| AdaColmap |  | | 97.23 105 | 96.80 113 | 98.51 112 | 99.99 1 | 95.60 169 | 99.09 253 | 98.84 58 | 93.32 166 | 96.74 174 | 99.72 81 | 86.04 229 | 100.00 1 | 98.01 123 | 99.43 114 | 99.94 75 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 68 | 98.20 8 | 99.93 1 | 99.98 2 | 96.82 21 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 28 | 98.64 76 | 98.47 3 | 99.13 89 | 99.92 13 | 96.38 29 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 78 | 99.97 3 | 96.92 117 | 99.95 53 | 98.38 161 | 95.04 97 | 98.61 115 | 99.80 51 | 93.39 104 | 100.00 1 | 98.64 95 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 87 | 97.32 90 | 98.58 104 | 99.97 3 | 95.77 158 | 99.96 35 | 98.35 167 | 89.90 275 | 98.36 126 | 99.79 55 | 91.18 160 | 99.99 36 | 98.37 107 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 79 | 98.44 125 | 92.06 217 | 98.40 125 | 99.84 41 | 95.68 39 | 100.00 1 | 98.19 113 | 99.71 87 | 99.97 58 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 53 | 98.43 133 | 95.35 91 | 98.03 138 | 99.75 69 | 94.03 90 | 99.98 44 | 98.11 118 | 99.83 75 | 99.99 23 |
|
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 61 | 99.96 8 | 97.43 99 | 99.95 53 | 98.61 82 | 94.77 105 | 99.31 78 | 99.85 30 | 94.22 83 | 100.00 1 | 98.70 90 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 69 | 99.96 8 | 97.18 106 | 99.96 35 | 98.55 98 | 94.87 103 | 99.45 65 | 99.85 30 | 94.07 89 | 100.00 1 | 98.67 92 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 69 | 99.96 8 | 97.18 106 | 99.95 53 | 98.60 84 | 94.77 105 | 99.31 78 | 99.84 41 | 93.73 99 | 100.00 1 | 98.70 90 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 15 | 99.96 8 | 99.15 22 | 99.97 28 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 15 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 84 | 99.96 8 | 96.62 126 | 99.97 28 | 98.39 157 | 94.43 119 | 98.90 98 | 99.87 24 | 94.30 79 | 100.00 1 | 99.04 64 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 150 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 8 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 53 | 98.43 133 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 59 | 99.94 13 | 97.50 95 | 99.94 69 | 98.42 145 | 96.22 71 | 99.41 70 | 99.78 59 | 94.34 76 | 99.96 62 | 98.92 75 | 99.95 50 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 215 | 92.06 248 | 99.15 59 | 99.94 13 | 97.50 95 | 99.94 69 | 98.42 145 | 96.22 71 | 99.41 70 | 41.37 412 | 94.34 76 | 99.96 62 | 98.92 75 | 99.95 50 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 35 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 84 | 98.39 157 | 97.20 38 | 99.46 64 | 99.85 30 | 95.53 43 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 58 | 97.97 60 | 99.03 71 | 99.94 13 | 97.17 109 | 99.95 53 | 98.39 157 | 94.70 109 | 98.26 132 | 99.81 50 | 91.84 151 | 100.00 1 | 98.85 81 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 104 | 98.33 172 | 93.97 145 | 99.76 28 | 99.87 24 | 94.99 57 | 99.75 132 | 98.55 99 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 61 | 97.93 65 | 98.70 93 | 99.94 13 | 96.13 148 | 99.82 133 | 98.43 133 | 94.56 113 | 97.52 152 | 99.70 85 | 94.40 71 | 99.98 44 | 97.00 156 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 19 | 98.65 21 | 99.68 16 | 99.94 13 | 99.07 24 | 99.64 182 | 99.44 19 | 97.33 31 | 99.00 94 | 99.72 81 | 94.03 90 | 99.98 44 | 98.73 89 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 35 | 98.43 133 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 22 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 150 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 133 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 22 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 53 | 98.32 174 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 17 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 35 | 98.42 145 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 17 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 77 | 99.93 24 | 97.24 103 | 99.95 53 | 98.42 145 | 97.50 26 | 99.52 60 | 99.88 21 | 97.43 14 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 133 | | 99.63 44 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 88 | 99.95 53 | 98.36 165 | 95.58 85 | 99.52 60 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 105 | 92.34 209 | 99.31 78 | 99.83 43 | 95.06 52 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 52 | 97.97 60 | 99.17 55 | 99.92 31 | 97.57 91 | 99.93 76 | 98.39 157 | 94.04 142 | 98.80 103 | 99.74 76 | 92.98 120 | 100.00 1 | 98.16 115 | 99.76 84 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 133 | 93.90 150 | 99.71 35 | 99.86 26 | 95.88 36 | 99.85 108 | | | |
|
| train_agg | | | 98.88 20 | 98.65 21 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 133 | 94.35 124 | 99.71 35 | 99.86 26 | 95.94 33 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 35 | 98.43 133 | 94.35 124 | 99.69 37 | 99.85 30 | 95.94 33 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 75 | 99.92 31 | 97.00 113 | 99.75 153 | 99.50 17 | 93.90 150 | 99.37 75 | 99.76 63 | 93.24 113 | 100.00 1 | 97.75 141 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 82 | 97.44 84 | 98.66 96 | 99.92 31 | 96.13 148 | 99.18 248 | 99.45 18 | 94.84 104 | 96.41 184 | 99.71 83 | 91.40 154 | 99.99 36 | 97.99 125 | 98.03 163 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 53 | 98.43 133 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 12 | 100.00 1 | 99.92 13 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 150 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 150 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 53 | 98.56 92 | 97.56 25 | 99.44 66 | 99.85 30 | 95.38 46 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 104 | 98.36 165 | 94.08 137 | 99.74 31 | 99.73 78 | 94.08 88 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 243 | 98.47 117 | 98.14 10 | 99.08 90 | 99.91 14 | 93.09 117 | 100.00 1 | 99.04 64 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 35 | | | | 99.80 51 | 97.44 12 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 104 | 98.44 125 | 97.48 27 | 99.64 43 | 99.94 4 | 96.68 24 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 63 | | | | | | |
|
| CSCG | | | 97.10 110 | 97.04 101 | 97.27 186 | 99.89 45 | 91.92 268 | 99.90 90 | 99.07 34 | 88.67 298 | 95.26 208 | 99.82 46 | 93.17 116 | 99.98 44 | 98.15 116 | 99.47 109 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 55 | 99.88 49 | 97.59 89 | 99.94 69 | 98.44 125 | 94.31 127 | 98.50 119 | 99.82 46 | 93.06 118 | 99.99 36 | 98.30 111 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 82 | 99.88 49 | 97.04 112 | 99.84 123 | 98.35 167 | 94.92 101 | 99.32 77 | 99.80 51 | 93.35 106 | 99.78 125 | 99.30 52 | 99.95 50 | 99.96 64 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 84 | 98.33 172 | 93.22 169 | 99.78 26 | 99.89 19 | 94.57 68 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 115 | 98.38 161 | 93.19 170 | 99.77 27 | 99.94 4 | 95.54 41 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 71 | 99.86 53 | 97.10 111 | 99.98 15 | 98.80 62 | 90.78 258 | 99.62 47 | 99.78 59 | 95.30 47 | 100.00 1 | 99.80 25 | 99.93 61 | 99.99 23 |
|
| MTAPA | | | 98.29 51 | 97.96 63 | 99.30 44 | 99.85 54 | 97.93 78 | 99.39 224 | 98.28 181 | 95.76 80 | 97.18 162 | 99.88 21 | 92.74 127 | 100.00 1 | 98.67 92 | 99.88 71 | 99.99 23 |
|
| LS3D | | | 95.84 163 | 95.11 174 | 98.02 140 | 99.85 54 | 95.10 189 | 98.74 295 | 98.50 114 | 87.22 319 | 93.66 226 | 99.86 26 | 87.45 212 | 99.95 70 | 90.94 261 | 99.81 82 | 99.02 207 |
|
| HPM-MVS |  | | 97.96 64 | 97.72 72 | 98.68 94 | 99.84 56 | 96.39 135 | 99.90 90 | 98.17 193 | 92.61 195 | 98.62 114 | 99.57 107 | 91.87 150 | 99.67 145 | 98.87 80 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 90 | 99.83 57 | 96.59 128 | 99.40 220 | 98.51 108 | 95.29 93 | 98.51 118 | 99.76 63 | 93.60 103 | 99.71 138 | 98.53 100 | 99.52 104 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 35 | 98.40 154 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 66 | 97.89 68 | 98.05 139 | 99.82 58 | 94.77 198 | 99.92 79 | 98.46 119 | 93.93 148 | 97.20 161 | 99.27 134 | 95.44 45 | 99.97 54 | 97.41 146 | 99.51 107 | 99.41 169 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 56 | 98.08 55 | 98.78 87 | 99.81 60 | 96.60 127 | 99.82 133 | 98.30 179 | 93.95 147 | 99.37 75 | 99.77 61 | 92.84 124 | 99.76 131 | 98.95 72 | 99.92 64 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 60 | 97.99 58 | 98.60 101 | 99.80 61 | 96.27 138 | 99.36 229 | 98.50 114 | 95.21 95 | 98.30 129 | 99.75 69 | 93.29 110 | 99.73 137 | 98.37 107 | 99.30 121 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 92 | 99.79 62 | 96.37 136 | 99.76 150 | 98.31 176 | 94.43 119 | 99.40 72 | 99.75 69 | 93.28 111 | 99.78 125 | 98.90 78 | 99.92 64 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 136 | 99.76 150 | 98.31 176 | 94.43 119 | 99.40 72 | 99.75 69 | 92.95 121 | | 98.90 78 | 99.92 64 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 77 | 97.50 80 | 98.68 94 | 99.79 62 | 96.42 131 | 99.88 101 | 98.16 197 | 91.75 227 | 98.94 96 | 99.54 110 | 91.82 152 | 99.65 147 | 97.62 144 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 90 | 98.21 188 | 93.53 159 | 99.81 15 | 99.89 19 | 94.70 66 | 99.86 107 | 99.84 22 | 99.93 61 | 99.96 64 |
|
| MVS_0304 | | | 99.06 11 | 98.84 17 | 99.72 13 | 99.76 66 | 99.21 21 | 99.99 4 | 99.34 25 | 98.70 2 | 99.44 66 | 99.75 69 | 93.24 113 | 99.99 36 | 99.94 11 | 99.41 116 | 99.95 71 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 93 | | 98.64 76 | | | 99.85 30 | 95.63 40 | | | 99.94 55 | 99.99 23 |
|
| OMC-MVS | | | 97.28 102 | 97.23 93 | 97.41 177 | 99.76 66 | 93.36 237 | 99.65 178 | 97.95 216 | 96.03 75 | 97.41 156 | 99.70 85 | 89.61 187 | 99.51 153 | 96.73 165 | 98.25 155 | 99.38 171 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 69 | 98.27 64 | | 98.63 80 | 92.69 190 | 99.55 55 | 99.82 46 | 94.40 71 | 100.00 1 | 91.21 253 | 99.94 55 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 63 | 97.64 75 | 99.38 42 | 99.74 70 | 98.41 63 | 99.74 156 | 98.18 192 | 93.35 164 | 96.45 181 | 99.85 30 | 92.64 129 | 99.97 54 | 98.91 77 | 99.89 67 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 17 | 98.77 19 | 99.41 38 | 99.74 70 | 98.67 49 | 99.77 145 | 98.38 161 | 96.73 53 | 99.88 6 | 99.74 76 | 94.89 59 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 70 | 98.56 57 | | 98.40 154 | | 99.65 41 | | 94.76 62 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 79 | 99.73 73 | 96.99 114 | | 98.51 108 | 94.06 140 | 99.62 47 | 99.85 30 | 94.97 58 | 99.96 62 | 95.11 184 | 99.95 50 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 85 | 99.73 73 | 96.63 125 | 99.97 28 | 97.92 221 | 98.07 11 | 98.76 107 | 99.55 108 | 95.00 56 | 99.94 78 | 99.91 16 | 97.68 168 | 99.99 23 |
|
| CANet | | | 98.27 52 | 97.82 70 | 99.63 17 | 99.72 75 | 99.10 23 | 99.98 15 | 98.51 108 | 97.00 43 | 98.52 117 | 99.71 83 | 87.80 207 | 99.95 70 | 99.75 28 | 99.38 117 | 99.83 91 |
|
| F-COLMAP | | | 96.93 122 | 96.95 104 | 96.87 196 | 99.71 76 | 91.74 273 | 99.85 118 | 97.95 216 | 93.11 174 | 95.72 201 | 99.16 145 | 92.35 139 | 99.94 78 | 95.32 182 | 99.35 119 | 98.92 210 |
|
| SD-MVS | | | 98.92 18 | 98.70 20 | 99.56 25 | 99.70 77 | 98.73 46 | 99.94 69 | 98.34 171 | 96.38 65 | 99.81 15 | 99.76 63 | 94.59 67 | 99.98 44 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 57 | 99.12 5 | 95.59 228 | 99.67 78 | 86.91 346 | 99.95 53 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 63 | 96.54 27 | 99.98 44 | 99.94 11 | 99.82 79 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 79 | 98.62 55 | 99.85 118 | 98.37 164 | 94.68 110 | 99.53 58 | 99.83 43 | 92.87 123 | 100.00 1 | 98.66 94 | 99.84 74 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 85 | 98.98 12 | 93.92 291 | 99.63 80 | 81.76 374 | 99.96 35 | 98.56 92 | 99.47 1 | 99.19 87 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 13 | 99.93 61 | 100.00 1 |
|
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 89 | 99.62 81 | 96.80 122 | 99.90 90 | 99.51 16 | 97.60 22 | 99.20 85 | 99.36 128 | 93.71 100 | 99.91 89 | 97.99 125 | 98.71 143 | 99.61 130 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 82 | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 4 | 99.39 74 | 99.80 51 | 90.49 176 | 99.96 62 | 99.89 17 | 99.43 114 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 157 | 95.82 154 | 96.72 201 | 99.59 82 | 96.99 114 | 99.95 53 | 99.10 31 | 94.06 140 | 98.27 130 | 95.80 296 | 89.00 198 | 99.95 70 | 99.12 58 | 87.53 290 | 93.24 347 |
|
| PVSNet_Blended | | | 97.94 65 | 97.64 75 | 98.83 86 | 99.59 82 | 96.99 114 | 100.00 1 | 99.10 31 | 95.38 90 | 98.27 130 | 99.08 148 | 89.00 198 | 99.95 70 | 99.12 58 | 99.25 123 | 99.57 142 |
|
| PatchMatch-RL | | | 96.04 158 | 95.40 163 | 97.95 142 | 99.59 82 | 95.22 185 | 99.52 203 | 99.07 34 | 93.96 146 | 96.49 180 | 98.35 217 | 82.28 257 | 99.82 120 | 90.15 277 | 99.22 126 | 98.81 217 |
|
| dcpmvs_2 | | | 97.42 96 | 98.09 54 | 95.42 233 | 99.58 86 | 87.24 342 | 99.23 244 | 96.95 321 | 94.28 130 | 98.93 97 | 99.73 78 | 94.39 74 | 99.16 178 | 99.89 17 | 99.82 79 | 99.86 89 |
|
| test222 | | | | | | 99.55 87 | 97.41 101 | 99.34 230 | 98.55 98 | 91.86 222 | 99.27 82 | 99.83 43 | 93.84 97 | | | 99.95 50 | 99.99 23 |
|
| CNLPA | | | 97.76 81 | 97.38 86 | 98.92 83 | 99.53 88 | 96.84 119 | 99.87 104 | 98.14 201 | 93.78 153 | 96.55 179 | 99.69 87 | 92.28 141 | 99.98 44 | 97.13 152 | 99.44 113 | 99.93 76 |
|
| API-MVS | | | 97.86 69 | 97.66 74 | 98.47 114 | 99.52 89 | 95.41 176 | 99.47 212 | 98.87 52 | 91.68 228 | 98.84 100 | 99.85 30 | 92.34 140 | 99.99 36 | 98.44 103 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 109 | 96.69 119 | 98.45 116 | 99.52 89 | 95.81 156 | 99.95 53 | 99.65 12 | 94.73 107 | 99.04 92 | 99.21 141 | 84.48 244 | 99.95 70 | 94.92 189 | 98.74 142 | 99.58 139 |
|
| 114514_t | | | 97.41 97 | 96.83 111 | 99.14 61 | 99.51 91 | 97.83 80 | 99.89 98 | 98.27 183 | 88.48 302 | 99.06 91 | 99.66 96 | 90.30 179 | 99.64 148 | 96.32 168 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 219 | 93.25 223 | 95.33 237 | 99.49 92 | 94.43 202 | 99.61 187 | 98.09 203 | 90.38 263 | 89.16 291 | 95.61 303 | 90.56 174 | 97.34 283 | 91.93 245 | 84.45 310 | 94.21 293 |
|
| testdata | | | | | 98.42 119 | 99.47 93 | 95.33 179 | | 98.56 92 | 93.78 153 | 99.79 25 | 99.85 30 | 93.64 102 | 99.94 78 | 94.97 187 | 99.94 55 | 100.00 1 |
|
| MAR-MVS | | | 97.43 92 | 97.19 95 | 98.15 133 | 99.47 93 | 94.79 197 | 99.05 264 | 98.76 63 | 92.65 193 | 98.66 112 | 99.82 46 | 88.52 203 | 99.98 44 | 98.12 117 | 99.63 93 | 99.67 115 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 198 | 93.42 216 | 97.91 147 | 99.46 95 | 94.04 215 | 98.93 276 | 97.48 265 | 81.15 371 | 90.04 264 | 99.55 108 | 87.02 218 | 99.95 70 | 88.97 287 | 98.11 159 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 111 | 99.39 96 | 95.79 157 | 99.87 104 | 99.86 2 | 96.70 54 | 98.78 104 | 99.79 55 | 92.03 147 | 99.90 91 | 99.17 57 | 99.86 73 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 14 | 99.03 10 | 98.95 80 | 99.38 97 | 98.87 33 | 98.46 312 | 99.42 21 | 97.03 42 | 99.02 93 | 99.09 147 | 99.35 1 | 98.21 247 | 99.73 32 | 99.78 83 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 23 | 99.01 74 | 99.36 98 | 97.18 106 | 99.93 76 | 99.90 1 | 96.81 51 | 98.67 111 | 99.77 61 | 93.92 92 | 99.89 96 | 99.27 53 | 99.94 55 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 99 | 99.92 1 | 99.96 35 | 98.44 125 | 97.96 14 | 99.55 55 | 99.94 4 | 97.18 19 | 100.00 1 | 93.81 217 | 99.94 55 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 203 | 93.60 209 | 96.90 195 | 99.33 99 | 91.78 272 | 99.78 142 | 98.00 210 | 89.89 276 | 94.52 214 | 99.47 114 | 91.97 148 | 99.18 176 | 69.90 385 | 99.52 104 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 68 | 97.94 64 | 97.70 160 | 99.28 101 | 95.20 186 | 99.98 15 | 97.15 300 | 95.53 87 | 99.62 47 | 99.79 55 | 92.08 146 | 98.38 230 | 98.75 88 | 99.28 122 | 99.52 153 |
|
| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 24 | 97.92 145 | 99.27 102 | 95.18 187 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 78 | 92.64 129 | 99.99 36 | 99.58 38 | 99.51 107 | 98.59 227 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 15 | 98.91 14 | 99.28 45 | 99.21 103 | 97.91 79 | 99.98 15 | 98.85 56 | 98.25 5 | 99.92 2 | 99.75 69 | 94.72 64 | 99.97 54 | 99.87 19 | 99.64 91 | 99.95 71 |
|
| test_yl | | | 97.83 71 | 97.37 87 | 99.21 49 | 99.18 104 | 97.98 75 | 99.64 182 | 99.27 27 | 91.43 237 | 97.88 144 | 98.99 157 | 95.84 37 | 99.84 116 | 98.82 82 | 95.32 221 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 71 | 97.37 87 | 99.21 49 | 99.18 104 | 97.98 75 | 99.64 182 | 99.27 27 | 91.43 237 | 97.88 144 | 98.99 157 | 95.84 37 | 99.84 116 | 98.82 82 | 95.32 221 | 99.79 97 |
|
| fmvsm_l_conf0.5_n | | | 98.94 16 | 98.84 17 | 99.25 46 | 99.17 106 | 97.81 82 | 99.98 15 | 98.86 53 | 98.25 5 | 99.90 3 | 99.76 63 | 94.21 85 | 99.97 54 | 99.87 19 | 99.52 104 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 123 | 96.40 129 | 98.45 116 | 99.16 107 | 95.90 154 | 99.66 177 | 98.06 206 | 96.37 68 | 94.37 217 | 99.49 113 | 83.29 253 | 99.90 91 | 97.63 143 | 99.61 98 | 99.55 144 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 53 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 134 | 99.24 139 | 92.58 132 | 99.94 78 | 98.63 97 | 99.94 55 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 79 | 97.91 66 | 97.43 176 | 99.10 109 | 94.42 203 | 99.99 4 | 97.10 305 | 95.07 96 | 99.68 38 | 99.75 69 | 92.95 121 | 98.34 234 | 98.38 105 | 99.14 128 | 99.54 148 |
|
| Anonymous202405211 | | | 93.10 237 | 91.99 249 | 96.40 210 | 99.10 109 | 89.65 316 | 98.88 281 | 97.93 218 | 83.71 357 | 94.00 223 | 98.75 186 | 68.79 353 | 99.88 102 | 95.08 185 | 91.71 253 | 99.68 113 |
|
| fmvsm_s_conf0.5_n | | | 97.80 77 | 97.85 69 | 97.67 161 | 99.06 111 | 94.41 204 | 99.98 15 | 98.97 40 | 97.34 29 | 99.63 44 | 99.69 87 | 87.27 214 | 99.97 54 | 99.62 37 | 99.06 132 | 98.62 226 |
|
| HyFIR lowres test | | | 96.66 137 | 96.43 128 | 97.36 182 | 99.05 112 | 93.91 220 | 99.70 171 | 99.80 3 | 90.54 261 | 96.26 187 | 98.08 228 | 92.15 144 | 98.23 246 | 96.84 164 | 95.46 216 | 99.93 76 |
|
| LFMVS | | | 94.75 192 | 93.56 212 | 98.30 125 | 99.03 113 | 95.70 163 | 98.74 295 | 97.98 213 | 87.81 312 | 98.47 120 | 99.39 125 | 67.43 361 | 99.53 150 | 98.01 123 | 95.20 224 | 99.67 115 |
|
| AllTest | | | 92.48 251 | 91.64 254 | 95.00 246 | 99.01 114 | 88.43 331 | 98.94 275 | 96.82 335 | 86.50 328 | 88.71 296 | 98.47 212 | 74.73 330 | 99.88 102 | 85.39 325 | 96.18 198 | 96.71 256 |
|
| TestCases | | | | | 95.00 246 | 99.01 114 | 88.43 331 | | 96.82 335 | 86.50 328 | 88.71 296 | 98.47 212 | 74.73 330 | 99.88 102 | 85.39 325 | 96.18 198 | 96.71 256 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 258 | 91.49 260 | 94.25 279 | 99.00 116 | 88.04 337 | 98.42 318 | 96.70 342 | 82.30 367 | 88.43 304 | 99.01 154 | 76.97 306 | 99.85 108 | 86.11 321 | 96.50 193 | 94.86 267 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 177 | 95.68 159 | 94.36 276 | 98.99 117 | 84.98 356 | 99.96 35 | 96.65 344 | 97.60 22 | 99.73 33 | 98.96 163 | 71.58 343 | 99.93 85 | 98.31 110 | 99.37 118 | 98.17 234 |
|
| HY-MVS | | 92.50 7 | 97.79 79 | 97.17 97 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 344 | 99.52 14 | 95.69 82 | 98.32 128 | 97.41 247 | 93.32 108 | 99.77 128 | 98.08 121 | 95.75 212 | 99.81 94 |
|
| VNet | | | 97.21 106 | 96.57 124 | 99.13 65 | 98.97 119 | 97.82 81 | 99.03 267 | 99.21 29 | 94.31 127 | 99.18 88 | 98.88 174 | 86.26 228 | 99.89 96 | 98.93 74 | 94.32 233 | 99.69 112 |
|
| thres200 | | | 96.96 119 | 96.21 135 | 99.22 48 | 98.97 119 | 98.84 36 | 99.85 118 | 99.71 7 | 93.17 171 | 96.26 187 | 98.88 174 | 89.87 184 | 99.51 153 | 94.26 207 | 94.91 226 | 99.31 182 |
|
| tfpn200view9 | | | 96.79 127 | 95.99 140 | 99.19 51 | 98.94 121 | 98.82 37 | 99.78 142 | 99.71 7 | 92.86 180 | 96.02 192 | 98.87 177 | 89.33 191 | 99.50 155 | 93.84 214 | 94.57 229 | 99.27 188 |
|
| thres400 | | | 96.78 129 | 95.99 140 | 99.16 57 | 98.94 121 | 98.82 37 | 99.78 142 | 99.71 7 | 92.86 180 | 96.02 192 | 98.87 177 | 89.33 191 | 99.50 155 | 93.84 214 | 94.57 229 | 99.16 195 |
|
| sasdasda | | | 97.09 112 | 96.32 130 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 164 | 97.35 277 | 94.45 116 | 97.88 144 | 99.42 118 | 86.71 221 | 99.52 151 | 98.48 101 | 93.97 239 | 99.72 107 |
|
| Anonymous20231211 | | | 89.86 308 | 88.44 315 | 94.13 282 | 98.93 123 | 90.68 295 | 98.54 309 | 98.26 184 | 76.28 383 | 86.73 325 | 95.54 307 | 70.60 349 | 97.56 276 | 90.82 264 | 80.27 345 | 94.15 301 |
|
| canonicalmvs | | | 97.09 112 | 96.32 130 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 164 | 97.35 277 | 94.45 116 | 97.88 144 | 99.42 118 | 86.71 221 | 99.52 151 | 98.48 101 | 93.97 239 | 99.72 107 |
|
| SDMVSNet | | | 94.80 188 | 93.96 201 | 97.33 184 | 98.92 126 | 95.42 175 | 99.59 189 | 98.99 37 | 92.41 206 | 92.55 240 | 97.85 238 | 75.81 320 | 98.93 188 | 97.90 131 | 91.62 254 | 97.64 246 |
|
| sd_testset | | | 93.55 226 | 92.83 229 | 95.74 226 | 98.92 126 | 90.89 292 | 98.24 326 | 98.85 56 | 92.41 206 | 92.55 240 | 97.85 238 | 71.07 348 | 98.68 206 | 93.93 211 | 91.62 254 | 97.64 246 |
|
| EPNet_dtu | | | 95.71 167 | 95.39 164 | 96.66 203 | 98.92 126 | 93.41 234 | 99.57 195 | 98.90 47 | 96.19 73 | 97.52 152 | 98.56 204 | 92.65 128 | 97.36 281 | 77.89 367 | 98.33 150 | 99.20 193 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 62 | 97.60 77 | 99.60 22 | 98.92 126 | 99.28 17 | 99.89 98 | 99.52 14 | 95.58 85 | 98.24 133 | 99.39 125 | 93.33 107 | 99.74 134 | 97.98 127 | 95.58 215 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 126 | 96.53 125 | 97.64 163 | 98.91 130 | 93.07 239 | 99.65 178 | 99.80 3 | 95.64 83 | 95.39 205 | 98.86 179 | 84.35 246 | 99.90 91 | 96.98 158 | 99.16 127 | 99.95 71 |
|
| thres100view900 | | | 96.74 132 | 95.92 150 | 99.18 52 | 98.90 131 | 98.77 42 | 99.74 156 | 99.71 7 | 92.59 197 | 95.84 197 | 98.86 179 | 89.25 193 | 99.50 155 | 93.84 214 | 94.57 229 | 99.27 188 |
|
| thres600view7 | | | 96.69 135 | 95.87 153 | 99.14 61 | 98.90 131 | 98.78 41 | 99.74 156 | 99.71 7 | 92.59 197 | 95.84 197 | 98.86 179 | 89.25 193 | 99.50 155 | 93.44 226 | 94.50 232 | 99.16 195 |
|
| MSDG | | | 94.37 205 | 93.36 220 | 97.40 178 | 98.88 133 | 93.95 219 | 99.37 227 | 97.38 275 | 85.75 339 | 90.80 257 | 99.17 144 | 84.11 248 | 99.88 102 | 86.35 318 | 98.43 148 | 98.36 232 |
|
| MGCFI-Net | | | 97.00 117 | 96.22 134 | 99.34 43 | 98.86 134 | 98.80 39 | 99.67 176 | 97.30 284 | 94.31 127 | 97.77 148 | 99.41 122 | 86.36 227 | 99.50 155 | 98.38 105 | 93.90 241 | 99.72 107 |
|
| h-mvs33 | | | 94.92 186 | 94.36 190 | 96.59 205 | 98.85 135 | 91.29 284 | 98.93 276 | 98.94 41 | 95.90 76 | 98.77 105 | 98.42 215 | 90.89 168 | 99.77 128 | 97.80 134 | 70.76 379 | 98.72 223 |
|
| Anonymous20240529 | | | 92.10 259 | 90.65 271 | 96.47 206 | 98.82 136 | 90.61 297 | 98.72 297 | 98.67 73 | 75.54 387 | 93.90 225 | 98.58 202 | 66.23 365 | 99.90 91 | 94.70 198 | 90.67 256 | 98.90 213 |
|
| PVSNet_Blended_VisFu | | | 97.27 103 | 96.81 112 | 98.66 96 | 98.81 137 | 96.67 124 | 99.92 79 | 98.64 76 | 94.51 115 | 96.38 185 | 98.49 208 | 89.05 197 | 99.88 102 | 97.10 154 | 98.34 149 | 99.43 167 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 57 | 98.80 138 | 98.92 29 | 99.54 201 | 98.17 193 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 157 | 99.89 96 | 99.41 48 | 99.67 89 | 98.69 224 |
|
| CANet_DTU | | | 96.76 130 | 96.15 136 | 98.60 101 | 98.78 139 | 97.53 92 | 99.84 123 | 97.63 244 | 97.25 37 | 99.20 85 | 99.64 99 | 81.36 266 | 99.98 44 | 92.77 237 | 98.89 136 | 98.28 233 |
|
| mvsany_test1 | | | 97.82 74 | 97.90 67 | 97.55 168 | 98.77 140 | 93.04 242 | 99.80 139 | 97.93 218 | 96.95 45 | 99.61 53 | 99.68 93 | 90.92 165 | 99.83 118 | 99.18 56 | 98.29 154 | 99.80 96 |
|
| alignmvs | | | 97.81 76 | 97.33 89 | 99.25 46 | 98.77 140 | 98.66 51 | 99.99 4 | 98.44 125 | 94.40 123 | 98.41 123 | 99.47 114 | 93.65 101 | 99.42 164 | 98.57 98 | 94.26 235 | 99.67 115 |
|
| SteuartSystems-ACMMP | | | 99.02 13 | 98.97 13 | 99.18 52 | 98.72 142 | 97.71 84 | 99.98 15 | 98.44 125 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 6 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 58 | 97.97 60 | 99.02 73 | 98.69 143 | 98.66 51 | 99.52 203 | 98.08 205 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 171 | 99.71 138 | 99.39 50 | 98.63 144 | 98.69 224 |
|
| miper_enhance_ethall | | | 94.36 207 | 93.98 200 | 95.49 229 | 98.68 144 | 95.24 183 | 99.73 161 | 97.29 287 | 93.28 168 | 89.86 269 | 95.97 294 | 94.37 75 | 97.05 302 | 92.20 241 | 84.45 310 | 94.19 294 |
|
| ETVMVS | | | 97.03 116 | 96.64 120 | 98.20 129 | 98.67 145 | 97.12 110 | 99.89 98 | 98.57 89 | 91.10 248 | 98.17 135 | 98.59 199 | 93.86 96 | 98.19 248 | 95.64 179 | 95.24 223 | 99.28 187 |
|
| test2506 | | | 97.53 89 | 97.19 95 | 98.58 104 | 98.66 146 | 96.90 118 | 98.81 290 | 99.77 5 | 94.93 99 | 97.95 140 | 98.96 163 | 92.51 134 | 99.20 174 | 94.93 188 | 98.15 156 | 99.64 121 |
|
| ECVR-MVS |  | | 95.66 170 | 95.05 176 | 97.51 172 | 98.66 146 | 93.71 224 | 98.85 287 | 98.45 120 | 94.93 99 | 96.86 170 | 98.96 163 | 75.22 326 | 99.20 174 | 95.34 181 | 98.15 156 | 99.64 121 |
|
| mamv4 | | | 95.24 179 | 96.90 106 | 90.25 344 | 98.65 148 | 72.11 391 | 98.28 323 | 97.64 243 | 89.99 274 | 95.93 195 | 98.25 223 | 94.74 63 | 99.11 179 | 99.01 70 | 99.64 91 | 99.53 152 |
|
| balanced_conf03 | | | 98.27 52 | 97.99 58 | 99.11 66 | 98.64 149 | 98.43 62 | 99.47 212 | 97.79 232 | 94.56 113 | 99.74 31 | 98.35 217 | 94.33 78 | 99.25 167 | 99.12 58 | 99.96 46 | 99.64 121 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 84 | 97.72 72 | 97.77 155 | 98.63 150 | 94.26 210 | 99.96 35 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 87 | 87.00 219 | 99.97 54 | 99.46 44 | 98.89 136 | 99.08 203 |
|
| MVSMamba_PlusPlus | | | 97.83 71 | 97.45 82 | 98.99 75 | 98.60 151 | 98.15 65 | 99.58 191 | 97.74 235 | 90.34 266 | 99.26 83 | 98.32 220 | 94.29 80 | 99.23 168 | 99.03 67 | 99.89 67 | 99.58 139 |
|
| iter_conf05 | | | 97.35 100 | 96.89 109 | 98.73 91 | 98.60 151 | 97.59 89 | 98.26 324 | 97.46 266 | 90.34 266 | 95.94 194 | 98.32 220 | 94.29 80 | 99.23 168 | 99.03 67 | 99.82 79 | 99.36 174 |
|
| testing222 | | | 97.08 115 | 96.75 115 | 98.06 138 | 98.56 153 | 96.82 120 | 99.85 118 | 98.61 82 | 92.53 201 | 98.84 100 | 98.84 183 | 93.36 105 | 98.30 238 | 95.84 176 | 94.30 234 | 99.05 205 |
|
| test1111 | | | 95.57 172 | 94.98 179 | 97.37 180 | 98.56 153 | 93.37 236 | 98.86 285 | 98.45 120 | 94.95 98 | 96.63 176 | 98.95 168 | 75.21 327 | 99.11 179 | 95.02 186 | 98.14 158 | 99.64 121 |
|
| MVSTER | | | 95.53 173 | 95.22 170 | 96.45 208 | 98.56 153 | 97.72 83 | 99.91 84 | 97.67 241 | 92.38 208 | 91.39 250 | 97.14 254 | 97.24 16 | 97.30 286 | 94.80 194 | 87.85 285 | 94.34 285 |
|
| VDD-MVS | | | 93.77 219 | 92.94 227 | 96.27 214 | 98.55 156 | 90.22 306 | 98.77 294 | 97.79 232 | 90.85 254 | 96.82 172 | 99.42 118 | 61.18 382 | 99.77 128 | 98.95 72 | 94.13 236 | 98.82 216 |
|
| tpmvs | | | 94.28 209 | 93.57 211 | 96.40 210 | 98.55 156 | 91.50 282 | 95.70 378 | 98.55 98 | 87.47 314 | 92.15 243 | 94.26 353 | 91.42 153 | 98.95 187 | 88.15 297 | 95.85 208 | 98.76 219 |
|
| UGNet | | | 95.33 178 | 94.57 187 | 97.62 166 | 98.55 156 | 94.85 193 | 98.67 303 | 99.32 26 | 95.75 81 | 96.80 173 | 96.27 285 | 72.18 340 | 99.96 62 | 94.58 201 | 99.05 133 | 98.04 238 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 180 | 94.10 197 | 98.43 118 | 98.55 156 | 95.99 152 | 97.91 339 | 97.31 283 | 90.35 265 | 89.48 280 | 99.22 140 | 85.19 237 | 99.89 96 | 90.40 274 | 98.47 147 | 99.41 169 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 127 | 96.72 117 | 97.00 191 | 98.51 160 | 93.70 225 | 99.71 167 | 98.60 84 | 92.96 176 | 97.09 163 | 98.34 219 | 96.67 26 | 98.85 191 | 92.11 243 | 96.50 193 | 98.44 229 |
|
| bld_raw_conf03 | | | 97.82 74 | 97.45 82 | 98.94 81 | 98.51 160 | 98.15 65 | 99.58 191 | 97.74 235 | 94.01 143 | 99.26 83 | 98.38 216 | 90.66 170 | 99.09 182 | 98.99 71 | 99.89 67 | 99.58 139 |
|
| test_vis1_n_1920 | | | 95.44 175 | 95.31 167 | 95.82 224 | 98.50 162 | 88.74 325 | 99.98 15 | 97.30 284 | 97.84 16 | 99.85 9 | 99.19 142 | 66.82 363 | 99.97 54 | 98.82 82 | 99.46 111 | 98.76 219 |
|
| BH-w/o | | | 95.71 167 | 95.38 165 | 96.68 202 | 98.49 163 | 92.28 259 | 99.84 123 | 97.50 263 | 92.12 214 | 92.06 246 | 98.79 184 | 84.69 242 | 98.67 207 | 95.29 183 | 99.66 90 | 99.09 201 |
|
| baseline1 | | | 95.78 164 | 94.86 181 | 98.54 109 | 98.47 164 | 98.07 70 | 99.06 260 | 97.99 211 | 92.68 191 | 94.13 222 | 98.62 198 | 93.28 111 | 98.69 205 | 93.79 219 | 85.76 298 | 98.84 215 |
|
| EPMVS | | | 96.53 141 | 96.01 139 | 98.09 136 | 98.43 165 | 96.12 150 | 96.36 365 | 99.43 20 | 93.53 159 | 97.64 150 | 95.04 331 | 94.41 70 | 98.38 230 | 91.13 255 | 98.11 159 | 99.75 103 |
|
| kuosan | | | 93.17 234 | 92.60 235 | 94.86 253 | 98.40 166 | 89.54 318 | 98.44 314 | 98.53 104 | 84.46 352 | 88.49 300 | 97.92 235 | 90.57 173 | 97.05 302 | 83.10 340 | 93.49 244 | 97.99 239 |
|
| sss | | | 97.57 88 | 97.03 102 | 99.18 52 | 98.37 167 | 98.04 72 | 99.73 161 | 99.38 22 | 93.46 161 | 98.76 107 | 99.06 150 | 91.21 156 | 99.89 96 | 96.33 167 | 97.01 185 | 99.62 127 |
|
| testing11 | | | 97.48 91 | 97.27 91 | 98.10 135 | 98.36 168 | 96.02 151 | 99.92 79 | 98.45 120 | 93.45 163 | 98.15 136 | 98.70 189 | 95.48 44 | 99.22 170 | 97.85 133 | 95.05 225 | 99.07 204 |
|
| BH-untuned | | | 95.18 180 | 94.83 182 | 96.22 215 | 98.36 168 | 91.22 285 | 99.80 139 | 97.32 282 | 90.91 252 | 91.08 253 | 98.67 191 | 83.51 250 | 98.54 213 | 94.23 208 | 99.61 98 | 98.92 210 |
|
| testing91 | | | 97.16 108 | 96.90 106 | 97.97 141 | 98.35 170 | 95.67 166 | 99.91 84 | 98.42 145 | 92.91 179 | 97.33 158 | 98.72 187 | 94.81 61 | 99.21 171 | 96.98 158 | 94.63 228 | 99.03 206 |
|
| testing99 | | | 97.17 107 | 96.91 105 | 97.95 142 | 98.35 170 | 95.70 163 | 99.91 84 | 98.43 133 | 92.94 177 | 97.36 157 | 98.72 187 | 94.83 60 | 99.21 171 | 97.00 156 | 94.64 227 | 98.95 209 |
|
| ET-MVSNet_ETH3D | | | 94.37 205 | 93.28 222 | 97.64 163 | 98.30 172 | 97.99 74 | 99.99 4 | 97.61 249 | 94.35 124 | 71.57 390 | 99.45 117 | 96.23 30 | 95.34 359 | 96.91 163 | 85.14 305 | 99.59 133 |
|
| AUN-MVS | | | 93.28 231 | 92.60 235 | 95.34 236 | 98.29 173 | 90.09 309 | 99.31 234 | 98.56 92 | 91.80 226 | 96.35 186 | 98.00 231 | 89.38 190 | 98.28 241 | 92.46 238 | 69.22 384 | 97.64 246 |
|
| FMVSNet3 | | | 92.69 247 | 91.58 256 | 95.99 219 | 98.29 173 | 97.42 100 | 99.26 242 | 97.62 246 | 89.80 277 | 89.68 273 | 95.32 321 | 81.62 264 | 96.27 339 | 87.01 314 | 85.65 299 | 94.29 287 |
|
| PMMVS | | | 96.76 130 | 96.76 114 | 96.76 199 | 98.28 175 | 92.10 263 | 99.91 84 | 97.98 213 | 94.12 135 | 99.53 58 | 99.39 125 | 86.93 220 | 98.73 200 | 96.95 161 | 97.73 166 | 99.45 164 |
|
| hse-mvs2 | | | 94.38 204 | 94.08 198 | 95.31 238 | 98.27 176 | 90.02 310 | 99.29 239 | 98.56 92 | 95.90 76 | 98.77 105 | 98.00 231 | 90.89 168 | 98.26 245 | 97.80 134 | 69.20 385 | 97.64 246 |
|
| PVSNet_0 | | 88.03 19 | 91.80 266 | 90.27 280 | 96.38 212 | 98.27 176 | 90.46 301 | 99.94 69 | 99.61 13 | 93.99 144 | 86.26 335 | 97.39 249 | 71.13 347 | 99.89 96 | 98.77 86 | 67.05 390 | 98.79 218 |
|
| UA-Net | | | 96.54 140 | 95.96 146 | 98.27 126 | 98.23 178 | 95.71 162 | 98.00 337 | 98.45 120 | 93.72 156 | 98.41 123 | 99.27 134 | 88.71 202 | 99.66 146 | 91.19 254 | 97.69 167 | 99.44 166 |
|
| test_cas_vis1_n_1920 | | | 96.59 139 | 96.23 133 | 97.65 162 | 98.22 179 | 94.23 211 | 99.99 4 | 97.25 291 | 97.77 17 | 99.58 54 | 99.08 148 | 77.10 303 | 99.97 54 | 97.64 142 | 99.45 112 | 98.74 221 |
|
| FE-MVS | | | 95.70 169 | 95.01 178 | 97.79 152 | 98.21 180 | 94.57 199 | 95.03 379 | 98.69 68 | 88.90 293 | 97.50 154 | 96.19 287 | 92.60 131 | 99.49 160 | 89.99 279 | 97.94 165 | 99.31 182 |
|
| GG-mvs-BLEND | | | | | 98.54 109 | 98.21 180 | 98.01 73 | 93.87 384 | 98.52 105 | | 97.92 141 | 97.92 235 | 99.02 2 | 97.94 264 | 98.17 114 | 99.58 101 | 99.67 115 |
|
| mvs_anonymous | | | 95.65 171 | 95.03 177 | 97.53 170 | 98.19 182 | 95.74 160 | 99.33 231 | 97.49 264 | 90.87 253 | 90.47 260 | 97.10 256 | 88.23 204 | 97.16 293 | 95.92 174 | 97.66 169 | 99.68 113 |
|
| MVS_Test | | | 96.46 143 | 95.74 155 | 98.61 100 | 98.18 183 | 97.23 104 | 99.31 234 | 97.15 300 | 91.07 249 | 98.84 100 | 97.05 260 | 88.17 205 | 98.97 185 | 94.39 203 | 97.50 171 | 99.61 130 |
|
| BH-RMVSNet | | | 95.18 180 | 94.31 193 | 97.80 150 | 98.17 184 | 95.23 184 | 99.76 150 | 97.53 259 | 92.52 202 | 94.27 220 | 99.25 138 | 76.84 308 | 98.80 193 | 90.89 263 | 99.54 103 | 99.35 177 |
|
| dongtai | | | 91.55 272 | 91.13 265 | 92.82 321 | 98.16 185 | 86.35 347 | 99.47 212 | 98.51 108 | 83.24 360 | 85.07 344 | 97.56 243 | 90.33 178 | 94.94 365 | 76.09 375 | 91.73 252 | 97.18 253 |
|
| RPSCF | | | 91.80 266 | 92.79 231 | 88.83 355 | 98.15 186 | 69.87 393 | 98.11 333 | 96.60 346 | 83.93 355 | 94.33 218 | 99.27 134 | 79.60 286 | 99.46 163 | 91.99 244 | 93.16 249 | 97.18 253 |
|
| ETV-MVS | | | 97.92 67 | 97.80 71 | 98.25 127 | 98.14 187 | 96.48 129 | 99.98 15 | 97.63 244 | 95.61 84 | 99.29 81 | 99.46 116 | 92.55 133 | 98.82 192 | 99.02 69 | 98.54 145 | 99.46 162 |
|
| IS-MVSNet | | | 96.29 153 | 95.90 151 | 97.45 174 | 98.13 188 | 94.80 196 | 99.08 255 | 97.61 249 | 92.02 219 | 95.54 204 | 98.96 163 | 90.64 172 | 98.08 253 | 93.73 222 | 97.41 175 | 99.47 161 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 87 | 98.12 189 | 96.41 132 | 99.99 4 | 98.83 59 | 98.22 7 | 99.67 39 | 99.64 99 | 91.11 161 | 99.94 78 | 99.67 36 | 99.62 94 | 99.98 48 |
|
| ab-mvs | | | 94.69 193 | 93.42 216 | 98.51 112 | 98.07 190 | 96.26 139 | 96.49 363 | 98.68 70 | 90.31 268 | 94.54 213 | 97.00 262 | 76.30 315 | 99.71 138 | 95.98 173 | 93.38 247 | 99.56 143 |
|
| XVG-OURS-SEG-HR | | | 94.79 189 | 94.70 186 | 95.08 243 | 98.05 191 | 89.19 320 | 99.08 255 | 97.54 257 | 93.66 157 | 94.87 211 | 99.58 106 | 78.78 294 | 99.79 123 | 97.31 148 | 93.40 246 | 96.25 260 |
|
| EIA-MVS | | | 97.53 89 | 97.46 81 | 97.76 157 | 98.04 192 | 94.84 194 | 99.98 15 | 97.61 249 | 94.41 122 | 97.90 142 | 99.59 104 | 92.40 138 | 98.87 189 | 98.04 122 | 99.13 129 | 99.59 133 |
|
| XVG-OURS | | | 94.82 187 | 94.74 185 | 95.06 244 | 98.00 193 | 89.19 320 | 99.08 255 | 97.55 255 | 94.10 136 | 94.71 212 | 99.62 102 | 80.51 278 | 99.74 134 | 96.04 172 | 93.06 251 | 96.25 260 |
|
| mvsmamba | | | 96.94 120 | 96.73 116 | 97.55 168 | 97.99 194 | 94.37 207 | 99.62 185 | 97.70 238 | 93.13 172 | 98.42 122 | 97.92 235 | 88.02 206 | 98.75 199 | 98.78 85 | 99.01 134 | 99.52 153 |
|
| dp | | | 95.05 183 | 94.43 189 | 96.91 194 | 97.99 194 | 92.73 249 | 96.29 368 | 97.98 213 | 89.70 278 | 95.93 195 | 94.67 344 | 93.83 98 | 98.45 219 | 86.91 317 | 96.53 192 | 99.54 148 |
|
| tpmrst | | | 96.27 155 | 95.98 142 | 97.13 188 | 97.96 196 | 93.15 238 | 96.34 366 | 98.17 193 | 92.07 215 | 98.71 110 | 95.12 329 | 93.91 93 | 98.73 200 | 94.91 191 | 96.62 190 | 99.50 158 |
|
| TR-MVS | | | 94.54 198 | 93.56 212 | 97.49 173 | 97.96 196 | 94.34 208 | 98.71 298 | 97.51 262 | 90.30 269 | 94.51 215 | 98.69 190 | 75.56 321 | 98.77 196 | 92.82 236 | 95.99 202 | 99.35 177 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 150 | 95.98 142 | 97.35 183 | 97.93 198 | 94.82 195 | 99.47 212 | 98.15 200 | 91.83 223 | 95.09 209 | 99.11 146 | 91.37 155 | 97.47 279 | 93.47 225 | 97.43 172 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 157 | | 97.90 199 | 94.15 213 | 95.98 374 | 98.44 125 | 93.12 173 | 97.98 139 | 95.74 298 | 95.10 50 | 98.58 210 | 90.02 278 | 96.92 187 | |
|
| Fast-Effi-MVS+ | | | 95.02 184 | 94.19 195 | 97.52 171 | 97.88 200 | 94.55 200 | 99.97 28 | 97.08 308 | 88.85 295 | 94.47 216 | 97.96 234 | 84.59 243 | 98.41 222 | 89.84 281 | 97.10 180 | 99.59 133 |
|
| ADS-MVSNet2 | | | 93.80 218 | 93.88 204 | 93.55 304 | 97.87 201 | 85.94 350 | 94.24 380 | 96.84 332 | 90.07 271 | 96.43 182 | 94.48 349 | 90.29 180 | 95.37 358 | 87.44 304 | 97.23 177 | 99.36 174 |
|
| ADS-MVSNet | | | 94.79 189 | 94.02 199 | 97.11 190 | 97.87 201 | 93.79 221 | 94.24 380 | 98.16 197 | 90.07 271 | 96.43 182 | 94.48 349 | 90.29 180 | 98.19 248 | 87.44 304 | 97.23 177 | 99.36 174 |
|
| Effi-MVS+ | | | 96.30 152 | 95.69 157 | 98.16 130 | 97.85 203 | 96.26 139 | 97.41 346 | 97.21 293 | 90.37 264 | 98.65 113 | 98.58 202 | 86.61 224 | 98.70 204 | 97.11 153 | 97.37 176 | 99.52 153 |
|
| PatchmatchNet |  | | 95.94 160 | 95.45 162 | 97.39 179 | 97.83 204 | 94.41 204 | 96.05 372 | 98.40 154 | 92.86 180 | 97.09 163 | 95.28 326 | 94.21 85 | 98.07 255 | 89.26 285 | 98.11 159 | 99.70 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 196 | 93.61 207 | 97.74 159 | 97.82 205 | 96.26 139 | 99.96 35 | 97.78 234 | 85.76 337 | 94.00 223 | 97.54 244 | 76.95 307 | 99.21 171 | 97.23 150 | 95.43 218 | 97.76 245 |
|
| 1112_ss | | | 96.01 159 | 95.20 171 | 98.42 119 | 97.80 206 | 96.41 132 | 99.65 178 | 96.66 343 | 92.71 188 | 92.88 236 | 99.40 123 | 92.16 143 | 99.30 165 | 91.92 246 | 93.66 242 | 99.55 144 |
|
| Test_1112_low_res | | | 95.72 165 | 94.83 182 | 98.42 119 | 97.79 207 | 96.41 132 | 99.65 178 | 96.65 344 | 92.70 189 | 92.86 237 | 96.13 290 | 92.15 144 | 99.30 165 | 91.88 247 | 93.64 243 | 99.55 144 |
|
| Effi-MVS+-dtu | | | 94.53 200 | 95.30 168 | 92.22 327 | 97.77 208 | 82.54 367 | 99.59 189 | 97.06 310 | 94.92 101 | 95.29 207 | 95.37 319 | 85.81 230 | 97.89 265 | 94.80 194 | 97.07 181 | 96.23 262 |
|
| tpm cat1 | | | 93.51 227 | 92.52 241 | 96.47 206 | 97.77 208 | 91.47 283 | 96.13 370 | 98.06 206 | 80.98 372 | 92.91 235 | 93.78 357 | 89.66 185 | 98.87 189 | 87.03 313 | 96.39 196 | 99.09 201 |
|
| FA-MVS(test-final) | | | 95.86 161 | 95.09 175 | 98.15 133 | 97.74 210 | 95.62 168 | 96.31 367 | 98.17 193 | 91.42 239 | 96.26 187 | 96.13 290 | 90.56 174 | 99.47 162 | 92.18 242 | 97.07 181 | 99.35 177 |
|
| xiu_mvs_v1_base_debu | | | 97.43 92 | 97.06 98 | 98.55 106 | 97.74 210 | 98.14 67 | 99.31 234 | 97.86 227 | 96.43 62 | 99.62 47 | 99.69 87 | 85.56 232 | 99.68 142 | 99.05 61 | 98.31 151 | 97.83 241 |
|
| xiu_mvs_v1_base | | | 97.43 92 | 97.06 98 | 98.55 106 | 97.74 210 | 98.14 67 | 99.31 234 | 97.86 227 | 96.43 62 | 99.62 47 | 99.69 87 | 85.56 232 | 99.68 142 | 99.05 61 | 98.31 151 | 97.83 241 |
|
| xiu_mvs_v1_base_debi | | | 97.43 92 | 97.06 98 | 98.55 106 | 97.74 210 | 98.14 67 | 99.31 234 | 97.86 227 | 96.43 62 | 99.62 47 | 99.69 87 | 85.56 232 | 99.68 142 | 99.05 61 | 98.31 151 | 97.83 241 |
|
| EPP-MVSNet | | | 96.69 135 | 96.60 122 | 96.96 193 | 97.74 210 | 93.05 241 | 99.37 227 | 98.56 92 | 88.75 296 | 95.83 199 | 99.01 154 | 96.01 31 | 98.56 211 | 96.92 162 | 97.20 179 | 99.25 190 |
|
| gg-mvs-nofinetune | | | 93.51 227 | 91.86 253 | 98.47 114 | 97.72 215 | 97.96 77 | 92.62 388 | 98.51 108 | 74.70 390 | 97.33 158 | 69.59 403 | 98.91 3 | 97.79 268 | 97.77 139 | 99.56 102 | 99.67 115 |
|
| IB-MVS | | 92.85 6 | 94.99 185 | 93.94 202 | 98.16 130 | 97.72 215 | 95.69 165 | 99.99 4 | 98.81 60 | 94.28 130 | 92.70 238 | 96.90 264 | 95.08 51 | 99.17 177 | 96.07 171 | 73.88 374 | 99.60 132 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 97 | 97.02 103 | 98.59 103 | 97.71 217 | 97.52 93 | 99.97 28 | 98.54 101 | 91.83 223 | 97.45 155 | 99.04 151 | 97.50 7 | 99.10 181 | 94.75 196 | 96.37 197 | 99.16 195 |
|
| Syy-MVS | | | 90.00 306 | 90.63 272 | 88.11 362 | 97.68 218 | 74.66 389 | 99.71 167 | 98.35 167 | 90.79 256 | 92.10 244 | 98.67 191 | 79.10 292 | 93.09 382 | 63.35 396 | 95.95 205 | 96.59 258 |
|
| myMVS_eth3d | | | 94.46 202 | 94.76 184 | 93.55 304 | 97.68 218 | 90.97 287 | 99.71 167 | 98.35 167 | 90.79 256 | 92.10 244 | 98.67 191 | 92.46 137 | 93.09 382 | 87.13 310 | 95.95 205 | 96.59 258 |
|
| test_fmvs1_n | | | 94.25 210 | 94.36 190 | 93.92 291 | 97.68 218 | 83.70 362 | 99.90 90 | 96.57 347 | 97.40 28 | 99.67 39 | 98.88 174 | 61.82 379 | 99.92 88 | 98.23 112 | 99.13 129 | 98.14 237 |
|
| diffmvs |  | | 97.00 117 | 96.64 120 | 98.09 136 | 97.64 221 | 96.17 147 | 99.81 135 | 97.19 294 | 94.67 111 | 98.95 95 | 99.28 131 | 86.43 225 | 98.76 197 | 98.37 107 | 97.42 174 | 99.33 180 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 165 | 95.15 173 | 97.45 174 | 97.62 222 | 94.28 209 | 99.28 240 | 98.24 185 | 94.27 132 | 96.84 171 | 98.94 170 | 79.39 287 | 98.76 197 | 93.25 227 | 98.49 146 | 99.30 184 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 110 | 96.72 117 | 98.22 128 | 97.60 223 | 96.70 123 | 99.92 79 | 98.54 101 | 91.11 247 | 97.07 165 | 98.97 161 | 97.47 10 | 99.03 183 | 93.73 222 | 96.09 200 | 98.92 210 |
|
| miper_ehance_all_eth | | | 93.16 235 | 92.60 235 | 94.82 254 | 97.57 224 | 93.56 229 | 99.50 207 | 97.07 309 | 88.75 296 | 88.85 295 | 95.52 309 | 90.97 164 | 96.74 320 | 90.77 265 | 84.45 310 | 94.17 295 |
|
| testing3 | | | 93.92 213 | 94.23 194 | 92.99 318 | 97.54 225 | 90.23 305 | 99.99 4 | 99.16 30 | 90.57 260 | 91.33 252 | 98.63 197 | 92.99 119 | 92.52 386 | 82.46 344 | 95.39 219 | 96.22 263 |
|
| LCM-MVSNet-Re | | | 92.31 255 | 92.60 235 | 91.43 334 | 97.53 226 | 79.27 384 | 99.02 268 | 91.83 399 | 92.07 215 | 80.31 365 | 94.38 352 | 83.50 251 | 95.48 356 | 97.22 151 | 97.58 170 | 99.54 148 |
|
| GBi-Net | | | 90.88 283 | 89.82 289 | 94.08 283 | 97.53 226 | 91.97 264 | 98.43 315 | 96.95 321 | 87.05 320 | 89.68 273 | 94.72 340 | 71.34 344 | 96.11 344 | 87.01 314 | 85.65 299 | 94.17 295 |
|
| test1 | | | 90.88 283 | 89.82 289 | 94.08 283 | 97.53 226 | 91.97 264 | 98.43 315 | 96.95 321 | 87.05 320 | 89.68 273 | 94.72 340 | 71.34 344 | 96.11 344 | 87.01 314 | 85.65 299 | 94.17 295 |
|
| FMVSNet2 | | | 91.02 280 | 89.56 294 | 95.41 234 | 97.53 226 | 95.74 160 | 98.98 270 | 97.41 273 | 87.05 320 | 88.43 304 | 95.00 334 | 71.34 344 | 96.24 341 | 85.12 327 | 85.21 304 | 94.25 290 |
|
| tttt0517 | | | 96.85 124 | 96.49 126 | 97.92 145 | 97.48 230 | 95.89 155 | 99.85 118 | 98.54 101 | 90.72 259 | 96.63 176 | 98.93 172 | 97.47 10 | 99.02 184 | 93.03 234 | 95.76 211 | 98.85 214 |
|
| casdiffmvs_mvg |  | | 96.43 144 | 95.94 148 | 97.89 149 | 97.44 231 | 95.47 172 | 99.86 115 | 97.29 287 | 93.35 164 | 96.03 191 | 99.19 142 | 85.39 235 | 98.72 202 | 97.89 132 | 97.04 183 | 99.49 160 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 99 | 97.24 92 | 97.80 150 | 97.41 232 | 95.64 167 | 99.99 4 | 97.06 310 | 94.59 112 | 99.63 44 | 99.32 130 | 89.20 196 | 98.14 250 | 98.76 87 | 99.23 125 | 99.62 127 |
|
| c3_l | | | 92.53 250 | 91.87 252 | 94.52 266 | 97.40 233 | 92.99 243 | 99.40 220 | 96.93 326 | 87.86 310 | 88.69 298 | 95.44 313 | 89.95 183 | 96.44 332 | 90.45 271 | 80.69 341 | 94.14 304 |
|
| fmvsm_s_conf0.1_n | | | 97.30 101 | 97.21 94 | 97.60 167 | 97.38 234 | 94.40 206 | 99.90 90 | 98.64 76 | 96.47 61 | 99.51 62 | 99.65 98 | 84.99 240 | 99.93 85 | 99.22 55 | 99.09 131 | 98.46 228 |
|
| CDS-MVSNet | | | 96.34 149 | 96.07 137 | 97.13 188 | 97.37 235 | 94.96 191 | 99.53 202 | 97.91 222 | 91.55 231 | 95.37 206 | 98.32 220 | 95.05 53 | 97.13 296 | 93.80 218 | 95.75 212 | 99.30 184 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 132 | 96.26 132 | 98.16 130 | 97.36 236 | 96.48 129 | 99.96 35 | 98.29 180 | 91.93 220 | 95.77 200 | 98.07 229 | 95.54 41 | 98.29 239 | 90.55 269 | 98.89 136 | 99.70 110 |
|
| miper_lstm_enhance | | | 91.81 263 | 91.39 262 | 93.06 317 | 97.34 237 | 89.18 322 | 99.38 225 | 96.79 337 | 86.70 327 | 87.47 317 | 95.22 327 | 90.00 182 | 95.86 353 | 88.26 295 | 81.37 331 | 94.15 301 |
|
| baseline | | | 96.43 144 | 95.98 142 | 97.76 157 | 97.34 237 | 95.17 188 | 99.51 205 | 97.17 297 | 93.92 149 | 96.90 169 | 99.28 131 | 85.37 236 | 98.64 208 | 97.50 145 | 96.86 189 | 99.46 162 |
|
| cl____ | | | 92.31 255 | 91.58 256 | 94.52 266 | 97.33 239 | 92.77 245 | 99.57 195 | 96.78 338 | 86.97 324 | 87.56 315 | 95.51 310 | 89.43 189 | 96.62 325 | 88.60 290 | 82.44 323 | 94.16 300 |
|
| DIV-MVS_self_test | | | 92.32 254 | 91.60 255 | 94.47 270 | 97.31 240 | 92.74 247 | 99.58 191 | 96.75 339 | 86.99 323 | 87.64 313 | 95.54 307 | 89.55 188 | 96.50 329 | 88.58 291 | 82.44 323 | 94.17 295 |
|
| casdiffmvs |  | | 96.42 146 | 95.97 145 | 97.77 155 | 97.30 241 | 94.98 190 | 99.84 123 | 97.09 307 | 93.75 155 | 96.58 178 | 99.26 137 | 85.07 238 | 98.78 195 | 97.77 139 | 97.04 183 | 99.54 148 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 207 | 93.48 214 | 96.99 192 | 97.29 242 | 93.54 230 | 99.96 35 | 96.72 341 | 88.35 305 | 93.43 227 | 98.94 170 | 82.05 258 | 98.05 256 | 88.12 299 | 96.48 195 | 99.37 173 |
|
| eth_miper_zixun_eth | | | 92.41 253 | 91.93 250 | 93.84 295 | 97.28 243 | 90.68 295 | 98.83 288 | 96.97 320 | 88.57 301 | 89.19 290 | 95.73 300 | 89.24 195 | 96.69 323 | 89.97 280 | 81.55 329 | 94.15 301 |
|
| MVSFormer | | | 96.94 120 | 96.60 122 | 97.95 142 | 97.28 243 | 97.70 86 | 99.55 199 | 97.27 289 | 91.17 244 | 99.43 68 | 99.54 110 | 90.92 165 | 96.89 313 | 94.67 199 | 99.62 94 | 99.25 190 |
|
| lupinMVS | | | 97.85 70 | 97.60 77 | 98.62 99 | 97.28 243 | 97.70 86 | 99.99 4 | 97.55 255 | 95.50 89 | 99.43 68 | 99.67 94 | 90.92 165 | 98.71 203 | 98.40 104 | 99.62 94 | 99.45 164 |
|
| SCA | | | 94.69 193 | 93.81 206 | 97.33 184 | 97.10 246 | 94.44 201 | 98.86 285 | 98.32 174 | 93.30 167 | 96.17 190 | 95.59 305 | 76.48 313 | 97.95 262 | 91.06 257 | 97.43 172 | 99.59 133 |
|
| TAMVS | | | 95.85 162 | 95.58 160 | 96.65 204 | 97.07 247 | 93.50 231 | 99.17 249 | 97.82 231 | 91.39 241 | 95.02 210 | 98.01 230 | 92.20 142 | 97.30 286 | 93.75 221 | 95.83 209 | 99.14 198 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 222 | 93.86 205 | 93.29 309 | 97.06 248 | 86.16 348 | 99.80 139 | 96.83 333 | 92.66 192 | 92.58 239 | 97.83 240 | 81.39 265 | 97.67 273 | 89.75 282 | 96.87 188 | 96.05 265 |
|
| CostFormer | | | 96.10 156 | 95.88 152 | 96.78 198 | 97.03 249 | 92.55 255 | 97.08 354 | 97.83 230 | 90.04 273 | 98.72 109 | 94.89 338 | 95.01 55 | 98.29 239 | 96.54 166 | 95.77 210 | 99.50 158 |
|
| test_fmvsmvis_n_1920 | | | 97.67 86 | 97.59 79 | 97.91 147 | 97.02 250 | 95.34 178 | 99.95 53 | 98.45 120 | 97.87 15 | 97.02 166 | 99.59 104 | 89.64 186 | 99.98 44 | 99.41 48 | 99.34 120 | 98.42 230 |
|
| test-LLR | | | 96.47 142 | 96.04 138 | 97.78 153 | 97.02 250 | 95.44 173 | 99.96 35 | 98.21 188 | 94.07 138 | 95.55 202 | 96.38 281 | 93.90 94 | 98.27 243 | 90.42 272 | 98.83 140 | 99.64 121 |
|
| test-mter | | | 96.39 147 | 95.93 149 | 97.78 153 | 97.02 250 | 95.44 173 | 99.96 35 | 98.21 188 | 91.81 225 | 95.55 202 | 96.38 281 | 95.17 48 | 98.27 243 | 90.42 272 | 98.83 140 | 99.64 121 |
|
| gm-plane-assit | | | | | | 96.97 253 | 93.76 223 | | | 91.47 235 | | 98.96 163 | | 98.79 194 | 94.92 189 | | |
|
| WB-MVSnew | | | 92.90 241 | 92.77 232 | 93.26 311 | 96.95 254 | 93.63 227 | 99.71 167 | 98.16 197 | 91.49 232 | 94.28 219 | 98.14 226 | 81.33 267 | 96.48 330 | 79.47 359 | 95.46 216 | 89.68 383 |
|
| QAPM | | | 95.40 176 | 94.17 196 | 99.10 67 | 96.92 255 | 97.71 84 | 99.40 220 | 98.68 70 | 89.31 281 | 88.94 294 | 98.89 173 | 82.48 256 | 99.96 62 | 93.12 233 | 99.83 75 | 99.62 127 |
|
| KD-MVS_2432*1600 | | | 88.00 325 | 86.10 329 | 93.70 300 | 96.91 256 | 94.04 215 | 97.17 351 | 97.12 303 | 84.93 347 | 81.96 356 | 92.41 368 | 92.48 135 | 94.51 370 | 79.23 360 | 52.68 402 | 92.56 357 |
|
| miper_refine_blended | | | 88.00 325 | 86.10 329 | 93.70 300 | 96.91 256 | 94.04 215 | 97.17 351 | 97.12 303 | 84.93 347 | 81.96 356 | 92.41 368 | 92.48 135 | 94.51 370 | 79.23 360 | 52.68 402 | 92.56 357 |
|
| tpm2 | | | 95.47 174 | 95.18 172 | 96.35 213 | 96.91 256 | 91.70 277 | 96.96 357 | 97.93 218 | 88.04 309 | 98.44 121 | 95.40 315 | 93.32 108 | 97.97 259 | 94.00 210 | 95.61 214 | 99.38 171 |
|
| FMVSNet5 | | | 88.32 322 | 87.47 324 | 90.88 337 | 96.90 259 | 88.39 333 | 97.28 348 | 95.68 366 | 82.60 366 | 84.67 345 | 92.40 370 | 79.83 284 | 91.16 391 | 76.39 374 | 81.51 330 | 93.09 349 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 151 | 95.24 169 | 99.52 28 | 96.88 260 | 98.64 54 | 99.72 164 | 98.24 185 | 95.27 94 | 88.42 306 | 98.98 159 | 82.76 255 | 99.94 78 | 97.10 154 | 99.83 75 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 249 | 91.50 259 | 96.10 218 | 96.85 261 | 90.49 300 | 91.50 393 | 97.19 294 | 82.76 365 | 90.23 261 | 95.59 305 | 95.02 54 | 98.00 258 | 77.41 369 | 96.98 186 | 99.82 92 |
|
| MVS | | | 96.60 138 | 95.56 161 | 99.72 13 | 96.85 261 | 99.22 20 | 98.31 321 | 98.94 41 | 91.57 230 | 90.90 256 | 99.61 103 | 86.66 223 | 99.96 62 | 97.36 147 | 99.88 71 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 154 | 95.34 166 | 99.08 68 | 96.82 263 | 97.47 98 | 99.45 217 | 98.81 60 | 95.52 88 | 89.39 281 | 99.00 156 | 81.97 259 | 99.95 70 | 97.27 149 | 99.83 75 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 221 | 93.40 219 | 94.74 255 | 96.80 264 | 92.69 250 | 99.06 260 | 97.67 241 | 88.96 290 | 91.39 250 | 99.02 152 | 88.75 201 | 97.30 286 | 91.07 256 | 87.85 285 | 94.22 291 |
|
| CVMVSNet | | | 94.68 195 | 94.94 180 | 93.89 294 | 96.80 264 | 86.92 345 | 99.06 260 | 98.98 38 | 94.45 116 | 94.23 221 | 99.02 152 | 85.60 231 | 95.31 360 | 90.91 262 | 95.39 219 | 99.43 167 |
|
| IterMVS-LS | | | 92.69 247 | 92.11 246 | 94.43 274 | 96.80 264 | 92.74 247 | 99.45 217 | 96.89 329 | 88.98 288 | 89.65 276 | 95.38 318 | 88.77 200 | 96.34 336 | 90.98 260 | 82.04 326 | 94.22 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 282 | 90.17 284 | 93.12 314 | 96.78 267 | 90.42 303 | 98.89 279 | 97.05 312 | 89.03 285 | 86.49 330 | 95.42 314 | 76.59 311 | 95.02 362 | 87.22 309 | 84.09 313 | 93.93 321 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 125 | 95.96 146 | 99.48 34 | 96.74 268 | 98.52 58 | 98.31 321 | 98.86 53 | 95.82 78 | 89.91 267 | 98.98 159 | 87.49 211 | 99.96 62 | 97.80 134 | 99.73 86 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 285 | 90.16 285 | 92.93 319 | 96.72 269 | 89.96 311 | 98.89 279 | 96.99 316 | 88.95 291 | 86.63 327 | 95.67 301 | 76.48 313 | 95.00 363 | 87.04 312 | 84.04 316 | 93.84 328 |
|
| MVS-HIRNet | | | 86.22 332 | 83.19 345 | 95.31 238 | 96.71 270 | 90.29 304 | 92.12 390 | 97.33 281 | 62.85 397 | 86.82 324 | 70.37 402 | 69.37 352 | 97.49 278 | 75.12 377 | 97.99 164 | 98.15 235 |
|
| VDDNet | | | 93.12 236 | 91.91 251 | 96.76 199 | 96.67 271 | 92.65 253 | 98.69 301 | 98.21 188 | 82.81 364 | 97.75 149 | 99.28 131 | 61.57 380 | 99.48 161 | 98.09 120 | 94.09 237 | 98.15 235 |
|
| dmvs_re | | | 93.20 233 | 93.15 224 | 93.34 307 | 96.54 272 | 83.81 361 | 98.71 298 | 98.51 108 | 91.39 241 | 92.37 242 | 98.56 204 | 78.66 296 | 97.83 267 | 93.89 212 | 89.74 257 | 98.38 231 |
|
| MIMVSNet | | | 90.30 298 | 88.67 312 | 95.17 242 | 96.45 273 | 91.64 279 | 92.39 389 | 97.15 300 | 85.99 334 | 90.50 259 | 93.19 364 | 66.95 362 | 94.86 367 | 82.01 348 | 93.43 245 | 99.01 208 |
|
| CR-MVSNet | | | 93.45 230 | 92.62 234 | 95.94 220 | 96.29 274 | 92.66 251 | 92.01 391 | 96.23 355 | 92.62 194 | 96.94 167 | 93.31 362 | 91.04 162 | 96.03 349 | 79.23 360 | 95.96 203 | 99.13 199 |
|
| RPMNet | | | 89.76 310 | 87.28 325 | 97.19 187 | 96.29 274 | 92.66 251 | 92.01 391 | 98.31 176 | 70.19 396 | 96.94 167 | 85.87 395 | 87.25 215 | 99.78 125 | 62.69 397 | 95.96 203 | 99.13 199 |
|
| tt0805 | | | 91.28 275 | 90.18 283 | 94.60 261 | 96.26 276 | 87.55 339 | 98.39 319 | 98.72 65 | 89.00 287 | 89.22 287 | 98.47 212 | 62.98 376 | 98.96 186 | 90.57 268 | 88.00 284 | 97.28 252 |
|
| Patchmtry | | | 89.70 311 | 88.49 314 | 93.33 308 | 96.24 277 | 89.94 314 | 91.37 394 | 96.23 355 | 78.22 380 | 87.69 312 | 93.31 362 | 91.04 162 | 96.03 349 | 80.18 358 | 82.10 325 | 94.02 311 |
|
| test_vis1_rt | | | 86.87 330 | 86.05 332 | 89.34 351 | 96.12 278 | 78.07 385 | 99.87 104 | 83.54 410 | 92.03 218 | 78.21 375 | 89.51 381 | 45.80 396 | 99.91 89 | 96.25 169 | 93.11 250 | 90.03 380 |
|
| JIA-IIPM | | | 91.76 269 | 90.70 270 | 94.94 248 | 96.11 279 | 87.51 340 | 93.16 387 | 98.13 202 | 75.79 386 | 97.58 151 | 77.68 400 | 92.84 124 | 97.97 259 | 88.47 294 | 96.54 191 | 99.33 180 |
|
| OpenMVS |  | 90.15 15 | 94.77 191 | 93.59 210 | 98.33 123 | 96.07 280 | 97.48 97 | 99.56 197 | 98.57 89 | 90.46 262 | 86.51 329 | 98.95 168 | 78.57 297 | 99.94 78 | 93.86 213 | 99.74 85 | 97.57 250 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 61 | 96.05 281 | 98.96 26 | 99.90 90 | 99.35 24 | 96.68 55 | 98.35 127 | 99.66 96 | 96.45 28 | 98.51 214 | 99.45 45 | 99.89 67 | 99.96 64 |
|
| CLD-MVS | | | 94.06 212 | 93.90 203 | 94.55 265 | 96.02 282 | 90.69 294 | 99.98 15 | 97.72 237 | 96.62 58 | 91.05 255 | 98.85 182 | 77.21 302 | 98.47 215 | 98.11 118 | 89.51 263 | 94.48 272 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 295 | 88.75 311 | 95.25 240 | 95.99 283 | 90.16 307 | 91.22 395 | 97.54 257 | 76.80 382 | 97.26 160 | 86.01 394 | 91.88 149 | 96.07 348 | 66.16 393 | 95.91 207 | 99.51 156 |
|
| ACMH+ | | 89.98 16 | 90.35 296 | 89.54 295 | 92.78 323 | 95.99 283 | 86.12 349 | 98.81 290 | 97.18 296 | 89.38 280 | 83.14 352 | 97.76 241 | 68.42 357 | 98.43 220 | 89.11 286 | 86.05 297 | 93.78 331 |
|
| DeepMVS_CX |  | | | | 82.92 372 | 95.98 285 | 58.66 403 | | 96.01 360 | 92.72 187 | 78.34 374 | 95.51 310 | 58.29 385 | 98.08 253 | 82.57 343 | 85.29 302 | 92.03 365 |
|
| ACMP | | 92.05 9 | 92.74 245 | 92.42 243 | 93.73 296 | 95.91 286 | 88.72 326 | 99.81 135 | 97.53 259 | 94.13 134 | 87.00 323 | 98.23 224 | 74.07 334 | 98.47 215 | 96.22 170 | 88.86 270 | 93.99 316 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 225 | 93.03 226 | 95.35 235 | 95.86 287 | 86.94 344 | 99.87 104 | 96.36 353 | 96.85 46 | 99.54 57 | 98.79 184 | 52.41 392 | 99.83 118 | 98.64 95 | 98.97 135 | 99.29 186 |
|
| HQP-NCC | | | | | | 95.78 288 | | 99.87 104 | | 96.82 48 | 93.37 228 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 288 | | 99.87 104 | | 96.82 48 | 93.37 228 | | | | | | |
|
| HQP-MVS | | | 94.61 197 | 94.50 188 | 94.92 249 | 95.78 288 | 91.85 269 | 99.87 104 | 97.89 223 | 96.82 48 | 93.37 228 | 98.65 194 | 80.65 276 | 98.39 226 | 97.92 129 | 89.60 258 | 94.53 268 |
|
| NP-MVS | | | | | | 95.77 291 | 91.79 271 | | | | | 98.65 194 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 82 | 97.44 84 | 98.64 98 | 95.76 292 | 96.20 144 | 99.94 69 | 98.05 208 | 98.17 9 | 98.89 99 | 99.42 118 | 87.65 209 | 99.90 91 | 99.50 41 | 99.60 100 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 292 | 91.72 276 | | | | | | 80.47 280 | | | | |
|
| ACMM | | 91.95 10 | 92.88 242 | 92.52 241 | 93.98 290 | 95.75 294 | 89.08 323 | 99.77 145 | 97.52 261 | 93.00 175 | 89.95 266 | 97.99 233 | 76.17 317 | 98.46 218 | 93.63 224 | 88.87 269 | 94.39 280 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 215 | 92.84 228 | 96.80 197 | 95.73 295 | 93.57 228 | 99.88 101 | 97.24 292 | 92.57 199 | 92.92 234 | 96.66 273 | 78.73 295 | 97.67 273 | 87.75 302 | 94.06 238 | 99.17 194 |
|
| plane_prior1 | | | | | | 95.73 295 | | | | | | | | | | | |
|
| jason | | | 97.24 104 | 96.86 110 | 98.38 122 | 95.73 295 | 97.32 102 | 99.97 28 | 97.40 274 | 95.34 92 | 98.60 116 | 99.54 110 | 87.70 208 | 98.56 211 | 97.94 128 | 99.47 109 | 99.25 190 |
| jason: jason. |
| HQP_MVS | | | 94.49 201 | 94.36 190 | 94.87 250 | 95.71 298 | 91.74 273 | 99.84 123 | 97.87 225 | 96.38 65 | 93.01 232 | 98.59 199 | 80.47 280 | 98.37 232 | 97.79 137 | 89.55 261 | 94.52 270 |
|
| plane_prior7 | | | | | | 95.71 298 | 91.59 281 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 325 | 95.69 300 | 85.14 354 | | 95.71 365 | 92.81 183 | 89.33 284 | 98.11 227 | 70.23 350 | 98.42 221 | 85.91 323 | 88.16 282 | 93.59 339 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 112 | 96.90 106 | 97.63 165 | 95.65 301 | 94.21 212 | 99.83 130 | 98.50 114 | 96.27 70 | 99.65 41 | 99.64 99 | 84.72 241 | 99.93 85 | 99.04 64 | 98.84 139 | 98.74 221 |
|
| ACMH | | 89.72 17 | 90.64 289 | 89.63 292 | 93.66 302 | 95.64 302 | 88.64 329 | 98.55 307 | 97.45 267 | 89.03 285 | 81.62 359 | 97.61 242 | 69.75 351 | 98.41 222 | 89.37 283 | 87.62 289 | 93.92 322 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 134 | 96.49 126 | 97.37 180 | 95.63 303 | 95.96 153 | 99.74 156 | 98.88 51 | 92.94 177 | 91.61 248 | 98.97 161 | 97.72 5 | 98.62 209 | 94.83 193 | 98.08 162 | 97.53 251 |
|
| FMVSNet1 | | | 88.50 321 | 86.64 327 | 94.08 283 | 95.62 304 | 91.97 264 | 98.43 315 | 96.95 321 | 83.00 362 | 86.08 337 | 94.72 340 | 59.09 384 | 96.11 344 | 81.82 350 | 84.07 314 | 94.17 295 |
|
| LPG-MVS_test | | | 92.96 239 | 92.71 233 | 93.71 298 | 95.43 305 | 88.67 327 | 99.75 153 | 97.62 246 | 92.81 183 | 90.05 262 | 98.49 208 | 75.24 324 | 98.40 224 | 95.84 176 | 89.12 265 | 94.07 308 |
|
| LGP-MVS_train | | | | | 93.71 298 | 95.43 305 | 88.67 327 | | 97.62 246 | 92.81 183 | 90.05 262 | 98.49 208 | 75.24 324 | 98.40 224 | 95.84 176 | 89.12 265 | 94.07 308 |
|
| tpm | | | 93.70 223 | 93.41 218 | 94.58 263 | 95.36 307 | 87.41 341 | 97.01 355 | 96.90 328 | 90.85 254 | 96.72 175 | 94.14 354 | 90.40 177 | 96.84 316 | 90.75 266 | 88.54 277 | 99.51 156 |
|
| D2MVS | | | 92.76 244 | 92.59 239 | 93.27 310 | 95.13 308 | 89.54 318 | 99.69 172 | 99.38 22 | 92.26 211 | 87.59 314 | 94.61 346 | 85.05 239 | 97.79 268 | 91.59 250 | 88.01 283 | 92.47 360 |
|
| VPA-MVSNet | | | 92.70 246 | 91.55 258 | 96.16 216 | 95.09 309 | 96.20 144 | 98.88 281 | 99.00 36 | 91.02 251 | 91.82 247 | 95.29 325 | 76.05 319 | 97.96 261 | 95.62 180 | 81.19 332 | 94.30 286 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 299 | 89.05 306 | 94.02 286 | 95.08 310 | 90.15 308 | 97.19 350 | 97.43 269 | 84.91 349 | 83.99 348 | 97.06 259 | 74.00 335 | 98.28 241 | 84.08 332 | 87.71 287 | 93.62 338 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 327 | 86.51 328 | 91.94 330 | 95.05 311 | 85.57 352 | 97.65 343 | 94.08 387 | 84.40 353 | 81.82 358 | 96.85 268 | 62.14 378 | 98.33 235 | 80.25 357 | 86.37 296 | 91.91 367 |
|
| test0.0.03 1 | | | 93.86 214 | 93.61 207 | 94.64 259 | 95.02 312 | 92.18 262 | 99.93 76 | 98.58 87 | 94.07 138 | 87.96 310 | 98.50 207 | 93.90 94 | 94.96 364 | 81.33 351 | 93.17 248 | 96.78 255 |
|
| UniMVSNet (Re) | | | 93.07 238 | 92.13 245 | 95.88 221 | 94.84 313 | 96.24 143 | 99.88 101 | 98.98 38 | 92.49 204 | 89.25 285 | 95.40 315 | 87.09 217 | 97.14 295 | 93.13 232 | 78.16 355 | 94.26 288 |
|
| USDC | | | 90.00 306 | 88.96 307 | 93.10 316 | 94.81 314 | 88.16 335 | 98.71 298 | 95.54 370 | 93.66 157 | 83.75 350 | 97.20 253 | 65.58 367 | 98.31 237 | 83.96 335 | 87.49 291 | 92.85 354 |
|
| VPNet | | | 91.81 263 | 90.46 274 | 95.85 223 | 94.74 315 | 95.54 171 | 98.98 270 | 98.59 86 | 92.14 213 | 90.77 258 | 97.44 246 | 68.73 355 | 97.54 277 | 94.89 192 | 77.89 357 | 94.46 273 |
|
| FIs | | | 94.10 211 | 93.43 215 | 96.11 217 | 94.70 316 | 96.82 120 | 99.58 191 | 98.93 45 | 92.54 200 | 89.34 283 | 97.31 250 | 87.62 210 | 97.10 299 | 94.22 209 | 86.58 294 | 94.40 279 |
|
| UniMVSNet_ETH3D | | | 90.06 305 | 88.58 313 | 94.49 269 | 94.67 317 | 88.09 336 | 97.81 342 | 97.57 254 | 83.91 356 | 88.44 302 | 97.41 247 | 57.44 386 | 97.62 275 | 91.41 251 | 88.59 276 | 97.77 244 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 240 | 92.11 246 | 95.49 229 | 94.61 318 | 95.28 181 | 99.83 130 | 99.08 33 | 91.49 232 | 89.21 288 | 96.86 267 | 87.14 216 | 96.73 321 | 93.20 228 | 77.52 360 | 94.46 273 |
|
| test_fmvs2 | | | 89.47 314 | 89.70 291 | 88.77 358 | 94.54 319 | 75.74 386 | 99.83 130 | 94.70 383 | 94.71 108 | 91.08 253 | 96.82 272 | 54.46 389 | 97.78 270 | 92.87 235 | 88.27 280 | 92.80 355 |
|
| WR-MVS | | | 92.31 255 | 91.25 263 | 95.48 232 | 94.45 320 | 95.29 180 | 99.60 188 | 98.68 70 | 90.10 270 | 88.07 309 | 96.89 265 | 80.68 275 | 96.80 319 | 93.14 231 | 79.67 348 | 94.36 281 |
|
| nrg030 | | | 93.51 227 | 92.53 240 | 96.45 208 | 94.36 321 | 97.20 105 | 99.81 135 | 97.16 299 | 91.60 229 | 89.86 269 | 97.46 245 | 86.37 226 | 97.68 272 | 95.88 175 | 80.31 344 | 94.46 273 |
|
| tfpnnormal | | | 89.29 317 | 87.61 323 | 94.34 277 | 94.35 322 | 94.13 214 | 98.95 274 | 98.94 41 | 83.94 354 | 84.47 346 | 95.51 310 | 74.84 329 | 97.39 280 | 77.05 372 | 80.41 342 | 91.48 370 |
|
| FC-MVSNet-test | | | 93.81 217 | 93.15 224 | 95.80 225 | 94.30 323 | 96.20 144 | 99.42 219 | 98.89 49 | 92.33 210 | 89.03 293 | 97.27 252 | 87.39 213 | 96.83 317 | 93.20 228 | 86.48 295 | 94.36 281 |
|
| MS-PatchMatch | | | 90.65 288 | 90.30 279 | 91.71 333 | 94.22 324 | 85.50 353 | 98.24 326 | 97.70 238 | 88.67 298 | 86.42 332 | 96.37 283 | 67.82 359 | 98.03 257 | 83.62 337 | 99.62 94 | 91.60 368 |
|
| WR-MVS_H | | | 91.30 273 | 90.35 277 | 94.15 280 | 94.17 325 | 92.62 254 | 99.17 249 | 98.94 41 | 88.87 294 | 86.48 331 | 94.46 351 | 84.36 245 | 96.61 326 | 88.19 296 | 78.51 353 | 93.21 348 |
|
| DU-MVS | | | 92.46 252 | 91.45 261 | 95.49 229 | 94.05 326 | 95.28 181 | 99.81 135 | 98.74 64 | 92.25 212 | 89.21 288 | 96.64 275 | 81.66 262 | 96.73 321 | 93.20 228 | 77.52 360 | 94.46 273 |
|
| NR-MVSNet | | | 91.56 271 | 90.22 281 | 95.60 227 | 94.05 326 | 95.76 159 | 98.25 325 | 98.70 67 | 91.16 246 | 80.78 364 | 96.64 275 | 83.23 254 | 96.57 327 | 91.41 251 | 77.73 359 | 94.46 273 |
|
| CP-MVSNet | | | 91.23 277 | 90.22 281 | 94.26 278 | 93.96 328 | 92.39 258 | 99.09 253 | 98.57 89 | 88.95 291 | 86.42 332 | 96.57 278 | 79.19 290 | 96.37 334 | 90.29 275 | 78.95 350 | 94.02 311 |
|
| XXY-MVS | | | 91.82 262 | 90.46 274 | 95.88 221 | 93.91 329 | 95.40 177 | 98.87 284 | 97.69 240 | 88.63 300 | 87.87 311 | 97.08 257 | 74.38 333 | 97.89 265 | 91.66 249 | 84.07 314 | 94.35 284 |
|
| PS-CasMVS | | | 90.63 290 | 89.51 297 | 93.99 289 | 93.83 330 | 91.70 277 | 98.98 270 | 98.52 105 | 88.48 302 | 86.15 336 | 96.53 280 | 75.46 322 | 96.31 338 | 88.83 288 | 78.86 352 | 93.95 319 |
|
| test_0402 | | | 85.58 334 | 83.94 339 | 90.50 341 | 93.81 331 | 85.04 355 | 98.55 307 | 95.20 377 | 76.01 384 | 79.72 369 | 95.13 328 | 64.15 373 | 96.26 340 | 66.04 394 | 86.88 293 | 90.21 379 |
|
| XVG-ACMP-BASELINE | | | 91.22 278 | 90.75 269 | 92.63 324 | 93.73 332 | 85.61 351 | 98.52 311 | 97.44 268 | 92.77 186 | 89.90 268 | 96.85 268 | 66.64 364 | 98.39 226 | 92.29 240 | 88.61 274 | 93.89 324 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 270 | 90.61 273 | 94.87 250 | 93.69 333 | 93.98 218 | 99.69 172 | 98.65 74 | 91.03 250 | 88.44 302 | 96.83 271 | 80.05 283 | 96.18 342 | 90.26 276 | 76.89 368 | 94.45 278 |
|
| TransMVSNet (Re) | | | 87.25 328 | 85.28 335 | 93.16 313 | 93.56 334 | 91.03 286 | 98.54 309 | 94.05 389 | 83.69 358 | 81.09 362 | 96.16 288 | 75.32 323 | 96.40 333 | 76.69 373 | 68.41 386 | 92.06 364 |
|
| v10 | | | 90.25 300 | 88.82 309 | 94.57 264 | 93.53 335 | 93.43 233 | 99.08 255 | 96.87 331 | 85.00 346 | 87.34 321 | 94.51 347 | 80.93 272 | 97.02 309 | 82.85 342 | 79.23 349 | 93.26 346 |
|
| testgi | | | 89.01 319 | 88.04 320 | 91.90 331 | 93.49 336 | 84.89 357 | 99.73 161 | 95.66 367 | 93.89 152 | 85.14 342 | 98.17 225 | 59.68 383 | 94.66 369 | 77.73 368 | 88.88 268 | 96.16 264 |
|
| v8 | | | 90.54 292 | 89.17 302 | 94.66 258 | 93.43 337 | 93.40 235 | 99.20 246 | 96.94 325 | 85.76 337 | 87.56 315 | 94.51 347 | 81.96 260 | 97.19 292 | 84.94 329 | 78.25 354 | 93.38 344 |
|
| V42 | | | 91.28 275 | 90.12 286 | 94.74 255 | 93.42 338 | 93.46 232 | 99.68 174 | 97.02 313 | 87.36 316 | 89.85 271 | 95.05 330 | 81.31 268 | 97.34 283 | 87.34 307 | 80.07 346 | 93.40 342 |
|
| pm-mvs1 | | | 89.36 316 | 87.81 322 | 94.01 287 | 93.40 339 | 91.93 267 | 98.62 306 | 96.48 351 | 86.25 332 | 83.86 349 | 96.14 289 | 73.68 336 | 97.04 305 | 86.16 320 | 75.73 372 | 93.04 351 |
|
| v1144 | | | 91.09 279 | 89.83 288 | 94.87 250 | 93.25 340 | 93.69 226 | 99.62 185 | 96.98 318 | 86.83 326 | 89.64 277 | 94.99 335 | 80.94 271 | 97.05 302 | 85.08 328 | 81.16 333 | 93.87 326 |
|
| v1192 | | | 90.62 291 | 89.25 301 | 94.72 257 | 93.13 341 | 93.07 239 | 99.50 207 | 97.02 313 | 86.33 331 | 89.56 279 | 95.01 332 | 79.22 289 | 97.09 301 | 82.34 346 | 81.16 333 | 94.01 313 |
|
| v2v482 | | | 91.30 273 | 90.07 287 | 95.01 245 | 93.13 341 | 93.79 221 | 99.77 145 | 97.02 313 | 88.05 308 | 89.25 285 | 95.37 319 | 80.73 274 | 97.15 294 | 87.28 308 | 80.04 347 | 94.09 307 |
|
| OPM-MVS | | | 93.21 232 | 92.80 230 | 94.44 272 | 93.12 343 | 90.85 293 | 99.77 145 | 97.61 249 | 96.19 73 | 91.56 249 | 98.65 194 | 75.16 328 | 98.47 215 | 93.78 220 | 89.39 264 | 93.99 316 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 286 | 89.52 296 | 94.59 262 | 93.11 344 | 92.77 245 | 99.56 197 | 96.99 316 | 86.38 330 | 89.82 272 | 94.95 337 | 80.50 279 | 97.10 299 | 83.98 334 | 80.41 342 | 93.90 323 |
|
| PEN-MVS | | | 90.19 302 | 89.06 305 | 93.57 303 | 93.06 345 | 90.90 291 | 99.06 260 | 98.47 117 | 88.11 307 | 85.91 338 | 96.30 284 | 76.67 309 | 95.94 352 | 87.07 311 | 76.91 367 | 93.89 324 |
|
| v1240 | | | 90.20 301 | 88.79 310 | 94.44 272 | 93.05 346 | 92.27 260 | 99.38 225 | 96.92 327 | 85.89 335 | 89.36 282 | 94.87 339 | 77.89 301 | 97.03 307 | 80.66 354 | 81.08 336 | 94.01 313 |
|
| v148 | | | 90.70 287 | 89.63 292 | 93.92 291 | 92.97 347 | 90.97 287 | 99.75 153 | 96.89 329 | 87.51 313 | 88.27 307 | 95.01 332 | 81.67 261 | 97.04 305 | 87.40 306 | 77.17 365 | 93.75 332 |
|
| v1921920 | | | 90.46 293 | 89.12 303 | 94.50 268 | 92.96 348 | 92.46 256 | 99.49 209 | 96.98 318 | 86.10 333 | 89.61 278 | 95.30 322 | 78.55 298 | 97.03 307 | 82.17 347 | 80.89 340 | 94.01 313 |
|
| Baseline_NR-MVSNet | | | 90.33 297 | 89.51 297 | 92.81 322 | 92.84 349 | 89.95 312 | 99.77 145 | 93.94 390 | 84.69 351 | 89.04 292 | 95.66 302 | 81.66 262 | 96.52 328 | 90.99 259 | 76.98 366 | 91.97 366 |
|
| test_method | | | 80.79 354 | 79.70 358 | 84.08 369 | 92.83 350 | 67.06 395 | 99.51 205 | 95.42 371 | 54.34 401 | 81.07 363 | 93.53 359 | 44.48 397 | 92.22 388 | 78.90 364 | 77.23 364 | 92.94 352 |
|
| pmmvs4 | | | 92.10 259 | 91.07 267 | 95.18 241 | 92.82 351 | 94.96 191 | 99.48 211 | 96.83 333 | 87.45 315 | 88.66 299 | 96.56 279 | 83.78 249 | 96.83 317 | 89.29 284 | 84.77 308 | 93.75 332 |
|
| LF4IMVS | | | 89.25 318 | 88.85 308 | 90.45 343 | 92.81 352 | 81.19 377 | 98.12 332 | 94.79 380 | 91.44 236 | 86.29 334 | 97.11 255 | 65.30 370 | 98.11 252 | 88.53 293 | 85.25 303 | 92.07 363 |
|
| DTE-MVSNet | | | 89.40 315 | 88.24 318 | 92.88 320 | 92.66 353 | 89.95 312 | 99.10 252 | 98.22 187 | 87.29 317 | 85.12 343 | 96.22 286 | 76.27 316 | 95.30 361 | 83.56 338 | 75.74 371 | 93.41 341 |
|
| EU-MVSNet | | | 90.14 304 | 90.34 278 | 89.54 350 | 92.55 354 | 81.06 378 | 98.69 301 | 98.04 209 | 91.41 240 | 86.59 328 | 96.84 270 | 80.83 273 | 93.31 381 | 86.20 319 | 81.91 327 | 94.26 288 |
|
| APD_test1 | | | 81.15 353 | 80.92 354 | 81.86 373 | 92.45 355 | 59.76 402 | 96.04 373 | 93.61 393 | 73.29 393 | 77.06 378 | 96.64 275 | 44.28 398 | 96.16 343 | 72.35 381 | 82.52 321 | 89.67 384 |
|
| our_test_3 | | | 90.39 294 | 89.48 299 | 93.12 314 | 92.40 356 | 89.57 317 | 99.33 231 | 96.35 354 | 87.84 311 | 85.30 341 | 94.99 335 | 84.14 247 | 96.09 347 | 80.38 355 | 84.56 309 | 93.71 337 |
|
| ppachtmachnet_test | | | 89.58 313 | 88.35 316 | 93.25 312 | 92.40 356 | 90.44 302 | 99.33 231 | 96.73 340 | 85.49 342 | 85.90 339 | 95.77 297 | 81.09 270 | 96.00 351 | 76.00 376 | 82.49 322 | 93.30 345 |
|
| v7n | | | 89.65 312 | 88.29 317 | 93.72 297 | 92.22 358 | 90.56 299 | 99.07 259 | 97.10 305 | 85.42 344 | 86.73 325 | 94.72 340 | 80.06 282 | 97.13 296 | 81.14 352 | 78.12 356 | 93.49 340 |
|
| dmvs_testset | | | 83.79 347 | 86.07 331 | 76.94 377 | 92.14 359 | 48.60 412 | 96.75 360 | 90.27 402 | 89.48 279 | 78.65 372 | 98.55 206 | 79.25 288 | 86.65 400 | 66.85 391 | 82.69 320 | 95.57 266 |
|
| PS-MVSNAJss | | | 93.64 224 | 93.31 221 | 94.61 260 | 92.11 360 | 92.19 261 | 99.12 251 | 97.38 275 | 92.51 203 | 88.45 301 | 96.99 263 | 91.20 157 | 97.29 289 | 94.36 204 | 87.71 287 | 94.36 281 |
|
| pmmvs5 | | | 90.17 303 | 89.09 304 | 93.40 306 | 92.10 361 | 89.77 315 | 99.74 156 | 95.58 369 | 85.88 336 | 87.24 322 | 95.74 298 | 73.41 337 | 96.48 330 | 88.54 292 | 83.56 317 | 93.95 319 |
|
| N_pmnet | | | 80.06 357 | 80.78 355 | 77.89 376 | 91.94 362 | 45.28 414 | 98.80 292 | 56.82 416 | 78.10 381 | 80.08 367 | 93.33 360 | 77.03 304 | 95.76 354 | 68.14 389 | 82.81 319 | 92.64 356 |
|
| test_djsdf | | | 92.83 243 | 92.29 244 | 94.47 270 | 91.90 363 | 92.46 256 | 99.55 199 | 97.27 289 | 91.17 244 | 89.96 265 | 96.07 293 | 81.10 269 | 96.89 313 | 94.67 199 | 88.91 267 | 94.05 310 |
|
| SixPastTwentyTwo | | | 88.73 320 | 88.01 321 | 90.88 337 | 91.85 364 | 82.24 369 | 98.22 329 | 95.18 378 | 88.97 289 | 82.26 355 | 96.89 265 | 71.75 342 | 96.67 324 | 84.00 333 | 82.98 318 | 93.72 336 |
|
| K. test v3 | | | 88.05 324 | 87.24 326 | 90.47 342 | 91.82 365 | 82.23 370 | 98.96 273 | 97.42 271 | 89.05 284 | 76.93 380 | 95.60 304 | 68.49 356 | 95.42 357 | 85.87 324 | 81.01 338 | 93.75 332 |
|
| OurMVSNet-221017-0 | | | 89.81 309 | 89.48 299 | 90.83 339 | 91.64 366 | 81.21 376 | 98.17 331 | 95.38 373 | 91.48 234 | 85.65 340 | 97.31 250 | 72.66 338 | 97.29 289 | 88.15 297 | 84.83 307 | 93.97 318 |
|
| mvs_tets | | | 91.81 263 | 91.08 266 | 94.00 288 | 91.63 367 | 90.58 298 | 98.67 303 | 97.43 269 | 92.43 205 | 87.37 320 | 97.05 260 | 71.76 341 | 97.32 285 | 94.75 196 | 88.68 273 | 94.11 306 |
|
| Gipuma |  | | 66.95 370 | 65.00 370 | 72.79 382 | 91.52 368 | 67.96 394 | 66.16 405 | 95.15 379 | 47.89 403 | 58.54 400 | 67.99 405 | 29.74 402 | 87.54 399 | 50.20 404 | 77.83 358 | 62.87 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 147 | 95.74 155 | 98.32 124 | 91.47 369 | 95.56 170 | 99.84 123 | 97.30 284 | 97.74 18 | 97.89 143 | 99.35 129 | 79.62 285 | 99.85 108 | 99.25 54 | 99.24 124 | 99.55 144 |
|
| jajsoiax | | | 91.92 261 | 91.18 264 | 94.15 280 | 91.35 370 | 90.95 290 | 99.00 269 | 97.42 271 | 92.61 195 | 87.38 319 | 97.08 257 | 72.46 339 | 97.36 281 | 94.53 202 | 88.77 271 | 94.13 305 |
|
| MDA-MVSNet-bldmvs | | | 84.09 345 | 81.52 352 | 91.81 332 | 91.32 371 | 88.00 338 | 98.67 303 | 95.92 362 | 80.22 375 | 55.60 403 | 93.32 361 | 68.29 358 | 93.60 379 | 73.76 378 | 76.61 369 | 93.82 330 |
|
| MVP-Stereo | | | 90.93 281 | 90.45 276 | 92.37 326 | 91.25 372 | 88.76 324 | 98.05 336 | 96.17 357 | 87.27 318 | 84.04 347 | 95.30 322 | 78.46 299 | 97.27 291 | 83.78 336 | 99.70 88 | 91.09 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 336 | 83.32 344 | 92.10 328 | 90.96 373 | 88.58 330 | 99.20 246 | 96.52 349 | 79.70 377 | 57.12 402 | 92.69 366 | 79.11 291 | 93.86 376 | 77.10 371 | 77.46 362 | 93.86 327 |
|
| YYNet1 | | | 85.50 337 | 83.33 343 | 92.00 329 | 90.89 374 | 88.38 334 | 99.22 245 | 96.55 348 | 79.60 378 | 57.26 401 | 92.72 365 | 79.09 293 | 93.78 377 | 77.25 370 | 77.37 363 | 93.84 328 |
|
| anonymousdsp | | | 91.79 268 | 90.92 268 | 94.41 275 | 90.76 375 | 92.93 244 | 98.93 276 | 97.17 297 | 89.08 283 | 87.46 318 | 95.30 322 | 78.43 300 | 96.92 312 | 92.38 239 | 88.73 272 | 93.39 343 |
|
| lessismore_v0 | | | | | 90.53 340 | 90.58 376 | 80.90 379 | | 95.80 363 | | 77.01 379 | 95.84 295 | 66.15 366 | 96.95 310 | 83.03 341 | 75.05 373 | 93.74 335 |
|
| EG-PatchMatch MVS | | | 85.35 338 | 83.81 341 | 89.99 348 | 90.39 377 | 81.89 372 | 98.21 330 | 96.09 359 | 81.78 369 | 74.73 386 | 93.72 358 | 51.56 394 | 97.12 298 | 79.16 363 | 88.61 274 | 90.96 373 |
|
| EGC-MVSNET | | | 69.38 363 | 63.76 373 | 86.26 366 | 90.32 378 | 81.66 375 | 96.24 369 | 93.85 391 | 0.99 413 | 3.22 414 | 92.33 371 | 52.44 391 | 92.92 384 | 59.53 400 | 84.90 306 | 84.21 394 |
|
| CMPMVS |  | 61.59 21 | 84.75 341 | 85.14 336 | 83.57 370 | 90.32 378 | 62.54 398 | 96.98 356 | 97.59 253 | 74.33 391 | 69.95 392 | 96.66 273 | 64.17 372 | 98.32 236 | 87.88 301 | 88.41 279 | 89.84 382 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 344 | 82.92 347 | 89.21 352 | 90.03 380 | 82.60 366 | 96.89 359 | 95.62 368 | 80.59 373 | 75.77 385 | 89.17 382 | 65.04 371 | 94.79 368 | 72.12 382 | 81.02 337 | 90.23 378 |
|
| pmmvs6 | | | 85.69 333 | 83.84 340 | 91.26 336 | 90.00 381 | 84.41 359 | 97.82 341 | 96.15 358 | 75.86 385 | 81.29 361 | 95.39 317 | 61.21 381 | 96.87 315 | 83.52 339 | 73.29 375 | 92.50 359 |
|
| DSMNet-mixed | | | 88.28 323 | 88.24 318 | 88.42 360 | 89.64 382 | 75.38 388 | 98.06 335 | 89.86 403 | 85.59 341 | 88.20 308 | 92.14 372 | 76.15 318 | 91.95 389 | 78.46 365 | 96.05 201 | 97.92 240 |
|
| UnsupCasMVSNet_eth | | | 85.52 335 | 83.99 337 | 90.10 346 | 89.36 383 | 83.51 363 | 96.65 361 | 97.99 211 | 89.14 282 | 75.89 384 | 93.83 356 | 63.25 375 | 93.92 374 | 81.92 349 | 67.90 389 | 92.88 353 |
|
| Anonymous20231206 | | | 86.32 331 | 85.42 334 | 89.02 354 | 89.11 384 | 80.53 382 | 99.05 264 | 95.28 374 | 85.43 343 | 82.82 353 | 93.92 355 | 74.40 332 | 93.44 380 | 66.99 390 | 81.83 328 | 93.08 350 |
|
| Anonymous20240521 | | | 85.15 339 | 83.81 341 | 89.16 353 | 88.32 385 | 82.69 365 | 98.80 292 | 95.74 364 | 79.72 376 | 81.53 360 | 90.99 375 | 65.38 369 | 94.16 372 | 72.69 380 | 81.11 335 | 90.63 376 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 348 | 81.68 351 | 90.03 347 | 88.30 386 | 82.82 364 | 98.46 312 | 95.22 376 | 73.92 392 | 76.00 383 | 91.29 374 | 55.00 388 | 96.94 311 | 68.40 388 | 88.51 278 | 90.34 377 |
|
| test20.03 | | | 84.72 342 | 83.99 337 | 86.91 364 | 88.19 387 | 80.62 381 | 98.88 281 | 95.94 361 | 88.36 304 | 78.87 370 | 94.62 345 | 68.75 354 | 89.11 395 | 66.52 392 | 75.82 370 | 91.00 372 |
|
| KD-MVS_self_test | | | 83.59 349 | 82.06 349 | 88.20 361 | 86.93 388 | 80.70 380 | 97.21 349 | 96.38 352 | 82.87 363 | 82.49 354 | 88.97 383 | 67.63 360 | 92.32 387 | 73.75 379 | 62.30 398 | 91.58 369 |
|
| MIMVSNet1 | | | 82.58 350 | 80.51 356 | 88.78 356 | 86.68 389 | 84.20 360 | 96.65 361 | 95.41 372 | 78.75 379 | 78.59 373 | 92.44 367 | 51.88 393 | 89.76 394 | 65.26 395 | 78.95 350 | 92.38 362 |
|
| CL-MVSNet_self_test | | | 84.50 343 | 83.15 346 | 88.53 359 | 86.00 390 | 81.79 373 | 98.82 289 | 97.35 277 | 85.12 345 | 83.62 351 | 90.91 377 | 76.66 310 | 91.40 390 | 69.53 386 | 60.36 399 | 92.40 361 |
|
| UnsupCasMVSNet_bld | | | 79.97 359 | 77.03 364 | 88.78 356 | 85.62 391 | 81.98 371 | 93.66 385 | 97.35 277 | 75.51 388 | 70.79 391 | 83.05 397 | 48.70 395 | 94.91 366 | 78.31 366 | 60.29 400 | 89.46 387 |
|
| Patchmatch-RL test | | | 86.90 329 | 85.98 333 | 89.67 349 | 84.45 392 | 75.59 387 | 89.71 398 | 92.43 396 | 86.89 325 | 77.83 377 | 90.94 376 | 94.22 83 | 93.63 378 | 87.75 302 | 69.61 381 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 346 | 81.97 350 | 90.20 345 | 84.15 393 | 87.09 343 | 98.10 334 | 94.73 382 | 83.05 361 | 74.10 388 | 87.77 389 | 65.56 368 | 94.01 373 | 81.08 353 | 69.24 383 | 89.49 386 |
|
| test_fmvs3 | | | 79.99 358 | 80.17 357 | 79.45 375 | 84.02 394 | 62.83 396 | 99.05 264 | 93.49 394 | 88.29 306 | 80.06 368 | 86.65 392 | 28.09 404 | 88.00 396 | 88.63 289 | 73.27 376 | 87.54 392 |
|
| PM-MVS | | | 80.47 355 | 78.88 360 | 85.26 367 | 83.79 395 | 72.22 390 | 95.89 376 | 91.08 400 | 85.71 340 | 76.56 382 | 88.30 385 | 36.64 400 | 93.90 375 | 82.39 345 | 69.57 382 | 89.66 385 |
|
| new-patchmatchnet | | | 81.19 352 | 79.34 359 | 86.76 365 | 82.86 396 | 80.36 383 | 97.92 338 | 95.27 375 | 82.09 368 | 72.02 389 | 86.87 391 | 62.81 377 | 90.74 393 | 71.10 383 | 63.08 396 | 89.19 389 |
|
| mvsany_test3 | | | 82.12 351 | 81.14 353 | 85.06 368 | 81.87 397 | 70.41 392 | 97.09 353 | 92.14 397 | 91.27 243 | 77.84 376 | 88.73 384 | 39.31 399 | 95.49 355 | 90.75 266 | 71.24 378 | 89.29 388 |
|
| WB-MVS | | | 76.28 361 | 77.28 363 | 73.29 381 | 81.18 398 | 54.68 406 | 97.87 340 | 94.19 386 | 81.30 370 | 69.43 393 | 90.70 378 | 77.02 305 | 82.06 404 | 35.71 409 | 68.11 388 | 83.13 395 |
|
| test_f | | | 78.40 360 | 77.59 362 | 80.81 374 | 80.82 399 | 62.48 399 | 96.96 357 | 93.08 395 | 83.44 359 | 74.57 387 | 84.57 396 | 27.95 405 | 92.63 385 | 84.15 331 | 72.79 377 | 87.32 393 |
|
| SSC-MVS | | | 75.42 362 | 76.40 365 | 72.49 385 | 80.68 400 | 53.62 407 | 97.42 345 | 94.06 388 | 80.42 374 | 68.75 394 | 90.14 380 | 76.54 312 | 81.66 405 | 33.25 410 | 66.34 392 | 82.19 396 |
|
| pmmvs3 | | | 80.27 356 | 77.77 361 | 87.76 363 | 80.32 401 | 82.43 368 | 98.23 328 | 91.97 398 | 72.74 394 | 78.75 371 | 87.97 388 | 57.30 387 | 90.99 392 | 70.31 384 | 62.37 397 | 89.87 381 |
|
| testf1 | | | 68.38 366 | 66.92 367 | 72.78 383 | 78.80 402 | 50.36 409 | 90.95 396 | 87.35 408 | 55.47 399 | 58.95 398 | 88.14 386 | 20.64 409 | 87.60 397 | 57.28 401 | 64.69 393 | 80.39 398 |
|
| APD_test2 | | | 68.38 366 | 66.92 367 | 72.78 383 | 78.80 402 | 50.36 409 | 90.95 396 | 87.35 408 | 55.47 399 | 58.95 398 | 88.14 386 | 20.64 409 | 87.60 397 | 57.28 401 | 64.69 393 | 80.39 398 |
|
| ambc | | | | | 83.23 371 | 77.17 404 | 62.61 397 | 87.38 400 | 94.55 385 | | 76.72 381 | 86.65 392 | 30.16 401 | 96.36 335 | 84.85 330 | 69.86 380 | 90.73 375 |
|
| test_vis3_rt | | | 68.82 364 | 66.69 369 | 75.21 380 | 76.24 405 | 60.41 401 | 96.44 364 | 68.71 415 | 75.13 389 | 50.54 406 | 69.52 404 | 16.42 414 | 96.32 337 | 80.27 356 | 66.92 391 | 68.89 402 |
|
| TDRefinement | | | 84.76 340 | 82.56 348 | 91.38 335 | 74.58 406 | 84.80 358 | 97.36 347 | 94.56 384 | 84.73 350 | 80.21 366 | 96.12 292 | 63.56 374 | 98.39 226 | 87.92 300 | 63.97 395 | 90.95 374 |
|
| E-PMN | | | 52.30 374 | 52.18 376 | 52.67 391 | 71.51 407 | 45.40 413 | 93.62 386 | 76.60 413 | 36.01 407 | 43.50 408 | 64.13 407 | 27.11 406 | 67.31 410 | 31.06 411 | 26.06 406 | 45.30 409 |
|
| EMVS | | | 51.44 376 | 51.22 378 | 52.11 392 | 70.71 408 | 44.97 415 | 94.04 382 | 75.66 414 | 35.34 409 | 42.40 409 | 61.56 410 | 28.93 403 | 65.87 411 | 27.64 412 | 24.73 407 | 45.49 408 |
|
| PMMVS2 | | | 67.15 369 | 64.15 372 | 76.14 379 | 70.56 409 | 62.07 400 | 93.89 383 | 87.52 407 | 58.09 398 | 60.02 397 | 78.32 399 | 22.38 408 | 84.54 402 | 59.56 399 | 47.03 404 | 81.80 397 |
|
| FPMVS | | | 68.72 365 | 68.72 366 | 68.71 387 | 65.95 410 | 44.27 416 | 95.97 375 | 94.74 381 | 51.13 402 | 53.26 404 | 90.50 379 | 25.11 407 | 83.00 403 | 60.80 398 | 80.97 339 | 78.87 400 |
|
| wuyk23d | | | 20.37 380 | 20.84 383 | 18.99 395 | 65.34 411 | 27.73 418 | 50.43 406 | 7.67 419 | 9.50 412 | 8.01 413 | 6.34 413 | 6.13 417 | 26.24 412 | 23.40 413 | 10.69 411 | 2.99 410 |
|
| LCM-MVSNet | | | 67.77 368 | 64.73 371 | 76.87 378 | 62.95 412 | 56.25 405 | 89.37 399 | 93.74 392 | 44.53 404 | 61.99 396 | 80.74 398 | 20.42 411 | 86.53 401 | 69.37 387 | 59.50 401 | 87.84 390 |
|
| MVE |  | 53.74 22 | 51.54 375 | 47.86 379 | 62.60 389 | 59.56 413 | 50.93 408 | 79.41 403 | 77.69 412 | 35.69 408 | 36.27 410 | 61.76 409 | 5.79 418 | 69.63 408 | 37.97 408 | 36.61 405 | 67.24 403 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 372 | 52.24 375 | 67.66 388 | 49.27 414 | 56.82 404 | 83.94 401 | 82.02 411 | 70.47 395 | 33.28 411 | 64.54 406 | 17.23 413 | 69.16 409 | 45.59 406 | 23.85 408 | 77.02 401 |
|
| tmp_tt | | | 65.23 371 | 62.94 374 | 72.13 386 | 44.90 415 | 50.03 411 | 81.05 402 | 89.42 406 | 38.45 405 | 48.51 407 | 99.90 18 | 54.09 390 | 78.70 407 | 91.84 248 | 18.26 409 | 87.64 391 |
|
| PMVS |  | 49.05 23 | 53.75 373 | 51.34 377 | 60.97 390 | 40.80 416 | 34.68 417 | 74.82 404 | 89.62 405 | 37.55 406 | 28.67 412 | 72.12 401 | 7.09 416 | 81.63 406 | 43.17 407 | 68.21 387 | 66.59 404 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 378 | 39.14 381 | 33.31 393 | 19.94 417 | 24.83 419 | 98.36 320 | 9.75 418 | 15.53 411 | 51.31 405 | 87.14 390 | 19.62 412 | 17.74 413 | 47.10 405 | 3.47 412 | 57.36 406 |
|
| testmvs | | | 40.60 377 | 44.45 380 | 29.05 394 | 19.49 418 | 14.11 420 | 99.68 174 | 18.47 417 | 20.74 410 | 64.59 395 | 98.48 211 | 10.95 415 | 17.09 414 | 56.66 403 | 11.01 410 | 55.94 407 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.02 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 23.43 379 | 31.24 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 98.09 203 | 0.00 414 | 0.00 415 | 99.67 94 | 83.37 252 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 7.60 382 | 10.13 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 91.20 157 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 8.28 381 | 11.04 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 99.40 123 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 90.97 287 | | | | | | | | 86.10 322 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 55 | 97.49 8 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 133 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 19 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 4 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 133 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 133 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 181 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 377 | | | | 59.23 411 | 93.20 115 | 97.74 271 | 91.06 257 | | |
|
| test_post | | | | | | | | | | | | 63.35 408 | 94.43 69 | 98.13 251 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 373 | 95.12 49 | 97.95 262 | | | |
|
| MTMP | | | | | | | | 99.87 104 | 96.49 350 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 71 | 99.94 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 53 | | 95.78 79 | 99.73 33 | 99.76 63 | 96.00 32 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 216 | | 94.21 133 | 99.85 9 | | | 99.95 70 | 96.96 160 | | |
|
| 新几何2 | | | | | | | | 99.40 220 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 209 | 98.71 66 | 93.46 161 | | | | 100.00 1 | 94.36 204 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 90 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 270 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 24 | | | | |
|
| testdata1 | | | | | | | | 99.28 240 | | 96.35 69 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 225 | | | | | 98.37 232 | 97.79 137 | 89.55 261 | 94.52 270 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 199 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 279 | | | 96.63 56 | 93.01 232 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 123 | | 96.38 65 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 273 | 99.86 115 | | 96.76 52 | | | | | | 89.59 260 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 404 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 125 | | | | | | | | |
|
| door | | | | | | | | | 90.31 401 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 269 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 129 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 228 | | | 98.39 226 | | | 94.53 268 |
|
| HQP3-MVS | | | | | | | | | 97.89 223 | | | | | | | 89.60 258 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 276 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 139 | 96.11 371 | | 91.89 221 | 98.06 137 | | 94.40 71 | | 94.30 206 | | 99.67 115 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 292 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 281 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 126 | | | | |
|