This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10196.80 10898.51 10899.99 195.60 16699.09 25398.84 5893.32 16896.74 17199.72 8386.04 223100.00 198.01 11999.43 11199.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11499.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
CPTT-MVS97.64 8497.32 8798.58 10099.97 395.77 15599.96 3598.35 16589.90 27498.36 12399.79 5791.18 15799.99 3698.37 10399.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12392.06 21998.40 12299.84 4195.68 40100.00 198.19 10999.71 8499.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11499.83 7399.99 23
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9699.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
region2R98.54 3398.37 3699.05 6899.96 897.18 10399.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10399.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 8199.96 896.62 12399.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21392.06 24699.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6941.37 40994.34 7699.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10699.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10698.33 17093.97 14699.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 8999.94 1396.13 14599.82 13698.43 13194.56 11597.52 14999.70 8794.40 7199.98 4397.00 15399.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10099.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4298.43 13199.63 4499.85 108
FOURS199.92 3197.66 8599.95 5398.36 16395.58 8799.52 60
ZD-MVS99.92 3198.57 5698.52 10492.34 21199.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8799.93 7698.39 15594.04 14498.80 10099.74 7892.98 116100.00 198.16 11199.76 8199.93 76
TEST999.92 3198.92 2999.96 3598.43 13193.90 15199.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11099.75 15699.50 1893.90 15199.37 7499.76 6593.24 110100.00 197.75 13799.96 4699.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9299.92 3196.13 14599.18 24899.45 1994.84 10696.41 18199.71 8591.40 15199.99 3697.99 12198.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10698.36 16394.08 13999.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 63
CSCG97.10 10697.04 9897.27 18399.89 4591.92 26799.90 9199.07 3488.67 29795.26 20399.82 4693.17 11299.98 4398.15 11299.47 10599.90 83
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8699.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10799.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 10999.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 17199.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17299.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10899.98 1598.80 6290.78 26099.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7599.39 22498.28 17995.76 8297.18 15999.88 2192.74 124100.00 198.67 8899.88 6999.99 23
LS3D95.84 16095.11 17098.02 13799.85 5495.10 18798.74 29598.50 11287.22 31893.66 22199.86 2687.45 20599.95 6990.94 26099.81 7999.02 203
HPM-MVScopyleft97.96 6397.72 7198.68 9099.84 5696.39 13299.90 9198.17 19192.61 19698.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8799.83 5796.59 12599.40 22098.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
save fliter99.82 5898.79 4099.96 3598.40 15297.66 21
PLCcopyleft95.54 397.93 6597.89 6798.05 13699.82 5894.77 19799.92 7998.46 11793.93 14997.20 15899.27 13695.44 4699.97 5397.41 14299.51 10399.41 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8499.81 6096.60 12499.82 13698.30 17793.95 14899.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9799.80 6196.27 13599.36 22998.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10399.30 11799.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 8899.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
HPM-MVS_fast97.80 7497.50 7998.68 9099.79 6296.42 12899.88 10398.16 19591.75 22998.94 9399.54 11291.82 14999.65 14797.62 14099.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9198.21 18693.53 16199.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8998.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9897.23 9097.41 17499.76 6693.36 23699.65 18397.95 21496.03 7797.41 15399.70 8789.61 18199.51 15396.73 16298.25 15099.38 168
新几何199.42 3799.75 6898.27 6398.63 8092.69 19199.55 5599.82 4694.40 71100.00 191.21 25299.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6299.74 15998.18 19093.35 16696.45 17899.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5798.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
原ACMM198.96 7799.73 7296.99 11198.51 10794.06 14299.62 4799.85 3094.97 5999.96 6195.11 18299.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8299.73 7296.63 12299.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
F-COLMAP96.93 11796.95 10196.87 19399.71 7591.74 27299.85 12197.95 21493.11 17595.72 19699.16 14792.35 13699.94 7795.32 18099.35 11598.92 206
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22699.67 7786.91 34599.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28999.63 7981.76 37299.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8699.62 8096.80 11999.90 9199.51 1797.60 2299.20 8299.36 13093.71 9799.91 8997.99 12198.71 13899.61 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
PVSNet_BlendedMVS96.05 15495.82 14996.72 19899.59 8196.99 11199.95 5399.10 3194.06 14298.27 12795.80 29389.00 19299.95 6999.12 5887.53 28693.24 344
PVSNet_Blended97.94 6497.64 7498.83 8399.59 8196.99 111100.00 199.10 3195.38 9298.27 12799.08 15089.00 19299.95 6999.12 5899.25 11999.57 141
PatchMatch-RL96.04 15595.40 15997.95 14099.59 8195.22 18399.52 20599.07 3493.96 14796.49 17798.35 21882.28 25299.82 12090.15 27699.22 12298.81 213
dcpmvs_297.42 9398.09 5495.42 23199.58 8587.24 34199.23 24496.95 31494.28 13198.93 9499.73 8094.39 7499.16 17699.89 1699.82 7799.86 89
test22299.55 8697.41 9899.34 23098.55 9891.86 22499.27 8199.83 4393.84 9499.95 4999.99 23
CNLPA97.76 7897.38 8398.92 8099.53 8796.84 11699.87 10698.14 19993.78 15496.55 17699.69 8992.28 13899.98 4397.13 14999.44 10999.93 76
API-MVS97.86 6897.66 7398.47 11099.52 8895.41 17499.47 21498.87 5291.68 23098.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
PVSNet91.05 1397.13 10596.69 11398.45 11299.52 8895.81 15399.95 5399.65 1294.73 10999.04 8999.21 14384.48 23899.95 6994.92 18898.74 13799.58 140
114514_t97.41 9496.83 10699.14 6199.51 9097.83 7799.89 9998.27 18188.48 30199.06 8899.66 9890.30 17399.64 14896.32 16699.97 4299.96 64
cl2293.77 21793.25 22095.33 23599.49 9194.43 20199.61 19198.09 20190.38 26589.16 28995.61 30090.56 16997.34 27991.93 24484.45 30794.21 290
testdata98.42 11599.47 9295.33 17798.56 9293.78 15499.79 2699.85 3093.64 9999.94 7794.97 18699.94 54100.00 1
MAR-MVS97.43 8997.19 9298.15 12999.47 9294.79 19699.05 26498.76 6392.65 19498.66 11099.82 4688.52 19799.98 4398.12 11399.63 8999.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19493.42 21397.91 14599.46 9494.04 21498.93 27697.48 25981.15 36890.04 26299.55 11087.02 21199.95 6988.97 28698.11 15499.73 105
MVS_111021_LR98.42 4498.38 3498.53 10799.39 9595.79 15499.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31299.42 2297.03 4299.02 9099.09 14999.35 198.21 24399.73 3299.78 8099.77 101
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10399.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21699.94 5499.98 48
TAPA-MVS92.12 894.42 19993.60 20696.90 19299.33 9891.78 27199.78 14598.00 20889.89 27594.52 20999.47 11691.97 14599.18 17469.90 38299.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6797.94 6397.70 15899.28 10095.20 18499.98 1597.15 29395.53 8999.62 4799.79 5792.08 14398.38 22698.75 8499.28 11899.52 151
test_fmvsm_n_192098.44 4198.61 2397.92 14399.27 10195.18 185100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 223
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7699.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
test_yl97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 7999.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
DeepC-MVS94.51 496.92 11896.40 12398.45 11299.16 10795.90 15199.66 18198.06 20496.37 7094.37 21299.49 11583.29 24899.90 9197.63 13999.61 9499.55 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13199.24 14192.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7697.91 6597.43 17399.10 10994.42 20299.99 597.10 29895.07 9899.68 3899.75 7192.95 11798.34 23098.38 10199.14 12499.54 147
Anonymous20240521193.10 23591.99 24796.40 20899.10 10989.65 31698.88 28197.93 21683.71 35594.00 21898.75 18868.79 34999.88 10295.08 18491.71 24699.68 113
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15999.06 11194.41 20399.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 222
HyFIR lowres test96.66 13296.43 12297.36 17999.05 11293.91 21999.70 17499.80 390.54 26396.26 18498.08 22592.15 14198.23 24296.84 16195.46 21199.93 76
LFMVS94.75 18893.56 20998.30 12199.03 11395.70 16098.74 29597.98 21187.81 31198.47 11899.39 12767.43 35899.53 15098.01 11995.20 21999.67 117
AllTest92.48 24991.64 25295.00 24599.01 11488.43 33098.94 27596.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
TestCases95.00 24599.01 11488.43 33096.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
COLMAP_ROBcopyleft90.47 1492.18 25691.49 25894.25 27799.00 11688.04 33698.42 31796.70 33682.30 36488.43 30299.01 15676.97 30199.85 10886.11 32096.50 18894.86 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17495.68 15494.36 27498.99 11784.98 35499.96 3596.65 33897.60 2299.73 3398.96 16571.58 33899.93 8598.31 10699.37 11498.17 230
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34199.52 1595.69 8498.32 12597.41 24493.32 10599.77 12898.08 11795.75 20799.81 94
VNet97.21 10296.57 11899.13 6598.97 11997.82 7899.03 26799.21 2994.31 12899.18 8598.88 17686.26 22299.89 9698.93 6994.32 22899.69 112
thres20096.96 11596.21 12999.22 4898.97 11998.84 3699.85 12199.71 793.17 17396.26 18498.88 17689.87 17899.51 15394.26 20694.91 22199.31 178
tfpn200view996.79 12295.99 13499.19 5198.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.27 184
thres40096.78 12495.99 13499.16 5798.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.16 191
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
Anonymous2023121189.86 30588.44 31294.13 28098.93 12390.68 29498.54 30998.26 18276.28 38086.73 32395.54 30470.60 34497.56 27290.82 26380.27 34294.15 298
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
SDMVSNet94.80 18493.96 19797.33 18198.92 12695.42 17399.59 19398.99 3792.41 20892.55 23697.85 23475.81 31598.93 18597.90 12791.62 24797.64 241
sd_testset93.55 22492.83 22895.74 22498.92 12690.89 29198.24 32398.85 5692.41 20892.55 23697.85 23471.07 34398.68 20293.93 21091.62 24797.64 241
EPNet_dtu95.71 16495.39 16096.66 20098.92 12693.41 23399.57 19798.90 4796.19 7597.52 14998.56 20692.65 12597.36 27777.89 36598.33 14599.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12793.33 10499.74 13497.98 12395.58 21099.78 100
CHOSEN 1792x268896.81 12196.53 11997.64 16198.91 13093.07 23899.65 18399.80 395.64 8595.39 20098.86 18184.35 24199.90 9196.98 15599.16 12399.95 71
thres100view90096.74 12795.92 14599.18 5298.90 13198.77 4299.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.84 21394.57 22499.27 184
thres600view796.69 13095.87 14899.14 6198.90 13198.78 4199.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.44 22594.50 22799.16 191
MSDG94.37 20193.36 21797.40 17598.88 13393.95 21899.37 22797.38 26885.75 33890.80 25599.17 14684.11 24399.88 10286.35 31798.43 14398.36 228
MGCFI-Net97.00 11396.22 12899.34 4398.86 13498.80 3999.67 17997.30 27794.31 12897.77 14599.41 12486.36 22099.50 15598.38 10193.90 23699.72 107
h-mvs3394.92 18294.36 18696.59 20298.85 13591.29 28398.93 27698.94 4195.90 7898.77 10298.42 21790.89 16599.77 12897.80 13070.76 37698.72 219
Anonymous2024052992.10 25790.65 26896.47 20398.82 13690.61 29698.72 29798.67 7375.54 38493.90 22098.58 20466.23 36299.90 9194.70 19790.67 24998.90 209
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9298.81 13796.67 12199.92 7998.64 7694.51 11696.38 18298.49 21089.05 19199.88 10297.10 15198.34 14499.43 164
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20398.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 220
CANet_DTU96.76 12596.15 13098.60 9798.78 13997.53 8899.84 12697.63 23897.25 3799.20 8299.64 10181.36 26199.98 4392.77 23698.89 13198.28 229
mvsany_test197.82 7297.90 6697.55 16698.77 14093.04 24199.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
alignmvs97.81 7397.33 8699.25 4698.77 14098.66 5199.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16498.57 9494.26 23099.67 117
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8199.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20598.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 220
miper_enhance_ethall94.36 20393.98 19695.49 22798.68 14495.24 18199.73 16497.29 28093.28 17089.86 26795.97 29194.37 7597.05 30092.20 24084.45 30794.19 291
ETVMVS97.03 11296.64 11498.20 12598.67 14597.12 10799.89 9998.57 8991.10 25098.17 13298.59 20193.86 9398.19 24495.64 17795.24 21899.28 183
test250697.53 8697.19 9298.58 10098.66 14696.90 11598.81 29099.77 594.93 10197.95 13798.96 16592.51 13199.20 17194.93 18798.15 15199.64 123
ECVR-MVScopyleft95.66 16795.05 17297.51 16998.66 14693.71 22398.85 28798.45 11894.93 10196.86 16798.96 16575.22 32199.20 17195.34 17998.15 15199.64 123
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15398.63 14894.26 20899.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 199
iter_conf05_1196.12 15195.46 15798.10 13198.62 14995.52 169100.00 196.30 35096.54 6099.81 1599.80 5169.19 34899.10 17898.92 7099.91 6699.68 113
bld_raw_dy_0_6494.22 20792.97 22497.98 13898.62 14995.09 18899.89 9993.09 39196.55 5992.59 23499.80 5168.57 35299.19 17398.92 7088.69 26699.68 113
testing22297.08 11196.75 11098.06 13598.56 15196.82 11799.85 12198.61 8292.53 20298.84 9798.84 18593.36 10298.30 23495.84 17494.30 22999.05 201
test111195.57 16994.98 17597.37 17798.56 15193.37 23598.86 28598.45 11894.95 10096.63 17398.95 17075.21 32299.11 17795.02 18598.14 15399.64 123
MVSTER95.53 17095.22 16696.45 20598.56 15197.72 8099.91 8497.67 23692.38 21091.39 24797.14 25197.24 1797.30 28394.80 19387.85 28194.34 282
VDD-MVS93.77 21792.94 22596.27 21298.55 15490.22 30598.77 29497.79 23090.85 25696.82 16999.42 12061.18 37999.77 12898.95 6794.13 23198.82 212
tpmvs94.28 20593.57 20896.40 20898.55 15491.50 28195.70 37598.55 9887.47 31392.15 24094.26 35091.42 15098.95 18488.15 29695.85 20398.76 215
UGNet95.33 17594.57 18397.62 16498.55 15494.85 19298.67 30399.32 2695.75 8396.80 17096.27 28272.18 33599.96 6194.58 20099.05 12998.04 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17694.10 19398.43 11498.55 15495.99 14997.91 33697.31 27690.35 26789.48 27899.22 14285.19 23199.89 9690.40 27398.47 14299.41 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12296.72 11197.00 18898.51 15893.70 22499.71 17098.60 8492.96 17797.09 16098.34 21996.67 2798.85 18892.11 24296.50 18898.44 225
test_vis1_n_192095.44 17295.31 16395.82 22298.50 15988.74 32499.98 1597.30 27797.84 1699.85 999.19 14466.82 36099.97 5398.82 7999.46 10798.76 215
BH-w/o95.71 16495.38 16196.68 19998.49 16092.28 25899.84 12697.50 25792.12 21692.06 24398.79 18684.69 23698.67 20395.29 18199.66 8799.09 197
baseline195.78 16194.86 17798.54 10598.47 16198.07 6799.06 26097.99 20992.68 19294.13 21798.62 20093.28 10898.69 20193.79 21885.76 29598.84 211
iter_conf0596.07 15395.95 14296.44 20798.43 16297.52 8999.91 8496.85 32594.16 13592.49 23897.98 23198.20 497.34 27997.26 14688.29 27494.45 272
EPMVS96.53 13696.01 13398.09 13398.43 16296.12 14796.36 36299.43 2193.53 16197.64 14795.04 32894.41 7098.38 22691.13 25498.11 15499.75 103
sss97.57 8597.03 9999.18 5298.37 16498.04 6999.73 16499.38 2393.46 16398.76 10499.06 15291.21 15399.89 9696.33 16597.01 18099.62 128
testing1197.48 8897.27 8898.10 13198.36 16596.02 14899.92 7998.45 11893.45 16598.15 13398.70 19195.48 4599.22 16797.85 12995.05 22099.07 200
BH-untuned95.18 17694.83 17896.22 21398.36 16591.22 28499.80 14297.32 27590.91 25491.08 25198.67 19383.51 24598.54 20994.23 20799.61 9498.92 206
testing9197.16 10496.90 10397.97 13998.35 16795.67 16399.91 8498.42 14392.91 18097.33 15598.72 18994.81 6299.21 16896.98 15594.63 22399.03 202
testing9997.17 10396.91 10297.95 14098.35 16795.70 16099.91 8498.43 13192.94 17897.36 15498.72 18994.83 6199.21 16897.00 15394.64 22298.95 205
ET-MVSNet_ETH3D94.37 20193.28 21997.64 16198.30 16997.99 7199.99 597.61 24394.35 12571.57 38799.45 11996.23 3195.34 35796.91 16085.14 30299.59 134
AUN-MVS93.28 22992.60 23495.34 23498.29 17090.09 30899.31 23498.56 9291.80 22896.35 18398.00 22889.38 18498.28 23792.46 23769.22 38197.64 241
FMVSNet392.69 24591.58 25495.99 21798.29 17097.42 9799.26 24297.62 24089.80 27689.68 27195.32 31881.62 25996.27 33787.01 31385.65 29694.29 284
PMMVS96.76 12596.76 10996.76 19698.28 17292.10 26299.91 8497.98 21194.12 13799.53 5899.39 12786.93 21398.73 19696.95 15897.73 16199.45 161
hse-mvs294.38 20094.08 19495.31 23698.27 17390.02 31099.29 23998.56 9295.90 7898.77 10298.00 22890.89 16598.26 24197.80 13069.20 38297.64 241
PVSNet_088.03 1991.80 26490.27 27796.38 21098.27 17390.46 30099.94 6999.61 1493.99 14586.26 33397.39 24671.13 34299.89 9698.77 8267.05 38798.79 214
UA-Net96.54 13595.96 14098.27 12298.23 17595.71 15998.00 33498.45 11893.72 15798.41 12099.27 13688.71 19699.66 14691.19 25397.69 16299.44 163
test_cas_vis1_n_192096.59 13496.23 12797.65 16098.22 17694.23 20999.99 597.25 28497.77 1799.58 5499.08 15077.10 29899.97 5397.64 13899.45 10898.74 217
FE-MVS95.70 16695.01 17497.79 15098.21 17794.57 19895.03 37698.69 6888.90 29297.50 15196.19 28492.60 12899.49 16089.99 27897.94 16099.31 178
GG-mvs-BLEND98.54 10598.21 17798.01 7093.87 38198.52 10497.92 13897.92 23399.02 297.94 26098.17 11099.58 9799.67 117
mvs_anonymous95.65 16895.03 17397.53 16798.19 17995.74 15799.33 23197.49 25890.87 25590.47 25897.10 25388.23 19897.16 29195.92 17297.66 16499.68 113
MVS_Test96.46 13895.74 15098.61 9698.18 18097.23 10199.31 23497.15 29391.07 25198.84 9797.05 25788.17 19998.97 18294.39 20297.50 16699.61 131
BH-RMVSNet95.18 17694.31 18997.80 14898.17 18195.23 18299.76 15397.53 25392.52 20494.27 21599.25 14076.84 30398.80 19090.89 26299.54 9999.35 173
RPSCF91.80 26492.79 23088.83 35298.15 18269.87 39098.11 33096.60 34083.93 35394.33 21399.27 13679.60 28199.46 16391.99 24393.16 24397.18 248
ETV-MVS97.92 6697.80 7098.25 12398.14 18396.48 12699.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18999.02 6698.54 14099.46 159
IS-MVSNet96.29 14895.90 14697.45 17198.13 18494.80 19599.08 25597.61 24392.02 22195.54 19998.96 16590.64 16898.08 24993.73 22197.41 17099.47 158
test_fmvsmconf_n98.43 4398.32 4098.78 8498.12 18596.41 12999.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
ab-mvs94.69 18993.42 21398.51 10898.07 18696.26 13696.49 36098.68 7090.31 26894.54 20897.00 25976.30 31099.71 13895.98 17193.38 24199.56 142
XVG-OURS-SEG-HR94.79 18594.70 18295.08 24298.05 18789.19 31999.08 25597.54 25193.66 15894.87 20699.58 10878.78 28999.79 12397.31 14493.40 24096.25 254
EIA-MVS97.53 8697.46 8097.76 15598.04 18894.84 19399.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18698.04 11899.13 12599.59 134
XVG-OURS94.82 18394.74 18195.06 24398.00 18989.19 31999.08 25597.55 24994.10 13894.71 20799.62 10480.51 27399.74 13496.04 17093.06 24596.25 254
dp95.05 17994.43 18596.91 19197.99 19092.73 24896.29 36597.98 21189.70 27795.93 19194.67 34193.83 9598.45 21586.91 31696.53 18799.54 147
tpmrst96.27 15095.98 13697.13 18597.96 19193.15 23796.34 36398.17 19192.07 21798.71 10895.12 32693.91 9098.73 19694.91 19096.62 18599.50 155
TR-MVS94.54 19493.56 20997.49 17097.96 19194.34 20698.71 29897.51 25690.30 26994.51 21098.69 19275.56 31698.77 19392.82 23595.99 19799.35 173
Vis-MVSNet (Re-imp)96.32 14595.98 13697.35 18097.93 19394.82 19499.47 21498.15 19891.83 22595.09 20499.11 14891.37 15297.47 27593.47 22497.43 16799.74 104
MDTV_nov1_ep1395.69 15297.90 19494.15 21195.98 37198.44 12393.12 17497.98 13695.74 29595.10 5198.58 20690.02 27796.92 182
Fast-Effi-MVS+95.02 18094.19 19197.52 16897.88 19594.55 19999.97 2897.08 30188.85 29494.47 21197.96 23284.59 23798.41 21889.84 28097.10 17599.59 134
ADS-MVSNet293.80 21693.88 20093.55 30397.87 19685.94 34894.24 37796.84 32690.07 27196.43 17994.48 34690.29 17495.37 35687.44 30397.23 17299.36 171
ADS-MVSNet94.79 18594.02 19597.11 18797.87 19693.79 22094.24 37798.16 19590.07 27196.43 17994.48 34690.29 17498.19 24487.44 30397.23 17299.36 171
Effi-MVS+96.30 14795.69 15298.16 12697.85 19896.26 13697.41 34397.21 28690.37 26698.65 11198.58 20486.61 21798.70 20097.11 15097.37 17199.52 151
PatchmatchNetpermissive95.94 15795.45 15897.39 17697.83 19994.41 20396.05 36998.40 15292.86 18197.09 16095.28 32394.21 8298.07 25189.26 28498.11 15499.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19293.61 20497.74 15797.82 20096.26 13699.96 3597.78 23185.76 33694.00 21897.54 24176.95 30299.21 16897.23 14795.43 21397.76 240
1112_ss96.01 15695.20 16798.42 11597.80 20196.41 12999.65 18396.66 33792.71 18992.88 23199.40 12592.16 14099.30 16591.92 24593.66 23799.55 143
Test_1112_low_res95.72 16294.83 17898.42 11597.79 20296.41 12999.65 18396.65 33892.70 19092.86 23296.13 28792.15 14199.30 16591.88 24693.64 23899.55 143
Effi-MVS+-dtu94.53 19695.30 16492.22 32597.77 20382.54 36599.59 19397.06 30394.92 10395.29 20295.37 31685.81 22497.89 26194.80 19397.07 17696.23 256
tpm cat193.51 22592.52 23996.47 20397.77 20391.47 28296.13 36798.06 20480.98 36992.91 23093.78 35489.66 17998.87 18687.03 31296.39 19199.09 197
FA-MVS(test-final)95.86 15895.09 17198.15 12997.74 20595.62 16596.31 36498.17 19191.42 24196.26 18496.13 28790.56 16999.47 16292.18 24197.07 17699.35 173
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
EPP-MVSNet96.69 13096.60 11696.96 19097.74 20593.05 24099.37 22798.56 9288.75 29595.83 19499.01 15696.01 3298.56 20796.92 15997.20 17499.25 186
gg-mvs-nofinetune93.51 22591.86 25198.47 11097.72 21097.96 7492.62 38598.51 10774.70 38797.33 15569.59 40098.91 397.79 26497.77 13599.56 9899.67 117
IB-MVS92.85 694.99 18193.94 19898.16 12697.72 21095.69 16299.99 598.81 6094.28 13192.70 23396.90 26195.08 5299.17 17596.07 16973.88 37199.60 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9497.02 10098.59 9997.71 21297.52 8999.97 2898.54 10191.83 22597.45 15299.04 15397.50 899.10 17894.75 19596.37 19299.16 191
Syy-MVS90.00 30390.63 26988.11 35997.68 21374.66 38799.71 17098.35 16590.79 25892.10 24198.67 19379.10 28793.09 37963.35 39395.95 20096.59 252
myMVS_eth3d94.46 19894.76 18093.55 30397.68 21390.97 28699.71 17098.35 16590.79 25892.10 24198.67 19392.46 13493.09 37987.13 30995.95 20096.59 252
test_fmvs1_n94.25 20694.36 18693.92 28997.68 21383.70 36099.90 9196.57 34197.40 2899.67 3998.88 17661.82 37699.92 8898.23 10899.13 12598.14 233
diffmvspermissive97.00 11396.64 11498.09 13397.64 21696.17 14499.81 13897.19 28794.67 11398.95 9299.28 13386.43 21898.76 19498.37 10397.42 16999.33 176
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16295.15 16997.45 17197.62 21794.28 20799.28 24098.24 18394.27 13396.84 16898.94 17279.39 28298.76 19493.25 22698.49 14199.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10696.72 11198.22 12497.60 21896.70 12099.92 7998.54 10191.11 24997.07 16298.97 16397.47 1199.03 18093.73 22196.09 19598.92 206
miper_ehance_all_eth93.16 23292.60 23494.82 25297.57 21993.56 22899.50 20997.07 30288.75 29588.85 29495.52 30690.97 16196.74 31890.77 26484.45 30794.17 292
testing393.92 21194.23 19092.99 31797.54 22090.23 30499.99 599.16 3090.57 26291.33 25098.63 19992.99 11592.52 38382.46 34295.39 21496.22 257
LCM-MVSNet-Re92.31 25392.60 23491.43 33297.53 22179.27 38299.02 26891.83 39692.07 21780.31 36294.38 34983.50 24695.48 35497.22 14897.58 16599.54 147
GBi-Net90.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
test190.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
FMVSNet291.02 27789.56 29195.41 23297.53 22195.74 15798.98 27097.41 26687.05 31988.43 30295.00 33171.34 33996.24 33985.12 32685.21 30194.25 287
tttt051796.85 11996.49 12097.92 14397.48 22595.89 15299.85 12198.54 10190.72 26196.63 17398.93 17497.47 1199.02 18193.03 23395.76 20698.85 210
casdiffmvs_mvgpermissive96.43 13995.94 14397.89 14797.44 22695.47 17099.86 11897.29 28093.35 16696.03 18899.19 14485.39 22998.72 19897.89 12897.04 17899.49 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9697.24 8997.80 14897.41 22795.64 16499.99 597.06 30394.59 11499.63 4499.32 13289.20 19098.14 24698.76 8399.23 12199.62 128
c3_l92.53 24891.87 25094.52 26497.40 22892.99 24299.40 22096.93 31987.86 30988.69 29795.44 31089.95 17796.44 33090.45 27080.69 33894.14 301
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16597.38 22994.40 20599.90 9198.64 7696.47 6399.51 6299.65 10084.99 23499.93 8599.22 5599.09 12798.46 224
CDS-MVSNet96.34 14496.07 13197.13 18597.37 23094.96 19099.53 20497.91 22091.55 23395.37 20198.32 22095.05 5497.13 29493.80 21795.75 20799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12796.26 12698.16 12697.36 23196.48 12699.96 3598.29 17891.93 22295.77 19598.07 22695.54 4298.29 23590.55 26898.89 13199.70 110
miper_lstm_enhance91.81 26191.39 26093.06 31697.34 23289.18 32199.38 22596.79 33186.70 32687.47 31595.22 32490.00 17695.86 35188.26 29481.37 32894.15 298
baseline96.43 13995.98 13697.76 15597.34 23295.17 18699.51 20797.17 29093.92 15096.90 16699.28 13385.37 23098.64 20497.50 14196.86 18499.46 159
cl____92.31 25391.58 25494.52 26497.33 23492.77 24499.57 19796.78 33286.97 32387.56 31395.51 30789.43 18396.62 32388.60 28982.44 32094.16 297
DIV-MVS_self_test92.32 25291.60 25394.47 26897.31 23592.74 24699.58 19596.75 33386.99 32287.64 31195.54 30489.55 18296.50 32788.58 29082.44 32094.17 292
casdiffmvspermissive96.42 14195.97 13997.77 15397.30 23694.98 18999.84 12697.09 30093.75 15696.58 17599.26 13985.07 23298.78 19297.77 13597.04 17899.54 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20393.48 21196.99 18997.29 23793.54 22999.96 3596.72 33588.35 30493.43 22298.94 17282.05 25398.05 25288.12 29896.48 19099.37 170
eth_miper_zixun_eth92.41 25191.93 24893.84 29397.28 23890.68 29498.83 28896.97 31388.57 30089.19 28895.73 29789.24 18996.69 32189.97 27981.55 32694.15 298
MVSFormer96.94 11696.60 11697.95 14097.28 23897.70 8399.55 20197.27 28291.17 24699.43 6799.54 11290.92 16296.89 31194.67 19899.62 9099.25 186
lupinMVS97.85 6997.60 7698.62 9597.28 23897.70 8399.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19998.40 10099.62 9099.45 161
SCA94.69 18993.81 20297.33 18197.10 24194.44 20098.86 28598.32 17293.30 16996.17 18795.59 30276.48 30897.95 25891.06 25697.43 16799.59 134
TAMVS95.85 15995.58 15596.65 20197.07 24293.50 23099.17 24997.82 22991.39 24395.02 20598.01 22792.20 13997.30 28393.75 22095.83 20499.14 194
Fast-Effi-MVS+-dtu93.72 22093.86 20193.29 30897.06 24386.16 34699.80 14296.83 32792.66 19392.58 23597.83 23681.39 26097.67 26989.75 28196.87 18396.05 259
CostFormer96.10 15295.88 14796.78 19597.03 24492.55 25497.08 35197.83 22890.04 27398.72 10794.89 33595.01 5698.29 23596.54 16495.77 20599.50 155
test_fmvsmvis_n_192097.67 8397.59 7897.91 14597.02 24595.34 17699.95 5398.45 11897.87 1597.02 16399.59 10689.64 18099.98 4399.41 4899.34 11698.42 226
test-LLR96.47 13796.04 13297.78 15197.02 24595.44 17199.96 3598.21 18694.07 14095.55 19796.38 27893.90 9198.27 23990.42 27198.83 13599.64 123
test-mter96.39 14295.93 14497.78 15197.02 24595.44 17199.96 3598.21 18691.81 22795.55 19796.38 27895.17 4998.27 23990.42 27198.83 13599.64 123
gm-plane-assit96.97 24893.76 22291.47 23798.96 16598.79 19194.92 188
WB-MVSnew92.90 23992.77 23193.26 31096.95 24993.63 22699.71 17098.16 19591.49 23494.28 21498.14 22381.33 26296.48 32879.47 35795.46 21189.68 380
QAPM95.40 17394.17 19299.10 6696.92 25097.71 8199.40 22098.68 7089.31 28088.94 29298.89 17582.48 25199.96 6193.12 23299.83 7399.62 128
KD-MVS_2432*160088.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
miper_refine_blended88.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
tpm295.47 17195.18 16896.35 21196.91 25191.70 27696.96 35497.93 21688.04 30898.44 11995.40 31293.32 10597.97 25594.00 20995.61 20999.38 168
FMVSNet588.32 31987.47 32190.88 33596.90 25488.39 33297.28 34595.68 36282.60 36384.67 34292.40 36779.83 27991.16 38876.39 37281.51 32793.09 346
3Dnovator+91.53 1196.31 14695.24 16599.52 2896.88 25598.64 5499.72 16798.24 18395.27 9688.42 30498.98 16182.76 25099.94 7797.10 15199.83 7399.96 64
Patchmatch-test92.65 24791.50 25796.10 21696.85 25690.49 29991.50 39097.19 28782.76 36290.23 25995.59 30295.02 5598.00 25477.41 36796.98 18199.82 92
MVS96.60 13395.56 15699.72 1396.85 25699.22 2098.31 32098.94 4191.57 23290.90 25499.61 10586.66 21699.96 6197.36 14399.88 6999.99 23
3Dnovator91.47 1296.28 14995.34 16299.08 6796.82 25897.47 9599.45 21798.81 6095.52 9089.39 27999.00 15881.97 25499.95 6997.27 14599.83 7399.84 90
EI-MVSNet93.73 21993.40 21694.74 25396.80 25992.69 24999.06 26097.67 23688.96 28991.39 24799.02 15488.75 19597.30 28391.07 25587.85 28194.22 288
CVMVSNet94.68 19194.94 17693.89 29296.80 25986.92 34499.06 26098.98 3894.45 11794.23 21699.02 15485.60 22595.31 35890.91 26195.39 21499.43 164
IterMVS-LS92.69 24592.11 24494.43 27296.80 25992.74 24699.45 21796.89 32288.98 28789.65 27495.38 31588.77 19496.34 33490.98 25982.04 32394.22 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27990.17 28193.12 31396.78 26290.42 30298.89 27997.05 30589.03 28486.49 32895.42 31176.59 30695.02 36087.22 30884.09 31093.93 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 12095.96 14099.48 3496.74 26398.52 5898.31 32098.86 5395.82 8089.91 26598.98 16187.49 20499.96 6197.80 13099.73 8399.96 64
IterMVS-SCA-FT90.85 28290.16 28292.93 31896.72 26489.96 31198.89 27996.99 30988.95 29086.63 32595.67 29876.48 30895.00 36187.04 31184.04 31393.84 325
MVS-HIRNet86.22 32983.19 34295.31 23696.71 26590.29 30392.12 38797.33 27462.85 39486.82 32270.37 39969.37 34797.49 27475.12 37497.99 15998.15 231
VDDNet93.12 23491.91 24996.76 19696.67 26692.65 25298.69 30198.21 18682.81 36197.75 14699.28 13361.57 37799.48 16198.09 11694.09 23298.15 231
dmvs_re93.20 23193.15 22193.34 30696.54 26783.81 35998.71 29898.51 10791.39 24392.37 23998.56 20678.66 29197.83 26393.89 21189.74 25098.38 227
MIMVSNet90.30 29588.67 30995.17 24196.45 26891.64 27892.39 38697.15 29385.99 33390.50 25793.19 36166.95 35994.86 36482.01 34693.43 23999.01 204
CR-MVSNet93.45 22892.62 23395.94 21896.29 26992.66 25092.01 38896.23 35192.62 19596.94 16493.31 35991.04 15996.03 34779.23 35895.96 19899.13 195
RPMNet89.76 30787.28 32297.19 18496.29 26992.66 25092.01 38898.31 17470.19 39396.94 16485.87 39287.25 20899.78 12562.69 39495.96 19899.13 195
tt080591.28 27290.18 28094.60 25996.26 27187.55 33898.39 31898.72 6589.00 28689.22 28598.47 21462.98 37398.96 18390.57 26788.00 28097.28 247
Patchmtry89.70 30888.49 31193.33 30796.24 27289.94 31491.37 39196.23 35178.22 37787.69 31093.31 35991.04 15996.03 34780.18 35682.10 32294.02 308
test_vis1_rt86.87 32786.05 32989.34 34896.12 27378.07 38399.87 10683.54 40792.03 22078.21 37289.51 37845.80 39399.91 8996.25 16793.11 24490.03 377
JIA-IIPM91.76 26790.70 26794.94 24796.11 27487.51 33993.16 38498.13 20075.79 38397.58 14877.68 39792.84 12097.97 25588.47 29396.54 18699.33 176
OpenMVScopyleft90.15 1594.77 18793.59 20798.33 11996.07 27597.48 9499.56 19998.57 8990.46 26486.51 32798.95 17078.57 29299.94 7793.86 21299.74 8297.57 245
PAPM98.60 3098.42 3199.14 6196.05 27698.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 21099.45 4599.89 6799.96 64
CLD-MVS94.06 21093.90 19994.55 26396.02 27790.69 29399.98 1597.72 23296.62 5891.05 25398.85 18477.21 29798.47 21198.11 11489.51 25694.48 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29288.75 30895.25 23895.99 27890.16 30691.22 39297.54 25176.80 37997.26 15786.01 39191.88 14696.07 34666.16 39095.91 20299.51 153
ACMH+89.98 1690.35 29389.54 29292.78 32195.99 27886.12 34798.81 29097.18 28989.38 27983.14 34997.76 23868.42 35498.43 21689.11 28586.05 29493.78 328
DeepMVS_CXcopyleft82.92 36995.98 28058.66 40096.01 35692.72 18878.34 37195.51 30758.29 38298.08 24982.57 34185.29 29992.03 362
ACMP92.05 992.74 24392.42 24193.73 29595.91 28188.72 32599.81 13897.53 25394.13 13687.00 32198.23 22174.07 32998.47 21196.22 16888.86 26393.99 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22393.03 22395.35 23395.86 28286.94 34399.87 10696.36 34896.85 4699.54 5798.79 18652.41 38999.83 11898.64 9198.97 13099.29 182
HQP-NCC95.78 28399.87 10696.82 4893.37 223
ACMP_Plane95.78 28399.87 10696.82 4893.37 223
HQP-MVS94.61 19394.50 18494.92 24895.78 28391.85 26899.87 10697.89 22196.82 4893.37 22398.65 19680.65 27198.39 22297.92 12589.60 25194.53 262
NP-MVS95.77 28691.79 27098.65 196
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9495.76 28796.20 14199.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
plane_prior695.76 28791.72 27580.47 275
ACMM91.95 1092.88 24092.52 23993.98 28895.75 28989.08 32299.77 14897.52 25593.00 17689.95 26497.99 23076.17 31298.46 21493.63 22388.87 26294.39 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21392.84 22796.80 19495.73 29093.57 22799.88 10397.24 28592.57 20092.92 22996.66 27078.73 29097.67 26987.75 30194.06 23399.17 190
plane_prior195.73 290
jason97.24 10096.86 10598.38 11895.73 29097.32 9999.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20797.94 12499.47 10599.25 186
jason: jason.
HQP_MVS94.49 19794.36 18694.87 24995.71 29391.74 27299.84 12697.87 22396.38 6793.01 22798.59 20180.47 27598.37 22897.79 13389.55 25494.52 264
plane_prior795.71 29391.59 280
ITE_SJBPF92.38 32395.69 29585.14 35295.71 36192.81 18489.33 28298.11 22470.23 34598.42 21785.91 32288.16 27793.59 336
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16395.65 29694.21 21099.83 13398.50 11296.27 7299.65 4199.64 10184.72 23599.93 8599.04 6398.84 13498.74 217
ACMH89.72 1790.64 28689.63 28993.66 30195.64 29788.64 32898.55 30797.45 26089.03 28481.62 35697.61 24069.75 34698.41 21889.37 28287.62 28593.92 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12996.49 12097.37 17795.63 29895.96 15099.74 15998.88 5192.94 17891.61 24598.97 16397.72 698.62 20594.83 19298.08 15797.53 246
FMVSNet188.50 31886.64 32494.08 28195.62 29991.97 26398.43 31496.95 31483.00 35986.08 33594.72 33759.09 38196.11 34281.82 34884.07 31194.17 292
LPG-MVS_test92.96 23792.71 23293.71 29795.43 30088.67 32699.75 15697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
LGP-MVS_train93.71 29795.43 30088.67 32697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
tpm93.70 22193.41 21594.58 26195.36 30287.41 34097.01 35296.90 32190.85 25696.72 17294.14 35190.40 17296.84 31490.75 26588.54 27199.51 153
D2MVS92.76 24292.59 23793.27 30995.13 30389.54 31899.69 17599.38 2392.26 21387.59 31294.61 34385.05 23397.79 26491.59 24988.01 27992.47 357
VPA-MVSNet92.70 24491.55 25696.16 21495.09 30496.20 14198.88 28199.00 3691.02 25391.82 24495.29 32276.05 31497.96 25795.62 17881.19 32994.30 283
LTVRE_ROB88.28 1890.29 29689.05 30394.02 28495.08 30590.15 30797.19 34797.43 26284.91 34883.99 34597.06 25674.00 33098.28 23784.08 33187.71 28393.62 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32486.51 32591.94 32895.05 30685.57 35097.65 34094.08 38384.40 35181.82 35596.85 26562.14 37598.33 23180.25 35586.37 29391.91 364
test0.0.03 193.86 21293.61 20494.64 25795.02 30792.18 26199.93 7698.58 8794.07 14087.96 30898.50 20993.90 9194.96 36281.33 34993.17 24296.78 249
UniMVSNet (Re)93.07 23692.13 24395.88 21994.84 30896.24 14099.88 10398.98 3892.49 20689.25 28395.40 31287.09 21097.14 29393.13 23178.16 35294.26 285
USDC90.00 30388.96 30493.10 31594.81 30988.16 33498.71 29895.54 36693.66 15883.75 34797.20 25065.58 36498.31 23383.96 33487.49 28792.85 351
VPNet91.81 26190.46 27195.85 22194.74 31095.54 16898.98 27098.59 8692.14 21590.77 25697.44 24368.73 35197.54 27394.89 19177.89 35494.46 267
FIs94.10 20893.43 21296.11 21594.70 31196.82 11799.58 19598.93 4592.54 20189.34 28197.31 24787.62 20397.10 29794.22 20886.58 29194.40 274
UniMVSNet_ETH3D90.06 30288.58 31094.49 26794.67 31288.09 33597.81 33997.57 24883.91 35488.44 30097.41 24457.44 38397.62 27191.41 25088.59 27097.77 239
UniMVSNet_NR-MVSNet92.95 23892.11 24495.49 22794.61 31395.28 17999.83 13399.08 3391.49 23489.21 28696.86 26487.14 20996.73 31993.20 22777.52 35794.46 267
test_fmvs289.47 31189.70 28888.77 35594.54 31475.74 38499.83 13394.70 37994.71 11091.08 25196.82 26954.46 38697.78 26692.87 23488.27 27592.80 352
WR-MVS92.31 25391.25 26195.48 23094.45 31595.29 17899.60 19298.68 7090.10 27088.07 30796.89 26280.68 27096.80 31793.14 23079.67 34594.36 278
nrg03093.51 22592.53 23896.45 20594.36 31697.20 10299.81 13897.16 29291.60 23189.86 26797.46 24286.37 21997.68 26895.88 17380.31 34194.46 267
tfpnnormal89.29 31487.61 32094.34 27594.35 31794.13 21298.95 27498.94 4183.94 35284.47 34395.51 30774.84 32497.39 27677.05 37080.41 33991.48 367
FC-MVSNet-test93.81 21593.15 22195.80 22394.30 31896.20 14199.42 21998.89 4992.33 21289.03 29197.27 24987.39 20696.83 31593.20 22786.48 29294.36 278
MS-PatchMatch90.65 28590.30 27691.71 33194.22 31985.50 35198.24 32397.70 23388.67 29786.42 33096.37 28067.82 35698.03 25383.62 33699.62 9091.60 365
WR-MVS_H91.30 27090.35 27494.15 27894.17 32092.62 25399.17 24998.94 4188.87 29386.48 32994.46 34884.36 23996.61 32488.19 29578.51 35093.21 345
DU-MVS92.46 25091.45 25995.49 22794.05 32195.28 17999.81 13898.74 6492.25 21489.21 28696.64 27281.66 25796.73 31993.20 22777.52 35794.46 267
NR-MVSNet91.56 26990.22 27895.60 22594.05 32195.76 15698.25 32298.70 6791.16 24880.78 36196.64 27283.23 24996.57 32591.41 25077.73 35694.46 267
CP-MVSNet91.23 27490.22 27894.26 27693.96 32392.39 25799.09 25398.57 8988.95 29086.42 33096.57 27579.19 28596.37 33290.29 27478.95 34794.02 308
XXY-MVS91.82 26090.46 27195.88 21993.91 32495.40 17598.87 28497.69 23488.63 29987.87 30997.08 25474.38 32897.89 26191.66 24884.07 31194.35 281
PS-CasMVS90.63 28789.51 29493.99 28793.83 32591.70 27698.98 27098.52 10488.48 30186.15 33496.53 27775.46 31796.31 33688.83 28778.86 34993.95 316
test_040285.58 33183.94 33690.50 33993.81 32685.04 35398.55 30795.20 37376.01 38179.72 36695.13 32564.15 37096.26 33866.04 39186.88 29090.21 376
XVG-ACMP-BASELINE91.22 27590.75 26692.63 32293.73 32785.61 34998.52 31197.44 26192.77 18789.90 26696.85 26566.64 36198.39 22292.29 23988.61 26893.89 321
TranMVSNet+NR-MVSNet91.68 26890.61 27094.87 24993.69 32893.98 21799.69 17598.65 7491.03 25288.44 30096.83 26880.05 27896.18 34090.26 27576.89 36594.45 272
mvsmamba94.10 20893.72 20395.25 23893.57 32994.13 21299.67 17996.45 34693.63 16091.34 24997.77 23786.29 22197.22 28996.65 16388.10 27894.40 274
TransMVSNet (Re)87.25 32585.28 33293.16 31293.56 33091.03 28598.54 30994.05 38583.69 35681.09 35996.16 28575.32 31896.40 33176.69 37168.41 38392.06 361
v1090.25 29788.82 30694.57 26293.53 33193.43 23299.08 25596.87 32485.00 34587.34 31994.51 34480.93 26797.02 30682.85 34079.23 34693.26 343
testgi89.01 31688.04 31791.90 32993.49 33284.89 35599.73 16495.66 36393.89 15385.14 34098.17 22259.68 38094.66 36677.73 36688.88 26196.16 258
v890.54 28989.17 29994.66 25693.43 33393.40 23499.20 24696.94 31885.76 33687.56 31394.51 34481.96 25597.19 29084.94 32878.25 35193.38 341
V4291.28 27290.12 28394.74 25393.42 33493.46 23199.68 17797.02 30687.36 31589.85 26995.05 32781.31 26397.34 27987.34 30680.07 34393.40 339
pm-mvs189.36 31387.81 31994.01 28593.40 33591.93 26698.62 30696.48 34586.25 33183.86 34696.14 28673.68 33197.04 30286.16 31975.73 36993.04 348
RRT_MVS93.14 23392.92 22693.78 29493.31 33690.04 30999.66 18197.69 23492.53 20288.91 29397.76 23884.36 23996.93 30995.10 18386.99 28994.37 277
v114491.09 27689.83 28594.87 24993.25 33793.69 22599.62 19096.98 31186.83 32589.64 27594.99 33280.94 26697.05 30085.08 32781.16 33093.87 323
v119290.62 28889.25 29894.72 25593.13 33893.07 23899.50 20997.02 30686.33 33089.56 27795.01 32979.22 28497.09 29982.34 34481.16 33094.01 310
v2v48291.30 27090.07 28495.01 24493.13 33893.79 22099.77 14897.02 30688.05 30789.25 28395.37 31680.73 26997.15 29287.28 30780.04 34494.09 304
OPM-MVS93.21 23092.80 22994.44 27093.12 34090.85 29299.77 14897.61 24396.19 7591.56 24698.65 19675.16 32398.47 21193.78 21989.39 25793.99 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28389.52 29394.59 26093.11 34192.77 24499.56 19996.99 30986.38 32989.82 27094.95 33480.50 27497.10 29783.98 33380.41 33993.90 320
PEN-MVS90.19 29989.06 30293.57 30293.06 34290.90 29099.06 26098.47 11588.11 30685.91 33696.30 28176.67 30495.94 35087.07 31076.91 36493.89 321
v124090.20 29888.79 30794.44 27093.05 34392.27 25999.38 22596.92 32085.89 33489.36 28094.87 33677.89 29697.03 30480.66 35281.08 33394.01 310
v14890.70 28489.63 28993.92 28992.97 34490.97 28699.75 15696.89 32287.51 31288.27 30595.01 32981.67 25697.04 30287.40 30577.17 36293.75 329
v192192090.46 29089.12 30094.50 26692.96 34592.46 25599.49 21196.98 31186.10 33289.61 27695.30 31978.55 29397.03 30482.17 34580.89 33794.01 310
Baseline_NR-MVSNet90.33 29489.51 29492.81 32092.84 34689.95 31299.77 14893.94 38684.69 35089.04 29095.66 29981.66 25796.52 32690.99 25876.98 36391.97 363
test_method80.79 35179.70 35584.08 36692.83 34767.06 39299.51 20795.42 36754.34 39881.07 36093.53 35644.48 39492.22 38578.90 36277.23 36192.94 349
pmmvs492.10 25791.07 26495.18 24092.82 34894.96 19099.48 21396.83 32787.45 31488.66 29896.56 27683.78 24496.83 31589.29 28384.77 30593.75 329
LF4IMVS89.25 31588.85 30590.45 34192.81 34981.19 37598.12 32994.79 37691.44 23886.29 33297.11 25265.30 36798.11 24888.53 29285.25 30092.07 360
DTE-MVSNet89.40 31288.24 31592.88 31992.66 35089.95 31299.10 25298.22 18587.29 31685.12 34196.22 28376.27 31195.30 35983.56 33775.74 36893.41 338
EU-MVSNet90.14 30190.34 27589.54 34792.55 35181.06 37698.69 30198.04 20791.41 24286.59 32696.84 26780.83 26893.31 37886.20 31881.91 32494.26 285
APD_test181.15 35080.92 35181.86 37092.45 35259.76 39996.04 37093.61 38973.29 39077.06 37596.64 27244.28 39596.16 34172.35 37882.52 31889.67 381
our_test_390.39 29189.48 29693.12 31392.40 35389.57 31799.33 23196.35 34987.84 31085.30 33994.99 33284.14 24296.09 34580.38 35384.56 30693.71 334
ppachtmachnet_test89.58 31088.35 31393.25 31192.40 35390.44 30199.33 23196.73 33485.49 34185.90 33795.77 29481.09 26596.00 34976.00 37382.49 31993.30 342
v7n89.65 30988.29 31493.72 29692.22 35590.56 29899.07 25997.10 29885.42 34386.73 32394.72 33780.06 27797.13 29481.14 35078.12 35393.49 337
dmvs_testset83.79 34486.07 32876.94 37492.14 35648.60 40996.75 35790.27 39989.48 27878.65 36998.55 20879.25 28386.65 39766.85 38882.69 31795.57 260
PS-MVSNAJss93.64 22293.31 21894.61 25892.11 35792.19 26099.12 25197.38 26892.51 20588.45 29996.99 26091.20 15497.29 28694.36 20387.71 28394.36 278
pmmvs590.17 30089.09 30193.40 30592.10 35889.77 31599.74 15995.58 36585.88 33587.24 32095.74 29573.41 33296.48 32888.54 29183.56 31493.95 316
N_pmnet80.06 35480.78 35277.89 37391.94 35945.28 41198.80 29256.82 41378.10 37880.08 36493.33 35777.03 29995.76 35268.14 38682.81 31692.64 353
test_djsdf92.83 24192.29 24294.47 26891.90 36092.46 25599.55 20197.27 28291.17 24689.96 26396.07 29081.10 26496.89 31194.67 19888.91 26094.05 307
SixPastTwentyTwo88.73 31788.01 31890.88 33591.85 36182.24 36798.22 32695.18 37488.97 28882.26 35296.89 26271.75 33796.67 32284.00 33282.98 31593.72 333
K. test v388.05 32187.24 32390.47 34091.82 36282.23 36898.96 27397.42 26489.05 28376.93 37795.60 30168.49 35395.42 35585.87 32381.01 33593.75 329
OurMVSNet-221017-089.81 30689.48 29690.83 33791.64 36381.21 37498.17 32895.38 36991.48 23685.65 33897.31 24772.66 33397.29 28688.15 29684.83 30493.97 315
mvs_tets91.81 26191.08 26394.00 28691.63 36490.58 29798.67 30397.43 26292.43 20787.37 31897.05 25771.76 33697.32 28294.75 19588.68 26794.11 303
Gipumacopyleft66.95 36765.00 36772.79 37991.52 36567.96 39166.16 40295.15 37547.89 40058.54 39767.99 40229.74 39987.54 39650.20 40177.83 35562.87 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14295.74 15098.32 12091.47 36695.56 16799.84 12697.30 27797.74 1897.89 14099.35 13179.62 28099.85 10899.25 5499.24 12099.55 143
jajsoiax91.92 25991.18 26294.15 27891.35 36790.95 28999.00 26997.42 26492.61 19687.38 31797.08 25472.46 33497.36 27794.53 20188.77 26494.13 302
MDA-MVSNet-bldmvs84.09 34281.52 34991.81 33091.32 36888.00 33798.67 30395.92 35880.22 37255.60 40093.32 35868.29 35593.60 37673.76 37576.61 36693.82 327
MVP-Stereo90.93 27890.45 27392.37 32491.25 36988.76 32398.05 33396.17 35387.27 31784.04 34495.30 31978.46 29497.27 28883.78 33599.70 8591.09 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33383.32 34192.10 32690.96 37088.58 32999.20 24696.52 34379.70 37457.12 39992.69 36379.11 28693.86 37377.10 36977.46 35993.86 324
YYNet185.50 33483.33 34092.00 32790.89 37188.38 33399.22 24596.55 34279.60 37557.26 39892.72 36279.09 28893.78 37477.25 36877.37 36093.84 325
anonymousdsp91.79 26690.92 26594.41 27390.76 37292.93 24398.93 27697.17 29089.08 28287.46 31695.30 31978.43 29596.92 31092.38 23888.73 26593.39 340
lessismore_v090.53 33890.58 37380.90 37795.80 35977.01 37695.84 29266.15 36396.95 30783.03 33975.05 37093.74 332
EG-PatchMatch MVS85.35 33583.81 33889.99 34590.39 37481.89 37098.21 32796.09 35581.78 36674.73 38393.72 35551.56 39197.12 29679.16 36188.61 26890.96 370
EGC-MVSNET69.38 36063.76 37086.26 36390.32 37581.66 37396.24 36693.85 3870.99 4103.22 41192.33 36852.44 38892.92 38159.53 39784.90 30384.21 391
CMPMVSbinary61.59 2184.75 33885.14 33383.57 36790.32 37562.54 39596.98 35397.59 24774.33 38869.95 38996.66 27064.17 36998.32 23287.88 30088.41 27389.84 379
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 34182.92 34489.21 34990.03 37782.60 36496.89 35695.62 36480.59 37075.77 38289.17 37965.04 36894.79 36572.12 37981.02 33490.23 375
pmmvs685.69 33083.84 33791.26 33490.00 37884.41 35797.82 33896.15 35475.86 38281.29 35895.39 31461.21 37896.87 31383.52 33873.29 37292.50 356
DSMNet-mixed88.28 32088.24 31588.42 35789.64 37975.38 38698.06 33289.86 40085.59 34088.20 30692.14 36976.15 31391.95 38678.46 36396.05 19697.92 235
UnsupCasMVSNet_eth85.52 33283.99 33490.10 34389.36 38083.51 36196.65 35897.99 20989.14 28175.89 38193.83 35363.25 37293.92 37181.92 34767.90 38692.88 350
Anonymous2023120686.32 32885.42 33189.02 35189.11 38180.53 38099.05 26495.28 37085.43 34282.82 35093.92 35274.40 32793.44 37766.99 38781.83 32593.08 347
Anonymous2024052185.15 33683.81 33889.16 35088.32 38282.69 36398.80 29295.74 36079.72 37381.53 35790.99 37265.38 36694.16 36972.69 37781.11 33290.63 373
OpenMVS_ROBcopyleft79.82 2083.77 34581.68 34890.03 34488.30 38382.82 36298.46 31295.22 37273.92 38976.00 38091.29 37155.00 38596.94 30868.40 38588.51 27290.34 374
test20.0384.72 33983.99 33486.91 36188.19 38480.62 37998.88 28195.94 35788.36 30378.87 36794.62 34268.75 35089.11 39266.52 38975.82 36791.00 369
KD-MVS_self_test83.59 34682.06 34688.20 35886.93 38580.70 37897.21 34696.38 34782.87 36082.49 35188.97 38067.63 35792.32 38473.75 37662.30 39591.58 366
MIMVSNet182.58 34780.51 35388.78 35386.68 38684.20 35896.65 35895.41 36878.75 37678.59 37092.44 36451.88 39089.76 39165.26 39278.95 34792.38 359
CL-MVSNet_self_test84.50 34083.15 34388.53 35686.00 38781.79 37198.82 28997.35 27085.12 34483.62 34890.91 37476.66 30591.40 38769.53 38360.36 39692.40 358
UnsupCasMVSNet_bld79.97 35677.03 36188.78 35385.62 38881.98 36993.66 38297.35 27075.51 38570.79 38883.05 39448.70 39294.91 36378.31 36460.29 39789.46 384
Patchmatch-RL test86.90 32685.98 33089.67 34684.45 38975.59 38589.71 39592.43 39386.89 32477.83 37490.94 37394.22 8093.63 37587.75 30169.61 37899.79 97
pmmvs-eth3d84.03 34381.97 34790.20 34284.15 39087.09 34298.10 33194.73 37883.05 35874.10 38587.77 38665.56 36594.01 37081.08 35169.24 38089.49 383
test_fmvs379.99 35580.17 35479.45 37284.02 39162.83 39399.05 26493.49 39088.29 30580.06 36586.65 38928.09 40188.00 39388.63 28873.27 37387.54 389
PM-MVS80.47 35278.88 35785.26 36483.79 39272.22 38895.89 37391.08 39785.71 33976.56 37988.30 38236.64 39793.90 37282.39 34369.57 37989.66 382
new-patchmatchnet81.19 34979.34 35686.76 36282.86 39380.36 38197.92 33595.27 37182.09 36572.02 38686.87 38862.81 37490.74 39071.10 38063.08 39389.19 386
mvsany_test382.12 34881.14 35085.06 36581.87 39470.41 38997.09 35092.14 39491.27 24577.84 37388.73 38139.31 39695.49 35390.75 26571.24 37589.29 385
WB-MVS76.28 35877.28 36073.29 37881.18 39554.68 40397.87 33794.19 38281.30 36769.43 39090.70 37577.02 30082.06 40135.71 40668.11 38583.13 392
test_f78.40 35777.59 35980.81 37180.82 39662.48 39696.96 35493.08 39283.44 35774.57 38484.57 39327.95 40292.63 38284.15 33072.79 37487.32 390
SSC-MVS75.42 35976.40 36272.49 38280.68 39753.62 40497.42 34294.06 38480.42 37168.75 39190.14 37776.54 30781.66 40233.25 40766.34 38982.19 393
pmmvs380.27 35377.77 35887.76 36080.32 39882.43 36698.23 32591.97 39572.74 39178.75 36887.97 38557.30 38490.99 38970.31 38162.37 39489.87 378
testf168.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
APD_test268.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
ambc83.23 36877.17 40162.61 39487.38 39794.55 38176.72 37886.65 38930.16 39896.36 33384.85 32969.86 37790.73 372
test_vis3_rt68.82 36166.69 36675.21 37776.24 40260.41 39896.44 36168.71 41275.13 38650.54 40369.52 40116.42 41196.32 33580.27 35466.92 38868.89 399
TDRefinement84.76 33782.56 34591.38 33374.58 40384.80 35697.36 34494.56 38084.73 34980.21 36396.12 28963.56 37198.39 22287.92 29963.97 39290.95 371
E-PMN52.30 37152.18 37352.67 38871.51 40445.40 41093.62 38376.60 41036.01 40443.50 40564.13 40427.11 40367.31 40731.06 40826.06 40345.30 406
EMVS51.44 37351.22 37552.11 38970.71 40544.97 41294.04 37975.66 41135.34 40642.40 40661.56 40728.93 40065.87 40827.64 40924.73 40445.49 405
PMMVS267.15 36664.15 36976.14 37670.56 40662.07 39793.89 38087.52 40458.09 39560.02 39478.32 39622.38 40584.54 39959.56 39647.03 40181.80 394
FPMVS68.72 36268.72 36368.71 38465.95 40744.27 41395.97 37294.74 37751.13 39953.26 40190.50 37625.11 40483.00 40060.80 39580.97 33678.87 397
wuyk23d20.37 37720.84 38018.99 39265.34 40827.73 41550.43 4037.67 4169.50 4098.01 4106.34 4106.13 41426.24 40923.40 41010.69 4082.99 407
LCM-MVSNet67.77 36564.73 36876.87 37562.95 40956.25 40289.37 39693.74 38844.53 40161.99 39380.74 39520.42 40886.53 39869.37 38459.50 39887.84 387
MVEpermissive53.74 2251.54 37247.86 37662.60 38659.56 41050.93 40579.41 40077.69 40935.69 40536.27 40761.76 4065.79 41569.63 40537.97 40536.61 40267.24 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36952.24 37267.66 38549.27 41156.82 40183.94 39882.02 40870.47 39233.28 40864.54 40317.23 41069.16 40645.59 40323.85 40577.02 398
tmp_tt65.23 36862.94 37172.13 38344.90 41250.03 40881.05 39989.42 40338.45 40248.51 40499.90 1854.09 38778.70 40491.84 24718.26 40687.64 388
PMVScopyleft49.05 2353.75 37051.34 37460.97 38740.80 41334.68 41474.82 40189.62 40237.55 40328.67 40972.12 3987.09 41381.63 40343.17 40468.21 38466.59 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37539.14 37833.31 39019.94 41424.83 41698.36 3199.75 41515.53 40851.31 40287.14 38719.62 40917.74 41047.10 4023.47 40957.36 403
testmvs40.60 37444.45 37729.05 39119.49 41514.11 41799.68 17718.47 41420.74 40764.59 39298.48 21310.95 41217.09 41156.66 40011.01 40755.94 404
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.02 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.43 37631.24 3790.00 3930.00 4160.00 4180.00 40498.09 2010.00 4110.00 41299.67 9683.37 2470.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.60 37910.13 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41291.20 1540.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.28 37811.04 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.40 1250.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.97 28686.10 321
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
GSMVS99.59 134
sam_mvs194.72 6499.59 134
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37459.23 40893.20 11197.74 26791.06 256
test_post63.35 40594.43 6998.13 247
patchmatchnet-post91.70 37095.12 5097.95 258
MTMP99.87 10696.49 344
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6899.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
旧先验299.46 21694.21 13499.85 999.95 6996.96 157
新几何299.40 220
无先验99.49 21198.71 6693.46 163100.00 194.36 20399.99 23
原ACMM299.90 91
testdata299.99 3690.54 269
segment_acmp96.68 25
testdata199.28 24096.35 71
plane_prior597.87 22398.37 22897.79 13389.55 25494.52 264
plane_prior498.59 201
plane_prior391.64 27896.63 5693.01 227
plane_prior299.84 12696.38 67
plane_prior91.74 27299.86 11896.76 5289.59 253
n20.00 417
nn0.00 417
door-mid89.69 401
test1198.44 123
door90.31 398
HQP5-MVS91.85 268
BP-MVS97.92 125
HQP4-MVS93.37 22398.39 22294.53 262
HQP3-MVS97.89 22189.60 251
HQP2-MVS80.65 271
MDTV_nov1_ep13_2view96.26 13696.11 36891.89 22398.06 13494.40 7194.30 20599.67 117
ACMMP++_ref87.04 288
ACMMP++88.23 276
Test By Simon92.82 122