This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10196.80 10898.51 10699.99 195.60 16599.09 25198.84 5893.32 16596.74 16899.72 8186.04 222100.00 198.01 11599.43 11099.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 31100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15995.04 9798.61 11299.80 5193.39 102100.00 198.64 89100.00 199.98 48
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15499.96 3498.35 16589.90 27298.36 12299.79 5591.18 15899.99 3698.37 9999.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12392.06 21798.40 12199.84 4195.68 41100.00 198.19 10599.71 8399.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 13195.35 9198.03 13499.75 6994.03 8899.98 4398.11 11099.83 7299.99 23
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 81100.00 198.70 8499.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9894.87 10399.45 6499.85 3094.07 87100.00 198.67 86100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 97100.00 198.70 8499.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15594.43 11798.90 9499.87 2494.30 79100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 131100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6899.78 5994.34 7799.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21092.06 24399.15 5799.94 1397.50 9099.94 6898.42 14396.22 7199.41 6841.37 40794.34 7799.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 37100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8398.39 15597.20 3899.46 6399.85 3095.53 4599.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15594.70 10998.26 12899.81 5091.84 149100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10498.33 17093.97 14399.76 2899.87 2494.99 5999.75 13298.55 93100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13598.43 13194.56 11397.52 14699.70 8594.40 7299.98 4397.00 15099.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18499.44 2097.33 3199.00 9099.72 8194.03 8899.98 4398.73 83100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 13197.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 17297.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 14397.28 3299.86 799.94 497.22 19
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14397.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4098.43 13199.63 4399.85 108
FOURS199.92 3197.66 8399.95 5298.36 16395.58 8599.52 59
ZD-MVS99.92 3198.57 5498.52 10492.34 20999.31 7699.83 4395.06 5499.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15594.04 14198.80 9999.74 7692.98 117100.00 198.16 10799.76 8099.93 76
TEST999.92 3198.92 2899.96 3498.43 13193.90 14899.71 3499.86 2695.88 3899.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 13194.35 12299.71 3499.86 2695.94 3599.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 13194.35 12299.69 3699.85 3095.94 3599.85 108
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15599.50 1893.90 14899.37 7399.76 6393.24 111100.00 197.75 13399.96 4699.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24599.45 1994.84 10496.41 17899.71 8391.40 15299.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 13196.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9297.56 2599.44 6599.85 3095.38 48100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10498.36 16394.08 13599.74 3199.73 7894.08 8699.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 24098.47 11598.14 1099.08 8699.91 1493.09 114100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10498.44 12397.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 62
CSCG97.10 10697.04 9897.27 17999.89 4591.92 26599.90 9099.07 3488.67 29595.26 20099.82 4693.17 11399.98 4398.15 10899.47 10499.90 83
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12394.31 12598.50 11699.82 4693.06 11599.99 3698.30 10399.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12598.35 16594.92 10199.32 7599.80 5193.35 10499.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8398.33 17093.22 16899.78 2699.89 1994.57 6999.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11798.38 15993.19 16999.77 2799.94 495.54 43100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25899.62 4699.78 5995.30 49100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 22198.28 17995.76 8097.18 15699.88 2192.74 125100.00 198.67 8699.88 6899.99 23
LS3D95.84 15895.11 16898.02 13499.85 5495.10 18598.74 29398.50 11287.22 31693.66 21899.86 2687.45 20699.95 6990.94 25899.81 7899.02 199
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 9098.17 19192.61 19498.62 11199.57 10791.87 14899.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21798.51 10795.29 9398.51 11599.76 6393.60 10199.71 13898.53 9499.52 9999.95 71
save fliter99.82 5898.79 3899.96 3498.40 15297.66 21
PLCcopyleft95.54 397.93 6597.89 6798.05 13399.82 5894.77 19499.92 7898.46 11793.93 14697.20 15599.27 13295.44 4799.97 5397.41 13899.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13598.30 17793.95 14599.37 7399.77 6192.84 12199.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22698.50 11295.21 9598.30 12599.75 6993.29 10899.73 13798.37 9999.30 11699.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6993.28 10999.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13299.76 15298.31 17494.43 11799.40 7099.75 6992.95 11898.90 7399.92 6399.97 58
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 10198.16 19591.75 22798.94 9299.54 11091.82 15099.65 14797.62 13699.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 9098.21 18693.53 15899.81 1599.89 1994.70 6799.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4299.94 5499.99 23
OMC-MVS97.28 9897.23 9097.41 17099.76 6693.36 23499.65 18097.95 21496.03 7597.41 15099.70 8589.61 18299.51 15296.73 15998.25 14999.38 164
新几何199.42 3799.75 6898.27 6198.63 8092.69 18999.55 5499.82 4694.40 72100.00 191.21 25099.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15898.18 19093.35 16396.45 17599.85 3092.64 12799.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14798.38 15996.73 5399.88 699.74 7694.89 6199.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 15299.65 4094.76 6499.75 13299.98 3299.99 23
原ACMM198.96 7599.73 7296.99 11098.51 10794.06 13899.62 4699.85 3094.97 6099.96 6195.11 17999.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21998.07 1198.76 10399.55 10895.00 5899.94 7799.91 1597.68 16299.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10797.00 4398.52 11499.71 8387.80 20199.95 6999.75 2899.38 11299.83 91
F-COLMAP96.93 11596.95 10196.87 18999.71 7591.74 27099.85 12097.95 21493.11 17295.72 19399.16 14392.35 13799.94 7795.32 17799.35 11498.92 202
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16996.38 6599.81 1599.76 6394.59 6899.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22399.67 7786.91 34399.95 5298.89 4997.60 2299.90 399.76 6396.54 2999.98 4399.94 1199.82 7699.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 12098.37 16294.68 11099.53 5799.83 4392.87 120100.00 198.66 8899.84 7199.99 23
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28799.63 7981.76 37099.96 3498.56 9299.47 199.19 8399.99 194.16 85100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 9099.51 1797.60 2299.20 8199.36 12693.71 9899.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 17299.96 6199.89 1699.43 11099.98 48
PVSNet_BlendedMVS96.05 15195.82 14896.72 19499.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 29189.00 19399.95 6999.12 5887.53 28493.24 342
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 19399.95 6999.12 5899.25 11899.57 137
PatchMatch-RL96.04 15295.40 15797.95 13699.59 8195.22 18199.52 20299.07 3493.96 14496.49 17498.35 21482.28 25199.82 12090.15 27499.22 12198.81 209
dcpmvs_297.42 9398.09 5495.42 22899.58 8587.24 33999.23 24196.95 31394.28 12798.93 9399.73 7894.39 7599.16 17399.89 1699.82 7699.86 89
test22299.55 8697.41 9699.34 22798.55 9891.86 22299.27 8099.83 4393.84 9599.95 4999.99 23
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10498.14 19993.78 15196.55 17399.69 8792.28 13999.98 4397.13 14599.44 10899.93 76
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 17299.47 21198.87 5291.68 22898.84 9699.85 3092.34 13899.99 3698.44 9699.96 46100.00 1
PVSNet91.05 1397.13 10596.69 11398.45 11099.52 8895.81 15299.95 5299.65 1294.73 10799.04 8899.21 13984.48 23799.95 6994.92 18598.74 13699.58 136
114514_t97.41 9496.83 10699.14 5999.51 9097.83 7599.89 9898.27 18188.48 29999.06 8799.66 9690.30 17499.64 14896.32 16399.97 4299.96 64
cl2293.77 21493.25 21895.33 23299.49 9194.43 19899.61 18898.09 20190.38 26389.16 28795.61 29890.56 17097.34 27591.93 24284.45 30594.21 287
testdata98.42 11399.47 9295.33 17598.56 9293.78 15199.79 2599.85 3093.64 10099.94 7794.97 18399.94 54100.00 1
MAR-MVS97.43 8997.19 9298.15 12799.47 9294.79 19399.05 26298.76 6392.65 19298.66 10999.82 4688.52 19899.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19293.42 21197.91 14199.46 9494.04 21198.93 27497.48 25981.15 36690.04 26099.55 10887.02 21299.95 6988.97 28498.11 15399.73 105
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15399.87 10499.86 296.70 5498.78 10099.79 5592.03 14599.90 9199.17 5799.86 7099.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 31099.42 2297.03 4299.02 8999.09 14599.35 198.21 23999.73 3299.78 7999.77 101
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 9099.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12397.96 1499.55 5499.94 497.18 21100.00 193.81 21499.94 5499.98 48
TAPA-MVS92.12 894.42 19793.60 20496.90 18899.33 9891.78 26999.78 14498.00 20889.89 27394.52 20699.47 11491.97 14699.18 17169.90 38099.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6797.94 6397.70 15499.28 10095.20 18299.98 1497.15 29195.53 8799.62 4699.79 5592.08 14498.38 22298.75 8299.28 11799.52 147
test_fmvsm_n_192098.44 4198.61 2397.92 13999.27 10195.18 183100.00 198.90 4798.05 1299.80 1799.73 7892.64 12799.99 3699.58 3899.51 10298.59 219
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6599.97 5399.87 1999.64 8799.95 71
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18499.27 2791.43 23797.88 14098.99 15595.84 3999.84 11698.82 7795.32 21599.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10499.65 1298.17 898.75 10599.75 6992.76 12499.94 7799.88 1899.44 10899.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 8399.97 5399.87 1999.52 9999.98 48
DeepC-MVS94.51 496.92 11696.40 12398.45 11099.16 10795.90 15099.66 17898.06 20496.37 6894.37 20999.49 11383.29 24799.90 9197.63 13599.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8797.70 2098.21 13099.24 13792.58 13099.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7697.91 6597.43 16999.10 10994.42 19999.99 497.10 29695.07 9699.68 3799.75 6992.95 11898.34 22698.38 9899.14 12399.54 143
Anonymous20240521193.10 23291.99 24596.40 20499.10 10989.65 31498.88 27997.93 21683.71 35394.00 21598.75 18468.79 34899.88 10295.08 18191.71 24399.68 111
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15599.06 11194.41 20099.98 1498.97 4097.34 2999.63 4399.69 8787.27 20899.97 5399.62 3799.06 12798.62 218
HyFIR lowres test96.66 13096.43 12297.36 17599.05 11293.91 21699.70 17299.80 390.54 26196.26 18198.08 22192.15 14298.23 23896.84 15895.46 21099.93 76
LFMVS94.75 18693.56 20798.30 11999.03 11395.70 15998.74 29397.98 21187.81 30998.47 11799.39 12367.43 35699.53 15098.01 11595.20 21899.67 113
AllTest92.48 24791.64 25095.00 24299.01 11488.43 32898.94 27396.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
TestCases95.00 24299.01 11488.43 32896.82 32886.50 32588.71 29398.47 21074.73 32599.88 10285.39 32296.18 19296.71 246
COLMAP_ROBcopyleft90.47 1492.18 25491.49 25694.25 27599.00 11688.04 33498.42 31596.70 33582.30 36288.43 30099.01 15276.97 30199.85 10886.11 31896.50 18794.86 257
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17295.68 15394.36 27298.99 11784.98 35299.96 3496.65 33797.60 2299.73 3298.96 16171.58 33899.93 8598.31 10299.37 11398.17 226
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 33999.52 1595.69 8298.32 12497.41 24293.32 10699.77 12898.08 11395.75 20699.81 94
VNet97.21 10296.57 11899.13 6398.97 11997.82 7699.03 26599.21 2994.31 12599.18 8498.88 17286.26 22199.89 9698.93 6994.32 22799.69 110
thres20096.96 11396.21 12799.22 4698.97 11998.84 3599.85 12099.71 793.17 17096.26 18198.88 17289.87 17999.51 15294.26 20394.91 22099.31 174
tfpn200view996.79 12095.99 13299.19 4998.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.27 180
thres40096.78 12295.99 13299.16 5598.94 12198.82 3699.78 14499.71 792.86 17896.02 18698.87 17589.33 18699.50 15493.84 21194.57 22399.16 187
Anonymous2023121189.86 30388.44 31094.13 27898.93 12390.68 29298.54 30798.26 18276.28 37886.73 32195.54 30270.60 34497.56 26890.82 26180.27 34094.15 295
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16697.35 27094.45 11597.88 14099.42 11886.71 21599.52 15198.48 9593.97 23399.72 107
SDMVSNet94.80 18293.96 19597.33 17798.92 12595.42 17199.59 19098.99 3792.41 20692.55 23397.85 23175.81 31598.93 18197.90 12391.62 24497.64 237
sd_testset93.55 22192.83 22595.74 22198.92 12590.89 28998.24 32198.85 5692.41 20692.55 23397.85 23171.07 34398.68 19893.93 20891.62 24497.64 237
EPNet_dtu95.71 16295.39 15896.66 19698.92 12593.41 23199.57 19498.90 4796.19 7397.52 14698.56 20292.65 12697.36 27377.89 36398.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9899.52 1595.58 8598.24 12999.39 12393.33 10599.74 13497.98 11995.58 20999.78 100
CHOSEN 1792x268896.81 11996.53 11997.64 15798.91 12993.07 23699.65 18099.80 395.64 8395.39 19798.86 17784.35 24099.90 9196.98 15299.16 12299.95 71
thres100view90096.74 12595.92 14499.18 5098.90 13098.77 4099.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.84 21194.57 22399.27 180
thres600view796.69 12895.87 14799.14 5998.90 13098.78 3999.74 15899.71 792.59 19695.84 18998.86 17789.25 18899.50 15493.44 22394.50 22699.16 187
MSDG94.37 19993.36 21597.40 17198.88 13293.95 21599.37 22497.38 26885.75 33690.80 25299.17 14284.11 24299.88 10286.35 31598.43 14298.36 224
h-mvs3394.92 18094.36 18496.59 19898.85 13391.29 28198.93 27498.94 4195.90 7698.77 10198.42 21390.89 16699.77 12897.80 12670.76 37498.72 215
Anonymous2024052992.10 25590.65 26696.47 19998.82 13490.61 29498.72 29598.67 7375.54 38293.90 21798.58 20066.23 36099.90 9194.70 19490.67 24698.90 205
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17998.49 20689.05 19299.88 10297.10 14798.34 14399.43 160
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 20098.17 19197.34 2999.85 999.85 3091.20 15599.89 9699.41 4899.67 8598.69 216
CANet_DTU96.76 12396.15 12898.60 9598.78 13797.53 8699.84 12597.63 23897.25 3799.20 8199.64 9981.36 26099.98 4392.77 23498.89 13098.28 225
mvsany_test197.82 7297.90 6697.55 16298.77 13893.04 23999.80 14197.93 21696.95 4599.61 5299.68 9390.92 16399.83 11899.18 5698.29 14899.80 96
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12394.40 12198.41 11999.47 11493.65 9999.42 16298.57 9294.26 22999.67 113
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12396.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 20298.08 20397.05 4199.86 799.86 2690.65 16899.71 13899.39 5098.63 13898.69 216
miper_enhance_ethall94.36 20193.98 19495.49 22498.68 14295.24 17999.73 16397.29 27893.28 16789.86 26595.97 28994.37 7697.05 29792.20 23884.45 30594.19 288
ETVMVS97.03 11196.64 11498.20 12398.67 14397.12 10599.89 9898.57 8991.10 24898.17 13198.59 19793.86 9498.19 24095.64 17495.24 21799.28 179
test250697.53 8697.19 9298.58 9898.66 14496.90 11498.81 28899.77 594.93 9997.95 13698.96 16192.51 13299.20 16994.93 18498.15 15099.64 119
ECVR-MVScopyleft95.66 16595.05 17097.51 16598.66 14493.71 22098.85 28598.45 11894.93 9996.86 16498.96 16175.22 32199.20 16995.34 17698.15 15099.64 119
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14998.63 14694.26 20599.96 3498.92 4697.18 3999.75 2999.69 8787.00 21399.97 5399.46 4498.89 13099.08 195
testing22297.08 11096.75 11098.06 13298.56 14796.82 11699.85 12098.61 8292.53 20098.84 9698.84 18193.36 10398.30 23095.84 17194.30 22899.05 197
test111195.57 16794.98 17397.37 17398.56 14793.37 23398.86 28398.45 11894.95 9896.63 17098.95 16675.21 32299.11 17495.02 18298.14 15299.64 119
MVSTER95.53 16895.22 16496.45 20198.56 14797.72 7899.91 8397.67 23692.38 20891.39 24497.14 24997.24 1897.30 28094.80 19087.85 27894.34 279
VDD-MVS93.77 21492.94 22296.27 20998.55 15090.22 30398.77 29297.79 23090.85 25496.82 16699.42 11861.18 37799.77 12898.95 6794.13 23098.82 208
tpmvs94.28 20393.57 20696.40 20498.55 15091.50 27995.70 37398.55 9887.47 31192.15 23794.26 34891.42 15198.95 18088.15 29495.85 20298.76 211
UGNet95.33 17394.57 18197.62 16098.55 15094.85 18998.67 30199.32 2695.75 8196.80 16796.27 28072.18 33599.96 6194.58 19799.05 12898.04 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17494.10 19198.43 11298.55 15095.99 14897.91 33497.31 27590.35 26589.48 27699.22 13885.19 23099.89 9690.40 27198.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12096.72 11197.00 18498.51 15493.70 22199.71 16898.60 8492.96 17497.09 15798.34 21596.67 2898.85 18492.11 24096.50 18798.44 221
test_vis1_n_192095.44 17095.31 16195.82 21998.50 15588.74 32299.98 1497.30 27697.84 1699.85 999.19 14066.82 35899.97 5398.82 7799.46 10698.76 211
BH-w/o95.71 16295.38 15996.68 19598.49 15692.28 25699.84 12597.50 25792.12 21492.06 24098.79 18284.69 23598.67 19995.29 17899.66 8699.09 193
baseline195.78 15994.86 17598.54 10398.47 15798.07 6599.06 25897.99 20992.68 19094.13 21498.62 19693.28 10998.69 19793.79 21685.76 29398.84 207
iter_conf0596.07 15095.95 14096.44 20398.43 15897.52 8799.91 8396.85 32494.16 13192.49 23597.98 22798.20 497.34 27597.26 14288.29 27194.45 269
EPMVS96.53 13496.01 13198.09 13098.43 15896.12 14696.36 36099.43 2193.53 15897.64 14495.04 32694.41 7198.38 22291.13 25298.11 15399.75 103
iter_conf_final96.01 15395.93 14296.28 20898.38 16097.03 10899.87 10497.03 30494.05 14092.61 23197.98 22798.01 597.34 27597.02 14988.39 27094.47 263
sss97.57 8597.03 9999.18 5098.37 16198.04 6799.73 16399.38 2393.46 16098.76 10399.06 14891.21 15499.89 9696.33 16297.01 17999.62 124
testing1197.48 8897.27 8898.10 12998.36 16296.02 14799.92 7898.45 11893.45 16298.15 13298.70 18795.48 4699.22 16597.85 12595.05 21999.07 196
BH-untuned95.18 17494.83 17696.22 21098.36 16291.22 28299.80 14197.32 27490.91 25291.08 24898.67 18983.51 24498.54 20594.23 20499.61 9398.92 202
testing9197.16 10496.90 10397.97 13598.35 16495.67 16299.91 8398.42 14392.91 17797.33 15298.72 18594.81 6399.21 16696.98 15294.63 22299.03 198
testing9997.17 10396.91 10297.95 13698.35 16495.70 15999.91 8398.43 13192.94 17597.36 15198.72 18594.83 6299.21 16697.00 15094.64 22198.95 201
ET-MVSNet_ETH3D94.37 19993.28 21797.64 15798.30 16697.99 6999.99 497.61 24394.35 12271.57 38599.45 11796.23 3295.34 35596.91 15785.14 30099.59 130
AUN-MVS93.28 22692.60 23195.34 23198.29 16790.09 30699.31 23198.56 9291.80 22696.35 18098.00 22489.38 18598.28 23392.46 23569.22 37997.64 237
FMVSNet392.69 24391.58 25295.99 21498.29 16797.42 9599.26 23997.62 24089.80 27489.68 26995.32 31681.62 25896.27 33587.01 31185.65 29494.29 281
PMMVS96.76 12396.76 10996.76 19298.28 16992.10 26099.91 8397.98 21194.12 13399.53 5799.39 12386.93 21498.73 19296.95 15597.73 16099.45 157
hse-mvs294.38 19894.08 19295.31 23398.27 17090.02 30899.29 23698.56 9295.90 7698.77 10198.00 22490.89 16698.26 23797.80 12669.20 38097.64 237
PVSNet_088.03 1991.80 26290.27 27596.38 20698.27 17090.46 29899.94 6899.61 1493.99 14286.26 33197.39 24471.13 34299.89 9698.77 8067.05 38598.79 210
UA-Net96.54 13395.96 13898.27 12098.23 17295.71 15898.00 33298.45 11893.72 15498.41 11999.27 13288.71 19799.66 14691.19 25197.69 16199.44 159
test_cas_vis1_n_192096.59 13296.23 12697.65 15698.22 17394.23 20699.99 497.25 28297.77 1799.58 5399.08 14677.10 29899.97 5397.64 13499.45 10798.74 213
FE-MVS95.70 16495.01 17297.79 14698.21 17494.57 19595.03 37498.69 6888.90 29097.50 14896.19 28292.60 12999.49 15889.99 27697.94 15999.31 174
GG-mvs-BLEND98.54 10398.21 17498.01 6893.87 37998.52 10497.92 13797.92 23099.02 297.94 25698.17 10699.58 9699.67 113
mvs_anonymous95.65 16695.03 17197.53 16398.19 17695.74 15699.33 22897.49 25890.87 25390.47 25597.10 25188.23 19997.16 28895.92 16997.66 16399.68 111
MVS_Test96.46 13695.74 14998.61 9498.18 17797.23 9999.31 23197.15 29191.07 24998.84 9697.05 25588.17 20098.97 17894.39 19997.50 16599.61 127
BH-RMVSNet95.18 17494.31 18797.80 14498.17 17895.23 18099.76 15297.53 25392.52 20294.27 21299.25 13676.84 30398.80 18690.89 26099.54 9899.35 169
RPSCF91.80 26292.79 22788.83 35098.15 17969.87 38898.11 32896.60 33983.93 35194.33 21099.27 13279.60 28099.46 16191.99 24193.16 24097.18 244
ETV-MVS97.92 6697.80 7098.25 12198.14 18096.48 12599.98 1497.63 23895.61 8499.29 7999.46 11692.55 13198.82 18599.02 6698.54 13999.46 155
IS-MVSNet96.29 14695.90 14597.45 16798.13 18194.80 19299.08 25397.61 24392.02 21995.54 19698.96 16190.64 16998.08 24593.73 21997.41 16999.47 154
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 18296.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15999.94 7799.67 3699.62 8999.98 48
ab-mvs94.69 18793.42 21198.51 10698.07 18396.26 13596.49 35898.68 7090.31 26694.54 20597.00 25776.30 31099.71 13895.98 16893.38 23899.56 138
XVG-OURS-SEG-HR94.79 18394.70 18095.08 23998.05 18489.19 31799.08 25397.54 25193.66 15594.87 20399.58 10678.78 28899.79 12397.31 14093.40 23796.25 250
EIA-MVS97.53 8697.46 8097.76 15198.04 18594.84 19099.98 1497.61 24394.41 12097.90 13899.59 10492.40 13698.87 18298.04 11499.13 12499.59 130
XVG-OURS94.82 18194.74 17995.06 24098.00 18689.19 31799.08 25397.55 24994.10 13494.71 20499.62 10280.51 27299.74 13496.04 16793.06 24296.25 250
dp95.05 17794.43 18396.91 18797.99 18792.73 24696.29 36397.98 21189.70 27595.93 18894.67 33993.83 9698.45 21186.91 31496.53 18699.54 143
tpmrst96.27 14895.98 13497.13 18197.96 18893.15 23596.34 36198.17 19192.07 21598.71 10795.12 32493.91 9198.73 19294.91 18796.62 18499.50 151
TR-MVS94.54 19293.56 20797.49 16697.96 18894.34 20398.71 29697.51 25690.30 26794.51 20798.69 18875.56 31698.77 18992.82 23395.99 19699.35 169
Vis-MVSNet (Re-imp)96.32 14395.98 13497.35 17697.93 19094.82 19199.47 21198.15 19891.83 22395.09 20199.11 14491.37 15397.47 27193.47 22297.43 16699.74 104
MDTV_nov1_ep1395.69 15197.90 19194.15 20895.98 36998.44 12393.12 17197.98 13595.74 29395.10 5298.58 20290.02 27596.92 181
Fast-Effi-MVS+95.02 17894.19 18997.52 16497.88 19294.55 19699.97 2797.08 29988.85 29294.47 20897.96 22984.59 23698.41 21489.84 27897.10 17499.59 130
ADS-MVSNet293.80 21393.88 19893.55 30197.87 19385.94 34694.24 37596.84 32590.07 26996.43 17694.48 34490.29 17595.37 35487.44 30197.23 17199.36 167
ADS-MVSNet94.79 18394.02 19397.11 18397.87 19393.79 21794.24 37598.16 19590.07 26996.43 17694.48 34490.29 17598.19 24087.44 30197.23 17199.36 167
Effi-MVS+96.30 14595.69 15198.16 12497.85 19596.26 13597.41 34197.21 28490.37 26498.65 11098.58 20086.61 21798.70 19697.11 14697.37 17099.52 147
PatchmatchNetpermissive95.94 15595.45 15697.39 17297.83 19694.41 20096.05 36798.40 15292.86 17897.09 15795.28 32194.21 8398.07 24789.26 28298.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19093.61 20297.74 15397.82 19796.26 13599.96 3497.78 23185.76 33494.00 21597.54 23876.95 30299.21 16697.23 14395.43 21297.76 236
1112_ss96.01 15395.20 16598.42 11397.80 19896.41 12899.65 18096.66 33692.71 18792.88 22899.40 12192.16 14199.30 16391.92 24393.66 23499.55 139
Test_1112_low_res95.72 16094.83 17698.42 11397.79 19996.41 12899.65 18096.65 33792.70 18892.86 22996.13 28592.15 14299.30 16391.88 24493.64 23599.55 139
Effi-MVS+-dtu94.53 19495.30 16292.22 32397.77 20082.54 36399.59 19097.06 30194.92 10195.29 19995.37 31485.81 22397.89 25794.80 19097.07 17596.23 252
tpm cat193.51 22292.52 23696.47 19997.77 20091.47 28096.13 36598.06 20480.98 36792.91 22793.78 35289.66 18098.87 18287.03 31096.39 19099.09 193
FA-MVS(test-final)95.86 15695.09 16998.15 12797.74 20295.62 16496.31 36298.17 19191.42 23996.26 18196.13 28590.56 17099.47 16092.18 23997.07 17599.35 169
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10097.74 20298.14 6299.31 23197.86 22596.43 6299.62 4699.69 8785.56 22599.68 14299.05 6098.31 14597.83 232
EPP-MVSNet96.69 12896.60 11696.96 18697.74 20293.05 23899.37 22498.56 9288.75 29395.83 19199.01 15296.01 3398.56 20396.92 15697.20 17399.25 182
gg-mvs-nofinetune93.51 22291.86 24998.47 10897.72 20797.96 7292.62 38398.51 10774.70 38597.33 15269.59 39898.91 397.79 26097.77 13199.56 9799.67 113
IB-MVS92.85 694.99 17993.94 19698.16 12497.72 20795.69 16199.99 498.81 6094.28 12792.70 23096.90 25995.08 5399.17 17296.07 16673.88 36999.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9497.02 10098.59 9797.71 20997.52 8799.97 2798.54 10191.83 22397.45 14999.04 14997.50 999.10 17594.75 19296.37 19199.16 187
Syy-MVS90.00 30190.63 26788.11 35797.68 21074.66 38599.71 16898.35 16590.79 25692.10 23898.67 18979.10 28693.09 37763.35 39195.95 19996.59 248
myMVS_eth3d94.46 19694.76 17893.55 30197.68 21090.97 28499.71 16898.35 16590.79 25692.10 23898.67 18992.46 13593.09 37787.13 30795.95 19996.59 248
test_fmvs1_n94.25 20494.36 18493.92 28797.68 21083.70 35899.90 9096.57 34097.40 2899.67 3898.88 17261.82 37499.92 8898.23 10499.13 12498.14 229
diffmvspermissive97.00 11296.64 11498.09 13097.64 21396.17 14399.81 13797.19 28594.67 11198.95 9199.28 12986.43 21898.76 19098.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16095.15 16797.45 16797.62 21494.28 20499.28 23798.24 18394.27 12996.84 16598.94 16879.39 28198.76 19093.25 22498.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10696.72 11198.22 12297.60 21596.70 11999.92 7898.54 10191.11 24797.07 15998.97 15997.47 1299.03 17693.73 21996.09 19498.92 202
miper_ehance_all_eth93.16 22992.60 23194.82 25097.57 21693.56 22599.50 20697.07 30088.75 29388.85 29295.52 30490.97 16296.74 31690.77 26284.45 30594.17 289
testing393.92 20894.23 18892.99 31597.54 21790.23 30299.99 499.16 3090.57 26091.33 24798.63 19592.99 11692.52 38182.46 34095.39 21396.22 253
LCM-MVSNet-Re92.31 25192.60 23191.43 33097.53 21879.27 38099.02 26691.83 39492.07 21580.31 36094.38 34783.50 24595.48 35297.22 14497.58 16499.54 143
GBi-Net90.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
test190.88 27889.82 28494.08 27997.53 21891.97 26198.43 31296.95 31387.05 31789.68 26994.72 33571.34 33996.11 34087.01 31185.65 29494.17 289
FMVSNet291.02 27589.56 28995.41 22997.53 21895.74 15698.98 26897.41 26687.05 31788.43 30095.00 32971.34 33996.24 33785.12 32485.21 29994.25 284
tttt051796.85 11796.49 12097.92 13997.48 22295.89 15199.85 12098.54 10190.72 25996.63 17098.93 17097.47 1299.02 17793.03 23195.76 20598.85 206
casdiffmvs_mvgpermissive96.43 13795.94 14197.89 14397.44 22395.47 16899.86 11797.29 27893.35 16396.03 18599.19 14085.39 22898.72 19497.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9697.24 8997.80 14497.41 22495.64 16399.99 497.06 30194.59 11299.63 4399.32 12889.20 19198.14 24298.76 8199.23 12099.62 124
c3_l92.53 24691.87 24894.52 26297.40 22592.99 24099.40 21796.93 31887.86 30788.69 29595.44 30889.95 17896.44 32890.45 26880.69 33694.14 298
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16197.38 22694.40 20299.90 9098.64 7696.47 6199.51 6199.65 9884.99 23399.93 8599.22 5599.09 12698.46 220
CDS-MVSNet96.34 14296.07 12997.13 18197.37 22794.96 18799.53 20197.91 22091.55 23195.37 19898.32 21695.05 5597.13 29193.80 21595.75 20699.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12596.26 12598.16 12497.36 22896.48 12599.96 3498.29 17891.93 22095.77 19298.07 22295.54 4398.29 23190.55 26698.89 13099.70 108
miper_lstm_enhance91.81 25991.39 25893.06 31497.34 22989.18 31999.38 22296.79 33086.70 32487.47 31395.22 32290.00 17795.86 34988.26 29281.37 32694.15 295
baseline96.43 13795.98 13497.76 15197.34 22995.17 18499.51 20497.17 28893.92 14796.90 16399.28 12985.37 22998.64 20097.50 13796.86 18399.46 155
cl____92.31 25191.58 25294.52 26297.33 23192.77 24299.57 19496.78 33186.97 32187.56 31195.51 30589.43 18496.62 32188.60 28782.44 31894.16 294
DIV-MVS_self_test92.32 25091.60 25194.47 26697.31 23292.74 24499.58 19296.75 33286.99 32087.64 30995.54 30289.55 18396.50 32588.58 28882.44 31894.17 289
casdiffmvspermissive96.42 13995.97 13797.77 14997.30 23394.98 18699.84 12597.09 29893.75 15396.58 17299.26 13585.07 23198.78 18897.77 13197.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20193.48 20996.99 18597.29 23493.54 22699.96 3496.72 33488.35 30293.43 21998.94 16882.05 25298.05 24888.12 29696.48 18999.37 166
eth_miper_zixun_eth92.41 24991.93 24693.84 29197.28 23590.68 29298.83 28696.97 31288.57 29889.19 28695.73 29589.24 19096.69 31989.97 27781.55 32494.15 295
MVSFormer96.94 11496.60 11697.95 13697.28 23597.70 8199.55 19897.27 28091.17 24499.43 6699.54 11090.92 16396.89 30994.67 19599.62 8999.25 182
lupinMVS97.85 6997.60 7698.62 9397.28 23597.70 8199.99 497.55 24995.50 8999.43 6699.67 9490.92 16398.71 19598.40 9799.62 8999.45 157
SCA94.69 18793.81 20097.33 17797.10 23894.44 19798.86 28398.32 17293.30 16696.17 18495.59 30076.48 30897.95 25491.06 25497.43 16699.59 130
TAMVS95.85 15795.58 15496.65 19797.07 23993.50 22799.17 24697.82 22991.39 24195.02 20298.01 22392.20 14097.30 28093.75 21895.83 20399.14 190
Fast-Effi-MVS+-dtu93.72 21793.86 19993.29 30697.06 24086.16 34499.80 14196.83 32692.66 19192.58 23297.83 23381.39 25997.67 26589.75 27996.87 18296.05 255
CostFormer96.10 14995.88 14696.78 19197.03 24192.55 25297.08 34997.83 22890.04 27198.72 10694.89 33395.01 5798.29 23196.54 16195.77 20499.50 151
test_fmvsmvis_n_192097.67 8397.59 7897.91 14197.02 24295.34 17499.95 5298.45 11897.87 1597.02 16099.59 10489.64 18199.98 4399.41 4899.34 11598.42 222
test-LLR96.47 13596.04 13097.78 14797.02 24295.44 16999.96 3498.21 18694.07 13695.55 19496.38 27693.90 9298.27 23590.42 26998.83 13499.64 119
test-mter96.39 14095.93 14297.78 14797.02 24295.44 16999.96 3498.21 18691.81 22595.55 19496.38 27695.17 5098.27 23590.42 26998.83 13499.64 119
gm-plane-assit96.97 24593.76 21991.47 23598.96 16198.79 18794.92 185
WB-MVSnew92.90 23692.77 22893.26 30896.95 24693.63 22399.71 16898.16 19591.49 23294.28 21198.14 21981.33 26196.48 32679.47 35595.46 21089.68 378
QAPM95.40 17194.17 19099.10 6496.92 24797.71 7999.40 21798.68 7089.31 27888.94 29098.89 17182.48 25099.96 6193.12 23099.83 7299.62 124
KD-MVS_2432*160088.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
miper_refine_blended88.00 32086.10 32493.70 29796.91 24894.04 21197.17 34697.12 29484.93 34481.96 35192.41 36392.48 13394.51 36579.23 35652.68 39792.56 352
tpm295.47 16995.18 16696.35 20796.91 24891.70 27496.96 35297.93 21688.04 30698.44 11895.40 31093.32 10697.97 25194.00 20695.61 20899.38 164
FMVSNet588.32 31787.47 31990.88 33396.90 25188.39 33097.28 34395.68 36082.60 36184.67 34092.40 36579.83 27891.16 38676.39 37081.51 32593.09 344
3Dnovator+91.53 1196.31 14495.24 16399.52 2896.88 25298.64 5299.72 16698.24 18395.27 9488.42 30298.98 15782.76 24999.94 7797.10 14799.83 7299.96 64
Patchmatch-test92.65 24591.50 25596.10 21396.85 25390.49 29791.50 38897.19 28582.76 36090.23 25795.59 30095.02 5698.00 25077.41 36596.98 18099.82 92
MVS96.60 13195.56 15599.72 1396.85 25399.22 2098.31 31898.94 4191.57 23090.90 25199.61 10386.66 21699.96 6197.36 13999.88 6899.99 23
3Dnovator91.47 1296.28 14795.34 16099.08 6596.82 25597.47 9399.45 21498.81 6095.52 8889.39 27799.00 15481.97 25399.95 6997.27 14199.83 7299.84 90
EI-MVSNet93.73 21693.40 21494.74 25196.80 25692.69 24799.06 25897.67 23688.96 28791.39 24499.02 15088.75 19697.30 28091.07 25387.85 27894.22 285
CVMVSNet94.68 18994.94 17493.89 29096.80 25686.92 34299.06 25898.98 3894.45 11594.23 21399.02 15085.60 22495.31 35690.91 25995.39 21399.43 160
IterMVS-LS92.69 24392.11 24194.43 27096.80 25692.74 24499.45 21496.89 32188.98 28589.65 27295.38 31388.77 19596.34 33290.98 25782.04 32194.22 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27790.17 27993.12 31196.78 25990.42 30098.89 27797.05 30389.03 28286.49 32695.42 30976.59 30695.02 35887.22 30684.09 30893.93 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11895.96 13899.48 3496.74 26098.52 5698.31 31898.86 5395.82 7889.91 26398.98 15787.49 20599.96 6197.80 12699.73 8299.96 64
IterMVS-SCA-FT90.85 28090.16 28092.93 31696.72 26189.96 30998.89 27796.99 30888.95 28886.63 32395.67 29676.48 30895.00 35987.04 30984.04 31193.84 323
MVS-HIRNet86.22 32783.19 34095.31 23396.71 26290.29 30192.12 38597.33 27362.85 39286.82 32070.37 39769.37 34797.49 27075.12 37297.99 15898.15 227
VDDNet93.12 23191.91 24796.76 19296.67 26392.65 25098.69 29998.21 18682.81 35997.75 14399.28 12961.57 37599.48 15998.09 11294.09 23198.15 227
dmvs_re93.20 22893.15 21993.34 30496.54 26483.81 35798.71 29698.51 10791.39 24192.37 23698.56 20278.66 29097.83 25993.89 20989.74 24798.38 223
MIMVSNet90.30 29388.67 30795.17 23896.45 26591.64 27692.39 38497.15 29185.99 33190.50 25493.19 35966.95 35794.86 36282.01 34493.43 23699.01 200
CR-MVSNet93.45 22592.62 23095.94 21596.29 26692.66 24892.01 38696.23 34992.62 19396.94 16193.31 35791.04 16096.03 34579.23 35695.96 19799.13 191
RPMNet89.76 30587.28 32097.19 18096.29 26692.66 24892.01 38698.31 17470.19 39196.94 16185.87 39087.25 20999.78 12562.69 39295.96 19799.13 191
tt080591.28 27090.18 27894.60 25796.26 26887.55 33698.39 31698.72 6589.00 28489.22 28398.47 21062.98 37198.96 17990.57 26588.00 27797.28 243
Patchmtry89.70 30688.49 30993.33 30596.24 26989.94 31291.37 38996.23 34978.22 37587.69 30893.31 35791.04 16096.03 34580.18 35482.10 32094.02 306
test_vis1_rt86.87 32586.05 32789.34 34696.12 27078.07 38199.87 10483.54 40592.03 21878.21 37089.51 37645.80 39199.91 8996.25 16493.11 24190.03 375
JIA-IIPM91.76 26590.70 26594.94 24496.11 27187.51 33793.16 38298.13 20075.79 38197.58 14577.68 39592.84 12197.97 25188.47 29196.54 18599.33 172
OpenMVScopyleft90.15 1594.77 18593.59 20598.33 11796.07 27297.48 9299.56 19698.57 8990.46 26286.51 32598.95 16678.57 29199.94 7793.86 21099.74 8197.57 241
PAPM98.60 3098.42 3199.14 5996.05 27398.96 2699.90 9099.35 2596.68 5598.35 12399.66 9696.45 3098.51 20699.45 4599.89 6699.96 64
CLD-MVS94.06 20793.90 19794.55 26196.02 27490.69 29199.98 1497.72 23296.62 5891.05 25098.85 18077.21 29798.47 20798.11 11089.51 25394.48 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29088.75 30695.25 23595.99 27590.16 30491.22 39097.54 25176.80 37797.26 15486.01 38991.88 14796.07 34466.16 38895.91 20199.51 149
ACMH+89.98 1690.35 29189.54 29092.78 31995.99 27586.12 34598.81 28897.18 28789.38 27783.14 34797.76 23568.42 35298.43 21289.11 28386.05 29293.78 326
DeepMVS_CXcopyleft82.92 36795.98 27758.66 39896.01 35492.72 18678.34 36995.51 30558.29 38098.08 24582.57 33985.29 29792.03 360
ACMP92.05 992.74 24092.42 23893.73 29395.91 27888.72 32399.81 13797.53 25394.13 13287.00 31998.23 21774.07 32998.47 20796.22 16588.86 26093.99 311
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22093.03 22195.35 23095.86 27986.94 34199.87 10496.36 34796.85 4699.54 5698.79 18252.41 38799.83 11898.64 8998.97 12999.29 178
HQP-NCC95.78 28099.87 10496.82 4893.37 220
ACMP_Plane95.78 28099.87 10496.82 4893.37 220
HQP-MVS94.61 19194.50 18294.92 24595.78 28091.85 26699.87 10497.89 22196.82 4893.37 22098.65 19280.65 27098.39 21897.92 12189.60 24894.53 258
NP-MVS95.77 28391.79 26898.65 192
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28496.20 14099.94 6898.05 20698.17 898.89 9599.42 11887.65 20399.90 9199.50 4199.60 9599.82 92
plane_prior695.76 28491.72 27380.47 274
ACMM91.95 1092.88 23792.52 23693.98 28695.75 28689.08 32099.77 14797.52 25593.00 17389.95 26297.99 22676.17 31298.46 21093.63 22188.87 25994.39 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21092.84 22496.80 19095.73 28793.57 22499.88 10197.24 28392.57 19892.92 22696.66 26878.73 28997.67 26587.75 29994.06 23299.17 186
plane_prior195.73 287
jason97.24 10096.86 10598.38 11695.73 28797.32 9799.97 2797.40 26795.34 9298.60 11399.54 11087.70 20298.56 20397.94 12099.47 10499.25 182
jason: jason.
HQP_MVS94.49 19594.36 18494.87 24695.71 29091.74 27099.84 12597.87 22396.38 6593.01 22498.59 19780.47 27498.37 22497.79 12989.55 25194.52 260
plane_prior795.71 29091.59 278
ITE_SJBPF92.38 32195.69 29285.14 35095.71 35992.81 18289.33 28098.11 22070.23 34598.42 21385.91 32088.16 27493.59 334
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 15995.65 29394.21 20799.83 13298.50 11296.27 7099.65 4099.64 9984.72 23499.93 8599.04 6398.84 13398.74 213
ACMH89.72 1790.64 28489.63 28793.66 29995.64 29488.64 32698.55 30597.45 26089.03 28281.62 35497.61 23769.75 34698.41 21489.37 28087.62 28393.92 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12796.49 12097.37 17395.63 29595.96 14999.74 15898.88 5192.94 17591.61 24298.97 15997.72 798.62 20194.83 18998.08 15697.53 242
FMVSNet188.50 31686.64 32294.08 27995.62 29691.97 26198.43 31296.95 31383.00 35786.08 33394.72 33559.09 37996.11 34081.82 34684.07 30994.17 289
LPG-MVS_test92.96 23492.71 22993.71 29595.43 29788.67 32499.75 15597.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
LGP-MVS_train93.71 29595.43 29788.67 32497.62 24092.81 18290.05 25898.49 20675.24 31998.40 21695.84 17189.12 25594.07 303
tpm93.70 21893.41 21394.58 25995.36 29987.41 33897.01 35096.90 32090.85 25496.72 16994.14 34990.40 17396.84 31290.75 26388.54 26799.51 149
D2MVS92.76 23992.59 23493.27 30795.13 30089.54 31699.69 17399.38 2392.26 21187.59 31094.61 34185.05 23297.79 26091.59 24788.01 27692.47 355
VPA-MVSNet92.70 24291.55 25496.16 21195.09 30196.20 14098.88 27999.00 3691.02 25191.82 24195.29 32076.05 31497.96 25395.62 17581.19 32794.30 280
LTVRE_ROB88.28 1890.29 29489.05 30194.02 28295.08 30290.15 30597.19 34597.43 26284.91 34683.99 34397.06 25474.00 33098.28 23384.08 32987.71 28193.62 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32286.51 32391.94 32695.05 30385.57 34897.65 33894.08 38284.40 34981.82 35396.85 26362.14 37398.33 22780.25 35386.37 29191.91 362
test0.0.03 193.86 20993.61 20294.64 25595.02 30492.18 25999.93 7598.58 8794.07 13687.96 30698.50 20593.90 9294.96 36081.33 34793.17 23996.78 245
UniMVSNet (Re)93.07 23392.13 24095.88 21694.84 30596.24 13999.88 10198.98 3892.49 20489.25 28195.40 31087.09 21197.14 29093.13 22978.16 35094.26 282
USDC90.00 30188.96 30293.10 31394.81 30688.16 33298.71 29695.54 36493.66 15583.75 34597.20 24865.58 36298.31 22983.96 33287.49 28592.85 349
VPNet91.81 25990.46 26995.85 21894.74 30795.54 16798.98 26898.59 8692.14 21390.77 25397.44 24168.73 35097.54 26994.89 18877.89 35294.46 264
FIs94.10 20593.43 21096.11 21294.70 30896.82 11699.58 19298.93 4592.54 19989.34 27997.31 24587.62 20497.10 29494.22 20586.58 28994.40 271
UniMVSNet_ETH3D90.06 30088.58 30894.49 26594.67 30988.09 33397.81 33797.57 24883.91 35288.44 29897.41 24257.44 38197.62 26791.41 24888.59 26697.77 235
UniMVSNet_NR-MVSNet92.95 23592.11 24195.49 22494.61 31095.28 17799.83 13299.08 3391.49 23289.21 28496.86 26287.14 21096.73 31793.20 22577.52 35594.46 264
test_fmvs289.47 30989.70 28688.77 35394.54 31175.74 38299.83 13294.70 37894.71 10891.08 24896.82 26754.46 38497.78 26292.87 23288.27 27292.80 350
WR-MVS92.31 25191.25 25995.48 22794.45 31295.29 17699.60 18998.68 7090.10 26888.07 30596.89 26080.68 26996.80 31593.14 22879.67 34394.36 275
nrg03093.51 22292.53 23596.45 20194.36 31397.20 10099.81 13797.16 29091.60 22989.86 26597.46 24086.37 21997.68 26495.88 17080.31 33994.46 264
tfpnnormal89.29 31287.61 31894.34 27394.35 31494.13 20998.95 27298.94 4183.94 35084.47 34195.51 30574.84 32497.39 27277.05 36880.41 33791.48 365
FC-MVSNet-test93.81 21293.15 21995.80 22094.30 31596.20 14099.42 21698.89 4992.33 21089.03 28997.27 24787.39 20796.83 31393.20 22586.48 29094.36 275
MS-PatchMatch90.65 28390.30 27491.71 32994.22 31685.50 34998.24 32197.70 23388.67 29586.42 32896.37 27867.82 35498.03 24983.62 33499.62 8991.60 363
WR-MVS_H91.30 26890.35 27294.15 27694.17 31792.62 25199.17 24698.94 4188.87 29186.48 32794.46 34684.36 23896.61 32288.19 29378.51 34893.21 343
DU-MVS92.46 24891.45 25795.49 22494.05 31895.28 17799.81 13798.74 6492.25 21289.21 28496.64 27081.66 25696.73 31793.20 22577.52 35594.46 264
NR-MVSNet91.56 26790.22 27695.60 22294.05 31895.76 15598.25 32098.70 6791.16 24680.78 35996.64 27083.23 24896.57 32391.41 24877.73 35494.46 264
CP-MVSNet91.23 27290.22 27694.26 27493.96 32092.39 25599.09 25198.57 8988.95 28886.42 32896.57 27379.19 28496.37 33090.29 27278.95 34594.02 306
XXY-MVS91.82 25890.46 26995.88 21693.91 32195.40 17398.87 28297.69 23488.63 29787.87 30797.08 25274.38 32897.89 25791.66 24684.07 30994.35 278
PS-CasMVS90.63 28589.51 29293.99 28593.83 32291.70 27498.98 26898.52 10488.48 29986.15 33296.53 27575.46 31796.31 33488.83 28578.86 34793.95 314
test_040285.58 32983.94 33490.50 33793.81 32385.04 35198.55 30595.20 37276.01 37979.72 36495.13 32364.15 36896.26 33666.04 38986.88 28890.21 374
XVG-ACMP-BASELINE91.22 27390.75 26492.63 32093.73 32485.61 34798.52 30997.44 26192.77 18589.90 26496.85 26366.64 35998.39 21892.29 23788.61 26493.89 319
TranMVSNet+NR-MVSNet91.68 26690.61 26894.87 24693.69 32593.98 21499.69 17398.65 7491.03 25088.44 29896.83 26680.05 27796.18 33890.26 27376.89 36394.45 269
mvsmamba94.10 20593.72 20195.25 23593.57 32694.13 20999.67 17796.45 34593.63 15791.34 24697.77 23486.29 22097.22 28696.65 16088.10 27594.40 271
TransMVSNet (Re)87.25 32385.28 33093.16 31093.56 32791.03 28398.54 30794.05 38483.69 35481.09 35796.16 28375.32 31896.40 32976.69 36968.41 38192.06 359
v1090.25 29588.82 30494.57 26093.53 32893.43 23099.08 25396.87 32385.00 34387.34 31794.51 34280.93 26697.02 30482.85 33879.23 34493.26 341
testgi89.01 31488.04 31591.90 32793.49 32984.89 35399.73 16395.66 36193.89 15085.14 33898.17 21859.68 37894.66 36477.73 36488.88 25896.16 254
v890.54 28789.17 29794.66 25493.43 33093.40 23299.20 24396.94 31785.76 33487.56 31194.51 34281.96 25497.19 28784.94 32678.25 34993.38 339
V4291.28 27090.12 28194.74 25193.42 33193.46 22899.68 17597.02 30587.36 31389.85 26795.05 32581.31 26297.34 27587.34 30480.07 34193.40 337
pm-mvs189.36 31187.81 31794.01 28393.40 33291.93 26498.62 30496.48 34486.25 32983.86 34496.14 28473.68 33197.04 29986.16 31775.73 36793.04 346
RRT_MVS93.14 23092.92 22393.78 29293.31 33390.04 30799.66 17897.69 23492.53 20088.91 29197.76 23584.36 23896.93 30795.10 18086.99 28794.37 274
v114491.09 27489.83 28394.87 24693.25 33493.69 22299.62 18796.98 31086.83 32389.64 27394.99 33080.94 26597.05 29785.08 32581.16 32893.87 321
v119290.62 28689.25 29694.72 25393.13 33593.07 23699.50 20697.02 30586.33 32889.56 27595.01 32779.22 28397.09 29682.34 34281.16 32894.01 308
v2v48291.30 26890.07 28295.01 24193.13 33593.79 21799.77 14797.02 30588.05 30589.25 28195.37 31480.73 26897.15 28987.28 30580.04 34294.09 302
OPM-MVS93.21 22792.80 22694.44 26893.12 33790.85 29099.77 14797.61 24396.19 7391.56 24398.65 19275.16 32398.47 20793.78 21789.39 25493.99 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28189.52 29194.59 25893.11 33892.77 24299.56 19696.99 30886.38 32789.82 26894.95 33280.50 27397.10 29483.98 33180.41 33793.90 318
bld_raw_dy_0_6492.74 24092.03 24494.87 24693.09 33993.46 22899.12 24895.41 36692.84 18190.44 25697.54 23878.08 29597.04 29993.94 20787.77 28094.11 300
PEN-MVS90.19 29789.06 30093.57 30093.06 34090.90 28899.06 25898.47 11588.11 30485.91 33496.30 27976.67 30495.94 34887.07 30876.91 36293.89 319
v124090.20 29688.79 30594.44 26893.05 34192.27 25799.38 22296.92 31985.89 33289.36 27894.87 33477.89 29697.03 30280.66 35081.08 33194.01 308
v14890.70 28289.63 28793.92 28792.97 34290.97 28499.75 15596.89 32187.51 31088.27 30395.01 32781.67 25597.04 29987.40 30377.17 36093.75 327
v192192090.46 28889.12 29894.50 26492.96 34392.46 25399.49 20896.98 31086.10 33089.61 27495.30 31778.55 29297.03 30282.17 34380.89 33594.01 308
Baseline_NR-MVSNet90.33 29289.51 29292.81 31892.84 34489.95 31099.77 14793.94 38584.69 34889.04 28895.66 29781.66 25696.52 32490.99 25676.98 36191.97 361
test_method80.79 34979.70 35384.08 36492.83 34567.06 39099.51 20495.42 36554.34 39681.07 35893.53 35444.48 39292.22 38378.90 36077.23 35992.94 347
pmmvs492.10 25591.07 26295.18 23792.82 34694.96 18799.48 21096.83 32687.45 31288.66 29696.56 27483.78 24396.83 31389.29 28184.77 30393.75 327
LF4IMVS89.25 31388.85 30390.45 33992.81 34781.19 37398.12 32794.79 37591.44 23686.29 33097.11 25065.30 36598.11 24488.53 29085.25 29892.07 358
DTE-MVSNet89.40 31088.24 31392.88 31792.66 34889.95 31099.10 25098.22 18587.29 31485.12 33996.22 28176.27 31195.30 35783.56 33575.74 36693.41 336
EU-MVSNet90.14 29990.34 27389.54 34592.55 34981.06 37498.69 29998.04 20791.41 24086.59 32496.84 26580.83 26793.31 37686.20 31681.91 32294.26 282
APD_test181.15 34880.92 34981.86 36892.45 35059.76 39796.04 36893.61 38873.29 38877.06 37396.64 27044.28 39396.16 33972.35 37682.52 31689.67 379
our_test_390.39 28989.48 29493.12 31192.40 35189.57 31599.33 22896.35 34887.84 30885.30 33794.99 33084.14 24196.09 34380.38 35184.56 30493.71 332
ppachtmachnet_test89.58 30888.35 31193.25 30992.40 35190.44 29999.33 22896.73 33385.49 33985.90 33595.77 29281.09 26496.00 34776.00 37182.49 31793.30 340
v7n89.65 30788.29 31293.72 29492.22 35390.56 29699.07 25797.10 29685.42 34186.73 32194.72 33580.06 27697.13 29181.14 34878.12 35193.49 335
dmvs_testset83.79 34286.07 32676.94 37292.14 35448.60 40796.75 35590.27 39789.48 27678.65 36798.55 20479.25 28286.65 39566.85 38682.69 31595.57 256
PS-MVSNAJss93.64 21993.31 21694.61 25692.11 35592.19 25899.12 24897.38 26892.51 20388.45 29796.99 25891.20 15597.29 28394.36 20087.71 28194.36 275
pmmvs590.17 29889.09 29993.40 30392.10 35689.77 31399.74 15895.58 36385.88 33387.24 31895.74 29373.41 33296.48 32688.54 28983.56 31293.95 314
N_pmnet80.06 35280.78 35077.89 37191.94 35745.28 40998.80 29056.82 41178.10 37680.08 36293.33 35577.03 29995.76 35068.14 38482.81 31492.64 351
test_djsdf92.83 23892.29 23994.47 26691.90 35892.46 25399.55 19897.27 28091.17 24489.96 26196.07 28881.10 26396.89 30994.67 19588.91 25794.05 305
SixPastTwentyTwo88.73 31588.01 31690.88 33391.85 35982.24 36598.22 32495.18 37388.97 28682.26 35096.89 26071.75 33796.67 32084.00 33082.98 31393.72 331
K. test v388.05 31987.24 32190.47 33891.82 36082.23 36698.96 27197.42 26489.05 28176.93 37595.60 29968.49 35195.42 35385.87 32181.01 33393.75 327
OurMVSNet-221017-089.81 30489.48 29490.83 33591.64 36181.21 37298.17 32695.38 36891.48 23485.65 33697.31 24572.66 33397.29 28388.15 29484.83 30293.97 313
mvs_tets91.81 25991.08 26194.00 28491.63 36290.58 29598.67 30197.43 26292.43 20587.37 31697.05 25571.76 33697.32 27994.75 19288.68 26394.11 300
Gipumacopyleft66.95 36565.00 36572.79 37791.52 36367.96 38966.16 40095.15 37447.89 39858.54 39567.99 40029.74 39787.54 39450.20 39977.83 35362.87 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14095.74 14998.32 11891.47 36495.56 16699.84 12597.30 27697.74 1897.89 13999.35 12779.62 27999.85 10899.25 5499.24 11999.55 139
jajsoiax91.92 25791.18 26094.15 27691.35 36590.95 28799.00 26797.42 26492.61 19487.38 31597.08 25272.46 33497.36 27394.53 19888.77 26194.13 299
MDA-MVSNet-bldmvs84.09 34081.52 34791.81 32891.32 36688.00 33598.67 30195.92 35680.22 37055.60 39893.32 35668.29 35393.60 37473.76 37376.61 36493.82 325
MVP-Stereo90.93 27690.45 27192.37 32291.25 36788.76 32198.05 33196.17 35187.27 31584.04 34295.30 31778.46 29397.27 28583.78 33399.70 8491.09 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33183.32 33992.10 32490.96 36888.58 32799.20 24396.52 34279.70 37257.12 39792.69 36179.11 28593.86 37177.10 36777.46 35793.86 322
YYNet185.50 33283.33 33892.00 32590.89 36988.38 33199.22 24296.55 34179.60 37357.26 39692.72 36079.09 28793.78 37277.25 36677.37 35893.84 323
anonymousdsp91.79 26490.92 26394.41 27190.76 37092.93 24198.93 27497.17 28889.08 28087.46 31495.30 31778.43 29496.92 30892.38 23688.73 26293.39 338
lessismore_v090.53 33690.58 37180.90 37595.80 35777.01 37495.84 29066.15 36196.95 30583.03 33775.05 36893.74 330
EG-PatchMatch MVS85.35 33383.81 33689.99 34390.39 37281.89 36898.21 32596.09 35381.78 36474.73 38193.72 35351.56 38997.12 29379.16 35988.61 26490.96 368
EGC-MVSNET69.38 35863.76 36886.26 36190.32 37381.66 37196.24 36493.85 3860.99 4083.22 40992.33 36652.44 38692.92 37959.53 39584.90 30184.21 389
CMPMVSbinary61.59 2184.75 33685.14 33183.57 36590.32 37362.54 39396.98 35197.59 24774.33 38669.95 38796.66 26864.17 36798.32 22887.88 29888.41 26989.84 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 33982.92 34289.21 34790.03 37582.60 36296.89 35495.62 36280.59 36875.77 38089.17 37765.04 36694.79 36372.12 37781.02 33290.23 373
pmmvs685.69 32883.84 33591.26 33290.00 37684.41 35597.82 33696.15 35275.86 38081.29 35695.39 31261.21 37696.87 31183.52 33673.29 37092.50 354
DSMNet-mixed88.28 31888.24 31388.42 35589.64 37775.38 38498.06 33089.86 39885.59 33888.20 30492.14 36776.15 31391.95 38478.46 36196.05 19597.92 231
UnsupCasMVSNet_eth85.52 33083.99 33290.10 34189.36 37883.51 35996.65 35697.99 20989.14 27975.89 37993.83 35163.25 37093.92 36981.92 34567.90 38492.88 348
Anonymous2023120686.32 32685.42 32989.02 34989.11 37980.53 37899.05 26295.28 36985.43 34082.82 34893.92 35074.40 32793.44 37566.99 38581.83 32393.08 345
Anonymous2024052185.15 33483.81 33689.16 34888.32 38082.69 36198.80 29095.74 35879.72 37181.53 35590.99 37065.38 36494.16 36772.69 37581.11 33090.63 371
OpenMVS_ROBcopyleft79.82 2083.77 34381.68 34690.03 34288.30 38182.82 36098.46 31095.22 37173.92 38776.00 37891.29 36955.00 38396.94 30668.40 38388.51 26890.34 372
test20.0384.72 33783.99 33286.91 35988.19 38280.62 37798.88 27995.94 35588.36 30178.87 36594.62 34068.75 34989.11 39066.52 38775.82 36591.00 367
KD-MVS_self_test83.59 34482.06 34488.20 35686.93 38380.70 37697.21 34496.38 34682.87 35882.49 34988.97 37867.63 35592.32 38273.75 37462.30 39391.58 364
MIMVSNet182.58 34580.51 35188.78 35186.68 38484.20 35696.65 35695.41 36678.75 37478.59 36892.44 36251.88 38889.76 38965.26 39078.95 34592.38 357
CL-MVSNet_self_test84.50 33883.15 34188.53 35486.00 38581.79 36998.82 28797.35 27085.12 34283.62 34690.91 37276.66 30591.40 38569.53 38160.36 39492.40 356
UnsupCasMVSNet_bld79.97 35477.03 35988.78 35185.62 38681.98 36793.66 38097.35 27075.51 38370.79 38683.05 39248.70 39094.91 36178.31 36260.29 39589.46 382
Patchmatch-RL test86.90 32485.98 32889.67 34484.45 38775.59 38389.71 39392.43 39186.89 32277.83 37290.94 37194.22 8193.63 37387.75 29969.61 37699.79 97
pmmvs-eth3d84.03 34181.97 34590.20 34084.15 38887.09 34098.10 32994.73 37783.05 35674.10 38387.77 38465.56 36394.01 36881.08 34969.24 37889.49 381
test_fmvs379.99 35380.17 35279.45 37084.02 38962.83 39199.05 26293.49 38988.29 30380.06 36386.65 38728.09 39988.00 39188.63 28673.27 37187.54 387
PM-MVS80.47 35078.88 35585.26 36283.79 39072.22 38695.89 37191.08 39585.71 33776.56 37788.30 38036.64 39593.90 37082.39 34169.57 37789.66 380
new-patchmatchnet81.19 34779.34 35486.76 36082.86 39180.36 37997.92 33395.27 37082.09 36372.02 38486.87 38662.81 37290.74 38871.10 37863.08 39189.19 384
mvsany_test382.12 34681.14 34885.06 36381.87 39270.41 38797.09 34892.14 39291.27 24377.84 37188.73 37939.31 39495.49 35190.75 26371.24 37389.29 383
WB-MVS76.28 35677.28 35873.29 37681.18 39354.68 40197.87 33594.19 38181.30 36569.43 38890.70 37377.02 30082.06 39935.71 40468.11 38383.13 390
test_f78.40 35577.59 35780.81 36980.82 39462.48 39496.96 35293.08 39083.44 35574.57 38284.57 39127.95 40092.63 38084.15 32872.79 37287.32 388
SSC-MVS75.42 35776.40 36072.49 38080.68 39553.62 40297.42 34094.06 38380.42 36968.75 38990.14 37576.54 30781.66 40033.25 40566.34 38782.19 391
pmmvs380.27 35177.77 35687.76 35880.32 39682.43 36498.23 32391.97 39372.74 38978.75 36687.97 38357.30 38290.99 38770.31 37962.37 39289.87 376
testf168.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
APD_test268.38 36166.92 36272.78 37878.80 39750.36 40490.95 39187.35 40355.47 39458.95 39388.14 38120.64 40487.60 39257.28 39664.69 38880.39 393
ambc83.23 36677.17 39962.61 39287.38 39594.55 38076.72 37686.65 38730.16 39696.36 33184.85 32769.86 37590.73 370
test_vis3_rt68.82 35966.69 36475.21 37576.24 40060.41 39696.44 35968.71 41075.13 38450.54 40169.52 39916.42 40996.32 33380.27 35266.92 38668.89 397
TDRefinement84.76 33582.56 34391.38 33174.58 40184.80 35497.36 34294.56 37984.73 34780.21 36196.12 28763.56 36998.39 21887.92 29763.97 39090.95 369
E-PMN52.30 36952.18 37152.67 38671.51 40245.40 40893.62 38176.60 40836.01 40243.50 40364.13 40227.11 40167.31 40531.06 40626.06 40145.30 404
EMVS51.44 37151.22 37352.11 38770.71 40344.97 41094.04 37775.66 40935.34 40442.40 40461.56 40528.93 39865.87 40627.64 40724.73 40245.49 403
PMMVS267.15 36464.15 36776.14 37470.56 40462.07 39593.89 37887.52 40258.09 39360.02 39278.32 39422.38 40384.54 39759.56 39447.03 39981.80 392
FPMVS68.72 36068.72 36168.71 38265.95 40544.27 41195.97 37094.74 37651.13 39753.26 39990.50 37425.11 40283.00 39860.80 39380.97 33478.87 395
wuyk23d20.37 37520.84 37818.99 39065.34 40627.73 41350.43 4017.67 4149.50 4078.01 4086.34 4086.13 41226.24 40723.40 40810.69 4062.99 405
LCM-MVSNet67.77 36364.73 36676.87 37362.95 40756.25 40089.37 39493.74 38744.53 39961.99 39180.74 39320.42 40686.53 39669.37 38259.50 39687.84 385
MVEpermissive53.74 2251.54 37047.86 37462.60 38459.56 40850.93 40379.41 39877.69 40735.69 40336.27 40561.76 4045.79 41369.63 40337.97 40336.61 40067.24 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36752.24 37067.66 38349.27 40956.82 39983.94 39682.02 40670.47 39033.28 40664.54 40117.23 40869.16 40445.59 40123.85 40377.02 396
tmp_tt65.23 36662.94 36972.13 38144.90 41050.03 40681.05 39789.42 40138.45 40048.51 40299.90 1854.09 38578.70 40291.84 24518.26 40487.64 386
PMVScopyleft49.05 2353.75 36851.34 37260.97 38540.80 41134.68 41274.82 39989.62 40037.55 40128.67 40772.12 3967.09 41181.63 40143.17 40268.21 38266.59 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37339.14 37633.31 38819.94 41224.83 41498.36 3179.75 41315.53 40651.31 40087.14 38519.62 40717.74 40847.10 4003.47 40757.36 401
testmvs40.60 37244.45 37529.05 38919.49 41314.11 41599.68 17518.47 41220.74 40564.59 39098.48 20910.95 41017.09 40956.66 39811.01 40555.94 402
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.02 4090.00 4140.00 4100.00 4090.00 4080.00 406
eth-test20.00 414
eth-test0.00 414
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.43 37431.24 3770.00 3910.00 4140.00 4160.00 40298.09 2010.00 4090.00 41099.67 9483.37 2460.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.60 37710.13 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 41091.20 1550.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.28 37611.04 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.40 1210.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.97 28486.10 319
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6599.59 130
sam_mvs94.25 80
MTGPAbinary98.28 179
test_post195.78 37259.23 40693.20 11297.74 26391.06 254
test_post63.35 40394.43 7098.13 243
patchmatchnet-post91.70 36895.12 5197.95 254
MTMP99.87 10496.49 343
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3499.78 27100.00 1
旧先验299.46 21394.21 13099.85 999.95 6996.96 154
新几何299.40 217
无先验99.49 20898.71 6693.46 160100.00 194.36 20099.99 23
原ACMM299.90 90
testdata299.99 3690.54 267
segment_acmp96.68 26
testdata199.28 23796.35 69
plane_prior597.87 22398.37 22497.79 12989.55 25194.52 260
plane_prior498.59 197
plane_prior391.64 27696.63 5693.01 224
plane_prior299.84 12596.38 65
plane_prior91.74 27099.86 11796.76 5289.59 250
n20.00 415
nn0.00 415
door-mid89.69 399
test1198.44 123
door90.31 396
HQP5-MVS91.85 266
BP-MVS97.92 121
HQP4-MVS93.37 22098.39 21894.53 258
HQP3-MVS97.89 22189.60 248
HQP2-MVS80.65 270
MDTV_nov1_ep13_2view96.26 13596.11 36691.89 22198.06 13394.40 7294.30 20299.67 113
ACMMP++_ref87.04 286
ACMMP++88.23 273
Test By Simon92.82 123