This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10396.80 10798.51 11699.99 195.60 17199.09 23098.84 4893.32 15496.74 15799.72 8786.04 215100.00 198.01 10999.43 11699.94 84
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5698.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6498.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14695.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16399.96 2598.35 15489.90 24998.36 11799.79 6491.18 15999.99 4098.37 9499.99 2299.99 24
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 11192.06 20298.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11995.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 7094.77 9499.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8494.87 9299.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 7095.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7294.77 9499.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6898.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13199.97 1898.39 14294.43 10998.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
test_one_060199.94 1499.30 1198.41 13596.63 3999.75 2799.93 1197.49 9
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8495.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 119100.00 199.99 5100.00 1100.00 1
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6195.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
X-MVStestdata93.83 19592.06 22499.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6141.37 37594.34 7999.96 5798.92 6499.95 5599.99 24
test_prior99.43 3899.94 1498.49 6198.65 6199.80 11099.99 24
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4697.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 14297.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 14294.70 9798.26 12399.81 5991.84 148100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15793.97 13299.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15299.82 11798.43 11994.56 10497.52 13999.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1997.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11997.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13597.71 899.84 8100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11997.26 2299.80 1699.88 2496.71 23100.00 1
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10694.56 10499.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15997.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13197.28 1899.86 499.94 497.22 18
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13197.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11994.63 10299.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
agg_prior99.93 2798.77 4098.43 11999.63 4099.85 98
FOURS199.92 3697.66 9199.95 4398.36 15195.58 7299.52 53
ZD-MVS99.92 3698.57 5598.52 9192.34 19399.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 14294.04 13098.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
TEST999.92 3698.92 2799.96 2598.43 11993.90 13799.71 3599.86 3195.88 3799.85 98
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11994.35 11499.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 11994.35 11499.69 3799.85 3595.94 3499.85 98
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1793.90 13799.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15299.18 22599.45 1894.84 9396.41 16899.71 8991.40 15299.99 4097.99 11198.03 15399.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11996.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
MSC_two_6792asdad99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7897.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 15194.08 12599.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10498.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 11197.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 5099.25 1799.49 55
CSCG97.10 10697.04 10097.27 17299.89 5091.92 25699.90 7899.07 3288.67 26995.26 18899.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
test117298.38 5498.25 4898.77 9399.88 5496.56 13499.80 12498.36 15194.68 9999.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 11194.31 11798.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15494.92 8999.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
9.1498.38 3999.87 5799.91 7498.33 15793.22 15799.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14693.19 15899.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5190.78 23699.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9196.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9196.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
LS3D95.84 14895.11 15898.02 14099.85 6095.10 18598.74 27398.50 10287.22 28993.66 20699.86 3187.45 20299.95 6490.94 24199.81 9199.02 197
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9195.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9195.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 14099.90 7898.17 18292.61 18098.62 10699.57 10791.87 14799.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14993.81 14099.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13399.40 19898.51 9895.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 24297.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 13997.66 10
PLCcopyleft95.54 397.93 7397.89 7098.05 13999.82 7094.77 19599.92 7098.46 10693.93 13597.20 14599.27 13195.44 4799.97 5597.41 12999.51 11299.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13299.82 11798.30 16493.95 13499.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14399.36 20798.50 10295.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13799.88 8998.16 18591.75 21198.94 9199.54 11091.82 14999.65 14297.62 12699.99 2299.99 24
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17693.53 14999.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
旧先验199.76 7997.52 9698.64 6499.85 3595.63 4299.94 6199.99 24
OMC-MVS97.28 10097.23 9297.41 16499.76 7993.36 22699.65 16197.95 20396.03 5897.41 14299.70 9189.61 17899.51 14796.73 14698.25 14499.38 170
新几何199.42 4199.75 8198.27 6998.63 6792.69 17599.55 4899.82 5594.40 74100.00 191.21 23299.94 6199.99 24
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 18193.35 15396.45 16599.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14696.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29698.62 6892.78 17099.53 5099.83 5195.08 53100.00 194.36 18599.92 7199.99 24
test1299.43 3899.74 8298.56 5798.40 13999.65 3894.76 6699.75 12599.98 3599.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9894.06 12899.62 4399.85 3594.97 6299.96 5795.11 16299.95 5599.92 91
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15799.99 24
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9897.00 2898.52 10999.71 8987.80 19899.95 6499.75 2699.38 11799.83 100
F-COLMAP96.93 11296.95 10396.87 18199.71 8991.74 26199.85 10697.95 20393.11 16195.72 18199.16 14192.35 13799.94 7295.32 16099.35 11898.92 199
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15696.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_697.67 8697.34 8898.66 10099.68 9196.11 15599.68 15598.14 18893.80 14199.27 7599.70 9188.65 19499.98 4697.46 12899.72 9699.89 94
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14994.68 9999.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27399.63 9381.76 35099.96 2598.56 7899.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12699.90 7899.51 1697.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 17292.18 19799.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
PVSNet_BlendedMVS96.05 14395.82 14196.72 18699.59 9596.99 11999.95 4399.10 2994.06 12898.27 12195.80 26789.00 18999.95 6499.12 5187.53 25993.24 322
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2995.38 7698.27 12199.08 14489.00 18999.95 6499.12 5199.25 12099.57 145
PatchMatch-RL96.04 14495.40 14897.95 14199.59 9595.22 18399.52 18299.07 3293.96 13396.49 16498.35 19982.28 24299.82 10990.15 25599.22 12398.81 206
test22299.55 9997.41 10799.34 20898.55 8491.86 20699.27 7599.83 5193.84 9999.95 5599.99 24
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12499.87 9298.14 18893.78 14296.55 16399.69 9492.28 13999.98 4697.13 13599.44 11599.93 85
API-MVS97.86 7597.66 7498.47 11899.52 10195.41 17599.47 19198.87 4591.68 21298.84 9399.85 3592.34 13899.99 4098.44 9299.96 52100.00 1
PVSNet91.05 1397.13 10596.69 11098.45 12099.52 10195.81 16199.95 4399.65 1194.73 9699.04 8599.21 13984.48 22999.95 6494.92 16798.74 13299.58 144
114514_t97.41 9696.83 10599.14 6699.51 10397.83 8499.89 8698.27 16988.48 27399.06 8499.66 10090.30 17199.64 14396.32 14999.97 4899.96 74
cl2293.77 19993.25 20395.33 22099.49 10494.43 20099.61 16998.09 19190.38 24089.16 26595.61 27490.56 16997.34 25991.93 22484.45 28094.21 266
testdata98.42 12399.47 10595.33 17798.56 7893.78 14299.79 2399.85 3593.64 10499.94 7294.97 16599.94 61100.00 1
MAR-MVS97.43 9297.19 9398.15 13599.47 10594.79 19499.05 24198.76 5292.65 17898.66 10499.82 5588.52 19599.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 18193.42 19697.91 14499.46 10794.04 20698.93 25397.48 24781.15 33990.04 23999.55 10887.02 20799.95 6488.97 26498.11 14899.73 112
MVS_111021_LR98.42 4998.38 3998.53 11599.39 10895.79 16299.87 9299.86 296.70 3798.78 9699.79 6492.03 14499.90 7999.17 5099.86 8399.88 96
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28999.42 2197.03 2799.02 8699.09 14399.35 198.21 22499.73 3199.78 9299.77 108
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 11197.96 799.55 4899.94 497.18 20100.00 193.81 19899.94 6199.98 55
TAPA-MVS92.12 894.42 18593.60 18996.90 18099.33 11191.78 26099.78 12898.00 19789.89 25094.52 19499.47 11491.97 14599.18 16169.90 35399.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DeepC-MVS94.51 496.92 11396.40 11998.45 12099.16 11595.90 15999.66 15898.06 19496.37 5094.37 19799.49 11383.29 23899.90 7997.63 12599.61 10599.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7497.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Anonymous20240521193.10 21391.99 22596.40 19799.10 11789.65 30098.88 25897.93 20583.71 32894.00 20298.75 17868.79 32899.88 8995.08 16391.71 22799.68 118
HyFIR lowres test96.66 12696.43 11897.36 16999.05 11893.91 21199.70 15299.80 390.54 23896.26 17198.08 20492.15 14298.23 22396.84 14595.46 20199.93 85
LFMVS94.75 17493.56 19298.30 12899.03 11995.70 16898.74 27397.98 20087.81 28298.47 11299.39 12367.43 33699.53 14598.01 10995.20 20699.67 120
AllTest92.48 22791.64 23095.00 23099.01 12088.43 31398.94 25296.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
TestCases95.00 23099.01 12088.43 31396.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
COLMAP_ROBcopyleft90.47 1492.18 23491.49 23694.25 26099.00 12288.04 31998.42 29496.70 32082.30 33688.43 27799.01 14976.97 28599.85 9886.11 29696.50 18194.86 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS92.50 797.79 8197.17 9699.63 1598.98 12399.32 897.49 31799.52 1495.69 6998.32 11997.41 21993.32 11099.77 11998.08 10795.75 19799.81 102
VNet97.21 10496.57 11499.13 7198.97 12497.82 8599.03 24399.21 2894.31 11799.18 8198.88 16986.26 21499.89 8398.93 6394.32 21299.69 117
thres20096.96 11096.21 12299.22 5398.97 12498.84 3499.85 10699.71 693.17 15996.26 17198.88 16989.87 17699.51 14794.26 18994.91 20799.31 179
tfpn200view996.79 11795.99 12799.19 5698.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.27 182
thres40096.78 11895.99 12799.16 6298.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.16 189
Anonymous2023121189.86 28288.44 28894.13 26498.93 12890.68 28098.54 28698.26 17076.28 35086.73 29995.54 27870.60 32497.56 25090.82 24480.27 31594.15 275
canonicalmvs97.09 10896.32 12099.39 4698.93 12898.95 2599.72 15097.35 26094.45 10797.88 13399.42 11886.71 20999.52 14698.48 9193.97 21799.72 114
EPNet_dtu95.71 15295.39 14996.66 18898.92 13093.41 22399.57 17498.90 4296.19 5497.52 13998.56 19092.65 12997.36 25777.89 33798.33 14099.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1495.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 20099.78 107
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 13293.07 22899.65 16199.80 395.64 7095.39 18598.86 17384.35 23199.90 7996.98 14099.16 12499.95 82
thres100view90096.74 12195.92 13799.18 5798.90 13398.77 4099.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.84 19594.57 20899.27 182
thres600view796.69 12495.87 14099.14 6698.90 13398.78 3999.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.44 20894.50 21199.16 189
MSDG94.37 18793.36 20097.40 16598.88 13593.95 21099.37 20597.38 25885.75 31090.80 23199.17 14084.11 23399.88 8986.35 29398.43 13898.36 212
test_part192.15 23590.72 24596.44 19698.87 13697.46 10398.99 24698.26 17085.89 30586.34 30896.34 25681.71 24697.48 25391.06 23678.99 32094.37 252
h-mvs3394.92 16994.36 17296.59 19198.85 13791.29 27298.93 25398.94 3795.90 5998.77 9798.42 19890.89 16599.77 11997.80 11770.76 34798.72 209
Anonymous2024052992.10 23690.65 24796.47 19298.82 13890.61 28298.72 27598.67 6075.54 35493.90 20498.58 18866.23 33999.90 7994.70 17890.67 22898.90 202
PVSNet_Blended_VisFu97.27 10196.81 10698.66 10098.81 13996.67 12999.92 7098.64 6494.51 10696.38 16998.49 19289.05 18899.88 8997.10 13798.34 13999.43 166
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 18297.34 1699.85 699.85 3591.20 15699.89 8399.41 4499.67 9998.69 210
CANet_DTU96.76 11996.15 12398.60 10598.78 14197.53 9599.84 11097.63 22597.25 2399.20 7799.64 10281.36 25299.98 4692.77 21898.89 12898.28 213
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 11194.40 11398.41 11499.47 11493.65 10399.42 15598.57 8894.26 21399.67 120
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 11196.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19397.05 2699.86 499.86 3190.65 16799.71 13399.39 4598.63 13498.69 210
miper_enhance_ethall94.36 18993.98 18195.49 21498.68 14595.24 18199.73 14797.29 26693.28 15689.86 24495.97 26594.37 7897.05 27992.20 22284.45 28094.19 267
test250697.53 8997.19 9398.58 10898.66 14696.90 12398.81 26899.77 594.93 8697.95 13098.96 15892.51 13399.20 15994.93 16698.15 14599.64 126
ECVR-MVScopyleft95.66 15495.05 15997.51 16098.66 14693.71 21598.85 26598.45 10894.93 8696.86 15398.96 15875.22 30399.20 15995.34 15998.15 14599.64 126
test111195.57 15694.98 16197.37 16798.56 14893.37 22598.86 26298.45 10894.95 8596.63 15998.95 16275.21 30499.11 16395.02 16498.14 14799.64 126
MVSTER95.53 15795.22 15496.45 19498.56 14897.72 8699.91 7497.67 22392.38 19291.39 22597.14 22697.24 1797.30 26294.80 17287.85 25494.34 257
VDD-MVS93.77 19992.94 20596.27 20198.55 15090.22 29098.77 27297.79 21890.85 23496.82 15599.42 11861.18 35499.77 11998.95 6194.13 21498.82 205
tpmvs94.28 19193.57 19196.40 19798.55 15091.50 27095.70 34498.55 8487.47 28492.15 22094.26 32491.42 15198.95 16988.15 27395.85 19398.76 208
UGNet95.33 16194.57 16997.62 15698.55 15094.85 19098.67 28099.32 2595.75 6896.80 15696.27 25872.18 31799.96 5794.58 18199.05 12698.04 217
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 16394.10 17898.43 12298.55 15095.99 15797.91 31297.31 26590.35 24289.48 25599.22 13885.19 22499.89 8390.40 25298.47 13799.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-w/o95.71 15295.38 15096.68 18798.49 15492.28 24799.84 11097.50 24592.12 19992.06 22198.79 17784.69 22798.67 18595.29 16199.66 10099.09 195
baseline195.78 14994.86 16398.54 11398.47 15598.07 7499.06 23797.99 19892.68 17694.13 20198.62 18593.28 11398.69 18493.79 20085.76 26898.84 204
EPMVS96.53 12996.01 12698.09 13798.43 15696.12 15496.36 33399.43 2093.53 14997.64 13795.04 30294.41 7398.38 20891.13 23498.11 14899.75 110
sss97.57 8897.03 10199.18 5798.37 15798.04 7699.73 14799.38 2293.46 15198.76 9999.06 14591.21 15599.89 8396.33 14897.01 17399.62 132
BH-untuned95.18 16394.83 16496.22 20298.36 15891.22 27399.80 12497.32 26490.91 23291.08 22898.67 18183.51 23598.54 19194.23 19099.61 10598.92 199
ET-MVSNet_ETH3D94.37 18793.28 20297.64 15498.30 15997.99 7899.99 597.61 23094.35 11471.57 35899.45 11796.23 3095.34 33396.91 14485.14 27599.59 138
AUN-MVS93.28 20992.60 21195.34 21998.29 16090.09 29399.31 21298.56 7891.80 21096.35 17098.00 20789.38 18198.28 21792.46 21969.22 35297.64 224
FMVSNet392.69 22391.58 23295.99 20698.29 16097.42 10699.26 22097.62 22789.80 25189.68 24895.32 29281.62 25096.27 31587.01 28985.65 26994.29 259
RRT_MVS95.23 16294.77 16696.61 19098.28 16298.32 6799.81 11997.41 25592.59 18291.28 22797.76 21395.02 5797.23 26893.65 20587.14 26194.28 260
PMMVS96.76 11996.76 10896.76 18498.28 16292.10 25199.91 7497.98 20094.12 12399.53 5099.39 12386.93 20898.73 18096.95 14297.73 15599.45 163
hse-mvs294.38 18694.08 17995.31 22198.27 16490.02 29499.29 21798.56 7895.90 5998.77 9798.00 20790.89 16598.26 22197.80 11769.20 35397.64 224
PVSNet_088.03 1991.80 24390.27 25596.38 19998.27 16490.46 28699.94 6099.61 1293.99 13186.26 31097.39 22171.13 32399.89 8398.77 7767.05 35798.79 207
DWT-MVSNet_test97.31 9997.19 9397.66 15398.24 16694.67 19698.86 26298.20 18093.60 14898.09 12698.89 16797.51 798.78 17594.04 19297.28 16699.55 147
UA-Net96.54 12895.96 13498.27 12998.23 16795.71 16798.00 31098.45 10893.72 14598.41 11499.27 13188.71 19399.66 14191.19 23397.69 15699.44 165
GG-mvs-BLEND98.54 11398.21 16898.01 7793.87 34998.52 9197.92 13197.92 21199.02 297.94 24098.17 10099.58 10799.67 120
mvs_anonymous95.65 15595.03 16097.53 15798.19 16995.74 16599.33 20997.49 24690.87 23390.47 23597.10 22888.23 19697.16 27095.92 15497.66 15899.68 118
MVS_Test96.46 13195.74 14298.61 10498.18 17097.23 11099.31 21297.15 27891.07 22998.84 9397.05 23288.17 19798.97 16894.39 18497.50 16099.61 135
BH-RMVSNet95.18 16394.31 17497.80 14598.17 17195.23 18299.76 13697.53 24092.52 18794.27 19999.25 13576.84 28798.80 17390.89 24399.54 10999.35 175
RPSCF91.80 24392.79 20888.83 33098.15 17269.87 36498.11 30696.60 32383.93 32694.33 19899.27 13179.60 27099.46 15491.99 22393.16 22497.18 228
ETV-MVS97.92 7497.80 7298.25 13098.14 17396.48 13599.98 1097.63 22595.61 7199.29 7499.46 11692.55 13298.82 17299.02 6098.54 13599.46 161
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 19399.08 23297.61 23092.02 20395.54 18498.96 15890.64 16898.08 22993.73 20397.41 16499.47 160
ab-mvs94.69 17593.42 19698.51 11698.07 17596.26 14496.49 33298.68 5790.31 24394.54 19397.00 23476.30 29399.71 13395.98 15393.38 22299.56 146
XVG-OURS-SEG-HR94.79 17194.70 16895.08 22798.05 17689.19 30399.08 23297.54 23893.66 14694.87 19199.58 10678.78 27699.79 11397.31 13193.40 22196.25 232
EIA-MVS97.53 8997.46 8297.76 15098.04 17794.84 19199.98 1097.61 23094.41 11297.90 13299.59 10592.40 13698.87 17098.04 10899.13 12599.59 138
XVG-OURS94.82 17094.74 16795.06 22898.00 17889.19 30399.08 23297.55 23694.10 12494.71 19299.62 10380.51 26399.74 12996.04 15293.06 22596.25 232
dp95.05 16694.43 17196.91 17997.99 17992.73 23796.29 33597.98 20089.70 25295.93 17694.67 31593.83 10098.45 19786.91 29296.53 18099.54 151
tpmrst96.27 14195.98 12997.13 17497.96 18093.15 22796.34 33498.17 18292.07 20098.71 10295.12 30093.91 9698.73 18094.91 16996.62 17899.50 158
TR-MVS94.54 18193.56 19297.49 16197.96 18094.34 20298.71 27697.51 24490.30 24494.51 19598.69 18075.56 29898.77 17792.82 21795.99 18999.35 175
Vis-MVSNet (Re-imp)96.32 13695.98 12997.35 17097.93 18294.82 19299.47 19198.15 18791.83 20795.09 18999.11 14291.37 15397.47 25493.47 20797.43 16199.74 111
MDTV_nov1_ep1395.69 14397.90 18394.15 20495.98 34098.44 11193.12 16097.98 12995.74 26995.10 5298.58 18890.02 25696.92 175
Fast-Effi-MVS+95.02 16794.19 17597.52 15997.88 18494.55 19899.97 1897.08 28588.85 26694.47 19697.96 21084.59 22898.41 20089.84 25897.10 17099.59 138
RRT_test8_iter0594.58 18094.11 17795.98 20797.88 18496.11 15599.89 8697.45 24891.66 21388.28 28096.71 24496.53 2797.40 25594.73 17783.85 28894.45 248
ADS-MVSNet293.80 19893.88 18493.55 28597.87 18685.94 32894.24 34596.84 31090.07 24696.43 16694.48 32090.29 17295.37 33287.44 28097.23 16799.36 173
ADS-MVSNet94.79 17194.02 18097.11 17697.87 18693.79 21294.24 34598.16 18590.07 24696.43 16694.48 32090.29 17298.19 22587.44 28097.23 16799.36 173
Effi-MVS+96.30 13895.69 14398.16 13297.85 18896.26 14497.41 31897.21 27190.37 24198.65 10598.58 18886.61 21198.70 18397.11 13697.37 16599.52 154
PatchmatchNetpermissive95.94 14695.45 14797.39 16697.83 18994.41 20196.05 33998.40 13992.86 16497.09 14895.28 29794.21 8998.07 23189.26 26298.11 14899.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 17893.61 18797.74 15297.82 19096.26 14499.96 2597.78 21985.76 30894.00 20297.54 21676.95 28699.21 15897.23 13395.43 20297.76 223
1112_ss96.01 14595.20 15598.42 12397.80 19196.41 13899.65 16196.66 32192.71 17392.88 21699.40 12192.16 14199.30 15691.92 22593.66 21899.55 147
Test_1112_low_res95.72 15094.83 16498.42 12397.79 19296.41 13899.65 16196.65 32292.70 17492.86 21796.13 26292.15 14299.30 15691.88 22693.64 21999.55 147
Effi-MVS+-dtu94.53 18395.30 15292.22 30397.77 19382.54 34399.59 17197.06 28794.92 8995.29 18795.37 29085.81 21697.89 24194.80 17297.07 17196.23 234
mvs-test195.53 15795.97 13294.20 26197.77 19385.44 33299.95 4397.06 28794.92 8996.58 16198.72 17985.81 21698.98 16794.80 17298.11 14898.18 214
tpm cat193.51 20592.52 21696.47 19297.77 19391.47 27196.13 33798.06 19480.98 34092.91 21593.78 32889.66 17798.87 17087.03 28896.39 18399.09 195
xiu_mvs_v1_base_debu97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base_debi97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
EPP-MVSNet96.69 12496.60 11296.96 17897.74 19693.05 23099.37 20598.56 7888.75 26795.83 17999.01 14996.01 3198.56 18996.92 14397.20 16999.25 184
gg-mvs-nofinetune93.51 20591.86 22998.47 11897.72 20097.96 8192.62 35398.51 9874.70 35697.33 14369.59 36798.91 397.79 24397.77 12299.56 10899.67 120
IB-MVS92.85 694.99 16893.94 18298.16 13297.72 20095.69 16999.99 598.81 4994.28 11992.70 21896.90 23695.08 5399.17 16296.07 15173.88 34599.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9697.02 10298.59 10797.71 20297.52 9699.97 1898.54 8891.83 20797.45 14199.04 14697.50 899.10 16494.75 17596.37 18499.16 189
diffmvs97.00 10996.64 11198.09 13797.64 20396.17 15199.81 11997.19 27294.67 10198.95 9099.28 12886.43 21298.76 17898.37 9497.42 16399.33 177
Vis-MVSNetpermissive95.72 15095.15 15797.45 16297.62 20494.28 20399.28 21898.24 17294.27 12096.84 15498.94 16479.39 27198.76 17893.25 20998.49 13699.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10696.72 10998.22 13197.60 20596.70 12799.92 7098.54 8891.11 22897.07 14998.97 15697.47 1199.03 16593.73 20396.09 18798.92 199
miper_ehance_all_eth93.16 21192.60 21194.82 23797.57 20693.56 21899.50 18697.07 28688.75 26788.85 26995.52 28090.97 16296.74 29690.77 24584.45 28094.17 268
LCM-MVSNet-Re92.31 23192.60 21191.43 31197.53 20779.27 36099.02 24491.83 36792.07 20080.31 33994.38 32383.50 23695.48 33097.22 13497.58 15999.54 151
GBi-Net90.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
test190.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
FMVSNet291.02 25589.56 26795.41 21897.53 20795.74 16598.98 24797.41 25587.05 29088.43 27795.00 30571.34 32096.24 31785.12 30185.21 27494.25 263
CS-MVS97.74 8397.61 7798.15 13597.52 21196.69 128100.00 197.11 28294.93 8699.73 2999.41 12091.68 15098.25 22298.84 7199.24 12199.52 154
tttt051796.85 11496.49 11697.92 14397.48 21295.89 16099.85 10698.54 8890.72 23796.63 15998.93 16697.47 1199.02 16693.03 21695.76 19698.85 203
CS-MVS-test97.44 9197.41 8497.53 15797.46 21394.66 197100.00 197.04 29194.69 9899.72 3399.25 13591.22 15498.29 21498.33 9798.95 12799.64 126
DROMVSNet97.38 9897.24 9197.80 14597.41 21495.64 17099.99 597.06 28794.59 10399.63 4099.32 12789.20 18798.14 22698.76 7899.23 12299.62 132
c3_l92.53 22691.87 22894.52 24897.40 21592.99 23199.40 19896.93 30487.86 28088.69 27295.44 28489.95 17596.44 30890.45 24980.69 31194.14 278
CDS-MVSNet96.34 13596.07 12497.13 17497.37 21694.96 18899.53 18197.91 20891.55 21695.37 18698.32 20095.05 5697.13 27393.80 19995.75 19799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12196.26 12198.16 13297.36 21796.48 13599.96 2598.29 16591.93 20495.77 18098.07 20595.54 4398.29 21490.55 24798.89 12899.70 115
miper_lstm_enhance91.81 24091.39 23893.06 29597.34 21889.18 30599.38 20396.79 31586.70 29787.47 29195.22 29890.00 17495.86 32888.26 27181.37 30194.15 275
baseline96.43 13295.98 12997.76 15097.34 21895.17 18499.51 18497.17 27593.92 13696.90 15299.28 12885.37 22298.64 18697.50 12796.86 17799.46 161
cl____92.31 23191.58 23294.52 24897.33 22092.77 23399.57 17496.78 31686.97 29487.56 28995.51 28189.43 18096.62 30288.60 26682.44 29394.16 273
DIV-MVS_self_test92.32 23091.60 23194.47 25297.31 22192.74 23599.58 17296.75 31786.99 29387.64 28795.54 27889.55 17996.50 30688.58 26782.44 29394.17 268
casdiffmvs96.42 13395.97 13297.77 14997.30 22294.98 18799.84 11097.09 28493.75 14496.58 16199.26 13485.07 22598.78 17597.77 12297.04 17299.54 151
GeoE94.36 18993.48 19496.99 17797.29 22393.54 21999.96 2596.72 31988.35 27693.43 20798.94 16482.05 24398.05 23288.12 27596.48 18299.37 172
eth_miper_zixun_eth92.41 22991.93 22693.84 27697.28 22490.68 28098.83 26696.97 29988.57 27289.19 26495.73 27189.24 18696.69 30089.97 25781.55 29994.15 275
MVSFormer96.94 11196.60 11297.95 14197.28 22497.70 8999.55 17897.27 26891.17 22599.43 5999.54 11090.92 16396.89 28994.67 17999.62 10299.25 184
lupinMVS97.85 7697.60 7898.62 10397.28 22497.70 8999.99 597.55 23695.50 7599.43 5999.67 9890.92 16398.71 18298.40 9399.62 10299.45 163
SCA94.69 17593.81 18697.33 17197.10 22794.44 19998.86 26298.32 15993.30 15596.17 17395.59 27676.48 29197.95 23891.06 23697.43 16199.59 138
TAMVS95.85 14795.58 14596.65 18997.07 22893.50 22099.17 22697.82 21791.39 22495.02 19098.01 20692.20 14097.30 26293.75 20295.83 19499.14 192
Fast-Effi-MVS+-dtu93.72 20293.86 18593.29 28897.06 22986.16 32699.80 12496.83 31192.66 17792.58 21997.83 21281.39 25197.67 24789.75 25996.87 17696.05 236
MVS_030489.28 29188.31 29092.21 30497.05 23086.53 32597.76 31599.57 1385.58 31393.86 20592.71 33751.04 36596.30 31484.49 30592.72 22693.79 305
CostFormer96.10 14295.88 13996.78 18397.03 23192.55 24397.08 32597.83 21690.04 24898.72 10194.89 30995.01 5998.29 21496.54 14795.77 19599.50 158
test-LLR96.47 13096.04 12597.78 14797.02 23295.44 17399.96 2598.21 17694.07 12695.55 18296.38 25393.90 9798.27 21990.42 25098.83 13099.64 126
test-mter96.39 13495.93 13697.78 14797.02 23295.44 17399.96 2598.21 17691.81 20995.55 18296.38 25395.17 5098.27 21990.42 25098.83 13099.64 126
gm-plane-assit96.97 23493.76 21491.47 21998.96 15898.79 17494.92 167
QAPM95.40 16094.17 17699.10 7296.92 23597.71 8799.40 19898.68 5789.31 25488.94 26898.89 16782.48 24199.96 5793.12 21599.83 8599.62 132
KD-MVS_2432*160088.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
miper_refine_blended88.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
tpm295.47 15995.18 15696.35 20096.91 23691.70 26596.96 32897.93 20588.04 27998.44 11395.40 28693.32 11097.97 23594.00 19395.61 19999.38 170
FMVSNet588.32 29687.47 29890.88 31496.90 23988.39 31597.28 32095.68 34182.60 33584.67 31992.40 34279.83 26991.16 36076.39 34481.51 30093.09 324
3Dnovator+91.53 1196.31 13795.24 15399.52 2996.88 24098.64 5399.72 15098.24 17295.27 8088.42 27998.98 15482.76 24099.94 7297.10 13799.83 8599.96 74
Patchmatch-test92.65 22591.50 23596.10 20596.85 24190.49 28591.50 35897.19 27282.76 33490.23 23695.59 27695.02 5798.00 23477.41 33996.98 17499.82 101
MVS96.60 12795.56 14699.72 1296.85 24199.22 1998.31 29698.94 3791.57 21590.90 23099.61 10486.66 21099.96 5797.36 13099.88 8099.99 24
3Dnovator91.47 1296.28 14095.34 15199.08 7496.82 24397.47 10299.45 19498.81 4995.52 7489.39 25699.00 15181.97 24499.95 6497.27 13299.83 8599.84 99
EI-MVSNet93.73 20193.40 19994.74 23896.80 24492.69 23899.06 23797.67 22388.96 26291.39 22599.02 14788.75 19297.30 26291.07 23587.85 25494.22 264
CVMVSNet94.68 17794.94 16293.89 27596.80 24486.92 32499.06 23798.98 3594.45 10794.23 20099.02 14785.60 21895.31 33490.91 24295.39 20399.43 166
IterMVS-LS92.69 22392.11 22294.43 25696.80 24492.74 23599.45 19496.89 30788.98 26089.65 25195.38 28988.77 19196.34 31290.98 24082.04 29694.22 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 25790.17 25893.12 29296.78 24790.42 28898.89 25697.05 29089.03 25886.49 30495.42 28576.59 29095.02 33687.22 28584.09 28493.93 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11595.96 13499.48 3696.74 24898.52 5998.31 29698.86 4695.82 6189.91 24298.98 15487.49 20199.96 5797.80 11799.73 9599.96 74
IterMVS-SCA-FT90.85 26090.16 25992.93 29696.72 24989.96 29598.89 25696.99 29588.95 26386.63 30195.67 27276.48 29195.00 33787.04 28784.04 28793.84 302
MVS-HIRNet86.22 30583.19 31795.31 22196.71 25090.29 28992.12 35597.33 26362.85 36286.82 29870.37 36669.37 32797.49 25275.12 34697.99 15498.15 215
VDDNet93.12 21291.91 22796.76 18496.67 25192.65 24198.69 27898.21 17682.81 33397.75 13699.28 12861.57 35299.48 15398.09 10694.09 21598.15 215
MIMVSNet90.30 27388.67 28595.17 22696.45 25291.64 26792.39 35497.15 27885.99 30490.50 23493.19 33566.95 33794.86 34082.01 32093.43 22099.01 198
CR-MVSNet93.45 20892.62 21095.94 20896.29 25392.66 23992.01 35696.23 33092.62 17996.94 15093.31 33391.04 16096.03 32479.23 33095.96 19099.13 193
RPMNet89.76 28487.28 29997.19 17396.29 25392.66 23992.01 35698.31 16170.19 36196.94 15085.87 36087.25 20499.78 11562.69 36395.96 19099.13 193
Patchmtry89.70 28588.49 28793.33 28796.24 25589.94 29891.37 35996.23 33078.22 34787.69 28693.31 33391.04 16096.03 32480.18 32982.10 29594.02 285
JIA-IIPM91.76 24690.70 24694.94 23296.11 25687.51 32193.16 35298.13 19075.79 35397.58 13877.68 36492.84 12497.97 23588.47 27096.54 17999.33 177
OpenMVScopyleft90.15 1594.77 17393.59 19098.33 12796.07 25797.48 10199.56 17698.57 7690.46 23986.51 30398.95 16278.57 27899.94 7293.86 19499.74 9497.57 226
PAPM98.60 3498.42 3299.14 6696.05 25898.96 2499.90 7899.35 2496.68 3898.35 11899.66 10096.45 2898.51 19299.45 4199.89 7899.96 74
CLD-MVS94.06 19393.90 18394.55 24796.02 25990.69 27999.98 1097.72 22096.62 4191.05 22998.85 17677.21 28398.47 19398.11 10489.51 23494.48 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 27088.75 28495.25 22495.99 26090.16 29191.22 36097.54 23876.80 34997.26 14486.01 35991.88 14696.07 32366.16 36095.91 19299.51 156
ACMH+89.98 1690.35 27189.54 26892.78 29995.99 26086.12 32798.81 26897.18 27489.38 25383.14 32697.76 21368.42 33298.43 19889.11 26386.05 26793.78 306
DeepMVS_CXcopyleft82.92 34495.98 26258.66 37096.01 33592.72 17278.34 34695.51 28158.29 35798.08 22982.57 31685.29 27292.03 339
ACMP92.05 992.74 22192.42 21893.73 27795.91 26388.72 30899.81 11997.53 24094.13 12287.00 29798.23 20174.07 31198.47 19396.22 15088.86 24193.99 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP-NCC95.78 26499.87 9296.82 3193.37 208
ACMP_Plane95.78 26499.87 9296.82 3193.37 208
HQP-MVS94.61 17994.50 17094.92 23395.78 26491.85 25799.87 9297.89 20996.82 3193.37 20898.65 18280.65 26198.39 20497.92 11589.60 22994.53 238
NP-MVS95.77 26791.79 25998.65 182
plane_prior695.76 26891.72 26480.47 265
ACMM91.95 1092.88 21892.52 21693.98 27295.75 26989.08 30699.77 13197.52 24293.00 16289.95 24197.99 20976.17 29598.46 19693.63 20688.87 24094.39 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 19592.84 20696.80 18295.73 27093.57 21799.88 8997.24 27092.57 18592.92 21496.66 24678.73 27797.67 24787.75 27894.06 21699.17 188
plane_prior195.73 270
jason97.24 10296.86 10498.38 12695.73 27097.32 10899.97 1897.40 25795.34 7898.60 10899.54 11087.70 19998.56 18997.94 11499.47 11399.25 184
jason: jason.
HQP_MVS94.49 18494.36 17294.87 23495.71 27391.74 26199.84 11097.87 21196.38 4793.01 21298.59 18680.47 26598.37 20997.79 12089.55 23294.52 240
plane_prior795.71 27391.59 269
ITE_SJBPF92.38 30195.69 27585.14 33395.71 34092.81 16789.33 25998.11 20370.23 32598.42 19985.91 29788.16 25293.59 314
ACMH89.72 1790.64 26489.63 26593.66 28395.64 27688.64 31198.55 28497.45 24889.03 25881.62 33397.61 21569.75 32698.41 20089.37 26087.62 25893.92 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12396.49 11697.37 16795.63 27795.96 15899.74 14298.88 4492.94 16391.61 22398.97 15697.72 598.62 18794.83 17198.08 15297.53 227
FMVSNet188.50 29586.64 30194.08 26595.62 27891.97 25298.43 29196.95 30083.00 33186.08 31294.72 31159.09 35696.11 31981.82 32284.07 28594.17 268
LPG-MVS_test92.96 21692.71 20993.71 27995.43 27988.67 30999.75 13997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
LGP-MVS_train93.71 27995.43 27988.67 30997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
tpm93.70 20393.41 19894.58 24595.36 28187.41 32297.01 32696.90 30690.85 23496.72 15894.14 32590.40 17096.84 29290.75 24688.54 24899.51 156
D2MVS92.76 22092.59 21493.27 28995.13 28289.54 30299.69 15399.38 2292.26 19587.59 28894.61 31785.05 22697.79 24391.59 22988.01 25392.47 334
VPA-MVSNet92.70 22291.55 23496.16 20395.09 28396.20 14998.88 25899.00 3491.02 23191.82 22295.29 29676.05 29797.96 23795.62 15881.19 30294.30 258
LTVRE_ROB88.28 1890.29 27489.05 27994.02 26895.08 28490.15 29297.19 32297.43 25184.91 32183.99 32297.06 23174.00 31298.28 21784.08 30687.71 25693.62 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 30186.51 30291.94 30795.05 28585.57 33097.65 31694.08 36084.40 32481.82 33296.85 24062.14 35198.33 21180.25 32886.37 26691.91 341
test0.0.03 193.86 19493.61 18794.64 24295.02 28692.18 25099.93 6698.58 7494.07 12687.96 28498.50 19193.90 9794.96 33881.33 32393.17 22396.78 229
UniMVSNet (Re)93.07 21492.13 22195.88 20994.84 28796.24 14899.88 8998.98 3592.49 19089.25 26095.40 28687.09 20697.14 27293.13 21478.16 32694.26 261
USDC90.00 28188.96 28093.10 29494.81 28888.16 31798.71 27695.54 34593.66 14683.75 32497.20 22565.58 34198.31 21383.96 30987.49 26092.85 329
VPNet91.81 24090.46 24995.85 21194.74 28995.54 17298.98 24798.59 7392.14 19890.77 23297.44 21868.73 33097.54 25194.89 17077.89 32894.46 243
FIs94.10 19293.43 19596.11 20494.70 29096.82 12599.58 17298.93 4192.54 18689.34 25897.31 22287.62 20097.10 27694.22 19186.58 26494.40 250
UniMVSNet_ETH3D90.06 28088.58 28694.49 25194.67 29188.09 31897.81 31497.57 23583.91 32788.44 27597.41 21957.44 35897.62 24991.41 23088.59 24797.77 222
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 21494.61 29295.28 17999.83 11699.08 3191.49 21789.21 26296.86 23987.14 20596.73 29793.20 21077.52 33194.46 243
WR-MVS92.31 23191.25 23995.48 21794.45 29395.29 17899.60 17098.68 5790.10 24588.07 28396.89 23780.68 26096.80 29593.14 21379.67 31894.36 253
nrg03093.51 20592.53 21596.45 19494.36 29497.20 11199.81 11997.16 27791.60 21489.86 24497.46 21786.37 21397.68 24695.88 15580.31 31494.46 243
tfpnnormal89.29 29087.61 29794.34 25894.35 29594.13 20598.95 25198.94 3783.94 32584.47 32095.51 28174.84 30697.39 25677.05 34280.41 31291.48 344
FC-MVSNet-test93.81 19793.15 20495.80 21294.30 29696.20 14999.42 19798.89 4392.33 19489.03 26797.27 22487.39 20396.83 29393.20 21086.48 26594.36 253
MS-PatchMatch90.65 26390.30 25491.71 31094.22 29785.50 33198.24 30097.70 22188.67 26986.42 30696.37 25567.82 33498.03 23383.62 31199.62 10291.60 342
WR-MVS_H91.30 24990.35 25294.15 26294.17 29892.62 24299.17 22698.94 3788.87 26586.48 30594.46 32284.36 23096.61 30388.19 27278.51 32493.21 323
DU-MVS92.46 22891.45 23795.49 21494.05 29995.28 17999.81 11998.74 5392.25 19689.21 26296.64 24881.66 24896.73 29793.20 21077.52 33194.46 243
NR-MVSNet91.56 24890.22 25695.60 21394.05 29995.76 16498.25 29998.70 5591.16 22780.78 33896.64 24883.23 23996.57 30491.41 23077.73 33094.46 243
CP-MVSNet91.23 25290.22 25694.26 25993.96 30192.39 24699.09 23098.57 7688.95 26386.42 30696.57 25079.19 27396.37 31090.29 25378.95 32194.02 285
XXY-MVS91.82 23990.46 24995.88 20993.91 30295.40 17698.87 26197.69 22288.63 27187.87 28597.08 22974.38 31097.89 24191.66 22884.07 28594.35 256
PS-CasMVS90.63 26589.51 27093.99 27193.83 30391.70 26598.98 24798.52 9188.48 27386.15 31196.53 25275.46 29996.31 31388.83 26578.86 32393.95 293
test_040285.58 30783.94 31190.50 31893.81 30485.04 33498.55 28495.20 35276.01 35179.72 34295.13 29964.15 34796.26 31666.04 36186.88 26390.21 353
XVG-ACMP-BASELINE91.22 25390.75 24492.63 30093.73 30585.61 32998.52 28897.44 25092.77 17189.90 24396.85 24066.64 33898.39 20492.29 22188.61 24593.89 298
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23493.69 30693.98 20999.69 15398.65 6191.03 23088.44 27596.83 24380.05 26896.18 31890.26 25476.89 33994.45 248
TransMVSNet (Re)87.25 30285.28 30793.16 29193.56 30791.03 27498.54 28694.05 36183.69 32981.09 33696.16 26075.32 30096.40 30976.69 34368.41 35492.06 338
v1090.25 27588.82 28294.57 24693.53 30893.43 22299.08 23296.87 30985.00 31887.34 29594.51 31880.93 25797.02 28582.85 31579.23 31993.26 321
testgi89.01 29388.04 29491.90 30893.49 30984.89 33599.73 14795.66 34293.89 13985.14 31798.17 20259.68 35594.66 34277.73 33888.88 23996.16 235
v890.54 26789.17 27594.66 24193.43 31093.40 22499.20 22396.94 30385.76 30887.56 28994.51 31881.96 24597.19 26984.94 30378.25 32593.38 319
V4291.28 25190.12 26094.74 23893.42 31193.46 22199.68 15597.02 29287.36 28689.85 24695.05 30181.31 25397.34 25987.34 28380.07 31693.40 317
pm-mvs189.36 28987.81 29694.01 26993.40 31291.93 25598.62 28396.48 32786.25 30283.86 32396.14 26173.68 31397.04 28186.16 29575.73 34393.04 326
v114491.09 25489.83 26294.87 23493.25 31393.69 21699.62 16896.98 29786.83 29689.64 25294.99 30680.94 25697.05 27985.08 30281.16 30393.87 300
v119290.62 26689.25 27494.72 24093.13 31493.07 22899.50 18697.02 29286.33 30189.56 25495.01 30379.22 27297.09 27882.34 31881.16 30394.01 287
v2v48291.30 24990.07 26195.01 22993.13 31493.79 21299.77 13197.02 29288.05 27889.25 26095.37 29080.73 25997.15 27187.28 28480.04 31794.09 281
OPM-MVS93.21 21092.80 20794.44 25493.12 31690.85 27899.77 13197.61 23096.19 5491.56 22498.65 18275.16 30598.47 19393.78 20189.39 23593.99 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 26189.52 26994.59 24493.11 31792.77 23399.56 17696.99 29586.38 30089.82 24794.95 30880.50 26497.10 27683.98 30880.41 31293.90 297
PEN-MVS90.19 27789.06 27893.57 28493.06 31890.90 27799.06 23798.47 10488.11 27785.91 31396.30 25776.67 28895.94 32787.07 28676.91 33893.89 298
v124090.20 27688.79 28394.44 25493.05 31992.27 24899.38 20396.92 30585.89 30589.36 25794.87 31077.89 28297.03 28380.66 32681.08 30694.01 287
v14890.70 26289.63 26593.92 27392.97 32090.97 27599.75 13996.89 30787.51 28388.27 28195.01 30381.67 24797.04 28187.40 28277.17 33693.75 307
v192192090.46 26889.12 27694.50 25092.96 32192.46 24499.49 18896.98 29786.10 30389.61 25395.30 29378.55 27997.03 28382.17 31980.89 31094.01 287
Baseline_NR-MVSNet90.33 27289.51 27092.81 29892.84 32289.95 29699.77 13193.94 36284.69 32389.04 26695.66 27381.66 24896.52 30590.99 23976.98 33791.97 340
test_method80.79 32479.70 32784.08 34192.83 32367.06 36699.51 18495.42 34654.34 36481.07 33793.53 33044.48 36792.22 35778.90 33477.23 33592.94 327
pmmvs492.10 23691.07 24295.18 22592.82 32494.96 18899.48 19096.83 31187.45 28588.66 27396.56 25183.78 23496.83 29389.29 26184.77 27893.75 307
LF4IMVS89.25 29288.85 28190.45 32092.81 32581.19 35398.12 30594.79 35591.44 22086.29 30997.11 22765.30 34498.11 22888.53 26985.25 27392.07 337
DTE-MVSNet89.40 28888.24 29292.88 29792.66 32689.95 29699.10 22998.22 17587.29 28785.12 31896.22 25976.27 29495.30 33583.56 31275.74 34293.41 316
EU-MVSNet90.14 27990.34 25389.54 32692.55 32781.06 35498.69 27898.04 19691.41 22386.59 30296.84 24280.83 25893.31 35486.20 29481.91 29794.26 261
our_test_390.39 26989.48 27293.12 29292.40 32889.57 30199.33 20996.35 32987.84 28185.30 31694.99 30684.14 23296.09 32280.38 32784.56 27993.71 312
ppachtmachnet_test89.58 28788.35 28993.25 29092.40 32890.44 28799.33 20996.73 31885.49 31485.90 31495.77 26881.09 25596.00 32676.00 34582.49 29293.30 320
v7n89.65 28688.29 29193.72 27892.22 33090.56 28499.07 23697.10 28385.42 31686.73 29994.72 31180.06 26797.13 27381.14 32478.12 32793.49 315
PS-MVSNAJss93.64 20493.31 20194.61 24392.11 33192.19 24999.12 22897.38 25892.51 18888.45 27496.99 23591.20 15697.29 26594.36 18587.71 25694.36 253
pmmvs590.17 27889.09 27793.40 28692.10 33289.77 29999.74 14295.58 34485.88 30787.24 29695.74 26973.41 31496.48 30788.54 26883.56 28993.95 293
N_pmnet80.06 32780.78 32577.89 34591.94 33345.28 37698.80 27056.82 37978.10 34880.08 34193.33 33177.03 28495.76 32968.14 35782.81 29192.64 330
test_djsdf92.83 21992.29 22094.47 25291.90 33492.46 24499.55 17897.27 26891.17 22589.96 24096.07 26481.10 25496.89 28994.67 17988.91 23894.05 284
SixPastTwentyTwo88.73 29488.01 29590.88 31491.85 33582.24 34598.22 30295.18 35388.97 26182.26 32996.89 23771.75 31996.67 30184.00 30782.98 29093.72 311
K. test v388.05 29887.24 30090.47 31991.82 33682.23 34698.96 25097.42 25389.05 25776.93 34995.60 27568.49 33195.42 33185.87 29881.01 30893.75 307
OurMVSNet-221017-089.81 28389.48 27290.83 31691.64 33781.21 35298.17 30495.38 34891.48 21885.65 31597.31 22272.66 31597.29 26588.15 27384.83 27793.97 292
mvs_tets91.81 24091.08 24194.00 27091.63 33890.58 28398.67 28097.43 25192.43 19187.37 29497.05 23271.76 31897.32 26194.75 17588.68 24494.11 280
Gipumacopyleft66.95 33365.00 33372.79 34891.52 33967.96 36566.16 36895.15 35447.89 36658.54 36467.99 36829.74 37087.54 36550.20 36877.83 32962.87 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
jajsoiax91.92 23891.18 24094.15 26291.35 34090.95 27699.00 24597.42 25392.61 18087.38 29397.08 22972.46 31697.36 25794.53 18288.77 24294.13 279
MDA-MVSNet-bldmvs84.09 31881.52 32491.81 30991.32 34188.00 32098.67 28095.92 33780.22 34255.60 36793.32 33268.29 33393.60 35273.76 34776.61 34093.82 304
MVP-Stereo90.93 25690.45 25192.37 30291.25 34288.76 30798.05 30996.17 33287.27 28884.04 32195.30 29378.46 28097.27 26783.78 31099.70 9891.09 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 30983.32 31692.10 30590.96 34388.58 31299.20 22396.52 32579.70 34457.12 36692.69 33879.11 27493.86 34977.10 34177.46 33393.86 301
YYNet185.50 31083.33 31592.00 30690.89 34488.38 31699.22 22296.55 32479.60 34557.26 36592.72 33679.09 27593.78 35077.25 34077.37 33493.84 302
anonymousdsp91.79 24590.92 24394.41 25790.76 34592.93 23298.93 25397.17 27589.08 25687.46 29295.30 29378.43 28196.92 28892.38 22088.73 24393.39 318
lessismore_v090.53 31790.58 34680.90 35595.80 33877.01 34895.84 26666.15 34096.95 28683.03 31475.05 34493.74 310
EG-PatchMatch MVS85.35 31183.81 31389.99 32490.39 34781.89 34898.21 30396.09 33481.78 33874.73 35593.72 32951.56 36497.12 27579.16 33388.61 24590.96 347
EGC-MVSNET69.38 32963.76 33686.26 33990.32 34881.66 35196.24 33693.85 3630.99 3763.22 37792.33 34352.44 36292.92 35559.53 36684.90 27684.21 362
CMPMVSbinary61.59 2184.75 31485.14 30883.57 34290.32 34862.54 36896.98 32797.59 23474.33 35769.95 36096.66 24664.17 34698.32 21287.88 27788.41 25089.84 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
bset_n11_16_dypcd93.05 21592.30 21995.31 22190.23 35095.05 18699.44 19697.28 26792.51 18890.65 23396.68 24585.30 22396.71 29994.49 18384.14 28394.16 273
new_pmnet84.49 31782.92 31989.21 32790.03 35182.60 34296.89 32995.62 34380.59 34175.77 35489.17 35165.04 34594.79 34172.12 35081.02 30790.23 352
pmmvs685.69 30683.84 31291.26 31390.00 35284.41 33797.82 31396.15 33375.86 35281.29 33595.39 28861.21 35396.87 29183.52 31373.29 34692.50 333
DSMNet-mixed88.28 29788.24 29288.42 33489.64 35375.38 36298.06 30889.86 37085.59 31288.20 28292.14 34476.15 29691.95 35878.46 33596.05 18897.92 218
UnsupCasMVSNet_eth85.52 30883.99 30990.10 32289.36 35483.51 33996.65 33097.99 19889.14 25575.89 35393.83 32763.25 34993.92 34781.92 32167.90 35692.88 328
Anonymous2023120686.32 30485.42 30689.02 32989.11 35580.53 35899.05 24195.28 34985.43 31582.82 32793.92 32674.40 30993.44 35366.99 35881.83 29893.08 325
Anonymous2024052185.15 31283.81 31389.16 32888.32 35682.69 34198.80 27095.74 33979.72 34381.53 33490.99 34765.38 34394.16 34572.69 34981.11 30590.63 350
OpenMVS_ROBcopyleft79.82 2083.77 32081.68 32390.03 32388.30 35782.82 34098.46 28995.22 35173.92 35876.00 35291.29 34655.00 36096.94 28768.40 35688.51 24990.34 351
test20.0384.72 31583.99 30986.91 33788.19 35880.62 35798.88 25895.94 33688.36 27578.87 34394.62 31668.75 32989.11 36466.52 35975.82 34191.00 346
KD-MVS_self_test83.59 32182.06 32188.20 33586.93 35980.70 35697.21 32196.38 32882.87 33282.49 32888.97 35267.63 33592.32 35673.75 34862.30 36191.58 343
MIMVSNet182.58 32280.51 32688.78 33186.68 36084.20 33896.65 33095.41 34778.75 34678.59 34592.44 33951.88 36389.76 36365.26 36278.95 32192.38 336
CL-MVSNet_self_test84.50 31683.15 31888.53 33386.00 36181.79 34998.82 26797.35 26085.12 31783.62 32590.91 34976.66 28991.40 35969.53 35460.36 36292.40 335
UnsupCasMVSNet_bld79.97 32877.03 33188.78 33185.62 36281.98 34793.66 35097.35 26075.51 35570.79 35983.05 36148.70 36694.91 33978.31 33660.29 36389.46 358
Patchmatch-RL test86.90 30385.98 30589.67 32584.45 36375.59 36189.71 36192.43 36586.89 29577.83 34790.94 34894.22 8693.63 35187.75 27869.61 34999.79 104
pmmvs-eth3d84.03 31981.97 32290.20 32184.15 36487.09 32398.10 30794.73 35783.05 33074.10 35687.77 35565.56 34294.01 34681.08 32569.24 35189.49 357
PM-MVS80.47 32578.88 32985.26 34083.79 36572.22 36395.89 34291.08 36885.71 31176.56 35188.30 35336.64 36893.90 34882.39 31769.57 35089.66 356
new-patchmatchnet81.19 32379.34 32886.76 33882.86 36680.36 35997.92 31195.27 35082.09 33772.02 35786.87 35762.81 35090.74 36271.10 35163.08 35989.19 359
pmmvs380.27 32677.77 33087.76 33680.32 36782.43 34498.23 30191.97 36672.74 35978.75 34487.97 35457.30 35990.99 36170.31 35262.37 36089.87 354
ambc83.23 34377.17 36862.61 36787.38 36394.55 35976.72 35086.65 35830.16 36996.36 31184.85 30469.86 34890.73 349
TDRefinement84.76 31382.56 32091.38 31274.58 36984.80 33697.36 31994.56 35884.73 32280.21 34096.12 26363.56 34898.39 20487.92 27663.97 35890.95 348
E-PMN52.30 33752.18 33952.67 35471.51 37045.40 37593.62 35176.60 37736.01 37043.50 37164.13 37027.11 37267.31 37331.06 37326.06 36945.30 372
EMVS51.44 33951.22 34152.11 35570.71 37144.97 37794.04 34775.66 37835.34 37242.40 37261.56 37328.93 37165.87 37427.64 37424.73 37045.49 371
PMMVS267.15 33264.15 33576.14 34770.56 37262.07 36993.89 34887.52 37458.09 36360.02 36378.32 36322.38 37484.54 36759.56 36547.03 36781.80 363
FPMVS68.72 33068.72 33268.71 35065.95 37344.27 37895.97 34194.74 35651.13 36553.26 36890.50 35025.11 37383.00 36860.80 36480.97 30978.87 364
wuyk23d20.37 34320.84 34618.99 35865.34 37427.73 38050.43 3697.67 3829.50 3758.01 3766.34 3766.13 38026.24 37523.40 37510.69 3742.99 373
LCM-MVSNet67.77 33164.73 33476.87 34662.95 37556.25 37289.37 36293.74 36444.53 36761.99 36280.74 36220.42 37586.53 36669.37 35559.50 36487.84 360
MVEpermissive53.74 2251.54 33847.86 34262.60 35259.56 37650.93 37379.41 36677.69 37635.69 37136.27 37361.76 3725.79 38169.63 37137.97 37236.61 36867.24 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33552.24 33867.66 35149.27 37756.82 37183.94 36482.02 37570.47 36033.28 37464.54 36917.23 37769.16 37245.59 37023.85 37177.02 365
tmp_tt65.23 33462.94 33772.13 34944.90 37850.03 37481.05 36589.42 37338.45 36848.51 37099.90 1954.09 36178.70 37091.84 22718.26 37287.64 361
PMVScopyleft49.05 2353.75 33651.34 34060.97 35340.80 37934.68 37974.82 36789.62 37237.55 36928.67 37572.12 3657.09 37981.63 36943.17 37168.21 35566.59 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 34139.14 34433.31 35619.94 38024.83 38198.36 2959.75 38115.53 37451.31 36987.14 35619.62 37617.74 37647.10 3693.47 37557.36 369
testmvs40.60 34044.45 34329.05 35719.49 38114.11 38299.68 15518.47 38020.74 37364.59 36198.48 19510.95 37817.09 37756.66 36711.01 37355.94 370
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.02 3770.00 3820.00 3780.00 3760.00 3760.00 374
eth-test20.00 382
eth-test0.00 382
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.43 34231.24 3450.00 3590.00 3820.00 3830.00 37098.09 1910.00 3770.00 37899.67 9883.37 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.60 34510.13 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37891.20 1560.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.28 34411.04 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.40 1210.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
test_241102_TWO98.43 11997.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
GSMVS99.59 138
sam_mvs194.72 6799.59 138
sam_mvs94.25 85
MTGPAbinary98.28 166
test_post195.78 34359.23 37493.20 11797.74 24591.06 236
test_post63.35 37194.43 7298.13 227
patchmatchnet-post91.70 34595.12 5197.95 238
MTMP99.87 9296.49 326
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
test_prior498.05 7599.94 60
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
旧先验299.46 19394.21 12199.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5493.46 151100.00 194.36 18599.99 24
原ACMM299.90 78
testdata299.99 4090.54 248
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior597.87 21198.37 20997.79 12089.55 23294.52 240
plane_prior498.59 186
plane_prior391.64 26796.63 3993.01 212
plane_prior299.84 11096.38 47
plane_prior91.74 26199.86 10396.76 3589.59 231
n20.00 383
nn0.00 383
door-mid89.69 371
test1198.44 111
door90.31 369
HQP5-MVS91.85 257
BP-MVS97.92 115
HQP4-MVS93.37 20898.39 20494.53 238
HQP3-MVS97.89 20989.60 229
HQP2-MVS80.65 261
MDTV_nov1_ep13_2view96.26 14496.11 33891.89 20598.06 12794.40 7494.30 18899.67 120
ACMMP++_ref87.04 262
ACMMP++88.23 251
Test By Simon92.82 126