.16 13199.30 15491.92 22893.66 21599.55 135
Test_1112_low_res95.72 14594.83 16198.42 10997.79 18896.41 12399.65 16196.65 31892.70 17592.86 21396.13 26692.15 13299.30 15491.88 22993.64 21699.55 135
Effi-MVS+-dtu94.53 17995.30 14792.22 30597.77 18982.54 34499.59 17197.06 28294.92 9295.29 18495.37 29585.81 20997.89 24294.80 17697.07 16696.23 235
tpm cat193.51 20592.52 21896.47 18497.77 18991.47 26496.13 34698.06 18780.98 34892.91 21193.78 33389.66 16998.87 17087.03 29496.39 18099.09 187
FA-MVS(test-final)95.86 14195.09 15498.15 12197.74 19195.62 15596.31 34398.17 17591.42 22496.26 16696.13 26690.56 16099.47 15192.18 22597.07 16699.35 164
xiu_mvs_v1_base_debu97.43 8297.06 8798.55 9697.74 19198.14 6199.31 21297.86 20796.43 5499.62 4199.69 8485.56 21199.68 13399.05 5298.31 13697.83 217
xiu_mvs_v1_base97.43 8297.06 8798.55 9697.74 19198.14 6199.31 21297.86 20796.43 5499.62 4199.69 8485.56 21199.68 13399.05 5298.31 13697.83 217
xiu_mvs_v1_base_debi97.43 8297.06 8798.55 9697.74 19198.14 6199.31 21297.86 20796.43 5499.62 4199.69 8485.56 21199.68 13399.05 5298.31 13697.83 217
EPP-MVSNet96.69 11496.60 10296.96 17197.74 19193.05 22299.37 20598.56 8288.75 27495.83 17699.01 14396.01 3298.56 19096.92 14497.20 16499.25 176
gg-mvs-nofinetune93.51 20591.86 23198.47 10497.72 19697.96 7192.62 36498.51 9774.70 36697.33 13969.59 37998.91 397.79 24597.77 12199.56 9599.67 109
IB-MVS92.85 694.99 16493.94 17998.16 11897.72 19695.69 15399.99 498.81 5494.28 11892.70 21496.90 24095.08 5199.17 16096.07 15473.88 35099.60 125
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 8797.02 9298.59 9397.71 19897.52 8499.97 2298.54 9191.83 20997.45 13799.04 14097.50 999.10 16394.75 17896.37 18199.16 181
test_fmvs1_n94.25 18894.36 16893.92 27297.68 19983.70 33999.90 8096.57 32197.40 2399.67 3598.88 16361.82 35599.92 8198.23 9599.13 11998.14 214
diffmvspermissive97.00 9996.64 10198.09 12397.64 20096.17 13799.81 12297.19 26694.67 10298.95 8499.28 12086.43 20498.76 17798.37 9097.42 15999.33 167
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 14595.15 15297.45 15397.62 20194.28 19299.28 21898.24 16794.27 12096.84 15098.94 15979.39 26398.76 17793.25 21098.49 13199.30 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 9696.72 9998.22 11797.60 20296.70 11499.92 7198.54 9191.11 23297.07 14498.97 15097.47 1299.03 16493.73 20596.09 18498.92 191
miper_ehance_all_eth93.16 21292.60 21394.82 23597.57 20393.56 20999.50 18797.07 28188.75 27488.85 27395.52 28590.97 15296.74 30190.77 24784.45 28694.17 271
LCM-MVSNet-Re92.31 23392.60 21391.43 31297.53 20479.27 36199.02 24791.83 37592.07 20180.31 34194.38 32883.50 22995.48 33697.22 13497.58 15599.54 138
GBi-Net90.88 26089.82 26594.08 26497.53 20491.97 24598.43 29396.95 29487.05 29889.68 25094.72 31671.34 32096.11 32487.01 29585.65 27594.17 271
test190.88 26089.82 26594.08 26497.53 20491.97 24598.43 29396.95 29487.05 29889.68 25094.72 31671.34 32096.11 32487.01 29585.65 27594.17 271
FMVSNet291.02 25789.56 27095.41 21497.53 20495.74 14998.98 24997.41 24887.05 29888.43 28195.00 31071.34 32096.24 32185.12 30785.21 28094.25 266
tttt051796.85 10496.49 10697.92 12997.48 20895.89 14499.85 10898.54 9190.72 24196.63 15598.93 16197.47 1299.02 16593.03 21795.76 19398.85 195
casdiffmvs_mvgpermissive96.43 12395.94 12797.89 13397.44 20995.47 15899.86 10597.29 25993.35 15396.03 17099.19 13185.39 21498.72 18197.89 11597.04 16899.49 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 8997.24 8297.80 13497.41 21095.64 15499.99 497.06 28294.59 10399.63 3999.32 11989.20 18098.14 22798.76 7299.23 11599.62 120
c3_l92.53 22891.87 23094.52 24797.40 21192.99 22499.40 19896.93 29987.86 28888.69 27695.44 28989.95 16796.44 31290.45 25380.69 31794.14 280
CDS-MVSNet96.34 12796.07 11597.13 16797.37 21294.96 17799.53 18297.91 20291.55 21795.37 18398.32 19895.05 5397.13 27693.80 20195.75 19499.30 171
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 11196.26 11198.16 11897.36 21396.48 12099.96 2998.29 16291.93 20695.77 17798.07 20395.54 4298.29 21790.55 25198.89 12399.70 104
miper_lstm_enhance91.81 24191.39 24093.06 29797.34 21489.18 30099.38 20396.79 31186.70 30587.47 29495.22 30390.00 16695.86 33388.26 27781.37 30794.15 277
baseline96.43 12395.98 12097.76 14097.34 21495.17 17499.51 18597.17 26993.92 13896.90 14899.28 12085.37 21598.64 18797.50 12796.86 17499.46 150
cl____92.31 23391.58 23494.52 24797.33 21692.77 22699.57 17596.78 31286.97 30287.56 29295.51 28689.43 17396.62 30688.60 27282.44 29994.16 276
DIV-MVS_self_test92.32 23291.60 23394.47 25197.31 21792.74 22899.58 17396.75 31386.99 30187.64 29095.54 28389.55 17296.50 31088.58 27382.44 29994.17 271
casdiffmvspermissive96.42 12595.97 12397.77 13997.30 21894.98 17699.84 11297.09 27993.75 14496.58 15799.26 12685.07 21798.78 17597.77 12197.04 16899.54 138
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 18593.48 19296.99 17097.29 21993.54 21099.96 2996.72 31588.35 28393.43 20398.94 15982.05 23698.05 23388.12 28196.48 17999.37 161
eth_miper_zixun_eth92.41 23191.93 22893.84 27697.28 22090.68 27498.83 26796.97 29388.57 27989.19 26795.73 27689.24 17996.69 30489.97 26281.55 30594.15 277
MVSFormer96.94 10196.60 10297.95 12797.28 22097.70 7899.55 17997.27 26191.17 22999.43 6099.54 10390.92 15396.89 29494.67 18199.62 8899.25 176
lupinMVS97.85 6697.60 7198.62 8997.28 22097.70 7899.99 497.55 23195.50 8099.43 6099.67 8990.92 15398.71 18298.40 8899.62 8899.45 152
SCA94.69 17293.81 18397.33 16397.10 22394.44 18798.86 26498.32 15693.30 15696.17 16995.59 28176.48 28997.95 23991.06 23997.43 15799.59 126
TAMVS95.85 14295.58 13996.65 18297.07 22493.50 21199.17 22797.82 21191.39 22695.02 18798.01 20492.20 13097.30 26593.75 20495.83 19199.14 184
Fast-Effi-MVS+-dtu93.72 20093.86 18293.29 29097.06 22586.16 32599.80 12696.83 30792.66 17892.58 21697.83 21481.39 24397.67 25089.75 26496.87 17396.05 237
CostFormer96.10 13495.88 13296.78 17697.03 22692.55 23697.08 33097.83 21090.04 25298.72 9794.89 31495.01 5598.29 21796.54 14995.77 19299.50 146
test_fmvsmvis_n_192097.67 7797.59 7397.91 13197.02 22795.34 16499.95 4698.45 10797.87 1197.02 14599.59 9789.64 17099.98 4399.41 4299.34 11198.42 207
test-LLR96.47 12196.04 11697.78 13797.02 22795.44 15999.96 2998.21 17094.07 12795.55 17996.38 25793.90 8698.27 22190.42 25498.83 12599.64 115
test-mter96.39 12695.93 12897.78 13797.02 22795.44 15999.96 2998.21 17091.81 21195.55 17996.38 25795.17 4898.27 22190.42 25498.83 12599.64 115
gm-plane-assit96.97 23093.76 20591.47 22098.96 15298.79 17494.92 171
QAPM95.40 15694.17 17399.10 6196.92 23197.71 7699.40 19898.68 6489.31 25988.94 27198.89 16282.48 23499.96 5793.12 21699.83 7299.62 120
KD-MVS_2432*160088.00 30186.10 30593.70 28296.91 23294.04 19797.17 32797.12 27584.93 32581.96 33292.41 34492.48 12494.51 34979.23 33752.68 37892.56 334
miper_refine_blended88.00 30186.10 30593.70 28296.91 23294.04 19797.17 32797.12 27584.93 32581.96 33292.41 34492.48 12494.51 34979.23 33752.68 37892.56 334
tpm295.47 15495.18 15196.35 19296.91 23291.70 25896.96 33397.93 19888.04 28798.44 10995.40 29193.32 9897.97 23694.00 19295.61 19699.38 159
FMVSNet588.32 29887.47 30090.88 31596.90 23588.39 31197.28 32495.68 34182.60 34284.67 32192.40 34679.83 26191.16 36776.39 35181.51 30693.09 326
3Dnovator+91.53 1196.31 12995.24 14899.52 2796.88 23698.64 5199.72 15198.24 16795.27 8588.42 28398.98 14882.76 23399.94 7297.10 13799.83 7299.96 62
Patchmatch-test92.65 22791.50 23796.10 19896.85 23790.49 27991.50 36997.19 26682.76 34190.23 23895.59 28195.02 5498.00 23577.41 34696.98 17199.82 89
MVS96.60 11795.56 14099.72 1296.85 23799.22 1998.31 29998.94 3891.57 21690.90 23299.61 9686.66 20299.96 5797.36 12999.88 6899.99 23
3Dnovator91.47 1296.28 13295.34 14599.08 6296.82 23997.47 9099.45 19598.81 5495.52 7989.39 25899.00 14581.97 23799.95 6497.27 13199.83 7299.84 87
EI-MVSNet93.73 19993.40 19794.74 23696.80 24092.69 23199.06 23997.67 21888.96 26891.39 22699.02 14188.75 18597.30 26591.07 23887.85 25994.22 267
CVMVSNet94.68 17494.94 15993.89 27596.80 24086.92 32399.06 23998.98 3694.45 10694.23 19799.02 14185.60 21095.31 34090.91 24495.39 20099.43 155
IterMVS-LS92.69 22592.11 22394.43 25596.80 24092.74 22899.45 19596.89 30288.98 26689.65 25395.38 29488.77 18496.34 31690.98 24282.04 30294.22 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 25990.17 26093.12 29496.78 24390.42 28298.89 25897.05 28489.03 26386.49 30795.42 29076.59 28795.02 34287.22 29184.09 28993.93 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 10595.96 12499.48 3396.74 24498.52 5598.31 29998.86 4995.82 6989.91 24498.98 14887.49 19399.96 5797.80 11699.73 8299.96 62
IterMVS-SCA-FT90.85 26290.16 26192.93 29896.72 24589.96 29098.89 25896.99 28988.95 26986.63 30495.67 27776.48 28995.00 34387.04 29384.04 29293.84 305
MVS-HIRNet86.22 30883.19 32195.31 21896.71 24690.29 28392.12 36697.33 25562.85 37386.82 30170.37 37869.37 32897.49 25575.12 35397.99 14998.15 212
VDDNet93.12 21491.91 22996.76 17796.67 24792.65 23498.69 28098.21 17082.81 34097.75 13199.28 12061.57 35699.48 15098.09 10394.09 21298.15 212
dmvs_re93.20 21193.15 20293.34 28896.54 24883.81 33898.71 27798.51 9791.39 22692.37 22098.56 18578.66 27197.83 24493.89 19589.74 22898.38 208
MIMVSNet90.30 27588.67 28895.17 22396.45 24991.64 26092.39 36597.15 27285.99 31290.50 23593.19 34066.95 33894.86 34682.01 32693.43 21799.01 190
CR-MVSNet93.45 20892.62 21295.94 20096.29 25092.66 23292.01 36796.23 33092.62 18096.94 14693.31 33891.04 15096.03 32979.23 33795.96 18799.13 185
RPMNet89.76 28687.28 30197.19 16696.29 25092.66 23292.01 36798.31 15870.19 37296.94 14685.87 37187.25 19699.78 11662.69 37295.96 18799.13 185
tt080591.28 25290.18 25994.60 24296.26 25287.55 31798.39 29798.72 5989.00 26589.22 26498.47 19362.98 35298.96 16790.57 25088.00 25897.28 228
Patchmtry89.70 28788.49 29093.33 28996.24 25389.94 29391.37 37096.23 33078.22 35687.69 28993.31 33891.04 15096.03 32980.18 33682.10 30194.02 288
test_vis1_rt86.87 30686.05 30889.34 32896.12 25478.07 36299.87 9283.54 38692.03 20478.21 35189.51 35745.80 37299.91 8296.25 15293.11 22290.03 357
JIA-IIPM91.76 24790.70 24794.94 22996.11 25587.51 31893.16 36398.13 18375.79 36297.58 13377.68 37692.84 11297.97 23688.47 27696.54 17699.33 167
OpenMVScopyleft90.15 1594.77 17093.59 18898.33 11396.07 25697.48 8999.56 17798.57 8090.46 24386.51 30698.95 15778.57 27299.94 7293.86 19699.74 8197.57 226
PAPM98.60 2798.42 2899.14 5696.05 25798.96 2599.90 8099.35 2496.68 4898.35 11499.66 9196.45 2998.51 19399.45 3999.89 6699.96 62
CLD-MVS94.06 19193.90 18094.55 24696.02 25890.69 27399.98 1297.72 21496.62 5191.05 23198.85 17177.21 27898.47 19498.11 10189.51 23494.48 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 27288.75 28795.25 22095.99 25990.16 28591.22 37197.54 23376.80 35897.26 14086.01 37091.88 13796.07 32866.16 36995.91 18999.51 144
ACMH+89.98 1690.35 27389.54 27192.78 30195.99 25986.12 32698.81 26997.18 26889.38 25883.14 32897.76 21668.42 33398.43 19989.11 26886.05 27393.78 308
DeepMVS_CXcopyleft82.92 34895.98 26158.66 37896.01 33592.72 17378.34 35095.51 28658.29 36198.08 23082.57 32285.29 27892.03 342
ACMP92.05 992.74 22292.42 22093.73 27895.91 26288.72 30499.81 12297.53 23594.13 12387.00 30098.23 19974.07 31098.47 19496.22 15388.86 24193.99 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 20393.03 20495.35 21595.86 26386.94 32299.87 9296.36 32896.85 3999.54 5198.79 17252.41 36899.83 10998.64 8098.97 12299.29 173
HQP-NCC95.78 26499.87 9296.82 4193.37 204
ACMP_Plane95.78 26499.87 9296.82 4193.37 204
HQP-MVS94.61 17694.50 16694.92 23095.78 26491.85 25099.87 9297.89 20396.82 4193.37 20498.65 17780.65 25398.39 20597.92 11289.60 22994.53 240
NP-MVS95.77 26791.79 25298.65 177
plane_prior695.76 26891.72 25780.47 257
ACMM91.95 1092.88 21992.52 21893.98 27195.75 26989.08 30199.77 13297.52 23793.00 16389.95 24397.99 20776.17 29398.46 19793.63 20788.87 24094.39 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 19392.84 20796.80 17595.73 27093.57 20899.88 8997.24 26492.57 18592.92 21096.66 24978.73 27097.67 25087.75 28494.06 21399.17 180
plane_prior195.73 270
jason97.24 9296.86 9498.38 11295.73 27097.32 9499.97 2297.40 24995.34 8398.60 10499.54 10387.70 19198.56 19097.94 11199.47 10199.25 176
jason: jason.
HQP_MVS94.49 18094.36 16894.87 23195.71 27391.74 25499.84 11297.87 20596.38 5793.01 20898.59 18180.47 25798.37 21197.79 11989.55 23294.52 242
plane_prior795.71 27391.59 262
ITE_SJBPF92.38 30395.69 27585.14 33195.71 34092.81 16989.33 26198.11 20170.23 32698.42 20085.91 30388.16 25593.59 316
ACMH89.72 1790.64 26689.63 26893.66 28495.64 27688.64 30798.55 28697.45 24289.03 26381.62 33597.61 21869.75 32798.41 20189.37 26587.62 26493.92 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 11396.49 10697.37 15995.63 27795.96 14299.74 14398.88 4792.94 16491.61 22498.97 15097.72 798.62 18894.83 17598.08 14797.53 227
FMVSNet188.50 29786.64 30394.08 26495.62 27891.97 24598.43 29396.95 29483.00 33886.08 31494.72 31659.09 36096.11 32481.82 32884.07 29094.17 271
LPG-MVS_test92.96 21792.71 21193.71 28095.43 27988.67 30599.75 14097.62 22292.81 16990.05 23998.49 18975.24 30098.40 20395.84 15989.12 23694.07 285
LGP-MVS_train93.71 28095.43 27988.67 30597.62 22292.81 16990.05 23998.49 18975.24 30098.40 20395.84 15989.12 23694.07 285
tpm93.70 20193.41 19694.58 24495.36 28187.41 31997.01 33196.90 30190.85 23896.72 15494.14 33090.40 16296.84 29790.75 24888.54 24899.51 144
D2MVS92.76 22192.59 21693.27 29195.13 28289.54 29799.69 15499.38 2292.26 19787.59 29194.61 32285.05 21897.79 24591.59 23288.01 25792.47 337
VPA-MVSNet92.70 22491.55 23696.16 19695.09 28396.20 13598.88 26099.00 3491.02 23591.82 22395.29 30176.05 29597.96 23895.62 16181.19 30894.30 262
LTVRE_ROB88.28 1890.29 27689.05 28294.02 26795.08 28490.15 28697.19 32697.43 24484.91 32783.99 32497.06 23574.00 31198.28 21984.08 31287.71 26293.62 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 30386.51 30491.94 30895.05 28585.57 32997.65 31994.08 36384.40 33081.82 33496.85 24462.14 35498.33 21480.25 33586.37 27291.91 344
test0.0.03 193.86 19293.61 18594.64 24095.02 28692.18 24399.93 6898.58 7894.07 12787.96 28798.50 18893.90 8694.96 34481.33 32993.17 22096.78 230
UniMVSNet (Re)93.07 21692.13 22295.88 20194.84 28796.24 13499.88 8998.98 3692.49 19089.25 26295.40 29187.09 19897.14 27593.13 21578.16 33194.26 264
USDC90.00 28388.96 28393.10 29694.81 28888.16 31398.71 27795.54 34593.66 14683.75 32697.20 22965.58 34398.31 21683.96 31587.49 26692.85 331
VPNet91.81 24190.46 25095.85 20394.74 28995.54 15798.98 24998.59 7792.14 19990.77 23497.44 22268.73 33197.54 25494.89 17477.89 33394.46 246
FIs94.10 18993.43 19396.11 19794.70 29096.82 11299.58 17398.93 4292.54 18689.34 26097.31 22687.62 19297.10 27994.22 19186.58 27094.40 253
UniMVSNet_ETH3D90.06 28288.58 28994.49 25094.67 29188.09 31497.81 31897.57 23083.91 33388.44 27997.41 22357.44 36297.62 25291.41 23388.59 24797.77 220
UniMVSNet_NR-MVSNet92.95 21892.11 22395.49 20994.61 29295.28 16799.83 11899.08 3191.49 21889.21 26596.86 24387.14 19796.73 30293.20 21177.52 33694.46 246
test_fmvs289.47 29089.70 26788.77 33594.54 29375.74 36399.83 11894.70 35994.71 9991.08 22996.82 24854.46 36597.78 24792.87 21888.27 25392.80 332
WR-MVS92.31 23391.25 24195.48 21294.45 29495.29 16699.60 17098.68 6490.10 24988.07 28696.89 24180.68 25296.80 30093.14 21479.67 32494.36 257
nrg03093.51 20592.53 21796.45 18694.36 29597.20 9799.81 12297.16 27191.60 21589.86 24697.46 22186.37 20597.68 24995.88 15880.31 32094.46 246
tfpnnormal89.29 29387.61 29994.34 25894.35 29694.13 19598.95 25398.94 3883.94 33184.47 32295.51 28674.84 30597.39 25777.05 34980.41 31891.48 347
FC-MVSNet-test93.81 19593.15 20295.80 20594.30 29796.20 13599.42 19798.89 4592.33 19689.03 27097.27 22887.39 19596.83 29893.20 21186.48 27194.36 257
MS-PatchMatch90.65 26590.30 25591.71 31194.22 29885.50 33098.24 30297.70 21588.67 27686.42 30996.37 25967.82 33598.03 23483.62 31799.62 8891.60 345
WR-MVS_H91.30 25090.35 25394.15 26194.17 29992.62 23599.17 22798.94 3888.87 27286.48 30894.46 32784.36 22296.61 30788.19 27878.51 32993.21 325
DU-MVS92.46 23091.45 23995.49 20994.05 30095.28 16799.81 12298.74 5892.25 19889.21 26596.64 25181.66 24096.73 30293.20 21177.52 33694.46 246
NR-MVSNet91.56 24990.22 25795.60 20794.05 30095.76 14898.25 30198.70 6191.16 23180.78 34096.64 25183.23 23296.57 30891.41 23377.73 33594.46 246
CP-MVSNet91.23 25490.22 25794.26 25993.96 30292.39 23999.09 23298.57 8088.95 26986.42 30996.57 25479.19 26696.37 31490.29 25778.95 32694.02 288
XXY-MVS91.82 24090.46 25095.88 20193.91 30395.40 16398.87 26397.69 21688.63 27887.87 28897.08 23374.38 30997.89 24291.66 23184.07 29094.35 260
PS-CasMVS90.63 26789.51 27393.99 27093.83 30491.70 25898.98 24998.52 9488.48 28086.15 31396.53 25675.46 29896.31 31888.83 27078.86 32893.95 296
test_040285.58 31083.94 31590.50 31993.81 30585.04 33298.55 28695.20 35376.01 36079.72 34595.13 30464.15 34996.26 32066.04 37086.88 26990.21 356
XVG-ACMP-BASELINE91.22 25590.75 24692.63 30293.73 30685.61 32898.52 29097.44 24392.77 17289.90 24596.85 24466.64 34098.39 20592.29 22388.61 24593.89 301
TranMVSNet+NR-MVSNet91.68 24890.61 24994.87 23193.69 30793.98 20099.69 15498.65 6891.03 23488.44 27996.83 24780.05 26096.18 32290.26 25876.89 34494.45 251
mvsmamba94.10 18993.72 18495.25 22093.57 30894.13 19599.67 15896.45 32693.63 14891.34 22897.77 21586.29 20697.22 27196.65 14888.10 25694.40 253
TransMVSNet (Re)87.25 30485.28 31193.16 29393.56 30991.03 26798.54 28894.05 36583.69 33581.09 33896.16 26475.32 29996.40 31376.69 35068.41 36292.06 341
v1090.25 27788.82 28594.57 24593.53 31093.43 21499.08 23496.87 30485.00 32487.34 29894.51 32380.93 24997.02 28982.85 32179.23 32593.26 323
testgi89.01 29588.04 29691.90 30993.49 31184.89 33499.73 14895.66 34293.89 14185.14 31998.17 20059.68 35994.66 34877.73 34588.88 23996.16 236
v890.54 26989.17 27894.66 23993.43 31293.40 21699.20 22496.94 29885.76 31587.56 29294.51 32381.96 23897.19 27284.94 30978.25 33093.38 321
V4291.28 25290.12 26294.74 23693.42 31393.46 21299.68 15697.02 28687.36 29489.85 24895.05 30681.31 24597.34 26087.34 28980.07 32293.40 319
pm-mvs189.36 29287.81 29894.01 26893.40 31491.93 24898.62 28596.48 32586.25 31083.86 32596.14 26573.68 31297.04 28486.16 30175.73 34893.04 328
RRT_MVS93.14 21392.92 20693.78 27793.31 31590.04 28899.66 15997.69 21692.53 18788.91 27297.76 21684.36 22296.93 29295.10 16686.99 26894.37 256
v114491.09 25689.83 26494.87 23193.25 31693.69 20799.62 16896.98 29186.83 30489.64 25494.99 31180.94 24897.05 28285.08 30881.16 30993.87 303
v119290.62 26889.25 27794.72 23893.13 31793.07 22099.50 18797.02 28686.33 30989.56 25695.01 30879.22 26597.09 28182.34 32481.16 30994.01 290
v2v48291.30 25090.07 26395.01 22693.13 31793.79 20399.77 13297.02 28688.05 28689.25 26295.37 29580.73 25197.15 27487.28 29080.04 32394.09 284
OPM-MVS93.21 21092.80 20994.44 25393.12 31990.85 27299.77 13297.61 22596.19 6491.56 22598.65 17775.16 30498.47 19493.78 20389.39 23593.99 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 26389.52 27294.59 24393.11 32092.77 22699.56 17796.99 28986.38 30889.82 24994.95 31380.50 25697.10 27983.98 31480.41 31893.90 300
bld_raw_dy_0_6492.74 22292.03 22694.87 23193.09 32193.46 21299.12 22995.41 34792.84 16890.44 23797.54 21978.08 27697.04 28493.94 19387.77 26194.11 282
PEN-MVS90.19 27989.06 28193.57 28593.06 32290.90 27099.06 23998.47 10488.11 28585.91 31596.30 26076.67 28595.94 33287.07 29276.91 34393.89 301
v124090.20 27888.79 28694.44 25393.05 32392.27 24199.38 20396.92 30085.89 31389.36 25994.87 31577.89 27797.03 28780.66 33281.08 31294.01 290
v14890.70 26489.63 26893.92 27292.97 32490.97 26899.75 14096.89 30287.51 29188.27 28495.01 30881.67 23997.04 28487.40 28877.17 34193.75 309
v192192090.46 27089.12 27994.50 24992.96 32592.46 23799.49 18996.98 29186.10 31189.61 25595.30 29878.55 27397.03 28782.17 32580.89 31694.01 290
Baseline_NR-MVSNet90.33 27489.51 27392.81 30092.84 32689.95 29199.77 13293.94 36684.69 32989.04 26995.66 27881.66 24096.52 30990.99 24176.98 34291.97 343
test_method80.79 33079.70 33484.08 34592.83 32767.06 37099.51 18595.42 34654.34 37781.07 33993.53 33544.48 37392.22 36478.90 34177.23 34092.94 329
pmmvs492.10 23791.07 24495.18 22292.82 32894.96 17799.48 19196.83 30787.45 29388.66 27796.56 25583.78 22796.83 29889.29 26684.77 28493.75 309
LF4IMVS89.25 29488.85 28490.45 32192.81 32981.19 35498.12 30894.79 35691.44 22186.29 31197.11 23165.30 34698.11 22988.53 27585.25 27992.07 340
DTE-MVSNet89.40 29188.24 29492.88 29992.66 33089.95 29199.10 23198.22 16987.29 29585.12 32096.22 26276.27 29295.30 34183.56 31875.74 34793.41 318
EU-MVSNet90.14 28190.34 25489.54 32792.55 33181.06 35598.69 28098.04 18991.41 22586.59 30596.84 24680.83 25093.31 36086.20 30081.91 30394.26 264
APD_test181.15 32980.92 33081.86 34992.45 33259.76 37796.04 34993.61 36973.29 36977.06 35496.64 25144.28 37496.16 32372.35 35782.52 29789.67 360
our_test_390.39 27189.48 27593.12 29492.40 33389.57 29699.33 20996.35 32987.84 28985.30 31894.99 31184.14 22596.09 32780.38 33384.56 28593.71 314
ppachtmachnet_test89.58 28988.35 29293.25 29292.40 33390.44 28199.33 20996.73 31485.49 32085.90 31695.77 27381.09 24796.00 33176.00 35282.49 29893.30 322
v7n89.65 28888.29 29393.72 27992.22 33590.56 27899.07 23897.10 27785.42 32286.73 30294.72 31680.06 25997.13 27681.14 33078.12 33293.49 317
dmvs_testset83.79 32386.07 30776.94 35392.14 33648.60 38796.75 33690.27 37889.48 25778.65 34898.55 18779.25 26486.65 37666.85 36782.69 29695.57 238
PS-MVSNAJss93.64 20293.31 19994.61 24192.11 33792.19 24299.12 22997.38 25092.51 18988.45 27896.99 23991.20 14597.29 26894.36 18687.71 26294.36 257
pmmvs590.17 28089.09 28093.40 28792.10 33889.77 29499.74 14395.58 34485.88 31487.24 29995.74 27473.41 31396.48 31188.54 27483.56 29393.95 296
N_pmnet80.06 33380.78 33177.89 35291.94 33945.28 38998.80 27156.82 39278.10 35780.08 34393.33 33677.03 28095.76 33468.14 36582.81 29592.64 333
test_djsdf92.83 22092.29 22194.47 25191.90 34092.46 23799.55 17997.27 26191.17 22989.96 24296.07 26981.10 24696.89 29494.67 18188.91 23894.05 287
SixPastTwentyTwo88.73 29688.01 29790.88 31591.85 34182.24 34698.22 30595.18 35488.97 26782.26 33196.89 24171.75 31896.67 30584.00 31382.98 29493.72 313
K. test v388.05 30087.24 30290.47 32091.82 34282.23 34798.96 25297.42 24689.05 26276.93 35695.60 28068.49 33295.42 33785.87 30481.01 31493.75 309
OurMVSNet-221017-089.81 28589.48 27590.83 31791.64 34381.21 35398.17 30795.38 34991.48 21985.65 31797.31 22672.66 31497.29 26888.15 27984.83 28393.97 295
mvs_tets91.81 24191.08 24394.00 26991.63 34490.58 27798.67 28297.43 24492.43 19187.37 29797.05 23671.76 31797.32 26494.75 17888.68 24494.11 282
Gipumacopyleft66.95 34665.00 34672.79 35891.52 34567.96 36966.16 38195.15 35547.89 37958.54 37667.99 38129.74 37887.54 37550.20 37977.83 33462.87 381
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
jajsoiax91.92 23991.18 24294.15 26191.35 34690.95 26999.00 24897.42 24692.61 18187.38 29697.08 23372.46 31597.36 25894.53 18488.77 24294.13 281
MDA-MVSNet-bldmvs84.09 32181.52 32891.81 31091.32 34788.00 31698.67 28295.92 33780.22 35155.60 37993.32 33768.29 33493.60 35873.76 35476.61 34593.82 307
MVP-Stereo90.93 25890.45 25292.37 30491.25 34888.76 30298.05 31296.17 33287.27 29684.04 32395.30 29878.46 27497.27 27083.78 31699.70 8491.09 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 31283.32 32092.10 30690.96 34988.58 30899.20 22496.52 32379.70 35357.12 37892.69 34279.11 26793.86 35577.10 34877.46 33893.86 304
YYNet185.50 31383.33 31992.00 30790.89 35088.38 31299.22 22396.55 32279.60 35457.26 37792.72 34179.09 26893.78 35677.25 34777.37 33993.84 305
anonymousdsp91.79 24690.92 24594.41 25690.76 35192.93 22598.93 25597.17 26989.08 26187.46 29595.30 29878.43 27596.92 29392.38 22288.73 24393.39 320
lessismore_v090.53 31890.58 35280.90 35695.80 33877.01 35595.84 27166.15 34296.95 29083.03 32075.05 34993.74 312
EG-PatchMatch MVS85.35 31483.81 31789.99 32590.39 35381.89 34998.21 30696.09 33481.78 34574.73 36293.72 33451.56 37097.12 27879.16 34088.61 24590.96 350
EGC-MVSNET69.38 33963.76 34986.26 34290.32 35481.66 35296.24 34593.85 3670.99 3893.22 39092.33 34752.44 36792.92 36159.53 37584.90 28284.21 370
CMPMVSbinary61.59 2184.75 31785.14 31283.57 34690.32 35462.54 37396.98 33297.59 22974.33 36769.95 36896.66 24964.17 34898.32 21587.88 28388.41 25089.84 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 32082.92 32389.21 32990.03 35682.60 34396.89 33595.62 34380.59 34975.77 36189.17 35865.04 34794.79 34772.12 35881.02 31390.23 355
pmmvs685.69 30983.84 31691.26 31490.00 35784.41 33697.82 31796.15 33375.86 36181.29 33795.39 29361.21 35796.87 29683.52 31973.29 35192.50 336
DSMNet-mixed88.28 29988.24 29488.42 33789.64 35875.38 36598.06 31189.86 37985.59 31988.20 28592.14 34876.15 29491.95 36578.46 34296.05 18597.92 216
UnsupCasMVSNet_eth85.52 31183.99 31390.10 32389.36 35983.51 34096.65 33797.99 19189.14 26075.89 36093.83 33263.25 35193.92 35381.92 32767.90 36592.88 330
Anonymous2023120686.32 30785.42 31089.02 33189.11 36080.53 35999.05 24395.28 35085.43 32182.82 32993.92 33174.40 30893.44 35966.99 36681.83 30493.08 327
Anonymous2024052185.15 31583.81 31789.16 33088.32 36182.69 34298.80 27195.74 33979.72 35281.53 33690.99 35165.38 34594.16 35172.69 35681.11 31190.63 353
OpenMVS_ROBcopyleft79.82 2083.77 32481.68 32790.03 32488.30 36282.82 34198.46 29195.22 35273.92 36876.00 35991.29 35055.00 36496.94 29168.40 36488.51 24990.34 354
test20.0384.72 31883.99 31386.91 34088.19 36380.62 35898.88 26095.94 33688.36 28278.87 34694.62 32168.75 33089.11 37166.52 36875.82 34691.00 349
KD-MVS_self_test83.59 32582.06 32588.20 33886.93 36480.70 35797.21 32596.38 32782.87 33982.49 33088.97 35967.63 33692.32 36373.75 35562.30 37491.58 346
MIMVSNet182.58 32680.51 33288.78 33386.68 36584.20 33796.65 33795.41 34778.75 35578.59 34992.44 34351.88 36989.76 37065.26 37178.95 32692.38 339
CL-MVSNet_self_test84.50 31983.15 32288.53 33686.00 36681.79 35098.82 26897.35 25285.12 32383.62 32790.91 35376.66 28691.40 36669.53 36260.36 37592.40 338
UnsupCasMVSNet_bld79.97 33577.03 34088.78 33385.62 36781.98 34893.66 36197.35 25275.51 36470.79 36783.05 37348.70 37194.91 34578.31 34360.29 37689.46 363
Patchmatch-RL test86.90 30585.98 30989.67 32684.45 36875.59 36489.71 37492.43 37286.89 30377.83 35390.94 35294.22 7693.63 35787.75 28469.61 35799.79 93
pmmvs-eth3d84.03 32281.97 32690.20 32284.15 36987.09 32198.10 31094.73 35883.05 33774.10 36487.77 36565.56 34494.01 35281.08 33169.24 35989.49 362
test_fmvs379.99 33480.17 33379.45 35184.02 37062.83 37199.05 24393.49 37088.29 28480.06 34486.65 36828.09 38088.00 37288.63 27173.27 35287.54 368
PM-MVS80.47 33178.88 33685.26 34383.79 37172.22 36695.89 35291.08 37685.71 31876.56 35888.30 36136.64 37693.90 35482.39 32369.57 35889.66 361
new-patchmatchnet81.19 32879.34 33586.76 34182.86 37280.36 36097.92 31495.27 35182.09 34472.02 36586.87 36762.81 35390.74 36971.10 35963.08 37289.19 365
mvsany_test382.12 32781.14 32985.06 34481.87 37370.41 36797.09 32992.14 37391.27 22877.84 35288.73 36039.31 37595.49 33590.75 24871.24 35489.29 364
WB-MVS76.28 33777.28 33973.29 35781.18 37454.68 38197.87 31694.19 36281.30 34669.43 36990.70 35477.02 28182.06 38035.71 38468.11 36483.13 371
test_f78.40 33677.59 33880.81 35080.82 37562.48 37496.96 33393.08 37183.44 33674.57 36384.57 37227.95 38192.63 36284.15 31172.79 35387.32 369
SSC-MVS75.42 33876.40 34172.49 36180.68 37653.62 38297.42 32194.06 36480.42 35068.75 37090.14 35676.54 28881.66 38133.25 38566.34 36882.19 372
pmmvs380.27 33277.77 33787.76 33980.32 37782.43 34598.23 30491.97 37472.74 37078.75 34787.97 36457.30 36390.99 36870.31 36062.37 37389.87 358
testf168.38 34266.92 34372.78 35978.80 37850.36 38490.95 37287.35 38455.47 37558.95 37488.14 36220.64 38587.60 37357.28 37664.69 36980.39 374
APD_test268.38 34266.92 34372.78 35978.80 37850.36 38490.95 37287.35 38455.47 37558.95 37488.14 36220.64 38587.60 37357.28 37664.69 36980.39 374
ambc83.23 34777.17 38062.61 37287.38 37694.55 36176.72 35786.65 36830.16 37796.36 31584.85 31069.86 35690.73 352
test_vis3_rt68.82 34066.69 34575.21 35676.24 38160.41 37696.44 34068.71 39175.13 36550.54 38269.52 38016.42 39096.32 31780.27 33466.92 36768.89 378
TDRefinement84.76 31682.56 32491.38 31374.58 38284.80 33597.36 32394.56 36084.73 32880.21 34296.12 26863.56 35098.39 20587.92 28263.97 37190.95 351
E-PMN52.30 35052.18 35252.67 36771.51 38345.40 38893.62 36276.60 38936.01 38343.50 38464.13 38327.11 38267.31 38631.06 38626.06 38245.30 385
EMVS51.44 35251.22 35452.11 36870.71 38444.97 39094.04 35875.66 39035.34 38542.40 38561.56 38628.93 37965.87 38727.64 38724.73 38345.49 384
PMMVS267.15 34564.15 34876.14 35570.56 38562.07 37593.89 35987.52 38358.09 37460.02 37378.32 37522.38 38484.54 37859.56 37447.03 38081.80 373
FPMVS68.72 34168.72 34268.71 36365.95 38644.27 39195.97 35194.74 35751.13 37853.26 38090.50 35525.11 38383.00 37960.80 37380.97 31578.87 376
wuyk23d20.37 35620.84 35918.99 37165.34 38727.73 39350.43 3827.67 3959.50 3888.01 3896.34 3896.13 39326.24 38823.40 38810.69 3872.99 386
LCM-MVSNet67.77 34464.73 34776.87 35462.95 38856.25 38089.37 37593.74 36844.53 38061.99 37280.74 37420.42 38786.53 37769.37 36359.50 37787.84 366
MVEpermissive53.74 2251.54 35147.86 35562.60 36559.56 38950.93 38379.41 37977.69 38835.69 38436.27 38661.76 3855.79 39469.63 38437.97 38336.61 38167.24 379
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 34852.24 35167.66 36449.27 39056.82 37983.94 37782.02 38770.47 37133.28 38764.54 38217.23 38969.16 38545.59 38123.85 38477.02 377
tmp_tt65.23 34762.94 35072.13 36244.90 39150.03 38681.05 37889.42 38238.45 38148.51 38399.90 1854.09 36678.70 38391.84 23018.26 38587.64 367
PMVScopyleft49.05 2353.75 34951.34 35360.97 36640.80 39234.68 39274.82 38089.62 38137.55 38228.67 38872.12 3777.09 39281.63 38243.17 38268.21 36366.59 380
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 35439.14 35733.31 36919.94 39324.83 39498.36 2989.75 39415.53 38751.31 38187.14 36619.62 38817.74 38947.10 3803.47 38857.36 382
testmvs40.60 35344.45 35629.05 37019.49 39414.11 39599.68 15618.47 39320.74 38664.59 37198.48 19210.95 39117.09 39056.66 37811.01 38655.94 383
test_blank0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.02 3900.00 3950.00 3910.00 3890.00 3890.00 387
eth-test20.00 395
eth-test0.00 395
uanet_test0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
DCPMVS0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
cdsmvs_eth3d_5k23.43 35531.24 3580.00 3720.00 3950.00 3960.00 38398.09 1840.00 3900.00 39199.67 8983.37 2300.00 3910.00 3890.00 3890.00 387
pcd_1.5k_mvsjas7.60 35810.13 3610.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 39191.20 1450.00 3910.00 3890.00 3890.00 387
sosnet-low-res0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
sosnet0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
uncertanet0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
Regformer0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
ab-mvs-re8.28 35711.04 3600.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 39199.40 1130.00 3950.00 3910.00 3890.00 3890.00 387
uanet0.00 3590.00 3620.00 3720.00 3950.00 3960.00 3830.00 3960.00 3900.00 3910.00 3910.00 3950.00 3910.00 3890.00 3890.00 387
PC_three_145296.96 3799.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 11997.27 2899.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5299.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 126
sam_mvs194.72 6199.59 126
sam_mvs94.25 75
MTGPAbinary98.28 163
test_post195.78 35359.23 38793.20 10497.74 24891.06 239
test_post63.35 38494.43 6598.13 228
patchmatchnet-post91.70 34995.12 4997.95 239
MTMP99.87 9296.49 324
test9_res99.71 3099.99 21100.00 1
agg_prior299.48 38100.00 1100.00 1
test_prior498.05 6599.94 62
test_prior299.95 4695.78 7099.73 2999.76 6296.00 3399.78 24100.00 1
旧先验299.46 19494.21 12199.85 799.95 6496.96 142
新几何299.40 198
无先验99.49 18998.71 6093.46 151100.00 194.36 18699.99 23
原ACMM299.90 80
testdata299.99 3690.54 252
segment_acmp96.68 26
testdata199.28 21896.35 61
plane_prior597.87 20598.37 21197.79 11989.55 23294.52 242
plane_prior498.59 181
plane_prior391.64 26096.63 4993.01 208
plane_prior299.84 11296.38 57
plane_prior91.74 25499.86 10596.76 4589.59 231
n20.00 396
nn0.00 396
door-mid89.69 380
test1198.44 111
door90.31 377
HQP5-MVS91.85 250
BP-MVS97.92 112
HQP4-MVS93.37 20498.39 20594.53 240
HQP3-MVS97.89 20389.60 229
HQP2-MVS80.65 253
MDTV_nov1_ep13_2view96.26 13096.11 34791.89 20798.06 12294.40 6794.30 18899.67 109
ACMMP++_ref87.04 267
ACMMP++88.23 254
Test By Simon92.82 114