| AdaColmap |  | | 97.23 99 | 96.80 104 | 98.51 106 | 99.99 1 | 95.60 161 | 99.09 246 | 98.84 58 | 93.32 164 | 96.74 163 | 99.72 81 | 86.04 217 | 100.00 1 | 98.01 115 | 99.43 110 | 99.94 74 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 14 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 27 | 98.64 76 | 98.47 2 | 99.13 85 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 46 | 98.20 45 | 98.97 74 | 99.97 3 | 96.92 112 | 99.95 52 | 98.38 154 | 95.04 97 | 98.61 112 | 99.80 51 | 93.39 97 | 100.00 1 | 98.64 89 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 83 | 97.32 86 | 98.58 98 | 99.97 3 | 95.77 152 | 99.96 34 | 98.35 160 | 89.90 267 | 98.36 122 | 99.79 55 | 91.18 153 | 99.99 36 | 98.37 99 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 44 | 98.02 56 | 99.56 25 | 99.97 3 | 98.70 46 | 99.92 78 | 98.44 120 | 92.06 213 | 98.40 121 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 105 | 99.71 83 | 99.97 58 |
|
| PAPR | | | 98.52 34 | 98.16 48 | 99.58 24 | 99.97 3 | 98.77 40 | 99.95 52 | 98.43 128 | 95.35 91 | 98.03 132 | 99.75 69 | 94.03 84 | 99.98 43 | 98.11 110 | 99.83 72 | 99.99 23 |
|
| HFP-MVS | | | 98.56 31 | 98.37 35 | 99.14 59 | 99.96 8 | 97.43 94 | 99.95 52 | 98.61 82 | 94.77 105 | 99.31 76 | 99.85 30 | 94.22 77 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 32 | 98.37 35 | 99.05 66 | 99.96 8 | 97.18 101 | 99.96 34 | 98.55 96 | 94.87 103 | 99.45 64 | 99.85 30 | 94.07 83 | 100.00 1 | 98.67 86 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 35 | 98.32 39 | 99.05 66 | 99.96 8 | 97.18 101 | 99.95 52 | 98.60 84 | 94.77 105 | 99.31 76 | 99.84 41 | 93.73 92 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 27 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 39 | 98.32 39 | 98.87 79 | 99.96 8 | 96.62 121 | 99.97 27 | 98.39 150 | 94.43 117 | 98.90 94 | 99.87 24 | 94.30 75 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 143 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 52 | 98.43 128 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 25 | 98.55 25 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 139 | 96.22 71 | 99.41 68 | 99.78 59 | 94.34 73 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 204 | 92.06 237 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 139 | 96.22 71 | 99.41 68 | 41.37 402 | 94.34 73 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 58 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 59 | 99.98 14 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 43 | 99.91 82 | 98.39 150 | 97.20 38 | 99.46 63 | 99.85 30 | 95.53 44 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 56 | 97.97 58 | 99.03 68 | 99.94 13 | 97.17 104 | 99.95 52 | 98.39 150 | 94.70 109 | 98.26 128 | 99.81 50 | 91.84 144 | 100.00 1 | 98.85 76 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 27 | 98.36 37 | 99.49 32 | 99.94 13 | 98.73 44 | 99.87 100 | 98.33 165 | 93.97 143 | 99.76 28 | 99.87 24 | 94.99 57 | 99.75 132 | 98.55 93 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 59 | 97.93 63 | 98.70 87 | 99.94 13 | 96.13 143 | 99.82 131 | 98.43 128 | 94.56 113 | 97.52 144 | 99.70 85 | 94.40 68 | 99.98 43 | 97.00 149 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 179 | 99.44 20 | 97.33 31 | 99.00 90 | 99.72 81 | 94.03 84 | 99.98 43 | 98.73 83 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 34 | 98.43 128 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 143 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 128 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 52 | 98.32 167 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 34 | 98.42 139 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 73 | 99.93 24 | 97.24 98 | 99.95 52 | 98.42 139 | 97.50 26 | 99.52 59 | 99.88 21 | 97.43 16 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 40 | | 98.43 128 | | 99.63 43 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 83 | 99.95 52 | 98.36 158 | 95.58 85 | 99.52 59 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 54 | | 98.52 102 | 92.34 205 | 99.31 76 | 99.83 43 | 95.06 52 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 51 | 97.97 58 | 99.17 53 | 99.92 31 | 97.57 85 | 99.93 75 | 98.39 150 | 94.04 141 | 98.80 99 | 99.74 76 | 92.98 112 | 100.00 1 | 98.16 107 | 99.76 80 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 128 | 93.90 148 | 99.71 34 | 99.86 26 | 95.88 37 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 128 | 94.35 122 | 99.71 34 | 99.86 26 | 95.94 34 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 31 | 99.96 34 | 98.43 128 | 94.35 122 | 99.69 36 | 99.85 30 | 95.94 34 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 47 | 98.13 50 | 98.99 72 | 99.92 31 | 97.00 108 | 99.75 151 | 99.50 18 | 93.90 148 | 99.37 73 | 99.76 63 | 93.24 106 | 100.00 1 | 97.75 132 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 78 | 97.44 80 | 98.66 90 | 99.92 31 | 96.13 143 | 99.18 240 | 99.45 19 | 94.84 104 | 96.41 173 | 99.71 83 | 91.40 147 | 99.99 36 | 97.99 117 | 98.03 157 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 52 | 98.43 128 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 143 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 143 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 52 | 98.56 90 | 97.56 25 | 99.44 65 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 28 | 98.35 38 | 99.41 38 | 99.90 42 | 98.51 57 | 99.87 100 | 98.36 158 | 94.08 135 | 99.74 31 | 99.73 78 | 94.08 82 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 34 | 99.24 235 | 98.47 113 | 98.14 10 | 99.08 86 | 99.91 14 | 93.09 109 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 34 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 100 | 98.44 120 | 97.48 27 | 99.64 42 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 62 | | | | | | |
|
| CSCG | | | 97.10 102 | 97.04 96 | 97.27 175 | 99.89 45 | 91.92 260 | 99.90 87 | 99.07 34 | 88.67 290 | 95.26 195 | 99.82 46 | 93.17 108 | 99.98 43 | 98.15 108 | 99.47 104 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 48 | 98.03 55 | 99.17 53 | 99.88 49 | 97.59 84 | 99.94 68 | 98.44 120 | 94.31 125 | 98.50 116 | 99.82 46 | 93.06 110 | 99.99 36 | 98.30 103 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 38 | 98.30 42 | 98.93 77 | 99.88 49 | 97.04 106 | 99.84 121 | 98.35 160 | 94.92 101 | 99.32 75 | 99.80 51 | 93.35 99 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 9.14 | | | | 98.38 33 | | 99.87 51 | | 99.91 82 | 98.33 165 | 93.22 167 | 99.78 26 | 99.89 19 | 94.57 65 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 23 | 98.48 28 | 99.62 20 | 99.87 51 | 98.87 32 | 99.86 113 | 98.38 154 | 93.19 168 | 99.77 27 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 44 | 98.21 44 | 99.03 68 | 99.86 53 | 97.10 105 | 99.98 14 | 98.80 62 | 90.78 253 | 99.62 46 | 99.78 59 | 95.30 47 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 50 | 97.96 61 | 99.30 42 | 99.85 54 | 97.93 73 | 99.39 216 | 98.28 174 | 95.76 80 | 97.18 152 | 99.88 21 | 92.74 120 | 100.00 1 | 98.67 86 | 99.88 68 | 99.99 23 |
|
| LS3D | | | 95.84 152 | 95.11 162 | 98.02 132 | 99.85 54 | 95.10 181 | 98.74 288 | 98.50 110 | 87.22 311 | 93.66 213 | 99.86 26 | 87.45 201 | 99.95 69 | 90.94 253 | 99.81 78 | 99.02 196 |
|
| HPM-MVS |  | | 97.96 62 | 97.72 70 | 98.68 88 | 99.84 56 | 96.39 130 | 99.90 87 | 98.17 186 | 92.61 190 | 98.62 111 | 99.57 107 | 91.87 143 | 99.67 145 | 98.87 75 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 51 | 98.11 52 | 98.75 85 | 99.83 57 | 96.59 123 | 99.40 212 | 98.51 105 | 95.29 93 | 98.51 115 | 99.76 63 | 93.60 96 | 99.71 138 | 98.53 94 | 99.52 99 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 38 | 99.96 34 | 98.40 147 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 64 | 97.89 66 | 98.05 131 | 99.82 58 | 94.77 190 | 99.92 78 | 98.46 115 | 93.93 146 | 97.20 151 | 99.27 132 | 95.44 45 | 99.97 53 | 97.41 137 | 99.51 102 | 99.41 162 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 54 | 98.08 54 | 98.78 82 | 99.81 60 | 96.60 122 | 99.82 131 | 98.30 172 | 93.95 145 | 99.37 73 | 99.77 61 | 92.84 116 | 99.76 131 | 98.95 67 | 99.92 63 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 58 | 97.99 57 | 98.60 95 | 99.80 61 | 96.27 133 | 99.36 221 | 98.50 110 | 95.21 95 | 98.30 125 | 99.75 69 | 93.29 103 | 99.73 137 | 98.37 99 | 99.30 116 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 48 | 98.17 47 | 98.71 86 | 99.79 62 | 96.37 131 | 99.76 148 | 98.31 169 | 94.43 117 | 99.40 70 | 99.75 69 | 93.28 104 | 99.78 125 | 98.90 73 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 50 | | 99.79 62 | 96.37 131 | 99.76 148 | 98.31 169 | 94.43 117 | 99.40 70 | 99.75 69 | 92.95 113 | | 98.90 73 | 99.92 63 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 73 | 97.50 78 | 98.68 88 | 99.79 62 | 96.42 126 | 99.88 97 | 98.16 190 | 91.75 223 | 98.94 92 | 99.54 110 | 91.82 145 | 99.65 147 | 97.62 135 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 26 | 98.40 31 | 99.50 30 | 99.77 65 | 98.67 47 | 99.90 87 | 98.21 181 | 93.53 158 | 99.81 15 | 99.89 19 | 94.70 63 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 87 | | 98.64 76 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 96 | 97.23 88 | 97.41 166 | 99.76 66 | 93.36 229 | 99.65 175 | 97.95 209 | 96.03 75 | 97.41 148 | 99.70 85 | 89.61 177 | 99.51 152 | 96.73 156 | 98.25 149 | 99.38 164 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 61 | | 98.63 80 | 92.69 185 | 99.55 54 | 99.82 46 | 94.40 68 | 100.00 1 | 91.21 245 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 61 | 97.64 73 | 99.38 41 | 99.74 69 | 98.41 60 | 99.74 154 | 98.18 185 | 93.35 162 | 96.45 170 | 99.85 30 | 92.64 122 | 99.97 53 | 98.91 72 | 99.89 66 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 47 | 99.77 143 | 98.38 154 | 96.73 53 | 99.88 6 | 99.74 76 | 94.89 59 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 55 | | 98.40 147 | | 99.65 40 | | 94.76 60 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 75 | 99.73 72 | 96.99 109 | | 98.51 105 | 94.06 138 | 99.62 46 | 99.85 30 | 94.97 58 | 99.96 61 | 95.11 175 | 99.95 49 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 29 | 98.51 27 | 98.86 80 | 99.73 72 | 96.63 120 | 99.97 27 | 97.92 214 | 98.07 11 | 98.76 103 | 99.55 108 | 95.00 56 | 99.94 77 | 99.91 15 | 97.68 162 | 99.99 23 |
|
| CANet | | | 98.27 51 | 97.82 68 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 14 | 98.51 105 | 97.00 43 | 98.52 114 | 99.71 83 | 87.80 196 | 99.95 69 | 99.75 28 | 99.38 112 | 99.83 91 |
|
| F-COLMAP | | | 96.93 110 | 96.95 99 | 96.87 184 | 99.71 75 | 91.74 265 | 99.85 116 | 97.95 209 | 93.11 171 | 95.72 188 | 99.16 143 | 92.35 132 | 99.94 77 | 95.32 173 | 99.35 114 | 98.92 198 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 44 | 99.94 68 | 98.34 164 | 96.38 65 | 99.81 15 | 99.76 63 | 94.59 64 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 55 | 99.12 5 | 95.59 218 | 99.67 77 | 86.91 338 | 99.95 52 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 63 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 36 | 98.14 49 | 99.54 27 | 99.66 78 | 98.62 53 | 99.85 116 | 98.37 157 | 94.68 110 | 99.53 57 | 99.83 43 | 92.87 115 | 100.00 1 | 98.66 88 | 99.84 71 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 81 | 98.98 12 | 93.92 282 | 99.63 79 | 81.76 365 | 99.96 34 | 98.56 90 | 99.47 1 | 99.19 83 | 99.99 1 | 94.16 81 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 36 | 98.40 31 | 98.77 84 | 99.62 80 | 96.80 117 | 99.90 87 | 99.51 17 | 97.60 22 | 99.20 81 | 99.36 126 | 93.71 93 | 99.91 89 | 97.99 117 | 98.71 137 | 99.61 127 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 96.05 145 | 95.82 142 | 96.72 189 | 99.59 81 | 96.99 109 | 99.95 52 | 99.10 31 | 94.06 138 | 98.27 126 | 95.80 286 | 89.00 188 | 99.95 69 | 99.12 58 | 87.53 279 | 93.24 337 |
|
| PVSNet_Blended | | | 97.94 63 | 97.64 73 | 98.83 81 | 99.59 81 | 96.99 109 | 100.00 1 | 99.10 31 | 95.38 90 | 98.27 126 | 99.08 146 | 89.00 188 | 99.95 69 | 99.12 58 | 99.25 118 | 99.57 137 |
|
| PatchMatch-RL | | | 96.04 146 | 95.40 151 | 97.95 133 | 99.59 81 | 95.22 177 | 99.52 197 | 99.07 34 | 93.96 144 | 96.49 169 | 98.35 210 | 82.28 246 | 99.82 120 | 90.15 269 | 99.22 121 | 98.81 205 |
|
| dcpmvs_2 | | | 97.42 91 | 98.09 53 | 95.42 223 | 99.58 84 | 87.24 334 | 99.23 236 | 96.95 308 | 94.28 127 | 98.93 93 | 99.73 78 | 94.39 71 | 99.16 170 | 99.89 16 | 99.82 76 | 99.86 89 |
|
| test222 | | | | | | 99.55 85 | 97.41 96 | 99.34 222 | 98.55 96 | 91.86 218 | 99.27 80 | 99.83 43 | 93.84 90 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 77 | 97.38 82 | 98.92 78 | 99.53 86 | 96.84 114 | 99.87 100 | 98.14 194 | 93.78 151 | 96.55 168 | 99.69 87 | 92.28 134 | 99.98 43 | 97.13 144 | 99.44 108 | 99.93 76 |
|
| API-MVS | | | 97.86 67 | 97.66 72 | 98.47 108 | 99.52 87 | 95.41 168 | 99.47 206 | 98.87 52 | 91.68 224 | 98.84 96 | 99.85 30 | 92.34 133 | 99.99 36 | 98.44 96 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 101 | 96.69 108 | 98.45 110 | 99.52 87 | 95.81 150 | 99.95 52 | 99.65 12 | 94.73 107 | 99.04 88 | 99.21 139 | 84.48 232 | 99.95 69 | 94.92 181 | 98.74 136 | 99.58 136 |
|
| 114514_t | | | 97.41 92 | 96.83 102 | 99.14 59 | 99.51 89 | 97.83 75 | 99.89 95 | 98.27 176 | 88.48 294 | 99.06 87 | 99.66 96 | 90.30 169 | 99.64 148 | 96.32 160 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 208 | 93.25 212 | 95.33 227 | 99.49 90 | 94.43 194 | 99.61 183 | 98.09 196 | 90.38 258 | 89.16 282 | 95.61 293 | 90.56 165 | 97.34 270 | 91.93 237 | 84.45 300 | 94.21 282 |
|
| testdata | | | | | 98.42 113 | 99.47 91 | 95.33 171 | | 98.56 90 | 93.78 151 | 99.79 25 | 99.85 30 | 93.64 95 | 99.94 77 | 94.97 179 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 87 | 97.19 90 | 98.15 126 | 99.47 91 | 94.79 189 | 99.05 257 | 98.76 63 | 92.65 188 | 98.66 109 | 99.82 46 | 88.52 193 | 99.98 43 | 98.12 109 | 99.63 88 | 99.67 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 186 | 93.42 205 | 97.91 137 | 99.46 93 | 94.04 207 | 98.93 269 | 97.48 254 | 81.15 361 | 90.04 255 | 99.55 108 | 87.02 207 | 99.95 69 | 88.97 279 | 98.11 153 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 43 | 98.38 33 | 98.53 105 | 99.39 94 | 95.79 151 | 99.87 100 | 99.86 2 | 96.70 54 | 98.78 100 | 99.79 55 | 92.03 140 | 99.90 91 | 99.17 57 | 99.86 70 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 76 | 99.38 95 | 98.87 32 | 98.46 305 | 99.42 22 | 97.03 42 | 99.02 89 | 99.09 145 | 99.35 1 | 98.21 235 | 99.73 32 | 99.78 79 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 24 | 98.62 22 | 99.01 71 | 99.36 96 | 97.18 101 | 99.93 75 | 99.90 1 | 96.81 51 | 98.67 108 | 99.77 61 | 93.92 86 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 29 | 99.97 1 | 99.33 97 | 99.92 1 | 99.96 34 | 98.44 120 | 97.96 14 | 99.55 54 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 210 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 191 | 93.60 198 | 96.90 183 | 99.33 97 | 91.78 264 | 99.78 140 | 98.00 203 | 89.89 268 | 94.52 201 | 99.47 114 | 91.97 141 | 99.18 168 | 69.90 375 | 99.52 99 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 66 | 97.94 62 | 97.70 150 | 99.28 99 | 95.20 178 | 99.98 14 | 97.15 286 | 95.53 87 | 99.62 46 | 99.79 55 | 92.08 139 | 98.38 218 | 98.75 82 | 99.28 117 | 99.52 147 |
|
| test_fmvsm_n_1920 | | | 98.44 40 | 98.61 23 | 97.92 135 | 99.27 100 | 95.18 179 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 78 | 92.64 122 | 99.99 36 | 99.58 38 | 99.51 102 | 98.59 215 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 43 | 99.21 101 | 97.91 74 | 99.98 14 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 69 | 94.72 61 | 99.97 53 | 99.87 19 | 99.64 87 | 99.95 71 |
|
| test_yl | | | 97.83 69 | 97.37 83 | 99.21 47 | 99.18 102 | 97.98 70 | 99.64 179 | 99.27 27 | 91.43 233 | 97.88 138 | 98.99 155 | 95.84 38 | 99.84 116 | 98.82 77 | 95.32 214 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 69 | 97.37 83 | 99.21 47 | 99.18 102 | 97.98 70 | 99.64 179 | 99.27 27 | 91.43 233 | 97.88 138 | 98.99 155 | 95.84 38 | 99.84 116 | 98.82 77 | 95.32 214 | 99.79 97 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 102 | 99.13 22 | 99.87 100 | 99.65 12 | 98.17 8 | 98.75 105 | 99.75 69 | 92.76 119 | 99.94 77 | 99.88 18 | 99.44 108 | 99.94 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 44 | 99.17 105 | 97.81 77 | 99.98 14 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 63 | 94.21 79 | 99.97 53 | 99.87 19 | 99.52 99 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 111 | 96.40 117 | 98.45 110 | 99.16 106 | 95.90 148 | 99.66 173 | 98.06 199 | 96.37 68 | 94.37 204 | 99.49 113 | 83.29 242 | 99.90 91 | 97.63 134 | 99.61 93 | 99.55 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 32 | 98.22 43 | 99.50 30 | 99.15 107 | 98.65 51 | 100.00 1 | 98.58 86 | 97.70 20 | 98.21 130 | 99.24 137 | 92.58 125 | 99.94 77 | 98.63 91 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 75 | 97.91 64 | 97.43 165 | 99.10 108 | 94.42 195 | 99.99 4 | 97.10 291 | 95.07 96 | 99.68 37 | 99.75 69 | 92.95 113 | 98.34 222 | 98.38 98 | 99.14 123 | 99.54 143 |
|
| Anonymous202405211 | | | 93.10 226 | 91.99 239 | 96.40 199 | 99.10 108 | 89.65 309 | 98.88 274 | 97.93 211 | 83.71 348 | 94.00 210 | 98.75 184 | 68.79 343 | 99.88 102 | 95.08 177 | 91.71 238 | 99.68 111 |
|
| fmvsm_s_conf0.5_n | | | 97.80 73 | 97.85 67 | 97.67 151 | 99.06 110 | 94.41 196 | 99.98 14 | 98.97 40 | 97.34 29 | 99.63 43 | 99.69 87 | 87.27 203 | 99.97 53 | 99.62 37 | 99.06 127 | 98.62 214 |
|
| HyFIR lowres test | | | 96.66 124 | 96.43 116 | 97.36 171 | 99.05 111 | 93.91 212 | 99.70 167 | 99.80 3 | 90.54 256 | 96.26 176 | 98.08 216 | 92.15 137 | 98.23 234 | 96.84 155 | 95.46 209 | 99.93 76 |
|
| LFMVS | | | 94.75 180 | 93.56 201 | 98.30 119 | 99.03 112 | 95.70 157 | 98.74 288 | 97.98 206 | 87.81 304 | 98.47 117 | 99.39 123 | 67.43 351 | 99.53 150 | 98.01 115 | 95.20 216 | 99.67 113 |
|
| AllTest | | | 92.48 241 | 91.64 244 | 95.00 237 | 99.01 113 | 88.43 323 | 98.94 268 | 96.82 323 | 86.50 320 | 88.71 288 | 98.47 206 | 74.73 320 | 99.88 102 | 85.39 317 | 96.18 191 | 96.71 241 |
|
| TestCases | | | | | 95.00 237 | 99.01 113 | 88.43 323 | | 96.82 323 | 86.50 320 | 88.71 288 | 98.47 206 | 74.73 320 | 99.88 102 | 85.39 317 | 96.18 191 | 96.71 241 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 248 | 91.49 250 | 94.25 270 | 99.00 115 | 88.04 329 | 98.42 310 | 96.70 330 | 82.30 357 | 88.43 295 | 99.01 152 | 76.97 296 | 99.85 108 | 86.11 313 | 96.50 187 | 94.86 252 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 166 | 95.68 147 | 94.36 267 | 98.99 116 | 84.98 347 | 99.96 34 | 96.65 332 | 97.60 22 | 99.73 32 | 98.96 161 | 71.58 333 | 99.93 85 | 98.31 102 | 99.37 113 | 98.17 221 |
|
| HY-MVS | | 92.50 7 | 97.79 75 | 97.17 92 | 99.63 17 | 98.98 117 | 99.32 9 | 97.49 334 | 99.52 15 | 95.69 82 | 98.32 124 | 97.41 237 | 93.32 101 | 99.77 128 | 98.08 113 | 95.75 205 | 99.81 94 |
|
| VNet | | | 97.21 100 | 96.57 112 | 99.13 63 | 98.97 118 | 97.82 76 | 99.03 260 | 99.21 29 | 94.31 125 | 99.18 84 | 98.88 172 | 86.26 216 | 99.89 96 | 98.93 69 | 94.32 222 | 99.69 110 |
|
| thres200 | | | 96.96 108 | 96.21 121 | 99.22 46 | 98.97 118 | 98.84 35 | 99.85 116 | 99.71 7 | 93.17 169 | 96.26 176 | 98.88 172 | 89.87 174 | 99.51 152 | 94.26 199 | 94.91 217 | 99.31 174 |
|
| tfpn200view9 | | | 96.79 115 | 95.99 126 | 99.19 49 | 98.94 120 | 98.82 36 | 99.78 140 | 99.71 7 | 92.86 174 | 96.02 181 | 98.87 175 | 89.33 181 | 99.50 154 | 93.84 207 | 94.57 218 | 99.27 179 |
|
| thres400 | | | 96.78 116 | 95.99 126 | 99.16 55 | 98.94 120 | 98.82 36 | 99.78 140 | 99.71 7 | 92.86 174 | 96.02 181 | 98.87 175 | 89.33 181 | 99.50 154 | 93.84 207 | 94.57 218 | 99.16 186 |
|
| Anonymous20231211 | | | 89.86 297 | 88.44 304 | 94.13 273 | 98.93 122 | 90.68 287 | 98.54 302 | 98.26 177 | 76.28 373 | 86.73 316 | 95.54 297 | 70.60 339 | 97.56 263 | 90.82 256 | 80.27 335 | 94.15 290 |
|
| canonicalmvs | | | 97.09 104 | 96.32 118 | 99.39 40 | 98.93 122 | 98.95 27 | 99.72 162 | 97.35 265 | 94.45 115 | 97.88 138 | 99.42 118 | 86.71 210 | 99.52 151 | 98.48 95 | 93.97 228 | 99.72 107 |
|
| SDMVSNet | | | 94.80 176 | 93.96 189 | 97.33 173 | 98.92 124 | 95.42 167 | 99.59 185 | 98.99 37 | 92.41 202 | 92.55 228 | 97.85 226 | 75.81 310 | 98.93 178 | 97.90 123 | 91.62 239 | 97.64 232 |
|
| sd_testset | | | 93.55 215 | 92.83 219 | 95.74 216 | 98.92 124 | 90.89 284 | 98.24 316 | 98.85 56 | 92.41 202 | 92.55 228 | 97.85 226 | 71.07 338 | 98.68 194 | 93.93 204 | 91.62 239 | 97.64 232 |
|
| EPNet_dtu | | | 95.71 156 | 95.39 152 | 96.66 191 | 98.92 124 | 93.41 226 | 99.57 189 | 98.90 47 | 96.19 73 | 97.52 144 | 98.56 198 | 92.65 121 | 97.36 268 | 77.89 358 | 98.33 144 | 99.20 184 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 60 | 97.60 75 | 99.60 22 | 98.92 124 | 99.28 17 | 99.89 95 | 99.52 15 | 95.58 85 | 98.24 129 | 99.39 123 | 93.33 100 | 99.74 134 | 97.98 119 | 95.58 208 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 114 | 96.53 113 | 97.64 153 | 98.91 128 | 93.07 231 | 99.65 175 | 99.80 3 | 95.64 83 | 95.39 192 | 98.86 177 | 84.35 235 | 99.90 91 | 96.98 150 | 99.16 122 | 99.95 71 |
|
| thres100view900 | | | 96.74 119 | 95.92 138 | 99.18 50 | 98.90 129 | 98.77 40 | 99.74 154 | 99.71 7 | 92.59 192 | 95.84 184 | 98.86 177 | 89.25 183 | 99.50 154 | 93.84 207 | 94.57 218 | 99.27 179 |
|
| thres600view7 | | | 96.69 122 | 95.87 141 | 99.14 59 | 98.90 129 | 98.78 39 | 99.74 154 | 99.71 7 | 92.59 192 | 95.84 184 | 98.86 177 | 89.25 183 | 99.50 154 | 93.44 219 | 94.50 221 | 99.16 186 |
|
| MSDG | | | 94.37 193 | 93.36 209 | 97.40 167 | 98.88 131 | 93.95 211 | 99.37 219 | 97.38 263 | 85.75 331 | 90.80 247 | 99.17 142 | 84.11 237 | 99.88 102 | 86.35 310 | 98.43 142 | 98.36 219 |
|
| h-mvs33 | | | 94.92 174 | 94.36 178 | 96.59 193 | 98.85 132 | 91.29 276 | 98.93 269 | 98.94 41 | 95.90 76 | 98.77 101 | 98.42 209 | 90.89 161 | 99.77 128 | 97.80 125 | 70.76 369 | 98.72 211 |
|
| Anonymous20240529 | | | 92.10 249 | 90.65 260 | 96.47 194 | 98.82 133 | 90.61 289 | 98.72 290 | 98.67 73 | 75.54 377 | 93.90 212 | 98.58 196 | 66.23 355 | 99.90 91 | 94.70 190 | 90.67 241 | 98.90 201 |
|
| PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 103 | 98.66 90 | 98.81 134 | 96.67 119 | 99.92 78 | 98.64 76 | 94.51 114 | 96.38 174 | 98.49 202 | 89.05 187 | 99.88 102 | 97.10 146 | 98.34 143 | 99.43 160 |
|
| PS-MVSNAJ | | | 98.44 40 | 98.20 45 | 99.16 55 | 98.80 135 | 98.92 28 | 99.54 195 | 98.17 186 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 150 | 99.89 96 | 99.41 48 | 99.67 85 | 98.69 212 |
|
| CANet_DTU | | | 96.76 117 | 96.15 122 | 98.60 95 | 98.78 136 | 97.53 86 | 99.84 121 | 97.63 233 | 97.25 37 | 99.20 81 | 99.64 99 | 81.36 255 | 99.98 43 | 92.77 230 | 98.89 130 | 98.28 220 |
|
| mvsany_test1 | | | 97.82 71 | 97.90 65 | 97.55 158 | 98.77 137 | 93.04 234 | 99.80 137 | 97.93 211 | 96.95 45 | 99.61 52 | 99.68 93 | 90.92 158 | 99.83 118 | 99.18 56 | 98.29 148 | 99.80 96 |
|
| alignmvs | | | 97.81 72 | 97.33 85 | 99.25 44 | 98.77 137 | 98.66 49 | 99.99 4 | 98.44 120 | 94.40 121 | 98.41 119 | 99.47 114 | 93.65 94 | 99.42 162 | 98.57 92 | 94.26 224 | 99.67 113 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 50 | 98.72 139 | 97.71 79 | 99.98 14 | 98.44 120 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 8 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 56 | 97.97 58 | 99.02 70 | 98.69 140 | 98.66 49 | 99.52 197 | 98.08 198 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 163 | 99.71 138 | 99.39 50 | 98.63 138 | 98.69 212 |
|
| miper_enhance_ethall | | | 94.36 195 | 93.98 188 | 95.49 219 | 98.68 141 | 95.24 175 | 99.73 159 | 97.29 273 | 93.28 166 | 89.86 260 | 95.97 284 | 94.37 72 | 97.05 292 | 92.20 234 | 84.45 300 | 94.19 283 |
|
| test2506 | | | 97.53 85 | 97.19 90 | 98.58 98 | 98.66 142 | 96.90 113 | 98.81 283 | 99.77 5 | 94.93 99 | 97.95 134 | 98.96 161 | 92.51 127 | 99.20 166 | 94.93 180 | 98.15 150 | 99.64 119 |
|
| ECVR-MVS |  | | 95.66 159 | 95.05 164 | 97.51 161 | 98.66 142 | 93.71 216 | 98.85 280 | 98.45 116 | 94.93 99 | 96.86 159 | 98.96 161 | 75.22 316 | 99.20 166 | 95.34 172 | 98.15 150 | 99.64 119 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 80 | 97.72 70 | 97.77 145 | 98.63 144 | 94.26 201 | 99.96 34 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 87 | 87.00 208 | 99.97 53 | 99.46 44 | 98.89 130 | 99.08 194 |
|
| testing222 | | | 97.08 106 | 96.75 106 | 98.06 130 | 98.56 145 | 96.82 115 | 99.85 116 | 98.61 82 | 92.53 196 | 98.84 96 | 98.84 181 | 93.36 98 | 98.30 226 | 95.84 168 | 94.30 223 | 99.05 195 |
|
| test1111 | | | 95.57 161 | 94.98 167 | 97.37 169 | 98.56 145 | 93.37 228 | 98.86 278 | 98.45 116 | 94.95 98 | 96.63 165 | 98.95 166 | 75.21 317 | 99.11 171 | 95.02 178 | 98.14 152 | 99.64 119 |
|
| MVSTER | | | 95.53 162 | 95.22 158 | 96.45 196 | 98.56 145 | 97.72 78 | 99.91 82 | 97.67 231 | 92.38 204 | 91.39 239 | 97.14 244 | 97.24 18 | 97.30 275 | 94.80 186 | 87.85 273 | 94.34 274 |
|
| VDD-MVS | | | 93.77 208 | 92.94 216 | 96.27 204 | 98.55 148 | 90.22 298 | 98.77 287 | 97.79 225 | 90.85 249 | 96.82 161 | 99.42 118 | 61.18 372 | 99.77 128 | 98.95 67 | 94.13 225 | 98.82 204 |
|
| tpmvs | | | 94.28 197 | 93.57 200 | 96.40 199 | 98.55 148 | 91.50 274 | 95.70 368 | 98.55 96 | 87.47 306 | 92.15 232 | 94.26 343 | 91.42 146 | 98.95 177 | 88.15 289 | 95.85 201 | 98.76 207 |
|
| UGNet | | | 95.33 167 | 94.57 175 | 97.62 156 | 98.55 148 | 94.85 185 | 98.67 296 | 99.32 26 | 95.75 81 | 96.80 162 | 96.27 275 | 72.18 330 | 99.96 61 | 94.58 193 | 99.05 128 | 98.04 225 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 168 | 94.10 185 | 98.43 112 | 98.55 148 | 95.99 146 | 97.91 329 | 97.31 270 | 90.35 260 | 89.48 271 | 99.22 138 | 85.19 225 | 99.89 96 | 90.40 266 | 98.47 141 | 99.41 162 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_vis1_n_1920 | | | 95.44 164 | 95.31 155 | 95.82 214 | 98.50 152 | 88.74 317 | 99.98 14 | 97.30 271 | 97.84 16 | 99.85 9 | 99.19 140 | 66.82 353 | 99.97 53 | 98.82 77 | 99.46 106 | 98.76 207 |
|
| BH-w/o | | | 95.71 156 | 95.38 153 | 96.68 190 | 98.49 153 | 92.28 251 | 99.84 121 | 97.50 252 | 92.12 210 | 92.06 235 | 98.79 182 | 84.69 230 | 98.67 195 | 95.29 174 | 99.66 86 | 99.09 192 |
|
| baseline1 | | | 95.78 153 | 94.86 169 | 98.54 103 | 98.47 154 | 98.07 65 | 99.06 253 | 97.99 204 | 92.68 186 | 94.13 209 | 98.62 193 | 93.28 104 | 98.69 193 | 93.79 212 | 85.76 288 | 98.84 203 |
|
| iter_conf05 | | | 96.07 144 | 95.95 134 | 96.44 198 | 98.43 155 | 97.52 87 | 99.91 82 | 96.85 319 | 94.16 131 | 92.49 230 | 97.98 222 | 98.20 4 | 97.34 270 | 97.26 141 | 88.29 266 | 94.45 264 |
|
| EPMVS | | | 96.53 128 | 96.01 125 | 98.09 128 | 98.43 155 | 96.12 145 | 96.36 355 | 99.43 21 | 93.53 158 | 97.64 142 | 95.04 321 | 94.41 67 | 98.38 218 | 91.13 247 | 98.11 153 | 99.75 103 |
|
| iter_conf_final | | | 96.01 147 | 95.93 136 | 96.28 203 | 98.38 157 | 97.03 107 | 99.87 100 | 97.03 299 | 94.05 140 | 92.61 226 | 97.98 222 | 98.01 5 | 97.34 270 | 97.02 148 | 88.39 265 | 94.47 258 |
|
| sss | | | 97.57 84 | 97.03 97 | 99.18 50 | 98.37 158 | 98.04 67 | 99.73 159 | 99.38 23 | 93.46 160 | 98.76 103 | 99.06 148 | 91.21 149 | 99.89 96 | 96.33 159 | 97.01 179 | 99.62 124 |
|
| BH-untuned | | | 95.18 168 | 94.83 170 | 96.22 205 | 98.36 159 | 91.22 277 | 99.80 137 | 97.32 269 | 90.91 247 | 91.08 243 | 98.67 186 | 83.51 239 | 98.54 201 | 94.23 200 | 99.61 93 | 98.92 198 |
|
| ET-MVSNet_ETH3D | | | 94.37 193 | 93.28 211 | 97.64 153 | 98.30 160 | 97.99 69 | 99.99 4 | 97.61 238 | 94.35 122 | 71.57 380 | 99.45 117 | 96.23 31 | 95.34 350 | 96.91 154 | 85.14 295 | 99.59 130 |
|
| AUN-MVS | | | 93.28 220 | 92.60 225 | 95.34 226 | 98.29 161 | 90.09 301 | 99.31 226 | 98.56 90 | 91.80 222 | 96.35 175 | 98.00 219 | 89.38 180 | 98.28 229 | 92.46 231 | 69.22 374 | 97.64 232 |
|
| FMVSNet3 | | | 92.69 237 | 91.58 246 | 95.99 209 | 98.29 161 | 97.42 95 | 99.26 234 | 97.62 235 | 89.80 269 | 89.68 264 | 95.32 311 | 81.62 253 | 96.27 330 | 87.01 306 | 85.65 289 | 94.29 276 |
|
| PMMVS | | | 96.76 117 | 96.76 105 | 96.76 187 | 98.28 163 | 92.10 255 | 99.91 82 | 97.98 206 | 94.12 133 | 99.53 57 | 99.39 123 | 86.93 209 | 98.73 188 | 96.95 152 | 97.73 160 | 99.45 157 |
|
| hse-mvs2 | | | 94.38 192 | 94.08 186 | 95.31 228 | 98.27 164 | 90.02 303 | 99.29 231 | 98.56 90 | 95.90 76 | 98.77 101 | 98.00 219 | 90.89 161 | 98.26 233 | 97.80 125 | 69.20 375 | 97.64 232 |
|
| PVSNet_0 | | 88.03 19 | 91.80 256 | 90.27 269 | 96.38 201 | 98.27 164 | 90.46 293 | 99.94 68 | 99.61 14 | 93.99 142 | 86.26 326 | 97.39 239 | 71.13 337 | 99.89 96 | 98.77 80 | 67.05 380 | 98.79 206 |
|
| UA-Net | | | 96.54 127 | 95.96 132 | 98.27 120 | 98.23 166 | 95.71 156 | 98.00 327 | 98.45 116 | 93.72 154 | 98.41 119 | 99.27 132 | 88.71 192 | 99.66 146 | 91.19 246 | 97.69 161 | 99.44 159 |
|
| test_cas_vis1_n_1920 | | | 96.59 126 | 96.23 120 | 97.65 152 | 98.22 167 | 94.23 202 | 99.99 4 | 97.25 277 | 97.77 17 | 99.58 53 | 99.08 146 | 77.10 293 | 99.97 53 | 97.64 133 | 99.45 107 | 98.74 209 |
|
| FE-MVS | | | 95.70 158 | 95.01 166 | 97.79 142 | 98.21 168 | 94.57 191 | 95.03 369 | 98.69 68 | 88.90 285 | 97.50 146 | 96.19 277 | 92.60 124 | 99.49 158 | 89.99 271 | 97.94 159 | 99.31 174 |
|
| GG-mvs-BLEND | | | | | 98.54 103 | 98.21 168 | 98.01 68 | 93.87 374 | 98.52 102 | | 97.92 135 | 97.92 225 | 99.02 2 | 97.94 251 | 98.17 106 | 99.58 96 | 99.67 113 |
|
| mvs_anonymous | | | 95.65 160 | 95.03 165 | 97.53 159 | 98.19 170 | 95.74 154 | 99.33 223 | 97.49 253 | 90.87 248 | 90.47 250 | 97.10 246 | 88.23 194 | 97.16 283 | 95.92 166 | 97.66 163 | 99.68 111 |
|
| MVS_Test | | | 96.46 130 | 95.74 143 | 98.61 94 | 98.18 171 | 97.23 99 | 99.31 226 | 97.15 286 | 91.07 244 | 98.84 96 | 97.05 250 | 88.17 195 | 98.97 175 | 94.39 195 | 97.50 165 | 99.61 127 |
|
| BH-RMVSNet | | | 95.18 168 | 94.31 181 | 97.80 140 | 98.17 172 | 95.23 176 | 99.76 148 | 97.53 248 | 92.52 198 | 94.27 207 | 99.25 136 | 76.84 298 | 98.80 182 | 90.89 255 | 99.54 98 | 99.35 169 |
|
| RPSCF | | | 91.80 256 | 92.79 221 | 88.83 345 | 98.15 173 | 69.87 383 | 98.11 323 | 96.60 334 | 83.93 346 | 94.33 205 | 99.27 132 | 79.60 275 | 99.46 161 | 91.99 236 | 93.16 235 | 97.18 239 |
|
| ETV-MVS | | | 97.92 65 | 97.80 69 | 98.25 121 | 98.14 174 | 96.48 124 | 99.98 14 | 97.63 233 | 95.61 84 | 99.29 79 | 99.46 116 | 92.55 126 | 98.82 181 | 99.02 66 | 98.54 139 | 99.46 155 |
|
| IS-MVSNet | | | 96.29 140 | 95.90 139 | 97.45 163 | 98.13 175 | 94.80 188 | 99.08 248 | 97.61 238 | 92.02 215 | 95.54 191 | 98.96 161 | 90.64 164 | 98.08 240 | 93.73 215 | 97.41 169 | 99.47 154 |
|
| test_fmvsmconf_n | | | 98.43 42 | 98.32 39 | 98.78 82 | 98.12 176 | 96.41 127 | 99.99 4 | 98.83 59 | 98.22 6 | 99.67 38 | 99.64 99 | 91.11 154 | 99.94 77 | 99.67 36 | 99.62 89 | 99.98 48 |
|
| ab-mvs | | | 94.69 181 | 93.42 205 | 98.51 106 | 98.07 177 | 96.26 134 | 96.49 353 | 98.68 70 | 90.31 261 | 94.54 200 | 97.00 252 | 76.30 305 | 99.71 138 | 95.98 165 | 93.38 233 | 99.56 138 |
|
| XVG-OURS-SEG-HR | | | 94.79 177 | 94.70 174 | 95.08 234 | 98.05 178 | 89.19 312 | 99.08 248 | 97.54 246 | 93.66 155 | 94.87 198 | 99.58 106 | 78.78 283 | 99.79 123 | 97.31 139 | 93.40 232 | 96.25 245 |
|
| EIA-MVS | | | 97.53 85 | 97.46 79 | 97.76 147 | 98.04 179 | 94.84 186 | 99.98 14 | 97.61 238 | 94.41 120 | 97.90 136 | 99.59 104 | 92.40 131 | 98.87 179 | 98.04 114 | 99.13 124 | 99.59 130 |
|
| XVG-OURS | | | 94.82 175 | 94.74 173 | 95.06 235 | 98.00 180 | 89.19 312 | 99.08 248 | 97.55 244 | 94.10 134 | 94.71 199 | 99.62 102 | 80.51 267 | 99.74 134 | 96.04 164 | 93.06 237 | 96.25 245 |
|
| dp | | | 95.05 171 | 94.43 177 | 96.91 182 | 97.99 181 | 92.73 241 | 96.29 358 | 97.98 206 | 89.70 270 | 95.93 183 | 94.67 334 | 93.83 91 | 98.45 207 | 86.91 309 | 96.53 186 | 99.54 143 |
|
| tpmrst | | | 96.27 142 | 95.98 128 | 97.13 177 | 97.96 182 | 93.15 230 | 96.34 356 | 98.17 186 | 92.07 211 | 98.71 107 | 95.12 319 | 93.91 87 | 98.73 188 | 94.91 183 | 96.62 184 | 99.50 151 |
|
| TR-MVS | | | 94.54 186 | 93.56 201 | 97.49 162 | 97.96 182 | 94.34 199 | 98.71 291 | 97.51 251 | 90.30 262 | 94.51 202 | 98.69 185 | 75.56 311 | 98.77 185 | 92.82 229 | 95.99 195 | 99.35 169 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 137 | 95.98 128 | 97.35 172 | 97.93 184 | 94.82 187 | 99.47 206 | 98.15 193 | 91.83 219 | 95.09 196 | 99.11 144 | 91.37 148 | 97.47 266 | 93.47 218 | 97.43 166 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 145 | | 97.90 185 | 94.15 204 | 95.98 364 | 98.44 120 | 93.12 170 | 97.98 133 | 95.74 288 | 95.10 50 | 98.58 198 | 90.02 270 | 96.92 181 | |
|
| Fast-Effi-MVS+ | | | 95.02 172 | 94.19 183 | 97.52 160 | 97.88 186 | 94.55 192 | 99.97 27 | 97.08 294 | 88.85 287 | 94.47 203 | 97.96 224 | 84.59 231 | 98.41 210 | 89.84 273 | 97.10 174 | 99.59 130 |
|
| ADS-MVSNet2 | | | 93.80 207 | 93.88 192 | 93.55 296 | 97.87 187 | 85.94 341 | 94.24 370 | 96.84 320 | 90.07 264 | 96.43 171 | 94.48 339 | 90.29 170 | 95.37 349 | 87.44 296 | 97.23 171 | 99.36 167 |
|
| ADS-MVSNet | | | 94.79 177 | 94.02 187 | 97.11 179 | 97.87 187 | 93.79 213 | 94.24 370 | 98.16 190 | 90.07 264 | 96.43 171 | 94.48 339 | 90.29 170 | 98.19 236 | 87.44 296 | 97.23 171 | 99.36 167 |
|
| Effi-MVS+ | | | 96.30 139 | 95.69 145 | 98.16 123 | 97.85 189 | 96.26 134 | 97.41 336 | 97.21 279 | 90.37 259 | 98.65 110 | 98.58 196 | 86.61 212 | 98.70 192 | 97.11 145 | 97.37 170 | 99.52 147 |
|
| PatchmatchNet |  | | 95.94 149 | 95.45 150 | 97.39 168 | 97.83 190 | 94.41 196 | 96.05 362 | 98.40 147 | 92.86 174 | 97.09 153 | 95.28 316 | 94.21 79 | 98.07 242 | 89.26 277 | 98.11 153 | 99.70 108 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 184 | 93.61 196 | 97.74 149 | 97.82 191 | 96.26 134 | 99.96 34 | 97.78 226 | 85.76 329 | 94.00 210 | 97.54 233 | 76.95 297 | 99.21 165 | 97.23 142 | 95.43 211 | 97.76 231 |
|
| 1112_ss | | | 96.01 147 | 95.20 159 | 98.42 113 | 97.80 192 | 96.41 127 | 99.65 175 | 96.66 331 | 92.71 183 | 92.88 223 | 99.40 121 | 92.16 136 | 99.30 163 | 91.92 238 | 93.66 229 | 99.55 139 |
|
| Test_1112_low_res | | | 95.72 154 | 94.83 170 | 98.42 113 | 97.79 193 | 96.41 127 | 99.65 175 | 96.65 332 | 92.70 184 | 92.86 224 | 96.13 280 | 92.15 137 | 99.30 163 | 91.88 239 | 93.64 230 | 99.55 139 |
|
| Effi-MVS+-dtu | | | 94.53 188 | 95.30 156 | 92.22 318 | 97.77 194 | 82.54 358 | 99.59 185 | 97.06 296 | 94.92 101 | 95.29 194 | 95.37 309 | 85.81 218 | 97.89 252 | 94.80 186 | 97.07 175 | 96.23 247 |
|
| tpm cat1 | | | 93.51 216 | 92.52 230 | 96.47 194 | 97.77 194 | 91.47 275 | 96.13 360 | 98.06 199 | 80.98 362 | 92.91 222 | 93.78 347 | 89.66 175 | 98.87 179 | 87.03 305 | 96.39 189 | 99.09 192 |
|
| FA-MVS(test-final) | | | 95.86 150 | 95.09 163 | 98.15 126 | 97.74 196 | 95.62 160 | 96.31 357 | 98.17 186 | 91.42 235 | 96.26 176 | 96.13 280 | 90.56 165 | 99.47 160 | 92.18 235 | 97.07 175 | 99.35 169 |
|
| xiu_mvs_v1_base_debu | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 196 | 98.14 62 | 99.31 226 | 97.86 220 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 220 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 227 |
|
| xiu_mvs_v1_base | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 196 | 98.14 62 | 99.31 226 | 97.86 220 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 220 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 227 |
|
| xiu_mvs_v1_base_debi | | | 97.43 87 | 97.06 93 | 98.55 100 | 97.74 196 | 98.14 62 | 99.31 226 | 97.86 220 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 220 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 227 |
|
| EPP-MVSNet | | | 96.69 122 | 96.60 110 | 96.96 181 | 97.74 196 | 93.05 233 | 99.37 219 | 98.56 90 | 88.75 288 | 95.83 186 | 99.01 152 | 96.01 32 | 98.56 199 | 96.92 153 | 97.20 173 | 99.25 181 |
|
| gg-mvs-nofinetune | | | 93.51 216 | 91.86 243 | 98.47 108 | 97.72 201 | 97.96 72 | 92.62 378 | 98.51 105 | 74.70 380 | 97.33 149 | 69.59 393 | 98.91 3 | 97.79 255 | 97.77 130 | 99.56 97 | 99.67 113 |
|
| IB-MVS | | 92.85 6 | 94.99 173 | 93.94 190 | 98.16 123 | 97.72 201 | 95.69 158 | 99.99 4 | 98.81 60 | 94.28 127 | 92.70 225 | 96.90 254 | 95.08 51 | 99.17 169 | 96.07 163 | 73.88 364 | 99.60 129 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 92 | 97.02 98 | 98.59 97 | 97.71 203 | 97.52 87 | 99.97 27 | 98.54 99 | 91.83 219 | 97.45 147 | 99.04 149 | 97.50 9 | 99.10 172 | 94.75 188 | 96.37 190 | 99.16 186 |
|
| Syy-MVS | | | 90.00 295 | 90.63 261 | 88.11 352 | 97.68 204 | 74.66 380 | 99.71 164 | 98.35 160 | 90.79 251 | 92.10 233 | 98.67 186 | 79.10 281 | 93.09 372 | 63.35 386 | 95.95 198 | 96.59 243 |
|
| myMVS_eth3d | | | 94.46 190 | 94.76 172 | 93.55 296 | 97.68 204 | 90.97 279 | 99.71 164 | 98.35 160 | 90.79 251 | 92.10 233 | 98.67 186 | 92.46 130 | 93.09 372 | 87.13 302 | 95.95 198 | 96.59 243 |
|
| test_fmvs1_n | | | 94.25 198 | 94.36 178 | 93.92 282 | 97.68 204 | 83.70 353 | 99.90 87 | 96.57 335 | 97.40 28 | 99.67 38 | 98.88 172 | 61.82 369 | 99.92 88 | 98.23 104 | 99.13 124 | 98.14 224 |
|
| diffmvs |  | | 97.00 107 | 96.64 109 | 98.09 128 | 97.64 207 | 96.17 142 | 99.81 133 | 97.19 280 | 94.67 111 | 98.95 91 | 99.28 129 | 86.43 213 | 98.76 186 | 98.37 99 | 97.42 168 | 99.33 172 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 154 | 95.15 161 | 97.45 163 | 97.62 208 | 94.28 200 | 99.28 232 | 98.24 178 | 94.27 129 | 96.84 160 | 98.94 168 | 79.39 276 | 98.76 186 | 93.25 220 | 98.49 140 | 99.30 176 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 102 | 96.72 107 | 98.22 122 | 97.60 209 | 96.70 118 | 99.92 78 | 98.54 99 | 91.11 243 | 97.07 154 | 98.97 159 | 97.47 12 | 99.03 173 | 93.73 215 | 96.09 193 | 98.92 198 |
|
| miper_ehance_all_eth | | | 93.16 223 | 92.60 225 | 94.82 245 | 97.57 210 | 93.56 220 | 99.50 201 | 97.07 295 | 88.75 288 | 88.85 287 | 95.52 299 | 90.97 157 | 96.74 311 | 90.77 257 | 84.45 300 | 94.17 284 |
|
| testing3 | | | 93.92 202 | 94.23 182 | 92.99 310 | 97.54 211 | 90.23 297 | 99.99 4 | 99.16 30 | 90.57 255 | 91.33 242 | 98.63 192 | 92.99 111 | 92.52 376 | 82.46 335 | 95.39 212 | 96.22 248 |
|
| LCM-MVSNet-Re | | | 92.31 245 | 92.60 225 | 91.43 325 | 97.53 212 | 79.27 375 | 99.02 261 | 91.83 389 | 92.07 211 | 80.31 355 | 94.38 342 | 83.50 240 | 95.48 347 | 97.22 143 | 97.58 164 | 99.54 143 |
|
| GBi-Net | | | 90.88 272 | 89.82 278 | 94.08 274 | 97.53 212 | 91.97 256 | 98.43 307 | 96.95 308 | 87.05 312 | 89.68 264 | 94.72 330 | 71.34 334 | 96.11 335 | 87.01 306 | 85.65 289 | 94.17 284 |
|
| test1 | | | 90.88 272 | 89.82 278 | 94.08 274 | 97.53 212 | 91.97 256 | 98.43 307 | 96.95 308 | 87.05 312 | 89.68 264 | 94.72 330 | 71.34 334 | 96.11 335 | 87.01 306 | 85.65 289 | 94.17 284 |
|
| FMVSNet2 | | | 91.02 269 | 89.56 283 | 95.41 224 | 97.53 212 | 95.74 154 | 98.98 263 | 97.41 261 | 87.05 312 | 88.43 295 | 95.00 324 | 71.34 334 | 96.24 332 | 85.12 319 | 85.21 294 | 94.25 279 |
|
| tttt0517 | | | 96.85 112 | 96.49 114 | 97.92 135 | 97.48 216 | 95.89 149 | 99.85 116 | 98.54 99 | 90.72 254 | 96.63 165 | 98.93 170 | 97.47 12 | 99.02 174 | 93.03 227 | 95.76 204 | 98.85 202 |
|
| casdiffmvs_mvg |  | | 96.43 131 | 95.94 135 | 97.89 139 | 97.44 217 | 95.47 164 | 99.86 113 | 97.29 273 | 93.35 162 | 96.03 180 | 99.19 140 | 85.39 223 | 98.72 190 | 97.89 124 | 97.04 177 | 99.49 153 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 94 | 97.24 87 | 97.80 140 | 97.41 218 | 95.64 159 | 99.99 4 | 97.06 296 | 94.59 112 | 99.63 43 | 99.32 128 | 89.20 186 | 98.14 237 | 98.76 81 | 99.23 120 | 99.62 124 |
|
| c3_l | | | 92.53 240 | 91.87 242 | 94.52 257 | 97.40 219 | 92.99 235 | 99.40 212 | 96.93 313 | 87.86 302 | 88.69 290 | 95.44 303 | 89.95 173 | 96.44 323 | 90.45 263 | 80.69 331 | 94.14 293 |
|
| fmvsm_s_conf0.1_n | | | 97.30 95 | 97.21 89 | 97.60 157 | 97.38 220 | 94.40 198 | 99.90 87 | 98.64 76 | 96.47 61 | 99.51 61 | 99.65 98 | 84.99 228 | 99.93 85 | 99.22 55 | 99.09 126 | 98.46 216 |
|
| CDS-MVSNet | | | 96.34 136 | 96.07 123 | 97.13 177 | 97.37 221 | 94.96 183 | 99.53 196 | 97.91 215 | 91.55 227 | 95.37 193 | 98.32 211 | 95.05 53 | 97.13 286 | 93.80 211 | 95.75 205 | 99.30 176 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 119 | 96.26 119 | 98.16 123 | 97.36 222 | 96.48 124 | 99.96 34 | 98.29 173 | 91.93 216 | 95.77 187 | 98.07 217 | 95.54 42 | 98.29 227 | 90.55 261 | 98.89 130 | 99.70 108 |
|
| miper_lstm_enhance | | | 91.81 253 | 91.39 252 | 93.06 309 | 97.34 223 | 89.18 314 | 99.38 217 | 96.79 325 | 86.70 319 | 87.47 308 | 95.22 317 | 90.00 172 | 95.86 344 | 88.26 287 | 81.37 321 | 94.15 290 |
|
| baseline | | | 96.43 131 | 95.98 128 | 97.76 147 | 97.34 223 | 95.17 180 | 99.51 199 | 97.17 283 | 93.92 147 | 96.90 158 | 99.28 129 | 85.37 224 | 98.64 196 | 97.50 136 | 96.86 183 | 99.46 155 |
|
| cl____ | | | 92.31 245 | 91.58 246 | 94.52 257 | 97.33 225 | 92.77 237 | 99.57 189 | 96.78 326 | 86.97 316 | 87.56 306 | 95.51 300 | 89.43 179 | 96.62 316 | 88.60 282 | 82.44 313 | 94.16 289 |
|
| DIV-MVS_self_test | | | 92.32 244 | 91.60 245 | 94.47 261 | 97.31 226 | 92.74 239 | 99.58 187 | 96.75 327 | 86.99 315 | 87.64 304 | 95.54 297 | 89.55 178 | 96.50 320 | 88.58 283 | 82.44 313 | 94.17 284 |
|
| casdiffmvs |  | | 96.42 133 | 95.97 131 | 97.77 145 | 97.30 227 | 94.98 182 | 99.84 121 | 97.09 293 | 93.75 153 | 96.58 167 | 99.26 135 | 85.07 226 | 98.78 184 | 97.77 130 | 97.04 177 | 99.54 143 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 195 | 93.48 203 | 96.99 180 | 97.29 228 | 93.54 221 | 99.96 34 | 96.72 329 | 88.35 297 | 93.43 214 | 98.94 168 | 82.05 247 | 98.05 243 | 88.12 291 | 96.48 188 | 99.37 166 |
|
| eth_miper_zixun_eth | | | 92.41 243 | 91.93 240 | 93.84 286 | 97.28 229 | 90.68 287 | 98.83 281 | 96.97 307 | 88.57 293 | 89.19 281 | 95.73 290 | 89.24 185 | 96.69 314 | 89.97 272 | 81.55 319 | 94.15 290 |
|
| MVSFormer | | | 96.94 109 | 96.60 110 | 97.95 133 | 97.28 229 | 97.70 81 | 99.55 193 | 97.27 275 | 91.17 240 | 99.43 66 | 99.54 110 | 90.92 158 | 96.89 304 | 94.67 191 | 99.62 89 | 99.25 181 |
|
| lupinMVS | | | 97.85 68 | 97.60 75 | 98.62 93 | 97.28 229 | 97.70 81 | 99.99 4 | 97.55 244 | 95.50 89 | 99.43 66 | 99.67 94 | 90.92 158 | 98.71 191 | 98.40 97 | 99.62 89 | 99.45 157 |
|
| SCA | | | 94.69 181 | 93.81 194 | 97.33 173 | 97.10 232 | 94.44 193 | 98.86 278 | 98.32 167 | 93.30 165 | 96.17 179 | 95.59 295 | 76.48 303 | 97.95 249 | 91.06 249 | 97.43 166 | 99.59 130 |
|
| TAMVS | | | 95.85 151 | 95.58 148 | 96.65 192 | 97.07 233 | 93.50 222 | 99.17 241 | 97.82 224 | 91.39 237 | 95.02 197 | 98.01 218 | 92.20 135 | 97.30 275 | 93.75 214 | 95.83 202 | 99.14 189 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 211 | 93.86 193 | 93.29 301 | 97.06 234 | 86.16 339 | 99.80 137 | 96.83 321 | 92.66 187 | 92.58 227 | 97.83 228 | 81.39 254 | 97.67 260 | 89.75 274 | 96.87 182 | 96.05 250 |
|
| CostFormer | | | 96.10 143 | 95.88 140 | 96.78 186 | 97.03 235 | 92.55 247 | 97.08 344 | 97.83 223 | 90.04 266 | 98.72 106 | 94.89 328 | 95.01 55 | 98.29 227 | 96.54 158 | 95.77 203 | 99.50 151 |
|
| test_fmvsmvis_n_1920 | | | 97.67 82 | 97.59 77 | 97.91 137 | 97.02 236 | 95.34 170 | 99.95 52 | 98.45 116 | 97.87 15 | 97.02 155 | 99.59 104 | 89.64 176 | 99.98 43 | 99.41 48 | 99.34 115 | 98.42 217 |
|
| test-LLR | | | 96.47 129 | 96.04 124 | 97.78 143 | 97.02 236 | 95.44 165 | 99.96 34 | 98.21 181 | 94.07 136 | 95.55 189 | 96.38 271 | 93.90 88 | 98.27 231 | 90.42 264 | 98.83 134 | 99.64 119 |
|
| test-mter | | | 96.39 134 | 95.93 136 | 97.78 143 | 97.02 236 | 95.44 165 | 99.96 34 | 98.21 181 | 91.81 221 | 95.55 189 | 96.38 271 | 95.17 48 | 98.27 231 | 90.42 264 | 98.83 134 | 99.64 119 |
|
| gm-plane-assit | | | | | | 96.97 239 | 93.76 215 | | | 91.47 231 | | 98.96 161 | | 98.79 183 | 94.92 181 | | |
|
| WB-MVSnew | | | 92.90 230 | 92.77 222 | 93.26 303 | 96.95 240 | 93.63 218 | 99.71 164 | 98.16 190 | 91.49 228 | 94.28 206 | 98.14 214 | 81.33 256 | 96.48 321 | 79.47 350 | 95.46 209 | 89.68 373 |
|
| QAPM | | | 95.40 165 | 94.17 184 | 99.10 64 | 96.92 241 | 97.71 79 | 99.40 212 | 98.68 70 | 89.31 273 | 88.94 285 | 98.89 171 | 82.48 245 | 99.96 61 | 93.12 226 | 99.83 72 | 99.62 124 |
|
| KD-MVS_2432*1600 | | | 88.00 314 | 86.10 318 | 93.70 292 | 96.91 242 | 94.04 207 | 97.17 341 | 97.12 289 | 84.93 339 | 81.96 346 | 92.41 358 | 92.48 128 | 94.51 360 | 79.23 351 | 52.68 392 | 92.56 347 |
|
| miper_refine_blended | | | 88.00 314 | 86.10 318 | 93.70 292 | 96.91 242 | 94.04 207 | 97.17 341 | 97.12 289 | 84.93 339 | 81.96 346 | 92.41 358 | 92.48 128 | 94.51 360 | 79.23 351 | 52.68 392 | 92.56 347 |
|
| tpm2 | | | 95.47 163 | 95.18 160 | 96.35 202 | 96.91 242 | 91.70 269 | 96.96 347 | 97.93 211 | 88.04 301 | 98.44 118 | 95.40 305 | 93.32 101 | 97.97 246 | 94.00 202 | 95.61 207 | 99.38 164 |
|
| FMVSNet5 | | | 88.32 311 | 87.47 313 | 90.88 328 | 96.90 245 | 88.39 325 | 97.28 338 | 95.68 355 | 82.60 356 | 84.67 335 | 92.40 360 | 79.83 273 | 91.16 381 | 76.39 365 | 81.51 320 | 93.09 339 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 138 | 95.24 157 | 99.52 28 | 96.88 246 | 98.64 52 | 99.72 162 | 98.24 178 | 95.27 94 | 88.42 297 | 98.98 157 | 82.76 244 | 99.94 77 | 97.10 146 | 99.83 72 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 239 | 91.50 249 | 96.10 208 | 96.85 247 | 90.49 292 | 91.50 383 | 97.19 280 | 82.76 355 | 90.23 252 | 95.59 295 | 95.02 54 | 98.00 245 | 77.41 360 | 96.98 180 | 99.82 92 |
|
| MVS | | | 96.60 125 | 95.56 149 | 99.72 13 | 96.85 247 | 99.22 20 | 98.31 313 | 98.94 41 | 91.57 226 | 90.90 246 | 99.61 103 | 86.66 211 | 99.96 61 | 97.36 138 | 99.88 68 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 141 | 95.34 154 | 99.08 65 | 96.82 249 | 97.47 93 | 99.45 209 | 98.81 60 | 95.52 88 | 89.39 272 | 99.00 154 | 81.97 248 | 99.95 69 | 97.27 140 | 99.83 72 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 210 | 93.40 208 | 94.74 246 | 96.80 250 | 92.69 242 | 99.06 253 | 97.67 231 | 88.96 282 | 91.39 239 | 99.02 150 | 88.75 191 | 97.30 275 | 91.07 248 | 87.85 273 | 94.22 280 |
|
| CVMVSNet | | | 94.68 183 | 94.94 168 | 93.89 285 | 96.80 250 | 86.92 337 | 99.06 253 | 98.98 38 | 94.45 115 | 94.23 208 | 99.02 150 | 85.60 219 | 95.31 351 | 90.91 254 | 95.39 212 | 99.43 160 |
|
| IterMVS-LS | | | 92.69 237 | 92.11 235 | 94.43 265 | 96.80 250 | 92.74 239 | 99.45 209 | 96.89 316 | 88.98 280 | 89.65 267 | 95.38 308 | 88.77 190 | 96.34 327 | 90.98 252 | 82.04 316 | 94.22 280 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 271 | 90.17 273 | 93.12 306 | 96.78 253 | 90.42 295 | 98.89 272 | 97.05 298 | 89.03 277 | 86.49 321 | 95.42 304 | 76.59 301 | 95.02 353 | 87.22 301 | 84.09 303 | 93.93 311 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 113 | 95.96 132 | 99.48 34 | 96.74 254 | 98.52 56 | 98.31 313 | 98.86 53 | 95.82 78 | 89.91 258 | 98.98 157 | 87.49 200 | 99.96 61 | 97.80 125 | 99.73 82 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 274 | 90.16 274 | 92.93 311 | 96.72 255 | 89.96 304 | 98.89 272 | 96.99 303 | 88.95 283 | 86.63 318 | 95.67 291 | 76.48 303 | 95.00 354 | 87.04 304 | 84.04 306 | 93.84 318 |
|
| MVS-HIRNet | | | 86.22 321 | 83.19 334 | 95.31 228 | 96.71 256 | 90.29 296 | 92.12 380 | 97.33 268 | 62.85 387 | 86.82 315 | 70.37 392 | 69.37 342 | 97.49 265 | 75.12 367 | 97.99 158 | 98.15 222 |
|
| VDDNet | | | 93.12 225 | 91.91 241 | 96.76 187 | 96.67 257 | 92.65 245 | 98.69 294 | 98.21 181 | 82.81 354 | 97.75 141 | 99.28 129 | 61.57 370 | 99.48 159 | 98.09 112 | 94.09 226 | 98.15 222 |
|
| dmvs_re | | | 93.20 222 | 93.15 213 | 93.34 299 | 96.54 258 | 83.81 352 | 98.71 291 | 98.51 105 | 91.39 237 | 92.37 231 | 98.56 198 | 78.66 285 | 97.83 254 | 93.89 205 | 89.74 242 | 98.38 218 |
|
| MIMVSNet | | | 90.30 287 | 88.67 301 | 95.17 233 | 96.45 259 | 91.64 271 | 92.39 379 | 97.15 286 | 85.99 326 | 90.50 249 | 93.19 354 | 66.95 352 | 94.86 357 | 82.01 339 | 93.43 231 | 99.01 197 |
|
| CR-MVSNet | | | 93.45 219 | 92.62 224 | 95.94 210 | 96.29 260 | 92.66 243 | 92.01 381 | 96.23 344 | 92.62 189 | 96.94 156 | 93.31 352 | 91.04 155 | 96.03 340 | 79.23 351 | 95.96 196 | 99.13 190 |
|
| RPMNet | | | 89.76 299 | 87.28 314 | 97.19 176 | 96.29 260 | 92.66 243 | 92.01 381 | 98.31 169 | 70.19 386 | 96.94 156 | 85.87 385 | 87.25 204 | 99.78 125 | 62.69 387 | 95.96 196 | 99.13 190 |
|
| tt0805 | | | 91.28 264 | 90.18 272 | 94.60 252 | 96.26 262 | 87.55 331 | 98.39 311 | 98.72 65 | 89.00 279 | 89.22 278 | 98.47 206 | 62.98 366 | 98.96 176 | 90.57 260 | 88.00 272 | 97.28 238 |
|
| Patchmtry | | | 89.70 300 | 88.49 303 | 93.33 300 | 96.24 263 | 89.94 307 | 91.37 384 | 96.23 344 | 78.22 370 | 87.69 303 | 93.31 352 | 91.04 155 | 96.03 340 | 80.18 349 | 82.10 315 | 94.02 301 |
|
| test_vis1_rt | | | 86.87 319 | 86.05 321 | 89.34 341 | 96.12 264 | 78.07 376 | 99.87 100 | 83.54 400 | 92.03 214 | 78.21 365 | 89.51 371 | 45.80 386 | 99.91 89 | 96.25 161 | 93.11 236 | 90.03 370 |
|
| JIA-IIPM | | | 91.76 259 | 90.70 259 | 94.94 239 | 96.11 265 | 87.51 332 | 93.16 377 | 98.13 195 | 75.79 376 | 97.58 143 | 77.68 390 | 92.84 116 | 97.97 246 | 88.47 286 | 96.54 185 | 99.33 172 |
|
| OpenMVS |  | 90.15 15 | 94.77 179 | 93.59 199 | 98.33 117 | 96.07 266 | 97.48 92 | 99.56 191 | 98.57 88 | 90.46 257 | 86.51 320 | 98.95 166 | 78.57 286 | 99.94 77 | 93.86 206 | 99.74 81 | 97.57 236 |
|
| PAPM | | | 98.60 29 | 98.42 30 | 99.14 59 | 96.05 267 | 98.96 26 | 99.90 87 | 99.35 25 | 96.68 55 | 98.35 123 | 99.66 96 | 96.45 29 | 98.51 202 | 99.45 45 | 99.89 66 | 99.96 64 |
|
| CLD-MVS | | | 94.06 201 | 93.90 191 | 94.55 256 | 96.02 268 | 90.69 286 | 99.98 14 | 97.72 227 | 96.62 58 | 91.05 245 | 98.85 180 | 77.21 292 | 98.47 203 | 98.11 110 | 89.51 248 | 94.48 257 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 284 | 88.75 300 | 95.25 230 | 95.99 269 | 90.16 299 | 91.22 385 | 97.54 246 | 76.80 372 | 97.26 150 | 86.01 384 | 91.88 142 | 96.07 339 | 66.16 383 | 95.91 200 | 99.51 149 |
|
| ACMH+ | | 89.98 16 | 90.35 285 | 89.54 284 | 92.78 314 | 95.99 269 | 86.12 340 | 98.81 283 | 97.18 282 | 89.38 272 | 83.14 342 | 97.76 230 | 68.42 347 | 98.43 208 | 89.11 278 | 86.05 287 | 93.78 321 |
|
| DeepMVS_CX |  | | | | 82.92 362 | 95.98 271 | 58.66 393 | | 96.01 349 | 92.72 182 | 78.34 364 | 95.51 300 | 58.29 375 | 98.08 240 | 82.57 334 | 85.29 292 | 92.03 355 |
|
| ACMP | | 92.05 9 | 92.74 234 | 92.42 232 | 93.73 288 | 95.91 272 | 88.72 318 | 99.81 133 | 97.53 248 | 94.13 132 | 87.00 314 | 98.23 212 | 74.07 324 | 98.47 203 | 96.22 162 | 88.86 255 | 93.99 306 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 214 | 93.03 215 | 95.35 225 | 95.86 273 | 86.94 336 | 99.87 100 | 96.36 342 | 96.85 46 | 99.54 56 | 98.79 182 | 52.41 382 | 99.83 118 | 98.64 89 | 98.97 129 | 99.29 178 |
|
| HQP-NCC | | | | | | 95.78 274 | | 99.87 100 | | 96.82 48 | 93.37 215 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 274 | | 99.87 100 | | 96.82 48 | 93.37 215 | | | | | | |
|
| HQP-MVS | | | 94.61 185 | 94.50 176 | 94.92 240 | 95.78 274 | 91.85 261 | 99.87 100 | 97.89 216 | 96.82 48 | 93.37 215 | 98.65 189 | 80.65 265 | 98.39 214 | 97.92 121 | 89.60 243 | 94.53 253 |
|
| NP-MVS | | | | | | 95.77 277 | 91.79 263 | | | | | 98.65 189 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 78 | 97.44 80 | 98.64 92 | 95.76 278 | 96.20 139 | 99.94 68 | 98.05 201 | 98.17 8 | 98.89 95 | 99.42 118 | 87.65 198 | 99.90 91 | 99.50 41 | 99.60 95 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 278 | 91.72 268 | | | | | | 80.47 269 | | | | |
|
| ACMM | | 91.95 10 | 92.88 231 | 92.52 230 | 93.98 281 | 95.75 280 | 89.08 315 | 99.77 143 | 97.52 250 | 93.00 172 | 89.95 257 | 97.99 221 | 76.17 307 | 98.46 206 | 93.63 217 | 88.87 254 | 94.39 268 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 204 | 92.84 218 | 96.80 185 | 95.73 281 | 93.57 219 | 99.88 97 | 97.24 278 | 92.57 194 | 92.92 221 | 96.66 263 | 78.73 284 | 97.67 260 | 87.75 294 | 94.06 227 | 99.17 185 |
|
| plane_prior1 | | | | | | 95.73 281 | | | | | | | | | | | |
|
| jason | | | 97.24 98 | 96.86 101 | 98.38 116 | 95.73 281 | 97.32 97 | 99.97 27 | 97.40 262 | 95.34 92 | 98.60 113 | 99.54 110 | 87.70 197 | 98.56 199 | 97.94 120 | 99.47 104 | 99.25 181 |
| jason: jason. |
| HQP_MVS | | | 94.49 189 | 94.36 178 | 94.87 241 | 95.71 284 | 91.74 265 | 99.84 121 | 97.87 218 | 96.38 65 | 93.01 219 | 98.59 194 | 80.47 269 | 98.37 220 | 97.79 128 | 89.55 246 | 94.52 255 |
|
| plane_prior7 | | | | | | 95.71 284 | 91.59 273 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 316 | 95.69 286 | 85.14 345 | | 95.71 354 | 92.81 178 | 89.33 275 | 98.11 215 | 70.23 340 | 98.42 209 | 85.91 315 | 88.16 269 | 93.59 329 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 104 | 96.90 100 | 97.63 155 | 95.65 287 | 94.21 203 | 99.83 128 | 98.50 110 | 96.27 70 | 99.65 40 | 99.64 99 | 84.72 229 | 99.93 85 | 99.04 63 | 98.84 133 | 98.74 209 |
|
| ACMH | | 89.72 17 | 90.64 278 | 89.63 281 | 93.66 294 | 95.64 288 | 88.64 321 | 98.55 300 | 97.45 255 | 89.03 277 | 81.62 349 | 97.61 232 | 69.75 341 | 98.41 210 | 89.37 275 | 87.62 278 | 93.92 312 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 121 | 96.49 114 | 97.37 169 | 95.63 289 | 95.96 147 | 99.74 154 | 98.88 51 | 92.94 173 | 91.61 237 | 98.97 159 | 97.72 7 | 98.62 197 | 94.83 185 | 98.08 156 | 97.53 237 |
|
| FMVSNet1 | | | 88.50 310 | 86.64 316 | 94.08 274 | 95.62 290 | 91.97 256 | 98.43 307 | 96.95 308 | 83.00 352 | 86.08 328 | 94.72 330 | 59.09 374 | 96.11 335 | 81.82 341 | 84.07 304 | 94.17 284 |
|
| LPG-MVS_test | | | 92.96 228 | 92.71 223 | 93.71 290 | 95.43 291 | 88.67 319 | 99.75 151 | 97.62 235 | 92.81 178 | 90.05 253 | 98.49 202 | 75.24 314 | 98.40 212 | 95.84 168 | 89.12 250 | 94.07 298 |
|
| LGP-MVS_train | | | | | 93.71 290 | 95.43 291 | 88.67 319 | | 97.62 235 | 92.81 178 | 90.05 253 | 98.49 202 | 75.24 314 | 98.40 212 | 95.84 168 | 89.12 250 | 94.07 298 |
|
| tpm | | | 93.70 212 | 93.41 207 | 94.58 254 | 95.36 293 | 87.41 333 | 97.01 345 | 96.90 315 | 90.85 249 | 96.72 164 | 94.14 344 | 90.40 168 | 96.84 307 | 90.75 258 | 88.54 262 | 99.51 149 |
|
| D2MVS | | | 92.76 233 | 92.59 228 | 93.27 302 | 95.13 294 | 89.54 311 | 99.69 168 | 99.38 23 | 92.26 207 | 87.59 305 | 94.61 336 | 85.05 227 | 97.79 255 | 91.59 242 | 88.01 271 | 92.47 350 |
|
| VPA-MVSNet | | | 92.70 236 | 91.55 248 | 96.16 206 | 95.09 295 | 96.20 139 | 98.88 274 | 99.00 36 | 91.02 246 | 91.82 236 | 95.29 315 | 76.05 309 | 97.96 248 | 95.62 171 | 81.19 322 | 94.30 275 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 288 | 89.05 295 | 94.02 277 | 95.08 296 | 90.15 300 | 97.19 340 | 97.43 257 | 84.91 341 | 83.99 338 | 97.06 249 | 74.00 325 | 98.28 229 | 84.08 324 | 87.71 276 | 93.62 328 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 316 | 86.51 317 | 91.94 321 | 95.05 297 | 85.57 343 | 97.65 333 | 94.08 377 | 84.40 344 | 81.82 348 | 96.85 258 | 62.14 368 | 98.33 223 | 80.25 348 | 86.37 286 | 91.91 357 |
|
| test0.0.03 1 | | | 93.86 203 | 93.61 196 | 94.64 250 | 95.02 298 | 92.18 254 | 99.93 75 | 98.58 86 | 94.07 136 | 87.96 301 | 98.50 201 | 93.90 88 | 94.96 355 | 81.33 342 | 93.17 234 | 96.78 240 |
|
| UniMVSNet (Re) | | | 93.07 227 | 92.13 234 | 95.88 211 | 94.84 299 | 96.24 138 | 99.88 97 | 98.98 38 | 92.49 200 | 89.25 276 | 95.40 305 | 87.09 206 | 97.14 285 | 93.13 225 | 78.16 345 | 94.26 277 |
|
| USDC | | | 90.00 295 | 88.96 296 | 93.10 308 | 94.81 300 | 88.16 327 | 98.71 291 | 95.54 359 | 93.66 155 | 83.75 340 | 97.20 243 | 65.58 357 | 98.31 225 | 83.96 327 | 87.49 280 | 92.85 344 |
|
| VPNet | | | 91.81 253 | 90.46 263 | 95.85 213 | 94.74 301 | 95.54 163 | 98.98 263 | 98.59 85 | 92.14 209 | 90.77 248 | 97.44 236 | 68.73 345 | 97.54 264 | 94.89 184 | 77.89 347 | 94.46 259 |
|
| FIs | | | 94.10 199 | 93.43 204 | 96.11 207 | 94.70 302 | 96.82 115 | 99.58 187 | 98.93 45 | 92.54 195 | 89.34 274 | 97.31 240 | 87.62 199 | 97.10 289 | 94.22 201 | 86.58 284 | 94.40 266 |
|
| UniMVSNet_ETH3D | | | 90.06 294 | 88.58 302 | 94.49 260 | 94.67 303 | 88.09 328 | 97.81 332 | 97.57 243 | 83.91 347 | 88.44 293 | 97.41 237 | 57.44 376 | 97.62 262 | 91.41 243 | 88.59 261 | 97.77 230 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 229 | 92.11 235 | 95.49 219 | 94.61 304 | 95.28 173 | 99.83 128 | 99.08 33 | 91.49 228 | 89.21 279 | 96.86 257 | 87.14 205 | 96.73 312 | 93.20 221 | 77.52 350 | 94.46 259 |
|
| test_fmvs2 | | | 89.47 303 | 89.70 280 | 88.77 348 | 94.54 305 | 75.74 377 | 99.83 128 | 94.70 373 | 94.71 108 | 91.08 243 | 96.82 262 | 54.46 379 | 97.78 257 | 92.87 228 | 88.27 267 | 92.80 345 |
|
| WR-MVS | | | 92.31 245 | 91.25 253 | 95.48 222 | 94.45 306 | 95.29 172 | 99.60 184 | 98.68 70 | 90.10 263 | 88.07 300 | 96.89 255 | 80.68 264 | 96.80 310 | 93.14 224 | 79.67 338 | 94.36 270 |
|
| nrg030 | | | 93.51 216 | 92.53 229 | 96.45 196 | 94.36 307 | 97.20 100 | 99.81 133 | 97.16 285 | 91.60 225 | 89.86 260 | 97.46 235 | 86.37 214 | 97.68 259 | 95.88 167 | 80.31 334 | 94.46 259 |
|
| tfpnnormal | | | 89.29 306 | 87.61 312 | 94.34 268 | 94.35 308 | 94.13 205 | 98.95 267 | 98.94 41 | 83.94 345 | 84.47 336 | 95.51 300 | 74.84 319 | 97.39 267 | 77.05 363 | 80.41 332 | 91.48 360 |
|
| FC-MVSNet-test | | | 93.81 206 | 93.15 213 | 95.80 215 | 94.30 309 | 96.20 139 | 99.42 211 | 98.89 49 | 92.33 206 | 89.03 284 | 97.27 242 | 87.39 202 | 96.83 308 | 93.20 221 | 86.48 285 | 94.36 270 |
|
| MS-PatchMatch | | | 90.65 277 | 90.30 268 | 91.71 324 | 94.22 310 | 85.50 344 | 98.24 316 | 97.70 228 | 88.67 290 | 86.42 323 | 96.37 273 | 67.82 349 | 98.03 244 | 83.62 329 | 99.62 89 | 91.60 358 |
|
| WR-MVS_H | | | 91.30 262 | 90.35 266 | 94.15 271 | 94.17 311 | 92.62 246 | 99.17 241 | 98.94 41 | 88.87 286 | 86.48 322 | 94.46 341 | 84.36 233 | 96.61 317 | 88.19 288 | 78.51 343 | 93.21 338 |
|
| DU-MVS | | | 92.46 242 | 91.45 251 | 95.49 219 | 94.05 312 | 95.28 173 | 99.81 133 | 98.74 64 | 92.25 208 | 89.21 279 | 96.64 265 | 81.66 251 | 96.73 312 | 93.20 221 | 77.52 350 | 94.46 259 |
|
| NR-MVSNet | | | 91.56 261 | 90.22 270 | 95.60 217 | 94.05 312 | 95.76 153 | 98.25 315 | 98.70 67 | 91.16 242 | 80.78 354 | 96.64 265 | 83.23 243 | 96.57 318 | 91.41 243 | 77.73 349 | 94.46 259 |
|
| CP-MVSNet | | | 91.23 266 | 90.22 270 | 94.26 269 | 93.96 314 | 92.39 250 | 99.09 246 | 98.57 88 | 88.95 283 | 86.42 323 | 96.57 268 | 79.19 279 | 96.37 325 | 90.29 267 | 78.95 340 | 94.02 301 |
|
| XXY-MVS | | | 91.82 252 | 90.46 263 | 95.88 211 | 93.91 315 | 95.40 169 | 98.87 277 | 97.69 229 | 88.63 292 | 87.87 302 | 97.08 247 | 74.38 323 | 97.89 252 | 91.66 241 | 84.07 304 | 94.35 273 |
|
| PS-CasMVS | | | 90.63 279 | 89.51 286 | 93.99 280 | 93.83 316 | 91.70 269 | 98.98 263 | 98.52 102 | 88.48 294 | 86.15 327 | 96.53 270 | 75.46 312 | 96.31 329 | 88.83 280 | 78.86 342 | 93.95 309 |
|
| test_0402 | | | 85.58 323 | 83.94 328 | 90.50 332 | 93.81 317 | 85.04 346 | 98.55 300 | 95.20 367 | 76.01 374 | 79.72 359 | 95.13 318 | 64.15 363 | 96.26 331 | 66.04 384 | 86.88 283 | 90.21 369 |
|
| XVG-ACMP-BASELINE | | | 91.22 267 | 90.75 258 | 92.63 315 | 93.73 318 | 85.61 342 | 98.52 304 | 97.44 256 | 92.77 181 | 89.90 259 | 96.85 258 | 66.64 354 | 98.39 214 | 92.29 233 | 88.61 259 | 93.89 314 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 260 | 90.61 262 | 94.87 241 | 93.69 319 | 93.98 210 | 99.69 168 | 98.65 74 | 91.03 245 | 88.44 293 | 96.83 261 | 80.05 272 | 96.18 333 | 90.26 268 | 76.89 358 | 94.45 264 |
|
| mvsmamba | | | 94.10 199 | 93.72 195 | 95.25 230 | 93.57 320 | 94.13 205 | 99.67 172 | 96.45 340 | 93.63 157 | 91.34 241 | 97.77 229 | 86.29 215 | 97.22 281 | 96.65 157 | 88.10 270 | 94.40 266 |
|
| TransMVSNet (Re) | | | 87.25 317 | 85.28 324 | 93.16 305 | 93.56 321 | 91.03 278 | 98.54 302 | 94.05 379 | 83.69 349 | 81.09 352 | 96.16 278 | 75.32 313 | 96.40 324 | 76.69 364 | 68.41 376 | 92.06 354 |
|
| v10 | | | 90.25 289 | 88.82 298 | 94.57 255 | 93.53 322 | 93.43 225 | 99.08 248 | 96.87 318 | 85.00 338 | 87.34 312 | 94.51 337 | 80.93 261 | 97.02 299 | 82.85 333 | 79.23 339 | 93.26 336 |
|
| testgi | | | 89.01 308 | 88.04 309 | 91.90 322 | 93.49 323 | 84.89 348 | 99.73 159 | 95.66 356 | 93.89 150 | 85.14 333 | 98.17 213 | 59.68 373 | 94.66 359 | 77.73 359 | 88.88 253 | 96.16 249 |
|
| v8 | | | 90.54 281 | 89.17 291 | 94.66 249 | 93.43 324 | 93.40 227 | 99.20 238 | 96.94 312 | 85.76 329 | 87.56 306 | 94.51 337 | 81.96 249 | 97.19 282 | 84.94 321 | 78.25 344 | 93.38 334 |
|
| V42 | | | 91.28 264 | 90.12 275 | 94.74 246 | 93.42 325 | 93.46 223 | 99.68 170 | 97.02 300 | 87.36 308 | 89.85 262 | 95.05 320 | 81.31 257 | 97.34 270 | 87.34 299 | 80.07 336 | 93.40 332 |
|
| pm-mvs1 | | | 89.36 305 | 87.81 311 | 94.01 278 | 93.40 326 | 91.93 259 | 98.62 299 | 96.48 339 | 86.25 324 | 83.86 339 | 96.14 279 | 73.68 326 | 97.04 294 | 86.16 312 | 75.73 362 | 93.04 341 |
|
| RRT_MVS | | | 93.14 224 | 92.92 217 | 93.78 287 | 93.31 327 | 90.04 302 | 99.66 173 | 97.69 229 | 92.53 196 | 88.91 286 | 97.76 230 | 84.36 233 | 96.93 302 | 95.10 176 | 86.99 282 | 94.37 269 |
|
| v1144 | | | 91.09 268 | 89.83 277 | 94.87 241 | 93.25 328 | 93.69 217 | 99.62 182 | 96.98 305 | 86.83 318 | 89.64 268 | 94.99 325 | 80.94 260 | 97.05 292 | 85.08 320 | 81.16 323 | 93.87 316 |
|
| v1192 | | | 90.62 280 | 89.25 290 | 94.72 248 | 93.13 329 | 93.07 231 | 99.50 201 | 97.02 300 | 86.33 323 | 89.56 270 | 95.01 322 | 79.22 278 | 97.09 291 | 82.34 337 | 81.16 323 | 94.01 303 |
|
| v2v482 | | | 91.30 262 | 90.07 276 | 95.01 236 | 93.13 329 | 93.79 213 | 99.77 143 | 97.02 300 | 88.05 300 | 89.25 276 | 95.37 309 | 80.73 263 | 97.15 284 | 87.28 300 | 80.04 337 | 94.09 297 |
|
| OPM-MVS | | | 93.21 221 | 92.80 220 | 94.44 263 | 93.12 331 | 90.85 285 | 99.77 143 | 97.61 238 | 96.19 73 | 91.56 238 | 98.65 189 | 75.16 318 | 98.47 203 | 93.78 213 | 89.39 249 | 93.99 306 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 275 | 89.52 285 | 94.59 253 | 93.11 332 | 92.77 237 | 99.56 191 | 96.99 303 | 86.38 322 | 89.82 263 | 94.95 327 | 80.50 268 | 97.10 289 | 83.98 326 | 80.41 332 | 93.90 313 |
|
| bld_raw_dy_0_64 | | | 92.74 234 | 92.03 238 | 94.87 241 | 93.09 333 | 93.46 223 | 99.12 243 | 95.41 361 | 92.84 177 | 90.44 251 | 97.54 233 | 78.08 290 | 97.04 294 | 93.94 203 | 87.77 275 | 94.11 295 |
|
| PEN-MVS | | | 90.19 291 | 89.06 294 | 93.57 295 | 93.06 334 | 90.90 283 | 99.06 253 | 98.47 113 | 88.11 299 | 85.91 329 | 96.30 274 | 76.67 299 | 95.94 343 | 87.07 303 | 76.91 357 | 93.89 314 |
|
| v1240 | | | 90.20 290 | 88.79 299 | 94.44 263 | 93.05 335 | 92.27 252 | 99.38 217 | 96.92 314 | 85.89 327 | 89.36 273 | 94.87 329 | 77.89 291 | 97.03 297 | 80.66 345 | 81.08 326 | 94.01 303 |
|
| v148 | | | 90.70 276 | 89.63 281 | 93.92 282 | 92.97 336 | 90.97 279 | 99.75 151 | 96.89 316 | 87.51 305 | 88.27 298 | 95.01 322 | 81.67 250 | 97.04 294 | 87.40 298 | 77.17 355 | 93.75 322 |
|
| v1921920 | | | 90.46 282 | 89.12 292 | 94.50 259 | 92.96 337 | 92.46 248 | 99.49 203 | 96.98 305 | 86.10 325 | 89.61 269 | 95.30 312 | 78.55 287 | 97.03 297 | 82.17 338 | 80.89 330 | 94.01 303 |
|
| Baseline_NR-MVSNet | | | 90.33 286 | 89.51 286 | 92.81 313 | 92.84 338 | 89.95 305 | 99.77 143 | 93.94 380 | 84.69 343 | 89.04 283 | 95.66 292 | 81.66 251 | 96.52 319 | 90.99 251 | 76.98 356 | 91.97 356 |
|
| test_method | | | 80.79 343 | 79.70 347 | 84.08 359 | 92.83 339 | 67.06 385 | 99.51 199 | 95.42 360 | 54.34 391 | 81.07 353 | 93.53 349 | 44.48 387 | 92.22 378 | 78.90 355 | 77.23 354 | 92.94 342 |
|
| pmmvs4 | | | 92.10 249 | 91.07 256 | 95.18 232 | 92.82 340 | 94.96 183 | 99.48 205 | 96.83 321 | 87.45 307 | 88.66 291 | 96.56 269 | 83.78 238 | 96.83 308 | 89.29 276 | 84.77 298 | 93.75 322 |
|
| LF4IMVS | | | 89.25 307 | 88.85 297 | 90.45 334 | 92.81 341 | 81.19 368 | 98.12 322 | 94.79 370 | 91.44 232 | 86.29 325 | 97.11 245 | 65.30 360 | 98.11 239 | 88.53 285 | 85.25 293 | 92.07 353 |
|
| DTE-MVSNet | | | 89.40 304 | 88.24 307 | 92.88 312 | 92.66 342 | 89.95 305 | 99.10 245 | 98.22 180 | 87.29 309 | 85.12 334 | 96.22 276 | 76.27 306 | 95.30 352 | 83.56 330 | 75.74 361 | 93.41 331 |
|
| EU-MVSNet | | | 90.14 293 | 90.34 267 | 89.54 340 | 92.55 343 | 81.06 369 | 98.69 294 | 98.04 202 | 91.41 236 | 86.59 319 | 96.84 260 | 80.83 262 | 93.31 371 | 86.20 311 | 81.91 317 | 94.26 277 |
|
| APD_test1 | | | 81.15 342 | 80.92 343 | 81.86 363 | 92.45 344 | 59.76 392 | 96.04 363 | 93.61 383 | 73.29 383 | 77.06 368 | 96.64 265 | 44.28 388 | 96.16 334 | 72.35 371 | 82.52 311 | 89.67 374 |
|
| our_test_3 | | | 90.39 283 | 89.48 288 | 93.12 306 | 92.40 345 | 89.57 310 | 99.33 223 | 96.35 343 | 87.84 303 | 85.30 332 | 94.99 325 | 84.14 236 | 96.09 338 | 80.38 346 | 84.56 299 | 93.71 327 |
|
| ppachtmachnet_test | | | 89.58 302 | 88.35 305 | 93.25 304 | 92.40 345 | 90.44 294 | 99.33 223 | 96.73 328 | 85.49 334 | 85.90 330 | 95.77 287 | 81.09 259 | 96.00 342 | 76.00 366 | 82.49 312 | 93.30 335 |
|
| v7n | | | 89.65 301 | 88.29 306 | 93.72 289 | 92.22 347 | 90.56 291 | 99.07 252 | 97.10 291 | 85.42 336 | 86.73 316 | 94.72 330 | 80.06 271 | 97.13 286 | 81.14 343 | 78.12 346 | 93.49 330 |
|
| dmvs_testset | | | 83.79 336 | 86.07 320 | 76.94 367 | 92.14 348 | 48.60 402 | 96.75 350 | 90.27 392 | 89.48 271 | 78.65 362 | 98.55 200 | 79.25 277 | 86.65 390 | 66.85 381 | 82.69 310 | 95.57 251 |
|
| PS-MVSNAJss | | | 93.64 213 | 93.31 210 | 94.61 251 | 92.11 349 | 92.19 253 | 99.12 243 | 97.38 263 | 92.51 199 | 88.45 292 | 96.99 253 | 91.20 150 | 97.29 278 | 94.36 196 | 87.71 276 | 94.36 270 |
|
| pmmvs5 | | | 90.17 292 | 89.09 293 | 93.40 298 | 92.10 350 | 89.77 308 | 99.74 154 | 95.58 358 | 85.88 328 | 87.24 313 | 95.74 288 | 73.41 327 | 96.48 321 | 88.54 284 | 83.56 307 | 93.95 309 |
|
| N_pmnet | | | 80.06 346 | 80.78 344 | 77.89 366 | 91.94 351 | 45.28 404 | 98.80 285 | 56.82 406 | 78.10 371 | 80.08 357 | 93.33 350 | 77.03 294 | 95.76 345 | 68.14 379 | 82.81 309 | 92.64 346 |
|
| test_djsdf | | | 92.83 232 | 92.29 233 | 94.47 261 | 91.90 352 | 92.46 248 | 99.55 193 | 97.27 275 | 91.17 240 | 89.96 256 | 96.07 283 | 81.10 258 | 96.89 304 | 94.67 191 | 88.91 252 | 94.05 300 |
|
| SixPastTwentyTwo | | | 88.73 309 | 88.01 310 | 90.88 328 | 91.85 353 | 82.24 360 | 98.22 319 | 95.18 368 | 88.97 281 | 82.26 345 | 96.89 255 | 71.75 332 | 96.67 315 | 84.00 325 | 82.98 308 | 93.72 326 |
|
| K. test v3 | | | 88.05 313 | 87.24 315 | 90.47 333 | 91.82 354 | 82.23 361 | 98.96 266 | 97.42 259 | 89.05 276 | 76.93 370 | 95.60 294 | 68.49 346 | 95.42 348 | 85.87 316 | 81.01 328 | 93.75 322 |
|
| OurMVSNet-221017-0 | | | 89.81 298 | 89.48 288 | 90.83 330 | 91.64 355 | 81.21 367 | 98.17 321 | 95.38 363 | 91.48 230 | 85.65 331 | 97.31 240 | 72.66 328 | 97.29 278 | 88.15 289 | 84.83 297 | 93.97 308 |
|
| mvs_tets | | | 91.81 253 | 91.08 255 | 94.00 279 | 91.63 356 | 90.58 290 | 98.67 296 | 97.43 257 | 92.43 201 | 87.37 311 | 97.05 250 | 71.76 331 | 97.32 274 | 94.75 188 | 88.68 258 | 94.11 295 |
|
| Gipuma |  | | 66.95 359 | 65.00 359 | 72.79 372 | 91.52 357 | 67.96 384 | 66.16 395 | 95.15 369 | 47.89 393 | 58.54 390 | 67.99 395 | 29.74 392 | 87.54 389 | 50.20 394 | 77.83 348 | 62.87 395 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 134 | 95.74 143 | 98.32 118 | 91.47 358 | 95.56 162 | 99.84 121 | 97.30 271 | 97.74 18 | 97.89 137 | 99.35 127 | 79.62 274 | 99.85 108 | 99.25 54 | 99.24 119 | 99.55 139 |
|
| jajsoiax | | | 91.92 251 | 91.18 254 | 94.15 271 | 91.35 359 | 90.95 282 | 99.00 262 | 97.42 259 | 92.61 190 | 87.38 310 | 97.08 247 | 72.46 329 | 97.36 268 | 94.53 194 | 88.77 256 | 94.13 294 |
|
| MDA-MVSNet-bldmvs | | | 84.09 334 | 81.52 341 | 91.81 323 | 91.32 360 | 88.00 330 | 98.67 296 | 95.92 351 | 80.22 365 | 55.60 393 | 93.32 351 | 68.29 348 | 93.60 369 | 73.76 368 | 76.61 359 | 93.82 320 |
|
| MVP-Stereo | | | 90.93 270 | 90.45 265 | 92.37 317 | 91.25 361 | 88.76 316 | 98.05 326 | 96.17 346 | 87.27 310 | 84.04 337 | 95.30 312 | 78.46 288 | 97.27 280 | 83.78 328 | 99.70 84 | 91.09 361 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 325 | 83.32 333 | 92.10 319 | 90.96 362 | 88.58 322 | 99.20 238 | 96.52 337 | 79.70 367 | 57.12 392 | 92.69 356 | 79.11 280 | 93.86 366 | 77.10 362 | 77.46 352 | 93.86 317 |
|
| YYNet1 | | | 85.50 326 | 83.33 332 | 92.00 320 | 90.89 363 | 88.38 326 | 99.22 237 | 96.55 336 | 79.60 368 | 57.26 391 | 92.72 355 | 79.09 282 | 93.78 367 | 77.25 361 | 77.37 353 | 93.84 318 |
|
| anonymousdsp | | | 91.79 258 | 90.92 257 | 94.41 266 | 90.76 364 | 92.93 236 | 98.93 269 | 97.17 283 | 89.08 275 | 87.46 309 | 95.30 312 | 78.43 289 | 96.92 303 | 92.38 232 | 88.73 257 | 93.39 333 |
|
| lessismore_v0 | | | | | 90.53 331 | 90.58 365 | 80.90 370 | | 95.80 352 | | 77.01 369 | 95.84 285 | 66.15 356 | 96.95 300 | 83.03 332 | 75.05 363 | 93.74 325 |
|
| EG-PatchMatch MVS | | | 85.35 327 | 83.81 330 | 89.99 338 | 90.39 366 | 81.89 363 | 98.21 320 | 96.09 348 | 81.78 359 | 74.73 376 | 93.72 348 | 51.56 384 | 97.12 288 | 79.16 354 | 88.61 259 | 90.96 363 |
|
| EGC-MVSNET | | | 69.38 352 | 63.76 362 | 86.26 356 | 90.32 367 | 81.66 366 | 96.24 359 | 93.85 381 | 0.99 403 | 3.22 404 | 92.33 361 | 52.44 381 | 92.92 374 | 59.53 390 | 84.90 296 | 84.21 384 |
|
| CMPMVS |  | 61.59 21 | 84.75 330 | 85.14 325 | 83.57 360 | 90.32 367 | 62.54 388 | 96.98 346 | 97.59 242 | 74.33 381 | 69.95 382 | 96.66 263 | 64.17 362 | 98.32 224 | 87.88 293 | 88.41 264 | 89.84 372 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 333 | 82.92 336 | 89.21 342 | 90.03 369 | 82.60 357 | 96.89 349 | 95.62 357 | 80.59 363 | 75.77 375 | 89.17 372 | 65.04 361 | 94.79 358 | 72.12 372 | 81.02 327 | 90.23 368 |
|
| pmmvs6 | | | 85.69 322 | 83.84 329 | 91.26 327 | 90.00 370 | 84.41 350 | 97.82 331 | 96.15 347 | 75.86 375 | 81.29 351 | 95.39 307 | 61.21 371 | 96.87 306 | 83.52 331 | 73.29 365 | 92.50 349 |
|
| DSMNet-mixed | | | 88.28 312 | 88.24 307 | 88.42 350 | 89.64 371 | 75.38 379 | 98.06 325 | 89.86 393 | 85.59 333 | 88.20 299 | 92.14 362 | 76.15 308 | 91.95 379 | 78.46 356 | 96.05 194 | 97.92 226 |
|
| UnsupCasMVSNet_eth | | | 85.52 324 | 83.99 326 | 90.10 336 | 89.36 372 | 83.51 354 | 96.65 351 | 97.99 204 | 89.14 274 | 75.89 374 | 93.83 346 | 63.25 365 | 93.92 364 | 81.92 340 | 67.90 379 | 92.88 343 |
|
| Anonymous20231206 | | | 86.32 320 | 85.42 323 | 89.02 344 | 89.11 373 | 80.53 373 | 99.05 257 | 95.28 364 | 85.43 335 | 82.82 343 | 93.92 345 | 74.40 322 | 93.44 370 | 66.99 380 | 81.83 318 | 93.08 340 |
|
| Anonymous20240521 | | | 85.15 328 | 83.81 330 | 89.16 343 | 88.32 374 | 82.69 356 | 98.80 285 | 95.74 353 | 79.72 366 | 81.53 350 | 90.99 365 | 65.38 359 | 94.16 362 | 72.69 370 | 81.11 325 | 90.63 366 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 337 | 81.68 340 | 90.03 337 | 88.30 375 | 82.82 355 | 98.46 305 | 95.22 366 | 73.92 382 | 76.00 373 | 91.29 364 | 55.00 378 | 96.94 301 | 68.40 378 | 88.51 263 | 90.34 367 |
|
| test20.03 | | | 84.72 331 | 83.99 326 | 86.91 354 | 88.19 376 | 80.62 372 | 98.88 274 | 95.94 350 | 88.36 296 | 78.87 360 | 94.62 335 | 68.75 344 | 89.11 385 | 66.52 382 | 75.82 360 | 91.00 362 |
|
| KD-MVS_self_test | | | 83.59 338 | 82.06 338 | 88.20 351 | 86.93 377 | 80.70 371 | 97.21 339 | 96.38 341 | 82.87 353 | 82.49 344 | 88.97 373 | 67.63 350 | 92.32 377 | 73.75 369 | 62.30 388 | 91.58 359 |
|
| MIMVSNet1 | | | 82.58 339 | 80.51 345 | 88.78 346 | 86.68 378 | 84.20 351 | 96.65 351 | 95.41 361 | 78.75 369 | 78.59 363 | 92.44 357 | 51.88 383 | 89.76 384 | 65.26 385 | 78.95 340 | 92.38 352 |
|
| CL-MVSNet_self_test | | | 84.50 332 | 83.15 335 | 88.53 349 | 86.00 379 | 81.79 364 | 98.82 282 | 97.35 265 | 85.12 337 | 83.62 341 | 90.91 367 | 76.66 300 | 91.40 380 | 69.53 376 | 60.36 389 | 92.40 351 |
|
| UnsupCasMVSNet_bld | | | 79.97 348 | 77.03 353 | 88.78 346 | 85.62 380 | 81.98 362 | 93.66 375 | 97.35 265 | 75.51 378 | 70.79 381 | 83.05 387 | 48.70 385 | 94.91 356 | 78.31 357 | 60.29 390 | 89.46 377 |
|
| Patchmatch-RL test | | | 86.90 318 | 85.98 322 | 89.67 339 | 84.45 381 | 75.59 378 | 89.71 388 | 92.43 386 | 86.89 317 | 77.83 367 | 90.94 366 | 94.22 77 | 93.63 368 | 87.75 294 | 69.61 371 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 335 | 81.97 339 | 90.20 335 | 84.15 382 | 87.09 335 | 98.10 324 | 94.73 372 | 83.05 351 | 74.10 378 | 87.77 379 | 65.56 358 | 94.01 363 | 81.08 344 | 69.24 373 | 89.49 376 |
|
| test_fmvs3 | | | 79.99 347 | 80.17 346 | 79.45 365 | 84.02 383 | 62.83 386 | 99.05 257 | 93.49 384 | 88.29 298 | 80.06 358 | 86.65 382 | 28.09 394 | 88.00 386 | 88.63 281 | 73.27 366 | 87.54 382 |
|
| PM-MVS | | | 80.47 344 | 78.88 349 | 85.26 357 | 83.79 384 | 72.22 381 | 95.89 366 | 91.08 390 | 85.71 332 | 76.56 372 | 88.30 375 | 36.64 390 | 93.90 365 | 82.39 336 | 69.57 372 | 89.66 375 |
|
| new-patchmatchnet | | | 81.19 341 | 79.34 348 | 86.76 355 | 82.86 385 | 80.36 374 | 97.92 328 | 95.27 365 | 82.09 358 | 72.02 379 | 86.87 381 | 62.81 367 | 90.74 383 | 71.10 373 | 63.08 386 | 89.19 379 |
|
| mvsany_test3 | | | 82.12 340 | 81.14 342 | 85.06 358 | 81.87 386 | 70.41 382 | 97.09 343 | 92.14 387 | 91.27 239 | 77.84 366 | 88.73 374 | 39.31 389 | 95.49 346 | 90.75 258 | 71.24 368 | 89.29 378 |
|
| WB-MVS | | | 76.28 350 | 77.28 352 | 73.29 371 | 81.18 387 | 54.68 396 | 97.87 330 | 94.19 376 | 81.30 360 | 69.43 383 | 90.70 368 | 77.02 295 | 82.06 394 | 35.71 399 | 68.11 378 | 83.13 385 |
|
| test_f | | | 78.40 349 | 77.59 351 | 80.81 364 | 80.82 388 | 62.48 389 | 96.96 347 | 93.08 385 | 83.44 350 | 74.57 377 | 84.57 386 | 27.95 395 | 92.63 375 | 84.15 323 | 72.79 367 | 87.32 383 |
|
| SSC-MVS | | | 75.42 351 | 76.40 354 | 72.49 375 | 80.68 389 | 53.62 397 | 97.42 335 | 94.06 378 | 80.42 364 | 68.75 384 | 90.14 370 | 76.54 302 | 81.66 395 | 33.25 400 | 66.34 382 | 82.19 386 |
|
| pmmvs3 | | | 80.27 345 | 77.77 350 | 87.76 353 | 80.32 390 | 82.43 359 | 98.23 318 | 91.97 388 | 72.74 384 | 78.75 361 | 87.97 378 | 57.30 377 | 90.99 382 | 70.31 374 | 62.37 387 | 89.87 371 |
|
| testf1 | | | 68.38 355 | 66.92 356 | 72.78 373 | 78.80 391 | 50.36 399 | 90.95 386 | 87.35 398 | 55.47 389 | 58.95 388 | 88.14 376 | 20.64 399 | 87.60 387 | 57.28 391 | 64.69 383 | 80.39 388 |
|
| APD_test2 | | | 68.38 355 | 66.92 356 | 72.78 373 | 78.80 391 | 50.36 399 | 90.95 386 | 87.35 398 | 55.47 389 | 58.95 388 | 88.14 376 | 20.64 399 | 87.60 387 | 57.28 391 | 64.69 383 | 80.39 388 |
|
| ambc | | | | | 83.23 361 | 77.17 393 | 62.61 387 | 87.38 390 | 94.55 375 | | 76.72 371 | 86.65 382 | 30.16 391 | 96.36 326 | 84.85 322 | 69.86 370 | 90.73 365 |
|
| test_vis3_rt | | | 68.82 353 | 66.69 358 | 75.21 370 | 76.24 394 | 60.41 391 | 96.44 354 | 68.71 405 | 75.13 379 | 50.54 396 | 69.52 394 | 16.42 404 | 96.32 328 | 80.27 347 | 66.92 381 | 68.89 392 |
|
| TDRefinement | | | 84.76 329 | 82.56 337 | 91.38 326 | 74.58 395 | 84.80 349 | 97.36 337 | 94.56 374 | 84.73 342 | 80.21 356 | 96.12 282 | 63.56 364 | 98.39 214 | 87.92 292 | 63.97 385 | 90.95 364 |
|
| E-PMN | | | 52.30 363 | 52.18 365 | 52.67 381 | 71.51 396 | 45.40 403 | 93.62 376 | 76.60 403 | 36.01 397 | 43.50 398 | 64.13 397 | 27.11 396 | 67.31 400 | 31.06 401 | 26.06 396 | 45.30 399 |
|
| EMVS | | | 51.44 365 | 51.22 367 | 52.11 382 | 70.71 397 | 44.97 405 | 94.04 372 | 75.66 404 | 35.34 399 | 42.40 399 | 61.56 400 | 28.93 393 | 65.87 401 | 27.64 402 | 24.73 397 | 45.49 398 |
|
| PMMVS2 | | | 67.15 358 | 64.15 361 | 76.14 369 | 70.56 398 | 62.07 390 | 93.89 373 | 87.52 397 | 58.09 388 | 60.02 387 | 78.32 389 | 22.38 398 | 84.54 392 | 59.56 389 | 47.03 394 | 81.80 387 |
|
| FPMVS | | | 68.72 354 | 68.72 355 | 68.71 377 | 65.95 399 | 44.27 406 | 95.97 365 | 94.74 371 | 51.13 392 | 53.26 394 | 90.50 369 | 25.11 397 | 83.00 393 | 60.80 388 | 80.97 329 | 78.87 390 |
|
| wuyk23d | | | 20.37 369 | 20.84 372 | 18.99 385 | 65.34 400 | 27.73 408 | 50.43 396 | 7.67 409 | 9.50 402 | 8.01 403 | 6.34 403 | 6.13 407 | 26.24 402 | 23.40 403 | 10.69 401 | 2.99 400 |
|
| LCM-MVSNet | | | 67.77 357 | 64.73 360 | 76.87 368 | 62.95 401 | 56.25 395 | 89.37 389 | 93.74 382 | 44.53 394 | 61.99 386 | 80.74 388 | 20.42 401 | 86.53 391 | 69.37 377 | 59.50 391 | 87.84 380 |
|
| MVE |  | 53.74 22 | 51.54 364 | 47.86 368 | 62.60 379 | 59.56 402 | 50.93 398 | 79.41 393 | 77.69 402 | 35.69 398 | 36.27 400 | 61.76 399 | 5.79 408 | 69.63 398 | 37.97 398 | 36.61 395 | 67.24 393 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 361 | 52.24 364 | 67.66 378 | 49.27 403 | 56.82 394 | 83.94 391 | 82.02 401 | 70.47 385 | 33.28 401 | 64.54 396 | 17.23 403 | 69.16 399 | 45.59 396 | 23.85 398 | 77.02 391 |
|
| tmp_tt | | | 65.23 360 | 62.94 363 | 72.13 376 | 44.90 404 | 50.03 401 | 81.05 392 | 89.42 396 | 38.45 395 | 48.51 397 | 99.90 18 | 54.09 380 | 78.70 397 | 91.84 240 | 18.26 399 | 87.64 381 |
|
| PMVS |  | 49.05 23 | 53.75 362 | 51.34 366 | 60.97 380 | 40.80 405 | 34.68 407 | 74.82 394 | 89.62 395 | 37.55 396 | 28.67 402 | 72.12 391 | 7.09 406 | 81.63 396 | 43.17 397 | 68.21 377 | 66.59 394 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 367 | 39.14 370 | 33.31 383 | 19.94 406 | 24.83 409 | 98.36 312 | 9.75 408 | 15.53 401 | 51.31 395 | 87.14 380 | 19.62 402 | 17.74 403 | 47.10 395 | 3.47 402 | 57.36 396 |
|
| testmvs | | | 40.60 366 | 44.45 369 | 29.05 384 | 19.49 407 | 14.11 410 | 99.68 170 | 18.47 407 | 20.74 400 | 64.59 385 | 98.48 205 | 10.95 405 | 17.09 404 | 56.66 393 | 11.01 400 | 55.94 397 |
|
| test_blank | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.02 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| eth-test2 | | | | | | 0.00 408 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 408 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| DCPMVS | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| cdsmvs_eth3d_5k | | | 23.43 368 | 31.24 371 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 98.09 196 | 0.00 404 | 0.00 405 | 99.67 94 | 83.37 241 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| pcd_1.5k_mvsjas | | | 7.60 371 | 10.13 374 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 91.20 150 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet-low-res | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uncertanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| Regformer | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| ab-mvs-re | | | 8.28 370 | 11.04 373 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 99.40 121 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 405 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| MM | | | | | 99.76 10 | | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 3 | 99.39 72 | 99.80 51 | 90.49 167 | 99.96 61 | 99.89 16 | 99.43 110 | 99.98 48 |
|
| WAC-MVS | | | | | | | 90.97 279 | | | | | | | | 86.10 314 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 55 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 128 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 61 | | | | 99.59 130 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 76 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 174 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 367 | | | | 59.23 401 | 93.20 107 | 97.74 258 | 91.06 249 | | |
|
| test_post | | | | | | | | | | | | 63.35 398 | 94.43 66 | 98.13 238 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 363 | 95.12 49 | 97.95 249 | | | |
|
| MTMP | | | | | | | | 99.87 100 | 96.49 338 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 66 | 99.94 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 52 | | 95.78 79 | 99.73 32 | 99.76 63 | 96.00 33 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 208 | | 94.21 130 | 99.85 9 | | | 99.95 69 | 96.96 151 | | |
|
| 新几何2 | | | | | | | | 99.40 212 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 203 | 98.71 66 | 93.46 160 | | | | 100.00 1 | 94.36 196 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 87 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 262 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
| testdata1 | | | | | | | | 99.28 232 | | 96.35 69 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 218 | | | | | 98.37 220 | 97.79 128 | 89.55 246 | 94.52 255 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 194 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 271 | | | 96.63 56 | 93.01 219 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 121 | | 96.38 65 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 265 | 99.86 113 | | 96.76 52 | | | | | | 89.59 245 | |
|
| n2 | | | | | | | | | 0.00 410 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 410 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 394 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 120 | | | | | | | | |
|
| door | | | | | | | | | 90.31 391 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 261 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 121 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 215 | | | 98.39 214 | | | 94.53 253 |
|
| HQP3-MVS | | | | | | | | | 97.89 216 | | | | | | | 89.60 243 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 265 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 134 | 96.11 361 | | 91.89 217 | 98.06 131 | | 94.40 68 | | 94.30 198 | | 99.67 113 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 281 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 268 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 118 | | | | |
|