| AdaColmap |  | | 97.23 111 | 96.80 119 | 98.51 116 | 99.99 1 | 95.60 177 | 99.09 263 | 98.84 59 | 93.32 174 | 96.74 183 | 99.72 84 | 86.04 236 | 100.00 1 | 98.01 130 | 99.43 115 | 99.94 78 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 69 | 98.20 8 | 99.93 1 | 99.98 2 | 96.82 24 | 100.00 1 | 99.75 32 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 29 | 98.64 77 | 98.47 3 | 99.13 91 | 99.92 13 | 96.38 34 | 100.00 1 | 99.74 34 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 50 | 98.20 49 | 98.97 81 | 99.97 3 | 96.92 122 | 99.95 55 | 98.38 164 | 95.04 103 | 98.61 121 | 99.80 54 | 93.39 111 | 100.00 1 | 98.64 98 | 100.00 1 | 99.98 51 |
|
| CPTT-MVS | | | 97.64 92 | 97.32 95 | 98.58 107 | 99.97 3 | 95.77 166 | 99.96 36 | 98.35 170 | 89.90 285 | 98.36 133 | 99.79 58 | 91.18 167 | 99.99 36 | 98.37 113 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 48 | 98.02 61 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 82 | 98.44 128 | 92.06 227 | 98.40 132 | 99.84 44 | 95.68 44 | 100.00 1 | 98.19 120 | 99.71 88 | 99.97 61 |
|
| PAPR | | | 98.52 38 | 98.16 53 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 55 | 98.43 136 | 95.35 97 | 98.03 145 | 99.75 72 | 94.03 97 | 99.98 47 | 98.11 125 | 99.83 77 | 99.99 23 |
|
| HFP-MVS | | | 98.56 35 | 98.37 39 | 99.14 61 | 99.96 8 | 97.43 101 | 99.95 55 | 98.61 83 | 94.77 112 | 99.31 80 | 99.85 33 | 94.22 90 | 100.00 1 | 98.70 93 | 99.98 32 | 99.98 51 |
|
| region2R | | | 98.54 36 | 98.37 39 | 99.05 71 | 99.96 8 | 97.18 110 | 99.96 36 | 98.55 100 | 94.87 110 | 99.45 67 | 99.85 33 | 94.07 96 | 100.00 1 | 98.67 95 | 100.00 1 | 99.98 51 |
|
| ACMMPR | | | 98.50 39 | 98.32 43 | 99.05 71 | 99.96 8 | 97.18 110 | 99.95 55 | 98.60 85 | 94.77 112 | 99.31 80 | 99.84 44 | 93.73 106 | 100.00 1 | 98.70 93 | 99.98 32 | 99.98 51 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 15 | 99.96 8 | 99.15 22 | 99.97 29 | 98.62 82 | 98.02 15 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 44 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 43 | 98.32 43 | 98.87 86 | 99.96 8 | 96.62 132 | 99.97 29 | 98.39 160 | 94.43 127 | 98.90 103 | 99.87 27 | 94.30 87 | 100.00 1 | 99.04 69 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 153 | 96.63 62 | 99.75 29 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 55 | 98.43 136 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 29 | 98.55 28 | 99.15 59 | 99.94 13 | 97.50 97 | 99.94 72 | 98.42 148 | 96.22 77 | 99.41 72 | 99.78 62 | 94.34 84 | 99.96 65 | 98.92 78 | 99.95 50 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 225 | 92.06 258 | 99.15 59 | 99.94 13 | 97.50 97 | 99.94 72 | 98.42 148 | 96.22 77 | 99.41 72 | 41.37 426 | 94.34 84 | 99.96 65 | 98.92 78 | 99.95 50 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 75 | | | | | 99.80 126 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 42 | 99.80 17 | 99.94 4 | 95.92 40 | 100.00 1 | 99.51 45 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 89 | 98.39 160 | 97.20 40 | 99.46 66 | 99.85 33 | 95.53 48 | 99.79 128 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 62 | 97.97 64 | 99.03 73 | 99.94 13 | 97.17 113 | 99.95 55 | 98.39 160 | 94.70 116 | 98.26 139 | 99.81 53 | 91.84 158 | 100.00 1 | 98.85 84 | 99.97 42 | 99.93 79 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 31 | 98.36 41 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 110 | 98.33 175 | 93.97 152 | 99.76 28 | 99.87 27 | 94.99 62 | 99.75 137 | 98.55 102 | 100.00 1 | 99.98 51 |
|
| PAPM_NR | | | 98.12 65 | 97.93 69 | 98.70 96 | 99.94 13 | 96.13 156 | 99.82 139 | 98.43 136 | 94.56 120 | 97.52 159 | 99.70 88 | 94.40 79 | 99.98 47 | 97.00 164 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 19 | 98.65 24 | 99.68 16 | 99.94 13 | 99.07 24 | 99.64 192 | 99.44 19 | 97.33 33 | 99.00 99 | 99.72 84 | 94.03 97 | 99.98 47 | 98.73 92 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 36 | 98.43 136 | 97.27 36 | 99.80 17 | 99.94 4 | 96.71 27 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 153 | 97.71 21 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 136 | 97.26 38 | 99.80 17 | 99.88 24 | 96.71 27 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 55 | 98.32 177 | 97.28 34 | 99.83 13 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 87 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 36 | 98.42 148 | 97.28 34 | 99.86 7 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 80 | 99.93 24 | 97.24 107 | 99.95 55 | 98.42 148 | 97.50 28 | 99.52 62 | 99.88 24 | 97.43 16 | 99.71 143 | 99.50 46 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 136 | | 99.63 46 | | | 99.85 113 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 91 | 99.95 55 | 98.36 168 | 95.58 91 | 99.52 62 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 108 | 92.34 219 | 99.31 80 | 99.83 46 | 95.06 57 | 99.80 126 | 99.70 38 | 99.97 42 | |
|
| GST-MVS | | | 98.27 56 | 97.97 64 | 99.17 55 | 99.92 31 | 97.57 93 | 99.93 79 | 98.39 160 | 94.04 150 | 98.80 108 | 99.74 79 | 92.98 127 | 100.00 1 | 98.16 122 | 99.76 85 | 99.93 79 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 36 | 98.43 136 | 93.90 158 | 99.71 36 | 99.86 29 | 95.88 41 | 99.85 113 | | | |
|
| train_agg | | | 98.88 20 | 98.65 24 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 36 | 98.43 136 | 94.35 132 | 99.71 36 | 99.86 29 | 95.94 38 | 99.85 113 | 99.69 39 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 36 | 98.43 136 | 94.35 132 | 99.69 38 | 99.85 33 | 95.94 38 | 99.85 113 | | | |
|
| PGM-MVS | | | 98.34 51 | 98.13 55 | 98.99 78 | 99.92 31 | 97.00 118 | 99.75 160 | 99.50 17 | 93.90 158 | 99.37 77 | 99.76 66 | 93.24 120 | 100.00 1 | 97.75 149 | 99.96 46 | 99.98 51 |
|
| ACMMP |  | | 97.74 87 | 97.44 89 | 98.66 99 | 99.92 31 | 96.13 156 | 99.18 258 | 99.45 18 | 94.84 111 | 96.41 193 | 99.71 86 | 91.40 161 | 99.99 36 | 97.99 132 | 98.03 169 | 99.87 90 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 55 | 98.43 136 | 96.48 65 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 13 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 153 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 153 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 55 | 98.56 94 | 97.56 27 | 99.44 68 | 99.85 33 | 95.38 51 | 100.00 1 | 99.31 56 | 99.99 21 | 99.87 90 |
|
| APD-MVS |  | | 98.62 32 | 98.35 42 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 110 | 98.36 168 | 94.08 145 | 99.74 32 | 99.73 81 | 94.08 95 | 99.74 139 | 99.42 52 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 29 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 253 | 98.47 120 | 98.14 11 | 99.08 94 | 99.91 14 | 93.09 124 | 100.00 1 | 99.04 69 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 36 | | | | 99.80 54 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 110 | 98.44 128 | 97.48 29 | 99.64 45 | 99.94 4 | 96.68 29 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 65 | | | | | | |
|
| CSCG | | | 97.10 116 | 97.04 107 | 97.27 193 | 99.89 45 | 91.92 277 | 99.90 95 | 99.07 34 | 88.67 309 | 95.26 216 | 99.82 49 | 93.17 123 | 99.98 47 | 98.15 123 | 99.47 110 | 99.90 86 |
|
| ZNCC-MVS | | | 98.31 53 | 98.03 60 | 99.17 55 | 99.88 49 | 97.59 92 | 99.94 72 | 98.44 128 | 94.31 135 | 98.50 126 | 99.82 49 | 93.06 125 | 99.99 36 | 98.30 117 | 99.99 21 | 99.93 79 |
|
| SR-MVS | | | 98.46 42 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 117 | 99.84 129 | 98.35 170 | 94.92 107 | 99.32 79 | 99.80 54 | 93.35 113 | 99.78 130 | 99.30 57 | 99.95 50 | 99.96 67 |
|
| 9.14 | | | | 98.38 37 | | 99.87 51 | | 99.91 89 | 98.33 175 | 93.22 177 | 99.78 26 | 99.89 22 | 94.57 75 | 99.85 113 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 26 | 98.48 32 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 121 | 98.38 164 | 93.19 178 | 99.77 27 | 99.94 4 | 95.54 46 | 100.00 1 | 99.74 34 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 48 | 98.21 48 | 99.03 73 | 99.86 53 | 97.10 115 | 99.98 15 | 98.80 63 | 90.78 268 | 99.62 49 | 99.78 62 | 95.30 52 | 100.00 1 | 99.80 25 | 99.93 61 | 99.99 23 |
|
| MTAPA | | | 98.29 55 | 97.96 67 | 99.30 44 | 99.85 54 | 97.93 80 | 99.39 233 | 98.28 184 | 95.76 86 | 97.18 171 | 99.88 24 | 92.74 134 | 100.00 1 | 98.67 95 | 99.88 73 | 99.99 23 |
|
| LS3D | | | 95.84 170 | 95.11 181 | 98.02 146 | 99.85 54 | 95.10 197 | 98.74 308 | 98.50 117 | 87.22 331 | 93.66 234 | 99.86 29 | 87.45 219 | 99.95 73 | 90.94 272 | 99.81 83 | 99.02 213 |
|
| HPM-MVS |  | | 97.96 68 | 97.72 76 | 98.68 97 | 99.84 56 | 96.39 143 | 99.90 95 | 98.17 199 | 92.61 205 | 98.62 120 | 99.57 114 | 91.87 157 | 99.67 150 | 98.87 83 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 56 | 98.11 57 | 98.75 93 | 99.83 57 | 96.59 135 | 99.40 229 | 98.51 111 | 95.29 99 | 98.51 125 | 99.76 66 | 93.60 110 | 99.71 143 | 98.53 105 | 99.52 105 | 99.95 74 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 36 | 98.40 157 | 97.66 23 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 70 | 97.89 72 | 98.05 145 | 99.82 58 | 94.77 207 | 99.92 82 | 98.46 122 | 93.93 155 | 97.20 169 | 99.27 141 | 95.44 50 | 99.97 57 | 97.41 154 | 99.51 108 | 99.41 173 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 60 | 98.08 59 | 98.78 90 | 99.81 60 | 96.60 133 | 99.82 139 | 98.30 182 | 93.95 154 | 99.37 77 | 99.77 64 | 92.84 131 | 99.76 136 | 98.95 75 | 99.92 64 | 99.97 61 |
|
| EI-MVSNet-UG-set | | | 98.14 64 | 97.99 62 | 98.60 104 | 99.80 61 | 96.27 146 | 99.36 238 | 98.50 117 | 95.21 101 | 98.30 136 | 99.75 72 | 93.29 117 | 99.73 142 | 98.37 113 | 99.30 122 | 99.81 97 |
|
| SR-MVS-dyc-post | | | 98.31 53 | 98.17 52 | 98.71 95 | 99.79 62 | 96.37 144 | 99.76 156 | 98.31 179 | 94.43 127 | 99.40 74 | 99.75 72 | 93.28 118 | 99.78 130 | 98.90 81 | 99.92 64 | 99.97 61 |
|
| RE-MVS-def | | | | 98.13 55 | | 99.79 62 | 96.37 144 | 99.76 156 | 98.31 179 | 94.43 127 | 99.40 74 | 99.75 72 | 92.95 128 | | 98.90 81 | 99.92 64 | 99.97 61 |
|
| HPM-MVS_fast | | | 97.80 82 | 97.50 86 | 98.68 97 | 99.79 62 | 96.42 139 | 99.88 107 | 98.16 204 | 91.75 237 | 98.94 101 | 99.54 117 | 91.82 159 | 99.65 152 | 97.62 152 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 95 | 98.21 194 | 93.53 167 | 99.81 15 | 99.89 22 | 94.70 71 | 99.86 112 | 99.84 22 | 99.93 61 | 99.96 67 |
|
| MVS_0304 | | | 99.06 11 | 98.84 17 | 99.72 13 | 99.76 66 | 99.21 21 | 99.99 4 | 99.34 25 | 98.70 2 | 99.44 68 | 99.75 72 | 93.24 120 | 99.99 36 | 99.94 11 | 99.41 117 | 99.95 74 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 95 | | 98.64 77 | | | 99.85 33 | 95.63 45 | | | 99.94 55 | 99.99 23 |
|
| OMC-MVS | | | 97.28 107 | 97.23 99 | 97.41 184 | 99.76 66 | 93.36 246 | 99.65 188 | 97.95 223 | 96.03 81 | 97.41 164 | 99.70 88 | 89.61 193 | 99.51 158 | 96.73 173 | 98.25 159 | 99.38 175 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 69 | 98.27 64 | | 98.63 81 | 92.69 200 | 99.55 57 | 99.82 49 | 94.40 79 | 100.00 1 | 91.21 264 | 99.94 55 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 67 | 97.64 80 | 99.38 42 | 99.74 70 | 98.41 63 | 99.74 163 | 98.18 198 | 93.35 172 | 96.45 190 | 99.85 33 | 92.64 136 | 99.97 57 | 98.91 80 | 99.89 70 | 99.77 104 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 17 | 98.77 19 | 99.41 38 | 99.74 70 | 98.67 49 | 99.77 151 | 98.38 164 | 96.73 58 | 99.88 6 | 99.74 79 | 94.89 64 | 99.59 154 | 99.80 25 | 99.98 32 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 70 | 98.56 57 | | 98.40 157 | | 99.65 42 | | 94.76 67 | 99.75 137 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 82 | 99.73 73 | 96.99 119 | | 98.51 111 | 94.06 148 | 99.62 49 | 99.85 33 | 94.97 63 | 99.96 65 | 95.11 193 | 99.95 50 | 99.92 84 |
|
| TSAR-MVS + GP. | | | 98.60 33 | 98.51 31 | 98.86 87 | 99.73 73 | 96.63 131 | 99.97 29 | 97.92 228 | 98.07 12 | 98.76 113 | 99.55 115 | 95.00 61 | 99.94 81 | 99.91 16 | 97.68 174 | 99.99 23 |
|
| CANet | | | 98.27 56 | 97.82 74 | 99.63 17 | 99.72 75 | 99.10 23 | 99.98 15 | 98.51 111 | 97.00 48 | 98.52 123 | 99.71 86 | 87.80 214 | 99.95 73 | 99.75 32 | 99.38 118 | 99.83 94 |
|
| reproduce_model | | | 98.75 27 | 98.66 23 | 99.03 73 | 99.71 76 | 97.10 115 | 99.73 170 | 98.23 192 | 97.02 47 | 99.18 89 | 99.90 18 | 94.54 76 | 99.99 36 | 99.77 29 | 99.90 69 | 99.99 23 |
|
| F-COLMAP | | | 96.93 128 | 96.95 110 | 96.87 203 | 99.71 76 | 91.74 282 | 99.85 124 | 97.95 223 | 93.11 183 | 95.72 209 | 99.16 152 | 92.35 146 | 99.94 81 | 95.32 191 | 99.35 120 | 98.92 216 |
|
| reproduce-ours | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 105 | 99.74 163 | 98.25 188 | 97.10 42 | 99.10 92 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 29 | 99.91 67 | 99.99 23 |
|
| our_new_method | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 105 | 99.74 163 | 98.25 188 | 97.10 42 | 99.10 92 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 29 | 99.91 67 | 99.99 23 |
|
| SD-MVS | | | 98.92 18 | 98.70 20 | 99.56 25 | 99.70 78 | 98.73 46 | 99.94 72 | 98.34 174 | 96.38 71 | 99.81 15 | 99.76 66 | 94.59 72 | 99.98 47 | 99.84 22 | 99.96 46 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 61 | 99.12 5 | 95.59 238 | 99.67 81 | 86.91 358 | 99.95 55 | 98.89 49 | 97.60 24 | 99.90 3 | 99.76 66 | 96.54 32 | 99.98 47 | 99.94 11 | 99.82 81 | 99.88 88 |
|
| ACMMP_NAP | | | 98.49 40 | 98.14 54 | 99.54 27 | 99.66 82 | 98.62 55 | 99.85 124 | 98.37 167 | 94.68 117 | 99.53 60 | 99.83 46 | 92.87 130 | 100.00 1 | 98.66 97 | 99.84 76 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 90 | 98.98 12 | 93.92 301 | 99.63 83 | 81.76 388 | 99.96 36 | 98.56 94 | 99.47 1 | 99.19 88 | 99.99 1 | 94.16 94 | 100.00 1 | 99.92 13 | 99.93 61 | 100.00 1 |
|
| EPNet | | | 98.49 40 | 98.40 35 | 98.77 92 | 99.62 84 | 96.80 127 | 99.90 95 | 99.51 16 | 97.60 24 | 99.20 86 | 99.36 135 | 93.71 107 | 99.91 94 | 97.99 132 | 98.71 146 | 99.61 134 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 30 | 99.76 10 | 99.59 85 | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 4 | 99.39 76 | 99.80 54 | 90.49 182 | 99.96 65 | 99.89 17 | 99.43 115 | 99.98 51 |
|
| PVSNet_BlendedMVS | | | 96.05 164 | 95.82 160 | 96.72 208 | 99.59 85 | 96.99 119 | 99.95 55 | 99.10 31 | 94.06 148 | 98.27 137 | 95.80 305 | 89.00 204 | 99.95 73 | 99.12 63 | 87.53 298 | 93.24 357 |
|
| PVSNet_Blended | | | 97.94 69 | 97.64 80 | 98.83 88 | 99.59 85 | 96.99 119 | 100.00 1 | 99.10 31 | 95.38 96 | 98.27 137 | 99.08 155 | 89.00 204 | 99.95 73 | 99.12 63 | 99.25 124 | 99.57 145 |
|
| PatchMatch-RL | | | 96.04 165 | 95.40 170 | 97.95 148 | 99.59 85 | 95.22 193 | 99.52 212 | 99.07 34 | 93.96 153 | 96.49 189 | 98.35 224 | 82.28 265 | 99.82 125 | 90.15 288 | 99.22 127 | 98.81 223 |
|
| dcpmvs_2 | | | 97.42 102 | 98.09 58 | 95.42 243 | 99.58 89 | 87.24 354 | 99.23 254 | 96.95 331 | 94.28 138 | 98.93 102 | 99.73 81 | 94.39 82 | 99.16 184 | 99.89 17 | 99.82 81 | 99.86 92 |
|
| test222 | | | | | | 99.55 90 | 97.41 103 | 99.34 239 | 98.55 100 | 91.86 232 | 99.27 84 | 99.83 46 | 93.84 104 | | | 99.95 50 | 99.99 23 |
|
| CNLPA | | | 97.76 86 | 97.38 91 | 98.92 85 | 99.53 91 | 96.84 124 | 99.87 110 | 98.14 208 | 93.78 161 | 96.55 188 | 99.69 90 | 92.28 148 | 99.98 47 | 97.13 160 | 99.44 114 | 99.93 79 |
|
| API-MVS | | | 97.86 74 | 97.66 79 | 98.47 118 | 99.52 92 | 95.41 184 | 99.47 221 | 98.87 52 | 91.68 238 | 98.84 105 | 99.85 33 | 92.34 147 | 99.99 36 | 98.44 109 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 115 | 96.69 125 | 98.45 120 | 99.52 92 | 95.81 164 | 99.95 55 | 99.65 12 | 94.73 114 | 99.04 97 | 99.21 148 | 84.48 251 | 99.95 73 | 94.92 199 | 98.74 145 | 99.58 143 |
|
| 114514_t | | | 97.41 103 | 96.83 117 | 99.14 61 | 99.51 94 | 97.83 82 | 99.89 104 | 98.27 186 | 88.48 313 | 99.06 96 | 99.66 99 | 90.30 185 | 99.64 153 | 96.32 177 | 99.97 42 | 99.96 67 |
|
| cl22 | | | 93.77 229 | 93.25 233 | 95.33 247 | 99.49 95 | 94.43 211 | 99.61 197 | 98.09 210 | 90.38 274 | 89.16 301 | 95.61 312 | 90.56 180 | 97.34 293 | 91.93 256 | 84.45 318 | 94.21 303 |
|
| testdata | | | | | 98.42 124 | 99.47 96 | 95.33 187 | | 98.56 94 | 93.78 161 | 99.79 25 | 99.85 33 | 93.64 109 | 99.94 81 | 94.97 197 | 99.94 55 | 100.00 1 |
|
| MAR-MVS | | | 97.43 98 | 97.19 101 | 98.15 139 | 99.47 96 | 94.79 206 | 99.05 274 | 98.76 64 | 92.65 203 | 98.66 118 | 99.82 49 | 88.52 209 | 99.98 47 | 98.12 124 | 99.63 94 | 99.67 118 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 207 | 93.42 226 | 97.91 154 | 99.46 98 | 94.04 224 | 98.93 288 | 97.48 273 | 81.15 384 | 90.04 273 | 99.55 115 | 87.02 225 | 99.95 73 | 88.97 298 | 98.11 165 | 99.73 108 |
|
| MVS_111021_LR | | | 98.42 47 | 98.38 37 | 98.53 114 | 99.39 99 | 95.79 165 | 99.87 110 | 99.86 2 | 96.70 59 | 98.78 109 | 99.79 58 | 92.03 154 | 99.90 96 | 99.17 62 | 99.86 75 | 99.88 88 |
|
| CHOSEN 280x420 | | | 99.01 14 | 99.03 10 | 98.95 83 | 99.38 100 | 98.87 33 | 98.46 326 | 99.42 21 | 97.03 46 | 99.02 98 | 99.09 154 | 99.35 2 | 98.21 255 | 99.73 36 | 99.78 84 | 99.77 104 |
|
| MVS_111021_HR | | | 98.72 28 | 98.62 26 | 99.01 77 | 99.36 101 | 97.18 110 | 99.93 79 | 99.90 1 | 96.81 56 | 98.67 117 | 99.77 64 | 93.92 99 | 99.89 101 | 99.27 58 | 99.94 55 | 99.96 67 |
|
| DPM-MVS | | | 98.83 21 | 98.46 33 | 99.97 1 | 99.33 102 | 99.92 1 | 99.96 36 | 98.44 128 | 97.96 16 | 99.55 57 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 228 | 99.94 55 | 99.98 51 |
|
| TAPA-MVS | | 92.12 8 | 94.42 213 | 93.60 219 | 96.90 202 | 99.33 102 | 91.78 281 | 99.78 148 | 98.00 217 | 89.89 286 | 94.52 222 | 99.47 121 | 91.97 155 | 99.18 181 | 69.90 399 | 99.52 105 | 99.73 108 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| reproduce_monomvs | | | 95.38 184 | 95.07 183 | 96.32 221 | 99.32 104 | 96.60 133 | 99.76 156 | 98.85 56 | 96.65 61 | 87.83 322 | 96.05 302 | 99.52 1 | 98.11 260 | 96.58 174 | 81.07 346 | 94.25 299 |
|
| SPE-MVS-test | | | 97.88 72 | 97.94 68 | 97.70 167 | 99.28 105 | 95.20 194 | 99.98 15 | 97.15 308 | 95.53 93 | 99.62 49 | 99.79 58 | 92.08 153 | 98.38 238 | 98.75 91 | 99.28 123 | 99.52 157 |
|
| test_fmvsm_n_1920 | | | 98.44 44 | 98.61 27 | 97.92 152 | 99.27 106 | 95.18 195 | 100.00 1 | 98.90 47 | 98.05 13 | 99.80 17 | 99.73 81 | 92.64 136 | 99.99 36 | 99.58 43 | 99.51 108 | 98.59 233 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 15 | 98.91 14 | 99.28 45 | 99.21 107 | 97.91 81 | 99.98 15 | 98.85 56 | 98.25 5 | 99.92 2 | 99.75 72 | 94.72 69 | 99.97 57 | 99.87 19 | 99.64 92 | 99.95 74 |
|
| test_yl | | | 97.83 77 | 97.37 92 | 99.21 49 | 99.18 108 | 97.98 76 | 99.64 192 | 99.27 27 | 91.43 247 | 97.88 151 | 98.99 164 | 95.84 42 | 99.84 121 | 98.82 85 | 95.32 228 | 99.79 100 |
|
| DCV-MVSNet | | | 97.83 77 | 97.37 92 | 99.21 49 | 99.18 108 | 97.98 76 | 99.64 192 | 99.27 27 | 91.43 247 | 97.88 151 | 98.99 164 | 95.84 42 | 99.84 121 | 98.82 85 | 95.32 228 | 99.79 100 |
|
| fmvsm_l_conf0.5_n | | | 98.94 16 | 98.84 17 | 99.25 46 | 99.17 110 | 97.81 84 | 99.98 15 | 98.86 53 | 98.25 5 | 99.90 3 | 99.76 66 | 94.21 92 | 99.97 57 | 99.87 19 | 99.52 105 | 99.98 51 |
|
| DeepC-MVS | | 94.51 4 | 96.92 129 | 96.40 135 | 98.45 120 | 99.16 111 | 95.90 162 | 99.66 187 | 98.06 213 | 96.37 74 | 94.37 225 | 99.49 120 | 83.29 260 | 99.90 96 | 97.63 151 | 99.61 99 | 99.55 147 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 36 | 98.22 47 | 99.50 30 | 99.15 112 | 98.65 53 | 100.00 1 | 98.58 89 | 97.70 22 | 98.21 141 | 99.24 146 | 92.58 139 | 99.94 81 | 98.63 100 | 99.94 55 | 99.92 84 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 84 | 97.91 70 | 97.43 183 | 99.10 113 | 94.42 212 | 99.99 4 | 97.10 313 | 95.07 102 | 99.68 39 | 99.75 72 | 92.95 128 | 98.34 242 | 98.38 111 | 99.14 129 | 99.54 151 |
|
| Anonymous202405211 | | | 93.10 247 | 91.99 259 | 96.40 217 | 99.10 113 | 89.65 326 | 98.88 294 | 97.93 225 | 83.71 369 | 94.00 231 | 98.75 193 | 68.79 364 | 99.88 107 | 95.08 194 | 91.71 260 | 99.68 116 |
|
| fmvsm_s_conf0.5_n | | | 97.80 82 | 97.85 73 | 97.67 168 | 99.06 115 | 94.41 213 | 99.98 15 | 98.97 40 | 97.34 31 | 99.63 46 | 99.69 90 | 87.27 221 | 99.97 57 | 99.62 41 | 99.06 133 | 98.62 232 |
|
| HyFIR lowres test | | | 96.66 143 | 96.43 134 | 97.36 189 | 99.05 116 | 93.91 229 | 99.70 181 | 99.80 3 | 90.54 272 | 96.26 196 | 98.08 234 | 92.15 151 | 98.23 254 | 96.84 172 | 95.46 223 | 99.93 79 |
|
| LFMVS | | | 94.75 201 | 93.56 222 | 98.30 130 | 99.03 117 | 95.70 171 | 98.74 308 | 97.98 220 | 87.81 324 | 98.47 127 | 99.39 132 | 67.43 373 | 99.53 155 | 98.01 130 | 95.20 231 | 99.67 118 |
|
| fmvsm_s_conf0.5_n_2 | | | 97.59 93 | 97.28 96 | 98.53 114 | 99.01 118 | 98.15 65 | 99.98 15 | 98.59 87 | 98.17 9 | 99.75 29 | 99.63 105 | 81.83 270 | 99.94 81 | 99.78 27 | 98.79 144 | 97.51 258 |
|
| AllTest | | | 92.48 261 | 91.64 264 | 95.00 256 | 99.01 118 | 88.43 342 | 98.94 286 | 96.82 345 | 86.50 340 | 88.71 306 | 98.47 219 | 74.73 341 | 99.88 107 | 85.39 337 | 96.18 205 | 96.71 264 |
|
| TestCases | | | | | 95.00 256 | 99.01 118 | 88.43 342 | | 96.82 345 | 86.50 340 | 88.71 306 | 98.47 219 | 74.73 341 | 99.88 107 | 85.39 337 | 96.18 205 | 96.71 264 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 268 | 91.49 270 | 94.25 289 | 99.00 121 | 88.04 348 | 98.42 332 | 96.70 352 | 82.30 380 | 88.43 314 | 99.01 161 | 76.97 317 | 99.85 113 | 86.11 333 | 96.50 199 | 94.86 275 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 185 | 95.68 165 | 94.36 286 | 98.99 122 | 84.98 368 | 99.96 36 | 96.65 354 | 97.60 24 | 99.73 34 | 98.96 170 | 71.58 354 | 99.93 89 | 98.31 116 | 99.37 119 | 98.17 240 |
|
| HY-MVS | | 92.50 7 | 97.79 84 | 97.17 103 | 99.63 17 | 98.98 123 | 99.32 9 | 97.49 357 | 99.52 14 | 95.69 88 | 98.32 135 | 97.41 254 | 93.32 115 | 99.77 133 | 98.08 128 | 95.75 219 | 99.81 97 |
|
| VNet | | | 97.21 112 | 96.57 130 | 99.13 65 | 98.97 124 | 97.82 83 | 99.03 277 | 99.21 29 | 94.31 135 | 99.18 89 | 98.88 181 | 86.26 235 | 99.89 101 | 98.93 77 | 94.32 240 | 99.69 115 |
|
| thres200 | | | 96.96 125 | 96.21 141 | 99.22 48 | 98.97 124 | 98.84 36 | 99.85 124 | 99.71 7 | 93.17 179 | 96.26 196 | 98.88 181 | 89.87 190 | 99.51 158 | 94.26 218 | 94.91 233 | 99.31 187 |
|
| tfpn200view9 | | | 96.79 133 | 95.99 146 | 99.19 51 | 98.94 126 | 98.82 37 | 99.78 148 | 99.71 7 | 92.86 189 | 96.02 201 | 98.87 184 | 89.33 197 | 99.50 160 | 93.84 225 | 94.57 236 | 99.27 193 |
|
| thres400 | | | 96.78 135 | 95.99 146 | 99.16 57 | 98.94 126 | 98.82 37 | 99.78 148 | 99.71 7 | 92.86 189 | 96.02 201 | 98.87 184 | 89.33 197 | 99.50 160 | 93.84 225 | 94.57 236 | 99.16 200 |
|
| sasdasda | | | 97.09 118 | 96.32 136 | 99.39 40 | 98.93 128 | 98.95 27 | 99.72 174 | 97.35 285 | 94.45 123 | 97.88 151 | 99.42 125 | 86.71 228 | 99.52 156 | 98.48 106 | 93.97 246 | 99.72 110 |
|
| Anonymous20231211 | | | 89.86 318 | 88.44 325 | 94.13 292 | 98.93 128 | 90.68 305 | 98.54 323 | 98.26 187 | 76.28 396 | 86.73 336 | 95.54 316 | 70.60 360 | 97.56 286 | 90.82 275 | 80.27 355 | 94.15 311 |
|
| canonicalmvs | | | 97.09 118 | 96.32 136 | 99.39 40 | 98.93 128 | 98.95 27 | 99.72 174 | 97.35 285 | 94.45 123 | 97.88 151 | 99.42 125 | 86.71 228 | 99.52 156 | 98.48 106 | 93.97 246 | 99.72 110 |
|
| SDMVSNet | | | 94.80 197 | 93.96 211 | 97.33 191 | 98.92 131 | 95.42 183 | 99.59 199 | 98.99 37 | 92.41 216 | 92.55 249 | 97.85 245 | 75.81 331 | 98.93 196 | 97.90 138 | 91.62 261 | 97.64 252 |
|
| sd_testset | | | 93.55 236 | 92.83 239 | 95.74 236 | 98.92 131 | 90.89 301 | 98.24 339 | 98.85 56 | 92.41 216 | 92.55 249 | 97.85 245 | 71.07 359 | 98.68 214 | 93.93 222 | 91.62 261 | 97.64 252 |
|
| EPNet_dtu | | | 95.71 174 | 95.39 171 | 96.66 210 | 98.92 131 | 93.41 243 | 99.57 204 | 98.90 47 | 96.19 79 | 97.52 159 | 98.56 211 | 92.65 135 | 97.36 291 | 77.89 380 | 98.33 154 | 99.20 198 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 66 | 97.60 82 | 99.60 22 | 98.92 131 | 99.28 17 | 99.89 104 | 99.52 14 | 95.58 91 | 98.24 140 | 99.39 132 | 93.33 114 | 99.74 139 | 97.98 134 | 95.58 222 | 99.78 103 |
|
| CHOSEN 1792x2688 | | | 96.81 132 | 96.53 131 | 97.64 170 | 98.91 135 | 93.07 248 | 99.65 188 | 99.80 3 | 95.64 89 | 95.39 213 | 98.86 186 | 84.35 253 | 99.90 96 | 96.98 166 | 99.16 128 | 99.95 74 |
|
| thres100view900 | | | 96.74 138 | 95.92 156 | 99.18 52 | 98.90 136 | 98.77 42 | 99.74 163 | 99.71 7 | 92.59 207 | 95.84 205 | 98.86 186 | 89.25 199 | 99.50 160 | 93.84 225 | 94.57 236 | 99.27 193 |
|
| thres600view7 | | | 96.69 141 | 95.87 159 | 99.14 61 | 98.90 136 | 98.78 41 | 99.74 163 | 99.71 7 | 92.59 207 | 95.84 205 | 98.86 186 | 89.25 199 | 99.50 160 | 93.44 237 | 94.50 239 | 99.16 200 |
|
| MSDG | | | 94.37 215 | 93.36 230 | 97.40 185 | 98.88 138 | 93.95 228 | 99.37 236 | 97.38 282 | 85.75 351 | 90.80 266 | 99.17 151 | 84.11 255 | 99.88 107 | 86.35 329 | 98.43 152 | 98.36 238 |
|
| MGCFI-Net | | | 97.00 123 | 96.22 140 | 99.34 43 | 98.86 139 | 98.80 39 | 99.67 186 | 97.30 292 | 94.31 135 | 97.77 155 | 99.41 129 | 86.36 234 | 99.50 160 | 98.38 111 | 93.90 248 | 99.72 110 |
|
| h-mvs33 | | | 94.92 194 | 94.36 199 | 96.59 212 | 98.85 140 | 91.29 293 | 98.93 288 | 98.94 41 | 95.90 82 | 98.77 110 | 98.42 222 | 90.89 175 | 99.77 133 | 97.80 142 | 70.76 391 | 98.72 229 |
|
| Anonymous20240529 | | | 92.10 269 | 90.65 281 | 96.47 213 | 98.82 141 | 90.61 307 | 98.72 310 | 98.67 74 | 75.54 400 | 93.90 233 | 98.58 209 | 66.23 377 | 99.90 96 | 94.70 208 | 90.67 264 | 98.90 219 |
|
| PVSNet_Blended_VisFu | | | 97.27 108 | 96.81 118 | 98.66 99 | 98.81 142 | 96.67 130 | 99.92 82 | 98.64 77 | 94.51 122 | 96.38 194 | 98.49 215 | 89.05 203 | 99.88 107 | 97.10 162 | 98.34 153 | 99.43 171 |
|
| PS-MVSNAJ | | | 98.44 44 | 98.20 49 | 99.16 57 | 98.80 143 | 98.92 29 | 99.54 210 | 98.17 199 | 97.34 31 | 99.85 9 | 99.85 33 | 91.20 164 | 99.89 101 | 99.41 53 | 99.67 90 | 98.69 230 |
|
| CANet_DTU | | | 96.76 136 | 96.15 142 | 98.60 104 | 98.78 144 | 97.53 94 | 99.84 129 | 97.63 251 | 97.25 39 | 99.20 86 | 99.64 102 | 81.36 276 | 99.98 47 | 92.77 248 | 98.89 138 | 98.28 239 |
|
| mvsany_test1 | | | 97.82 80 | 97.90 71 | 97.55 175 | 98.77 145 | 93.04 251 | 99.80 145 | 97.93 225 | 96.95 50 | 99.61 55 | 99.68 96 | 90.92 172 | 99.83 123 | 99.18 61 | 98.29 158 | 99.80 99 |
|
| alignmvs | | | 97.81 81 | 97.33 94 | 99.25 46 | 98.77 145 | 98.66 51 | 99.99 4 | 98.44 128 | 94.40 131 | 98.41 130 | 99.47 121 | 93.65 108 | 99.42 169 | 98.57 101 | 94.26 242 | 99.67 118 |
|
| SteuartSystems-ACMMP | | | 99.02 13 | 98.97 13 | 99.18 52 | 98.72 147 | 97.71 87 | 99.98 15 | 98.44 128 | 96.85 51 | 99.80 17 | 99.91 14 | 97.57 8 | 99.85 113 | 99.44 51 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 62 | 97.97 64 | 99.02 76 | 98.69 148 | 98.66 51 | 99.52 212 | 98.08 212 | 97.05 45 | 99.86 7 | 99.86 29 | 90.65 177 | 99.71 143 | 99.39 55 | 98.63 147 | 98.69 230 |
|
| miper_enhance_ethall | | | 94.36 217 | 93.98 210 | 95.49 239 | 98.68 149 | 95.24 191 | 99.73 170 | 97.29 295 | 93.28 176 | 89.86 278 | 95.97 303 | 94.37 83 | 97.05 313 | 92.20 252 | 84.45 318 | 94.19 304 |
|
| ETVMVS | | | 97.03 122 | 96.64 126 | 98.20 135 | 98.67 150 | 97.12 114 | 99.89 104 | 98.57 91 | 91.10 258 | 98.17 142 | 98.59 206 | 93.86 103 | 98.19 256 | 95.64 188 | 95.24 230 | 99.28 192 |
|
| test2506 | | | 97.53 95 | 97.19 101 | 98.58 107 | 98.66 151 | 96.90 123 | 98.81 303 | 99.77 5 | 94.93 105 | 97.95 147 | 98.96 170 | 92.51 141 | 99.20 179 | 94.93 198 | 98.15 162 | 99.64 124 |
|
| ECVR-MVS |  | | 95.66 177 | 95.05 184 | 97.51 179 | 98.66 151 | 93.71 233 | 98.85 300 | 98.45 123 | 94.93 105 | 96.86 179 | 98.96 170 | 75.22 337 | 99.20 179 | 95.34 190 | 98.15 162 | 99.64 124 |
|
| mamv4 | | | 95.24 187 | 96.90 112 | 90.25 358 | 98.65 153 | 72.11 405 | 98.28 337 | 97.64 250 | 89.99 284 | 95.93 203 | 98.25 229 | 94.74 68 | 99.11 185 | 99.01 74 | 99.64 92 | 99.53 155 |
|
| balanced_conf03 | | | 98.27 56 | 97.99 62 | 99.11 66 | 98.64 154 | 98.43 62 | 99.47 221 | 97.79 239 | 94.56 120 | 99.74 32 | 98.35 224 | 94.33 86 | 99.25 173 | 99.12 63 | 99.96 46 | 99.64 124 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 89 | 97.72 76 | 97.77 162 | 98.63 155 | 94.26 219 | 99.96 36 | 98.92 46 | 97.18 41 | 99.75 29 | 99.69 90 | 87.00 226 | 99.97 57 | 99.46 49 | 98.89 138 | 99.08 209 |
|
| MVSMamba_PlusPlus | | | 97.83 77 | 97.45 88 | 98.99 78 | 98.60 156 | 98.15 65 | 99.58 201 | 97.74 243 | 90.34 277 | 99.26 85 | 98.32 227 | 94.29 88 | 99.23 174 | 99.03 72 | 99.89 70 | 99.58 143 |
|
| testing222 | | | 97.08 121 | 96.75 121 | 98.06 144 | 98.56 157 | 96.82 125 | 99.85 124 | 98.61 83 | 92.53 211 | 98.84 105 | 98.84 190 | 93.36 112 | 98.30 246 | 95.84 185 | 94.30 241 | 99.05 211 |
|
| test1111 | | | 95.57 179 | 94.98 187 | 97.37 187 | 98.56 157 | 93.37 245 | 98.86 298 | 98.45 123 | 94.95 104 | 96.63 185 | 98.95 175 | 75.21 338 | 99.11 185 | 95.02 195 | 98.14 164 | 99.64 124 |
|
| MVSTER | | | 95.53 180 | 95.22 177 | 96.45 215 | 98.56 157 | 97.72 86 | 99.91 89 | 97.67 248 | 92.38 218 | 91.39 259 | 97.14 261 | 97.24 18 | 97.30 297 | 94.80 204 | 87.85 293 | 94.34 294 |
|
| VDD-MVS | | | 93.77 229 | 92.94 237 | 96.27 222 | 98.55 160 | 90.22 316 | 98.77 307 | 97.79 239 | 90.85 264 | 96.82 181 | 99.42 125 | 61.18 396 | 99.77 133 | 98.95 75 | 94.13 243 | 98.82 222 |
|
| tpmvs | | | 94.28 219 | 93.57 221 | 96.40 217 | 98.55 160 | 91.50 291 | 95.70 391 | 98.55 100 | 87.47 326 | 92.15 252 | 94.26 366 | 91.42 160 | 98.95 195 | 88.15 308 | 95.85 215 | 98.76 225 |
|
| UGNet | | | 95.33 186 | 94.57 195 | 97.62 173 | 98.55 160 | 94.85 202 | 98.67 316 | 99.32 26 | 95.75 87 | 96.80 182 | 96.27 293 | 72.18 351 | 99.96 65 | 94.58 211 | 99.05 134 | 98.04 244 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 188 | 94.10 206 | 98.43 122 | 98.55 160 | 95.99 160 | 97.91 352 | 97.31 291 | 90.35 276 | 89.48 290 | 99.22 147 | 85.19 244 | 99.89 101 | 90.40 285 | 98.47 151 | 99.41 173 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 133 | 96.72 123 | 97.00 198 | 98.51 164 | 93.70 234 | 99.71 177 | 98.60 85 | 92.96 185 | 97.09 172 | 98.34 226 | 96.67 31 | 98.85 199 | 92.11 254 | 96.50 199 | 98.44 235 |
|
| test_vis1_n_1920 | | | 95.44 182 | 95.31 174 | 95.82 234 | 98.50 165 | 88.74 336 | 99.98 15 | 97.30 292 | 97.84 18 | 99.85 9 | 99.19 149 | 66.82 375 | 99.97 57 | 98.82 85 | 99.46 112 | 98.76 225 |
|
| BH-w/o | | | 95.71 174 | 95.38 172 | 96.68 209 | 98.49 166 | 92.28 268 | 99.84 129 | 97.50 271 | 92.12 224 | 92.06 255 | 98.79 191 | 84.69 249 | 98.67 215 | 95.29 192 | 99.66 91 | 99.09 207 |
|
| baseline1 | | | 95.78 171 | 94.86 189 | 98.54 112 | 98.47 167 | 98.07 71 | 99.06 270 | 97.99 218 | 92.68 201 | 94.13 230 | 98.62 205 | 93.28 118 | 98.69 213 | 93.79 230 | 85.76 306 | 98.84 221 |
|
| EPMVS | | | 96.53 147 | 96.01 145 | 98.09 142 | 98.43 168 | 96.12 158 | 96.36 378 | 99.43 20 | 93.53 167 | 97.64 157 | 95.04 343 | 94.41 78 | 98.38 238 | 91.13 266 | 98.11 165 | 99.75 106 |
|
| kuosan | | | 93.17 244 | 92.60 245 | 94.86 263 | 98.40 169 | 89.54 328 | 98.44 328 | 98.53 106 | 84.46 364 | 88.49 310 | 97.92 242 | 90.57 179 | 97.05 313 | 83.10 352 | 93.49 251 | 97.99 245 |
|
| WBMVS | | | 94.52 210 | 94.03 208 | 95.98 228 | 98.38 170 | 96.68 129 | 99.92 82 | 97.63 251 | 90.75 269 | 89.64 286 | 95.25 337 | 96.77 25 | 96.90 324 | 94.35 216 | 83.57 325 | 94.35 292 |
|
| UBG | | | 97.84 76 | 97.69 78 | 98.29 131 | 98.38 170 | 96.59 135 | 99.90 95 | 98.53 106 | 93.91 157 | 98.52 123 | 98.42 222 | 96.77 25 | 99.17 182 | 98.54 103 | 96.20 204 | 99.11 206 |
|
| sss | | | 97.57 94 | 97.03 108 | 99.18 52 | 98.37 172 | 98.04 73 | 99.73 170 | 99.38 22 | 93.46 169 | 98.76 113 | 99.06 157 | 91.21 163 | 99.89 101 | 96.33 176 | 97.01 191 | 99.62 130 |
|
| testing11 | | | 97.48 97 | 97.27 97 | 98.10 141 | 98.36 173 | 96.02 159 | 99.92 82 | 98.45 123 | 93.45 171 | 98.15 143 | 98.70 196 | 95.48 49 | 99.22 175 | 97.85 140 | 95.05 232 | 99.07 210 |
|
| BH-untuned | | | 95.18 188 | 94.83 190 | 96.22 223 | 98.36 173 | 91.22 294 | 99.80 145 | 97.32 290 | 90.91 262 | 91.08 262 | 98.67 198 | 83.51 257 | 98.54 221 | 94.23 219 | 99.61 99 | 98.92 216 |
|
| testing91 | | | 97.16 114 | 96.90 112 | 97.97 147 | 98.35 175 | 95.67 174 | 99.91 89 | 98.42 148 | 92.91 188 | 97.33 166 | 98.72 194 | 94.81 66 | 99.21 176 | 96.98 166 | 94.63 235 | 99.03 212 |
|
| testing99 | | | 97.17 113 | 96.91 111 | 97.95 148 | 98.35 175 | 95.70 171 | 99.91 89 | 98.43 136 | 92.94 186 | 97.36 165 | 98.72 194 | 94.83 65 | 99.21 176 | 97.00 164 | 94.64 234 | 98.95 215 |
|
| ET-MVSNet_ETH3D | | | 94.37 215 | 93.28 232 | 97.64 170 | 98.30 177 | 97.99 75 | 99.99 4 | 97.61 257 | 94.35 132 | 71.57 403 | 99.45 124 | 96.23 35 | 95.34 373 | 96.91 171 | 85.14 313 | 99.59 137 |
|
| AUN-MVS | | | 93.28 241 | 92.60 245 | 95.34 246 | 98.29 178 | 90.09 319 | 99.31 243 | 98.56 94 | 91.80 236 | 96.35 195 | 98.00 237 | 89.38 196 | 98.28 249 | 92.46 249 | 69.22 396 | 97.64 252 |
|
| FMVSNet3 | | | 92.69 257 | 91.58 266 | 95.99 227 | 98.29 178 | 97.42 102 | 99.26 252 | 97.62 254 | 89.80 287 | 89.68 282 | 95.32 331 | 81.62 274 | 96.27 352 | 87.01 325 | 85.65 307 | 94.29 296 |
|
| PMMVS | | | 96.76 136 | 96.76 120 | 96.76 206 | 98.28 180 | 92.10 272 | 99.91 89 | 97.98 220 | 94.12 143 | 99.53 60 | 99.39 132 | 86.93 227 | 98.73 208 | 96.95 169 | 97.73 172 | 99.45 168 |
|
| hse-mvs2 | | | 94.38 214 | 94.08 207 | 95.31 248 | 98.27 181 | 90.02 320 | 99.29 248 | 98.56 94 | 95.90 82 | 98.77 110 | 98.00 237 | 90.89 175 | 98.26 253 | 97.80 142 | 69.20 397 | 97.64 252 |
|
| PVSNet_0 | | 88.03 19 | 91.80 276 | 90.27 290 | 96.38 219 | 98.27 181 | 90.46 311 | 99.94 72 | 99.61 13 | 93.99 151 | 86.26 346 | 97.39 256 | 71.13 358 | 99.89 101 | 98.77 89 | 67.05 402 | 98.79 224 |
|
| UA-Net | | | 96.54 146 | 95.96 152 | 98.27 132 | 98.23 183 | 95.71 170 | 98.00 350 | 98.45 123 | 93.72 164 | 98.41 130 | 99.27 141 | 88.71 208 | 99.66 151 | 91.19 265 | 97.69 173 | 99.44 170 |
|
| test_cas_vis1_n_1920 | | | 96.59 145 | 96.23 139 | 97.65 169 | 98.22 184 | 94.23 220 | 99.99 4 | 97.25 299 | 97.77 19 | 99.58 56 | 99.08 155 | 77.10 314 | 99.97 57 | 97.64 150 | 99.45 113 | 98.74 227 |
|
| FE-MVS | | | 95.70 176 | 95.01 186 | 97.79 159 | 98.21 185 | 94.57 208 | 95.03 392 | 98.69 69 | 88.90 303 | 97.50 161 | 96.19 295 | 92.60 138 | 99.49 165 | 89.99 290 | 97.94 171 | 99.31 187 |
|
| GG-mvs-BLEND | | | | | 98.54 112 | 98.21 185 | 98.01 74 | 93.87 397 | 98.52 108 | | 97.92 148 | 97.92 242 | 99.02 3 | 97.94 273 | 98.17 121 | 99.58 102 | 99.67 118 |
|
| mvs_anonymous | | | 95.65 178 | 95.03 185 | 97.53 177 | 98.19 187 | 95.74 168 | 99.33 240 | 97.49 272 | 90.87 263 | 90.47 269 | 97.10 263 | 88.23 211 | 97.16 304 | 95.92 183 | 97.66 175 | 99.68 116 |
|
| MVS_Test | | | 96.46 149 | 95.74 161 | 98.61 103 | 98.18 188 | 97.23 108 | 99.31 243 | 97.15 308 | 91.07 259 | 98.84 105 | 97.05 267 | 88.17 212 | 98.97 192 | 94.39 213 | 97.50 177 | 99.61 134 |
|
| BH-RMVSNet | | | 95.18 188 | 94.31 202 | 97.80 157 | 98.17 189 | 95.23 192 | 99.76 156 | 97.53 267 | 92.52 212 | 94.27 228 | 99.25 145 | 76.84 319 | 98.80 201 | 90.89 274 | 99.54 104 | 99.35 182 |
|
| dongtai | | | 91.55 282 | 91.13 275 | 92.82 331 | 98.16 190 | 86.35 359 | 99.47 221 | 98.51 111 | 83.24 372 | 85.07 355 | 97.56 250 | 90.33 184 | 94.94 379 | 76.09 388 | 91.73 259 | 97.18 261 |
|
| RPSCF | | | 91.80 276 | 92.79 241 | 88.83 369 | 98.15 191 | 69.87 407 | 98.11 346 | 96.60 356 | 83.93 367 | 94.33 226 | 99.27 141 | 79.60 297 | 99.46 168 | 91.99 255 | 93.16 256 | 97.18 261 |
|
| ETV-MVS | | | 97.92 71 | 97.80 75 | 98.25 133 | 98.14 192 | 96.48 137 | 99.98 15 | 97.63 251 | 95.61 90 | 99.29 83 | 99.46 123 | 92.55 140 | 98.82 200 | 99.02 73 | 98.54 149 | 99.46 166 |
|
| IS-MVSNet | | | 96.29 159 | 95.90 157 | 97.45 181 | 98.13 193 | 94.80 205 | 99.08 265 | 97.61 257 | 92.02 229 | 95.54 212 | 98.96 170 | 90.64 178 | 98.08 262 | 93.73 233 | 97.41 181 | 99.47 165 |
|
| test_fmvsmconf_n | | | 98.43 46 | 98.32 43 | 98.78 90 | 98.12 194 | 96.41 140 | 99.99 4 | 98.83 60 | 98.22 7 | 99.67 40 | 99.64 102 | 91.11 168 | 99.94 81 | 99.67 40 | 99.62 95 | 99.98 51 |
|
| fmvsm_s_conf0.1_n_2 | | | 97.25 109 | 96.85 116 | 98.43 122 | 98.08 195 | 98.08 70 | 99.92 82 | 97.76 242 | 98.05 13 | 99.65 42 | 99.58 111 | 80.88 283 | 99.93 89 | 99.59 42 | 98.17 160 | 97.29 259 |
|
| ab-mvs | | | 94.69 202 | 93.42 226 | 98.51 116 | 98.07 196 | 96.26 147 | 96.49 376 | 98.68 71 | 90.31 278 | 94.54 221 | 97.00 269 | 76.30 326 | 99.71 143 | 95.98 182 | 93.38 254 | 99.56 146 |
|
| XVG-OURS-SEG-HR | | | 94.79 198 | 94.70 194 | 95.08 253 | 98.05 197 | 89.19 330 | 99.08 265 | 97.54 265 | 93.66 165 | 94.87 219 | 99.58 111 | 78.78 305 | 99.79 128 | 97.31 156 | 93.40 253 | 96.25 268 |
|
| EIA-MVS | | | 97.53 95 | 97.46 87 | 97.76 164 | 98.04 198 | 94.84 203 | 99.98 15 | 97.61 257 | 94.41 130 | 97.90 149 | 99.59 108 | 92.40 145 | 98.87 197 | 98.04 129 | 99.13 130 | 99.59 137 |
|
| XVG-OURS | | | 94.82 195 | 94.74 193 | 95.06 254 | 98.00 199 | 89.19 330 | 99.08 265 | 97.55 263 | 94.10 144 | 94.71 220 | 99.62 106 | 80.51 289 | 99.74 139 | 96.04 181 | 93.06 258 | 96.25 268 |
|
| mvsmamba | | | 96.94 126 | 96.73 122 | 97.55 175 | 97.99 200 | 94.37 216 | 99.62 195 | 97.70 245 | 93.13 181 | 98.42 129 | 97.92 242 | 88.02 213 | 98.75 207 | 98.78 88 | 99.01 135 | 99.52 157 |
|
| dp | | | 95.05 191 | 94.43 197 | 96.91 201 | 97.99 200 | 92.73 258 | 96.29 381 | 97.98 220 | 89.70 288 | 95.93 203 | 94.67 356 | 93.83 105 | 98.45 227 | 86.91 328 | 96.53 198 | 99.54 151 |
|
| tpmrst | | | 96.27 161 | 95.98 148 | 97.13 195 | 97.96 202 | 93.15 247 | 96.34 379 | 98.17 199 | 92.07 225 | 98.71 116 | 95.12 340 | 93.91 100 | 98.73 208 | 94.91 201 | 96.62 196 | 99.50 162 |
|
| TR-MVS | | | 94.54 207 | 93.56 222 | 97.49 180 | 97.96 202 | 94.34 217 | 98.71 311 | 97.51 270 | 90.30 279 | 94.51 223 | 98.69 197 | 75.56 332 | 98.77 204 | 92.82 247 | 95.99 209 | 99.35 182 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 156 | 95.98 148 | 97.35 190 | 97.93 204 | 94.82 204 | 99.47 221 | 98.15 207 | 91.83 233 | 95.09 217 | 99.11 153 | 91.37 162 | 97.47 289 | 93.47 236 | 97.43 178 | 99.74 107 |
|
| MDTV_nov1_ep13 | | | | 95.69 163 | | 97.90 205 | 94.15 222 | 95.98 387 | 98.44 128 | 93.12 182 | 97.98 146 | 95.74 307 | 95.10 55 | 98.58 218 | 90.02 289 | 96.92 193 | |
|
| Fast-Effi-MVS+ | | | 95.02 192 | 94.19 204 | 97.52 178 | 97.88 206 | 94.55 209 | 99.97 29 | 97.08 317 | 88.85 305 | 94.47 224 | 97.96 241 | 84.59 250 | 98.41 230 | 89.84 292 | 97.10 186 | 99.59 137 |
|
| ADS-MVSNet2 | | | 93.80 228 | 93.88 214 | 93.55 314 | 97.87 207 | 85.94 362 | 94.24 393 | 96.84 342 | 90.07 281 | 96.43 191 | 94.48 361 | 90.29 186 | 95.37 372 | 87.44 315 | 97.23 183 | 99.36 179 |
|
| ADS-MVSNet | | | 94.79 198 | 94.02 209 | 97.11 197 | 97.87 207 | 93.79 230 | 94.24 393 | 98.16 204 | 90.07 281 | 96.43 191 | 94.48 361 | 90.29 186 | 98.19 256 | 87.44 315 | 97.23 183 | 99.36 179 |
|
| Effi-MVS+ | | | 96.30 158 | 95.69 163 | 98.16 136 | 97.85 209 | 96.26 147 | 97.41 359 | 97.21 301 | 90.37 275 | 98.65 119 | 98.58 209 | 86.61 231 | 98.70 212 | 97.11 161 | 97.37 182 | 99.52 157 |
|
| PatchmatchNet |  | | 95.94 167 | 95.45 169 | 97.39 186 | 97.83 210 | 94.41 213 | 96.05 385 | 98.40 157 | 92.86 189 | 97.09 172 | 95.28 336 | 94.21 92 | 98.07 264 | 89.26 296 | 98.11 165 | 99.70 113 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 205 | 93.61 217 | 97.74 166 | 97.82 211 | 96.26 147 | 99.96 36 | 97.78 241 | 85.76 349 | 94.00 231 | 97.54 251 | 76.95 318 | 99.21 176 | 97.23 158 | 95.43 225 | 97.76 251 |
|
| 1112_ss | | | 96.01 166 | 95.20 178 | 98.42 124 | 97.80 212 | 96.41 140 | 99.65 188 | 96.66 353 | 92.71 198 | 92.88 245 | 99.40 130 | 92.16 150 | 99.30 171 | 91.92 257 | 93.66 249 | 99.55 147 |
|
| Test_1112_low_res | | | 95.72 172 | 94.83 190 | 98.42 124 | 97.79 213 | 96.41 140 | 99.65 188 | 96.65 354 | 92.70 199 | 92.86 246 | 96.13 298 | 92.15 151 | 99.30 171 | 91.88 258 | 93.64 250 | 99.55 147 |
|
| Effi-MVS+-dtu | | | 94.53 209 | 95.30 175 | 92.22 337 | 97.77 214 | 82.54 381 | 99.59 199 | 97.06 319 | 94.92 107 | 95.29 215 | 95.37 329 | 85.81 237 | 97.89 274 | 94.80 204 | 97.07 187 | 96.23 270 |
|
| tpm cat1 | | | 93.51 237 | 92.52 251 | 96.47 213 | 97.77 214 | 91.47 292 | 96.13 383 | 98.06 213 | 80.98 385 | 92.91 244 | 93.78 370 | 89.66 191 | 98.87 197 | 87.03 324 | 96.39 202 | 99.09 207 |
|
| FA-MVS(test-final) | | | 95.86 168 | 95.09 182 | 98.15 139 | 97.74 216 | 95.62 176 | 96.31 380 | 98.17 199 | 91.42 249 | 96.26 196 | 96.13 298 | 90.56 180 | 99.47 167 | 92.18 253 | 97.07 187 | 99.35 182 |
|
| xiu_mvs_v1_base_debu | | | 97.43 98 | 97.06 104 | 98.55 109 | 97.74 216 | 98.14 67 | 99.31 243 | 97.86 234 | 96.43 68 | 99.62 49 | 99.69 90 | 85.56 239 | 99.68 147 | 99.05 66 | 98.31 155 | 97.83 247 |
|
| xiu_mvs_v1_base | | | 97.43 98 | 97.06 104 | 98.55 109 | 97.74 216 | 98.14 67 | 99.31 243 | 97.86 234 | 96.43 68 | 99.62 49 | 99.69 90 | 85.56 239 | 99.68 147 | 99.05 66 | 98.31 155 | 97.83 247 |
|
| xiu_mvs_v1_base_debi | | | 97.43 98 | 97.06 104 | 98.55 109 | 97.74 216 | 98.14 67 | 99.31 243 | 97.86 234 | 96.43 68 | 99.62 49 | 99.69 90 | 85.56 239 | 99.68 147 | 99.05 66 | 98.31 155 | 97.83 247 |
|
| EPP-MVSNet | | | 96.69 141 | 96.60 128 | 96.96 200 | 97.74 216 | 93.05 250 | 99.37 236 | 98.56 94 | 88.75 307 | 95.83 207 | 99.01 161 | 96.01 36 | 98.56 219 | 96.92 170 | 97.20 185 | 99.25 195 |
|
| gg-mvs-nofinetune | | | 93.51 237 | 91.86 263 | 98.47 118 | 97.72 221 | 97.96 79 | 92.62 401 | 98.51 111 | 74.70 403 | 97.33 166 | 69.59 417 | 98.91 4 | 97.79 277 | 97.77 147 | 99.56 103 | 99.67 118 |
|
| IB-MVS | | 92.85 6 | 94.99 193 | 93.94 212 | 98.16 136 | 97.72 221 | 95.69 173 | 99.99 4 | 98.81 61 | 94.28 138 | 92.70 247 | 96.90 271 | 95.08 56 | 99.17 182 | 96.07 180 | 73.88 385 | 99.60 136 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 103 | 97.02 109 | 98.59 106 | 97.71 223 | 97.52 95 | 99.97 29 | 98.54 103 | 91.83 233 | 97.45 162 | 99.04 158 | 97.50 9 | 99.10 187 | 94.75 206 | 96.37 203 | 99.16 200 |
|
| Syy-MVS | | | 90.00 316 | 90.63 282 | 88.11 376 | 97.68 224 | 74.66 403 | 99.71 177 | 98.35 170 | 90.79 266 | 92.10 253 | 98.67 198 | 79.10 303 | 93.09 396 | 63.35 410 | 95.95 212 | 96.59 266 |
|
| myMVS_eth3d | | | 94.46 212 | 94.76 192 | 93.55 314 | 97.68 224 | 90.97 296 | 99.71 177 | 98.35 170 | 90.79 266 | 92.10 253 | 98.67 198 | 92.46 144 | 93.09 396 | 87.13 321 | 95.95 212 | 96.59 266 |
|
| test_fmvs1_n | | | 94.25 220 | 94.36 199 | 93.92 301 | 97.68 224 | 83.70 375 | 99.90 95 | 96.57 357 | 97.40 30 | 99.67 40 | 98.88 181 | 61.82 393 | 99.92 93 | 98.23 119 | 99.13 130 | 98.14 243 |
|
| RRT-MVS | | | 96.24 162 | 95.68 165 | 97.94 151 | 97.65 227 | 94.92 201 | 99.27 251 | 97.10 313 | 92.79 195 | 97.43 163 | 97.99 239 | 81.85 269 | 99.37 170 | 98.46 108 | 98.57 148 | 99.53 155 |
|
| diffmvs |  | | 97.00 123 | 96.64 126 | 98.09 142 | 97.64 228 | 96.17 155 | 99.81 141 | 97.19 302 | 94.67 118 | 98.95 100 | 99.28 138 | 86.43 232 | 98.76 205 | 98.37 113 | 97.42 180 | 99.33 185 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 172 | 95.15 180 | 97.45 181 | 97.62 229 | 94.28 218 | 99.28 249 | 98.24 190 | 94.27 140 | 96.84 180 | 98.94 177 | 79.39 298 | 98.76 205 | 93.25 238 | 98.49 150 | 99.30 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 116 | 96.72 123 | 98.22 134 | 97.60 230 | 96.70 128 | 99.92 82 | 98.54 103 | 91.11 257 | 97.07 174 | 98.97 168 | 97.47 12 | 99.03 190 | 93.73 233 | 96.09 207 | 98.92 216 |
|
| GDP-MVS | | | 97.88 72 | 97.59 84 | 98.75 93 | 97.59 231 | 97.81 84 | 99.95 55 | 97.37 284 | 94.44 126 | 99.08 94 | 99.58 111 | 97.13 23 | 99.08 188 | 94.99 196 | 98.17 160 | 99.37 177 |
|
| miper_ehance_all_eth | | | 93.16 245 | 92.60 245 | 94.82 264 | 97.57 232 | 93.56 238 | 99.50 216 | 97.07 318 | 88.75 307 | 88.85 305 | 95.52 318 | 90.97 171 | 96.74 333 | 90.77 276 | 84.45 318 | 94.17 305 |
|
| testing3 | | | 93.92 223 | 94.23 203 | 92.99 328 | 97.54 233 | 90.23 315 | 99.99 4 | 99.16 30 | 90.57 271 | 91.33 261 | 98.63 204 | 92.99 126 | 92.52 400 | 82.46 356 | 95.39 226 | 96.22 271 |
|
| LCM-MVSNet-Re | | | 92.31 265 | 92.60 245 | 91.43 346 | 97.53 234 | 79.27 398 | 99.02 279 | 91.83 413 | 92.07 225 | 80.31 378 | 94.38 364 | 83.50 258 | 95.48 370 | 97.22 159 | 97.58 176 | 99.54 151 |
|
| GBi-Net | | | 90.88 293 | 89.82 299 | 94.08 293 | 97.53 234 | 91.97 273 | 98.43 329 | 96.95 331 | 87.05 332 | 89.68 282 | 94.72 352 | 71.34 355 | 96.11 357 | 87.01 325 | 85.65 307 | 94.17 305 |
|
| test1 | | | 90.88 293 | 89.82 299 | 94.08 293 | 97.53 234 | 91.97 273 | 98.43 329 | 96.95 331 | 87.05 332 | 89.68 282 | 94.72 352 | 71.34 355 | 96.11 357 | 87.01 325 | 85.65 307 | 94.17 305 |
|
| FMVSNet2 | | | 91.02 290 | 89.56 304 | 95.41 244 | 97.53 234 | 95.74 168 | 98.98 281 | 97.41 280 | 87.05 332 | 88.43 314 | 95.00 346 | 71.34 355 | 96.24 354 | 85.12 339 | 85.21 312 | 94.25 299 |
|
| tttt0517 | | | 96.85 130 | 96.49 132 | 97.92 152 | 97.48 238 | 95.89 163 | 99.85 124 | 98.54 103 | 90.72 270 | 96.63 185 | 98.93 179 | 97.47 12 | 99.02 191 | 93.03 245 | 95.76 218 | 98.85 220 |
|
| BP-MVS1 | | | 98.33 52 | 98.18 51 | 98.81 89 | 97.44 239 | 97.98 76 | 99.96 36 | 98.17 199 | 94.88 109 | 98.77 110 | 99.59 108 | 97.59 7 | 99.08 188 | 98.24 118 | 98.93 137 | 99.36 179 |
|
| casdiffmvs_mvg |  | | 96.43 150 | 95.94 154 | 97.89 156 | 97.44 239 | 95.47 180 | 99.86 121 | 97.29 295 | 93.35 172 | 96.03 200 | 99.19 149 | 85.39 242 | 98.72 210 | 97.89 139 | 97.04 189 | 99.49 164 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 105 | 97.24 98 | 97.80 157 | 97.41 241 | 95.64 175 | 99.99 4 | 97.06 319 | 94.59 119 | 99.63 46 | 99.32 137 | 89.20 202 | 98.14 258 | 98.76 90 | 99.23 126 | 99.62 130 |
|
| c3_l | | | 92.53 260 | 91.87 262 | 94.52 276 | 97.40 242 | 92.99 252 | 99.40 229 | 96.93 336 | 87.86 322 | 88.69 308 | 95.44 323 | 89.95 189 | 96.44 345 | 90.45 282 | 80.69 351 | 94.14 314 |
|
| fmvsm_s_conf0.1_n | | | 97.30 106 | 97.21 100 | 97.60 174 | 97.38 243 | 94.40 215 | 99.90 95 | 98.64 77 | 96.47 67 | 99.51 64 | 99.65 101 | 84.99 247 | 99.93 89 | 99.22 60 | 99.09 132 | 98.46 234 |
|
| CDS-MVSNet | | | 96.34 155 | 96.07 143 | 97.13 195 | 97.37 244 | 94.96 199 | 99.53 211 | 97.91 229 | 91.55 241 | 95.37 214 | 98.32 227 | 95.05 58 | 97.13 307 | 93.80 229 | 95.75 219 | 99.30 189 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 138 | 96.26 138 | 98.16 136 | 97.36 245 | 96.48 137 | 99.96 36 | 98.29 183 | 91.93 230 | 95.77 208 | 98.07 235 | 95.54 46 | 98.29 247 | 90.55 280 | 98.89 138 | 99.70 113 |
|
| miper_lstm_enhance | | | 91.81 273 | 91.39 272 | 93.06 327 | 97.34 246 | 89.18 332 | 99.38 234 | 96.79 347 | 86.70 339 | 87.47 328 | 95.22 338 | 90.00 188 | 95.86 366 | 88.26 306 | 81.37 340 | 94.15 311 |
|
| baseline | | | 96.43 150 | 95.98 148 | 97.76 164 | 97.34 246 | 95.17 196 | 99.51 214 | 97.17 305 | 93.92 156 | 96.90 178 | 99.28 138 | 85.37 243 | 98.64 216 | 97.50 153 | 96.86 195 | 99.46 166 |
|
| cl____ | | | 92.31 265 | 91.58 266 | 94.52 276 | 97.33 248 | 92.77 254 | 99.57 204 | 96.78 348 | 86.97 336 | 87.56 326 | 95.51 319 | 89.43 195 | 96.62 338 | 88.60 301 | 82.44 332 | 94.16 310 |
|
| DIV-MVS_self_test | | | 92.32 264 | 91.60 265 | 94.47 280 | 97.31 249 | 92.74 256 | 99.58 201 | 96.75 349 | 86.99 335 | 87.64 324 | 95.54 316 | 89.55 194 | 96.50 342 | 88.58 302 | 82.44 332 | 94.17 305 |
|
| casdiffmvs |  | | 96.42 152 | 95.97 151 | 97.77 162 | 97.30 250 | 94.98 198 | 99.84 129 | 97.09 316 | 93.75 163 | 96.58 187 | 99.26 144 | 85.07 245 | 98.78 203 | 97.77 147 | 97.04 189 | 99.54 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 217 | 93.48 224 | 96.99 199 | 97.29 251 | 93.54 239 | 99.96 36 | 96.72 351 | 88.35 316 | 93.43 235 | 98.94 177 | 82.05 266 | 98.05 265 | 88.12 310 | 96.48 201 | 99.37 177 |
|
| eth_miper_zixun_eth | | | 92.41 263 | 91.93 260 | 93.84 305 | 97.28 252 | 90.68 305 | 98.83 301 | 96.97 330 | 88.57 312 | 89.19 300 | 95.73 309 | 89.24 201 | 96.69 336 | 89.97 291 | 81.55 338 | 94.15 311 |
|
| MVSFormer | | | 96.94 126 | 96.60 128 | 97.95 148 | 97.28 252 | 97.70 89 | 99.55 208 | 97.27 297 | 91.17 254 | 99.43 70 | 99.54 117 | 90.92 172 | 96.89 325 | 94.67 209 | 99.62 95 | 99.25 195 |
|
| lupinMVS | | | 97.85 75 | 97.60 82 | 98.62 102 | 97.28 252 | 97.70 89 | 99.99 4 | 97.55 263 | 95.50 95 | 99.43 70 | 99.67 97 | 90.92 172 | 98.71 211 | 98.40 110 | 99.62 95 | 99.45 168 |
|
| SCA | | | 94.69 202 | 93.81 216 | 97.33 191 | 97.10 255 | 94.44 210 | 98.86 298 | 98.32 177 | 93.30 175 | 96.17 199 | 95.59 314 | 76.48 324 | 97.95 271 | 91.06 268 | 97.43 178 | 99.59 137 |
|
| TAMVS | | | 95.85 169 | 95.58 167 | 96.65 211 | 97.07 256 | 93.50 240 | 99.17 259 | 97.82 238 | 91.39 251 | 95.02 218 | 98.01 236 | 92.20 149 | 97.30 297 | 93.75 232 | 95.83 216 | 99.14 203 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 232 | 93.86 215 | 93.29 319 | 97.06 257 | 86.16 360 | 99.80 145 | 96.83 343 | 92.66 202 | 92.58 248 | 97.83 247 | 81.39 275 | 97.67 282 | 89.75 293 | 96.87 194 | 96.05 273 |
|
| CostFormer | | | 96.10 163 | 95.88 158 | 96.78 205 | 97.03 258 | 92.55 264 | 97.08 367 | 97.83 237 | 90.04 283 | 98.72 115 | 94.89 350 | 95.01 60 | 98.29 247 | 96.54 175 | 95.77 217 | 99.50 162 |
|
| test_fmvsmvis_n_1920 | | | 97.67 91 | 97.59 84 | 97.91 154 | 97.02 259 | 95.34 186 | 99.95 55 | 98.45 123 | 97.87 17 | 97.02 175 | 99.59 108 | 89.64 192 | 99.98 47 | 99.41 53 | 99.34 121 | 98.42 236 |
|
| test-LLR | | | 96.47 148 | 96.04 144 | 97.78 160 | 97.02 259 | 95.44 181 | 99.96 36 | 98.21 194 | 94.07 146 | 95.55 210 | 96.38 288 | 93.90 101 | 98.27 251 | 90.42 283 | 98.83 142 | 99.64 124 |
|
| test-mter | | | 96.39 153 | 95.93 155 | 97.78 160 | 97.02 259 | 95.44 181 | 99.96 36 | 98.21 194 | 91.81 235 | 95.55 210 | 96.38 288 | 95.17 53 | 98.27 251 | 90.42 283 | 98.83 142 | 99.64 124 |
|
| gm-plane-assit | | | | | | 96.97 262 | 93.76 232 | | | 91.47 245 | | 98.96 170 | | 98.79 202 | 94.92 199 | | |
|
| WB-MVSnew | | | 92.90 251 | 92.77 242 | 93.26 321 | 96.95 263 | 93.63 236 | 99.71 177 | 98.16 204 | 91.49 242 | 94.28 227 | 98.14 232 | 81.33 277 | 96.48 343 | 79.47 371 | 95.46 223 | 89.68 397 |
|
| QAPM | | | 95.40 183 | 94.17 205 | 99.10 67 | 96.92 264 | 97.71 87 | 99.40 229 | 98.68 71 | 89.31 291 | 88.94 304 | 98.89 180 | 82.48 264 | 99.96 65 | 93.12 244 | 99.83 77 | 99.62 130 |
|
| KD-MVS_2432*1600 | | | 88.00 337 | 86.10 341 | 93.70 310 | 96.91 265 | 94.04 224 | 97.17 364 | 97.12 311 | 84.93 359 | 81.96 369 | 92.41 381 | 92.48 142 | 94.51 384 | 79.23 372 | 52.68 416 | 92.56 367 |
|
| miper_refine_blended | | | 88.00 337 | 86.10 341 | 93.70 310 | 96.91 265 | 94.04 224 | 97.17 364 | 97.12 311 | 84.93 359 | 81.96 369 | 92.41 381 | 92.48 142 | 94.51 384 | 79.23 372 | 52.68 416 | 92.56 367 |
|
| tpm2 | | | 95.47 181 | 95.18 179 | 96.35 220 | 96.91 265 | 91.70 286 | 96.96 370 | 97.93 225 | 88.04 320 | 98.44 128 | 95.40 325 | 93.32 115 | 97.97 268 | 94.00 221 | 95.61 221 | 99.38 175 |
|
| FMVSNet5 | | | 88.32 333 | 87.47 335 | 90.88 349 | 96.90 268 | 88.39 344 | 97.28 361 | 95.68 377 | 82.60 379 | 84.67 357 | 92.40 383 | 79.83 295 | 91.16 405 | 76.39 387 | 81.51 339 | 93.09 359 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 157 | 95.24 176 | 99.52 28 | 96.88 269 | 98.64 54 | 99.72 174 | 98.24 190 | 95.27 100 | 88.42 316 | 98.98 166 | 82.76 263 | 99.94 81 | 97.10 162 | 99.83 77 | 99.96 67 |
|
| Patchmatch-test | | | 92.65 259 | 91.50 269 | 96.10 226 | 96.85 270 | 90.49 310 | 91.50 406 | 97.19 302 | 82.76 378 | 90.23 270 | 95.59 314 | 95.02 59 | 98.00 267 | 77.41 382 | 96.98 192 | 99.82 95 |
|
| MVS | | | 96.60 144 | 95.56 168 | 99.72 13 | 96.85 270 | 99.22 20 | 98.31 335 | 98.94 41 | 91.57 240 | 90.90 265 | 99.61 107 | 86.66 230 | 99.96 65 | 97.36 155 | 99.88 73 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 160 | 95.34 173 | 99.08 70 | 96.82 272 | 97.47 100 | 99.45 226 | 98.81 61 | 95.52 94 | 89.39 291 | 99.00 163 | 81.97 267 | 99.95 73 | 97.27 157 | 99.83 77 | 99.84 93 |
|
| EI-MVSNet | | | 93.73 231 | 93.40 229 | 94.74 265 | 96.80 273 | 92.69 259 | 99.06 270 | 97.67 248 | 88.96 300 | 91.39 259 | 99.02 159 | 88.75 207 | 97.30 297 | 91.07 267 | 87.85 293 | 94.22 301 |
|
| CVMVSNet | | | 94.68 204 | 94.94 188 | 93.89 304 | 96.80 273 | 86.92 357 | 99.06 270 | 98.98 38 | 94.45 123 | 94.23 229 | 99.02 159 | 85.60 238 | 95.31 374 | 90.91 273 | 95.39 226 | 99.43 171 |
|
| IterMVS-LS | | | 92.69 257 | 92.11 256 | 94.43 284 | 96.80 273 | 92.74 256 | 99.45 226 | 96.89 339 | 88.98 298 | 89.65 285 | 95.38 328 | 88.77 206 | 96.34 349 | 90.98 271 | 82.04 335 | 94.22 301 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 292 | 90.17 294 | 93.12 324 | 96.78 276 | 90.42 313 | 98.89 292 | 97.05 322 | 89.03 295 | 86.49 341 | 95.42 324 | 76.59 322 | 95.02 376 | 87.22 320 | 84.09 321 | 93.93 331 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 131 | 95.96 152 | 99.48 34 | 96.74 277 | 98.52 58 | 98.31 335 | 98.86 53 | 95.82 84 | 89.91 276 | 98.98 166 | 87.49 218 | 99.96 65 | 97.80 142 | 99.73 87 | 99.96 67 |
|
| IterMVS-SCA-FT | | | 90.85 295 | 90.16 295 | 92.93 329 | 96.72 278 | 89.96 321 | 98.89 292 | 96.99 326 | 88.95 301 | 86.63 338 | 95.67 310 | 76.48 324 | 95.00 377 | 87.04 323 | 84.04 324 | 93.84 338 |
|
| MVS-HIRNet | | | 86.22 344 | 83.19 357 | 95.31 248 | 96.71 279 | 90.29 314 | 92.12 403 | 97.33 289 | 62.85 411 | 86.82 335 | 70.37 416 | 69.37 363 | 97.49 288 | 75.12 390 | 97.99 170 | 98.15 241 |
|
| VDDNet | | | 93.12 246 | 91.91 261 | 96.76 206 | 96.67 280 | 92.65 262 | 98.69 314 | 98.21 194 | 82.81 377 | 97.75 156 | 99.28 138 | 61.57 394 | 99.48 166 | 98.09 127 | 94.09 244 | 98.15 241 |
|
| dmvs_re | | | 93.20 243 | 93.15 234 | 93.34 317 | 96.54 281 | 83.81 374 | 98.71 311 | 98.51 111 | 91.39 251 | 92.37 251 | 98.56 211 | 78.66 307 | 97.83 276 | 93.89 223 | 89.74 265 | 98.38 237 |
|
| MIMVSNet | | | 90.30 308 | 88.67 322 | 95.17 252 | 96.45 282 | 91.64 288 | 92.39 402 | 97.15 308 | 85.99 346 | 90.50 268 | 93.19 377 | 66.95 374 | 94.86 381 | 82.01 360 | 93.43 252 | 99.01 214 |
|
| CR-MVSNet | | | 93.45 240 | 92.62 244 | 95.94 230 | 96.29 283 | 92.66 260 | 92.01 404 | 96.23 365 | 92.62 204 | 96.94 176 | 93.31 375 | 91.04 169 | 96.03 362 | 79.23 372 | 95.96 210 | 99.13 204 |
|
| RPMNet | | | 89.76 320 | 87.28 336 | 97.19 194 | 96.29 283 | 92.66 260 | 92.01 404 | 98.31 179 | 70.19 410 | 96.94 176 | 85.87 409 | 87.25 222 | 99.78 130 | 62.69 411 | 95.96 210 | 99.13 204 |
|
| tt0805 | | | 91.28 285 | 90.18 293 | 94.60 271 | 96.26 285 | 87.55 350 | 98.39 333 | 98.72 66 | 89.00 297 | 89.22 297 | 98.47 219 | 62.98 389 | 98.96 194 | 90.57 279 | 88.00 292 | 97.28 260 |
|
| Patchmtry | | | 89.70 321 | 88.49 324 | 93.33 318 | 96.24 286 | 89.94 324 | 91.37 407 | 96.23 365 | 78.22 393 | 87.69 323 | 93.31 375 | 91.04 169 | 96.03 362 | 80.18 370 | 82.10 334 | 94.02 321 |
|
| test_vis1_rt | | | 86.87 342 | 86.05 344 | 89.34 365 | 96.12 287 | 78.07 399 | 99.87 110 | 83.54 424 | 92.03 228 | 78.21 388 | 89.51 395 | 45.80 410 | 99.91 94 | 96.25 178 | 93.11 257 | 90.03 394 |
|
| JIA-IIPM | | | 91.76 279 | 90.70 280 | 94.94 258 | 96.11 288 | 87.51 351 | 93.16 400 | 98.13 209 | 75.79 399 | 97.58 158 | 77.68 414 | 92.84 131 | 97.97 268 | 88.47 305 | 96.54 197 | 99.33 185 |
|
| OpenMVS |  | 90.15 15 | 94.77 200 | 93.59 220 | 98.33 128 | 96.07 289 | 97.48 99 | 99.56 206 | 98.57 91 | 90.46 273 | 86.51 340 | 98.95 175 | 78.57 308 | 99.94 81 | 93.86 224 | 99.74 86 | 97.57 256 |
|
| PAPM | | | 98.60 33 | 98.42 34 | 99.14 61 | 96.05 290 | 98.96 26 | 99.90 95 | 99.35 24 | 96.68 60 | 98.35 134 | 99.66 99 | 96.45 33 | 98.51 222 | 99.45 50 | 99.89 70 | 99.96 67 |
|
| CLD-MVS | | | 94.06 222 | 93.90 213 | 94.55 275 | 96.02 291 | 90.69 304 | 99.98 15 | 97.72 244 | 96.62 64 | 91.05 264 | 98.85 189 | 77.21 313 | 98.47 223 | 98.11 125 | 89.51 271 | 94.48 280 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 305 | 88.75 321 | 95.25 250 | 95.99 292 | 90.16 317 | 91.22 408 | 97.54 265 | 76.80 395 | 97.26 168 | 86.01 408 | 91.88 156 | 96.07 361 | 66.16 407 | 95.91 214 | 99.51 160 |
|
| ACMH+ | | 89.98 16 | 90.35 306 | 89.54 305 | 92.78 333 | 95.99 292 | 86.12 361 | 98.81 303 | 97.18 304 | 89.38 290 | 83.14 365 | 97.76 248 | 68.42 368 | 98.43 228 | 89.11 297 | 86.05 305 | 93.78 341 |
|
| DeepMVS_CX |  | | | | 82.92 386 | 95.98 294 | 58.66 417 | | 96.01 370 | 92.72 197 | 78.34 387 | 95.51 319 | 58.29 399 | 98.08 262 | 82.57 355 | 85.29 310 | 92.03 375 |
|
| ACMP | | 92.05 9 | 92.74 255 | 92.42 253 | 93.73 306 | 95.91 295 | 88.72 337 | 99.81 141 | 97.53 267 | 94.13 142 | 87.00 334 | 98.23 230 | 74.07 345 | 98.47 223 | 96.22 179 | 88.86 278 | 93.99 326 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 235 | 93.03 236 | 95.35 245 | 95.86 296 | 86.94 356 | 99.87 110 | 96.36 363 | 96.85 51 | 99.54 59 | 98.79 191 | 52.41 406 | 99.83 123 | 98.64 98 | 98.97 136 | 99.29 191 |
|
| HQP-NCC | | | | | | 95.78 297 | | 99.87 110 | | 96.82 53 | 93.37 236 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 297 | | 99.87 110 | | 96.82 53 | 93.37 236 | | | | | | |
|
| HQP-MVS | | | 94.61 206 | 94.50 196 | 94.92 259 | 95.78 297 | 91.85 278 | 99.87 110 | 97.89 230 | 96.82 53 | 93.37 236 | 98.65 201 | 80.65 287 | 98.39 234 | 97.92 136 | 89.60 266 | 94.53 276 |
|
| NP-MVS | | | | | | 95.77 300 | 91.79 280 | | | | | 98.65 201 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 87 | 97.44 89 | 98.64 101 | 95.76 301 | 96.20 152 | 99.94 72 | 98.05 215 | 98.17 9 | 98.89 104 | 99.42 125 | 87.65 216 | 99.90 96 | 99.50 46 | 99.60 101 | 99.82 95 |
|
| plane_prior6 | | | | | | 95.76 301 | 91.72 285 | | | | | | 80.47 291 | | | | |
|
| ACMM | | 91.95 10 | 92.88 252 | 92.52 251 | 93.98 300 | 95.75 303 | 89.08 334 | 99.77 151 | 97.52 269 | 93.00 184 | 89.95 275 | 97.99 239 | 76.17 328 | 98.46 226 | 93.63 235 | 88.87 277 | 94.39 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 225 | 92.84 238 | 96.80 204 | 95.73 304 | 93.57 237 | 99.88 107 | 97.24 300 | 92.57 209 | 92.92 243 | 96.66 280 | 78.73 306 | 97.67 282 | 87.75 313 | 94.06 245 | 99.17 199 |
|
| plane_prior1 | | | | | | 95.73 304 | | | | | | | | | | | |
|
| jason | | | 97.24 110 | 96.86 115 | 98.38 127 | 95.73 304 | 97.32 104 | 99.97 29 | 97.40 281 | 95.34 98 | 98.60 122 | 99.54 117 | 87.70 215 | 98.56 219 | 97.94 135 | 99.47 110 | 99.25 195 |
| jason: jason. |
| mmtdpeth | | | 88.52 331 | 87.75 333 | 90.85 351 | 95.71 307 | 83.47 377 | 98.94 286 | 94.85 391 | 88.78 306 | 97.19 170 | 89.58 394 | 63.29 387 | 98.97 192 | 98.54 103 | 62.86 410 | 90.10 393 |
|
| HQP_MVS | | | 94.49 211 | 94.36 199 | 94.87 260 | 95.71 307 | 91.74 282 | 99.84 129 | 97.87 232 | 96.38 71 | 93.01 241 | 98.59 206 | 80.47 291 | 98.37 240 | 97.79 145 | 89.55 269 | 94.52 278 |
|
| plane_prior7 | | | | | | 95.71 307 | 91.59 290 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 335 | 95.69 310 | 85.14 366 | | 95.71 376 | 92.81 192 | 89.33 294 | 98.11 233 | 70.23 361 | 98.42 229 | 85.91 335 | 88.16 290 | 93.59 349 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 118 | 96.90 112 | 97.63 172 | 95.65 311 | 94.21 221 | 99.83 136 | 98.50 117 | 96.27 76 | 99.65 42 | 99.64 102 | 84.72 248 | 99.93 89 | 99.04 69 | 98.84 141 | 98.74 227 |
|
| ACMH | | 89.72 17 | 90.64 299 | 89.63 302 | 93.66 312 | 95.64 312 | 88.64 340 | 98.55 321 | 97.45 274 | 89.03 295 | 81.62 372 | 97.61 249 | 69.75 362 | 98.41 230 | 89.37 294 | 87.62 297 | 93.92 332 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 140 | 96.49 132 | 97.37 187 | 95.63 313 | 95.96 161 | 99.74 163 | 98.88 51 | 92.94 186 | 91.61 257 | 98.97 168 | 97.72 6 | 98.62 217 | 94.83 203 | 98.08 168 | 97.53 257 |
|
| FMVSNet1 | | | 88.50 332 | 86.64 339 | 94.08 293 | 95.62 314 | 91.97 273 | 98.43 329 | 96.95 331 | 83.00 375 | 86.08 348 | 94.72 352 | 59.09 398 | 96.11 357 | 81.82 362 | 84.07 322 | 94.17 305 |
|
| LPG-MVS_test | | | 92.96 249 | 92.71 243 | 93.71 308 | 95.43 315 | 88.67 338 | 99.75 160 | 97.62 254 | 92.81 192 | 90.05 271 | 98.49 215 | 75.24 335 | 98.40 232 | 95.84 185 | 89.12 273 | 94.07 318 |
|
| LGP-MVS_train | | | | | 93.71 308 | 95.43 315 | 88.67 338 | | 97.62 254 | 92.81 192 | 90.05 271 | 98.49 215 | 75.24 335 | 98.40 232 | 95.84 185 | 89.12 273 | 94.07 318 |
|
| tpm | | | 93.70 233 | 93.41 228 | 94.58 273 | 95.36 317 | 87.41 352 | 97.01 368 | 96.90 338 | 90.85 264 | 96.72 184 | 94.14 367 | 90.40 183 | 96.84 328 | 90.75 277 | 88.54 285 | 99.51 160 |
|
| D2MVS | | | 92.76 254 | 92.59 249 | 93.27 320 | 95.13 318 | 89.54 328 | 99.69 182 | 99.38 22 | 92.26 221 | 87.59 325 | 94.61 358 | 85.05 246 | 97.79 277 | 91.59 261 | 88.01 291 | 92.47 370 |
|
| VPA-MVSNet | | | 92.70 256 | 91.55 268 | 96.16 224 | 95.09 319 | 96.20 152 | 98.88 294 | 99.00 36 | 91.02 261 | 91.82 256 | 95.29 335 | 76.05 330 | 97.96 270 | 95.62 189 | 81.19 341 | 94.30 295 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 309 | 89.05 316 | 94.02 296 | 95.08 320 | 90.15 318 | 97.19 363 | 97.43 276 | 84.91 361 | 83.99 361 | 97.06 266 | 74.00 346 | 98.28 249 | 84.08 344 | 87.71 295 | 93.62 348 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 339 | 86.51 340 | 91.94 340 | 95.05 321 | 85.57 364 | 97.65 356 | 94.08 400 | 84.40 365 | 81.82 371 | 96.85 275 | 62.14 392 | 98.33 243 | 80.25 369 | 86.37 304 | 91.91 377 |
|
| test0.0.03 1 | | | 93.86 224 | 93.61 217 | 94.64 269 | 95.02 322 | 92.18 271 | 99.93 79 | 98.58 89 | 94.07 146 | 87.96 320 | 98.50 214 | 93.90 101 | 94.96 378 | 81.33 363 | 93.17 255 | 96.78 263 |
|
| UniMVSNet (Re) | | | 93.07 248 | 92.13 255 | 95.88 231 | 94.84 323 | 96.24 151 | 99.88 107 | 98.98 38 | 92.49 214 | 89.25 295 | 95.40 325 | 87.09 224 | 97.14 306 | 93.13 243 | 78.16 365 | 94.26 297 |
|
| USDC | | | 90.00 316 | 88.96 317 | 93.10 326 | 94.81 324 | 88.16 346 | 98.71 311 | 95.54 381 | 93.66 165 | 83.75 363 | 97.20 260 | 65.58 379 | 98.31 245 | 83.96 347 | 87.49 299 | 92.85 364 |
|
| VPNet | | | 91.81 273 | 90.46 284 | 95.85 233 | 94.74 325 | 95.54 179 | 98.98 281 | 98.59 87 | 92.14 223 | 90.77 267 | 97.44 253 | 68.73 366 | 97.54 287 | 94.89 202 | 77.89 367 | 94.46 281 |
|
| FIs | | | 94.10 221 | 93.43 225 | 96.11 225 | 94.70 326 | 96.82 125 | 99.58 201 | 98.93 45 | 92.54 210 | 89.34 293 | 97.31 257 | 87.62 217 | 97.10 310 | 94.22 220 | 86.58 302 | 94.40 287 |
|
| UniMVSNet_ETH3D | | | 90.06 315 | 88.58 323 | 94.49 279 | 94.67 327 | 88.09 347 | 97.81 355 | 97.57 262 | 83.91 368 | 88.44 312 | 97.41 254 | 57.44 400 | 97.62 284 | 91.41 262 | 88.59 284 | 97.77 250 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 250 | 92.11 256 | 95.49 239 | 94.61 328 | 95.28 189 | 99.83 136 | 99.08 33 | 91.49 242 | 89.21 298 | 96.86 274 | 87.14 223 | 96.73 334 | 93.20 239 | 77.52 370 | 94.46 281 |
|
| test_fmvs2 | | | 89.47 324 | 89.70 301 | 88.77 372 | 94.54 329 | 75.74 400 | 99.83 136 | 94.70 396 | 94.71 115 | 91.08 262 | 96.82 279 | 54.46 403 | 97.78 279 | 92.87 246 | 88.27 288 | 92.80 365 |
|
| MonoMVSNet | | | 94.82 195 | 94.43 197 | 95.98 228 | 94.54 329 | 90.73 303 | 99.03 277 | 97.06 319 | 93.16 180 | 93.15 240 | 95.47 322 | 88.29 210 | 97.57 285 | 97.85 140 | 91.33 263 | 99.62 130 |
|
| WR-MVS | | | 92.31 265 | 91.25 273 | 95.48 242 | 94.45 331 | 95.29 188 | 99.60 198 | 98.68 71 | 90.10 280 | 88.07 319 | 96.89 272 | 80.68 286 | 96.80 332 | 93.14 242 | 79.67 358 | 94.36 289 |
|
| nrg030 | | | 93.51 237 | 92.53 250 | 96.45 215 | 94.36 332 | 97.20 109 | 99.81 141 | 97.16 307 | 91.60 239 | 89.86 278 | 97.46 252 | 86.37 233 | 97.68 281 | 95.88 184 | 80.31 354 | 94.46 281 |
|
| tfpnnormal | | | 89.29 327 | 87.61 334 | 94.34 287 | 94.35 333 | 94.13 223 | 98.95 285 | 98.94 41 | 83.94 366 | 84.47 358 | 95.51 319 | 74.84 340 | 97.39 290 | 77.05 385 | 80.41 352 | 91.48 380 |
|
| FC-MVSNet-test | | | 93.81 227 | 93.15 234 | 95.80 235 | 94.30 334 | 96.20 152 | 99.42 228 | 98.89 49 | 92.33 220 | 89.03 303 | 97.27 259 | 87.39 220 | 96.83 330 | 93.20 239 | 86.48 303 | 94.36 289 |
|
| MS-PatchMatch | | | 90.65 298 | 90.30 289 | 91.71 345 | 94.22 335 | 85.50 365 | 98.24 339 | 97.70 245 | 88.67 309 | 86.42 343 | 96.37 290 | 67.82 371 | 98.03 266 | 83.62 349 | 99.62 95 | 91.60 378 |
|
| WR-MVS_H | | | 91.30 283 | 90.35 287 | 94.15 290 | 94.17 336 | 92.62 263 | 99.17 259 | 98.94 41 | 88.87 304 | 86.48 342 | 94.46 363 | 84.36 252 | 96.61 339 | 88.19 307 | 78.51 363 | 93.21 358 |
|
| DU-MVS | | | 92.46 262 | 91.45 271 | 95.49 239 | 94.05 337 | 95.28 189 | 99.81 141 | 98.74 65 | 92.25 222 | 89.21 298 | 96.64 282 | 81.66 272 | 96.73 334 | 93.20 239 | 77.52 370 | 94.46 281 |
|
| NR-MVSNet | | | 91.56 281 | 90.22 291 | 95.60 237 | 94.05 337 | 95.76 167 | 98.25 338 | 98.70 68 | 91.16 256 | 80.78 377 | 96.64 282 | 83.23 261 | 96.57 340 | 91.41 262 | 77.73 369 | 94.46 281 |
|
| CP-MVSNet | | | 91.23 287 | 90.22 291 | 94.26 288 | 93.96 339 | 92.39 267 | 99.09 263 | 98.57 91 | 88.95 301 | 86.42 343 | 96.57 285 | 79.19 301 | 96.37 347 | 90.29 286 | 78.95 360 | 94.02 321 |
|
| XXY-MVS | | | 91.82 272 | 90.46 284 | 95.88 231 | 93.91 340 | 95.40 185 | 98.87 297 | 97.69 247 | 88.63 311 | 87.87 321 | 97.08 264 | 74.38 344 | 97.89 274 | 91.66 260 | 84.07 322 | 94.35 292 |
|
| PS-CasMVS | | | 90.63 300 | 89.51 307 | 93.99 299 | 93.83 341 | 91.70 286 | 98.98 281 | 98.52 108 | 88.48 313 | 86.15 347 | 96.53 287 | 75.46 333 | 96.31 351 | 88.83 299 | 78.86 362 | 93.95 329 |
|
| test_0402 | | | 85.58 346 | 83.94 351 | 90.50 355 | 93.81 342 | 85.04 367 | 98.55 321 | 95.20 388 | 76.01 397 | 79.72 382 | 95.13 339 | 64.15 385 | 96.26 353 | 66.04 408 | 86.88 301 | 90.21 391 |
|
| XVG-ACMP-BASELINE | | | 91.22 288 | 90.75 279 | 92.63 334 | 93.73 343 | 85.61 363 | 98.52 325 | 97.44 275 | 92.77 196 | 89.90 277 | 96.85 275 | 66.64 376 | 98.39 234 | 92.29 251 | 88.61 282 | 93.89 334 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 280 | 90.61 283 | 94.87 260 | 93.69 344 | 93.98 227 | 99.69 182 | 98.65 75 | 91.03 260 | 88.44 312 | 96.83 278 | 80.05 294 | 96.18 355 | 90.26 287 | 76.89 378 | 94.45 286 |
|
| TransMVSNet (Re) | | | 87.25 340 | 85.28 347 | 93.16 323 | 93.56 345 | 91.03 295 | 98.54 323 | 94.05 402 | 83.69 370 | 81.09 375 | 96.16 296 | 75.32 334 | 96.40 346 | 76.69 386 | 68.41 398 | 92.06 374 |
|
| v10 | | | 90.25 310 | 88.82 319 | 94.57 274 | 93.53 346 | 93.43 242 | 99.08 265 | 96.87 341 | 85.00 358 | 87.34 332 | 94.51 359 | 80.93 282 | 97.02 320 | 82.85 354 | 79.23 359 | 93.26 356 |
|
| testgi | | | 89.01 329 | 88.04 330 | 91.90 341 | 93.49 347 | 84.89 369 | 99.73 170 | 95.66 378 | 93.89 160 | 85.14 353 | 98.17 231 | 59.68 397 | 94.66 383 | 77.73 381 | 88.88 276 | 96.16 272 |
|
| v8 | | | 90.54 302 | 89.17 312 | 94.66 268 | 93.43 348 | 93.40 244 | 99.20 256 | 96.94 335 | 85.76 349 | 87.56 326 | 94.51 359 | 81.96 268 | 97.19 303 | 84.94 341 | 78.25 364 | 93.38 354 |
|
| V42 | | | 91.28 285 | 90.12 296 | 94.74 265 | 93.42 349 | 93.46 241 | 99.68 184 | 97.02 323 | 87.36 328 | 89.85 280 | 95.05 342 | 81.31 278 | 97.34 293 | 87.34 318 | 80.07 356 | 93.40 352 |
|
| pm-mvs1 | | | 89.36 326 | 87.81 332 | 94.01 297 | 93.40 350 | 91.93 276 | 98.62 319 | 96.48 361 | 86.25 344 | 83.86 362 | 96.14 297 | 73.68 347 | 97.04 316 | 86.16 332 | 75.73 383 | 93.04 361 |
|
| v1144 | | | 91.09 289 | 89.83 298 | 94.87 260 | 93.25 351 | 93.69 235 | 99.62 195 | 96.98 328 | 86.83 338 | 89.64 286 | 94.99 347 | 80.94 281 | 97.05 313 | 85.08 340 | 81.16 342 | 93.87 336 |
|
| v1192 | | | 90.62 301 | 89.25 311 | 94.72 267 | 93.13 352 | 93.07 248 | 99.50 216 | 97.02 323 | 86.33 343 | 89.56 289 | 95.01 344 | 79.22 300 | 97.09 312 | 82.34 358 | 81.16 342 | 94.01 323 |
|
| v2v482 | | | 91.30 283 | 90.07 297 | 95.01 255 | 93.13 352 | 93.79 230 | 99.77 151 | 97.02 323 | 88.05 319 | 89.25 295 | 95.37 329 | 80.73 285 | 97.15 305 | 87.28 319 | 80.04 357 | 94.09 317 |
|
| OPM-MVS | | | 93.21 242 | 92.80 240 | 94.44 282 | 93.12 354 | 90.85 302 | 99.77 151 | 97.61 257 | 96.19 79 | 91.56 258 | 98.65 201 | 75.16 339 | 98.47 223 | 93.78 231 | 89.39 272 | 93.99 326 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 296 | 89.52 306 | 94.59 272 | 93.11 355 | 92.77 254 | 99.56 206 | 96.99 326 | 86.38 342 | 89.82 281 | 94.95 349 | 80.50 290 | 97.10 310 | 83.98 346 | 80.41 352 | 93.90 333 |
|
| PEN-MVS | | | 90.19 312 | 89.06 315 | 93.57 313 | 93.06 356 | 90.90 300 | 99.06 270 | 98.47 120 | 88.11 318 | 85.91 349 | 96.30 292 | 76.67 320 | 95.94 365 | 87.07 322 | 76.91 377 | 93.89 334 |
|
| v1240 | | | 90.20 311 | 88.79 320 | 94.44 282 | 93.05 357 | 92.27 269 | 99.38 234 | 96.92 337 | 85.89 347 | 89.36 292 | 94.87 351 | 77.89 312 | 97.03 318 | 80.66 366 | 81.08 345 | 94.01 323 |
|
| v148 | | | 90.70 297 | 89.63 302 | 93.92 301 | 92.97 358 | 90.97 296 | 99.75 160 | 96.89 339 | 87.51 325 | 88.27 317 | 95.01 344 | 81.67 271 | 97.04 316 | 87.40 317 | 77.17 375 | 93.75 342 |
|
| v1921920 | | | 90.46 303 | 89.12 313 | 94.50 278 | 92.96 359 | 92.46 265 | 99.49 218 | 96.98 328 | 86.10 345 | 89.61 288 | 95.30 332 | 78.55 309 | 97.03 318 | 82.17 359 | 80.89 350 | 94.01 323 |
|
| MVStest1 | | | 85.03 352 | 82.76 361 | 91.83 342 | 92.95 360 | 89.16 333 | 98.57 320 | 94.82 392 | 71.68 408 | 68.54 408 | 95.11 341 | 83.17 262 | 95.66 368 | 74.69 391 | 65.32 405 | 90.65 387 |
|
| Baseline_NR-MVSNet | | | 90.33 307 | 89.51 307 | 92.81 332 | 92.84 361 | 89.95 322 | 99.77 151 | 93.94 403 | 84.69 363 | 89.04 302 | 95.66 311 | 81.66 272 | 96.52 341 | 90.99 270 | 76.98 376 | 91.97 376 |
|
| test_method | | | 80.79 368 | 79.70 372 | 84.08 383 | 92.83 362 | 67.06 409 | 99.51 214 | 95.42 382 | 54.34 415 | 81.07 376 | 93.53 372 | 44.48 411 | 92.22 402 | 78.90 376 | 77.23 374 | 92.94 362 |
|
| pmmvs4 | | | 92.10 269 | 91.07 277 | 95.18 251 | 92.82 363 | 94.96 199 | 99.48 220 | 96.83 343 | 87.45 327 | 88.66 309 | 96.56 286 | 83.78 256 | 96.83 330 | 89.29 295 | 84.77 316 | 93.75 342 |
|
| LF4IMVS | | | 89.25 328 | 88.85 318 | 90.45 357 | 92.81 364 | 81.19 391 | 98.12 345 | 94.79 393 | 91.44 246 | 86.29 345 | 97.11 262 | 65.30 382 | 98.11 260 | 88.53 304 | 85.25 311 | 92.07 373 |
|
| DTE-MVSNet | | | 89.40 325 | 88.24 328 | 92.88 330 | 92.66 365 | 89.95 322 | 99.10 262 | 98.22 193 | 87.29 329 | 85.12 354 | 96.22 294 | 76.27 327 | 95.30 375 | 83.56 350 | 75.74 382 | 93.41 351 |
|
| EU-MVSNet | | | 90.14 314 | 90.34 288 | 89.54 364 | 92.55 366 | 81.06 392 | 98.69 314 | 98.04 216 | 91.41 250 | 86.59 339 | 96.84 277 | 80.83 284 | 93.31 395 | 86.20 331 | 81.91 336 | 94.26 297 |
|
| APD_test1 | | | 81.15 367 | 80.92 368 | 81.86 387 | 92.45 367 | 59.76 416 | 96.04 386 | 93.61 406 | 73.29 406 | 77.06 391 | 96.64 282 | 44.28 412 | 96.16 356 | 72.35 395 | 82.52 330 | 89.67 398 |
|
| our_test_3 | | | 90.39 304 | 89.48 309 | 93.12 324 | 92.40 368 | 89.57 327 | 99.33 240 | 96.35 364 | 87.84 323 | 85.30 352 | 94.99 347 | 84.14 254 | 96.09 360 | 80.38 367 | 84.56 317 | 93.71 347 |
|
| ppachtmachnet_test | | | 89.58 323 | 88.35 326 | 93.25 322 | 92.40 368 | 90.44 312 | 99.33 240 | 96.73 350 | 85.49 354 | 85.90 350 | 95.77 306 | 81.09 280 | 96.00 364 | 76.00 389 | 82.49 331 | 93.30 355 |
|
| v7n | | | 89.65 322 | 88.29 327 | 93.72 307 | 92.22 370 | 90.56 309 | 99.07 269 | 97.10 313 | 85.42 356 | 86.73 336 | 94.72 352 | 80.06 293 | 97.13 307 | 81.14 364 | 78.12 366 | 93.49 350 |
|
| dmvs_testset | | | 83.79 361 | 86.07 343 | 76.94 391 | 92.14 371 | 48.60 426 | 96.75 373 | 90.27 416 | 89.48 289 | 78.65 385 | 98.55 213 | 79.25 299 | 86.65 414 | 66.85 405 | 82.69 329 | 95.57 274 |
|
| PS-MVSNAJss | | | 93.64 234 | 93.31 231 | 94.61 270 | 92.11 372 | 92.19 270 | 99.12 261 | 97.38 282 | 92.51 213 | 88.45 311 | 96.99 270 | 91.20 164 | 97.29 300 | 94.36 214 | 87.71 295 | 94.36 289 |
|
| pmmvs5 | | | 90.17 313 | 89.09 314 | 93.40 316 | 92.10 373 | 89.77 325 | 99.74 163 | 95.58 380 | 85.88 348 | 87.24 333 | 95.74 307 | 73.41 348 | 96.48 343 | 88.54 303 | 83.56 326 | 93.95 329 |
|
| N_pmnet | | | 80.06 371 | 80.78 369 | 77.89 390 | 91.94 374 | 45.28 428 | 98.80 305 | 56.82 430 | 78.10 394 | 80.08 380 | 93.33 373 | 77.03 315 | 95.76 367 | 68.14 403 | 82.81 328 | 92.64 366 |
|
| test_djsdf | | | 92.83 253 | 92.29 254 | 94.47 280 | 91.90 375 | 92.46 265 | 99.55 208 | 97.27 297 | 91.17 254 | 89.96 274 | 96.07 301 | 81.10 279 | 96.89 325 | 94.67 209 | 88.91 275 | 94.05 320 |
|
| SixPastTwentyTwo | | | 88.73 330 | 88.01 331 | 90.88 349 | 91.85 376 | 82.24 383 | 98.22 342 | 95.18 389 | 88.97 299 | 82.26 368 | 96.89 272 | 71.75 353 | 96.67 337 | 84.00 345 | 82.98 327 | 93.72 346 |
|
| K. test v3 | | | 88.05 336 | 87.24 337 | 90.47 356 | 91.82 377 | 82.23 384 | 98.96 284 | 97.42 278 | 89.05 294 | 76.93 393 | 95.60 313 | 68.49 367 | 95.42 371 | 85.87 336 | 81.01 348 | 93.75 342 |
|
| OurMVSNet-221017-0 | | | 89.81 319 | 89.48 309 | 90.83 352 | 91.64 378 | 81.21 390 | 98.17 344 | 95.38 384 | 91.48 244 | 85.65 351 | 97.31 257 | 72.66 349 | 97.29 300 | 88.15 308 | 84.83 315 | 93.97 328 |
|
| mvs_tets | | | 91.81 273 | 91.08 276 | 94.00 298 | 91.63 379 | 90.58 308 | 98.67 316 | 97.43 276 | 92.43 215 | 87.37 331 | 97.05 267 | 71.76 352 | 97.32 295 | 94.75 206 | 88.68 281 | 94.11 316 |
|
| Gipuma |  | | 66.95 384 | 65.00 384 | 72.79 396 | 91.52 380 | 67.96 408 | 66.16 419 | 95.15 390 | 47.89 417 | 58.54 414 | 67.99 419 | 29.74 416 | 87.54 413 | 50.20 418 | 77.83 368 | 62.87 419 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 153 | 95.74 161 | 98.32 129 | 91.47 381 | 95.56 178 | 99.84 129 | 97.30 292 | 97.74 20 | 97.89 150 | 99.35 136 | 79.62 296 | 99.85 113 | 99.25 59 | 99.24 125 | 99.55 147 |
|
| jajsoiax | | | 91.92 271 | 91.18 274 | 94.15 290 | 91.35 382 | 90.95 299 | 99.00 280 | 97.42 278 | 92.61 205 | 87.38 330 | 97.08 264 | 72.46 350 | 97.36 291 | 94.53 212 | 88.77 279 | 94.13 315 |
|
| MDA-MVSNet-bldmvs | | | 84.09 359 | 81.52 366 | 91.81 343 | 91.32 383 | 88.00 349 | 98.67 316 | 95.92 372 | 80.22 388 | 55.60 417 | 93.32 374 | 68.29 369 | 93.60 393 | 73.76 392 | 76.61 379 | 93.82 340 |
|
| MVP-Stereo | | | 90.93 291 | 90.45 286 | 92.37 336 | 91.25 384 | 88.76 335 | 98.05 349 | 96.17 367 | 87.27 330 | 84.04 359 | 95.30 332 | 78.46 310 | 97.27 302 | 83.78 348 | 99.70 89 | 91.09 381 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 348 | 83.32 356 | 92.10 338 | 90.96 385 | 88.58 341 | 99.20 256 | 96.52 359 | 79.70 390 | 57.12 416 | 92.69 379 | 79.11 302 | 93.86 390 | 77.10 384 | 77.46 372 | 93.86 337 |
|
| YYNet1 | | | 85.50 349 | 83.33 355 | 92.00 339 | 90.89 386 | 88.38 345 | 99.22 255 | 96.55 358 | 79.60 391 | 57.26 415 | 92.72 378 | 79.09 304 | 93.78 391 | 77.25 383 | 77.37 373 | 93.84 338 |
|
| anonymousdsp | | | 91.79 278 | 90.92 278 | 94.41 285 | 90.76 387 | 92.93 253 | 98.93 288 | 97.17 305 | 89.08 293 | 87.46 329 | 95.30 332 | 78.43 311 | 96.92 323 | 92.38 250 | 88.73 280 | 93.39 353 |
|
| lessismore_v0 | | | | | 90.53 354 | 90.58 388 | 80.90 393 | | 95.80 373 | | 77.01 392 | 95.84 304 | 66.15 378 | 96.95 321 | 83.03 353 | 75.05 384 | 93.74 345 |
|
| EG-PatchMatch MVS | | | 85.35 350 | 83.81 353 | 89.99 362 | 90.39 389 | 81.89 386 | 98.21 343 | 96.09 369 | 81.78 382 | 74.73 399 | 93.72 371 | 51.56 408 | 97.12 309 | 79.16 375 | 88.61 282 | 90.96 384 |
|
| EGC-MVSNET | | | 69.38 377 | 63.76 387 | 86.26 380 | 90.32 390 | 81.66 389 | 96.24 382 | 93.85 404 | 0.99 427 | 3.22 428 | 92.33 384 | 52.44 405 | 92.92 398 | 59.53 414 | 84.90 314 | 84.21 408 |
|
| CMPMVS |  | 61.59 21 | 84.75 355 | 85.14 348 | 83.57 384 | 90.32 390 | 62.54 412 | 96.98 369 | 97.59 261 | 74.33 404 | 69.95 405 | 96.66 280 | 64.17 384 | 98.32 244 | 87.88 312 | 88.41 287 | 89.84 396 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 358 | 82.92 359 | 89.21 366 | 90.03 392 | 82.60 380 | 96.89 372 | 95.62 379 | 80.59 386 | 75.77 398 | 89.17 396 | 65.04 383 | 94.79 382 | 72.12 396 | 81.02 347 | 90.23 390 |
|
| pmmvs6 | | | 85.69 345 | 83.84 352 | 91.26 348 | 90.00 393 | 84.41 372 | 97.82 354 | 96.15 368 | 75.86 398 | 81.29 374 | 95.39 327 | 61.21 395 | 96.87 327 | 83.52 351 | 73.29 386 | 92.50 369 |
|
| ttmdpeth | | | 88.23 335 | 87.06 338 | 91.75 344 | 89.91 394 | 87.35 353 | 98.92 291 | 95.73 375 | 87.92 321 | 84.02 360 | 96.31 291 | 68.23 370 | 96.84 328 | 86.33 330 | 76.12 380 | 91.06 382 |
|
| DSMNet-mixed | | | 88.28 334 | 88.24 328 | 88.42 374 | 89.64 395 | 75.38 402 | 98.06 348 | 89.86 417 | 85.59 353 | 88.20 318 | 92.14 385 | 76.15 329 | 91.95 403 | 78.46 378 | 96.05 208 | 97.92 246 |
|
| UnsupCasMVSNet_eth | | | 85.52 347 | 83.99 349 | 90.10 360 | 89.36 396 | 83.51 376 | 96.65 374 | 97.99 218 | 89.14 292 | 75.89 397 | 93.83 369 | 63.25 388 | 93.92 388 | 81.92 361 | 67.90 401 | 92.88 363 |
|
| Anonymous20231206 | | | 86.32 343 | 85.42 346 | 89.02 368 | 89.11 397 | 80.53 396 | 99.05 274 | 95.28 385 | 85.43 355 | 82.82 366 | 93.92 368 | 74.40 343 | 93.44 394 | 66.99 404 | 81.83 337 | 93.08 360 |
|
| Anonymous20240521 | | | 85.15 351 | 83.81 353 | 89.16 367 | 88.32 398 | 82.69 379 | 98.80 305 | 95.74 374 | 79.72 389 | 81.53 373 | 90.99 388 | 65.38 381 | 94.16 386 | 72.69 394 | 81.11 344 | 90.63 388 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 362 | 81.68 365 | 90.03 361 | 88.30 399 | 82.82 378 | 98.46 326 | 95.22 387 | 73.92 405 | 76.00 396 | 91.29 387 | 55.00 402 | 96.94 322 | 68.40 402 | 88.51 286 | 90.34 389 |
|
| test20.03 | | | 84.72 356 | 83.99 349 | 86.91 378 | 88.19 400 | 80.62 395 | 98.88 294 | 95.94 371 | 88.36 315 | 78.87 383 | 94.62 357 | 68.75 365 | 89.11 409 | 66.52 406 | 75.82 381 | 91.00 383 |
|
| KD-MVS_self_test | | | 83.59 363 | 82.06 363 | 88.20 375 | 86.93 401 | 80.70 394 | 97.21 362 | 96.38 362 | 82.87 376 | 82.49 367 | 88.97 397 | 67.63 372 | 92.32 401 | 73.75 393 | 62.30 412 | 91.58 379 |
|
| MIMVSNet1 | | | 82.58 364 | 80.51 370 | 88.78 370 | 86.68 402 | 84.20 373 | 96.65 374 | 95.41 383 | 78.75 392 | 78.59 386 | 92.44 380 | 51.88 407 | 89.76 408 | 65.26 409 | 78.95 360 | 92.38 372 |
|
| CL-MVSNet_self_test | | | 84.50 357 | 83.15 358 | 88.53 373 | 86.00 403 | 81.79 387 | 98.82 302 | 97.35 285 | 85.12 357 | 83.62 364 | 90.91 390 | 76.66 321 | 91.40 404 | 69.53 400 | 60.36 413 | 92.40 371 |
|
| UnsupCasMVSNet_bld | | | 79.97 373 | 77.03 378 | 88.78 370 | 85.62 404 | 81.98 385 | 93.66 398 | 97.35 285 | 75.51 401 | 70.79 404 | 83.05 411 | 48.70 409 | 94.91 380 | 78.31 379 | 60.29 414 | 89.46 401 |
|
| mvs5depth | | | 84.87 353 | 82.90 360 | 90.77 353 | 85.59 405 | 84.84 370 | 91.10 409 | 93.29 408 | 83.14 373 | 85.07 355 | 94.33 365 | 62.17 391 | 97.32 295 | 78.83 377 | 72.59 389 | 90.14 392 |
|
| Patchmatch-RL test | | | 86.90 341 | 85.98 345 | 89.67 363 | 84.45 406 | 75.59 401 | 89.71 412 | 92.43 410 | 86.89 337 | 77.83 390 | 90.94 389 | 94.22 90 | 93.63 392 | 87.75 313 | 69.61 393 | 99.79 100 |
|
| pmmvs-eth3d | | | 84.03 360 | 81.97 364 | 90.20 359 | 84.15 407 | 87.09 355 | 98.10 347 | 94.73 395 | 83.05 374 | 74.10 401 | 87.77 403 | 65.56 380 | 94.01 387 | 81.08 365 | 69.24 395 | 89.49 400 |
|
| test_fmvs3 | | | 79.99 372 | 80.17 371 | 79.45 389 | 84.02 408 | 62.83 410 | 99.05 274 | 93.49 407 | 88.29 317 | 80.06 381 | 86.65 406 | 28.09 418 | 88.00 410 | 88.63 300 | 73.27 387 | 87.54 406 |
|
| PM-MVS | | | 80.47 369 | 78.88 374 | 85.26 381 | 83.79 409 | 72.22 404 | 95.89 389 | 91.08 414 | 85.71 352 | 76.56 395 | 88.30 399 | 36.64 414 | 93.90 389 | 82.39 357 | 69.57 394 | 89.66 399 |
|
| new-patchmatchnet | | | 81.19 366 | 79.34 373 | 86.76 379 | 82.86 410 | 80.36 397 | 97.92 351 | 95.27 386 | 82.09 381 | 72.02 402 | 86.87 405 | 62.81 390 | 90.74 407 | 71.10 397 | 63.08 409 | 89.19 403 |
|
| mvsany_test3 | | | 82.12 365 | 81.14 367 | 85.06 382 | 81.87 411 | 70.41 406 | 97.09 366 | 92.14 411 | 91.27 253 | 77.84 389 | 88.73 398 | 39.31 413 | 95.49 369 | 90.75 277 | 71.24 390 | 89.29 402 |
|
| WB-MVS | | | 76.28 375 | 77.28 377 | 73.29 395 | 81.18 412 | 54.68 420 | 97.87 353 | 94.19 399 | 81.30 383 | 69.43 406 | 90.70 391 | 77.02 316 | 82.06 418 | 35.71 423 | 68.11 400 | 83.13 409 |
|
| test_f | | | 78.40 374 | 77.59 376 | 80.81 388 | 80.82 413 | 62.48 413 | 96.96 370 | 93.08 409 | 83.44 371 | 74.57 400 | 84.57 410 | 27.95 419 | 92.63 399 | 84.15 343 | 72.79 388 | 87.32 407 |
|
| SSC-MVS | | | 75.42 376 | 76.40 379 | 72.49 399 | 80.68 414 | 53.62 421 | 97.42 358 | 94.06 401 | 80.42 387 | 68.75 407 | 90.14 393 | 76.54 323 | 81.66 419 | 33.25 424 | 66.34 404 | 82.19 410 |
|
| pmmvs3 | | | 80.27 370 | 77.77 375 | 87.76 377 | 80.32 415 | 82.43 382 | 98.23 341 | 91.97 412 | 72.74 407 | 78.75 384 | 87.97 402 | 57.30 401 | 90.99 406 | 70.31 398 | 62.37 411 | 89.87 395 |
|
| testf1 | | | 68.38 380 | 66.92 381 | 72.78 397 | 78.80 416 | 50.36 423 | 90.95 410 | 87.35 422 | 55.47 413 | 58.95 412 | 88.14 400 | 20.64 423 | 87.60 411 | 57.28 415 | 64.69 406 | 80.39 412 |
|
| APD_test2 | | | 68.38 380 | 66.92 381 | 72.78 397 | 78.80 416 | 50.36 423 | 90.95 410 | 87.35 422 | 55.47 413 | 58.95 412 | 88.14 400 | 20.64 423 | 87.60 411 | 57.28 415 | 64.69 406 | 80.39 412 |
|
| ambc | | | | | 83.23 385 | 77.17 418 | 62.61 411 | 87.38 414 | 94.55 398 | | 76.72 394 | 86.65 406 | 30.16 415 | 96.36 348 | 84.85 342 | 69.86 392 | 90.73 386 |
|
| test_vis3_rt | | | 68.82 378 | 66.69 383 | 75.21 394 | 76.24 419 | 60.41 415 | 96.44 377 | 68.71 429 | 75.13 402 | 50.54 420 | 69.52 418 | 16.42 428 | 96.32 350 | 80.27 368 | 66.92 403 | 68.89 416 |
|
| TDRefinement | | | 84.76 354 | 82.56 362 | 91.38 347 | 74.58 420 | 84.80 371 | 97.36 360 | 94.56 397 | 84.73 362 | 80.21 379 | 96.12 300 | 63.56 386 | 98.39 234 | 87.92 311 | 63.97 408 | 90.95 385 |
|
| E-PMN | | | 52.30 388 | 52.18 390 | 52.67 405 | 71.51 421 | 45.40 427 | 93.62 399 | 76.60 427 | 36.01 421 | 43.50 422 | 64.13 421 | 27.11 420 | 67.31 424 | 31.06 425 | 26.06 420 | 45.30 423 |
|
| EMVS | | | 51.44 390 | 51.22 392 | 52.11 406 | 70.71 422 | 44.97 429 | 94.04 395 | 75.66 428 | 35.34 423 | 42.40 423 | 61.56 424 | 28.93 417 | 65.87 425 | 27.64 426 | 24.73 421 | 45.49 422 |
|
| PMMVS2 | | | 67.15 383 | 64.15 386 | 76.14 393 | 70.56 423 | 62.07 414 | 93.89 396 | 87.52 421 | 58.09 412 | 60.02 411 | 78.32 413 | 22.38 422 | 84.54 416 | 59.56 413 | 47.03 418 | 81.80 411 |
|
| FPMVS | | | 68.72 379 | 68.72 380 | 68.71 401 | 65.95 424 | 44.27 430 | 95.97 388 | 94.74 394 | 51.13 416 | 53.26 418 | 90.50 392 | 25.11 421 | 83.00 417 | 60.80 412 | 80.97 349 | 78.87 414 |
|
| wuyk23d | | | 20.37 394 | 20.84 397 | 18.99 409 | 65.34 425 | 27.73 432 | 50.43 420 | 7.67 433 | 9.50 426 | 8.01 427 | 6.34 427 | 6.13 431 | 26.24 426 | 23.40 427 | 10.69 425 | 2.99 424 |
|
| LCM-MVSNet | | | 67.77 382 | 64.73 385 | 76.87 392 | 62.95 426 | 56.25 419 | 89.37 413 | 93.74 405 | 44.53 418 | 61.99 410 | 80.74 412 | 20.42 425 | 86.53 415 | 69.37 401 | 59.50 415 | 87.84 404 |
|
| MVE |  | 53.74 22 | 51.54 389 | 47.86 393 | 62.60 403 | 59.56 427 | 50.93 422 | 79.41 417 | 77.69 426 | 35.69 422 | 36.27 424 | 61.76 423 | 5.79 432 | 69.63 422 | 37.97 422 | 36.61 419 | 67.24 417 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 386 | 52.24 389 | 67.66 402 | 49.27 428 | 56.82 418 | 83.94 415 | 82.02 425 | 70.47 409 | 33.28 425 | 64.54 420 | 17.23 427 | 69.16 423 | 45.59 420 | 23.85 422 | 77.02 415 |
|
| tmp_tt | | | 65.23 385 | 62.94 388 | 72.13 400 | 44.90 429 | 50.03 425 | 81.05 416 | 89.42 420 | 38.45 419 | 48.51 421 | 99.90 18 | 54.09 404 | 78.70 421 | 91.84 259 | 18.26 423 | 87.64 405 |
|
| PMVS |  | 49.05 23 | 53.75 387 | 51.34 391 | 60.97 404 | 40.80 430 | 34.68 431 | 74.82 418 | 89.62 419 | 37.55 420 | 28.67 426 | 72.12 415 | 7.09 430 | 81.63 420 | 43.17 421 | 68.21 399 | 66.59 418 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 392 | 39.14 395 | 33.31 407 | 19.94 431 | 24.83 433 | 98.36 334 | 9.75 432 | 15.53 425 | 51.31 419 | 87.14 404 | 19.62 426 | 17.74 427 | 47.10 419 | 3.47 426 | 57.36 420 |
|
| testmvs | | | 40.60 391 | 44.45 394 | 29.05 408 | 19.49 432 | 14.11 434 | 99.68 184 | 18.47 431 | 20.74 424 | 64.59 409 | 98.48 218 | 10.95 429 | 17.09 428 | 56.66 417 | 11.01 424 | 55.94 421 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.02 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| cdsmvs_eth3d_5k | | | 23.43 393 | 31.24 396 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 98.09 210 | 0.00 428 | 0.00 429 | 99.67 97 | 83.37 259 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| pcd_1.5k_mvsjas | | | 7.60 396 | 10.13 399 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 91.20 164 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| ab-mvs-re | | | 8.28 395 | 11.04 398 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 99.40 130 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 429 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| WAC-MVS | | | | | | | 90.97 296 | | | | | | | | 86.10 334 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 49 | 99.80 17 | 99.79 58 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 136 | 97.27 36 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 65 | 99.83 13 | 99.91 14 | 97.87 5 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 137 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 69 | | | | 99.59 137 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 89 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 184 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 390 | | | | 59.23 425 | 93.20 122 | 97.74 280 | 91.06 268 | | |
|
| test_post | | | | | | | | | | | | 63.35 422 | 94.43 77 | 98.13 259 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 386 | 95.12 54 | 97.95 271 | | | |
|
| MTMP | | | | | | | | 99.87 110 | 96.49 360 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 37 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 48 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 72 | 99.94 72 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 55 | | 95.78 85 | 99.73 34 | 99.76 66 | 96.00 37 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 225 | | 94.21 141 | 99.85 9 | | | 99.95 73 | 96.96 168 | | |
|
| 新几何2 | | | | | | | | 99.40 229 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 218 | 98.71 67 | 93.46 169 | | | | 100.00 1 | 94.36 214 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 95 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 281 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 29 | | | | |
|
| testdata1 | | | | | | | | 99.28 249 | | 96.35 75 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 232 | | | | | 98.37 240 | 97.79 145 | 89.55 269 | 94.52 278 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 206 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 288 | | | 96.63 62 | 93.01 241 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 129 | | 96.38 71 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 282 | 99.86 121 | | 96.76 57 | | | | | | 89.59 268 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 418 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 128 | | | | | | | | |
|
| door | | | | | | | | | 90.31 415 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 278 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 136 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 236 | | | 98.39 234 | | | 94.53 276 |
|
| HQP3-MVS | | | | | | | | | 97.89 230 | | | | | | | 89.60 266 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 287 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 147 | 96.11 384 | | 91.89 231 | 98.06 144 | | 94.40 79 | | 94.30 217 | | 99.67 118 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 300 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 289 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 133 | | | | |
|