| AdaColmap |  | | 97.23 93 | 96.80 97 | 98.51 102 | 99.99 1 | 95.60 156 | 99.09 232 | 98.84 52 | 93.32 155 | 96.74 153 | 99.72 78 | 86.04 208 | 100.00 1 | 98.01 106 | 99.43 107 | 99.94 71 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 12 | 98.69 62 | 98.20 4 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 25 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 22 | 98.64 70 | 98.47 2 | 99.13 78 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 27 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 44 | 98.20 43 | 98.97 71 | 99.97 3 | 96.92 109 | 99.95 46 | 98.38 145 | 95.04 88 | 98.61 103 | 99.80 51 | 93.39 95 | 100.00 1 | 98.64 80 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 78 | 97.32 81 | 98.58 94 | 99.97 3 | 95.77 147 | 99.96 29 | 98.35 151 | 89.90 253 | 98.36 113 | 99.79 54 | 91.18 148 | 99.99 36 | 98.37 90 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 42 | 98.02 54 | 99.56 24 | 99.97 3 | 98.70 45 | 99.92 71 | 98.44 111 | 92.06 203 | 98.40 112 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 96 | 99.71 83 | 99.97 56 |
|
| PAPR | | | 98.52 32 | 98.16 46 | 99.58 23 | 99.97 3 | 98.77 39 | 99.95 46 | 98.43 119 | 95.35 82 | 98.03 123 | 99.75 67 | 94.03 82 | 99.98 43 | 98.11 101 | 99.83 72 | 99.99 23 |
|
| HFP-MVS | | | 98.56 29 | 98.37 33 | 99.14 56 | 99.96 8 | 97.43 91 | 99.95 46 | 98.61 75 | 94.77 96 | 99.31 69 | 99.85 30 | 94.22 76 | 100.00 1 | 98.70 75 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 30 | 98.37 33 | 99.05 63 | 99.96 8 | 97.18 98 | 99.96 29 | 98.55 88 | 94.87 94 | 99.45 58 | 99.85 30 | 94.07 81 | 100.00 1 | 98.67 77 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 33 | 98.32 37 | 99.05 63 | 99.96 8 | 97.18 98 | 99.95 46 | 98.60 76 | 94.77 96 | 99.31 69 | 99.84 41 | 93.73 90 | 100.00 1 | 98.70 75 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 22 | 98.62 74 | 98.02 9 | 99.90 2 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 35 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 37 | 98.32 37 | 98.87 76 | 99.96 8 | 96.62 117 | 99.97 22 | 98.39 141 | 94.43 108 | 98.90 87 | 99.87 24 | 94.30 74 | 100.00 1 | 99.04 55 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 11 | | 98.41 134 | 96.63 49 | 99.75 27 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 46 | 98.43 119 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 23 | 98.55 23 | 99.15 54 | 99.94 13 | 97.50 87 | 99.94 62 | 98.42 130 | 96.22 62 | 99.41 62 | 99.78 58 | 94.34 72 | 99.96 57 | 98.92 61 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 193 | 92.06 225 | 99.15 54 | 99.94 13 | 97.50 87 | 99.94 62 | 98.42 130 | 96.22 62 | 99.41 62 | 41.37 388 | 94.34 72 | 99.96 57 | 98.92 61 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 34 | 99.94 13 | 98.49 57 | | 98.65 68 | | | | | 99.80 112 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 31 | 99.94 13 | 98.46 58 | 99.98 12 | 98.86 49 | 97.10 33 | 99.80 15 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 36 | 100.00 1 | 100.00 1 |
|
| APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 28 | 99.94 13 | 98.76 42 | 99.91 75 | 98.39 141 | 97.20 32 | 99.46 57 | 99.85 30 | 95.53 44 | 99.79 114 | 99.86 18 | 100.00 1 | 99.99 23 |
|
| MP-MVS |  | | 98.23 54 | 97.97 56 | 99.03 65 | 99.94 13 | 97.17 101 | 99.95 46 | 98.39 141 | 94.70 100 | 98.26 119 | 99.81 50 | 91.84 139 | 100.00 1 | 98.85 67 | 99.97 42 | 99.93 73 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 25 | 98.36 35 | 99.49 31 | 99.94 13 | 98.73 43 | 99.87 92 | 98.33 154 | 93.97 134 | 99.76 26 | 99.87 24 | 94.99 57 | 99.75 123 | 98.55 84 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 57 | 97.93 61 | 98.70 84 | 99.94 13 | 96.13 138 | 99.82 120 | 98.43 119 | 94.56 104 | 97.52 134 | 99.70 82 | 94.40 67 | 99.98 43 | 97.00 140 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 16 | 98.65 18 | 99.68 14 | 99.94 13 | 99.07 23 | 99.64 165 | 99.44 19 | 97.33 25 | 99.00 83 | 99.72 78 | 94.03 82 | 99.98 43 | 98.73 74 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 11 | 99.96 29 | 98.43 119 | 97.27 28 | 99.80 15 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 9 | | 98.41 134 | 97.71 14 | 99.84 10 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 11 | | 98.43 119 | 97.26 30 | 99.80 15 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 24 | 99.29 14 | 99.95 46 | 98.32 156 | 97.28 26 | 99.83 11 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 81 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 14 | 99.96 29 | 98.42 130 | 97.28 26 | 99.86 5 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 70 | 99.93 24 | 97.24 95 | 99.95 46 | 98.42 130 | 97.50 21 | 99.52 54 | 99.88 21 | 97.43 16 | 99.71 129 | 99.50 37 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 39 | | 98.43 119 | | 99.63 39 | | | 99.85 100 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 80 | 99.95 46 | 98.36 149 | 95.58 76 | 99.52 54 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 53 | | 98.52 94 | 92.34 195 | 99.31 69 | 99.83 43 | 95.06 52 | 99.80 112 | 99.70 31 | 99.97 42 | |
|
| GST-MVS | | | 98.27 49 | 97.97 56 | 99.17 50 | 99.92 31 | 97.57 82 | 99.93 68 | 98.39 141 | 94.04 132 | 98.80 90 | 99.74 73 | 92.98 108 | 100.00 1 | 98.16 98 | 99.76 80 | 99.93 73 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 27 | 99.96 29 | 98.43 119 | 93.90 139 | 99.71 31 | 99.86 26 | 95.88 37 | 99.85 100 | | | |
|
| train_agg | | | 98.88 17 | 98.65 18 | 99.59 22 | 99.92 31 | 98.92 27 | 99.96 29 | 98.43 119 | 94.35 113 | 99.71 31 | 99.86 26 | 95.94 34 | 99.85 100 | 99.69 32 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 30 | 99.96 29 | 98.43 119 | 94.35 113 | 99.69 33 | 99.85 30 | 95.94 34 | 99.85 100 | | | |
|
| PGM-MVS | | | 98.34 45 | 98.13 48 | 98.99 69 | 99.92 31 | 97.00 105 | 99.75 140 | 99.50 17 | 93.90 139 | 99.37 66 | 99.76 62 | 93.24 103 | 100.00 1 | 97.75 123 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 75 | 97.44 76 | 98.66 87 | 99.92 31 | 96.13 138 | 99.18 226 | 99.45 18 | 94.84 95 | 96.41 163 | 99.71 80 | 91.40 142 | 99.99 36 | 97.99 108 | 98.03 148 | 99.87 84 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 9 | 99.95 46 | 98.43 119 | 96.48 52 | 99.80 15 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 134 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 134 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 16 | 99.90 42 | 99.02 24 | 99.95 46 | 98.56 82 | 97.56 20 | 99.44 59 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 45 | 99.99 21 | 99.87 84 |
|
| APD-MVS |  | | 98.62 26 | 98.35 36 | 99.41 37 | 99.90 42 | 98.51 56 | 99.87 92 | 98.36 149 | 94.08 126 | 99.74 28 | 99.73 75 | 94.08 80 | 99.74 125 | 99.42 41 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 20 | 98.54 24 | 99.62 19 | 99.90 42 | 98.85 33 | 99.24 221 | 98.47 104 | 98.14 6 | 99.08 79 | 99.91 14 | 93.09 106 | 100.00 1 | 99.04 55 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 29 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 45 | 99.24 18 | 99.87 92 | 98.44 111 | 97.48 22 | 99.64 38 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 17 | | | | 99.49 56 | | | | | | |
|
| CSCG | | | 97.10 96 | 97.04 90 | 97.27 165 | 99.89 45 | 91.92 249 | 99.90 80 | 99.07 32 | 88.67 276 | 95.26 185 | 99.82 46 | 93.17 105 | 99.98 43 | 98.15 99 | 99.47 101 | 99.90 80 |
|
| ZNCC-MVS | | | 98.31 46 | 98.03 53 | 99.17 50 | 99.88 49 | 97.59 81 | 99.94 62 | 98.44 111 | 94.31 116 | 98.50 107 | 99.82 46 | 93.06 107 | 99.99 36 | 98.30 94 | 99.99 21 | 99.93 73 |
|
| SR-MVS | | | 98.46 36 | 98.30 40 | 98.93 74 | 99.88 49 | 97.04 103 | 99.84 112 | 98.35 151 | 94.92 92 | 99.32 68 | 99.80 51 | 93.35 96 | 99.78 116 | 99.30 46 | 99.95 49 | 99.96 62 |
|
| 9.14 | | | | 98.38 31 | | 99.87 51 | | 99.91 75 | 98.33 154 | 93.22 158 | 99.78 24 | 99.89 19 | 94.57 64 | 99.85 100 | 99.84 19 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 21 | 98.48 26 | 99.62 19 | 99.87 51 | 98.87 31 | 99.86 105 | 98.38 145 | 93.19 159 | 99.77 25 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 27 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 42 | 98.21 42 | 99.03 65 | 99.86 53 | 97.10 102 | 99.98 12 | 98.80 56 | 90.78 240 | 99.62 41 | 99.78 58 | 95.30 47 | 100.00 1 | 99.80 22 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 48 | 97.96 59 | 99.30 41 | 99.85 54 | 97.93 72 | 99.39 202 | 98.28 163 | 95.76 71 | 97.18 142 | 99.88 21 | 92.74 116 | 100.00 1 | 98.67 77 | 99.88 68 | 99.99 23 |
|
| LS3D | | | 95.84 143 | 95.11 153 | 98.02 126 | 99.85 54 | 95.10 175 | 98.74 274 | 98.50 102 | 87.22 297 | 93.66 202 | 99.86 26 | 87.45 194 | 99.95 64 | 90.94 243 | 99.81 78 | 99.02 189 |
|
| HPM-MVS |  | | 97.96 60 | 97.72 67 | 98.68 85 | 99.84 56 | 96.39 126 | 99.90 80 | 98.17 175 | 92.61 181 | 98.62 102 | 99.57 100 | 91.87 138 | 99.67 136 | 98.87 66 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 49 | 98.11 50 | 98.75 82 | 99.83 57 | 96.59 119 | 99.40 198 | 98.51 97 | 95.29 84 | 98.51 106 | 99.76 62 | 93.60 94 | 99.71 129 | 98.53 85 | 99.52 97 | 99.95 69 |
|
| save fliter | | | | | | 99.82 58 | 98.79 37 | 99.96 29 | 98.40 138 | 97.66 16 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 62 | 97.89 64 | 98.05 125 | 99.82 58 | 94.77 184 | 99.92 71 | 98.46 106 | 93.93 137 | 97.20 141 | 99.27 123 | 95.44 45 | 99.97 53 | 97.41 128 | 99.51 99 | 99.41 157 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 52 | 98.08 52 | 98.78 79 | 99.81 60 | 96.60 118 | 99.82 120 | 98.30 161 | 93.95 136 | 99.37 66 | 99.77 60 | 92.84 112 | 99.76 122 | 98.95 58 | 99.92 63 | 99.97 56 |
|
| EI-MVSNet-UG-set | | | 98.14 56 | 97.99 55 | 98.60 91 | 99.80 61 | 96.27 129 | 99.36 207 | 98.50 102 | 95.21 86 | 98.30 116 | 99.75 67 | 93.29 100 | 99.73 128 | 98.37 90 | 99.30 112 | 99.81 90 |
|
| SR-MVS-dyc-post | | | 98.31 46 | 98.17 45 | 98.71 83 | 99.79 62 | 96.37 127 | 99.76 137 | 98.31 158 | 94.43 108 | 99.40 64 | 99.75 67 | 93.28 101 | 99.78 116 | 98.90 64 | 99.92 63 | 99.97 56 |
|
| RE-MVS-def | | | | 98.13 48 | | 99.79 62 | 96.37 127 | 99.76 137 | 98.31 158 | 94.43 108 | 99.40 64 | 99.75 67 | 92.95 109 | | 98.90 64 | 99.92 63 | 99.97 56 |
|
| HPM-MVS_fast | | | 97.80 71 | 97.50 74 | 98.68 85 | 99.79 62 | 96.42 122 | 99.88 89 | 98.16 179 | 91.75 213 | 98.94 85 | 99.54 103 | 91.82 140 | 99.65 138 | 97.62 126 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 24 | 98.40 29 | 99.50 29 | 99.77 65 | 98.67 46 | 99.90 80 | 98.21 170 | 93.53 149 | 99.81 13 | 99.89 19 | 94.70 62 | 99.86 99 | 99.84 19 | 99.93 60 | 99.96 62 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 84 | | 98.64 70 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 90 | 97.23 83 | 97.41 156 | 99.76 66 | 93.36 218 | 99.65 161 | 97.95 196 | 96.03 66 | 97.41 138 | 99.70 82 | 89.61 171 | 99.51 143 | 96.73 147 | 98.25 140 | 99.38 159 |
|
| 新几何1 | | | | | 99.42 36 | 99.75 68 | 98.27 60 | | 98.63 73 | 92.69 176 | 99.55 49 | 99.82 46 | 94.40 67 | 100.00 1 | 91.21 235 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 59 | 97.64 69 | 99.38 40 | 99.74 69 | 98.41 59 | 99.74 143 | 98.18 174 | 93.35 153 | 96.45 160 | 99.85 30 | 92.64 118 | 99.97 53 | 98.91 63 | 99.89 66 | 99.77 97 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 14 | 98.77 16 | 99.41 37 | 99.74 69 | 98.67 46 | 99.77 132 | 98.38 145 | 96.73 46 | 99.88 4 | 99.74 73 | 94.89 59 | 99.59 140 | 99.80 22 | 99.98 32 | 99.97 56 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 34 | 99.74 69 | 98.56 54 | | 98.40 138 | | 99.65 37 | | 94.76 60 | 99.75 123 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 72 | 99.73 72 | 96.99 106 | | 98.51 97 | 94.06 129 | 99.62 41 | 99.85 30 | 94.97 58 | 99.96 57 | 95.11 165 | 99.95 49 | 99.92 78 |
|
| TSAR-MVS + GP. | | | 98.60 27 | 98.51 25 | 98.86 77 | 99.73 72 | 96.63 116 | 99.97 22 | 97.92 201 | 98.07 7 | 98.76 94 | 99.55 101 | 95.00 56 | 99.94 72 | 99.91 15 | 97.68 153 | 99.99 23 |
|
| CANet | | | 98.27 49 | 97.82 65 | 99.63 16 | 99.72 74 | 99.10 22 | 99.98 12 | 98.51 97 | 97.00 36 | 98.52 105 | 99.71 80 | 87.80 190 | 99.95 64 | 99.75 25 | 99.38 108 | 99.83 88 |
|
| F-COLMAP | | | 96.93 102 | 96.95 93 | 96.87 174 | 99.71 75 | 91.74 254 | 99.85 108 | 97.95 196 | 93.11 162 | 95.72 178 | 99.16 134 | 92.35 127 | 99.94 72 | 95.32 163 | 99.35 110 | 98.92 191 |
|
| SD-MVS | | | 98.92 15 | 98.70 17 | 99.56 24 | 99.70 76 | 98.73 43 | 99.94 62 | 98.34 153 | 96.38 57 | 99.81 13 | 99.76 62 | 94.59 63 | 99.98 43 | 99.84 19 | 99.96 46 | 99.97 56 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 53 | 99.12 5 | 95.59 208 | 99.67 77 | 86.91 324 | 99.95 46 | 98.89 45 | 97.60 17 | 99.90 2 | 99.76 62 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 82 |
|
| ACMMP_NAP | | | 98.49 34 | 98.14 47 | 99.54 26 | 99.66 78 | 98.62 52 | 99.85 108 | 98.37 148 | 94.68 101 | 99.53 52 | 99.83 43 | 92.87 111 | 100.00 1 | 98.66 79 | 99.84 71 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 76 | 98.98 12 | 93.92 272 | 99.63 79 | 81.76 351 | 99.96 29 | 98.56 82 | 99.47 1 | 99.19 76 | 99.99 1 | 94.16 79 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 34 | 98.40 29 | 98.77 81 | 99.62 80 | 96.80 113 | 99.90 80 | 99.51 16 | 97.60 17 | 99.20 74 | 99.36 118 | 93.71 91 | 99.91 82 | 97.99 108 | 98.71 128 | 99.61 123 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 96.05 136 | 95.82 134 | 96.72 179 | 99.59 81 | 96.99 106 | 99.95 46 | 99.10 29 | 94.06 129 | 98.27 117 | 95.80 272 | 89.00 182 | 99.95 64 | 99.12 50 | 87.53 265 | 93.24 324 |
|
| PVSNet_Blended | | | 97.94 61 | 97.64 69 | 98.83 78 | 99.59 81 | 96.99 106 | 100.00 1 | 99.10 29 | 95.38 81 | 98.27 117 | 99.08 137 | 89.00 182 | 99.95 64 | 99.12 50 | 99.25 114 | 99.57 133 |
|
| PatchMatch-RL | | | 96.04 137 | 95.40 142 | 97.95 127 | 99.59 81 | 95.22 171 | 99.52 183 | 99.07 32 | 93.96 135 | 96.49 159 | 98.35 197 | 82.28 235 | 99.82 111 | 90.15 259 | 99.22 116 | 98.81 198 |
|
| dcpmvs_2 | | | 97.42 86 | 98.09 51 | 95.42 213 | 99.58 84 | 87.24 320 | 99.23 222 | 96.95 294 | 94.28 118 | 98.93 86 | 99.73 75 | 94.39 70 | 99.16 161 | 99.89 16 | 99.82 76 | 99.86 86 |
|
| test222 | | | | | | 99.55 85 | 97.41 93 | 99.34 208 | 98.55 88 | 91.86 208 | 99.27 73 | 99.83 43 | 93.84 88 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 74 | 97.38 77 | 98.92 75 | 99.53 86 | 96.84 111 | 99.87 92 | 98.14 182 | 93.78 142 | 96.55 158 | 99.69 84 | 92.28 129 | 99.98 43 | 97.13 135 | 99.44 105 | 99.93 73 |
|
| API-MVS | | | 97.86 65 | 97.66 68 | 98.47 104 | 99.52 87 | 95.41 162 | 99.47 192 | 98.87 48 | 91.68 214 | 98.84 88 | 99.85 30 | 92.34 128 | 99.99 36 | 98.44 87 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 95 | 96.69 100 | 98.45 106 | 99.52 87 | 95.81 145 | 99.95 46 | 99.65 11 | 94.73 98 | 99.04 81 | 99.21 130 | 84.48 221 | 99.95 64 | 94.92 171 | 98.74 127 | 99.58 132 |
|
| 114514_t | | | 97.41 87 | 96.83 95 | 99.14 56 | 99.51 89 | 97.83 73 | 99.89 87 | 98.27 165 | 88.48 280 | 99.06 80 | 99.66 91 | 90.30 163 | 99.64 139 | 96.32 151 | 99.97 42 | 99.96 62 |
|
| cl22 | | | 93.77 197 | 93.25 201 | 95.33 217 | 99.49 90 | 94.43 188 | 99.61 169 | 98.09 184 | 90.38 244 | 89.16 268 | 95.61 279 | 90.56 160 | 97.34 260 | 91.93 227 | 84.45 286 | 94.21 269 |
|
| testdata | | | | | 98.42 109 | 99.47 91 | 95.33 165 | | 98.56 82 | 93.78 142 | 99.79 23 | 99.85 30 | 93.64 93 | 99.94 72 | 94.97 169 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 82 | 97.19 84 | 98.15 121 | 99.47 91 | 94.79 183 | 99.05 243 | 98.76 57 | 92.65 179 | 98.66 100 | 99.82 46 | 88.52 187 | 99.98 43 | 98.12 100 | 99.63 87 | 99.67 109 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 177 | 93.42 194 | 97.91 131 | 99.46 93 | 94.04 197 | 98.93 255 | 97.48 241 | 81.15 347 | 90.04 241 | 99.55 101 | 87.02 199 | 99.95 64 | 88.97 269 | 98.11 144 | 99.73 101 |
|
| MVS_111021_LR | | | 98.42 41 | 98.38 31 | 98.53 101 | 99.39 94 | 95.79 146 | 99.87 92 | 99.86 2 | 96.70 47 | 98.78 91 | 99.79 54 | 92.03 135 | 99.90 84 | 99.17 49 | 99.86 70 | 99.88 82 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 73 | 99.38 95 | 98.87 31 | 98.46 291 | 99.42 21 | 97.03 35 | 99.02 82 | 99.09 136 | 99.35 1 | 98.21 225 | 99.73 29 | 99.78 79 | 99.77 97 |
|
| MVS_111021_HR | | | 98.72 22 | 98.62 20 | 99.01 68 | 99.36 96 | 97.18 98 | 99.93 68 | 99.90 1 | 96.81 44 | 98.67 99 | 99.77 60 | 93.92 84 | 99.89 88 | 99.27 47 | 99.94 54 | 99.96 62 |
|
| DPM-MVS | | | 98.83 19 | 98.46 27 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 29 | 98.44 111 | 97.96 10 | 99.55 49 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 200 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 181 | 93.60 187 | 96.90 173 | 99.33 97 | 91.78 253 | 99.78 129 | 98.00 190 | 89.89 254 | 94.52 191 | 99.47 107 | 91.97 136 | 99.18 159 | 69.90 361 | 99.52 97 | 99.73 101 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 64 | 97.94 60 | 97.70 143 | 99.28 99 | 95.20 172 | 99.98 12 | 97.15 272 | 95.53 78 | 99.62 41 | 99.79 54 | 92.08 134 | 98.38 209 | 98.75 73 | 99.28 113 | 99.52 142 |
|
| test_fmvsm_n_1920 | | | 98.44 38 | 98.61 21 | 97.92 129 | 99.27 100 | 95.18 173 | 100.00 1 | 98.90 43 | 98.05 8 | 99.80 15 | 99.73 75 | 92.64 118 | 99.99 36 | 99.58 34 | 99.51 99 | 98.59 206 |
|
| test_yl | | | 97.83 67 | 97.37 78 | 99.21 44 | 99.18 101 | 97.98 69 | 99.64 165 | 99.27 26 | 91.43 222 | 97.88 128 | 98.99 146 | 95.84 38 | 99.84 107 | 98.82 68 | 95.32 201 | 99.79 93 |
|
| DCV-MVSNet | | | 97.83 67 | 97.37 78 | 99.21 44 | 99.18 101 | 97.98 69 | 99.64 165 | 99.27 26 | 91.43 222 | 97.88 128 | 98.99 146 | 95.84 38 | 99.84 107 | 98.82 68 | 95.32 201 | 99.79 93 |
|
| MVS_0304 | | | 98.87 18 | 98.61 21 | 99.67 15 | 99.18 101 | 99.13 21 | 99.87 92 | 99.65 11 | 98.17 5 | 98.75 96 | 99.75 67 | 92.76 115 | 99.94 72 | 99.88 17 | 99.44 105 | 99.94 71 |
|
| DeepC-MVS | | 94.51 4 | 96.92 103 | 96.40 109 | 98.45 106 | 99.16 104 | 95.90 143 | 99.66 159 | 98.06 187 | 96.37 60 | 94.37 194 | 99.49 106 | 83.29 231 | 99.90 84 | 97.63 125 | 99.61 92 | 99.55 135 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 30 | 98.22 41 | 99.50 29 | 99.15 105 | 98.65 50 | 100.00 1 | 98.58 78 | 97.70 15 | 98.21 121 | 99.24 128 | 92.58 121 | 99.94 72 | 98.63 82 | 99.94 54 | 99.92 78 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 72 | 97.91 62 | 97.43 155 | 99.10 106 | 94.42 189 | 99.99 4 | 97.10 277 | 95.07 87 | 99.68 34 | 99.75 67 | 92.95 109 | 98.34 213 | 98.38 89 | 99.14 118 | 99.54 138 |
|
| Anonymous202405211 | | | 93.10 215 | 91.99 227 | 96.40 189 | 99.10 106 | 89.65 295 | 98.88 260 | 97.93 198 | 83.71 334 | 94.00 199 | 98.75 174 | 68.79 329 | 99.88 94 | 95.08 167 | 91.71 224 | 99.68 107 |
|
| HyFIR lowres test | | | 96.66 116 | 96.43 108 | 97.36 161 | 99.05 108 | 93.91 202 | 99.70 153 | 99.80 3 | 90.54 242 | 96.26 166 | 98.08 202 | 92.15 132 | 98.23 224 | 96.84 146 | 95.46 198 | 99.93 73 |
|
| LFMVS | | | 94.75 171 | 93.56 190 | 98.30 114 | 99.03 109 | 95.70 152 | 98.74 274 | 97.98 193 | 87.81 290 | 98.47 108 | 99.39 115 | 67.43 337 | 99.53 141 | 98.01 106 | 95.20 203 | 99.67 109 |
|
| AllTest | | | 92.48 229 | 91.64 232 | 95.00 227 | 99.01 110 | 88.43 309 | 98.94 254 | 96.82 309 | 86.50 306 | 88.71 274 | 98.47 193 | 74.73 306 | 99.88 94 | 85.39 305 | 96.18 182 | 96.71 231 |
|
| TestCases | | | | | 95.00 227 | 99.01 110 | 88.43 309 | | 96.82 309 | 86.50 306 | 88.71 274 | 98.47 193 | 74.73 306 | 99.88 94 | 85.39 305 | 96.18 182 | 96.71 231 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 236 | 91.49 238 | 94.25 260 | 99.00 112 | 88.04 315 | 98.42 296 | 96.70 316 | 82.30 343 | 88.43 281 | 99.01 143 | 76.97 282 | 99.85 100 | 86.11 302 | 96.50 178 | 94.86 239 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 157 | 95.68 138 | 94.36 257 | 98.99 113 | 84.98 333 | 99.96 29 | 96.65 318 | 97.60 17 | 99.73 29 | 98.96 152 | 71.58 319 | 99.93 80 | 98.31 93 | 99.37 109 | 98.17 211 |
|
| HY-MVS | | 92.50 7 | 97.79 72 | 97.17 86 | 99.63 16 | 98.98 114 | 99.32 8 | 97.49 320 | 99.52 14 | 95.69 73 | 98.32 115 | 97.41 223 | 93.32 98 | 99.77 119 | 98.08 104 | 95.75 194 | 99.81 90 |
|
| VNet | | | 97.21 94 | 96.57 104 | 99.13 60 | 98.97 115 | 97.82 74 | 99.03 246 | 99.21 28 | 94.31 116 | 99.18 77 | 98.88 163 | 86.26 207 | 99.89 88 | 98.93 60 | 94.32 209 | 99.69 106 |
|
| thres200 | | | 96.96 100 | 96.21 113 | 99.22 43 | 98.97 115 | 98.84 34 | 99.85 108 | 99.71 6 | 93.17 160 | 96.26 166 | 98.88 163 | 89.87 168 | 99.51 143 | 94.26 189 | 94.91 204 | 99.31 169 |
|
| tfpn200view9 | | | 96.79 107 | 95.99 118 | 99.19 46 | 98.94 117 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 165 | 96.02 171 | 98.87 166 | 89.33 175 | 99.50 145 | 93.84 197 | 94.57 205 | 99.27 174 |
|
| thres400 | | | 96.78 108 | 95.99 118 | 99.16 52 | 98.94 117 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 165 | 96.02 171 | 98.87 166 | 89.33 175 | 99.50 145 | 93.84 197 | 94.57 205 | 99.16 181 |
|
| Anonymous20231211 | | | 89.86 284 | 88.44 291 | 94.13 263 | 98.93 119 | 90.68 274 | 98.54 288 | 98.26 166 | 76.28 359 | 86.73 302 | 95.54 283 | 70.60 325 | 97.56 253 | 90.82 246 | 80.27 321 | 94.15 277 |
|
| canonicalmvs | | | 97.09 98 | 96.32 110 | 99.39 39 | 98.93 119 | 98.95 26 | 99.72 151 | 97.35 252 | 94.45 106 | 97.88 128 | 99.42 111 | 86.71 201 | 99.52 142 | 98.48 86 | 93.97 214 | 99.72 103 |
|
| SDMVSNet | | | 94.80 167 | 93.96 178 | 97.33 163 | 98.92 121 | 95.42 161 | 99.59 171 | 98.99 35 | 92.41 192 | 92.55 217 | 97.85 212 | 75.81 296 | 98.93 169 | 97.90 114 | 91.62 225 | 97.64 222 |
|
| sd_testset | | | 93.55 204 | 92.83 208 | 95.74 206 | 98.92 121 | 90.89 271 | 98.24 302 | 98.85 51 | 92.41 192 | 92.55 217 | 97.85 212 | 71.07 324 | 98.68 185 | 93.93 194 | 91.62 225 | 97.64 222 |
|
| EPNet_dtu | | | 95.71 147 | 95.39 143 | 96.66 181 | 98.92 121 | 93.41 215 | 99.57 175 | 98.90 43 | 96.19 64 | 97.52 134 | 98.56 185 | 92.65 117 | 97.36 258 | 77.89 344 | 98.33 135 | 99.20 179 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 58 | 97.60 71 | 99.60 21 | 98.92 121 | 99.28 16 | 99.89 87 | 99.52 14 | 95.58 76 | 98.24 120 | 99.39 115 | 93.33 97 | 99.74 125 | 97.98 110 | 95.58 197 | 99.78 96 |
|
| CHOSEN 1792x2688 | | | 96.81 106 | 96.53 105 | 97.64 145 | 98.91 125 | 93.07 220 | 99.65 161 | 99.80 3 | 95.64 74 | 95.39 182 | 98.86 168 | 84.35 224 | 99.90 84 | 96.98 141 | 99.16 117 | 99.95 69 |
|
| thres100view900 | | | 96.74 111 | 95.92 130 | 99.18 47 | 98.90 126 | 98.77 39 | 99.74 143 | 99.71 6 | 92.59 183 | 95.84 174 | 98.86 168 | 89.25 177 | 99.50 145 | 93.84 197 | 94.57 205 | 99.27 174 |
|
| thres600view7 | | | 96.69 114 | 95.87 133 | 99.14 56 | 98.90 126 | 98.78 38 | 99.74 143 | 99.71 6 | 92.59 183 | 95.84 174 | 98.86 168 | 89.25 177 | 99.50 145 | 93.44 209 | 94.50 208 | 99.16 181 |
|
| MSDG | | | 94.37 183 | 93.36 198 | 97.40 157 | 98.88 128 | 93.95 201 | 99.37 205 | 97.38 250 | 85.75 317 | 90.80 233 | 99.17 133 | 84.11 226 | 99.88 94 | 86.35 299 | 98.43 133 | 98.36 209 |
|
| h-mvs33 | | | 94.92 165 | 94.36 168 | 96.59 183 | 98.85 129 | 91.29 265 | 98.93 255 | 98.94 38 | 95.90 67 | 98.77 92 | 98.42 196 | 90.89 156 | 99.77 119 | 97.80 116 | 70.76 355 | 98.72 203 |
|
| Anonymous20240529 | | | 92.10 237 | 90.65 248 | 96.47 184 | 98.82 130 | 90.61 276 | 98.72 276 | 98.67 67 | 75.54 363 | 93.90 201 | 98.58 183 | 66.23 341 | 99.90 84 | 94.70 180 | 90.67 227 | 98.90 194 |
|
| PVSNet_Blended_VisFu | | | 97.27 91 | 96.81 96 | 98.66 87 | 98.81 131 | 96.67 115 | 99.92 71 | 98.64 70 | 94.51 105 | 96.38 164 | 98.49 189 | 89.05 181 | 99.88 94 | 97.10 137 | 98.34 134 | 99.43 155 |
|
| PS-MVSNAJ | | | 98.44 38 | 98.20 43 | 99.16 52 | 98.80 132 | 98.92 27 | 99.54 181 | 98.17 175 | 97.34 24 | 99.85 7 | 99.85 30 | 91.20 145 | 99.89 88 | 99.41 42 | 99.67 85 | 98.69 204 |
|
| CANet_DTU | | | 96.76 109 | 96.15 114 | 98.60 91 | 98.78 133 | 97.53 83 | 99.84 112 | 97.63 220 | 97.25 31 | 99.20 74 | 99.64 93 | 81.36 244 | 99.98 43 | 92.77 220 | 98.89 123 | 98.28 210 |
|
| mvsany_test1 | | | 97.82 69 | 97.90 63 | 97.55 148 | 98.77 134 | 93.04 223 | 99.80 126 | 97.93 198 | 96.95 38 | 99.61 47 | 99.68 88 | 90.92 153 | 99.83 109 | 99.18 48 | 98.29 139 | 99.80 92 |
|
| alignmvs | | | 97.81 70 | 97.33 80 | 99.25 42 | 98.77 134 | 98.66 48 | 99.99 4 | 98.44 111 | 94.40 112 | 98.41 110 | 99.47 107 | 93.65 92 | 99.42 153 | 98.57 83 | 94.26 210 | 99.67 109 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 47 | 98.72 136 | 97.71 76 | 99.98 12 | 98.44 111 | 96.85 39 | 99.80 15 | 99.91 14 | 97.57 8 | 99.85 100 | 99.44 40 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 54 | 97.97 56 | 99.02 67 | 98.69 137 | 98.66 48 | 99.52 183 | 98.08 186 | 97.05 34 | 99.86 5 | 99.86 26 | 90.65 158 | 99.71 129 | 99.39 44 | 98.63 129 | 98.69 204 |
|
| miper_enhance_ethall | | | 94.36 185 | 93.98 177 | 95.49 209 | 98.68 138 | 95.24 169 | 99.73 148 | 97.29 259 | 93.28 157 | 89.86 246 | 95.97 270 | 94.37 71 | 97.05 282 | 92.20 224 | 84.45 286 | 94.19 270 |
|
| test2506 | | | 97.53 80 | 97.19 84 | 98.58 94 | 98.66 139 | 96.90 110 | 98.81 269 | 99.77 5 | 94.93 90 | 97.95 125 | 98.96 152 | 92.51 123 | 99.20 157 | 94.93 170 | 98.15 141 | 99.64 115 |
|
| ECVR-MVS |  | | 95.66 150 | 95.05 155 | 97.51 151 | 98.66 139 | 93.71 206 | 98.85 266 | 98.45 107 | 94.93 90 | 96.86 149 | 98.96 152 | 75.22 302 | 99.20 157 | 95.34 162 | 98.15 141 | 99.64 115 |
|
| test1111 | | | 95.57 152 | 94.98 158 | 97.37 159 | 98.56 141 | 93.37 217 | 98.86 264 | 98.45 107 | 94.95 89 | 96.63 155 | 98.95 157 | 75.21 303 | 99.11 162 | 95.02 168 | 98.14 143 | 99.64 115 |
|
| MVSTER | | | 95.53 153 | 95.22 149 | 96.45 186 | 98.56 141 | 97.72 75 | 99.91 75 | 97.67 218 | 92.38 194 | 91.39 226 | 97.14 230 | 97.24 18 | 97.30 265 | 94.80 176 | 87.85 259 | 94.34 261 |
|
| VDD-MVS | | | 93.77 197 | 92.94 205 | 96.27 194 | 98.55 143 | 90.22 284 | 98.77 273 | 97.79 212 | 90.85 238 | 96.82 151 | 99.42 111 | 61.18 358 | 99.77 119 | 98.95 58 | 94.13 211 | 98.82 197 |
|
| tpmvs | | | 94.28 187 | 93.57 189 | 96.40 189 | 98.55 143 | 91.50 263 | 95.70 354 | 98.55 88 | 87.47 292 | 92.15 221 | 94.26 329 | 91.42 141 | 98.95 168 | 88.15 279 | 95.85 190 | 98.76 200 |
|
| UGNet | | | 95.33 158 | 94.57 165 | 97.62 147 | 98.55 143 | 94.85 179 | 98.67 282 | 99.32 25 | 95.75 72 | 96.80 152 | 96.27 261 | 72.18 316 | 99.96 57 | 94.58 183 | 99.05 121 | 98.04 215 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 159 | 94.10 174 | 98.43 108 | 98.55 143 | 95.99 141 | 97.91 315 | 97.31 257 | 90.35 246 | 89.48 257 | 99.22 129 | 85.19 216 | 99.89 88 | 90.40 256 | 98.47 132 | 99.41 157 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_vis1_n_1920 | | | 95.44 155 | 95.31 146 | 95.82 204 | 98.50 147 | 88.74 303 | 99.98 12 | 97.30 258 | 97.84 12 | 99.85 7 | 99.19 131 | 66.82 339 | 99.97 53 | 98.82 68 | 99.46 103 | 98.76 200 |
|
| BH-w/o | | | 95.71 147 | 95.38 144 | 96.68 180 | 98.49 148 | 92.28 240 | 99.84 112 | 97.50 239 | 92.12 200 | 92.06 222 | 98.79 172 | 84.69 219 | 98.67 186 | 95.29 164 | 99.66 86 | 99.09 187 |
|
| baseline1 | | | 95.78 144 | 94.86 160 | 98.54 99 | 98.47 149 | 98.07 64 | 99.06 239 | 97.99 191 | 92.68 177 | 94.13 198 | 98.62 180 | 93.28 101 | 98.69 184 | 93.79 202 | 85.76 274 | 98.84 196 |
|
| iter_conf05 | | | 96.07 135 | 95.95 126 | 96.44 188 | 98.43 150 | 97.52 84 | 99.91 75 | 96.85 305 | 94.16 122 | 92.49 219 | 97.98 208 | 98.20 4 | 97.34 260 | 97.26 132 | 88.29 252 | 94.45 251 |
|
| EPMVS | | | 96.53 120 | 96.01 117 | 98.09 123 | 98.43 150 | 96.12 140 | 96.36 341 | 99.43 20 | 93.53 149 | 97.64 132 | 95.04 307 | 94.41 66 | 98.38 209 | 91.13 237 | 98.11 144 | 99.75 99 |
|
| iter_conf_final | | | 96.01 138 | 95.93 128 | 96.28 193 | 98.38 152 | 97.03 104 | 99.87 92 | 97.03 285 | 94.05 131 | 92.61 215 | 97.98 208 | 98.01 5 | 97.34 260 | 97.02 139 | 88.39 251 | 94.47 245 |
|
| sss | | | 97.57 79 | 97.03 91 | 99.18 47 | 98.37 153 | 98.04 66 | 99.73 148 | 99.38 22 | 93.46 151 | 98.76 94 | 99.06 139 | 91.21 144 | 99.89 88 | 96.33 150 | 97.01 170 | 99.62 120 |
|
| BH-untuned | | | 95.18 159 | 94.83 161 | 96.22 195 | 98.36 154 | 91.22 266 | 99.80 126 | 97.32 256 | 90.91 236 | 91.08 229 | 98.67 176 | 83.51 228 | 98.54 192 | 94.23 190 | 99.61 92 | 98.92 191 |
|
| ET-MVSNet_ETH3D | | | 94.37 183 | 93.28 200 | 97.64 145 | 98.30 155 | 97.99 68 | 99.99 4 | 97.61 225 | 94.35 113 | 71.57 366 | 99.45 110 | 96.23 31 | 95.34 339 | 96.91 145 | 85.14 281 | 99.59 126 |
|
| AUN-MVS | | | 93.28 209 | 92.60 213 | 95.34 216 | 98.29 156 | 90.09 287 | 99.31 212 | 98.56 82 | 91.80 212 | 96.35 165 | 98.00 205 | 89.38 174 | 98.28 219 | 92.46 221 | 69.22 360 | 97.64 222 |
|
| FMVSNet3 | | | 92.69 225 | 91.58 234 | 95.99 199 | 98.29 156 | 97.42 92 | 99.26 220 | 97.62 222 | 89.80 255 | 89.68 250 | 95.32 297 | 81.62 242 | 96.27 319 | 87.01 295 | 85.65 275 | 94.29 263 |
|
| PMMVS | | | 96.76 109 | 96.76 98 | 96.76 177 | 98.28 158 | 92.10 244 | 99.91 75 | 97.98 193 | 94.12 124 | 99.53 52 | 99.39 115 | 86.93 200 | 98.73 179 | 96.95 143 | 97.73 151 | 99.45 152 |
|
| hse-mvs2 | | | 94.38 182 | 94.08 175 | 95.31 218 | 98.27 159 | 90.02 289 | 99.29 217 | 98.56 82 | 95.90 67 | 98.77 92 | 98.00 205 | 90.89 156 | 98.26 223 | 97.80 116 | 69.20 361 | 97.64 222 |
|
| PVSNet_0 | | 88.03 19 | 91.80 244 | 90.27 256 | 96.38 191 | 98.27 159 | 90.46 280 | 99.94 62 | 99.61 13 | 93.99 133 | 86.26 312 | 97.39 225 | 71.13 323 | 99.89 88 | 98.77 71 | 67.05 366 | 98.79 199 |
|
| UA-Net | | | 96.54 119 | 95.96 124 | 98.27 115 | 98.23 161 | 95.71 151 | 98.00 313 | 98.45 107 | 93.72 145 | 98.41 110 | 99.27 123 | 88.71 186 | 99.66 137 | 91.19 236 | 97.69 152 | 99.44 154 |
|
| test_cas_vis1_n_1920 | | | 96.59 118 | 96.23 112 | 97.65 144 | 98.22 162 | 94.23 193 | 99.99 4 | 97.25 263 | 97.77 13 | 99.58 48 | 99.08 137 | 77.10 279 | 99.97 53 | 97.64 124 | 99.45 104 | 98.74 202 |
|
| FE-MVS | | | 95.70 149 | 95.01 157 | 97.79 136 | 98.21 163 | 94.57 185 | 95.03 355 | 98.69 62 | 88.90 271 | 97.50 136 | 96.19 263 | 92.60 120 | 99.49 149 | 89.99 261 | 97.94 150 | 99.31 169 |
|
| GG-mvs-BLEND | | | | | 98.54 99 | 98.21 163 | 98.01 67 | 93.87 360 | 98.52 94 | | 97.92 126 | 97.92 211 | 99.02 2 | 97.94 241 | 98.17 97 | 99.58 94 | 99.67 109 |
|
| mvs_anonymous | | | 95.65 151 | 95.03 156 | 97.53 149 | 98.19 165 | 95.74 149 | 99.33 209 | 97.49 240 | 90.87 237 | 90.47 236 | 97.10 232 | 88.23 188 | 97.16 273 | 95.92 157 | 97.66 154 | 99.68 107 |
|
| MVS_Test | | | 96.46 122 | 95.74 135 | 98.61 90 | 98.18 166 | 97.23 96 | 99.31 212 | 97.15 272 | 91.07 233 | 98.84 88 | 97.05 236 | 88.17 189 | 98.97 166 | 94.39 185 | 97.50 156 | 99.61 123 |
|
| BH-RMVSNet | | | 95.18 159 | 94.31 171 | 97.80 134 | 98.17 167 | 95.23 170 | 99.76 137 | 97.53 235 | 92.52 188 | 94.27 196 | 99.25 127 | 76.84 284 | 98.80 173 | 90.89 245 | 99.54 96 | 99.35 164 |
|
| RPSCF | | | 91.80 244 | 92.79 210 | 88.83 332 | 98.15 168 | 69.87 368 | 98.11 309 | 96.60 320 | 83.93 332 | 94.33 195 | 99.27 123 | 79.60 262 | 99.46 152 | 91.99 226 | 93.16 221 | 97.18 229 |
|
| ETV-MVS | | | 97.92 63 | 97.80 66 | 98.25 116 | 98.14 169 | 96.48 120 | 99.98 12 | 97.63 220 | 95.61 75 | 99.29 72 | 99.46 109 | 92.55 122 | 98.82 172 | 99.02 57 | 98.54 130 | 99.46 150 |
|
| IS-MVSNet | | | 96.29 131 | 95.90 131 | 97.45 153 | 98.13 170 | 94.80 182 | 99.08 234 | 97.61 225 | 92.02 205 | 95.54 181 | 98.96 152 | 90.64 159 | 98.08 230 | 93.73 205 | 97.41 160 | 99.47 149 |
|
| test_fmvsmconf_n | | | 98.43 40 | 98.32 37 | 98.78 79 | 98.12 171 | 96.41 123 | 99.99 4 | 98.83 53 | 98.22 3 | 99.67 35 | 99.64 93 | 91.11 149 | 99.94 72 | 99.67 33 | 99.62 88 | 99.98 48 |
|
| ab-mvs | | | 94.69 172 | 93.42 194 | 98.51 102 | 98.07 172 | 96.26 130 | 96.49 339 | 98.68 64 | 90.31 247 | 94.54 190 | 97.00 238 | 76.30 291 | 99.71 129 | 95.98 156 | 93.38 219 | 99.56 134 |
|
| XVG-OURS-SEG-HR | | | 94.79 168 | 94.70 164 | 95.08 224 | 98.05 173 | 89.19 298 | 99.08 234 | 97.54 233 | 93.66 146 | 94.87 188 | 99.58 99 | 78.78 269 | 99.79 114 | 97.31 130 | 93.40 218 | 96.25 233 |
|
| EIA-MVS | | | 97.53 80 | 97.46 75 | 97.76 140 | 98.04 174 | 94.84 180 | 99.98 12 | 97.61 225 | 94.41 111 | 97.90 127 | 99.59 97 | 92.40 126 | 98.87 170 | 98.04 105 | 99.13 119 | 99.59 126 |
|
| XVG-OURS | | | 94.82 166 | 94.74 163 | 95.06 225 | 98.00 175 | 89.19 298 | 99.08 234 | 97.55 231 | 94.10 125 | 94.71 189 | 99.62 95 | 80.51 255 | 99.74 125 | 96.04 155 | 93.06 223 | 96.25 233 |
|
| dp | | | 95.05 162 | 94.43 167 | 96.91 172 | 97.99 176 | 92.73 230 | 96.29 344 | 97.98 193 | 89.70 256 | 95.93 173 | 94.67 320 | 93.83 89 | 98.45 198 | 86.91 298 | 96.53 177 | 99.54 138 |
|
| tpmrst | | | 96.27 133 | 95.98 120 | 97.13 167 | 97.96 177 | 93.15 219 | 96.34 342 | 98.17 175 | 92.07 201 | 98.71 98 | 95.12 305 | 93.91 85 | 98.73 179 | 94.91 173 | 96.62 175 | 99.50 146 |
|
| TR-MVS | | | 94.54 177 | 93.56 190 | 97.49 152 | 97.96 177 | 94.34 191 | 98.71 277 | 97.51 238 | 90.30 248 | 94.51 192 | 98.69 175 | 75.56 297 | 98.77 176 | 92.82 219 | 95.99 186 | 99.35 164 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 128 | 95.98 120 | 97.35 162 | 97.93 179 | 94.82 181 | 99.47 192 | 98.15 181 | 91.83 209 | 95.09 186 | 99.11 135 | 91.37 143 | 97.47 256 | 93.47 208 | 97.43 157 | 99.74 100 |
|
| MDTV_nov1_ep13 | | | | 95.69 136 | | 97.90 180 | 94.15 194 | 95.98 350 | 98.44 111 | 93.12 161 | 97.98 124 | 95.74 274 | 95.10 50 | 98.58 189 | 90.02 260 | 96.92 172 | |
|
| Fast-Effi-MVS+ | | | 95.02 163 | 94.19 172 | 97.52 150 | 97.88 181 | 94.55 186 | 99.97 22 | 97.08 280 | 88.85 273 | 94.47 193 | 97.96 210 | 84.59 220 | 98.41 201 | 89.84 263 | 97.10 165 | 99.59 126 |
|
| ADS-MVSNet2 | | | 93.80 196 | 93.88 181 | 93.55 286 | 97.87 182 | 85.94 327 | 94.24 356 | 96.84 306 | 90.07 250 | 96.43 161 | 94.48 325 | 90.29 164 | 95.37 338 | 87.44 286 | 97.23 162 | 99.36 162 |
|
| ADS-MVSNet | | | 94.79 168 | 94.02 176 | 97.11 169 | 97.87 182 | 93.79 203 | 94.24 356 | 98.16 179 | 90.07 250 | 96.43 161 | 94.48 325 | 90.29 164 | 98.19 226 | 87.44 286 | 97.23 162 | 99.36 162 |
|
| Effi-MVS+ | | | 96.30 130 | 95.69 136 | 98.16 118 | 97.85 184 | 96.26 130 | 97.41 322 | 97.21 265 | 90.37 245 | 98.65 101 | 98.58 183 | 86.61 203 | 98.70 183 | 97.11 136 | 97.37 161 | 99.52 142 |
|
| PatchmatchNet |  | | 95.94 140 | 95.45 141 | 97.39 158 | 97.83 185 | 94.41 190 | 96.05 348 | 98.40 138 | 92.86 165 | 97.09 143 | 95.28 302 | 94.21 78 | 98.07 232 | 89.26 267 | 98.11 144 | 99.70 104 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 175 | 93.61 185 | 97.74 142 | 97.82 186 | 96.26 130 | 99.96 29 | 97.78 213 | 85.76 315 | 94.00 199 | 97.54 219 | 76.95 283 | 99.21 156 | 97.23 133 | 95.43 199 | 97.76 221 |
|
| 1112_ss | | | 96.01 138 | 95.20 150 | 98.42 109 | 97.80 187 | 96.41 123 | 99.65 161 | 96.66 317 | 92.71 174 | 92.88 212 | 99.40 113 | 92.16 131 | 99.30 154 | 91.92 228 | 93.66 215 | 99.55 135 |
|
| Test_1112_low_res | | | 95.72 145 | 94.83 161 | 98.42 109 | 97.79 188 | 96.41 123 | 99.65 161 | 96.65 318 | 92.70 175 | 92.86 213 | 96.13 266 | 92.15 132 | 99.30 154 | 91.88 229 | 93.64 216 | 99.55 135 |
|
| Effi-MVS+-dtu | | | 94.53 179 | 95.30 147 | 92.22 305 | 97.77 189 | 82.54 344 | 99.59 171 | 97.06 282 | 94.92 92 | 95.29 184 | 95.37 295 | 85.81 209 | 97.89 242 | 94.80 176 | 97.07 166 | 96.23 235 |
|
| tpm cat1 | | | 93.51 205 | 92.52 218 | 96.47 184 | 97.77 189 | 91.47 264 | 96.13 346 | 98.06 187 | 80.98 348 | 92.91 211 | 93.78 333 | 89.66 169 | 98.87 170 | 87.03 294 | 96.39 180 | 99.09 187 |
|
| FA-MVS(test-final) | | | 95.86 141 | 95.09 154 | 98.15 121 | 97.74 191 | 95.62 155 | 96.31 343 | 98.17 175 | 91.42 224 | 96.26 166 | 96.13 266 | 90.56 160 | 99.47 151 | 92.18 225 | 97.07 166 | 99.35 164 |
|
| xiu_mvs_v1_base_debu | | | 97.43 82 | 97.06 87 | 98.55 96 | 97.74 191 | 98.14 61 | 99.31 212 | 97.86 207 | 96.43 54 | 99.62 41 | 99.69 84 | 85.56 211 | 99.68 133 | 99.05 52 | 98.31 136 | 97.83 217 |
|
| xiu_mvs_v1_base | | | 97.43 82 | 97.06 87 | 98.55 96 | 97.74 191 | 98.14 61 | 99.31 212 | 97.86 207 | 96.43 54 | 99.62 41 | 99.69 84 | 85.56 211 | 99.68 133 | 99.05 52 | 98.31 136 | 97.83 217 |
|
| xiu_mvs_v1_base_debi | | | 97.43 82 | 97.06 87 | 98.55 96 | 97.74 191 | 98.14 61 | 99.31 212 | 97.86 207 | 96.43 54 | 99.62 41 | 99.69 84 | 85.56 211 | 99.68 133 | 99.05 52 | 98.31 136 | 97.83 217 |
|
| EPP-MVSNet | | | 96.69 114 | 96.60 102 | 96.96 171 | 97.74 191 | 93.05 222 | 99.37 205 | 98.56 82 | 88.75 274 | 95.83 176 | 99.01 143 | 96.01 32 | 98.56 190 | 96.92 144 | 97.20 164 | 99.25 176 |
|
| gg-mvs-nofinetune | | | 93.51 205 | 91.86 231 | 98.47 104 | 97.72 196 | 97.96 71 | 92.62 364 | 98.51 97 | 74.70 366 | 97.33 139 | 69.59 379 | 98.91 3 | 97.79 245 | 97.77 121 | 99.56 95 | 99.67 109 |
|
| IB-MVS | | 92.85 6 | 94.99 164 | 93.94 179 | 98.16 118 | 97.72 196 | 95.69 153 | 99.99 4 | 98.81 54 | 94.28 118 | 92.70 214 | 96.90 240 | 95.08 51 | 99.17 160 | 96.07 154 | 73.88 350 | 99.60 125 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 87 | 97.02 92 | 98.59 93 | 97.71 198 | 97.52 84 | 99.97 22 | 98.54 91 | 91.83 209 | 97.45 137 | 99.04 140 | 97.50 9 | 99.10 163 | 94.75 178 | 96.37 181 | 99.16 181 |
|
| test_fmvs1_n | | | 94.25 188 | 94.36 168 | 93.92 272 | 97.68 199 | 83.70 339 | 99.90 80 | 96.57 321 | 97.40 23 | 99.67 35 | 98.88 163 | 61.82 355 | 99.92 81 | 98.23 95 | 99.13 119 | 98.14 214 |
|
| diffmvs |  | | 97.00 99 | 96.64 101 | 98.09 123 | 97.64 200 | 96.17 137 | 99.81 122 | 97.19 266 | 94.67 102 | 98.95 84 | 99.28 120 | 86.43 204 | 98.76 177 | 98.37 90 | 97.42 159 | 99.33 167 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 145 | 95.15 152 | 97.45 153 | 97.62 201 | 94.28 192 | 99.28 218 | 98.24 167 | 94.27 120 | 96.84 150 | 98.94 159 | 79.39 263 | 98.76 177 | 93.25 210 | 98.49 131 | 99.30 171 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 96 | 96.72 99 | 98.22 117 | 97.60 202 | 96.70 114 | 99.92 71 | 98.54 91 | 91.11 232 | 97.07 144 | 98.97 150 | 97.47 12 | 99.03 164 | 93.73 205 | 96.09 184 | 98.92 191 |
|
| miper_ehance_all_eth | | | 93.16 212 | 92.60 213 | 94.82 235 | 97.57 203 | 93.56 209 | 99.50 187 | 97.07 281 | 88.75 274 | 88.85 273 | 95.52 285 | 90.97 152 | 96.74 301 | 90.77 247 | 84.45 286 | 94.17 271 |
|
| LCM-MVSNet-Re | | | 92.31 233 | 92.60 213 | 91.43 312 | 97.53 204 | 79.27 361 | 99.02 247 | 91.83 375 | 92.07 201 | 80.31 341 | 94.38 328 | 83.50 229 | 95.48 336 | 97.22 134 | 97.58 155 | 99.54 138 |
|
| GBi-Net | | | 90.88 260 | 89.82 265 | 94.08 264 | 97.53 204 | 91.97 245 | 98.43 293 | 96.95 294 | 87.05 298 | 89.68 250 | 94.72 316 | 71.34 320 | 96.11 324 | 87.01 295 | 85.65 275 | 94.17 271 |
|
| test1 | | | 90.88 260 | 89.82 265 | 94.08 264 | 97.53 204 | 91.97 245 | 98.43 293 | 96.95 294 | 87.05 298 | 89.68 250 | 94.72 316 | 71.34 320 | 96.11 324 | 87.01 295 | 85.65 275 | 94.17 271 |
|
| FMVSNet2 | | | 91.02 257 | 89.56 270 | 95.41 214 | 97.53 204 | 95.74 149 | 98.98 249 | 97.41 248 | 87.05 298 | 88.43 281 | 95.00 310 | 71.34 320 | 96.24 321 | 85.12 307 | 85.21 280 | 94.25 266 |
|
| tttt0517 | | | 96.85 104 | 96.49 106 | 97.92 129 | 97.48 208 | 95.89 144 | 99.85 108 | 98.54 91 | 90.72 241 | 96.63 155 | 98.93 161 | 97.47 12 | 99.02 165 | 93.03 217 | 95.76 193 | 98.85 195 |
|
| casdiffmvs_mvg |  | | 96.43 123 | 95.94 127 | 97.89 133 | 97.44 209 | 95.47 158 | 99.86 105 | 97.29 259 | 93.35 153 | 96.03 170 | 99.19 131 | 85.39 214 | 98.72 181 | 97.89 115 | 97.04 168 | 99.49 148 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 89 | 97.24 82 | 97.80 134 | 97.41 210 | 95.64 154 | 99.99 4 | 97.06 282 | 94.59 103 | 99.63 39 | 99.32 119 | 89.20 180 | 98.14 227 | 98.76 72 | 99.23 115 | 99.62 120 |
|
| c3_l | | | 92.53 228 | 91.87 230 | 94.52 247 | 97.40 211 | 92.99 224 | 99.40 198 | 96.93 299 | 87.86 288 | 88.69 276 | 95.44 289 | 89.95 167 | 96.44 312 | 90.45 253 | 80.69 317 | 94.14 280 |
|
| CDS-MVSNet | | | 96.34 127 | 96.07 115 | 97.13 167 | 97.37 212 | 94.96 177 | 99.53 182 | 97.91 202 | 91.55 217 | 95.37 183 | 98.32 198 | 95.05 53 | 97.13 276 | 93.80 201 | 95.75 194 | 99.30 171 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 111 | 96.26 111 | 98.16 118 | 97.36 213 | 96.48 120 | 99.96 29 | 98.29 162 | 91.93 206 | 95.77 177 | 98.07 203 | 95.54 42 | 98.29 217 | 90.55 251 | 98.89 123 | 99.70 104 |
|
| miper_lstm_enhance | | | 91.81 241 | 91.39 240 | 93.06 297 | 97.34 214 | 89.18 300 | 99.38 203 | 96.79 311 | 86.70 305 | 87.47 294 | 95.22 303 | 90.00 166 | 95.86 333 | 88.26 277 | 81.37 307 | 94.15 277 |
|
| baseline | | | 96.43 123 | 95.98 120 | 97.76 140 | 97.34 214 | 95.17 174 | 99.51 185 | 97.17 269 | 93.92 138 | 96.90 148 | 99.28 120 | 85.37 215 | 98.64 187 | 97.50 127 | 96.86 174 | 99.46 150 |
|
| cl____ | | | 92.31 233 | 91.58 234 | 94.52 247 | 97.33 216 | 92.77 226 | 99.57 175 | 96.78 312 | 86.97 302 | 87.56 292 | 95.51 286 | 89.43 173 | 96.62 306 | 88.60 272 | 82.44 299 | 94.16 276 |
|
| DIV-MVS_self_test | | | 92.32 232 | 91.60 233 | 94.47 251 | 97.31 217 | 92.74 228 | 99.58 173 | 96.75 313 | 86.99 301 | 87.64 290 | 95.54 283 | 89.55 172 | 96.50 310 | 88.58 273 | 82.44 299 | 94.17 271 |
|
| casdiffmvs |  | | 96.42 125 | 95.97 123 | 97.77 139 | 97.30 218 | 94.98 176 | 99.84 112 | 97.09 279 | 93.75 144 | 96.58 157 | 99.26 126 | 85.07 217 | 98.78 175 | 97.77 121 | 97.04 168 | 99.54 138 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 185 | 93.48 192 | 96.99 170 | 97.29 219 | 93.54 210 | 99.96 29 | 96.72 315 | 88.35 283 | 93.43 203 | 98.94 159 | 82.05 236 | 98.05 233 | 88.12 281 | 96.48 179 | 99.37 161 |
|
| eth_miper_zixun_eth | | | 92.41 231 | 91.93 228 | 93.84 276 | 97.28 220 | 90.68 274 | 98.83 267 | 96.97 293 | 88.57 279 | 89.19 267 | 95.73 276 | 89.24 179 | 96.69 304 | 89.97 262 | 81.55 305 | 94.15 277 |
|
| MVSFormer | | | 96.94 101 | 96.60 102 | 97.95 127 | 97.28 220 | 97.70 78 | 99.55 179 | 97.27 261 | 91.17 229 | 99.43 60 | 99.54 103 | 90.92 153 | 96.89 294 | 94.67 181 | 99.62 88 | 99.25 176 |
|
| lupinMVS | | | 97.85 66 | 97.60 71 | 98.62 89 | 97.28 220 | 97.70 78 | 99.99 4 | 97.55 231 | 95.50 80 | 99.43 60 | 99.67 89 | 90.92 153 | 98.71 182 | 98.40 88 | 99.62 88 | 99.45 152 |
|
| SCA | | | 94.69 172 | 93.81 183 | 97.33 163 | 97.10 223 | 94.44 187 | 98.86 264 | 98.32 156 | 93.30 156 | 96.17 169 | 95.59 281 | 76.48 289 | 97.95 239 | 91.06 239 | 97.43 157 | 99.59 126 |
|
| TAMVS | | | 95.85 142 | 95.58 139 | 96.65 182 | 97.07 224 | 93.50 211 | 99.17 227 | 97.82 211 | 91.39 226 | 95.02 187 | 98.01 204 | 92.20 130 | 97.30 265 | 93.75 204 | 95.83 191 | 99.14 184 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 200 | 93.86 182 | 93.29 290 | 97.06 225 | 86.16 325 | 99.80 126 | 96.83 307 | 92.66 178 | 92.58 216 | 97.83 214 | 81.39 243 | 97.67 250 | 89.75 264 | 96.87 173 | 96.05 237 |
|
| CostFormer | | | 96.10 134 | 95.88 132 | 96.78 176 | 97.03 226 | 92.55 236 | 97.08 330 | 97.83 210 | 90.04 252 | 98.72 97 | 94.89 314 | 95.01 55 | 98.29 217 | 96.54 149 | 95.77 192 | 99.50 146 |
|
| test_fmvsmvis_n_1920 | | | 97.67 77 | 97.59 73 | 97.91 131 | 97.02 227 | 95.34 164 | 99.95 46 | 98.45 107 | 97.87 11 | 97.02 145 | 99.59 97 | 89.64 170 | 99.98 43 | 99.41 42 | 99.34 111 | 98.42 207 |
|
| test-LLR | | | 96.47 121 | 96.04 116 | 97.78 137 | 97.02 227 | 95.44 159 | 99.96 29 | 98.21 170 | 94.07 127 | 95.55 179 | 96.38 257 | 93.90 86 | 98.27 221 | 90.42 254 | 98.83 125 | 99.64 115 |
|
| test-mter | | | 96.39 126 | 95.93 128 | 97.78 137 | 97.02 227 | 95.44 159 | 99.96 29 | 98.21 170 | 91.81 211 | 95.55 179 | 96.38 257 | 95.17 48 | 98.27 221 | 90.42 254 | 98.83 125 | 99.64 115 |
|
| gm-plane-assit | | | | | | 96.97 230 | 93.76 205 | | | 91.47 220 | | 98.96 152 | | 98.79 174 | 94.92 171 | | |
|
| QAPM | | | 95.40 156 | 94.17 173 | 99.10 61 | 96.92 231 | 97.71 76 | 99.40 198 | 98.68 64 | 89.31 259 | 88.94 271 | 98.89 162 | 82.48 234 | 99.96 57 | 93.12 216 | 99.83 72 | 99.62 120 |
|
| KD-MVS_2432*1600 | | | 88.00 301 | 86.10 305 | 93.70 282 | 96.91 232 | 94.04 197 | 97.17 327 | 97.12 275 | 84.93 325 | 81.96 332 | 92.41 344 | 92.48 124 | 94.51 349 | 79.23 337 | 52.68 378 | 92.56 334 |
|
| miper_refine_blended | | | 88.00 301 | 86.10 305 | 93.70 282 | 96.91 232 | 94.04 197 | 97.17 327 | 97.12 275 | 84.93 325 | 81.96 332 | 92.41 344 | 92.48 124 | 94.51 349 | 79.23 337 | 52.68 378 | 92.56 334 |
|
| tpm2 | | | 95.47 154 | 95.18 151 | 96.35 192 | 96.91 232 | 91.70 258 | 96.96 333 | 97.93 198 | 88.04 287 | 98.44 109 | 95.40 291 | 93.32 98 | 97.97 236 | 94.00 192 | 95.61 196 | 99.38 159 |
|
| FMVSNet5 | | | 88.32 298 | 87.47 300 | 90.88 315 | 96.90 235 | 88.39 311 | 97.28 324 | 95.68 341 | 82.60 342 | 84.67 321 | 92.40 346 | 79.83 261 | 91.16 367 | 76.39 351 | 81.51 306 | 93.09 326 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 129 | 95.24 148 | 99.52 27 | 96.88 236 | 98.64 51 | 99.72 151 | 98.24 167 | 95.27 85 | 88.42 283 | 98.98 148 | 82.76 233 | 99.94 72 | 97.10 137 | 99.83 72 | 99.96 62 |
|
| Patchmatch-test | | | 92.65 227 | 91.50 237 | 96.10 198 | 96.85 237 | 90.49 279 | 91.50 369 | 97.19 266 | 82.76 341 | 90.23 238 | 95.59 281 | 95.02 54 | 98.00 235 | 77.41 346 | 96.98 171 | 99.82 89 |
|
| MVS | | | 96.60 117 | 95.56 140 | 99.72 12 | 96.85 237 | 99.22 19 | 98.31 299 | 98.94 38 | 91.57 216 | 90.90 232 | 99.61 96 | 86.66 202 | 99.96 57 | 97.36 129 | 99.88 68 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 132 | 95.34 145 | 99.08 62 | 96.82 239 | 97.47 90 | 99.45 195 | 98.81 54 | 95.52 79 | 89.39 258 | 99.00 145 | 81.97 237 | 99.95 64 | 97.27 131 | 99.83 72 | 99.84 87 |
|
| EI-MVSNet | | | 93.73 199 | 93.40 197 | 94.74 236 | 96.80 240 | 92.69 231 | 99.06 239 | 97.67 218 | 88.96 268 | 91.39 226 | 99.02 141 | 88.75 185 | 97.30 265 | 91.07 238 | 87.85 259 | 94.22 267 |
|
| CVMVSNet | | | 94.68 174 | 94.94 159 | 93.89 275 | 96.80 240 | 86.92 323 | 99.06 239 | 98.98 36 | 94.45 106 | 94.23 197 | 99.02 141 | 85.60 210 | 95.31 340 | 90.91 244 | 95.39 200 | 99.43 155 |
|
| IterMVS-LS | | | 92.69 225 | 92.11 223 | 94.43 255 | 96.80 240 | 92.74 228 | 99.45 195 | 96.89 302 | 88.98 266 | 89.65 253 | 95.38 294 | 88.77 184 | 96.34 316 | 90.98 242 | 82.04 302 | 94.22 267 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 259 | 90.17 260 | 93.12 294 | 96.78 243 | 90.42 282 | 98.89 258 | 97.05 284 | 89.03 263 | 86.49 307 | 95.42 290 | 76.59 287 | 95.02 342 | 87.22 291 | 84.09 289 | 93.93 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 105 | 95.96 124 | 99.48 33 | 96.74 244 | 98.52 55 | 98.31 299 | 98.86 49 | 95.82 69 | 89.91 244 | 98.98 148 | 87.49 193 | 99.96 57 | 97.80 116 | 99.73 82 | 99.96 62 |
|
| IterMVS-SCA-FT | | | 90.85 262 | 90.16 261 | 92.93 298 | 96.72 245 | 89.96 290 | 98.89 258 | 96.99 289 | 88.95 269 | 86.63 304 | 95.67 277 | 76.48 289 | 95.00 343 | 87.04 293 | 84.04 292 | 93.84 305 |
|
| MVS-HIRNet | | | 86.22 308 | 83.19 321 | 95.31 218 | 96.71 246 | 90.29 283 | 92.12 366 | 97.33 255 | 62.85 373 | 86.82 301 | 70.37 378 | 69.37 328 | 97.49 255 | 75.12 353 | 97.99 149 | 98.15 212 |
|
| VDDNet | | | 93.12 214 | 91.91 229 | 96.76 177 | 96.67 247 | 92.65 234 | 98.69 280 | 98.21 170 | 82.81 340 | 97.75 131 | 99.28 120 | 61.57 356 | 99.48 150 | 98.09 103 | 94.09 212 | 98.15 212 |
|
| dmvs_re | | | 93.20 211 | 93.15 202 | 93.34 288 | 96.54 248 | 83.81 338 | 98.71 277 | 98.51 97 | 91.39 226 | 92.37 220 | 98.56 185 | 78.66 271 | 97.83 244 | 93.89 195 | 89.74 228 | 98.38 208 |
|
| MIMVSNet | | | 90.30 275 | 88.67 288 | 95.17 223 | 96.45 249 | 91.64 260 | 92.39 365 | 97.15 272 | 85.99 312 | 90.50 235 | 93.19 340 | 66.95 338 | 94.86 346 | 82.01 326 | 93.43 217 | 99.01 190 |
|
| CR-MVSNet | | | 93.45 208 | 92.62 212 | 95.94 200 | 96.29 250 | 92.66 232 | 92.01 367 | 96.23 330 | 92.62 180 | 96.94 146 | 93.31 338 | 91.04 150 | 96.03 329 | 79.23 337 | 95.96 187 | 99.13 185 |
|
| RPMNet | | | 89.76 286 | 87.28 301 | 97.19 166 | 96.29 250 | 92.66 232 | 92.01 367 | 98.31 158 | 70.19 372 | 96.94 146 | 85.87 371 | 87.25 196 | 99.78 116 | 62.69 372 | 95.96 187 | 99.13 185 |
|
| tt0805 | | | 91.28 252 | 90.18 259 | 94.60 242 | 96.26 252 | 87.55 317 | 98.39 297 | 98.72 59 | 89.00 265 | 89.22 264 | 98.47 193 | 62.98 352 | 98.96 167 | 90.57 250 | 88.00 258 | 97.28 228 |
|
| Patchmtry | | | 89.70 287 | 88.49 290 | 93.33 289 | 96.24 253 | 89.94 293 | 91.37 370 | 96.23 330 | 78.22 356 | 87.69 289 | 93.31 338 | 91.04 150 | 96.03 329 | 80.18 336 | 82.10 301 | 94.02 288 |
|
| test_vis1_rt | | | 86.87 306 | 86.05 308 | 89.34 328 | 96.12 254 | 78.07 362 | 99.87 92 | 83.54 386 | 92.03 204 | 78.21 351 | 89.51 357 | 45.80 372 | 99.91 82 | 96.25 152 | 93.11 222 | 90.03 357 |
|
| JIA-IIPM | | | 91.76 247 | 90.70 247 | 94.94 229 | 96.11 255 | 87.51 318 | 93.16 363 | 98.13 183 | 75.79 362 | 97.58 133 | 77.68 376 | 92.84 112 | 97.97 236 | 88.47 276 | 96.54 176 | 99.33 167 |
|
| OpenMVS |  | 90.15 15 | 94.77 170 | 93.59 188 | 98.33 113 | 96.07 256 | 97.48 89 | 99.56 177 | 98.57 80 | 90.46 243 | 86.51 306 | 98.95 157 | 78.57 272 | 99.94 72 | 93.86 196 | 99.74 81 | 97.57 226 |
|
| PAPM | | | 98.60 27 | 98.42 28 | 99.14 56 | 96.05 257 | 98.96 25 | 99.90 80 | 99.35 24 | 96.68 48 | 98.35 114 | 99.66 91 | 96.45 29 | 98.51 193 | 99.45 39 | 99.89 66 | 99.96 62 |
|
| CLD-MVS | | | 94.06 191 | 93.90 180 | 94.55 246 | 96.02 258 | 90.69 273 | 99.98 12 | 97.72 214 | 96.62 51 | 91.05 231 | 98.85 171 | 77.21 278 | 98.47 194 | 98.11 101 | 89.51 234 | 94.48 244 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 272 | 88.75 287 | 95.25 220 | 95.99 259 | 90.16 285 | 91.22 371 | 97.54 233 | 76.80 358 | 97.26 140 | 86.01 370 | 91.88 137 | 96.07 328 | 66.16 369 | 95.91 189 | 99.51 144 |
|
| ACMH+ | | 89.98 16 | 90.35 273 | 89.54 271 | 92.78 301 | 95.99 259 | 86.12 326 | 98.81 269 | 97.18 268 | 89.38 258 | 83.14 328 | 97.76 216 | 68.42 333 | 98.43 199 | 89.11 268 | 86.05 273 | 93.78 308 |
|
| DeepMVS_CX |  | | | | 82.92 348 | 95.98 261 | 58.66 378 | | 96.01 335 | 92.72 173 | 78.34 350 | 95.51 286 | 58.29 361 | 98.08 230 | 82.57 322 | 85.29 278 | 92.03 342 |
|
| ACMP | | 92.05 9 | 92.74 222 | 92.42 220 | 93.73 278 | 95.91 262 | 88.72 304 | 99.81 122 | 97.53 235 | 94.13 123 | 87.00 300 | 98.23 199 | 74.07 310 | 98.47 194 | 96.22 153 | 88.86 241 | 93.99 293 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 203 | 93.03 204 | 95.35 215 | 95.86 263 | 86.94 322 | 99.87 92 | 96.36 328 | 96.85 39 | 99.54 51 | 98.79 172 | 52.41 368 | 99.83 109 | 98.64 80 | 98.97 122 | 99.29 173 |
|
| HQP-NCC | | | | | | 95.78 264 | | 99.87 92 | | 96.82 41 | 93.37 204 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 264 | | 99.87 92 | | 96.82 41 | 93.37 204 | | | | | | |
|
| HQP-MVS | | | 94.61 176 | 94.50 166 | 94.92 230 | 95.78 264 | 91.85 250 | 99.87 92 | 97.89 203 | 96.82 41 | 93.37 204 | 98.65 177 | 80.65 253 | 98.39 205 | 97.92 112 | 89.60 229 | 94.53 240 |
|
| NP-MVS | | | | | | 95.77 267 | 91.79 252 | | | | | 98.65 177 | | | | | |
|
| plane_prior6 | | | | | | 95.76 268 | 91.72 257 | | | | | | 80.47 257 | | | | |
|
| ACMM | | 91.95 10 | 92.88 219 | 92.52 218 | 93.98 271 | 95.75 269 | 89.08 301 | 99.77 132 | 97.52 237 | 93.00 163 | 89.95 243 | 97.99 207 | 76.17 293 | 98.46 197 | 93.63 207 | 88.87 240 | 94.39 255 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 193 | 92.84 207 | 96.80 175 | 95.73 270 | 93.57 208 | 99.88 89 | 97.24 264 | 92.57 185 | 92.92 210 | 96.66 249 | 78.73 270 | 97.67 250 | 87.75 284 | 94.06 213 | 99.17 180 |
|
| plane_prior1 | | | | | | 95.73 270 | | | | | | | | | | | |
|
| jason | | | 97.24 92 | 96.86 94 | 98.38 112 | 95.73 270 | 97.32 94 | 99.97 22 | 97.40 249 | 95.34 83 | 98.60 104 | 99.54 103 | 87.70 191 | 98.56 190 | 97.94 111 | 99.47 101 | 99.25 176 |
| jason: jason. |
| HQP_MVS | | | 94.49 180 | 94.36 168 | 94.87 231 | 95.71 273 | 91.74 254 | 99.84 112 | 97.87 205 | 96.38 57 | 93.01 208 | 98.59 181 | 80.47 257 | 98.37 211 | 97.79 119 | 89.55 232 | 94.52 242 |
|
| plane_prior7 | | | | | | 95.71 273 | 91.59 262 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 303 | 95.69 275 | 85.14 331 | | 95.71 340 | 92.81 169 | 89.33 261 | 98.11 201 | 70.23 326 | 98.42 200 | 85.91 303 | 88.16 255 | 93.59 316 |
|
| ACMH | | 89.72 17 | 90.64 266 | 89.63 268 | 93.66 284 | 95.64 276 | 88.64 307 | 98.55 286 | 97.45 242 | 89.03 263 | 81.62 335 | 97.61 218 | 69.75 327 | 98.41 201 | 89.37 265 | 87.62 264 | 93.92 299 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 113 | 96.49 106 | 97.37 159 | 95.63 277 | 95.96 142 | 99.74 143 | 98.88 47 | 92.94 164 | 91.61 224 | 98.97 150 | 97.72 7 | 98.62 188 | 94.83 175 | 98.08 147 | 97.53 227 |
|
| FMVSNet1 | | | 88.50 297 | 86.64 303 | 94.08 264 | 95.62 278 | 91.97 245 | 98.43 293 | 96.95 294 | 83.00 338 | 86.08 314 | 94.72 316 | 59.09 360 | 96.11 324 | 81.82 328 | 84.07 290 | 94.17 271 |
|
| LPG-MVS_test | | | 92.96 217 | 92.71 211 | 93.71 280 | 95.43 279 | 88.67 305 | 99.75 140 | 97.62 222 | 92.81 169 | 90.05 239 | 98.49 189 | 75.24 300 | 98.40 203 | 95.84 159 | 89.12 236 | 94.07 285 |
|
| LGP-MVS_train | | | | | 93.71 280 | 95.43 279 | 88.67 305 | | 97.62 222 | 92.81 169 | 90.05 239 | 98.49 189 | 75.24 300 | 98.40 203 | 95.84 159 | 89.12 236 | 94.07 285 |
|
| tpm | | | 93.70 201 | 93.41 196 | 94.58 244 | 95.36 281 | 87.41 319 | 97.01 331 | 96.90 301 | 90.85 238 | 96.72 154 | 94.14 330 | 90.40 162 | 96.84 297 | 90.75 248 | 88.54 248 | 99.51 144 |
|
| D2MVS | | | 92.76 221 | 92.59 216 | 93.27 291 | 95.13 282 | 89.54 297 | 99.69 154 | 99.38 22 | 92.26 197 | 87.59 291 | 94.61 322 | 85.05 218 | 97.79 245 | 91.59 232 | 88.01 257 | 92.47 337 |
|
| VPA-MVSNet | | | 92.70 224 | 91.55 236 | 96.16 196 | 95.09 283 | 96.20 135 | 98.88 260 | 99.00 34 | 91.02 235 | 91.82 223 | 95.29 301 | 76.05 295 | 97.96 238 | 95.62 161 | 81.19 308 | 94.30 262 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 276 | 89.05 282 | 94.02 267 | 95.08 284 | 90.15 286 | 97.19 326 | 97.43 244 | 84.91 327 | 83.99 324 | 97.06 235 | 74.00 311 | 98.28 219 | 84.08 312 | 87.71 262 | 93.62 315 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 303 | 86.51 304 | 91.94 308 | 95.05 285 | 85.57 329 | 97.65 319 | 94.08 363 | 84.40 330 | 81.82 334 | 96.85 244 | 62.14 354 | 98.33 214 | 80.25 335 | 86.37 272 | 91.91 344 |
|
| test0.0.03 1 | | | 93.86 192 | 93.61 185 | 94.64 240 | 95.02 286 | 92.18 243 | 99.93 68 | 98.58 78 | 94.07 127 | 87.96 287 | 98.50 188 | 93.90 86 | 94.96 344 | 81.33 329 | 93.17 220 | 96.78 230 |
|
| UniMVSNet (Re) | | | 93.07 216 | 92.13 222 | 95.88 201 | 94.84 287 | 96.24 134 | 99.88 89 | 98.98 36 | 92.49 190 | 89.25 262 | 95.40 291 | 87.09 198 | 97.14 275 | 93.13 215 | 78.16 331 | 94.26 264 |
|
| USDC | | | 90.00 283 | 88.96 283 | 93.10 296 | 94.81 288 | 88.16 313 | 98.71 277 | 95.54 345 | 93.66 146 | 83.75 326 | 97.20 229 | 65.58 343 | 98.31 216 | 83.96 315 | 87.49 266 | 92.85 331 |
|
| VPNet | | | 91.81 241 | 90.46 250 | 95.85 203 | 94.74 289 | 95.54 157 | 98.98 249 | 98.59 77 | 92.14 199 | 90.77 234 | 97.44 222 | 68.73 331 | 97.54 254 | 94.89 174 | 77.89 333 | 94.46 246 |
|
| FIs | | | 94.10 189 | 93.43 193 | 96.11 197 | 94.70 290 | 96.82 112 | 99.58 173 | 98.93 42 | 92.54 186 | 89.34 260 | 97.31 226 | 87.62 192 | 97.10 279 | 94.22 191 | 86.58 270 | 94.40 253 |
|
| UniMVSNet_ETH3D | | | 90.06 282 | 88.58 289 | 94.49 250 | 94.67 291 | 88.09 314 | 97.81 318 | 97.57 230 | 83.91 333 | 88.44 279 | 97.41 223 | 57.44 362 | 97.62 252 | 91.41 233 | 88.59 247 | 97.77 220 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 218 | 92.11 223 | 95.49 209 | 94.61 292 | 95.28 167 | 99.83 118 | 99.08 31 | 91.49 218 | 89.21 265 | 96.86 243 | 87.14 197 | 96.73 302 | 93.20 211 | 77.52 336 | 94.46 246 |
|
| test_fmvs2 | | | 89.47 290 | 89.70 267 | 88.77 335 | 94.54 293 | 75.74 363 | 99.83 118 | 94.70 359 | 94.71 99 | 91.08 229 | 96.82 248 | 54.46 365 | 97.78 247 | 92.87 218 | 88.27 253 | 92.80 332 |
|
| WR-MVS | | | 92.31 233 | 91.25 241 | 95.48 212 | 94.45 294 | 95.29 166 | 99.60 170 | 98.68 64 | 90.10 249 | 88.07 286 | 96.89 241 | 80.68 252 | 96.80 300 | 93.14 214 | 79.67 324 | 94.36 257 |
|
| nrg030 | | | 93.51 205 | 92.53 217 | 96.45 186 | 94.36 295 | 97.20 97 | 99.81 122 | 97.16 271 | 91.60 215 | 89.86 246 | 97.46 221 | 86.37 205 | 97.68 249 | 95.88 158 | 80.31 320 | 94.46 246 |
|
| tfpnnormal | | | 89.29 293 | 87.61 299 | 94.34 258 | 94.35 296 | 94.13 195 | 98.95 253 | 98.94 38 | 83.94 331 | 84.47 322 | 95.51 286 | 74.84 305 | 97.39 257 | 77.05 349 | 80.41 318 | 91.48 347 |
|
| FC-MVSNet-test | | | 93.81 195 | 93.15 202 | 95.80 205 | 94.30 297 | 96.20 135 | 99.42 197 | 98.89 45 | 92.33 196 | 89.03 270 | 97.27 228 | 87.39 195 | 96.83 298 | 93.20 211 | 86.48 271 | 94.36 257 |
|
| MS-PatchMatch | | | 90.65 265 | 90.30 255 | 91.71 311 | 94.22 298 | 85.50 330 | 98.24 302 | 97.70 215 | 88.67 276 | 86.42 309 | 96.37 259 | 67.82 335 | 98.03 234 | 83.62 317 | 99.62 88 | 91.60 345 |
|
| WR-MVS_H | | | 91.30 250 | 90.35 253 | 94.15 261 | 94.17 299 | 92.62 235 | 99.17 227 | 98.94 38 | 88.87 272 | 86.48 308 | 94.46 327 | 84.36 222 | 96.61 307 | 88.19 278 | 78.51 329 | 93.21 325 |
|
| DU-MVS | | | 92.46 230 | 91.45 239 | 95.49 209 | 94.05 300 | 95.28 167 | 99.81 122 | 98.74 58 | 92.25 198 | 89.21 265 | 96.64 251 | 81.66 240 | 96.73 302 | 93.20 211 | 77.52 336 | 94.46 246 |
|
| NR-MVSNet | | | 91.56 249 | 90.22 257 | 95.60 207 | 94.05 300 | 95.76 148 | 98.25 301 | 98.70 61 | 91.16 231 | 80.78 340 | 96.64 251 | 83.23 232 | 96.57 308 | 91.41 233 | 77.73 335 | 94.46 246 |
|
| CP-MVSNet | | | 91.23 254 | 90.22 257 | 94.26 259 | 93.96 302 | 92.39 239 | 99.09 232 | 98.57 80 | 88.95 269 | 86.42 309 | 96.57 254 | 79.19 266 | 96.37 314 | 90.29 257 | 78.95 326 | 94.02 288 |
|
| XXY-MVS | | | 91.82 240 | 90.46 250 | 95.88 201 | 93.91 303 | 95.40 163 | 98.87 263 | 97.69 216 | 88.63 278 | 87.87 288 | 97.08 233 | 74.38 309 | 97.89 242 | 91.66 231 | 84.07 290 | 94.35 260 |
|
| PS-CasMVS | | | 90.63 267 | 89.51 273 | 93.99 270 | 93.83 304 | 91.70 258 | 98.98 249 | 98.52 94 | 88.48 280 | 86.15 313 | 96.53 256 | 75.46 298 | 96.31 318 | 88.83 270 | 78.86 328 | 93.95 296 |
|
| test_0402 | | | 85.58 310 | 83.94 315 | 90.50 319 | 93.81 305 | 85.04 332 | 98.55 286 | 95.20 353 | 76.01 360 | 79.72 345 | 95.13 304 | 64.15 349 | 96.26 320 | 66.04 370 | 86.88 269 | 90.21 356 |
|
| XVG-ACMP-BASELINE | | | 91.22 255 | 90.75 246 | 92.63 302 | 93.73 306 | 85.61 328 | 98.52 290 | 97.44 243 | 92.77 172 | 89.90 245 | 96.85 244 | 66.64 340 | 98.39 205 | 92.29 223 | 88.61 245 | 93.89 301 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 248 | 90.61 249 | 94.87 231 | 93.69 307 | 93.98 200 | 99.69 154 | 98.65 68 | 91.03 234 | 88.44 279 | 96.83 247 | 80.05 260 | 96.18 322 | 90.26 258 | 76.89 344 | 94.45 251 |
|
| mvsmamba | | | 94.10 189 | 93.72 184 | 95.25 220 | 93.57 308 | 94.13 195 | 99.67 158 | 96.45 326 | 93.63 148 | 91.34 228 | 97.77 215 | 86.29 206 | 97.22 271 | 96.65 148 | 88.10 256 | 94.40 253 |
|
| TransMVSNet (Re) | | | 87.25 304 | 85.28 311 | 93.16 293 | 93.56 309 | 91.03 267 | 98.54 288 | 94.05 365 | 83.69 335 | 81.09 338 | 96.16 264 | 75.32 299 | 96.40 313 | 76.69 350 | 68.41 362 | 92.06 341 |
|
| v10 | | | 90.25 277 | 88.82 285 | 94.57 245 | 93.53 310 | 93.43 214 | 99.08 234 | 96.87 304 | 85.00 324 | 87.34 298 | 94.51 323 | 80.93 249 | 97.02 289 | 82.85 321 | 79.23 325 | 93.26 323 |
|
| testgi | | | 89.01 295 | 88.04 296 | 91.90 309 | 93.49 311 | 84.89 334 | 99.73 148 | 95.66 342 | 93.89 141 | 85.14 319 | 98.17 200 | 59.68 359 | 94.66 348 | 77.73 345 | 88.88 239 | 96.16 236 |
|
| v8 | | | 90.54 269 | 89.17 278 | 94.66 239 | 93.43 312 | 93.40 216 | 99.20 224 | 96.94 298 | 85.76 315 | 87.56 292 | 94.51 323 | 81.96 238 | 97.19 272 | 84.94 309 | 78.25 330 | 93.38 321 |
|
| V42 | | | 91.28 252 | 90.12 262 | 94.74 236 | 93.42 313 | 93.46 212 | 99.68 156 | 97.02 286 | 87.36 294 | 89.85 248 | 95.05 306 | 81.31 245 | 97.34 260 | 87.34 289 | 80.07 322 | 93.40 319 |
|
| pm-mvs1 | | | 89.36 292 | 87.81 298 | 94.01 268 | 93.40 314 | 91.93 248 | 98.62 285 | 96.48 325 | 86.25 310 | 83.86 325 | 96.14 265 | 73.68 312 | 97.04 284 | 86.16 301 | 75.73 348 | 93.04 328 |
|
| RRT_MVS | | | 93.14 213 | 92.92 206 | 93.78 277 | 93.31 315 | 90.04 288 | 99.66 159 | 97.69 216 | 92.53 187 | 88.91 272 | 97.76 216 | 84.36 222 | 96.93 292 | 95.10 166 | 86.99 268 | 94.37 256 |
|
| v1144 | | | 91.09 256 | 89.83 264 | 94.87 231 | 93.25 316 | 93.69 207 | 99.62 168 | 96.98 291 | 86.83 304 | 89.64 254 | 94.99 311 | 80.94 248 | 97.05 282 | 85.08 308 | 81.16 309 | 93.87 303 |
|
| v1192 | | | 90.62 268 | 89.25 277 | 94.72 238 | 93.13 317 | 93.07 220 | 99.50 187 | 97.02 286 | 86.33 309 | 89.56 256 | 95.01 308 | 79.22 265 | 97.09 281 | 82.34 324 | 81.16 309 | 94.01 290 |
|
| v2v482 | | | 91.30 250 | 90.07 263 | 95.01 226 | 93.13 317 | 93.79 203 | 99.77 132 | 97.02 286 | 88.05 286 | 89.25 262 | 95.37 295 | 80.73 251 | 97.15 274 | 87.28 290 | 80.04 323 | 94.09 284 |
|
| OPM-MVS | | | 93.21 210 | 92.80 209 | 94.44 253 | 93.12 319 | 90.85 272 | 99.77 132 | 97.61 225 | 96.19 64 | 91.56 225 | 98.65 177 | 75.16 304 | 98.47 194 | 93.78 203 | 89.39 235 | 93.99 293 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 263 | 89.52 272 | 94.59 243 | 93.11 320 | 92.77 226 | 99.56 177 | 96.99 289 | 86.38 308 | 89.82 249 | 94.95 313 | 80.50 256 | 97.10 279 | 83.98 314 | 80.41 318 | 93.90 300 |
|
| bld_raw_dy_0_64 | | | 92.74 222 | 92.03 226 | 94.87 231 | 93.09 321 | 93.46 212 | 99.12 229 | 95.41 347 | 92.84 168 | 90.44 237 | 97.54 219 | 78.08 276 | 97.04 284 | 93.94 193 | 87.77 261 | 94.11 282 |
|
| PEN-MVS | | | 90.19 279 | 89.06 281 | 93.57 285 | 93.06 322 | 90.90 270 | 99.06 239 | 98.47 104 | 88.11 285 | 85.91 315 | 96.30 260 | 76.67 285 | 95.94 332 | 87.07 292 | 76.91 343 | 93.89 301 |
|
| v1240 | | | 90.20 278 | 88.79 286 | 94.44 253 | 93.05 323 | 92.27 241 | 99.38 203 | 96.92 300 | 85.89 313 | 89.36 259 | 94.87 315 | 77.89 277 | 97.03 287 | 80.66 332 | 81.08 312 | 94.01 290 |
|
| v148 | | | 90.70 264 | 89.63 268 | 93.92 272 | 92.97 324 | 90.97 268 | 99.75 140 | 96.89 302 | 87.51 291 | 88.27 284 | 95.01 308 | 81.67 239 | 97.04 284 | 87.40 288 | 77.17 341 | 93.75 309 |
|
| v1921920 | | | 90.46 270 | 89.12 279 | 94.50 249 | 92.96 325 | 92.46 237 | 99.49 189 | 96.98 291 | 86.10 311 | 89.61 255 | 95.30 298 | 78.55 273 | 97.03 287 | 82.17 325 | 80.89 316 | 94.01 290 |
|
| Baseline_NR-MVSNet | | | 90.33 274 | 89.51 273 | 92.81 300 | 92.84 326 | 89.95 291 | 99.77 132 | 93.94 366 | 84.69 329 | 89.04 269 | 95.66 278 | 81.66 240 | 96.52 309 | 90.99 241 | 76.98 342 | 91.97 343 |
|
| test_method | | | 80.79 330 | 79.70 334 | 84.08 345 | 92.83 327 | 67.06 370 | 99.51 185 | 95.42 346 | 54.34 377 | 81.07 339 | 93.53 335 | 44.48 373 | 92.22 364 | 78.90 341 | 77.23 340 | 92.94 329 |
|
| pmmvs4 | | | 92.10 237 | 91.07 244 | 95.18 222 | 92.82 328 | 94.96 177 | 99.48 191 | 96.83 307 | 87.45 293 | 88.66 277 | 96.56 255 | 83.78 227 | 96.83 298 | 89.29 266 | 84.77 284 | 93.75 309 |
|
| LF4IMVS | | | 89.25 294 | 88.85 284 | 90.45 321 | 92.81 329 | 81.19 354 | 98.12 308 | 94.79 356 | 91.44 221 | 86.29 311 | 97.11 231 | 65.30 346 | 98.11 229 | 88.53 275 | 85.25 279 | 92.07 340 |
|
| DTE-MVSNet | | | 89.40 291 | 88.24 294 | 92.88 299 | 92.66 330 | 89.95 291 | 99.10 231 | 98.22 169 | 87.29 295 | 85.12 320 | 96.22 262 | 76.27 292 | 95.30 341 | 83.56 318 | 75.74 347 | 93.41 318 |
|
| EU-MVSNet | | | 90.14 281 | 90.34 254 | 89.54 327 | 92.55 331 | 81.06 355 | 98.69 280 | 98.04 189 | 91.41 225 | 86.59 305 | 96.84 246 | 80.83 250 | 93.31 360 | 86.20 300 | 81.91 303 | 94.26 264 |
|
| APD_test1 | | | 81.15 329 | 80.92 330 | 81.86 349 | 92.45 332 | 59.76 377 | 96.04 349 | 93.61 369 | 73.29 369 | 77.06 354 | 96.64 251 | 44.28 374 | 96.16 323 | 72.35 357 | 82.52 297 | 89.67 360 |
|
| our_test_3 | | | 90.39 271 | 89.48 275 | 93.12 294 | 92.40 333 | 89.57 296 | 99.33 209 | 96.35 329 | 87.84 289 | 85.30 318 | 94.99 311 | 84.14 225 | 96.09 327 | 80.38 333 | 84.56 285 | 93.71 314 |
|
| ppachtmachnet_test | | | 89.58 289 | 88.35 292 | 93.25 292 | 92.40 333 | 90.44 281 | 99.33 209 | 96.73 314 | 85.49 320 | 85.90 316 | 95.77 273 | 81.09 247 | 96.00 331 | 76.00 352 | 82.49 298 | 93.30 322 |
|
| v7n | | | 89.65 288 | 88.29 293 | 93.72 279 | 92.22 335 | 90.56 278 | 99.07 238 | 97.10 277 | 85.42 322 | 86.73 302 | 94.72 316 | 80.06 259 | 97.13 276 | 81.14 330 | 78.12 332 | 93.49 317 |
|
| dmvs_testset | | | 83.79 323 | 86.07 307 | 76.94 353 | 92.14 336 | 48.60 387 | 96.75 336 | 90.27 378 | 89.48 257 | 78.65 348 | 98.55 187 | 79.25 264 | 86.65 376 | 66.85 367 | 82.69 296 | 95.57 238 |
|
| PS-MVSNAJss | | | 93.64 202 | 93.31 199 | 94.61 241 | 92.11 337 | 92.19 242 | 99.12 229 | 97.38 250 | 92.51 189 | 88.45 278 | 96.99 239 | 91.20 145 | 97.29 268 | 94.36 186 | 87.71 262 | 94.36 257 |
|
| pmmvs5 | | | 90.17 280 | 89.09 280 | 93.40 287 | 92.10 338 | 89.77 294 | 99.74 143 | 95.58 344 | 85.88 314 | 87.24 299 | 95.74 274 | 73.41 313 | 96.48 311 | 88.54 274 | 83.56 293 | 93.95 296 |
|
| N_pmnet | | | 80.06 333 | 80.78 331 | 77.89 352 | 91.94 339 | 45.28 389 | 98.80 271 | 56.82 392 | 78.10 357 | 80.08 343 | 93.33 336 | 77.03 280 | 95.76 334 | 68.14 365 | 82.81 295 | 92.64 333 |
|
| test_djsdf | | | 92.83 220 | 92.29 221 | 94.47 251 | 91.90 340 | 92.46 237 | 99.55 179 | 97.27 261 | 91.17 229 | 89.96 242 | 96.07 269 | 81.10 246 | 96.89 294 | 94.67 181 | 88.91 238 | 94.05 287 |
|
| SixPastTwentyTwo | | | 88.73 296 | 88.01 297 | 90.88 315 | 91.85 341 | 82.24 346 | 98.22 305 | 95.18 354 | 88.97 267 | 82.26 331 | 96.89 241 | 71.75 318 | 96.67 305 | 84.00 313 | 82.98 294 | 93.72 313 |
|
| K. test v3 | | | 88.05 300 | 87.24 302 | 90.47 320 | 91.82 342 | 82.23 347 | 98.96 252 | 97.42 246 | 89.05 262 | 76.93 356 | 95.60 280 | 68.49 332 | 95.42 337 | 85.87 304 | 81.01 314 | 93.75 309 |
|
| OurMVSNet-221017-0 | | | 89.81 285 | 89.48 275 | 90.83 317 | 91.64 343 | 81.21 353 | 98.17 307 | 95.38 349 | 91.48 219 | 85.65 317 | 97.31 226 | 72.66 314 | 97.29 268 | 88.15 279 | 84.83 283 | 93.97 295 |
|
| mvs_tets | | | 91.81 241 | 91.08 243 | 94.00 269 | 91.63 344 | 90.58 277 | 98.67 282 | 97.43 244 | 92.43 191 | 87.37 297 | 97.05 236 | 71.76 317 | 97.32 264 | 94.75 178 | 88.68 244 | 94.11 282 |
|
| Gipuma |  | | 66.95 346 | 65.00 346 | 72.79 358 | 91.52 345 | 67.96 369 | 66.16 381 | 95.15 355 | 47.89 379 | 58.54 376 | 67.99 381 | 29.74 378 | 87.54 375 | 50.20 379 | 77.83 334 | 62.87 381 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| jajsoiax | | | 91.92 239 | 91.18 242 | 94.15 261 | 91.35 346 | 90.95 269 | 99.00 248 | 97.42 246 | 92.61 181 | 87.38 296 | 97.08 233 | 72.46 315 | 97.36 258 | 94.53 184 | 88.77 242 | 94.13 281 |
|
| MDA-MVSNet-bldmvs | | | 84.09 321 | 81.52 328 | 91.81 310 | 91.32 347 | 88.00 316 | 98.67 282 | 95.92 337 | 80.22 351 | 55.60 379 | 93.32 337 | 68.29 334 | 93.60 358 | 73.76 354 | 76.61 345 | 93.82 307 |
|
| MVP-Stereo | | | 90.93 258 | 90.45 252 | 92.37 304 | 91.25 348 | 88.76 302 | 98.05 312 | 96.17 332 | 87.27 296 | 84.04 323 | 95.30 298 | 78.46 274 | 97.27 270 | 83.78 316 | 99.70 84 | 91.09 348 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 312 | 83.32 320 | 92.10 306 | 90.96 349 | 88.58 308 | 99.20 224 | 96.52 323 | 79.70 353 | 57.12 378 | 92.69 342 | 79.11 267 | 93.86 355 | 77.10 348 | 77.46 338 | 93.86 304 |
|
| YYNet1 | | | 85.50 313 | 83.33 319 | 92.00 307 | 90.89 350 | 88.38 312 | 99.22 223 | 96.55 322 | 79.60 354 | 57.26 377 | 92.72 341 | 79.09 268 | 93.78 356 | 77.25 347 | 77.37 339 | 93.84 305 |
|
| anonymousdsp | | | 91.79 246 | 90.92 245 | 94.41 256 | 90.76 351 | 92.93 225 | 98.93 255 | 97.17 269 | 89.08 261 | 87.46 295 | 95.30 298 | 78.43 275 | 96.92 293 | 92.38 222 | 88.73 243 | 93.39 320 |
|
| lessismore_v0 | | | | | 90.53 318 | 90.58 352 | 80.90 356 | | 95.80 338 | | 77.01 355 | 95.84 271 | 66.15 342 | 96.95 290 | 83.03 320 | 75.05 349 | 93.74 312 |
|
| EG-PatchMatch MVS | | | 85.35 314 | 83.81 317 | 89.99 325 | 90.39 353 | 81.89 349 | 98.21 306 | 96.09 334 | 81.78 345 | 74.73 362 | 93.72 334 | 51.56 370 | 97.12 278 | 79.16 340 | 88.61 245 | 90.96 350 |
|
| EGC-MVSNET | | | 69.38 339 | 63.76 349 | 86.26 342 | 90.32 354 | 81.66 352 | 96.24 345 | 93.85 367 | 0.99 389 | 3.22 390 | 92.33 347 | 52.44 367 | 92.92 361 | 59.53 375 | 84.90 282 | 84.21 370 |
|
| CMPMVS |  | 61.59 21 | 84.75 317 | 85.14 312 | 83.57 346 | 90.32 354 | 62.54 373 | 96.98 332 | 97.59 229 | 74.33 367 | 69.95 368 | 96.66 249 | 64.17 348 | 98.32 215 | 87.88 283 | 88.41 250 | 89.84 359 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 320 | 82.92 323 | 89.21 329 | 90.03 356 | 82.60 343 | 96.89 335 | 95.62 343 | 80.59 349 | 75.77 361 | 89.17 358 | 65.04 347 | 94.79 347 | 72.12 358 | 81.02 313 | 90.23 355 |
|
| pmmvs6 | | | 85.69 309 | 83.84 316 | 91.26 314 | 90.00 357 | 84.41 336 | 97.82 317 | 96.15 333 | 75.86 361 | 81.29 337 | 95.39 293 | 61.21 357 | 96.87 296 | 83.52 319 | 73.29 351 | 92.50 336 |
|
| DSMNet-mixed | | | 88.28 299 | 88.24 294 | 88.42 337 | 89.64 358 | 75.38 365 | 98.06 311 | 89.86 379 | 85.59 319 | 88.20 285 | 92.14 348 | 76.15 294 | 91.95 365 | 78.46 342 | 96.05 185 | 97.92 216 |
|
| UnsupCasMVSNet_eth | | | 85.52 311 | 83.99 313 | 90.10 323 | 89.36 359 | 83.51 340 | 96.65 337 | 97.99 191 | 89.14 260 | 75.89 360 | 93.83 332 | 63.25 351 | 93.92 353 | 81.92 327 | 67.90 365 | 92.88 330 |
|
| Anonymous20231206 | | | 86.32 307 | 85.42 310 | 89.02 331 | 89.11 360 | 80.53 359 | 99.05 243 | 95.28 350 | 85.43 321 | 82.82 329 | 93.92 331 | 74.40 308 | 93.44 359 | 66.99 366 | 81.83 304 | 93.08 327 |
|
| Anonymous20240521 | | | 85.15 315 | 83.81 317 | 89.16 330 | 88.32 361 | 82.69 342 | 98.80 271 | 95.74 339 | 79.72 352 | 81.53 336 | 90.99 351 | 65.38 345 | 94.16 351 | 72.69 356 | 81.11 311 | 90.63 353 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 324 | 81.68 327 | 90.03 324 | 88.30 362 | 82.82 341 | 98.46 291 | 95.22 352 | 73.92 368 | 76.00 359 | 91.29 350 | 55.00 364 | 96.94 291 | 68.40 364 | 88.51 249 | 90.34 354 |
|
| test20.03 | | | 84.72 318 | 83.99 313 | 86.91 340 | 88.19 363 | 80.62 358 | 98.88 260 | 95.94 336 | 88.36 282 | 78.87 346 | 94.62 321 | 68.75 330 | 89.11 371 | 66.52 368 | 75.82 346 | 91.00 349 |
|
| KD-MVS_self_test | | | 83.59 325 | 82.06 325 | 88.20 338 | 86.93 364 | 80.70 357 | 97.21 325 | 96.38 327 | 82.87 339 | 82.49 330 | 88.97 359 | 67.63 336 | 92.32 363 | 73.75 355 | 62.30 374 | 91.58 346 |
|
| MIMVSNet1 | | | 82.58 326 | 80.51 332 | 88.78 333 | 86.68 365 | 84.20 337 | 96.65 337 | 95.41 347 | 78.75 355 | 78.59 349 | 92.44 343 | 51.88 369 | 89.76 370 | 65.26 371 | 78.95 326 | 92.38 339 |
|
| CL-MVSNet_self_test | | | 84.50 319 | 83.15 322 | 88.53 336 | 86.00 366 | 81.79 350 | 98.82 268 | 97.35 252 | 85.12 323 | 83.62 327 | 90.91 353 | 76.66 286 | 91.40 366 | 69.53 362 | 60.36 375 | 92.40 338 |
|
| UnsupCasMVSNet_bld | | | 79.97 335 | 77.03 340 | 88.78 333 | 85.62 367 | 81.98 348 | 93.66 361 | 97.35 252 | 75.51 364 | 70.79 367 | 83.05 373 | 48.70 371 | 94.91 345 | 78.31 343 | 60.29 376 | 89.46 363 |
|
| Patchmatch-RL test | | | 86.90 305 | 85.98 309 | 89.67 326 | 84.45 368 | 75.59 364 | 89.71 374 | 92.43 372 | 86.89 303 | 77.83 353 | 90.94 352 | 94.22 76 | 93.63 357 | 87.75 284 | 69.61 357 | 99.79 93 |
|
| pmmvs-eth3d | | | 84.03 322 | 81.97 326 | 90.20 322 | 84.15 369 | 87.09 321 | 98.10 310 | 94.73 358 | 83.05 337 | 74.10 364 | 87.77 365 | 65.56 344 | 94.01 352 | 81.08 331 | 69.24 359 | 89.49 362 |
|
| test_fmvs3 | | | 79.99 334 | 80.17 333 | 79.45 351 | 84.02 370 | 62.83 371 | 99.05 243 | 93.49 370 | 88.29 284 | 80.06 344 | 86.65 368 | 28.09 380 | 88.00 372 | 88.63 271 | 73.27 352 | 87.54 368 |
|
| PM-MVS | | | 80.47 331 | 78.88 336 | 85.26 343 | 83.79 371 | 72.22 366 | 95.89 352 | 91.08 376 | 85.71 318 | 76.56 358 | 88.30 361 | 36.64 376 | 93.90 354 | 82.39 323 | 69.57 358 | 89.66 361 |
|
| new-patchmatchnet | | | 81.19 328 | 79.34 335 | 86.76 341 | 82.86 372 | 80.36 360 | 97.92 314 | 95.27 351 | 82.09 344 | 72.02 365 | 86.87 367 | 62.81 353 | 90.74 369 | 71.10 359 | 63.08 372 | 89.19 365 |
|
| mvsany_test3 | | | 82.12 327 | 81.14 329 | 85.06 344 | 81.87 373 | 70.41 367 | 97.09 329 | 92.14 373 | 91.27 228 | 77.84 352 | 88.73 360 | 39.31 375 | 95.49 335 | 90.75 248 | 71.24 354 | 89.29 364 |
|
| WB-MVS | | | 76.28 337 | 77.28 339 | 73.29 357 | 81.18 374 | 54.68 381 | 97.87 316 | 94.19 362 | 81.30 346 | 69.43 369 | 90.70 354 | 77.02 281 | 82.06 380 | 35.71 384 | 68.11 364 | 83.13 371 |
|
| test_f | | | 78.40 336 | 77.59 338 | 80.81 350 | 80.82 375 | 62.48 374 | 96.96 333 | 93.08 371 | 83.44 336 | 74.57 363 | 84.57 372 | 27.95 381 | 92.63 362 | 84.15 311 | 72.79 353 | 87.32 369 |
|
| SSC-MVS | | | 75.42 338 | 76.40 341 | 72.49 361 | 80.68 376 | 53.62 382 | 97.42 321 | 94.06 364 | 80.42 350 | 68.75 370 | 90.14 356 | 76.54 288 | 81.66 381 | 33.25 385 | 66.34 368 | 82.19 372 |
|
| pmmvs3 | | | 80.27 332 | 77.77 337 | 87.76 339 | 80.32 377 | 82.43 345 | 98.23 304 | 91.97 374 | 72.74 370 | 78.75 347 | 87.97 364 | 57.30 363 | 90.99 368 | 70.31 360 | 62.37 373 | 89.87 358 |
|
| testf1 | | | 68.38 342 | 66.92 343 | 72.78 359 | 78.80 378 | 50.36 384 | 90.95 372 | 87.35 384 | 55.47 375 | 58.95 374 | 88.14 362 | 20.64 385 | 87.60 373 | 57.28 376 | 64.69 369 | 80.39 374 |
|
| APD_test2 | | | 68.38 342 | 66.92 343 | 72.78 359 | 78.80 378 | 50.36 384 | 90.95 372 | 87.35 384 | 55.47 375 | 58.95 374 | 88.14 362 | 20.64 385 | 87.60 373 | 57.28 376 | 64.69 369 | 80.39 374 |
|
| ambc | | | | | 83.23 347 | 77.17 380 | 62.61 372 | 87.38 376 | 94.55 361 | | 76.72 357 | 86.65 368 | 30.16 377 | 96.36 315 | 84.85 310 | 69.86 356 | 90.73 352 |
|
| test_vis3_rt | | | 68.82 340 | 66.69 345 | 75.21 356 | 76.24 381 | 60.41 376 | 96.44 340 | 68.71 391 | 75.13 365 | 50.54 382 | 69.52 380 | 16.42 390 | 96.32 317 | 80.27 334 | 66.92 367 | 68.89 378 |
|
| TDRefinement | | | 84.76 316 | 82.56 324 | 91.38 313 | 74.58 382 | 84.80 335 | 97.36 323 | 94.56 360 | 84.73 328 | 80.21 342 | 96.12 268 | 63.56 350 | 98.39 205 | 87.92 282 | 63.97 371 | 90.95 351 |
|
| E-PMN | | | 52.30 350 | 52.18 352 | 52.67 367 | 71.51 383 | 45.40 388 | 93.62 362 | 76.60 389 | 36.01 383 | 43.50 384 | 64.13 383 | 27.11 382 | 67.31 386 | 31.06 386 | 26.06 382 | 45.30 385 |
|
| EMVS | | | 51.44 352 | 51.22 354 | 52.11 368 | 70.71 384 | 44.97 390 | 94.04 358 | 75.66 390 | 35.34 385 | 42.40 385 | 61.56 386 | 28.93 379 | 65.87 387 | 27.64 387 | 24.73 383 | 45.49 384 |
|
| PMMVS2 | | | 67.15 345 | 64.15 348 | 76.14 355 | 70.56 385 | 62.07 375 | 93.89 359 | 87.52 383 | 58.09 374 | 60.02 373 | 78.32 375 | 22.38 384 | 84.54 378 | 59.56 374 | 47.03 380 | 81.80 373 |
|
| FPMVS | | | 68.72 341 | 68.72 342 | 68.71 363 | 65.95 386 | 44.27 391 | 95.97 351 | 94.74 357 | 51.13 378 | 53.26 380 | 90.50 355 | 25.11 383 | 83.00 379 | 60.80 373 | 80.97 315 | 78.87 376 |
|
| wuyk23d | | | 20.37 356 | 20.84 359 | 18.99 371 | 65.34 387 | 27.73 393 | 50.43 382 | 7.67 395 | 9.50 388 | 8.01 389 | 6.34 389 | 6.13 393 | 26.24 388 | 23.40 388 | 10.69 387 | 2.99 386 |
|
| LCM-MVSNet | | | 67.77 344 | 64.73 347 | 76.87 354 | 62.95 388 | 56.25 380 | 89.37 375 | 93.74 368 | 44.53 380 | 61.99 372 | 80.74 374 | 20.42 387 | 86.53 377 | 69.37 363 | 59.50 377 | 87.84 366 |
|
| MVE |  | 53.74 22 | 51.54 351 | 47.86 355 | 62.60 365 | 59.56 389 | 50.93 383 | 79.41 379 | 77.69 388 | 35.69 384 | 36.27 386 | 61.76 385 | 5.79 394 | 69.63 384 | 37.97 383 | 36.61 381 | 67.24 379 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 348 | 52.24 351 | 67.66 364 | 49.27 390 | 56.82 379 | 83.94 377 | 82.02 387 | 70.47 371 | 33.28 387 | 64.54 382 | 17.23 389 | 69.16 385 | 45.59 381 | 23.85 384 | 77.02 377 |
|
| tmp_tt | | | 65.23 347 | 62.94 350 | 72.13 362 | 44.90 391 | 50.03 386 | 81.05 378 | 89.42 382 | 38.45 381 | 48.51 383 | 99.90 18 | 54.09 366 | 78.70 383 | 91.84 230 | 18.26 385 | 87.64 367 |
|
| PMVS |  | 49.05 23 | 53.75 349 | 51.34 353 | 60.97 366 | 40.80 392 | 34.68 392 | 74.82 380 | 89.62 381 | 37.55 382 | 28.67 388 | 72.12 377 | 7.09 392 | 81.63 382 | 43.17 382 | 68.21 363 | 66.59 380 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 354 | 39.14 357 | 33.31 369 | 19.94 393 | 24.83 394 | 98.36 298 | 9.75 394 | 15.53 387 | 51.31 381 | 87.14 366 | 19.62 388 | 17.74 389 | 47.10 380 | 3.47 388 | 57.36 382 |
|
| testmvs | | | 40.60 353 | 44.45 356 | 29.05 370 | 19.49 394 | 14.11 395 | 99.68 156 | 18.47 393 | 20.74 386 | 64.59 371 | 98.48 192 | 10.95 391 | 17.09 390 | 56.66 378 | 11.01 386 | 55.94 383 |
|
| test_blank | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.02 390 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| eth-test2 | | | | | | 0.00 395 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 395 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| DCPMVS | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| cdsmvs_eth3d_5k | | | 23.43 355 | 31.24 358 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 98.09 184 | 0.00 390 | 0.00 391 | 99.67 89 | 83.37 230 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| pcd_1.5k_mvsjas | | | 7.60 358 | 10.13 361 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 91.20 145 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| sosnet-low-res | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| sosnet | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| uncertanet | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| Regformer | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| ab-mvs-re | | | 8.28 357 | 11.04 360 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 99.40 113 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| uanet | | | 0.00 359 | 0.00 362 | 0.00 372 | 0.00 395 | 0.00 396 | 0.00 383 | 0.00 396 | 0.00 390 | 0.00 391 | 0.00 391 | 0.00 395 | 0.00 391 | 0.00 389 | 0.00 389 | 0.00 387 |
|
| PC_three_1452 | | | | | | | | | | 96.96 37 | 99.80 15 | 99.79 54 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 119 | 97.27 28 | 99.80 15 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 52 | 99.83 11 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 126 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 126 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 75 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 163 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 353 | | | | 59.23 387 | 93.20 104 | 97.74 248 | 91.06 239 | | |
|
| test_post | | | | | | | | | | | | 63.35 384 | 94.43 65 | 98.13 228 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 349 | 95.12 49 | 97.95 239 | | | |
|
| MTMP | | | | | | | | 99.87 92 | 96.49 324 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 30 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 38 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 65 | 99.94 62 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 46 | | 95.78 70 | 99.73 29 | 99.76 62 | 96.00 33 | | 99.78 24 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 194 | | 94.21 121 | 99.85 7 | | | 99.95 64 | 96.96 142 | | |
|
| 新几何2 | | | | | | | | 99.40 198 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 189 | 98.71 60 | 93.46 151 | | | | 100.00 1 | 94.36 186 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 80 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 252 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
| testdata1 | | | | | | | | 99.28 218 | | 96.35 61 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 205 | | | | | 98.37 211 | 97.79 119 | 89.55 232 | 94.52 242 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 181 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 260 | | | 96.63 49 | 93.01 208 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 112 | | 96.38 57 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 254 | 99.86 105 | | 96.76 45 | | | | | | 89.59 231 | |
|
| n2 | | | | | | | | | 0.00 396 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 396 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 380 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 111 | | | | | | | | |
|
| door | | | | | | | | | 90.31 377 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 250 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 112 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 204 | | | 98.39 205 | | | 94.53 240 |
|
| HQP3-MVS | | | | | | | | | 97.89 203 | | | | | | | 89.60 229 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 253 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 130 | 96.11 347 | | 91.89 207 | 98.06 122 | | 94.40 67 | | 94.30 188 | | 99.67 109 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 267 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 254 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 114 | | | | |
|