This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10596.80 11298.51 11199.99 195.60 16899.09 25498.84 5893.32 17096.74 17499.72 8386.04 227100.00 198.01 12199.43 11499.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1698.69 6898.20 799.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2998.64 7698.47 299.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7799.97 396.92 11699.95 5498.38 15995.04 9998.61 11699.80 5393.39 100100.00 198.64 93100.00 199.98 48
CPTT-MVS97.64 8797.32 9198.58 10399.97 395.77 15799.96 3698.35 16589.90 27598.36 12699.79 5791.18 15699.99 3698.37 10599.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 8298.44 12392.06 22098.40 12599.84 4395.68 39100.00 198.19 11199.71 8799.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5498.43 13195.35 9398.03 13899.75 7194.03 8699.98 4398.11 11699.83 7699.99 23
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9899.95 5498.61 8294.77 10799.31 8099.85 3294.22 79100.00 198.70 8899.98 3299.98 48
region2R98.54 3398.37 3699.05 6999.96 897.18 10599.96 3698.55 9894.87 10599.45 6899.85 3294.07 85100.00 198.67 90100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6999.96 897.18 10599.95 5498.60 8494.77 10799.31 8099.84 4393.73 95100.00 198.70 8899.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2998.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 8499.96 896.62 12599.97 2998.39 15594.43 12098.90 9899.87 2494.30 77100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 2999.93 1197.49 8
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 131100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5999.94 1397.50 9499.94 7098.42 14396.22 7399.41 7299.78 6194.34 7599.96 6198.92 7499.95 4999.99 23
X-MVStestdata93.83 21592.06 24799.15 5999.94 1397.50 9499.94 7098.42 14396.22 7399.41 7241.37 41094.34 7599.96 6198.92 7499.95 4999.99 23
test_prior99.43 3599.94 1398.49 6198.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6299.98 1698.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8898.39 15597.20 3899.46 6799.85 3295.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 7199.94 1397.17 10899.95 5498.39 15594.70 11198.26 13299.81 5291.84 147100.00 198.85 8099.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10898.33 17093.97 14899.76 2899.87 2494.99 5799.75 13298.55 97100.00 199.98 48
PAPM_NR98.12 6197.93 6498.70 9299.94 1396.13 14799.82 13898.43 13194.56 11597.52 15299.70 8794.40 7099.98 4397.00 15599.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18899.44 2097.33 3199.00 9499.72 8394.03 8699.98 4398.73 87100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3698.43 13197.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1799.88 2196.71 22100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17297.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3698.42 14397.28 3299.86 799.94 497.22 17
MSP-MVS99.09 999.12 598.98 7699.93 2497.24 10299.95 5498.42 14397.50 2699.52 6399.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4298.43 13199.63 4799.85 108
FOURS199.92 3197.66 8899.95 5498.36 16395.58 8799.52 63
ZD-MVS99.92 3198.57 5698.52 10492.34 21299.31 8099.83 4595.06 5299.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 9099.93 7798.39 15594.04 14398.80 10399.74 7892.98 115100.00 198.16 11399.76 8499.93 76
TEST999.92 3198.92 2999.96 3698.43 13193.90 15399.71 3699.86 2895.88 3699.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3698.43 13194.35 12599.71 3699.86 2895.94 3399.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3698.43 13194.35 12599.69 3999.85 3295.94 3399.85 108
PGM-MVS98.34 4898.13 5198.99 7599.92 3197.00 11299.75 15899.50 1893.90 15399.37 7799.76 6593.24 109100.00 197.75 13999.96 4699.98 48
ACMMPcopyleft97.74 8297.44 8598.66 9599.92 3196.13 14799.18 24999.45 1994.84 10696.41 18499.71 8591.40 15099.99 3697.99 12398.03 16199.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13196.48 5999.80 1799.93 1197.44 12100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9297.56 2599.44 6999.85 3295.38 46100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 6099.87 10898.36 16394.08 13899.74 3199.73 8094.08 8499.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24498.47 11598.14 1099.08 9099.91 1493.09 112100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3699.80 5397.44 12100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12397.48 2799.64 4699.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 66
CSCG97.10 11097.04 10297.27 18499.89 4591.92 26799.90 9499.07 3488.67 29895.26 20699.82 4893.17 11199.98 4398.15 11499.47 10899.90 83
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8999.94 7098.44 12394.31 12898.50 12099.82 4893.06 11399.99 3698.30 10999.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 8199.88 4997.04 11199.84 12898.35 16594.92 10399.32 7999.80 5393.35 10299.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8898.33 17093.22 17399.78 2699.89 1994.57 6799.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 12098.38 15993.19 17499.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 7199.86 5397.10 11099.98 1698.80 6290.78 26199.62 5099.78 6195.30 47100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7899.39 22598.28 17995.76 8297.18 16299.88 2192.74 123100.00 198.67 9099.88 7099.99 23
LS3D95.84 16295.11 17298.02 13999.85 5495.10 18898.74 29698.50 11287.22 31993.66 22499.86 2887.45 20999.95 6990.94 26199.81 8299.02 205
HPM-MVScopyleft97.96 6597.72 7398.68 9399.84 5696.39 13499.90 9498.17 19192.61 19898.62 11599.57 10991.87 14699.67 14598.87 7999.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 9099.83 5796.59 12799.40 22198.51 10795.29 9598.51 11999.76 6593.60 9999.71 13898.53 9899.52 10399.95 71
save fliter99.82 5898.79 4099.96 3698.40 15297.66 21
PLCcopyleft95.54 397.93 6797.89 6898.05 13899.82 5894.77 19799.92 8298.46 11793.93 15197.20 16199.27 13695.44 4599.97 5397.41 14499.51 10699.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8799.81 6096.60 12699.82 13898.30 17793.95 15099.37 7799.77 6392.84 11999.76 13198.95 7199.92 6399.97 58
EI-MVSNet-UG-set98.14 6097.99 5898.60 10099.80 6196.27 13799.36 23098.50 11295.21 9798.30 12999.75 7193.29 10699.73 13798.37 10599.30 12099.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 9199.79 6296.37 13599.76 15598.31 17494.43 12099.40 7499.75 7193.28 10799.78 12598.90 7799.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13599.76 15598.31 17494.43 12099.40 7499.75 7192.95 11698.90 7799.92 6399.97 58
HPM-MVS_fast97.80 7797.50 8398.68 9399.79 6296.42 13099.88 10598.16 19591.75 23098.94 9699.54 11291.82 14899.65 14797.62 14299.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9498.21 18693.53 16399.81 1599.89 1994.70 6599.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 9298.64 7699.85 3295.63 4099.94 5499.99 23
OMC-MVS97.28 10297.23 9497.41 17599.76 6693.36 23699.65 18497.95 21496.03 7797.41 15699.70 8789.61 18599.51 15396.73 16498.25 15399.38 170
新几何199.42 3799.75 6898.27 6498.63 8092.69 19399.55 5899.82 4894.40 70100.00 191.21 25399.94 5499.99 23
MP-MVS-pluss98.07 6397.64 7799.38 4299.74 6998.41 6399.74 16198.18 19093.35 16896.45 18199.85 3292.64 12599.97 5398.91 7699.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 15098.38 15996.73 5399.88 699.74 7894.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5798.40 15299.65 4394.76 6299.75 13299.98 3299.99 23
原ACMM198.96 7899.73 7296.99 11398.51 10794.06 14199.62 5099.85 3294.97 5899.96 6195.11 18499.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8599.73 7296.63 12499.97 2997.92 21998.07 1198.76 10799.55 11095.00 5699.94 7799.91 1597.68 16699.99 23
CANet98.27 5297.82 7099.63 1799.72 7499.10 2399.98 1698.51 10797.00 4398.52 11899.71 8587.80 20499.95 6999.75 2899.38 11699.83 91
F-COLMAP96.93 12196.95 10596.87 19499.71 7591.74 27299.85 12397.95 21493.11 17795.72 19999.16 14792.35 13599.94 7795.32 18299.35 11898.92 208
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 7098.34 16996.38 6599.81 1599.76 6594.59 6699.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22799.67 7786.91 34699.95 5498.89 4997.60 2299.90 399.76 6596.54 2799.98 4399.94 1199.82 8099.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12398.37 16294.68 11299.53 6199.83 4592.87 118100.00 198.66 9299.84 7599.99 23
DeepPCF-MVS95.94 297.71 8598.98 1293.92 29199.63 7981.76 37399.96 3698.56 9299.47 199.19 8799.99 194.16 83100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8999.62 8096.80 12199.90 9499.51 1797.60 2299.20 8599.36 13093.71 9699.91 8997.99 12398.71 14199.61 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 699.76 698.39 399.39 7699.80 5390.49 17299.96 6199.89 1699.43 11499.98 48
PVSNet_BlendedMVS96.05 15695.82 15296.72 19999.59 8196.99 11399.95 5499.10 3194.06 14198.27 13095.80 29489.00 19699.95 6999.12 5887.53 28893.24 345
PVSNet_Blended97.94 6697.64 7798.83 8699.59 8196.99 113100.00 199.10 3195.38 9298.27 13099.08 15089.00 19699.95 6999.12 5899.25 12299.57 143
PatchMatch-RL96.04 15795.40 16197.95 14199.59 8195.22 18499.52 20699.07 3493.96 14996.49 18098.35 22182.28 25599.82 12090.15 27799.22 12598.81 215
dcpmvs_297.42 9798.09 5495.42 23299.58 8587.24 34299.23 24596.95 31794.28 13198.93 9799.73 8094.39 7399.16 17599.89 1699.82 8099.86 89
test22299.55 8697.41 10099.34 23198.55 9891.86 22599.27 8499.83 4593.84 9399.95 4999.99 23
CNLPA97.76 8197.38 8798.92 8299.53 8796.84 11899.87 10898.14 19993.78 15696.55 17999.69 8992.28 13799.98 4397.13 15099.44 11299.93 76
API-MVS97.86 7197.66 7698.47 11399.52 8895.41 17599.47 21598.87 5291.68 23198.84 10099.85 3292.34 13699.99 3698.44 10199.96 46100.00 1
PVSNet91.05 1397.13 10996.69 11798.45 11599.52 8895.81 15599.95 5499.65 1294.73 10999.04 9299.21 14384.48 24299.95 6994.92 18998.74 14099.58 141
114514_t97.41 9896.83 11099.14 6199.51 9097.83 8099.89 10298.27 18188.48 30299.06 9199.66 9890.30 17699.64 14896.32 16899.97 4299.96 64
cl2293.77 21993.25 22395.33 23699.49 9194.43 20199.61 19298.09 20190.38 26689.16 29195.61 30190.56 16997.34 28191.93 24584.45 30894.21 291
testdata98.42 11899.47 9295.33 17898.56 9293.78 15699.79 2599.85 3293.64 9899.94 7794.97 18799.94 54100.00 1
MAR-MVS97.43 9397.19 9698.15 13299.47 9294.79 19699.05 26598.76 6392.65 19698.66 11399.82 4888.52 20199.98 4398.12 11599.63 9299.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19793.42 21697.91 14699.46 9494.04 21498.93 27797.48 26281.15 36990.04 26499.55 11087.02 21599.95 6988.97 28798.11 15799.73 105
MVS_111021_LR98.42 4498.38 3498.53 11099.39 9595.79 15699.87 10899.86 296.70 5498.78 10499.79 5792.03 14399.90 9199.17 5799.86 7499.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7999.38 9698.87 3398.46 31399.42 2297.03 4299.02 9399.09 14999.35 198.21 24599.73 3299.78 8399.77 101
MVS_111021_HR98.72 2598.62 2299.01 7499.36 9797.18 10599.93 7799.90 196.81 5198.67 11299.77 6393.92 8899.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3698.44 12397.96 1499.55 5899.94 497.18 19100.00 193.81 21799.94 5499.98 48
TAPA-MVS92.12 894.42 20293.60 20996.90 19399.33 9891.78 27199.78 14798.00 20889.89 27694.52 21299.47 11691.97 14499.18 17369.90 38399.52 10399.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6997.94 6397.70 15999.28 10095.20 18599.98 1697.15 29695.53 8999.62 5099.79 5792.08 14298.38 22898.75 8699.28 12199.52 153
test_fmvsm_n_192098.44 4198.61 2397.92 14499.27 10195.18 186100.00 198.90 4798.05 1299.80 1799.73 8092.64 12599.99 3699.58 3899.51 10698.59 225
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7999.98 1698.85 5698.25 499.92 299.75 7194.72 6399.97 5399.87 1999.64 9199.95 71
test_yl97.83 7397.37 8899.21 4999.18 10397.98 7599.64 18899.27 2791.43 24097.88 14498.99 15995.84 3799.84 11698.82 8195.32 21999.79 97
DCV-MVSNet97.83 7397.37 8899.21 4999.18 10397.98 7599.64 18899.27 2791.43 24097.88 14498.99 15995.84 3799.84 11698.82 8195.32 21999.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10899.65 1298.17 898.75 10999.75 7192.76 12299.94 7799.88 1899.44 11299.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 8299.98 1698.86 5398.25 499.90 399.76 6594.21 8199.97 5399.87 1999.52 10399.98 48
DeepC-MVS94.51 496.92 12296.40 12798.45 11599.16 10795.90 15399.66 18398.06 20496.37 6894.37 21599.49 11583.29 25199.90 9197.63 14199.61 9799.55 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 14192.58 12899.94 7798.63 9599.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7997.91 6697.43 17499.10 10994.42 20299.99 697.10 30195.07 9899.68 4099.75 7192.95 11698.34 23298.38 10399.14 12799.54 149
Anonymous20240521193.10 23691.99 24896.40 20999.10 10989.65 31798.88 28297.93 21683.71 35694.00 22198.75 18868.79 35199.88 10295.08 18591.71 24999.68 113
fmvsm_s_conf0.5_n97.80 7797.85 6997.67 16099.06 11194.41 20399.98 1698.97 4097.34 2999.63 4799.69 8987.27 21199.97 5399.62 3799.06 13198.62 224
HyFIR lowres test96.66 13696.43 12697.36 18099.05 11293.91 21999.70 17699.80 390.54 26496.26 18798.08 22892.15 14098.23 24496.84 16395.46 21499.93 76
LFMVS94.75 19093.56 21298.30 12499.03 11395.70 16298.74 29697.98 21187.81 31298.47 12199.39 12767.43 35999.53 15098.01 12195.20 22299.67 115
AllTest92.48 25091.64 25395.00 24699.01 11488.43 33198.94 27696.82 33186.50 32888.71 29698.47 21474.73 32899.88 10285.39 32596.18 19696.71 252
TestCases95.00 24699.01 11488.43 33196.82 33186.50 32888.71 29698.47 21474.73 32899.88 10285.39 32596.18 19696.71 252
COLMAP_ROBcopyleft90.47 1492.18 25791.49 25994.25 27999.00 11688.04 33798.42 31896.70 33882.30 36588.43 30399.01 15676.97 30499.85 10886.11 32196.50 19194.86 263
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17695.68 15794.36 27598.99 11784.98 35599.96 3696.65 34097.60 2299.73 3298.96 16571.58 34199.93 8598.31 10899.37 11798.17 232
HY-MVS92.50 797.79 7997.17 9899.63 1798.98 11899.32 997.49 34299.52 1595.69 8498.32 12897.41 24593.32 10499.77 12898.08 11995.75 21099.81 94
VNet97.21 10696.57 12299.13 6598.97 11997.82 8199.03 26899.21 2994.31 12899.18 8898.88 17686.26 22699.89 9698.93 7394.32 23199.69 112
thres20096.96 11996.21 13399.22 4898.97 11998.84 3699.85 12399.71 793.17 17596.26 18798.88 17689.87 18299.51 15394.26 20794.91 22499.31 180
tfpn200view996.79 12695.99 13899.19 5198.94 12198.82 3799.78 14799.71 792.86 18396.02 19298.87 17989.33 18999.50 15593.84 21494.57 22799.27 186
thres40096.78 12895.99 13899.16 5798.94 12198.82 3799.78 14799.71 792.86 18396.02 19298.87 17989.33 18999.50 15593.84 21494.57 22799.16 193
sasdasda97.09 11296.32 12899.39 4098.93 12398.95 2799.72 16997.35 27394.45 11797.88 14499.42 12086.71 21899.52 15198.48 9993.97 23799.72 107
Anonymous2023121189.86 30688.44 31394.13 28298.93 12390.68 29698.54 31098.26 18276.28 38186.73 32495.54 30570.60 34797.56 27490.82 26480.27 34394.15 299
canonicalmvs97.09 11296.32 12899.39 4098.93 12398.95 2799.72 16997.35 27394.45 11797.88 14499.42 12086.71 21899.52 15198.48 9993.97 23799.72 107
SDMVSNet94.80 18693.96 20097.33 18298.92 12695.42 17499.59 19498.99 3792.41 20992.55 23997.85 23675.81 31898.93 18797.90 12991.62 25097.64 243
sd_testset93.55 22692.83 22995.74 22598.92 12690.89 29398.24 32498.85 5692.41 20992.55 23997.85 23671.07 34698.68 20493.93 21191.62 25097.64 243
EPNet_dtu95.71 16695.39 16296.66 20298.92 12693.41 23399.57 19898.90 4796.19 7597.52 15298.56 20692.65 12497.36 27977.89 36698.33 14899.20 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6297.60 7999.60 2298.92 12699.28 1799.89 10299.52 1595.58 8798.24 13399.39 12793.33 10399.74 13497.98 12595.58 21399.78 100
CHOSEN 1792x268896.81 12596.53 12397.64 16298.91 13093.07 23899.65 18499.80 395.64 8595.39 20398.86 18184.35 24499.90 9196.98 15799.16 12699.95 71
thres100view90096.74 13195.92 14899.18 5298.90 13198.77 4299.74 16199.71 792.59 20095.84 19598.86 18189.25 19199.50 15593.84 21494.57 22799.27 186
thres600view796.69 13495.87 15199.14 6198.90 13198.78 4199.74 16199.71 792.59 20095.84 19598.86 18189.25 19199.50 15593.44 22694.50 23099.16 193
MSDG94.37 20493.36 22097.40 17698.88 13393.95 21899.37 22897.38 27185.75 33990.80 25799.17 14684.11 24699.88 10286.35 31898.43 14698.36 230
MGCFI-Net97.00 11796.22 13299.34 4398.86 13498.80 3999.67 18197.30 28094.31 12897.77 14899.41 12486.36 22499.50 15598.38 10393.90 23999.72 107
h-mvs3394.92 18494.36 18996.59 20498.85 13591.29 28498.93 27798.94 4195.90 7898.77 10598.42 22090.89 16499.77 12897.80 13270.76 37798.72 221
Anonymous2024052992.10 25890.65 26996.47 20598.82 13690.61 29898.72 29898.67 7375.54 38593.90 22398.58 20466.23 36399.90 9194.70 19890.67 25298.90 211
PVSNet_Blended_VisFu97.27 10396.81 11198.66 9598.81 13796.67 12399.92 8298.64 7694.51 11696.38 18598.49 21089.05 19599.88 10297.10 15398.34 14799.43 166
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20498.17 19197.34 2999.85 999.85 3291.20 15399.89 9699.41 4899.67 8998.69 222
CANet_DTU96.76 12996.15 13498.60 10098.78 13997.53 9199.84 12897.63 24197.25 3799.20 8599.64 10181.36 26499.98 4392.77 23798.89 13498.28 231
mvsany_test197.82 7597.90 6797.55 16798.77 14093.04 24199.80 14497.93 21696.95 4599.61 5699.68 9590.92 16199.83 11899.18 5698.29 15299.80 96
alignmvs97.81 7697.33 9099.25 4698.77 14098.66 5199.99 698.44 12394.40 12498.41 12399.47 11693.65 9799.42 16498.57 9694.26 23399.67 115
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8499.98 1698.44 12396.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7398.69 14398.66 5199.52 20698.08 20397.05 4199.86 799.86 2890.65 16799.71 13899.39 5098.63 14298.69 222
miper_enhance_ethall94.36 20693.98 19995.49 22898.68 14495.24 18299.73 16697.29 28393.28 17289.86 26995.97 29294.37 7497.05 30292.20 24184.45 30894.19 292
ETVMVS97.03 11696.64 11898.20 12898.67 14597.12 10999.89 10298.57 8991.10 25198.17 13598.59 20193.86 9298.19 24695.64 17995.24 22199.28 185
test250697.53 8997.19 9698.58 10398.66 14696.90 11798.81 29199.77 594.93 10197.95 14098.96 16592.51 13099.20 17194.93 18898.15 15499.64 121
ECVR-MVScopyleft95.66 16995.05 17497.51 17098.66 14693.71 22398.85 28898.45 11894.93 10196.86 17098.96 16575.22 32499.20 17195.34 18198.15 15499.64 121
fmvsm_s_conf0.5_n_a97.73 8497.72 7397.77 15498.63 14894.26 20899.96 3698.92 4697.18 3999.75 2999.69 8987.00 21699.97 5399.46 4498.89 13499.08 201
MVSMamba_pp98.05 6497.76 7298.92 8298.56 14998.06 7099.92 8297.75 23496.28 7199.71 3698.43 21990.37 17499.11 17798.99 6999.88 7099.58 141
testing22297.08 11596.75 11498.06 13798.56 14996.82 11999.85 12398.61 8292.53 20498.84 10098.84 18593.36 10198.30 23695.84 17694.30 23299.05 203
iter_conf05_1198.22 5997.93 6499.09 6798.56 14998.52 58100.00 197.77 23296.34 7099.73 3299.87 2490.18 17999.13 17699.03 6699.90 6699.63 126
test111195.57 17194.98 17797.37 17898.56 14993.37 23598.86 28698.45 11894.95 10096.63 17698.95 17075.21 32599.11 17795.02 18698.14 15699.64 121
MVSTER95.53 17295.22 16896.45 20798.56 14997.72 8399.91 8897.67 23992.38 21191.39 24997.14 25297.24 1697.30 28594.80 19487.85 28394.34 283
bld_raw_dy_0_6497.44 9297.68 7596.72 19998.55 15491.46 283100.00 197.77 23294.03 14499.72 3599.87 2490.31 17599.11 17798.99 6999.88 7099.59 133
mamv497.88 6997.52 8298.95 7998.55 15498.15 6599.93 7797.74 23594.01 14599.65 4398.44 21890.50 17199.11 17799.00 6899.89 6799.59 133
VDD-MVS93.77 21992.94 22796.27 21398.55 15490.22 30798.77 29597.79 23090.85 25796.82 17299.42 12061.18 38099.77 12898.95 7194.13 23498.82 214
tpmvs94.28 20893.57 21196.40 20998.55 15491.50 28195.70 37698.55 9887.47 31492.15 24294.26 35191.42 14998.95 18688.15 29795.85 20698.76 217
UGNet95.33 17794.57 18697.62 16598.55 15494.85 19298.67 30499.32 2695.75 8396.80 17396.27 28372.18 33899.96 6194.58 20199.05 13298.04 236
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17894.10 19698.43 11798.55 15495.99 15197.91 33797.31 27990.35 26889.48 28099.22 14285.19 23599.89 9690.40 27498.47 14599.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12696.72 11597.00 18998.51 16093.70 22499.71 17298.60 8492.96 17997.09 16398.34 22296.67 2698.85 19092.11 24396.50 19198.44 227
test_vis1_n_192095.44 17495.31 16595.82 22398.50 16188.74 32599.98 1697.30 28097.84 1699.85 999.19 14466.82 36199.97 5398.82 8199.46 11098.76 217
BH-w/o95.71 16695.38 16396.68 20198.49 16292.28 25899.84 12897.50 26092.12 21792.06 24598.79 18684.69 24098.67 20595.29 18399.66 9099.09 199
baseline195.78 16394.86 17998.54 10898.47 16398.07 6999.06 26197.99 20992.68 19494.13 22098.62 20093.28 10798.69 20393.79 21985.76 29698.84 213
EPMVS96.53 14096.01 13798.09 13598.43 16496.12 14996.36 36399.43 2193.53 16397.64 15095.04 32994.41 6998.38 22891.13 25598.11 15799.75 103
sss97.57 8897.03 10399.18 5298.37 16598.04 7299.73 16699.38 2393.46 16598.76 10799.06 15291.21 15299.89 9696.33 16797.01 18399.62 127
testing1197.48 9197.27 9298.10 13498.36 16696.02 15099.92 8298.45 11893.45 16798.15 13698.70 19195.48 4499.22 16797.85 13195.05 22399.07 202
BH-untuned95.18 17894.83 18096.22 21498.36 16691.22 28599.80 14497.32 27890.91 25591.08 25398.67 19383.51 24898.54 21194.23 20899.61 9798.92 208
testing9197.16 10896.90 10797.97 14098.35 16895.67 16599.91 8898.42 14392.91 18297.33 15898.72 18994.81 6199.21 16896.98 15794.63 22699.03 204
testing9997.17 10796.91 10697.95 14198.35 16895.70 16299.91 8898.43 13192.94 18097.36 15798.72 18994.83 6099.21 16897.00 15594.64 22598.95 207
ET-MVSNet_ETH3D94.37 20493.28 22297.64 16298.30 17097.99 7499.99 697.61 24694.35 12571.57 38899.45 11996.23 3095.34 35896.91 16285.14 30399.59 133
AUN-MVS93.28 23192.60 23595.34 23598.29 17190.09 31099.31 23598.56 9291.80 22996.35 18698.00 23189.38 18898.28 23992.46 23869.22 38297.64 243
FMVSNet392.69 24691.58 25595.99 21898.29 17197.42 9999.26 24397.62 24389.80 27789.68 27395.32 31981.62 26296.27 33887.01 31485.65 29794.29 285
PMMVS96.76 12996.76 11396.76 19798.28 17392.10 26299.91 8897.98 21194.12 13699.53 6199.39 12786.93 21798.73 19896.95 16097.73 16499.45 163
hse-mvs294.38 20394.08 19795.31 23798.27 17490.02 31199.29 24098.56 9295.90 7898.77 10598.00 23190.89 16498.26 24397.80 13269.20 38397.64 243
PVSNet_088.03 1991.80 26590.27 27896.38 21198.27 17490.46 30299.94 7099.61 1493.99 14786.26 33497.39 24771.13 34599.89 9698.77 8467.05 38898.79 216
UA-Net96.54 13995.96 14498.27 12598.23 17695.71 16198.00 33598.45 11893.72 15998.41 12399.27 13688.71 20099.66 14691.19 25497.69 16599.44 165
test_cas_vis1_n_192096.59 13896.23 13197.65 16198.22 17794.23 20999.99 697.25 28797.77 1799.58 5799.08 15077.10 30199.97 5397.64 14099.45 11198.74 219
FE-MVS95.70 16895.01 17697.79 15198.21 17894.57 19895.03 37798.69 6888.90 29397.50 15496.19 28592.60 12799.49 16089.99 27997.94 16399.31 180
GG-mvs-BLEND98.54 10898.21 17898.01 7393.87 38298.52 10497.92 14197.92 23599.02 297.94 26298.17 11299.58 10099.67 115
mvs_anonymous95.65 17095.03 17597.53 16898.19 18095.74 15999.33 23297.49 26190.87 25690.47 26097.10 25488.23 20297.16 29395.92 17497.66 16799.68 113
MVS_Test96.46 14295.74 15398.61 9998.18 18197.23 10399.31 23597.15 29691.07 25298.84 10097.05 25888.17 20398.97 18494.39 20397.50 16999.61 130
BH-RMVSNet95.18 17894.31 19297.80 14998.17 18295.23 18399.76 15597.53 25692.52 20594.27 21899.25 14076.84 30698.80 19290.89 26399.54 10299.35 175
RPSCF91.80 26592.79 23188.83 35398.15 18369.87 39198.11 33196.60 34283.93 35494.33 21699.27 13679.60 28499.46 16391.99 24493.16 24697.18 250
ETV-MVS97.92 6897.80 7198.25 12698.14 18496.48 12899.98 1697.63 24195.61 8699.29 8399.46 11892.55 12998.82 19199.02 6798.54 14399.46 161
IS-MVSNet96.29 15295.90 14997.45 17298.13 18594.80 19599.08 25697.61 24692.02 22295.54 20298.96 16590.64 16898.08 25193.73 22297.41 17399.47 160
test_fmvsmconf_n98.43 4398.32 4098.78 8798.12 18696.41 13199.99 698.83 5998.22 699.67 4199.64 10191.11 15799.94 7799.67 3699.62 9399.98 48
ab-mvs94.69 19193.42 21698.51 11198.07 18796.26 13896.49 36198.68 7090.31 26994.54 21197.00 26076.30 31399.71 13895.98 17393.38 24499.56 144
XVG-OURS-SEG-HR94.79 18794.70 18595.08 24398.05 18889.19 32099.08 25697.54 25493.66 16094.87 20999.58 10878.78 29299.79 12397.31 14693.40 24396.25 256
EIA-MVS97.53 8997.46 8497.76 15698.04 18994.84 19399.98 1697.61 24694.41 12397.90 14299.59 10692.40 13498.87 18898.04 12099.13 12899.59 133
XVG-OURS94.82 18594.74 18395.06 24498.00 19089.19 32099.08 25697.55 25294.10 13794.71 21099.62 10480.51 27699.74 13496.04 17293.06 24896.25 256
dp95.05 18194.43 18896.91 19297.99 19192.73 24896.29 36697.98 21189.70 27895.93 19494.67 34293.83 9498.45 21786.91 31796.53 19099.54 149
tpmrst96.27 15495.98 14097.13 18697.96 19293.15 23796.34 36498.17 19192.07 21898.71 11195.12 32793.91 8998.73 19894.91 19196.62 18899.50 157
TR-MVS94.54 19793.56 21297.49 17197.96 19294.34 20698.71 29997.51 25990.30 27094.51 21398.69 19275.56 31998.77 19592.82 23695.99 20099.35 175
Vis-MVSNet (Re-imp)96.32 14995.98 14097.35 18197.93 19494.82 19499.47 21598.15 19891.83 22695.09 20799.11 14891.37 15197.47 27793.47 22597.43 17099.74 104
MDTV_nov1_ep1395.69 15597.90 19594.15 21195.98 37298.44 12393.12 17697.98 13995.74 29695.10 5098.58 20890.02 27896.92 185
Fast-Effi-MVS+95.02 18294.19 19497.52 16997.88 19694.55 19999.97 2997.08 30488.85 29594.47 21497.96 23484.59 24198.41 22089.84 28197.10 17899.59 133
ADS-MVSNet293.80 21893.88 20393.55 30497.87 19785.94 34994.24 37896.84 32890.07 27296.43 18294.48 34790.29 17795.37 35787.44 30497.23 17599.36 173
ADS-MVSNet94.79 18794.02 19897.11 18897.87 19793.79 22094.24 37898.16 19590.07 27296.43 18294.48 34790.29 17798.19 24687.44 30497.23 17599.36 173
Effi-MVS+96.30 15195.69 15598.16 12997.85 19996.26 13897.41 34497.21 28990.37 26798.65 11498.58 20486.61 22198.70 20297.11 15297.37 17499.52 153
PatchmatchNetpermissive95.94 15995.45 16097.39 17797.83 20094.41 20396.05 37098.40 15292.86 18397.09 16395.28 32494.21 8198.07 25389.26 28598.11 15799.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19493.61 20797.74 15897.82 20196.26 13899.96 3697.78 23185.76 33794.00 22197.54 24276.95 30599.21 16897.23 14895.43 21697.76 242
1112_ss96.01 15895.20 16998.42 11897.80 20296.41 13199.65 18496.66 33992.71 19192.88 23599.40 12592.16 13999.30 16591.92 24693.66 24099.55 145
Test_1112_low_res95.72 16494.83 18098.42 11897.79 20396.41 13199.65 18496.65 34092.70 19292.86 23696.13 28892.15 14099.30 16591.88 24793.64 24199.55 145
Effi-MVS+-dtu94.53 19995.30 16692.22 32697.77 20482.54 36699.59 19497.06 30694.92 10395.29 20595.37 31785.81 22897.89 26394.80 19497.07 17996.23 258
tpm cat193.51 22792.52 24096.47 20597.77 20491.47 28296.13 36898.06 20480.98 37092.91 23493.78 35589.66 18398.87 18887.03 31396.39 19499.09 199
FA-MVS(test-final)95.86 16095.09 17398.15 13297.74 20695.62 16796.31 36598.17 19191.42 24296.26 18796.13 28890.56 16999.47 16292.18 24297.07 17999.35 175
xiu_mvs_v1_base_debu97.43 9397.06 9998.55 10597.74 20698.14 6699.31 23597.86 22596.43 6299.62 5099.69 8985.56 23099.68 14299.05 6098.31 14997.83 238
xiu_mvs_v1_base97.43 9397.06 9998.55 10597.74 20698.14 6699.31 23597.86 22596.43 6299.62 5099.69 8985.56 23099.68 14299.05 6098.31 14997.83 238
xiu_mvs_v1_base_debi97.43 9397.06 9998.55 10597.74 20698.14 6699.31 23597.86 22596.43 6299.62 5099.69 8985.56 23099.68 14299.05 6098.31 14997.83 238
EPP-MVSNet96.69 13496.60 12096.96 19197.74 20693.05 24099.37 22898.56 9288.75 29695.83 19799.01 15696.01 3198.56 20996.92 16197.20 17799.25 188
gg-mvs-nofinetune93.51 22791.86 25298.47 11397.72 21197.96 7792.62 38698.51 10774.70 38897.33 15869.59 40198.91 397.79 26697.77 13799.56 10199.67 115
IB-MVS92.85 694.99 18393.94 20198.16 12997.72 21195.69 16499.99 698.81 6094.28 13192.70 23796.90 26295.08 5199.17 17496.07 17173.88 37299.60 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9897.02 10498.59 10297.71 21397.52 9299.97 2998.54 10191.83 22697.45 15599.04 15397.50 799.10 18194.75 19696.37 19599.16 193
Syy-MVS90.00 30490.63 27088.11 36097.68 21474.66 38899.71 17298.35 16590.79 25992.10 24398.67 19379.10 29093.09 38063.35 39495.95 20396.59 254
myMVS_eth3d94.46 20194.76 18293.55 30497.68 21490.97 28899.71 17298.35 16590.79 25992.10 24398.67 19392.46 13393.09 38087.13 31095.95 20396.59 254
test_fmvs1_n94.25 20994.36 18993.92 29197.68 21483.70 36199.90 9496.57 34397.40 2899.67 4198.88 17661.82 37799.92 8898.23 11099.13 12898.14 235
diffmvspermissive97.00 11796.64 11898.09 13597.64 21796.17 14699.81 14097.19 29094.67 11398.95 9599.28 13386.43 22298.76 19698.37 10597.42 17299.33 178
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16495.15 17197.45 17297.62 21894.28 20799.28 24198.24 18394.27 13396.84 17198.94 17279.39 28598.76 19693.25 22798.49 14499.30 182
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 11096.72 11598.22 12797.60 21996.70 12299.92 8298.54 10191.11 25097.07 16598.97 16397.47 1099.03 18293.73 22296.09 19898.92 208
miper_ehance_all_eth93.16 23492.60 23594.82 25397.57 22093.56 22899.50 21097.07 30588.75 29688.85 29595.52 30790.97 16096.74 31990.77 26584.45 30894.17 293
testing393.92 21394.23 19392.99 31897.54 22190.23 30699.99 699.16 3090.57 26391.33 25298.63 19992.99 11492.52 38482.46 34395.39 21796.22 259
LCM-MVSNet-Re92.31 25492.60 23591.43 33397.53 22279.27 38399.02 26991.83 39792.07 21880.31 36394.38 35083.50 24995.48 35597.22 14997.58 16899.54 149
GBi-Net90.88 28189.82 28794.08 28397.53 22291.97 26398.43 31596.95 31787.05 32089.68 27394.72 33871.34 34296.11 34387.01 31485.65 29794.17 293
test190.88 28189.82 28794.08 28397.53 22291.97 26398.43 31596.95 31787.05 32089.68 27394.72 33871.34 34296.11 34387.01 31485.65 29794.17 293
FMVSNet291.02 27889.56 29295.41 23397.53 22295.74 15998.98 27197.41 26987.05 32088.43 30395.00 33271.34 34296.24 34085.12 32785.21 30294.25 288
tttt051796.85 12396.49 12497.92 14497.48 22695.89 15499.85 12398.54 10190.72 26296.63 17698.93 17497.47 1099.02 18393.03 23495.76 20998.85 212
casdiffmvs_mvgpermissive96.43 14395.94 14697.89 14897.44 22795.47 17199.86 12097.29 28393.35 16896.03 19199.19 14485.39 23398.72 20097.89 13097.04 18199.49 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 10097.24 9397.80 14997.41 22895.64 16699.99 697.06 30694.59 11499.63 4799.32 13289.20 19498.14 24898.76 8599.23 12499.62 127
c3_l92.53 24991.87 25194.52 26597.40 22992.99 24299.40 22196.93 32287.86 31088.69 29895.44 31189.95 18196.44 33190.45 27180.69 33994.14 302
fmvsm_s_conf0.1_n97.30 10197.21 9597.60 16697.38 23094.40 20599.90 9498.64 7696.47 6199.51 6599.65 10084.99 23899.93 8599.22 5599.09 13098.46 226
CDS-MVSNet96.34 14896.07 13597.13 18697.37 23194.96 19099.53 20597.91 22091.55 23495.37 20498.32 22395.05 5397.13 29693.80 21895.75 21099.30 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 13196.26 13098.16 12997.36 23296.48 12899.96 3698.29 17891.93 22395.77 19898.07 22995.54 4198.29 23790.55 26998.89 13499.70 110
miper_lstm_enhance91.81 26291.39 26193.06 31797.34 23389.18 32299.38 22696.79 33386.70 32787.47 31695.22 32590.00 18095.86 35288.26 29581.37 32994.15 299
baseline96.43 14395.98 14097.76 15697.34 23395.17 18799.51 20897.17 29393.92 15296.90 16999.28 13385.37 23498.64 20697.50 14396.86 18799.46 161
cl____92.31 25491.58 25594.52 26597.33 23592.77 24499.57 19896.78 33486.97 32487.56 31495.51 30889.43 18796.62 32488.60 29082.44 32194.16 298
DIV-MVS_self_test92.32 25391.60 25494.47 26997.31 23692.74 24699.58 19696.75 33586.99 32387.64 31295.54 30589.55 18696.50 32888.58 29182.44 32194.17 293
casdiffmvspermissive96.42 14595.97 14397.77 15497.30 23794.98 18999.84 12897.09 30393.75 15896.58 17899.26 13985.07 23698.78 19497.77 13797.04 18199.54 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20693.48 21496.99 19097.29 23893.54 22999.96 3696.72 33788.35 30593.43 22598.94 17282.05 25698.05 25488.12 29996.48 19399.37 172
eth_miper_zixun_eth92.41 25291.93 24993.84 29597.28 23990.68 29698.83 28996.97 31688.57 30189.19 29095.73 29889.24 19396.69 32289.97 28081.55 32794.15 299
MVSFormer96.94 12096.60 12097.95 14197.28 23997.70 8699.55 20297.27 28591.17 24799.43 7099.54 11290.92 16196.89 31294.67 19999.62 9399.25 188
lupinMVS97.85 7297.60 7998.62 9897.28 23997.70 8699.99 697.55 25295.50 9199.43 7099.67 9690.92 16198.71 20198.40 10299.62 9399.45 163
SCA94.69 19193.81 20597.33 18297.10 24294.44 20098.86 28698.32 17293.30 17196.17 19095.59 30376.48 31197.95 26091.06 25797.43 17099.59 133
TAMVS95.85 16195.58 15896.65 20397.07 24393.50 23099.17 25097.82 22991.39 24495.02 20898.01 23092.20 13897.30 28593.75 22195.83 20799.14 196
Fast-Effi-MVS+-dtu93.72 22293.86 20493.29 30997.06 24486.16 34799.80 14496.83 32992.66 19592.58 23897.83 23881.39 26397.67 27189.75 28296.87 18696.05 261
CostFormer96.10 15595.88 15096.78 19697.03 24592.55 25497.08 35297.83 22890.04 27498.72 11094.89 33695.01 5598.29 23796.54 16695.77 20899.50 157
test_fmvsmvis_n_192097.67 8697.59 8197.91 14697.02 24695.34 17799.95 5498.45 11897.87 1597.02 16699.59 10689.64 18499.98 4399.41 4899.34 11998.42 228
test-LLR96.47 14196.04 13697.78 15297.02 24695.44 17299.96 3698.21 18694.07 13995.55 20096.38 27993.90 9098.27 24190.42 27298.83 13899.64 121
test-mter96.39 14695.93 14797.78 15297.02 24695.44 17299.96 3698.21 18691.81 22895.55 20096.38 27995.17 4898.27 24190.42 27298.83 13899.64 121
gm-plane-assit96.97 24993.76 22291.47 23898.96 16598.79 19394.92 189
WB-MVSnew92.90 24092.77 23293.26 31196.95 25093.63 22699.71 17298.16 19591.49 23594.28 21798.14 22681.33 26596.48 32979.47 35895.46 21489.68 381
QAPM95.40 17594.17 19599.10 6696.92 25197.71 8499.40 22198.68 7089.31 28188.94 29498.89 17582.48 25499.96 6193.12 23399.83 7699.62 127
KD-MVS_2432*160088.00 32386.10 32793.70 30096.91 25294.04 21497.17 34997.12 29984.93 34781.96 35492.41 36692.48 13194.51 36879.23 35952.68 40092.56 355
miper_refine_blended88.00 32386.10 32793.70 30096.91 25294.04 21497.17 34997.12 29984.93 34781.96 35492.41 36692.48 13194.51 36879.23 35952.68 40092.56 355
tpm295.47 17395.18 17096.35 21296.91 25291.70 27696.96 35597.93 21688.04 30998.44 12295.40 31393.32 10497.97 25794.00 21095.61 21299.38 170
FMVSNet588.32 32087.47 32290.88 33696.90 25588.39 33397.28 34695.68 36482.60 36484.67 34392.40 36879.83 28291.16 38976.39 37381.51 32893.09 347
3Dnovator+91.53 1196.31 15095.24 16799.52 2896.88 25698.64 5499.72 16998.24 18395.27 9688.42 30598.98 16182.76 25399.94 7797.10 15399.83 7699.96 64
Patchmatch-test92.65 24891.50 25896.10 21796.85 25790.49 30191.50 39197.19 29082.76 36390.23 26195.59 30395.02 5498.00 25677.41 36896.98 18499.82 92
MVS96.60 13795.56 15999.72 1396.85 25799.22 2098.31 32198.94 4191.57 23390.90 25699.61 10586.66 22099.96 6197.36 14599.88 7099.99 23
3Dnovator91.47 1296.28 15395.34 16499.08 6896.82 25997.47 9799.45 21898.81 6095.52 9089.39 28199.00 15881.97 25799.95 6997.27 14799.83 7699.84 90
EI-MVSNet93.73 22193.40 21994.74 25496.80 26092.69 24999.06 26197.67 23988.96 29091.39 24999.02 15488.75 19997.30 28591.07 25687.85 28394.22 289
CVMVSNet94.68 19394.94 17893.89 29496.80 26086.92 34599.06 26198.98 3894.45 11794.23 21999.02 15485.60 22995.31 35990.91 26295.39 21799.43 166
IterMVS-LS92.69 24692.11 24594.43 27396.80 26092.74 24699.45 21896.89 32588.98 28889.65 27695.38 31688.77 19896.34 33590.98 26082.04 32494.22 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 28090.17 28293.12 31496.78 26390.42 30498.89 28097.05 30889.03 28586.49 32995.42 31276.59 30995.02 36187.22 30984.09 31193.93 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 12495.96 14499.48 3496.74 26498.52 5898.31 32198.86 5395.82 8089.91 26798.98 16187.49 20899.96 6197.80 13299.73 8699.96 64
IterMVS-SCA-FT90.85 28390.16 28392.93 31996.72 26589.96 31298.89 28096.99 31288.95 29186.63 32695.67 29976.48 31195.00 36287.04 31284.04 31493.84 326
MVS-HIRNet86.22 33083.19 34395.31 23796.71 26690.29 30592.12 38897.33 27762.85 39586.82 32370.37 40069.37 35097.49 27675.12 37597.99 16298.15 233
VDDNet93.12 23591.91 25096.76 19796.67 26792.65 25298.69 30298.21 18682.81 36297.75 14999.28 13361.57 37899.48 16198.09 11894.09 23598.15 233
dmvs_re93.20 23393.15 22493.34 30796.54 26883.81 36098.71 29998.51 10791.39 24492.37 24198.56 20678.66 29497.83 26593.89 21289.74 25398.38 229
MIMVSNet90.30 29688.67 31095.17 24296.45 26991.64 27892.39 38797.15 29685.99 33490.50 25993.19 36266.95 36094.86 36582.01 34793.43 24299.01 206
CR-MVSNet93.45 23092.62 23495.94 21996.29 27092.66 25092.01 38996.23 35392.62 19796.94 16793.31 36091.04 15896.03 34879.23 35995.96 20199.13 197
RPMNet89.76 30887.28 32397.19 18596.29 27092.66 25092.01 38998.31 17470.19 39496.94 16785.87 39387.25 21299.78 12562.69 39595.96 20199.13 197
tt080591.28 27390.18 28194.60 26096.26 27287.55 33998.39 31998.72 6589.00 28789.22 28798.47 21462.98 37498.96 18590.57 26888.00 28297.28 249
Patchmtry89.70 30988.49 31293.33 30896.24 27389.94 31591.37 39296.23 35378.22 37887.69 31193.31 36091.04 15896.03 34880.18 35782.10 32394.02 309
test_vis1_rt86.87 32886.05 33089.34 34996.12 27478.07 38499.87 10883.54 40892.03 22178.21 37389.51 37945.80 39499.91 8996.25 16993.11 24790.03 378
JIA-IIPM91.76 26890.70 26894.94 24896.11 27587.51 34093.16 38598.13 20075.79 38497.58 15177.68 39892.84 11997.97 25788.47 29496.54 18999.33 178
OpenMVScopyleft90.15 1594.77 18993.59 21098.33 12296.07 27697.48 9699.56 20098.57 8990.46 26586.51 32898.95 17078.57 29599.94 7793.86 21399.74 8597.57 247
PAPM98.60 3098.42 3199.14 6196.05 27798.96 2699.90 9499.35 2596.68 5598.35 12799.66 9896.45 2898.51 21299.45 4599.89 6799.96 64
CLD-MVS94.06 21293.90 20294.55 26496.02 27890.69 29599.98 1697.72 23696.62 5891.05 25598.85 18477.21 30098.47 21398.11 11689.51 25994.48 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29388.75 30995.25 23995.99 27990.16 30891.22 39397.54 25476.80 38097.26 16086.01 39291.88 14596.07 34766.16 39195.91 20599.51 155
ACMH+89.98 1690.35 29489.54 29392.78 32295.99 27986.12 34898.81 29197.18 29289.38 28083.14 35097.76 24068.42 35598.43 21889.11 28686.05 29593.78 329
DeepMVS_CXcopyleft82.92 37095.98 28158.66 40196.01 35892.72 19078.34 37295.51 30858.29 38398.08 25182.57 34285.29 30092.03 363
ACMP92.05 992.74 24492.42 24293.73 29695.91 28288.72 32699.81 14097.53 25694.13 13587.00 32298.23 22474.07 33298.47 21396.22 17088.86 26693.99 314
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22593.03 22695.35 23495.86 28386.94 34499.87 10896.36 35096.85 4699.54 6098.79 18652.41 39099.83 11898.64 9398.97 13399.29 184
HQP-NCC95.78 28499.87 10896.82 4893.37 226
ACMP_Plane95.78 28499.87 10896.82 4893.37 226
HQP-MVS94.61 19594.50 18794.92 24995.78 28491.85 26899.87 10897.89 22196.82 4893.37 22698.65 19680.65 27498.39 22497.92 12789.60 25494.53 264
NP-MVS95.77 28791.79 27098.65 196
test_fmvsmconf0.1_n97.74 8297.44 8598.64 9795.76 28896.20 14399.94 7098.05 20698.17 898.89 9999.42 12087.65 20699.90 9199.50 4199.60 9999.82 92
plane_prior695.76 28891.72 27580.47 278
ACMM91.95 1092.88 24192.52 24093.98 29095.75 29089.08 32399.77 15097.52 25893.00 17889.95 26697.99 23376.17 31598.46 21693.63 22488.87 26594.39 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21592.84 22896.80 19595.73 29193.57 22799.88 10597.24 28892.57 20292.92 23296.66 27178.73 29397.67 27187.75 30294.06 23699.17 192
plane_prior195.73 291
jason97.24 10496.86 10998.38 12195.73 29197.32 10199.97 2997.40 27095.34 9498.60 11799.54 11287.70 20598.56 20997.94 12699.47 10899.25 188
jason: jason.
HQP_MVS94.49 20094.36 18994.87 25095.71 29491.74 27299.84 12897.87 22396.38 6593.01 23098.59 20180.47 27898.37 23097.79 13589.55 25794.52 266
plane_prior795.71 29491.59 280
ITE_SJBPF92.38 32495.69 29685.14 35395.71 36392.81 18689.33 28498.11 22770.23 34898.42 21985.91 32388.16 27993.59 337
fmvsm_s_conf0.1_n_a97.09 11296.90 10797.63 16495.65 29794.21 21099.83 13598.50 11296.27 7299.65 4399.64 10184.72 23999.93 8599.04 6398.84 13798.74 219
ACMH89.72 1790.64 28789.63 29093.66 30295.64 29888.64 32998.55 30897.45 26389.03 28581.62 35797.61 24169.75 34998.41 22089.37 28387.62 28793.92 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 13396.49 12497.37 17895.63 29995.96 15299.74 16198.88 5192.94 18091.61 24798.97 16397.72 598.62 20794.83 19398.08 16097.53 248
FMVSNet188.50 31986.64 32594.08 28395.62 30091.97 26398.43 31596.95 31783.00 36086.08 33694.72 33859.09 38296.11 34381.82 34984.07 31294.17 293
LPG-MVS_test92.96 23892.71 23393.71 29895.43 30188.67 32799.75 15897.62 24392.81 18690.05 26298.49 21075.24 32298.40 22295.84 17689.12 26194.07 306
LGP-MVS_train93.71 29895.43 30188.67 32797.62 24392.81 18690.05 26298.49 21075.24 32298.40 22295.84 17689.12 26194.07 306
tpm93.70 22393.41 21894.58 26295.36 30387.41 34197.01 35396.90 32490.85 25796.72 17594.14 35290.40 17396.84 31590.75 26688.54 27499.51 155
D2MVS92.76 24392.59 23893.27 31095.13 30489.54 31999.69 17799.38 2392.26 21487.59 31394.61 34485.05 23797.79 26691.59 25088.01 28192.47 358
VPA-MVSNet92.70 24591.55 25796.16 21595.09 30596.20 14398.88 28299.00 3691.02 25491.82 24695.29 32376.05 31797.96 25995.62 18081.19 33094.30 284
LTVRE_ROB88.28 1890.29 29789.05 30494.02 28695.08 30690.15 30997.19 34897.43 26584.91 34983.99 34697.06 25774.00 33398.28 23984.08 33287.71 28593.62 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32586.51 32691.94 32995.05 30785.57 35197.65 34194.08 38584.40 35281.82 35696.85 26662.14 37698.33 23380.25 35686.37 29491.91 365
test0.0.03 193.86 21493.61 20794.64 25895.02 30892.18 26199.93 7798.58 8794.07 13987.96 30998.50 20993.90 9094.96 36381.33 35093.17 24596.78 251
UniMVSNet (Re)93.07 23792.13 24495.88 22094.84 30996.24 14299.88 10598.98 3892.49 20789.25 28595.40 31387.09 21497.14 29593.13 23278.16 35394.26 286
USDC90.00 30488.96 30593.10 31694.81 31088.16 33598.71 29995.54 36893.66 16083.75 34897.20 25165.58 36598.31 23583.96 33587.49 28992.85 352
VPNet91.81 26290.46 27295.85 22294.74 31195.54 17098.98 27198.59 8692.14 21690.77 25897.44 24468.73 35397.54 27594.89 19277.89 35594.46 270
FIs94.10 21093.43 21596.11 21694.70 31296.82 11999.58 19698.93 4592.54 20389.34 28397.31 24887.62 20797.10 29994.22 20986.58 29294.40 276
UniMVSNet_ETH3D90.06 30388.58 31194.49 26894.67 31388.09 33697.81 34097.57 25183.91 35588.44 30197.41 24557.44 38497.62 27391.41 25188.59 27397.77 241
UniMVSNet_NR-MVSNet92.95 23992.11 24595.49 22894.61 31495.28 18099.83 13599.08 3391.49 23589.21 28896.86 26587.14 21396.73 32093.20 22877.52 35894.46 270
test_fmvs289.47 31289.70 28988.77 35694.54 31575.74 38599.83 13594.70 38194.71 11091.08 25396.82 27054.46 38797.78 26892.87 23588.27 27792.80 353
WR-MVS92.31 25491.25 26295.48 23194.45 31695.29 17999.60 19398.68 7090.10 27188.07 30896.89 26380.68 27396.80 31893.14 23179.67 34694.36 279
nrg03093.51 22792.53 23996.45 20794.36 31797.20 10499.81 14097.16 29591.60 23289.86 26997.46 24386.37 22397.68 27095.88 17580.31 34294.46 270
tfpnnormal89.29 31587.61 32194.34 27694.35 31894.13 21298.95 27598.94 4183.94 35384.47 34495.51 30874.84 32797.39 27877.05 37180.41 34091.48 368
iter_conf0594.61 19594.72 18494.27 27794.31 31991.01 28799.93 7796.30 35294.01 14592.92 23298.46 21790.66 16697.32 28397.12 15188.75 26894.49 268
FC-MVSNet-test93.81 21793.15 22495.80 22494.30 32096.20 14399.42 22098.89 4992.33 21389.03 29397.27 25087.39 21096.83 31693.20 22886.48 29394.36 279
MS-PatchMatch90.65 28690.30 27791.71 33294.22 32185.50 35298.24 32497.70 23788.67 29886.42 33196.37 28167.82 35798.03 25583.62 33799.62 9391.60 366
WR-MVS_H91.30 27190.35 27594.15 28094.17 32292.62 25399.17 25098.94 4188.87 29486.48 33094.46 34984.36 24396.61 32588.19 29678.51 35193.21 346
DU-MVS92.46 25191.45 26095.49 22894.05 32395.28 18099.81 14098.74 6492.25 21589.21 28896.64 27381.66 26096.73 32093.20 22877.52 35894.46 270
NR-MVSNet91.56 27090.22 27995.60 22694.05 32395.76 15898.25 32398.70 6791.16 24980.78 36296.64 27383.23 25296.57 32691.41 25177.73 35794.46 270
CP-MVSNet91.23 27590.22 27994.26 27893.96 32592.39 25799.09 25498.57 8988.95 29186.42 33196.57 27679.19 28896.37 33390.29 27578.95 34894.02 309
XXY-MVS91.82 26190.46 27295.88 22093.91 32695.40 17698.87 28597.69 23888.63 30087.87 31097.08 25574.38 33197.89 26391.66 24984.07 31294.35 282
PS-CasMVS90.63 28889.51 29593.99 28993.83 32791.70 27698.98 27198.52 10488.48 30286.15 33596.53 27875.46 32096.31 33788.83 28878.86 35093.95 317
test_040285.58 33283.94 33790.50 34093.81 32885.04 35498.55 30895.20 37576.01 38279.72 36795.13 32664.15 37196.26 33966.04 39286.88 29190.21 377
XVG-ACMP-BASELINE91.22 27690.75 26792.63 32393.73 32985.61 35098.52 31297.44 26492.77 18989.90 26896.85 26666.64 36298.39 22492.29 24088.61 27193.89 322
TranMVSNet+NR-MVSNet91.68 26990.61 27194.87 25093.69 33093.98 21799.69 17798.65 7491.03 25388.44 30196.83 26980.05 28196.18 34190.26 27676.89 36694.45 275
mvsmamba94.10 21093.72 20695.25 23993.57 33194.13 21299.67 18196.45 34893.63 16291.34 25197.77 23986.29 22597.22 29196.65 16588.10 28094.40 276
TransMVSNet (Re)87.25 32685.28 33393.16 31393.56 33291.03 28698.54 31094.05 38783.69 35781.09 36096.16 28675.32 32196.40 33276.69 37268.41 38492.06 362
v1090.25 29888.82 30794.57 26393.53 33393.43 23299.08 25696.87 32785.00 34687.34 32094.51 34580.93 27097.02 30882.85 34179.23 34793.26 344
testgi89.01 31788.04 31891.90 33093.49 33484.89 35699.73 16695.66 36593.89 15585.14 34198.17 22559.68 38194.66 36777.73 36788.88 26496.16 260
v890.54 29089.17 30094.66 25793.43 33593.40 23499.20 24796.94 32185.76 33787.56 31494.51 34581.96 25897.19 29284.94 32978.25 35293.38 342
V4291.28 27390.12 28494.74 25493.42 33693.46 23199.68 17997.02 30987.36 31689.85 27195.05 32881.31 26697.34 28187.34 30780.07 34493.40 340
pm-mvs189.36 31487.81 32094.01 28793.40 33791.93 26698.62 30796.48 34786.25 33283.86 34796.14 28773.68 33497.04 30486.16 32075.73 37093.04 349
v114491.09 27789.83 28694.87 25093.25 33893.69 22599.62 19196.98 31486.83 32689.64 27794.99 33380.94 26997.05 30285.08 32881.16 33193.87 324
v119290.62 28989.25 29994.72 25693.13 33993.07 23899.50 21097.02 30986.33 33189.56 27995.01 33079.22 28797.09 30182.34 34581.16 33194.01 311
v2v48291.30 27190.07 28595.01 24593.13 33993.79 22099.77 15097.02 30988.05 30889.25 28595.37 31780.73 27297.15 29487.28 30880.04 34594.09 305
OPM-MVS93.21 23292.80 23094.44 27193.12 34190.85 29499.77 15097.61 24696.19 7591.56 24898.65 19675.16 32698.47 21393.78 22089.39 26093.99 314
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28489.52 29494.59 26193.11 34292.77 24499.56 20096.99 31286.38 33089.82 27294.95 33580.50 27797.10 29983.98 33480.41 34093.90 321
PEN-MVS90.19 30089.06 30393.57 30393.06 34390.90 29299.06 26198.47 11588.11 30785.91 33796.30 28276.67 30795.94 35187.07 31176.91 36593.89 322
v124090.20 29988.79 30894.44 27193.05 34492.27 25999.38 22696.92 32385.89 33589.36 28294.87 33777.89 29997.03 30680.66 35381.08 33494.01 311
v14890.70 28589.63 29093.92 29192.97 34590.97 28899.75 15896.89 32587.51 31388.27 30695.01 33081.67 25997.04 30487.40 30677.17 36393.75 330
v192192090.46 29189.12 30194.50 26792.96 34692.46 25599.49 21296.98 31486.10 33389.61 27895.30 32078.55 29697.03 30682.17 34680.89 33894.01 311
Baseline_NR-MVSNet90.33 29589.51 29592.81 32192.84 34789.95 31399.77 15093.94 38884.69 35189.04 29295.66 30081.66 26096.52 32790.99 25976.98 36491.97 364
test_method80.79 35279.70 35684.08 36792.83 34867.06 39399.51 20895.42 36954.34 39981.07 36193.53 35744.48 39592.22 38678.90 36377.23 36292.94 350
pmmvs492.10 25891.07 26595.18 24192.82 34994.96 19099.48 21496.83 32987.45 31588.66 29996.56 27783.78 24796.83 31689.29 28484.77 30693.75 330
LF4IMVS89.25 31688.85 30690.45 34292.81 35081.19 37698.12 33094.79 37891.44 23986.29 33397.11 25365.30 36898.11 25088.53 29385.25 30192.07 361
DTE-MVSNet89.40 31388.24 31692.88 32092.66 35189.95 31399.10 25398.22 18587.29 31785.12 34296.22 28476.27 31495.30 36083.56 33875.74 36993.41 339
EU-MVSNet90.14 30290.34 27689.54 34892.55 35281.06 37798.69 30298.04 20791.41 24386.59 32796.84 26880.83 27193.31 37986.20 31981.91 32594.26 286
APD_test181.15 35180.92 35281.86 37192.45 35359.76 40096.04 37193.61 39173.29 39177.06 37696.64 27344.28 39696.16 34272.35 37982.52 31989.67 382
our_test_390.39 29289.48 29793.12 31492.40 35489.57 31899.33 23296.35 35187.84 31185.30 34094.99 33384.14 24596.09 34680.38 35484.56 30793.71 335
ppachtmachnet_test89.58 31188.35 31493.25 31292.40 35490.44 30399.33 23296.73 33685.49 34285.90 33895.77 29581.09 26896.00 35076.00 37482.49 32093.30 343
v7n89.65 31088.29 31593.72 29792.22 35690.56 30099.07 26097.10 30185.42 34486.73 32494.72 33880.06 28097.13 29681.14 35178.12 35493.49 338
dmvs_testset83.79 34586.07 32976.94 37592.14 35748.60 41096.75 35890.27 40089.48 27978.65 37098.55 20879.25 28686.65 39866.85 38982.69 31895.57 262
PS-MVSNAJss93.64 22493.31 22194.61 25992.11 35892.19 26099.12 25297.38 27192.51 20688.45 30096.99 26191.20 15397.29 28894.36 20487.71 28594.36 279
pmmvs590.17 30189.09 30293.40 30692.10 35989.77 31699.74 16195.58 36785.88 33687.24 32195.74 29673.41 33596.48 32988.54 29283.56 31593.95 317
N_pmnet80.06 35580.78 35377.89 37491.94 36045.28 41298.80 29356.82 41478.10 37980.08 36593.33 35877.03 30295.76 35368.14 38782.81 31792.64 354
test_djsdf92.83 24292.29 24394.47 26991.90 36192.46 25599.55 20297.27 28591.17 24789.96 26596.07 29181.10 26796.89 31294.67 19988.91 26394.05 308
SixPastTwentyTwo88.73 31888.01 31990.88 33691.85 36282.24 36898.22 32795.18 37688.97 28982.26 35396.89 26371.75 34096.67 32384.00 33382.98 31693.72 334
K. test v388.05 32287.24 32490.47 34191.82 36382.23 36998.96 27497.42 26789.05 28476.93 37895.60 30268.49 35495.42 35685.87 32481.01 33693.75 330
OurMVSNet-221017-089.81 30789.48 29790.83 33891.64 36481.21 37598.17 32995.38 37191.48 23785.65 33997.31 24872.66 33697.29 28888.15 29784.83 30593.97 316
mvs_tets91.81 26291.08 26494.00 28891.63 36590.58 29998.67 30497.43 26592.43 20887.37 31997.05 25871.76 33997.32 28394.75 19688.68 27094.11 304
Gipumacopyleft66.95 36865.00 36872.79 38091.52 36667.96 39266.16 40395.15 37747.89 40158.54 39867.99 40329.74 40087.54 39750.20 40277.83 35662.87 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14695.74 15398.32 12391.47 36795.56 16999.84 12897.30 28097.74 1897.89 14399.35 13179.62 28399.85 10899.25 5499.24 12399.55 145
jajsoiax91.92 26091.18 26394.15 28091.35 36890.95 29199.00 27097.42 26792.61 19887.38 31897.08 25572.46 33797.36 27994.53 20288.77 26794.13 303
MDA-MVSNet-bldmvs84.09 34381.52 35091.81 33191.32 36988.00 33898.67 30495.92 36080.22 37355.60 40193.32 35968.29 35693.60 37773.76 37676.61 36793.82 328
MVP-Stereo90.93 27990.45 27492.37 32591.25 37088.76 32498.05 33496.17 35587.27 31884.04 34595.30 32078.46 29797.27 29083.78 33699.70 8891.09 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33483.32 34292.10 32790.96 37188.58 33099.20 24796.52 34579.70 37557.12 40092.69 36479.11 28993.86 37477.10 37077.46 36093.86 325
YYNet185.50 33583.33 34192.00 32890.89 37288.38 33499.22 24696.55 34479.60 37657.26 39992.72 36379.09 29193.78 37577.25 36977.37 36193.84 326
anonymousdsp91.79 26790.92 26694.41 27490.76 37392.93 24398.93 27797.17 29389.08 28387.46 31795.30 32078.43 29896.92 31192.38 23988.73 26993.39 341
lessismore_v090.53 33990.58 37480.90 37895.80 36177.01 37795.84 29366.15 36496.95 30983.03 34075.05 37193.74 333
EG-PatchMatch MVS85.35 33683.81 33989.99 34690.39 37581.89 37198.21 32896.09 35781.78 36774.73 38493.72 35651.56 39297.12 29879.16 36288.61 27190.96 371
EGC-MVSNET69.38 36163.76 37186.26 36490.32 37681.66 37496.24 36793.85 3890.99 4113.22 41292.33 36952.44 38992.92 38259.53 39884.90 30484.21 392
CMPMVSbinary61.59 2184.75 33985.14 33483.57 36890.32 37662.54 39696.98 35497.59 25074.33 38969.95 39096.66 27164.17 37098.32 23487.88 30188.41 27689.84 380
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 34282.92 34589.21 35090.03 37882.60 36596.89 35795.62 36680.59 37175.77 38389.17 38065.04 36994.79 36672.12 38081.02 33590.23 376
pmmvs685.69 33183.84 33891.26 33590.00 37984.41 35897.82 33996.15 35675.86 38381.29 35995.39 31561.21 37996.87 31483.52 33973.29 37392.50 357
DSMNet-mixed88.28 32188.24 31688.42 35889.64 38075.38 38798.06 33389.86 40185.59 34188.20 30792.14 37076.15 31691.95 38778.46 36496.05 19997.92 237
UnsupCasMVSNet_eth85.52 33383.99 33590.10 34489.36 38183.51 36296.65 35997.99 20989.14 28275.89 38293.83 35463.25 37393.92 37281.92 34867.90 38792.88 351
Anonymous2023120686.32 32985.42 33289.02 35289.11 38280.53 38199.05 26595.28 37285.43 34382.82 35193.92 35374.40 33093.44 37866.99 38881.83 32693.08 348
Anonymous2024052185.15 33783.81 33989.16 35188.32 38382.69 36498.80 29395.74 36279.72 37481.53 35890.99 37365.38 36794.16 37072.69 37881.11 33390.63 374
OpenMVS_ROBcopyleft79.82 2083.77 34681.68 34990.03 34588.30 38482.82 36398.46 31395.22 37473.92 39076.00 38191.29 37255.00 38696.94 31068.40 38688.51 27590.34 375
test20.0384.72 34083.99 33586.91 36288.19 38580.62 38098.88 28295.94 35988.36 30478.87 36894.62 34368.75 35289.11 39366.52 39075.82 36891.00 370
KD-MVS_self_test83.59 34782.06 34788.20 35986.93 38680.70 37997.21 34796.38 34982.87 36182.49 35288.97 38167.63 35892.32 38573.75 37762.30 39691.58 367
MIMVSNet182.58 34880.51 35488.78 35486.68 38784.20 35996.65 35995.41 37078.75 37778.59 37192.44 36551.88 39189.76 39265.26 39378.95 34892.38 360
CL-MVSNet_self_test84.50 34183.15 34488.53 35786.00 38881.79 37298.82 29097.35 27385.12 34583.62 34990.91 37576.66 30891.40 38869.53 38460.36 39792.40 359
UnsupCasMVSNet_bld79.97 35777.03 36288.78 35485.62 38981.98 37093.66 38397.35 27375.51 38670.79 38983.05 39548.70 39394.91 36478.31 36560.29 39889.46 385
Patchmatch-RL test86.90 32785.98 33189.67 34784.45 39075.59 38689.71 39692.43 39486.89 32577.83 37590.94 37494.22 7993.63 37687.75 30269.61 37999.79 97
pmmvs-eth3d84.03 34481.97 34890.20 34384.15 39187.09 34398.10 33294.73 38083.05 35974.10 38687.77 38765.56 36694.01 37181.08 35269.24 38189.49 384
test_fmvs379.99 35680.17 35579.45 37384.02 39262.83 39499.05 26593.49 39288.29 30680.06 36686.65 39028.09 40288.00 39488.63 28973.27 37487.54 390
PM-MVS80.47 35378.88 35885.26 36583.79 39372.22 38995.89 37491.08 39885.71 34076.56 38088.30 38336.64 39893.90 37382.39 34469.57 38089.66 383
new-patchmatchnet81.19 35079.34 35786.76 36382.86 39480.36 38297.92 33695.27 37382.09 36672.02 38786.87 38962.81 37590.74 39171.10 38163.08 39489.19 387
mvsany_test382.12 34981.14 35185.06 36681.87 39570.41 39097.09 35192.14 39591.27 24677.84 37488.73 38239.31 39795.49 35490.75 26671.24 37689.29 386
WB-MVS76.28 35977.28 36173.29 37981.18 39654.68 40497.87 33894.19 38481.30 36869.43 39190.70 37677.02 30382.06 40235.71 40768.11 38683.13 393
test_f78.40 35877.59 36080.81 37280.82 39762.48 39796.96 35593.08 39383.44 35874.57 38584.57 39427.95 40392.63 38384.15 33172.79 37587.32 391
SSC-MVS75.42 36076.40 36372.49 38380.68 39853.62 40597.42 34394.06 38680.42 37268.75 39290.14 37876.54 31081.66 40333.25 40866.34 39082.19 394
pmmvs380.27 35477.77 35987.76 36180.32 39982.43 36798.23 32691.97 39672.74 39278.75 36987.97 38657.30 38590.99 39070.31 38262.37 39589.87 379
testf168.38 36466.92 36572.78 38178.80 40050.36 40790.95 39487.35 40655.47 39758.95 39688.14 38420.64 40787.60 39557.28 39964.69 39180.39 396
APD_test268.38 36466.92 36572.78 38178.80 40050.36 40790.95 39487.35 40655.47 39758.95 39688.14 38420.64 40787.60 39557.28 39964.69 39180.39 396
ambc83.23 36977.17 40262.61 39587.38 39894.55 38376.72 37986.65 39030.16 39996.36 33484.85 33069.86 37890.73 373
test_vis3_rt68.82 36266.69 36775.21 37876.24 40360.41 39996.44 36268.71 41375.13 38750.54 40469.52 40216.42 41296.32 33680.27 35566.92 38968.89 400
TDRefinement84.76 33882.56 34691.38 33474.58 40484.80 35797.36 34594.56 38284.73 35080.21 36496.12 29063.56 37298.39 22487.92 30063.97 39390.95 372
E-PMN52.30 37252.18 37452.67 38971.51 40545.40 41193.62 38476.60 41136.01 40543.50 40664.13 40527.11 40467.31 40831.06 40926.06 40445.30 407
EMVS51.44 37451.22 37652.11 39070.71 40644.97 41394.04 38075.66 41235.34 40742.40 40761.56 40828.93 40165.87 40927.64 41024.73 40545.49 406
PMMVS267.15 36764.15 37076.14 37770.56 40762.07 39893.89 38187.52 40558.09 39660.02 39578.32 39722.38 40684.54 40059.56 39747.03 40281.80 395
FPMVS68.72 36368.72 36468.71 38565.95 40844.27 41495.97 37394.74 37951.13 40053.26 40290.50 37725.11 40583.00 40160.80 39680.97 33778.87 398
wuyk23d20.37 37820.84 38118.99 39365.34 40927.73 41650.43 4047.67 4179.50 4108.01 4116.34 4116.13 41526.24 41023.40 41110.69 4092.99 408
LCM-MVSNet67.77 36664.73 36976.87 37662.95 41056.25 40389.37 39793.74 39044.53 40261.99 39480.74 39620.42 40986.53 39969.37 38559.50 39987.84 388
MVEpermissive53.74 2251.54 37347.86 37762.60 38759.56 41150.93 40679.41 40177.69 41035.69 40636.27 40861.76 4075.79 41669.63 40637.97 40636.61 40367.24 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 37052.24 37367.66 38649.27 41256.82 40283.94 39982.02 40970.47 39333.28 40964.54 40417.23 41169.16 40745.59 40423.85 40677.02 399
tmp_tt65.23 36962.94 37272.13 38444.90 41350.03 40981.05 40089.42 40438.45 40348.51 40599.90 1854.09 38878.70 40591.84 24818.26 40787.64 389
PMVScopyleft49.05 2353.75 37151.34 37560.97 38840.80 41434.68 41574.82 40289.62 40337.55 40428.67 41072.12 3997.09 41481.63 40443.17 40568.21 38566.59 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37639.14 37933.31 39119.94 41524.83 41798.36 3209.75 41615.53 40951.31 40387.14 38819.62 41017.74 41147.10 4033.47 41057.36 404
testmvs40.60 37544.45 37829.05 39219.49 41614.11 41899.68 17918.47 41520.74 40864.59 39398.48 21310.95 41317.09 41256.66 40111.01 40855.94 405
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.02 4120.00 4170.00 4130.00 4120.00 4110.00 409
eth-test20.00 417
eth-test0.00 417
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
cdsmvs_eth3d_5k23.43 37731.24 3800.00 3940.00 4170.00 4190.00 40598.09 2010.00 4120.00 41399.67 9683.37 2500.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas7.60 38010.13 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 41391.20 1530.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
ab-mvs-re8.28 37911.04 3820.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41399.40 1250.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4130.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS90.97 28886.10 322
PC_three_145296.96 4499.80 1799.79 5797.49 8100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 12100.00 1100.00 1
GSMVS99.59 133
sam_mvs194.72 6399.59 133
sam_mvs94.25 78
MTGPAbinary98.28 179
test_post195.78 37559.23 40993.20 11097.74 26991.06 257
test_post63.35 40694.43 6898.13 249
patchmatchnet-post91.70 37195.12 4997.95 260
MTMP99.87 10896.49 346
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 7199.94 70
test_prior299.95 5495.78 8199.73 3299.76 6596.00 3299.78 27100.00 1
旧先验299.46 21794.21 13499.85 999.95 6996.96 159
新几何299.40 221
无先验99.49 21298.71 6693.46 165100.00 194.36 20499.99 23
原ACMM299.90 94
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata199.28 24196.35 69
plane_prior597.87 22398.37 23097.79 13589.55 25794.52 266
plane_prior498.59 201
plane_prior391.64 27896.63 5693.01 230
plane_prior299.84 12896.38 65
plane_prior91.74 27299.86 12096.76 5289.59 256
n20.00 418
nn0.00 418
door-mid89.69 402
test1198.44 123
door90.31 399
HQP5-MVS91.85 268
BP-MVS97.92 127
HQP4-MVS93.37 22698.39 22494.53 264
HQP3-MVS97.89 22189.60 254
HQP2-MVS80.65 274
MDTV_nov1_ep13_2view96.26 13896.11 36991.89 22498.06 13794.40 7094.30 20699.67 115
ACMMP++_ref87.04 290
ACMMP++88.23 278
Test By Simon92.82 121