| AdaColmap |  | | 97.23 105 | 96.80 112 | 98.51 110 | 99.99 1 | 95.60 167 | 99.09 255 | 98.84 58 | 93.32 170 | 96.74 174 | 99.72 82 | 86.04 229 | 100.00 1 | 98.01 121 | 99.43 114 | 99.94 74 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 21 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 28 | 98.64 76 | 98.47 2 | 99.13 89 | 99.92 13 | 96.38 29 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 76 | 99.97 3 | 96.92 115 | 99.95 53 | 98.38 161 | 95.04 98 | 98.61 116 | 99.80 52 | 93.39 100 | 100.00 1 | 98.64 92 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 86 | 97.32 91 | 98.58 102 | 99.97 3 | 95.77 156 | 99.96 35 | 98.35 167 | 89.90 275 | 98.36 126 | 99.79 56 | 91.18 156 | 99.99 36 | 98.37 105 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 81 | 98.44 125 | 92.06 220 | 98.40 125 | 99.84 42 | 95.68 39 | 100.00 1 | 98.19 111 | 99.71 87 | 99.97 58 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 53 | 98.43 133 | 95.35 92 | 98.03 138 | 99.75 70 | 94.03 86 | 99.98 43 | 98.11 116 | 99.83 76 | 99.99 23 |
|
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 61 | 99.96 8 | 97.43 97 | 99.95 53 | 98.61 82 | 94.77 106 | 99.31 79 | 99.85 31 | 94.22 79 | 100.00 1 | 98.70 87 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 68 | 99.96 8 | 97.18 104 | 99.96 35 | 98.55 98 | 94.87 104 | 99.45 67 | 99.85 31 | 94.07 85 | 100.00 1 | 98.67 89 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 68 | 99.96 8 | 97.18 104 | 99.95 53 | 98.60 84 | 94.77 106 | 99.31 79 | 99.84 42 | 93.73 95 | 100.00 1 | 98.70 87 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 28 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 15 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 83 | 99.96 8 | 96.62 124 | 99.97 28 | 98.39 157 | 94.43 119 | 98.90 98 | 99.87 24 | 94.30 77 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 150 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 8 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 53 | 98.43 133 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 59 | 99.94 13 | 97.50 93 | 99.94 69 | 98.42 145 | 96.22 72 | 99.41 71 | 99.78 60 | 94.34 75 | 99.96 61 | 98.92 73 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 215 | 92.06 248 | 99.15 59 | 99.94 13 | 97.50 93 | 99.94 69 | 98.42 145 | 96.22 72 | 99.41 71 | 41.37 412 | 94.34 75 | 99.96 61 | 98.92 73 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 35 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 87 | 98.39 157 | 97.20 38 | 99.46 66 | 99.85 31 | 95.53 43 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 57 | 97.97 59 | 99.03 70 | 99.94 13 | 97.17 107 | 99.95 53 | 98.39 157 | 94.70 110 | 98.26 132 | 99.81 51 | 91.84 147 | 100.00 1 | 98.85 79 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 107 | 98.33 172 | 93.97 147 | 99.76 28 | 99.87 24 | 94.99 57 | 99.75 132 | 98.55 97 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 60 | 97.93 64 | 98.70 91 | 99.94 13 | 96.13 146 | 99.82 137 | 98.43 133 | 94.56 114 | 97.52 152 | 99.70 86 | 94.40 70 | 99.98 43 | 97.00 155 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 187 | 99.44 20 | 97.33 31 | 99.00 94 | 99.72 82 | 94.03 86 | 99.98 43 | 98.73 86 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 35 | 98.43 133 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 22 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 150 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 133 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 22 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 53 | 98.32 174 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 17 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 35 | 98.42 145 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 17 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 75 | 99.93 24 | 97.24 101 | 99.95 53 | 98.42 145 | 97.50 26 | 99.52 62 | 99.88 21 | 97.43 14 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 133 | | 99.63 46 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 87 | 99.95 53 | 98.36 165 | 95.58 86 | 99.52 62 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 105 | 92.34 212 | 99.31 79 | 99.83 44 | 95.06 52 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 52 | 97.97 59 | 99.17 55 | 99.92 31 | 97.57 89 | 99.93 76 | 98.39 157 | 94.04 142 | 98.80 103 | 99.74 77 | 92.98 115 | 100.00 1 | 98.16 113 | 99.76 84 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 133 | 93.90 152 | 99.71 35 | 99.86 27 | 95.88 36 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 133 | 94.35 124 | 99.71 35 | 99.86 27 | 95.94 33 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 35 | 98.43 133 | 94.35 124 | 99.69 38 | 99.85 31 | 95.94 33 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 74 | 99.92 31 | 97.00 111 | 99.75 157 | 99.50 18 | 93.90 152 | 99.37 76 | 99.76 64 | 93.24 109 | 100.00 1 | 97.75 139 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 81 | 97.44 84 | 98.66 94 | 99.92 31 | 96.13 146 | 99.18 250 | 99.45 19 | 94.84 105 | 96.41 184 | 99.71 84 | 91.40 150 | 99.99 36 | 97.99 123 | 98.03 161 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 53 | 98.43 133 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 12 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 150 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 150 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 53 | 98.56 92 | 97.56 25 | 99.44 68 | 99.85 31 | 95.38 46 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 107 | 98.36 165 | 94.08 137 | 99.74 31 | 99.73 79 | 94.08 84 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 245 | 98.47 117 | 98.14 10 | 99.08 90 | 99.91 14 | 93.09 112 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 35 | | | | 99.80 52 | 97.44 12 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 107 | 98.44 125 | 97.48 27 | 99.64 45 | 99.94 4 | 96.68 24 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 65 | | | | | | |
|
| CSCG | | | 97.10 110 | 97.04 102 | 97.27 184 | 99.89 45 | 91.92 267 | 99.90 93 | 99.07 34 | 88.67 298 | 95.26 206 | 99.82 47 | 93.17 111 | 99.98 43 | 98.15 114 | 99.47 108 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 55 | 99.88 49 | 97.59 88 | 99.94 69 | 98.44 125 | 94.31 127 | 98.50 120 | 99.82 47 | 93.06 113 | 99.99 36 | 98.30 109 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 80 | 99.88 49 | 97.04 110 | 99.84 127 | 98.35 167 | 94.92 102 | 99.32 78 | 99.80 52 | 93.35 102 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 87 | 98.33 172 | 93.22 173 | 99.78 26 | 99.89 19 | 94.57 67 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 119 | 98.38 161 | 93.19 174 | 99.77 27 | 99.94 4 | 95.54 41 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 70 | 99.86 53 | 97.10 109 | 99.98 15 | 98.80 62 | 90.78 261 | 99.62 49 | 99.78 60 | 95.30 47 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 51 | 97.96 62 | 99.30 44 | 99.85 54 | 97.93 77 | 99.39 226 | 98.28 181 | 95.76 81 | 97.18 162 | 99.88 21 | 92.74 123 | 100.00 1 | 98.67 89 | 99.88 69 | 99.99 23 |
|
| LS3D | | | 95.84 162 | 95.11 172 | 98.02 138 | 99.85 54 | 95.10 188 | 98.74 297 | 98.50 114 | 87.22 319 | 93.66 224 | 99.86 27 | 87.45 211 | 99.95 69 | 90.94 261 | 99.81 82 | 99.02 205 |
|
| HPM-MVS |  | | 97.96 64 | 97.72 72 | 98.68 92 | 99.84 56 | 96.39 133 | 99.90 93 | 98.17 193 | 92.61 198 | 98.62 115 | 99.57 108 | 91.87 146 | 99.67 145 | 98.87 78 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 89 | 99.83 57 | 96.59 126 | 99.40 222 | 98.51 108 | 95.29 94 | 98.51 119 | 99.76 64 | 93.60 99 | 99.71 138 | 98.53 98 | 99.52 103 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 35 | 98.40 154 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 66 | 97.89 67 | 98.05 137 | 99.82 58 | 94.77 197 | 99.92 81 | 98.46 119 | 93.93 150 | 97.20 161 | 99.27 135 | 95.44 45 | 99.97 53 | 97.41 144 | 99.51 106 | 99.41 168 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 55 | 98.08 55 | 98.78 86 | 99.81 60 | 96.60 125 | 99.82 137 | 98.30 179 | 93.95 149 | 99.37 76 | 99.77 62 | 92.84 119 | 99.76 131 | 98.95 70 | 99.92 63 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 59 | 97.99 58 | 98.60 99 | 99.80 61 | 96.27 136 | 99.36 231 | 98.50 114 | 95.21 96 | 98.30 129 | 99.75 70 | 93.29 106 | 99.73 137 | 98.37 105 | 99.30 120 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 90 | 99.79 62 | 96.37 134 | 99.76 154 | 98.31 176 | 94.43 119 | 99.40 73 | 99.75 70 | 93.28 107 | 99.78 125 | 98.90 76 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 134 | 99.76 154 | 98.31 176 | 94.43 119 | 99.40 73 | 99.75 70 | 92.95 116 | | 98.90 76 | 99.92 63 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 76 | 97.50 82 | 98.68 92 | 99.79 62 | 96.42 129 | 99.88 104 | 98.16 197 | 91.75 230 | 98.94 96 | 99.54 111 | 91.82 148 | 99.65 147 | 97.62 142 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 93 | 98.21 188 | 93.53 163 | 99.81 15 | 99.89 19 | 94.70 65 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 91 | | 98.64 76 | | | 99.85 31 | 95.63 40 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 102 | 97.23 94 | 97.41 175 | 99.76 66 | 93.36 236 | 99.65 183 | 97.95 216 | 96.03 76 | 97.41 156 | 99.70 86 | 89.61 187 | 99.51 153 | 96.73 164 | 98.25 153 | 99.38 170 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 63 | | 98.63 80 | 92.69 193 | 99.55 57 | 99.82 47 | 94.40 70 | 100.00 1 | 91.21 253 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 62 | 97.64 76 | 99.38 42 | 99.74 69 | 98.41 62 | 99.74 160 | 98.18 192 | 93.35 168 | 96.45 181 | 99.85 31 | 92.64 125 | 99.97 53 | 98.91 75 | 99.89 66 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 49 | 99.77 149 | 98.38 161 | 96.73 53 | 99.88 6 | 99.74 77 | 94.89 59 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 57 | | 98.40 154 | | 99.65 42 | | 94.76 62 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 77 | 99.73 72 | 96.99 112 | | 98.51 108 | 94.06 140 | 99.62 49 | 99.85 31 | 94.97 58 | 99.96 61 | 95.11 184 | 99.95 49 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 84 | 99.73 72 | 96.63 123 | 99.97 28 | 97.92 221 | 98.07 11 | 98.76 107 | 99.55 109 | 95.00 56 | 99.94 77 | 99.91 15 | 97.68 166 | 99.99 23 |
|
| CANet | | | 98.27 52 | 97.82 69 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 15 | 98.51 108 | 97.00 43 | 98.52 118 | 99.71 84 | 87.80 206 | 99.95 69 | 99.75 28 | 99.38 116 | 99.83 91 |
|
| F-COLMAP | | | 96.93 121 | 96.95 105 | 96.87 194 | 99.71 75 | 91.74 272 | 99.85 122 | 97.95 216 | 93.11 177 | 95.72 199 | 99.16 146 | 92.35 135 | 99.94 77 | 95.32 182 | 99.35 118 | 98.92 208 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 46 | 99.94 69 | 98.34 171 | 96.38 65 | 99.81 15 | 99.76 64 | 94.59 66 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 56 | 99.12 5 | 95.59 227 | 99.67 77 | 86.91 347 | 99.95 53 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 64 | 96.54 27 | 99.98 43 | 99.94 11 | 99.82 80 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 78 | 98.62 55 | 99.85 122 | 98.37 164 | 94.68 111 | 99.53 60 | 99.83 44 | 92.87 118 | 100.00 1 | 98.66 91 | 99.84 75 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 84 | 98.98 12 | 93.92 292 | 99.63 79 | 81.76 375 | 99.96 35 | 98.56 92 | 99.47 1 | 99.19 87 | 99.99 1 | 94.16 83 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 88 | 99.62 80 | 96.80 120 | 99.90 93 | 99.51 17 | 97.60 22 | 99.20 85 | 99.36 129 | 93.71 96 | 99.91 89 | 97.99 123 | 98.71 141 | 99.61 129 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 81 | 99.33 8 | 99.99 5 | 99.76 6 | 98.39 3 | 99.39 75 | 99.80 52 | 90.49 174 | 99.96 61 | 99.89 16 | 99.43 114 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 156 | 95.82 152 | 96.72 199 | 99.59 81 | 96.99 112 | 99.95 53 | 99.10 31 | 94.06 140 | 98.27 130 | 95.80 296 | 89.00 198 | 99.95 69 | 99.12 58 | 87.53 290 | 93.24 347 |
|
| PVSNet_Blended | | | 97.94 65 | 97.64 76 | 98.83 85 | 99.59 81 | 96.99 112 | 100.00 1 | 99.10 31 | 95.38 91 | 98.27 130 | 99.08 149 | 89.00 198 | 99.95 69 | 99.12 58 | 99.25 122 | 99.57 142 |
|
| PatchMatch-RL | | | 96.04 157 | 95.40 161 | 97.95 140 | 99.59 81 | 95.22 183 | 99.52 206 | 99.07 34 | 93.96 148 | 96.49 180 | 98.35 221 | 82.28 257 | 99.82 120 | 90.15 277 | 99.22 125 | 98.81 215 |
|
| dcpmvs_2 | | | 97.42 97 | 98.09 54 | 95.42 232 | 99.58 85 | 87.24 343 | 99.23 246 | 96.95 319 | 94.28 130 | 98.93 97 | 99.73 79 | 94.39 73 | 99.16 175 | 99.89 16 | 99.82 80 | 99.86 89 |
|
| test222 | | | | | | 99.55 86 | 97.41 99 | 99.34 232 | 98.55 98 | 91.86 225 | 99.27 83 | 99.83 44 | 93.84 93 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 80 | 97.38 86 | 98.92 81 | 99.53 87 | 96.84 117 | 99.87 107 | 98.14 201 | 93.78 155 | 96.55 179 | 99.69 88 | 92.28 137 | 99.98 43 | 97.13 150 | 99.44 112 | 99.93 76 |
|
| API-MVS | | | 97.86 70 | 97.66 75 | 98.47 112 | 99.52 88 | 95.41 174 | 99.47 215 | 98.87 52 | 91.68 231 | 98.84 100 | 99.85 31 | 92.34 136 | 99.99 36 | 98.44 101 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 109 | 96.69 117 | 98.45 114 | 99.52 88 | 95.81 154 | 99.95 53 | 99.65 12 | 94.73 108 | 99.04 92 | 99.21 142 | 84.48 244 | 99.95 69 | 94.92 189 | 98.74 140 | 99.58 140 |
|
| 114514_t | | | 97.41 98 | 96.83 110 | 99.14 61 | 99.51 90 | 97.83 79 | 99.89 101 | 98.27 183 | 88.48 302 | 99.06 91 | 99.66 97 | 90.30 179 | 99.64 148 | 96.32 168 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 219 | 93.25 223 | 95.33 236 | 99.49 91 | 94.43 201 | 99.61 191 | 98.09 203 | 90.38 266 | 89.16 291 | 95.61 303 | 90.56 170 | 97.34 281 | 91.93 245 | 84.45 310 | 94.21 293 |
|
| testdata | | | | | 98.42 117 | 99.47 92 | 95.33 177 | | 98.56 92 | 93.78 155 | 99.79 25 | 99.85 31 | 93.64 98 | 99.94 77 | 94.97 187 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 93 | 97.19 96 | 98.15 131 | 99.47 92 | 94.79 196 | 99.05 266 | 98.76 63 | 92.65 196 | 98.66 113 | 99.82 47 | 88.52 203 | 99.98 43 | 98.12 115 | 99.63 92 | 99.67 115 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 197 | 93.42 216 | 97.91 146 | 99.46 94 | 94.04 214 | 98.93 278 | 97.48 264 | 81.15 371 | 90.04 264 | 99.55 109 | 87.02 217 | 99.95 69 | 88.97 287 | 98.11 157 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 109 | 99.39 95 | 95.79 155 | 99.87 107 | 99.86 2 | 96.70 54 | 98.78 104 | 99.79 56 | 92.03 143 | 99.90 91 | 99.17 57 | 99.86 74 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 78 | 99.38 96 | 98.87 33 | 98.46 314 | 99.42 22 | 97.03 42 | 99.02 93 | 99.09 148 | 99.35 1 | 98.21 245 | 99.73 32 | 99.78 83 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 22 | 99.01 73 | 99.36 97 | 97.18 104 | 99.93 76 | 99.90 1 | 96.81 51 | 98.67 112 | 99.77 62 | 93.92 88 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 98 | 99.92 1 | 99.96 35 | 98.44 125 | 97.96 14 | 99.55 57 | 99.94 4 | 97.18 19 | 100.00 1 | 93.81 217 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 202 | 93.60 209 | 96.90 193 | 99.33 98 | 91.78 271 | 99.78 146 | 98.00 210 | 89.89 276 | 94.52 212 | 99.47 115 | 91.97 144 | 99.18 173 | 69.90 385 | 99.52 103 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 68 | 97.94 63 | 97.70 159 | 99.28 100 | 95.20 184 | 99.98 15 | 97.15 298 | 95.53 88 | 99.62 49 | 99.79 56 | 92.08 142 | 98.38 228 | 98.75 85 | 99.28 121 | 99.52 153 |
|
| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 23 | 97.92 144 | 99.27 101 | 95.18 185 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 79 | 92.64 125 | 99.99 36 | 99.58 38 | 99.51 106 | 98.59 225 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 45 | 99.21 102 | 97.91 78 | 99.98 15 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 70 | 94.72 63 | 99.97 53 | 99.87 19 | 99.64 91 | 99.95 71 |
|
| test_yl | | | 97.83 72 | 97.37 87 | 99.21 49 | 99.18 103 | 97.98 74 | 99.64 187 | 99.27 27 | 91.43 240 | 97.88 144 | 98.99 158 | 95.84 37 | 99.84 116 | 98.82 80 | 95.32 219 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 72 | 97.37 87 | 99.21 49 | 99.18 103 | 97.98 74 | 99.64 187 | 99.27 27 | 91.43 240 | 97.88 144 | 98.99 158 | 95.84 37 | 99.84 116 | 98.82 80 | 95.32 219 | 99.79 97 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 103 | 99.13 22 | 99.87 107 | 99.65 12 | 98.17 8 | 98.75 109 | 99.75 70 | 92.76 122 | 99.94 77 | 99.88 18 | 99.44 112 | 99.94 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 46 | 99.17 106 | 97.81 81 | 99.98 15 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 64 | 94.21 81 | 99.97 53 | 99.87 19 | 99.52 103 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 122 | 96.40 127 | 98.45 114 | 99.16 107 | 95.90 152 | 99.66 182 | 98.06 206 | 96.37 68 | 94.37 215 | 99.49 114 | 83.29 253 | 99.90 91 | 97.63 141 | 99.61 97 | 99.55 144 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 53 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 134 | 99.24 140 | 92.58 128 | 99.94 77 | 98.63 94 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 78 | 97.91 65 | 97.43 174 | 99.10 109 | 94.42 202 | 99.99 5 | 97.10 303 | 95.07 97 | 99.68 39 | 99.75 70 | 92.95 116 | 98.34 232 | 98.38 103 | 99.14 127 | 99.54 148 |
|
| Anonymous202405211 | | | 93.10 237 | 91.99 249 | 96.40 209 | 99.10 109 | 89.65 317 | 98.88 283 | 97.93 218 | 83.71 357 | 94.00 221 | 98.75 187 | 68.79 353 | 99.88 102 | 95.08 185 | 91.71 251 | 99.68 113 |
|
| fmvsm_s_conf0.5_n | | | 97.80 76 | 97.85 68 | 97.67 160 | 99.06 111 | 94.41 203 | 99.98 15 | 98.97 40 | 97.34 29 | 99.63 46 | 99.69 88 | 87.27 213 | 99.97 53 | 99.62 37 | 99.06 131 | 98.62 224 |
|
| HyFIR lowres test | | | 96.66 136 | 96.43 126 | 97.36 180 | 99.05 112 | 93.91 219 | 99.70 175 | 99.80 3 | 90.54 264 | 96.26 187 | 98.08 228 | 92.15 140 | 98.23 244 | 96.84 163 | 95.46 214 | 99.93 76 |
|
| LFMVS | | | 94.75 190 | 93.56 212 | 98.30 123 | 99.03 113 | 95.70 161 | 98.74 297 | 97.98 213 | 87.81 312 | 98.47 121 | 99.39 126 | 67.43 361 | 99.53 150 | 98.01 121 | 95.20 222 | 99.67 115 |
|
| AllTest | | | 92.48 251 | 91.64 254 | 95.00 246 | 99.01 114 | 88.43 332 | 98.94 277 | 96.82 333 | 86.50 328 | 88.71 296 | 98.47 213 | 74.73 330 | 99.88 102 | 85.39 325 | 96.18 196 | 96.71 254 |
|
| TestCases | | | | | 95.00 246 | 99.01 114 | 88.43 332 | | 96.82 333 | 86.50 328 | 88.71 296 | 98.47 213 | 74.73 330 | 99.88 102 | 85.39 325 | 96.18 196 | 96.71 254 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 258 | 91.49 260 | 94.25 280 | 99.00 116 | 88.04 338 | 98.42 320 | 96.70 340 | 82.30 367 | 88.43 304 | 99.01 155 | 76.97 306 | 99.85 108 | 86.11 321 | 96.50 191 | 94.86 265 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 176 | 95.68 157 | 94.36 276 | 98.99 117 | 84.98 357 | 99.96 35 | 96.65 342 | 97.60 22 | 99.73 32 | 98.96 164 | 71.58 343 | 99.93 85 | 98.31 108 | 99.37 117 | 98.17 232 |
|
| HY-MVS | | 92.50 7 | 97.79 78 | 97.17 98 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 344 | 99.52 15 | 95.69 83 | 98.32 128 | 97.41 247 | 93.32 104 | 99.77 128 | 98.08 119 | 95.75 210 | 99.81 94 |
|
| VNet | | | 97.21 106 | 96.57 122 | 99.13 65 | 98.97 119 | 97.82 80 | 99.03 269 | 99.21 29 | 94.31 127 | 99.18 88 | 98.88 175 | 86.26 228 | 99.89 96 | 98.93 72 | 94.32 231 | 99.69 112 |
|
| thres200 | | | 96.96 119 | 96.21 133 | 99.22 48 | 98.97 119 | 98.84 36 | 99.85 122 | 99.71 7 | 93.17 175 | 96.26 187 | 98.88 175 | 89.87 184 | 99.51 153 | 94.26 207 | 94.91 224 | 99.31 180 |
|
| tfpn200view9 | | | 96.79 126 | 95.99 138 | 99.19 51 | 98.94 121 | 98.82 37 | 99.78 146 | 99.71 7 | 92.86 183 | 96.02 192 | 98.87 178 | 89.33 191 | 99.50 155 | 93.84 214 | 94.57 227 | 99.27 186 |
|
| thres400 | | | 96.78 128 | 95.99 138 | 99.16 57 | 98.94 121 | 98.82 37 | 99.78 146 | 99.71 7 | 92.86 183 | 96.02 192 | 98.87 178 | 89.33 191 | 99.50 155 | 93.84 214 | 94.57 227 | 99.16 193 |
|
| sasdasda | | | 97.09 112 | 96.32 128 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 168 | 97.35 275 | 94.45 116 | 97.88 144 | 99.42 119 | 86.71 220 | 99.52 151 | 98.48 99 | 93.97 237 | 99.72 107 |
|
| Anonymous20231211 | | | 89.86 308 | 88.44 315 | 94.13 283 | 98.93 123 | 90.68 296 | 98.54 311 | 98.26 184 | 76.28 383 | 86.73 325 | 95.54 307 | 70.60 349 | 97.56 274 | 90.82 264 | 80.27 345 | 94.15 301 |
|
| canonicalmvs | | | 97.09 112 | 96.32 128 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 168 | 97.35 275 | 94.45 116 | 97.88 144 | 99.42 119 | 86.71 220 | 99.52 151 | 98.48 99 | 93.97 237 | 99.72 107 |
|
| SDMVSNet | | | 94.80 186 | 93.96 200 | 97.33 182 | 98.92 126 | 95.42 173 | 99.59 193 | 98.99 37 | 92.41 209 | 92.55 239 | 97.85 237 | 75.81 320 | 98.93 187 | 97.90 129 | 91.62 252 | 97.64 244 |
|
| sd_testset | | | 93.55 226 | 92.83 229 | 95.74 225 | 98.92 126 | 90.89 293 | 98.24 326 | 98.85 56 | 92.41 209 | 92.55 239 | 97.85 237 | 71.07 348 | 98.68 204 | 93.93 211 | 91.62 252 | 97.64 244 |
|
| EPNet_dtu | | | 95.71 166 | 95.39 162 | 96.66 202 | 98.92 126 | 93.41 233 | 99.57 198 | 98.90 47 | 96.19 74 | 97.52 152 | 98.56 205 | 92.65 124 | 97.36 279 | 77.89 367 | 98.33 148 | 99.20 191 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 61 | 97.60 78 | 99.60 22 | 98.92 126 | 99.28 17 | 99.89 101 | 99.52 15 | 95.58 86 | 98.24 133 | 99.39 126 | 93.33 103 | 99.74 134 | 97.98 125 | 95.58 213 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 125 | 96.53 123 | 97.64 162 | 98.91 130 | 93.07 238 | 99.65 183 | 99.80 3 | 95.64 84 | 95.39 203 | 98.86 180 | 84.35 246 | 99.90 91 | 96.98 157 | 99.16 126 | 99.95 71 |
|
| thres100view900 | | | 96.74 131 | 95.92 148 | 99.18 52 | 98.90 131 | 98.77 42 | 99.74 160 | 99.71 7 | 92.59 200 | 95.84 195 | 98.86 180 | 89.25 193 | 99.50 155 | 93.84 214 | 94.57 227 | 99.27 186 |
|
| thres600view7 | | | 96.69 134 | 95.87 151 | 99.14 61 | 98.90 131 | 98.78 41 | 99.74 160 | 99.71 7 | 92.59 200 | 95.84 195 | 98.86 180 | 89.25 193 | 99.50 155 | 93.44 226 | 94.50 230 | 99.16 193 |
|
| MSDG | | | 94.37 204 | 93.36 220 | 97.40 176 | 98.88 133 | 93.95 218 | 99.37 229 | 97.38 273 | 85.75 339 | 90.80 257 | 99.17 145 | 84.11 248 | 99.88 102 | 86.35 318 | 98.43 146 | 98.36 230 |
|
| MGCFI-Net | | | 97.00 117 | 96.22 132 | 99.34 43 | 98.86 134 | 98.80 39 | 99.67 180 | 97.30 282 | 94.31 127 | 97.77 148 | 99.41 123 | 86.36 226 | 99.50 155 | 98.38 103 | 93.90 239 | 99.72 107 |
|
| h-mvs33 | | | 94.92 184 | 94.36 189 | 96.59 204 | 98.85 135 | 91.29 284 | 98.93 278 | 98.94 41 | 95.90 77 | 98.77 105 | 98.42 219 | 90.89 164 | 99.77 128 | 97.80 132 | 70.76 379 | 98.72 221 |
|
| Anonymous20240529 | | | 92.10 259 | 90.65 271 | 96.47 205 | 98.82 136 | 90.61 298 | 98.72 299 | 98.67 73 | 75.54 387 | 93.90 223 | 98.58 203 | 66.23 365 | 99.90 91 | 94.70 198 | 90.67 254 | 98.90 211 |
|
| PVSNet_Blended_VisFu | | | 97.27 103 | 96.81 111 | 98.66 94 | 98.81 137 | 96.67 122 | 99.92 81 | 98.64 76 | 94.51 115 | 96.38 185 | 98.49 209 | 89.05 197 | 99.88 102 | 97.10 153 | 98.34 147 | 99.43 166 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 57 | 98.80 138 | 98.92 29 | 99.54 204 | 98.17 193 | 97.34 29 | 99.85 9 | 99.85 31 | 91.20 153 | 99.89 96 | 99.41 48 | 99.67 89 | 98.69 222 |
|
| CANet_DTU | | | 96.76 129 | 96.15 134 | 98.60 99 | 98.78 139 | 97.53 90 | 99.84 127 | 97.63 243 | 97.25 37 | 99.20 85 | 99.64 100 | 81.36 266 | 99.98 43 | 92.77 237 | 98.89 134 | 98.28 231 |
|
| mvsany_test1 | | | 97.82 74 | 97.90 66 | 97.55 167 | 98.77 140 | 93.04 241 | 99.80 143 | 97.93 218 | 96.95 45 | 99.61 55 | 99.68 94 | 90.92 161 | 99.83 118 | 99.18 56 | 98.29 152 | 99.80 96 |
|
| alignmvs | | | 97.81 75 | 97.33 90 | 99.25 46 | 98.77 140 | 98.66 51 | 99.99 5 | 98.44 125 | 94.40 123 | 98.41 123 | 99.47 115 | 93.65 97 | 99.42 164 | 98.57 96 | 94.26 233 | 99.67 115 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 52 | 98.72 142 | 97.71 83 | 99.98 15 | 98.44 125 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 6 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 57 | 97.97 59 | 99.02 72 | 98.69 143 | 98.66 51 | 99.52 206 | 98.08 205 | 97.05 41 | 99.86 7 | 99.86 27 | 90.65 167 | 99.71 138 | 99.39 50 | 98.63 142 | 98.69 222 |
|
| miper_enhance_ethall | | | 94.36 206 | 93.98 199 | 95.49 228 | 98.68 144 | 95.24 181 | 99.73 165 | 97.29 285 | 93.28 172 | 89.86 269 | 95.97 294 | 94.37 74 | 97.05 302 | 92.20 241 | 84.45 310 | 94.19 294 |
|
| ETVMVS | | | 97.03 116 | 96.64 118 | 98.20 127 | 98.67 145 | 97.12 108 | 99.89 101 | 98.57 89 | 91.10 251 | 98.17 135 | 98.59 200 | 93.86 92 | 98.19 246 | 95.64 179 | 95.24 221 | 99.28 185 |
|
| test2506 | | | 97.53 88 | 97.19 96 | 98.58 102 | 98.66 146 | 96.90 116 | 98.81 292 | 99.77 5 | 94.93 100 | 97.95 140 | 98.96 164 | 92.51 130 | 99.20 171 | 94.93 188 | 98.15 154 | 99.64 121 |
|
| ECVR-MVS |  | | 95.66 169 | 95.05 174 | 97.51 170 | 98.66 146 | 93.71 223 | 98.85 289 | 98.45 120 | 94.93 100 | 96.86 170 | 98.96 164 | 75.22 326 | 99.20 171 | 95.34 181 | 98.15 154 | 99.64 121 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 83 | 97.72 72 | 97.77 154 | 98.63 148 | 94.26 208 | 99.96 35 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 88 | 87.00 218 | 99.97 53 | 99.46 44 | 98.89 134 | 99.08 201 |
|
| MVSMamba_pp | | | 98.05 63 | 97.76 71 | 98.92 81 | 98.56 149 | 98.06 69 | 99.92 81 | 97.75 235 | 96.28 70 | 99.71 35 | 98.43 218 | 90.37 176 | 99.11 176 | 98.99 68 | 99.88 69 | 99.58 140 |
|
| testing222 | | | 97.08 115 | 96.75 114 | 98.06 136 | 98.56 149 | 96.82 118 | 99.85 122 | 98.61 82 | 92.53 204 | 98.84 100 | 98.84 184 | 93.36 101 | 98.30 236 | 95.84 176 | 94.30 232 | 99.05 203 |
|
| test1111 | | | 95.57 171 | 94.98 177 | 97.37 178 | 98.56 149 | 93.37 235 | 98.86 287 | 98.45 120 | 94.95 99 | 96.63 176 | 98.95 169 | 75.21 327 | 99.11 176 | 95.02 186 | 98.14 156 | 99.64 121 |
|
| MVSTER | | | 95.53 172 | 95.22 168 | 96.45 207 | 98.56 149 | 97.72 82 | 99.91 87 | 97.67 240 | 92.38 211 | 91.39 249 | 97.14 254 | 97.24 16 | 97.30 285 | 94.80 194 | 87.85 285 | 94.34 285 |
|
| bld_raw_dy_0_64 | | | 97.44 92 | 97.68 74 | 96.72 199 | 98.55 153 | 91.46 283 | 100.00 1 | 97.77 234 | 94.03 143 | 99.72 34 | 99.87 24 | 90.31 178 | 99.11 176 | 98.99 68 | 99.88 69 | 99.59 132 |
|
| mamv4 | | | 97.88 68 | 97.52 81 | 98.95 78 | 98.55 153 | 98.15 64 | 99.93 76 | 97.74 236 | 94.01 144 | 99.65 42 | 98.44 217 | 90.50 173 | 99.11 176 | 99.00 67 | 99.89 66 | 99.59 132 |
|
| VDD-MVS | | | 93.77 219 | 92.94 227 | 96.27 213 | 98.55 153 | 90.22 307 | 98.77 296 | 97.79 232 | 90.85 257 | 96.82 172 | 99.42 119 | 61.18 382 | 99.77 128 | 98.95 70 | 94.13 234 | 98.82 214 |
|
| tpmvs | | | 94.28 208 | 93.57 211 | 96.40 209 | 98.55 153 | 91.50 281 | 95.70 378 | 98.55 98 | 87.47 314 | 92.15 242 | 94.26 353 | 91.42 149 | 98.95 186 | 88.15 297 | 95.85 206 | 98.76 217 |
|
| UGNet | | | 95.33 177 | 94.57 186 | 97.62 165 | 98.55 153 | 94.85 192 | 98.67 305 | 99.32 26 | 95.75 82 | 96.80 173 | 96.27 285 | 72.18 340 | 99.96 61 | 94.58 201 | 99.05 132 | 98.04 236 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 178 | 94.10 196 | 98.43 116 | 98.55 153 | 95.99 150 | 97.91 339 | 97.31 281 | 90.35 268 | 89.48 280 | 99.22 141 | 85.19 237 | 99.89 96 | 90.40 274 | 98.47 145 | 99.41 168 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 126 | 96.72 115 | 97.00 189 | 98.51 159 | 93.70 224 | 99.71 171 | 98.60 84 | 92.96 179 | 97.09 163 | 98.34 222 | 96.67 26 | 98.85 190 | 92.11 243 | 96.50 191 | 98.44 227 |
|
| iter_conf05_11 | | | 97.49 90 | 97.34 89 | 97.93 143 | 98.51 159 | 95.15 187 | 99.58 195 | 97.64 242 | 93.76 157 | 99.26 84 | 98.38 220 | 90.51 172 | 99.10 180 | 98.58 95 | 99.88 69 | 99.54 148 |
|
| test_vis1_n_1920 | | | 95.44 174 | 95.31 165 | 95.82 223 | 98.50 161 | 88.74 326 | 99.98 15 | 97.30 282 | 97.84 16 | 99.85 9 | 99.19 143 | 66.82 363 | 99.97 53 | 98.82 80 | 99.46 110 | 98.76 217 |
|
| BH-w/o | | | 95.71 166 | 95.38 163 | 96.68 201 | 98.49 162 | 92.28 258 | 99.84 127 | 97.50 262 | 92.12 217 | 92.06 245 | 98.79 185 | 84.69 242 | 98.67 205 | 95.29 183 | 99.66 90 | 99.09 199 |
|
| baseline1 | | | 95.78 163 | 94.86 179 | 98.54 107 | 98.47 163 | 98.07 68 | 99.06 262 | 97.99 211 | 92.68 194 | 94.13 220 | 98.62 199 | 93.28 107 | 98.69 203 | 93.79 219 | 85.76 298 | 98.84 213 |
|
| EPMVS | | | 96.53 140 | 96.01 137 | 98.09 134 | 98.43 164 | 96.12 148 | 96.36 365 | 99.43 21 | 93.53 163 | 97.64 150 | 95.04 331 | 94.41 69 | 98.38 228 | 91.13 255 | 98.11 157 | 99.75 103 |
|
| kuosan | | | 93.17 234 | 92.60 235 | 94.86 253 | 98.40 165 | 89.54 319 | 98.44 316 | 98.53 104 | 84.46 352 | 88.49 300 | 97.92 235 | 90.57 169 | 97.05 302 | 83.10 340 | 93.49 242 | 97.99 237 |
|
| sss | | | 97.57 87 | 97.03 103 | 99.18 52 | 98.37 166 | 98.04 71 | 99.73 165 | 99.38 23 | 93.46 165 | 98.76 107 | 99.06 151 | 91.21 152 | 99.89 96 | 96.33 167 | 97.01 183 | 99.62 126 |
|
| testing11 | | | 97.48 91 | 97.27 92 | 98.10 133 | 98.36 167 | 96.02 149 | 99.92 81 | 98.45 120 | 93.45 167 | 98.15 136 | 98.70 190 | 95.48 44 | 99.22 167 | 97.85 131 | 95.05 223 | 99.07 202 |
|
| BH-untuned | | | 95.18 178 | 94.83 180 | 96.22 214 | 98.36 167 | 91.22 285 | 99.80 143 | 97.32 280 | 90.91 255 | 91.08 253 | 98.67 192 | 83.51 250 | 98.54 211 | 94.23 208 | 99.61 97 | 98.92 208 |
|
| testing91 | | | 97.16 108 | 96.90 107 | 97.97 139 | 98.35 169 | 95.67 164 | 99.91 87 | 98.42 145 | 92.91 182 | 97.33 158 | 98.72 188 | 94.81 61 | 99.21 168 | 96.98 157 | 94.63 226 | 99.03 204 |
|
| testing99 | | | 97.17 107 | 96.91 106 | 97.95 140 | 98.35 169 | 95.70 161 | 99.91 87 | 98.43 133 | 92.94 180 | 97.36 157 | 98.72 188 | 94.83 60 | 99.21 168 | 97.00 155 | 94.64 225 | 98.95 207 |
|
| ET-MVSNet_ETH3D | | | 94.37 204 | 93.28 222 | 97.64 162 | 98.30 171 | 97.99 73 | 99.99 5 | 97.61 248 | 94.35 124 | 71.57 390 | 99.45 118 | 96.23 30 | 95.34 359 | 96.91 162 | 85.14 305 | 99.59 132 |
|
| AUN-MVS | | | 93.28 231 | 92.60 235 | 95.34 235 | 98.29 172 | 90.09 310 | 99.31 236 | 98.56 92 | 91.80 229 | 96.35 186 | 98.00 231 | 89.38 190 | 98.28 239 | 92.46 238 | 69.22 384 | 97.64 244 |
|
| FMVSNet3 | | | 92.69 247 | 91.58 256 | 95.99 218 | 98.29 172 | 97.42 98 | 99.26 244 | 97.62 245 | 89.80 277 | 89.68 273 | 95.32 321 | 81.62 264 | 96.27 339 | 87.01 314 | 85.65 299 | 94.29 287 |
|
| PMMVS | | | 96.76 129 | 96.76 113 | 96.76 197 | 98.28 174 | 92.10 262 | 99.91 87 | 97.98 213 | 94.12 135 | 99.53 60 | 99.39 126 | 86.93 219 | 98.73 198 | 96.95 160 | 97.73 164 | 99.45 163 |
|
| hse-mvs2 | | | 94.38 203 | 94.08 197 | 95.31 237 | 98.27 175 | 90.02 311 | 99.29 241 | 98.56 92 | 95.90 77 | 98.77 105 | 98.00 231 | 90.89 164 | 98.26 243 | 97.80 132 | 69.20 385 | 97.64 244 |
|
| PVSNet_0 | | 88.03 19 | 91.80 266 | 90.27 280 | 96.38 211 | 98.27 175 | 90.46 302 | 99.94 69 | 99.61 14 | 93.99 146 | 86.26 335 | 97.39 249 | 71.13 347 | 99.89 96 | 98.77 83 | 67.05 390 | 98.79 216 |
|
| UA-Net | | | 96.54 139 | 95.96 144 | 98.27 124 | 98.23 177 | 95.71 160 | 98.00 337 | 98.45 120 | 93.72 159 | 98.41 123 | 99.27 135 | 88.71 202 | 99.66 146 | 91.19 254 | 97.69 165 | 99.44 165 |
|
| test_cas_vis1_n_1920 | | | 96.59 138 | 96.23 131 | 97.65 161 | 98.22 178 | 94.23 209 | 99.99 5 | 97.25 289 | 97.77 17 | 99.58 56 | 99.08 149 | 77.10 303 | 99.97 53 | 97.64 140 | 99.45 111 | 98.74 219 |
|
| FE-MVS | | | 95.70 168 | 95.01 176 | 97.79 151 | 98.21 179 | 94.57 198 | 95.03 379 | 98.69 68 | 88.90 293 | 97.50 154 | 96.19 287 | 92.60 127 | 99.49 160 | 89.99 279 | 97.94 163 | 99.31 180 |
|
| GG-mvs-BLEND | | | | | 98.54 107 | 98.21 179 | 98.01 72 | 93.87 384 | 98.52 105 | | 97.92 141 | 97.92 235 | 99.02 2 | 97.94 262 | 98.17 112 | 99.58 100 | 99.67 115 |
|
| mvs_anonymous | | | 95.65 170 | 95.03 175 | 97.53 168 | 98.19 181 | 95.74 158 | 99.33 233 | 97.49 263 | 90.87 256 | 90.47 260 | 97.10 256 | 88.23 204 | 97.16 293 | 95.92 174 | 97.66 167 | 99.68 113 |
|
| MVS_Test | | | 96.46 142 | 95.74 153 | 98.61 98 | 98.18 182 | 97.23 102 | 99.31 236 | 97.15 298 | 91.07 252 | 98.84 100 | 97.05 260 | 88.17 205 | 98.97 184 | 94.39 203 | 97.50 169 | 99.61 129 |
|
| BH-RMVSNet | | | 95.18 178 | 94.31 192 | 97.80 149 | 98.17 183 | 95.23 182 | 99.76 154 | 97.53 258 | 92.52 205 | 94.27 218 | 99.25 139 | 76.84 308 | 98.80 192 | 90.89 263 | 99.54 102 | 99.35 175 |
|
| dongtai | | | 91.55 272 | 91.13 265 | 92.82 322 | 98.16 184 | 86.35 348 | 99.47 215 | 98.51 108 | 83.24 360 | 85.07 344 | 97.56 243 | 90.33 177 | 94.94 365 | 76.09 375 | 91.73 250 | 97.18 251 |
|
| RPSCF | | | 91.80 266 | 92.79 231 | 88.83 355 | 98.15 185 | 69.87 393 | 98.11 333 | 96.60 344 | 83.93 355 | 94.33 216 | 99.27 135 | 79.60 286 | 99.46 163 | 91.99 244 | 93.16 247 | 97.18 251 |
|
| ETV-MVS | | | 97.92 67 | 97.80 70 | 98.25 125 | 98.14 186 | 96.48 127 | 99.98 15 | 97.63 243 | 95.61 85 | 99.29 82 | 99.46 117 | 92.55 129 | 98.82 191 | 99.02 66 | 98.54 143 | 99.46 161 |
|
| IS-MVSNet | | | 96.29 152 | 95.90 149 | 97.45 172 | 98.13 187 | 94.80 195 | 99.08 257 | 97.61 248 | 92.02 222 | 95.54 202 | 98.96 164 | 90.64 168 | 98.08 251 | 93.73 222 | 97.41 173 | 99.47 160 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 86 | 98.12 188 | 96.41 130 | 99.99 5 | 98.83 59 | 98.22 6 | 99.67 40 | 99.64 100 | 91.11 157 | 99.94 77 | 99.67 36 | 99.62 93 | 99.98 48 |
|
| ab-mvs | | | 94.69 191 | 93.42 216 | 98.51 110 | 98.07 189 | 96.26 137 | 96.49 363 | 98.68 70 | 90.31 269 | 94.54 211 | 97.00 262 | 76.30 315 | 99.71 138 | 95.98 173 | 93.38 245 | 99.56 143 |
|
| XVG-OURS-SEG-HR | | | 94.79 187 | 94.70 185 | 95.08 243 | 98.05 190 | 89.19 321 | 99.08 257 | 97.54 256 | 93.66 160 | 94.87 209 | 99.58 107 | 78.78 294 | 99.79 123 | 97.31 146 | 93.40 244 | 96.25 258 |
|
| EIA-MVS | | | 97.53 88 | 97.46 83 | 97.76 156 | 98.04 191 | 94.84 193 | 99.98 15 | 97.61 248 | 94.41 122 | 97.90 142 | 99.59 105 | 92.40 134 | 98.87 188 | 98.04 120 | 99.13 128 | 99.59 132 |
|
| XVG-OURS | | | 94.82 185 | 94.74 183 | 95.06 244 | 98.00 192 | 89.19 321 | 99.08 257 | 97.55 254 | 94.10 136 | 94.71 210 | 99.62 103 | 80.51 278 | 99.74 134 | 96.04 172 | 93.06 249 | 96.25 258 |
|
| dp | | | 95.05 181 | 94.43 188 | 96.91 192 | 97.99 193 | 92.73 248 | 96.29 368 | 97.98 213 | 89.70 278 | 95.93 194 | 94.67 344 | 93.83 94 | 98.45 217 | 86.91 317 | 96.53 190 | 99.54 148 |
|
| tpmrst | | | 96.27 154 | 95.98 140 | 97.13 186 | 97.96 194 | 93.15 237 | 96.34 366 | 98.17 193 | 92.07 218 | 98.71 111 | 95.12 329 | 93.91 89 | 98.73 198 | 94.91 191 | 96.62 188 | 99.50 157 |
|
| TR-MVS | | | 94.54 197 | 93.56 212 | 97.49 171 | 97.96 194 | 94.34 206 | 98.71 300 | 97.51 261 | 90.30 270 | 94.51 213 | 98.69 191 | 75.56 321 | 98.77 195 | 92.82 236 | 95.99 200 | 99.35 175 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 149 | 95.98 140 | 97.35 181 | 97.93 196 | 94.82 194 | 99.47 215 | 98.15 200 | 91.83 226 | 95.09 207 | 99.11 147 | 91.37 151 | 97.47 277 | 93.47 225 | 97.43 170 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 155 | | 97.90 197 | 94.15 211 | 95.98 374 | 98.44 125 | 93.12 176 | 97.98 139 | 95.74 298 | 95.10 50 | 98.58 208 | 90.02 278 | 96.92 185 | |
|
| Fast-Effi-MVS+ | | | 95.02 182 | 94.19 194 | 97.52 169 | 97.88 198 | 94.55 199 | 99.97 28 | 97.08 306 | 88.85 295 | 94.47 214 | 97.96 234 | 84.59 243 | 98.41 220 | 89.84 281 | 97.10 178 | 99.59 132 |
|
| ADS-MVSNet2 | | | 93.80 218 | 93.88 203 | 93.55 305 | 97.87 199 | 85.94 351 | 94.24 380 | 96.84 330 | 90.07 272 | 96.43 182 | 94.48 349 | 90.29 180 | 95.37 358 | 87.44 304 | 97.23 175 | 99.36 173 |
|
| ADS-MVSNet | | | 94.79 187 | 94.02 198 | 97.11 188 | 97.87 199 | 93.79 220 | 94.24 380 | 98.16 197 | 90.07 272 | 96.43 182 | 94.48 349 | 90.29 180 | 98.19 246 | 87.44 304 | 97.23 175 | 99.36 173 |
|
| Effi-MVS+ | | | 96.30 151 | 95.69 155 | 98.16 128 | 97.85 201 | 96.26 137 | 97.41 346 | 97.21 291 | 90.37 267 | 98.65 114 | 98.58 203 | 86.61 223 | 98.70 202 | 97.11 152 | 97.37 174 | 99.52 153 |
|
| PatchmatchNet |  | | 95.94 159 | 95.45 160 | 97.39 177 | 97.83 202 | 94.41 203 | 96.05 372 | 98.40 154 | 92.86 183 | 97.09 163 | 95.28 326 | 94.21 81 | 98.07 253 | 89.26 285 | 98.11 157 | 99.70 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 194 | 93.61 207 | 97.74 158 | 97.82 203 | 96.26 137 | 99.96 35 | 97.78 233 | 85.76 337 | 94.00 221 | 97.54 244 | 76.95 307 | 99.21 168 | 97.23 148 | 95.43 216 | 97.76 243 |
|
| 1112_ss | | | 96.01 158 | 95.20 169 | 98.42 117 | 97.80 204 | 96.41 130 | 99.65 183 | 96.66 341 | 92.71 191 | 92.88 235 | 99.40 124 | 92.16 139 | 99.30 165 | 91.92 246 | 93.66 240 | 99.55 144 |
|
| Test_1112_low_res | | | 95.72 164 | 94.83 180 | 98.42 117 | 97.79 205 | 96.41 130 | 99.65 183 | 96.65 342 | 92.70 192 | 92.86 236 | 96.13 290 | 92.15 140 | 99.30 165 | 91.88 247 | 93.64 241 | 99.55 144 |
|
| Effi-MVS+-dtu | | | 94.53 199 | 95.30 166 | 92.22 328 | 97.77 206 | 82.54 368 | 99.59 193 | 97.06 308 | 94.92 102 | 95.29 205 | 95.37 319 | 85.81 230 | 97.89 263 | 94.80 194 | 97.07 179 | 96.23 260 |
|
| tpm cat1 | | | 93.51 227 | 92.52 241 | 96.47 205 | 97.77 206 | 91.47 282 | 96.13 370 | 98.06 206 | 80.98 372 | 92.91 234 | 93.78 357 | 89.66 185 | 98.87 188 | 87.03 313 | 96.39 194 | 99.09 199 |
|
| FA-MVS(test-final) | | | 95.86 160 | 95.09 173 | 98.15 131 | 97.74 208 | 95.62 166 | 96.31 367 | 98.17 193 | 91.42 242 | 96.26 187 | 96.13 290 | 90.56 170 | 99.47 162 | 92.18 242 | 97.07 179 | 99.35 175 |
|
| xiu_mvs_v1_base_debu | | | 97.43 93 | 97.06 99 | 98.55 104 | 97.74 208 | 98.14 65 | 99.31 236 | 97.86 227 | 96.43 62 | 99.62 49 | 99.69 88 | 85.56 232 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 239 |
|
| xiu_mvs_v1_base | | | 97.43 93 | 97.06 99 | 98.55 104 | 97.74 208 | 98.14 65 | 99.31 236 | 97.86 227 | 96.43 62 | 99.62 49 | 99.69 88 | 85.56 232 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 239 |
|
| xiu_mvs_v1_base_debi | | | 97.43 93 | 97.06 99 | 98.55 104 | 97.74 208 | 98.14 65 | 99.31 236 | 97.86 227 | 96.43 62 | 99.62 49 | 99.69 88 | 85.56 232 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 239 |
|
| EPP-MVSNet | | | 96.69 134 | 96.60 120 | 96.96 191 | 97.74 208 | 93.05 240 | 99.37 229 | 98.56 92 | 88.75 296 | 95.83 197 | 99.01 155 | 96.01 31 | 98.56 209 | 96.92 161 | 97.20 177 | 99.25 188 |
|
| gg-mvs-nofinetune | | | 93.51 227 | 91.86 253 | 98.47 112 | 97.72 213 | 97.96 76 | 92.62 388 | 98.51 108 | 74.70 390 | 97.33 158 | 69.59 403 | 98.91 3 | 97.79 266 | 97.77 137 | 99.56 101 | 99.67 115 |
|
| IB-MVS | | 92.85 6 | 94.99 183 | 93.94 201 | 98.16 128 | 97.72 213 | 95.69 163 | 99.99 5 | 98.81 60 | 94.28 130 | 92.70 237 | 96.90 264 | 95.08 51 | 99.17 174 | 96.07 171 | 73.88 374 | 99.60 131 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 98 | 97.02 104 | 98.59 101 | 97.71 215 | 97.52 91 | 99.97 28 | 98.54 101 | 91.83 226 | 97.45 155 | 99.04 152 | 97.50 7 | 99.10 180 | 94.75 196 | 96.37 195 | 99.16 193 |
|
| Syy-MVS | | | 90.00 306 | 90.63 272 | 88.11 362 | 97.68 216 | 74.66 390 | 99.71 171 | 98.35 167 | 90.79 259 | 92.10 243 | 98.67 192 | 79.10 292 | 93.09 382 | 63.35 396 | 95.95 203 | 96.59 256 |
|
| myMVS_eth3d | | | 94.46 201 | 94.76 182 | 93.55 305 | 97.68 216 | 90.97 288 | 99.71 171 | 98.35 167 | 90.79 259 | 92.10 243 | 98.67 192 | 92.46 133 | 93.09 382 | 87.13 310 | 95.95 203 | 96.59 256 |
|
| test_fmvs1_n | | | 94.25 209 | 94.36 189 | 93.92 292 | 97.68 216 | 83.70 363 | 99.90 93 | 96.57 345 | 97.40 28 | 99.67 40 | 98.88 175 | 61.82 379 | 99.92 88 | 98.23 110 | 99.13 128 | 98.14 235 |
|
| diffmvs |  | | 97.00 117 | 96.64 118 | 98.09 134 | 97.64 219 | 96.17 145 | 99.81 139 | 97.19 292 | 94.67 112 | 98.95 95 | 99.28 132 | 86.43 224 | 98.76 196 | 98.37 105 | 97.42 172 | 99.33 178 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 164 | 95.15 171 | 97.45 172 | 97.62 220 | 94.28 207 | 99.28 242 | 98.24 185 | 94.27 132 | 96.84 171 | 98.94 171 | 79.39 287 | 98.76 196 | 93.25 227 | 98.49 144 | 99.30 182 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 110 | 96.72 115 | 98.22 126 | 97.60 221 | 96.70 121 | 99.92 81 | 98.54 101 | 91.11 250 | 97.07 165 | 98.97 162 | 97.47 10 | 99.03 182 | 93.73 222 | 96.09 198 | 98.92 208 |
|
| miper_ehance_all_eth | | | 93.16 235 | 92.60 235 | 94.82 254 | 97.57 222 | 93.56 228 | 99.50 210 | 97.07 307 | 88.75 296 | 88.85 295 | 95.52 309 | 90.97 160 | 96.74 320 | 90.77 265 | 84.45 310 | 94.17 295 |
|
| testing3 | | | 93.92 213 | 94.23 193 | 92.99 319 | 97.54 223 | 90.23 306 | 99.99 5 | 99.16 30 | 90.57 263 | 91.33 252 | 98.63 198 | 92.99 114 | 92.52 386 | 82.46 344 | 95.39 217 | 96.22 261 |
|
| LCM-MVSNet-Re | | | 92.31 255 | 92.60 235 | 91.43 335 | 97.53 224 | 79.27 385 | 99.02 270 | 91.83 399 | 92.07 218 | 80.31 365 | 94.38 352 | 83.50 251 | 95.48 356 | 97.22 149 | 97.58 168 | 99.54 148 |
|
| GBi-Net | | | 90.88 283 | 89.82 289 | 94.08 284 | 97.53 224 | 91.97 263 | 98.43 317 | 96.95 319 | 87.05 320 | 89.68 273 | 94.72 340 | 71.34 344 | 96.11 344 | 87.01 314 | 85.65 299 | 94.17 295 |
|
| test1 | | | 90.88 283 | 89.82 289 | 94.08 284 | 97.53 224 | 91.97 263 | 98.43 317 | 96.95 319 | 87.05 320 | 89.68 273 | 94.72 340 | 71.34 344 | 96.11 344 | 87.01 314 | 85.65 299 | 94.17 295 |
|
| FMVSNet2 | | | 91.02 280 | 89.56 294 | 95.41 233 | 97.53 224 | 95.74 158 | 98.98 272 | 97.41 271 | 87.05 320 | 88.43 304 | 95.00 334 | 71.34 344 | 96.24 341 | 85.12 327 | 85.21 304 | 94.25 290 |
|
| tttt0517 | | | 96.85 123 | 96.49 124 | 97.92 144 | 97.48 228 | 95.89 153 | 99.85 122 | 98.54 101 | 90.72 262 | 96.63 176 | 98.93 173 | 97.47 10 | 99.02 183 | 93.03 234 | 95.76 209 | 98.85 212 |
|
| casdiffmvs_mvg |  | | 96.43 143 | 95.94 146 | 97.89 148 | 97.44 229 | 95.47 170 | 99.86 119 | 97.29 285 | 93.35 168 | 96.03 191 | 99.19 143 | 85.39 235 | 98.72 200 | 97.89 130 | 97.04 181 | 99.49 159 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 100 | 97.24 93 | 97.80 149 | 97.41 230 | 95.64 165 | 99.99 5 | 97.06 308 | 94.59 113 | 99.63 46 | 99.32 131 | 89.20 196 | 98.14 248 | 98.76 84 | 99.23 124 | 99.62 126 |
|
| c3_l | | | 92.53 250 | 91.87 252 | 94.52 266 | 97.40 231 | 92.99 242 | 99.40 222 | 96.93 324 | 87.86 310 | 88.69 298 | 95.44 313 | 89.95 183 | 96.44 332 | 90.45 271 | 80.69 341 | 94.14 304 |
|
| fmvsm_s_conf0.1_n | | | 97.30 101 | 97.21 95 | 97.60 166 | 97.38 232 | 94.40 205 | 99.90 93 | 98.64 76 | 96.47 61 | 99.51 64 | 99.65 99 | 84.99 240 | 99.93 85 | 99.22 55 | 99.09 130 | 98.46 226 |
|
| CDS-MVSNet | | | 96.34 148 | 96.07 135 | 97.13 186 | 97.37 233 | 94.96 190 | 99.53 205 | 97.91 222 | 91.55 234 | 95.37 204 | 98.32 223 | 95.05 53 | 97.13 296 | 93.80 218 | 95.75 210 | 99.30 182 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 131 | 96.26 130 | 98.16 128 | 97.36 234 | 96.48 127 | 99.96 35 | 98.29 180 | 91.93 223 | 95.77 198 | 98.07 229 | 95.54 41 | 98.29 237 | 90.55 269 | 98.89 134 | 99.70 110 |
|
| miper_lstm_enhance | | | 91.81 263 | 91.39 262 | 93.06 318 | 97.34 235 | 89.18 323 | 99.38 227 | 96.79 335 | 86.70 327 | 87.47 317 | 95.22 327 | 90.00 182 | 95.86 353 | 88.26 295 | 81.37 331 | 94.15 301 |
|
| baseline | | | 96.43 143 | 95.98 140 | 97.76 156 | 97.34 235 | 95.17 186 | 99.51 208 | 97.17 295 | 93.92 151 | 96.90 169 | 99.28 132 | 85.37 236 | 98.64 206 | 97.50 143 | 96.86 187 | 99.46 161 |
|
| cl____ | | | 92.31 255 | 91.58 256 | 94.52 266 | 97.33 237 | 92.77 244 | 99.57 198 | 96.78 336 | 86.97 324 | 87.56 315 | 95.51 310 | 89.43 189 | 96.62 325 | 88.60 290 | 82.44 323 | 94.16 300 |
|
| DIV-MVS_self_test | | | 92.32 254 | 91.60 255 | 94.47 270 | 97.31 238 | 92.74 246 | 99.58 195 | 96.75 337 | 86.99 323 | 87.64 313 | 95.54 307 | 89.55 188 | 96.50 329 | 88.58 291 | 82.44 323 | 94.17 295 |
|
| casdiffmvs |  | | 96.42 145 | 95.97 143 | 97.77 154 | 97.30 239 | 94.98 189 | 99.84 127 | 97.09 305 | 93.75 158 | 96.58 178 | 99.26 138 | 85.07 238 | 98.78 194 | 97.77 137 | 97.04 181 | 99.54 148 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 206 | 93.48 214 | 96.99 190 | 97.29 240 | 93.54 229 | 99.96 35 | 96.72 339 | 88.35 305 | 93.43 225 | 98.94 171 | 82.05 258 | 98.05 254 | 88.12 299 | 96.48 193 | 99.37 172 |
|
| eth_miper_zixun_eth | | | 92.41 253 | 91.93 250 | 93.84 296 | 97.28 241 | 90.68 296 | 98.83 290 | 96.97 318 | 88.57 301 | 89.19 290 | 95.73 300 | 89.24 195 | 96.69 323 | 89.97 280 | 81.55 329 | 94.15 301 |
|
| MVSFormer | | | 96.94 120 | 96.60 120 | 97.95 140 | 97.28 241 | 97.70 85 | 99.55 202 | 97.27 287 | 91.17 247 | 99.43 69 | 99.54 111 | 90.92 161 | 96.89 313 | 94.67 199 | 99.62 93 | 99.25 188 |
|
| lupinMVS | | | 97.85 71 | 97.60 78 | 98.62 97 | 97.28 241 | 97.70 85 | 99.99 5 | 97.55 254 | 95.50 90 | 99.43 69 | 99.67 95 | 90.92 161 | 98.71 201 | 98.40 102 | 99.62 93 | 99.45 163 |
|
| SCA | | | 94.69 191 | 93.81 205 | 97.33 182 | 97.10 244 | 94.44 200 | 98.86 287 | 98.32 174 | 93.30 171 | 96.17 190 | 95.59 305 | 76.48 313 | 97.95 260 | 91.06 257 | 97.43 170 | 99.59 132 |
|
| TAMVS | | | 95.85 161 | 95.58 158 | 96.65 203 | 97.07 245 | 93.50 230 | 99.17 251 | 97.82 231 | 91.39 244 | 95.02 208 | 98.01 230 | 92.20 138 | 97.30 285 | 93.75 221 | 95.83 207 | 99.14 196 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 222 | 93.86 204 | 93.29 310 | 97.06 246 | 86.16 349 | 99.80 143 | 96.83 331 | 92.66 195 | 92.58 238 | 97.83 239 | 81.39 265 | 97.67 271 | 89.75 282 | 96.87 186 | 96.05 263 |
|
| CostFormer | | | 96.10 155 | 95.88 150 | 96.78 196 | 97.03 247 | 92.55 254 | 97.08 354 | 97.83 230 | 90.04 274 | 98.72 110 | 94.89 338 | 95.01 55 | 98.29 237 | 96.54 166 | 95.77 208 | 99.50 157 |
|
| test_fmvsmvis_n_1920 | | | 97.67 85 | 97.59 80 | 97.91 146 | 97.02 248 | 95.34 176 | 99.95 53 | 98.45 120 | 97.87 15 | 97.02 166 | 99.59 105 | 89.64 186 | 99.98 43 | 99.41 48 | 99.34 119 | 98.42 228 |
|
| test-LLR | | | 96.47 141 | 96.04 136 | 97.78 152 | 97.02 248 | 95.44 171 | 99.96 35 | 98.21 188 | 94.07 138 | 95.55 200 | 96.38 281 | 93.90 90 | 98.27 241 | 90.42 272 | 98.83 138 | 99.64 121 |
|
| test-mter | | | 96.39 146 | 95.93 147 | 97.78 152 | 97.02 248 | 95.44 171 | 99.96 35 | 98.21 188 | 91.81 228 | 95.55 200 | 96.38 281 | 95.17 48 | 98.27 241 | 90.42 272 | 98.83 138 | 99.64 121 |
|
| gm-plane-assit | | | | | | 96.97 251 | 93.76 222 | | | 91.47 238 | | 98.96 164 | | 98.79 193 | 94.92 189 | | |
|
| WB-MVSnew | | | 92.90 241 | 92.77 232 | 93.26 312 | 96.95 252 | 93.63 226 | 99.71 171 | 98.16 197 | 91.49 235 | 94.28 217 | 98.14 226 | 81.33 267 | 96.48 330 | 79.47 359 | 95.46 214 | 89.68 383 |
|
| QAPM | | | 95.40 175 | 94.17 195 | 99.10 66 | 96.92 253 | 97.71 83 | 99.40 222 | 98.68 70 | 89.31 281 | 88.94 294 | 98.89 174 | 82.48 256 | 99.96 61 | 93.12 233 | 99.83 76 | 99.62 126 |
|
| KD-MVS_2432*1600 | | | 88.00 325 | 86.10 329 | 93.70 301 | 96.91 254 | 94.04 214 | 97.17 351 | 97.12 301 | 84.93 347 | 81.96 356 | 92.41 368 | 92.48 131 | 94.51 370 | 79.23 360 | 52.68 402 | 92.56 357 |
|
| miper_refine_blended | | | 88.00 325 | 86.10 329 | 93.70 301 | 96.91 254 | 94.04 214 | 97.17 351 | 97.12 301 | 84.93 347 | 81.96 356 | 92.41 368 | 92.48 131 | 94.51 370 | 79.23 360 | 52.68 402 | 92.56 357 |
|
| tpm2 | | | 95.47 173 | 95.18 170 | 96.35 212 | 96.91 254 | 91.70 276 | 96.96 357 | 97.93 218 | 88.04 309 | 98.44 122 | 95.40 315 | 93.32 104 | 97.97 257 | 94.00 210 | 95.61 212 | 99.38 170 |
|
| FMVSNet5 | | | 88.32 322 | 87.47 324 | 90.88 338 | 96.90 257 | 88.39 334 | 97.28 348 | 95.68 366 | 82.60 366 | 84.67 345 | 92.40 370 | 79.83 284 | 91.16 391 | 76.39 374 | 81.51 330 | 93.09 349 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 150 | 95.24 167 | 99.52 28 | 96.88 258 | 98.64 54 | 99.72 168 | 98.24 185 | 95.27 95 | 88.42 306 | 98.98 160 | 82.76 255 | 99.94 77 | 97.10 153 | 99.83 76 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 249 | 91.50 259 | 96.10 217 | 96.85 259 | 90.49 301 | 91.50 393 | 97.19 292 | 82.76 365 | 90.23 261 | 95.59 305 | 95.02 54 | 98.00 256 | 77.41 369 | 96.98 184 | 99.82 92 |
|
| MVS | | | 96.60 137 | 95.56 159 | 99.72 13 | 96.85 259 | 99.22 20 | 98.31 323 | 98.94 41 | 91.57 233 | 90.90 256 | 99.61 104 | 86.66 222 | 99.96 61 | 97.36 145 | 99.88 69 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 153 | 95.34 164 | 99.08 67 | 96.82 261 | 97.47 96 | 99.45 219 | 98.81 60 | 95.52 89 | 89.39 281 | 99.00 157 | 81.97 259 | 99.95 69 | 97.27 147 | 99.83 76 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 221 | 93.40 219 | 94.74 255 | 96.80 262 | 92.69 249 | 99.06 262 | 97.67 240 | 88.96 290 | 91.39 249 | 99.02 153 | 88.75 201 | 97.30 285 | 91.07 256 | 87.85 285 | 94.22 291 |
|
| CVMVSNet | | | 94.68 193 | 94.94 178 | 93.89 295 | 96.80 262 | 86.92 346 | 99.06 262 | 98.98 38 | 94.45 116 | 94.23 219 | 99.02 153 | 85.60 231 | 95.31 360 | 90.91 262 | 95.39 217 | 99.43 166 |
|
| IterMVS-LS | | | 92.69 247 | 92.11 246 | 94.43 274 | 96.80 262 | 92.74 246 | 99.45 219 | 96.89 327 | 88.98 288 | 89.65 276 | 95.38 318 | 88.77 200 | 96.34 336 | 90.98 260 | 82.04 326 | 94.22 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 282 | 90.17 284 | 93.12 315 | 96.78 265 | 90.42 304 | 98.89 281 | 97.05 310 | 89.03 285 | 86.49 330 | 95.42 314 | 76.59 311 | 95.02 362 | 87.22 309 | 84.09 313 | 93.93 321 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 124 | 95.96 144 | 99.48 34 | 96.74 266 | 98.52 58 | 98.31 323 | 98.86 53 | 95.82 79 | 89.91 267 | 98.98 160 | 87.49 210 | 99.96 61 | 97.80 132 | 99.73 86 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 285 | 90.16 285 | 92.93 320 | 96.72 267 | 89.96 312 | 98.89 281 | 96.99 314 | 88.95 291 | 86.63 327 | 95.67 301 | 76.48 313 | 95.00 363 | 87.04 312 | 84.04 316 | 93.84 328 |
|
| MVS-HIRNet | | | 86.22 332 | 83.19 345 | 95.31 237 | 96.71 268 | 90.29 305 | 92.12 390 | 97.33 279 | 62.85 397 | 86.82 324 | 70.37 402 | 69.37 352 | 97.49 276 | 75.12 377 | 97.99 162 | 98.15 233 |
|
| VDDNet | | | 93.12 236 | 91.91 251 | 96.76 197 | 96.67 269 | 92.65 252 | 98.69 303 | 98.21 188 | 82.81 364 | 97.75 149 | 99.28 132 | 61.57 380 | 99.48 161 | 98.09 118 | 94.09 235 | 98.15 233 |
|
| dmvs_re | | | 93.20 233 | 93.15 224 | 93.34 308 | 96.54 270 | 83.81 362 | 98.71 300 | 98.51 108 | 91.39 244 | 92.37 241 | 98.56 205 | 78.66 296 | 97.83 265 | 93.89 212 | 89.74 255 | 98.38 229 |
|
| MIMVSNet | | | 90.30 298 | 88.67 312 | 95.17 242 | 96.45 271 | 91.64 278 | 92.39 389 | 97.15 298 | 85.99 334 | 90.50 259 | 93.19 364 | 66.95 362 | 94.86 367 | 82.01 348 | 93.43 243 | 99.01 206 |
|
| CR-MVSNet | | | 93.45 230 | 92.62 234 | 95.94 219 | 96.29 272 | 92.66 250 | 92.01 391 | 96.23 355 | 92.62 197 | 96.94 167 | 93.31 362 | 91.04 158 | 96.03 349 | 79.23 360 | 95.96 201 | 99.13 197 |
|
| RPMNet | | | 89.76 310 | 87.28 325 | 97.19 185 | 96.29 272 | 92.66 250 | 92.01 391 | 98.31 176 | 70.19 396 | 96.94 167 | 85.87 395 | 87.25 214 | 99.78 125 | 62.69 397 | 95.96 201 | 99.13 197 |
|
| tt0805 | | | 91.28 275 | 90.18 283 | 94.60 261 | 96.26 274 | 87.55 340 | 98.39 321 | 98.72 65 | 89.00 287 | 89.22 287 | 98.47 213 | 62.98 376 | 98.96 185 | 90.57 268 | 88.00 284 | 97.28 250 |
|
| Patchmtry | | | 89.70 311 | 88.49 314 | 93.33 309 | 96.24 275 | 89.94 315 | 91.37 394 | 96.23 355 | 78.22 380 | 87.69 312 | 93.31 362 | 91.04 158 | 96.03 349 | 80.18 358 | 82.10 325 | 94.02 311 |
|
| test_vis1_rt | | | 86.87 330 | 86.05 332 | 89.34 351 | 96.12 276 | 78.07 386 | 99.87 107 | 83.54 410 | 92.03 221 | 78.21 375 | 89.51 381 | 45.80 396 | 99.91 89 | 96.25 169 | 93.11 248 | 90.03 380 |
|
| JIA-IIPM | | | 91.76 269 | 90.70 270 | 94.94 248 | 96.11 277 | 87.51 341 | 93.16 387 | 98.13 202 | 75.79 386 | 97.58 151 | 77.68 400 | 92.84 119 | 97.97 257 | 88.47 294 | 96.54 189 | 99.33 178 |
|
| OpenMVS |  | 90.15 15 | 94.77 189 | 93.59 210 | 98.33 121 | 96.07 278 | 97.48 95 | 99.56 200 | 98.57 89 | 90.46 265 | 86.51 329 | 98.95 169 | 78.57 297 | 99.94 77 | 93.86 213 | 99.74 85 | 97.57 248 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 61 | 96.05 279 | 98.96 26 | 99.90 93 | 99.35 25 | 96.68 55 | 98.35 127 | 99.66 97 | 96.45 28 | 98.51 212 | 99.45 45 | 99.89 66 | 99.96 64 |
|
| CLD-MVS | | | 94.06 212 | 93.90 202 | 94.55 265 | 96.02 280 | 90.69 295 | 99.98 15 | 97.72 237 | 96.62 58 | 91.05 255 | 98.85 183 | 77.21 302 | 98.47 213 | 98.11 116 | 89.51 261 | 94.48 271 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 295 | 88.75 311 | 95.25 239 | 95.99 281 | 90.16 308 | 91.22 395 | 97.54 256 | 76.80 382 | 97.26 160 | 86.01 394 | 91.88 145 | 96.07 348 | 66.16 393 | 95.91 205 | 99.51 155 |
|
| ACMH+ | | 89.98 16 | 90.35 296 | 89.54 295 | 92.78 324 | 95.99 281 | 86.12 350 | 98.81 292 | 97.18 294 | 89.38 280 | 83.14 352 | 97.76 241 | 68.42 357 | 98.43 218 | 89.11 286 | 86.05 297 | 93.78 331 |
|
| DeepMVS_CX |  | | | | 82.92 372 | 95.98 283 | 58.66 403 | | 96.01 360 | 92.72 190 | 78.34 374 | 95.51 310 | 58.29 385 | 98.08 251 | 82.57 343 | 85.29 302 | 92.03 365 |
|
| ACMP | | 92.05 9 | 92.74 245 | 92.42 243 | 93.73 297 | 95.91 284 | 88.72 327 | 99.81 139 | 97.53 258 | 94.13 134 | 87.00 323 | 98.23 224 | 74.07 334 | 98.47 213 | 96.22 170 | 88.86 268 | 93.99 316 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 225 | 93.03 226 | 95.35 234 | 95.86 285 | 86.94 345 | 99.87 107 | 96.36 352 | 96.85 46 | 99.54 59 | 98.79 185 | 52.41 392 | 99.83 118 | 98.64 92 | 98.97 133 | 99.29 184 |
|
| HQP-NCC | | | | | | 95.78 286 | | 99.87 107 | | 96.82 48 | 93.37 226 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 286 | | 99.87 107 | | 96.82 48 | 93.37 226 | | | | | | |
|
| HQP-MVS | | | 94.61 195 | 94.50 187 | 94.92 249 | 95.78 286 | 91.85 268 | 99.87 107 | 97.89 223 | 96.82 48 | 93.37 226 | 98.65 195 | 80.65 276 | 98.39 224 | 97.92 127 | 89.60 256 | 94.53 266 |
|
| NP-MVS | | | | | | 95.77 289 | 91.79 270 | | | | | 98.65 195 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 81 | 97.44 84 | 98.64 96 | 95.76 290 | 96.20 142 | 99.94 69 | 98.05 208 | 98.17 8 | 98.89 99 | 99.42 119 | 87.65 208 | 99.90 91 | 99.50 41 | 99.60 99 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 290 | 91.72 275 | | | | | | 80.47 280 | | | | |
|
| ACMM | | 91.95 10 | 92.88 242 | 92.52 241 | 93.98 291 | 95.75 292 | 89.08 324 | 99.77 149 | 97.52 260 | 93.00 178 | 89.95 266 | 97.99 233 | 76.17 317 | 98.46 216 | 93.63 224 | 88.87 267 | 94.39 280 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 215 | 92.84 228 | 96.80 195 | 95.73 293 | 93.57 227 | 99.88 104 | 97.24 290 | 92.57 202 | 92.92 232 | 96.66 273 | 78.73 295 | 97.67 271 | 87.75 302 | 94.06 236 | 99.17 192 |
|
| plane_prior1 | | | | | | 95.73 293 | | | | | | | | | | | |
|
| jason | | | 97.24 104 | 96.86 109 | 98.38 120 | 95.73 293 | 97.32 100 | 99.97 28 | 97.40 272 | 95.34 93 | 98.60 117 | 99.54 111 | 87.70 207 | 98.56 209 | 97.94 126 | 99.47 108 | 99.25 188 |
| jason: jason. |
| HQP_MVS | | | 94.49 200 | 94.36 189 | 94.87 250 | 95.71 296 | 91.74 272 | 99.84 127 | 97.87 225 | 96.38 65 | 93.01 230 | 98.59 200 | 80.47 280 | 98.37 230 | 97.79 135 | 89.55 259 | 94.52 268 |
|
| plane_prior7 | | | | | | 95.71 296 | 91.59 280 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 326 | 95.69 298 | 85.14 355 | | 95.71 365 | 92.81 186 | 89.33 284 | 98.11 227 | 70.23 350 | 98.42 219 | 85.91 323 | 88.16 281 | 93.59 339 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 112 | 96.90 107 | 97.63 164 | 95.65 299 | 94.21 210 | 99.83 134 | 98.50 114 | 96.27 71 | 99.65 42 | 99.64 100 | 84.72 241 | 99.93 85 | 99.04 63 | 98.84 137 | 98.74 219 |
|
| ACMH | | 89.72 17 | 90.64 289 | 89.63 292 | 93.66 303 | 95.64 300 | 88.64 330 | 98.55 309 | 97.45 265 | 89.03 285 | 81.62 359 | 97.61 242 | 69.75 351 | 98.41 220 | 89.37 283 | 87.62 289 | 93.92 322 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 133 | 96.49 124 | 97.37 178 | 95.63 301 | 95.96 151 | 99.74 160 | 98.88 51 | 92.94 180 | 91.61 247 | 98.97 162 | 97.72 5 | 98.62 207 | 94.83 193 | 98.08 160 | 97.53 249 |
|
| FMVSNet1 | | | 88.50 321 | 86.64 327 | 94.08 284 | 95.62 302 | 91.97 263 | 98.43 317 | 96.95 319 | 83.00 362 | 86.08 337 | 94.72 340 | 59.09 384 | 96.11 344 | 81.82 350 | 84.07 314 | 94.17 295 |
|
| LPG-MVS_test | | | 92.96 239 | 92.71 233 | 93.71 299 | 95.43 303 | 88.67 328 | 99.75 157 | 97.62 245 | 92.81 186 | 90.05 262 | 98.49 209 | 75.24 324 | 98.40 222 | 95.84 176 | 89.12 263 | 94.07 308 |
|
| LGP-MVS_train | | | | | 93.71 299 | 95.43 303 | 88.67 328 | | 97.62 245 | 92.81 186 | 90.05 262 | 98.49 209 | 75.24 324 | 98.40 222 | 95.84 176 | 89.12 263 | 94.07 308 |
|
| tpm | | | 93.70 223 | 93.41 218 | 94.58 263 | 95.36 305 | 87.41 342 | 97.01 355 | 96.90 326 | 90.85 257 | 96.72 175 | 94.14 354 | 90.40 175 | 96.84 316 | 90.75 266 | 88.54 276 | 99.51 155 |
|
| D2MVS | | | 92.76 244 | 92.59 239 | 93.27 311 | 95.13 306 | 89.54 319 | 99.69 176 | 99.38 23 | 92.26 214 | 87.59 314 | 94.61 346 | 85.05 239 | 97.79 266 | 91.59 250 | 88.01 283 | 92.47 360 |
|
| VPA-MVSNet | | | 92.70 246 | 91.55 258 | 96.16 215 | 95.09 307 | 96.20 142 | 98.88 283 | 99.00 36 | 91.02 254 | 91.82 246 | 95.29 325 | 76.05 319 | 97.96 259 | 95.62 180 | 81.19 332 | 94.30 286 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 299 | 89.05 306 | 94.02 287 | 95.08 308 | 90.15 309 | 97.19 350 | 97.43 267 | 84.91 349 | 83.99 348 | 97.06 259 | 74.00 335 | 98.28 239 | 84.08 332 | 87.71 287 | 93.62 338 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 327 | 86.51 328 | 91.94 331 | 95.05 309 | 85.57 353 | 97.65 343 | 94.08 387 | 84.40 353 | 81.82 358 | 96.85 268 | 62.14 378 | 98.33 233 | 80.25 357 | 86.37 296 | 91.91 367 |
|
| test0.0.03 1 | | | 93.86 214 | 93.61 207 | 94.64 259 | 95.02 310 | 92.18 261 | 99.93 76 | 98.58 87 | 94.07 138 | 87.96 310 | 98.50 208 | 93.90 90 | 94.96 364 | 81.33 351 | 93.17 246 | 96.78 253 |
|
| UniMVSNet (Re) | | | 93.07 238 | 92.13 245 | 95.88 220 | 94.84 311 | 96.24 141 | 99.88 104 | 98.98 38 | 92.49 207 | 89.25 285 | 95.40 315 | 87.09 216 | 97.14 295 | 93.13 232 | 78.16 355 | 94.26 288 |
|
| USDC | | | 90.00 306 | 88.96 307 | 93.10 317 | 94.81 312 | 88.16 336 | 98.71 300 | 95.54 370 | 93.66 160 | 83.75 350 | 97.20 253 | 65.58 367 | 98.31 235 | 83.96 335 | 87.49 291 | 92.85 354 |
|
| VPNet | | | 91.81 263 | 90.46 274 | 95.85 222 | 94.74 313 | 95.54 169 | 98.98 272 | 98.59 86 | 92.14 216 | 90.77 258 | 97.44 246 | 68.73 355 | 97.54 275 | 94.89 192 | 77.89 357 | 94.46 272 |
|
| FIs | | | 94.10 210 | 93.43 215 | 96.11 216 | 94.70 314 | 96.82 118 | 99.58 195 | 98.93 45 | 92.54 203 | 89.34 283 | 97.31 250 | 87.62 209 | 97.10 299 | 94.22 209 | 86.58 294 | 94.40 278 |
|
| UniMVSNet_ETH3D | | | 90.06 305 | 88.58 313 | 94.49 269 | 94.67 315 | 88.09 337 | 97.81 342 | 97.57 253 | 83.91 356 | 88.44 302 | 97.41 247 | 57.44 386 | 97.62 273 | 91.41 251 | 88.59 275 | 97.77 242 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 240 | 92.11 246 | 95.49 228 | 94.61 316 | 95.28 179 | 99.83 134 | 99.08 33 | 91.49 235 | 89.21 288 | 96.86 267 | 87.14 215 | 96.73 321 | 93.20 228 | 77.52 360 | 94.46 272 |
|
| test_fmvs2 | | | 89.47 314 | 89.70 291 | 88.77 358 | 94.54 317 | 75.74 387 | 99.83 134 | 94.70 383 | 94.71 109 | 91.08 253 | 96.82 272 | 54.46 389 | 97.78 268 | 92.87 235 | 88.27 279 | 92.80 355 |
|
| WR-MVS | | | 92.31 255 | 91.25 263 | 95.48 231 | 94.45 318 | 95.29 178 | 99.60 192 | 98.68 70 | 90.10 271 | 88.07 309 | 96.89 265 | 80.68 275 | 96.80 319 | 93.14 231 | 79.67 348 | 94.36 281 |
|
| nrg030 | | | 93.51 227 | 92.53 240 | 96.45 207 | 94.36 319 | 97.20 103 | 99.81 139 | 97.16 297 | 91.60 232 | 89.86 269 | 97.46 245 | 86.37 225 | 97.68 270 | 95.88 175 | 80.31 344 | 94.46 272 |
|
| tfpnnormal | | | 89.29 317 | 87.61 323 | 94.34 277 | 94.35 320 | 94.13 212 | 98.95 276 | 98.94 41 | 83.94 354 | 84.47 346 | 95.51 310 | 74.84 329 | 97.39 278 | 77.05 372 | 80.41 342 | 91.48 370 |
|
| iter_conf05 | | | 94.61 195 | 94.72 184 | 94.27 278 | 94.31 321 | 91.01 287 | 99.93 76 | 96.30 354 | 94.01 144 | 92.92 232 | 98.46 216 | 90.66 166 | 97.32 283 | 97.12 151 | 88.75 270 | 94.49 270 |
|
| FC-MVSNet-test | | | 93.81 217 | 93.15 224 | 95.80 224 | 94.30 322 | 96.20 142 | 99.42 221 | 98.89 49 | 92.33 213 | 89.03 293 | 97.27 252 | 87.39 212 | 96.83 317 | 93.20 228 | 86.48 295 | 94.36 281 |
|
| MS-PatchMatch | | | 90.65 288 | 90.30 279 | 91.71 334 | 94.22 323 | 85.50 354 | 98.24 326 | 97.70 238 | 88.67 298 | 86.42 332 | 96.37 283 | 67.82 359 | 98.03 255 | 83.62 337 | 99.62 93 | 91.60 368 |
|
| WR-MVS_H | | | 91.30 273 | 90.35 277 | 94.15 281 | 94.17 324 | 92.62 253 | 99.17 251 | 98.94 41 | 88.87 294 | 86.48 331 | 94.46 351 | 84.36 245 | 96.61 326 | 88.19 296 | 78.51 353 | 93.21 348 |
|
| DU-MVS | | | 92.46 252 | 91.45 261 | 95.49 228 | 94.05 325 | 95.28 179 | 99.81 139 | 98.74 64 | 92.25 215 | 89.21 288 | 96.64 275 | 81.66 262 | 96.73 321 | 93.20 228 | 77.52 360 | 94.46 272 |
|
| NR-MVSNet | | | 91.56 271 | 90.22 281 | 95.60 226 | 94.05 325 | 95.76 157 | 98.25 325 | 98.70 67 | 91.16 249 | 80.78 364 | 96.64 275 | 83.23 254 | 96.57 327 | 91.41 251 | 77.73 359 | 94.46 272 |
|
| CP-MVSNet | | | 91.23 277 | 90.22 281 | 94.26 279 | 93.96 327 | 92.39 257 | 99.09 255 | 98.57 89 | 88.95 291 | 86.42 332 | 96.57 278 | 79.19 290 | 96.37 334 | 90.29 275 | 78.95 350 | 94.02 311 |
|
| XXY-MVS | | | 91.82 262 | 90.46 274 | 95.88 220 | 93.91 328 | 95.40 175 | 98.87 286 | 97.69 239 | 88.63 300 | 87.87 311 | 97.08 257 | 74.38 333 | 97.89 263 | 91.66 249 | 84.07 314 | 94.35 284 |
|
| PS-CasMVS | | | 90.63 290 | 89.51 297 | 93.99 290 | 93.83 329 | 91.70 276 | 98.98 272 | 98.52 105 | 88.48 302 | 86.15 336 | 96.53 280 | 75.46 322 | 96.31 338 | 88.83 288 | 78.86 352 | 93.95 319 |
|
| test_0402 | | | 85.58 334 | 83.94 339 | 90.50 342 | 93.81 330 | 85.04 356 | 98.55 309 | 95.20 377 | 76.01 384 | 79.72 369 | 95.13 328 | 64.15 373 | 96.26 340 | 66.04 394 | 86.88 293 | 90.21 379 |
|
| XVG-ACMP-BASELINE | | | 91.22 278 | 90.75 269 | 92.63 325 | 93.73 331 | 85.61 352 | 98.52 313 | 97.44 266 | 92.77 189 | 89.90 268 | 96.85 268 | 66.64 364 | 98.39 224 | 92.29 240 | 88.61 273 | 93.89 324 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 270 | 90.61 273 | 94.87 250 | 93.69 332 | 93.98 217 | 99.69 176 | 98.65 74 | 91.03 253 | 88.44 302 | 96.83 271 | 80.05 283 | 96.18 342 | 90.26 276 | 76.89 368 | 94.45 277 |
|
| mvsmamba | | | 94.10 210 | 93.72 206 | 95.25 239 | 93.57 333 | 94.13 212 | 99.67 180 | 96.45 350 | 93.63 162 | 91.34 251 | 97.77 240 | 86.29 227 | 97.22 291 | 96.65 165 | 88.10 282 | 94.40 278 |
|
| TransMVSNet (Re) | | | 87.25 328 | 85.28 335 | 93.16 314 | 93.56 334 | 91.03 286 | 98.54 311 | 94.05 389 | 83.69 358 | 81.09 362 | 96.16 288 | 75.32 323 | 96.40 333 | 76.69 373 | 68.41 386 | 92.06 364 |
|
| v10 | | | 90.25 300 | 88.82 309 | 94.57 264 | 93.53 335 | 93.43 232 | 99.08 257 | 96.87 329 | 85.00 346 | 87.34 321 | 94.51 347 | 80.93 272 | 97.02 309 | 82.85 342 | 79.23 349 | 93.26 346 |
|
| testgi | | | 89.01 319 | 88.04 320 | 91.90 332 | 93.49 336 | 84.89 358 | 99.73 165 | 95.66 367 | 93.89 154 | 85.14 342 | 98.17 225 | 59.68 383 | 94.66 369 | 77.73 368 | 88.88 266 | 96.16 262 |
|
| v8 | | | 90.54 292 | 89.17 302 | 94.66 258 | 93.43 337 | 93.40 234 | 99.20 248 | 96.94 323 | 85.76 337 | 87.56 315 | 94.51 347 | 81.96 260 | 97.19 292 | 84.94 329 | 78.25 354 | 93.38 344 |
|
| V42 | | | 91.28 275 | 90.12 286 | 94.74 255 | 93.42 338 | 93.46 231 | 99.68 178 | 97.02 311 | 87.36 316 | 89.85 271 | 95.05 330 | 81.31 268 | 97.34 281 | 87.34 307 | 80.07 346 | 93.40 342 |
|
| pm-mvs1 | | | 89.36 316 | 87.81 322 | 94.01 288 | 93.40 339 | 91.93 266 | 98.62 308 | 96.48 349 | 86.25 332 | 83.86 349 | 96.14 289 | 73.68 336 | 97.04 305 | 86.16 320 | 75.73 372 | 93.04 351 |
|
| v1144 | | | 91.09 279 | 89.83 288 | 94.87 250 | 93.25 340 | 93.69 225 | 99.62 190 | 96.98 316 | 86.83 326 | 89.64 277 | 94.99 335 | 80.94 271 | 97.05 302 | 85.08 328 | 81.16 333 | 93.87 326 |
|
| v1192 | | | 90.62 291 | 89.25 301 | 94.72 257 | 93.13 341 | 93.07 238 | 99.50 210 | 97.02 311 | 86.33 331 | 89.56 279 | 95.01 332 | 79.22 289 | 97.09 301 | 82.34 346 | 81.16 333 | 94.01 313 |
|
| v2v482 | | | 91.30 273 | 90.07 287 | 95.01 245 | 93.13 341 | 93.79 220 | 99.77 149 | 97.02 311 | 88.05 308 | 89.25 285 | 95.37 319 | 80.73 274 | 97.15 294 | 87.28 308 | 80.04 347 | 94.09 307 |
|
| OPM-MVS | | | 93.21 232 | 92.80 230 | 94.44 272 | 93.12 343 | 90.85 294 | 99.77 149 | 97.61 248 | 96.19 74 | 91.56 248 | 98.65 195 | 75.16 328 | 98.47 213 | 93.78 220 | 89.39 262 | 93.99 316 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 286 | 89.52 296 | 94.59 262 | 93.11 344 | 92.77 244 | 99.56 200 | 96.99 314 | 86.38 330 | 89.82 272 | 94.95 337 | 80.50 279 | 97.10 299 | 83.98 334 | 80.41 342 | 93.90 323 |
|
| PEN-MVS | | | 90.19 302 | 89.06 305 | 93.57 304 | 93.06 345 | 90.90 292 | 99.06 262 | 98.47 117 | 88.11 307 | 85.91 338 | 96.30 284 | 76.67 309 | 95.94 352 | 87.07 311 | 76.91 367 | 93.89 324 |
|
| v1240 | | | 90.20 301 | 88.79 310 | 94.44 272 | 93.05 346 | 92.27 259 | 99.38 227 | 96.92 325 | 85.89 335 | 89.36 282 | 94.87 339 | 77.89 301 | 97.03 307 | 80.66 354 | 81.08 336 | 94.01 313 |
|
| v148 | | | 90.70 287 | 89.63 292 | 93.92 292 | 92.97 347 | 90.97 288 | 99.75 157 | 96.89 327 | 87.51 313 | 88.27 307 | 95.01 332 | 81.67 261 | 97.04 305 | 87.40 306 | 77.17 365 | 93.75 332 |
|
| v1921920 | | | 90.46 293 | 89.12 303 | 94.50 268 | 92.96 348 | 92.46 255 | 99.49 212 | 96.98 316 | 86.10 333 | 89.61 278 | 95.30 322 | 78.55 298 | 97.03 307 | 82.17 347 | 80.89 340 | 94.01 313 |
|
| Baseline_NR-MVSNet | | | 90.33 297 | 89.51 297 | 92.81 323 | 92.84 349 | 89.95 313 | 99.77 149 | 93.94 390 | 84.69 351 | 89.04 292 | 95.66 302 | 81.66 262 | 96.52 328 | 90.99 259 | 76.98 366 | 91.97 366 |
|
| test_method | | | 80.79 354 | 79.70 358 | 84.08 369 | 92.83 350 | 67.06 395 | 99.51 208 | 95.42 371 | 54.34 401 | 81.07 363 | 93.53 359 | 44.48 397 | 92.22 388 | 78.90 364 | 77.23 364 | 92.94 352 |
|
| pmmvs4 | | | 92.10 259 | 91.07 267 | 95.18 241 | 92.82 351 | 94.96 190 | 99.48 214 | 96.83 331 | 87.45 315 | 88.66 299 | 96.56 279 | 83.78 249 | 96.83 317 | 89.29 284 | 84.77 308 | 93.75 332 |
|
| LF4IMVS | | | 89.25 318 | 88.85 308 | 90.45 344 | 92.81 352 | 81.19 378 | 98.12 332 | 94.79 380 | 91.44 239 | 86.29 334 | 97.11 255 | 65.30 370 | 98.11 250 | 88.53 293 | 85.25 303 | 92.07 363 |
|
| DTE-MVSNet | | | 89.40 315 | 88.24 318 | 92.88 321 | 92.66 353 | 89.95 313 | 99.10 254 | 98.22 187 | 87.29 317 | 85.12 343 | 96.22 286 | 76.27 316 | 95.30 361 | 83.56 338 | 75.74 371 | 93.41 341 |
|
| EU-MVSNet | | | 90.14 304 | 90.34 278 | 89.54 350 | 92.55 354 | 81.06 379 | 98.69 303 | 98.04 209 | 91.41 243 | 86.59 328 | 96.84 270 | 80.83 273 | 93.31 381 | 86.20 319 | 81.91 327 | 94.26 288 |
|
| APD_test1 | | | 81.15 353 | 80.92 354 | 81.86 373 | 92.45 355 | 59.76 402 | 96.04 373 | 93.61 393 | 73.29 393 | 77.06 378 | 96.64 275 | 44.28 398 | 96.16 343 | 72.35 381 | 82.52 321 | 89.67 384 |
|
| our_test_3 | | | 90.39 294 | 89.48 299 | 93.12 315 | 92.40 356 | 89.57 318 | 99.33 233 | 96.35 353 | 87.84 311 | 85.30 341 | 94.99 335 | 84.14 247 | 96.09 347 | 80.38 355 | 84.56 309 | 93.71 337 |
|
| ppachtmachnet_test | | | 89.58 313 | 88.35 316 | 93.25 313 | 92.40 356 | 90.44 303 | 99.33 233 | 96.73 338 | 85.49 342 | 85.90 339 | 95.77 297 | 81.09 270 | 96.00 351 | 76.00 376 | 82.49 322 | 93.30 345 |
|
| v7n | | | 89.65 312 | 88.29 317 | 93.72 298 | 92.22 358 | 90.56 300 | 99.07 261 | 97.10 303 | 85.42 344 | 86.73 325 | 94.72 340 | 80.06 282 | 97.13 296 | 81.14 352 | 78.12 356 | 93.49 340 |
|
| dmvs_testset | | | 83.79 347 | 86.07 331 | 76.94 377 | 92.14 359 | 48.60 412 | 96.75 360 | 90.27 402 | 89.48 279 | 78.65 372 | 98.55 207 | 79.25 288 | 86.65 400 | 66.85 391 | 82.69 320 | 95.57 264 |
|
| PS-MVSNAJss | | | 93.64 224 | 93.31 221 | 94.61 260 | 92.11 360 | 92.19 260 | 99.12 253 | 97.38 273 | 92.51 206 | 88.45 301 | 96.99 263 | 91.20 153 | 97.29 288 | 94.36 204 | 87.71 287 | 94.36 281 |
|
| pmmvs5 | | | 90.17 303 | 89.09 304 | 93.40 307 | 92.10 361 | 89.77 316 | 99.74 160 | 95.58 369 | 85.88 336 | 87.24 322 | 95.74 298 | 73.41 337 | 96.48 330 | 88.54 292 | 83.56 317 | 93.95 319 |
|
| N_pmnet | | | 80.06 357 | 80.78 355 | 77.89 376 | 91.94 362 | 45.28 414 | 98.80 294 | 56.82 416 | 78.10 381 | 80.08 367 | 93.33 360 | 77.03 304 | 95.76 354 | 68.14 389 | 82.81 319 | 92.64 356 |
|
| test_djsdf | | | 92.83 243 | 92.29 244 | 94.47 270 | 91.90 363 | 92.46 255 | 99.55 202 | 97.27 287 | 91.17 247 | 89.96 265 | 96.07 293 | 81.10 269 | 96.89 313 | 94.67 199 | 88.91 265 | 94.05 310 |
|
| SixPastTwentyTwo | | | 88.73 320 | 88.01 321 | 90.88 338 | 91.85 364 | 82.24 370 | 98.22 329 | 95.18 378 | 88.97 289 | 82.26 355 | 96.89 265 | 71.75 342 | 96.67 324 | 84.00 333 | 82.98 318 | 93.72 336 |
|
| K. test v3 | | | 88.05 324 | 87.24 326 | 90.47 343 | 91.82 365 | 82.23 371 | 98.96 275 | 97.42 269 | 89.05 284 | 76.93 380 | 95.60 304 | 68.49 356 | 95.42 357 | 85.87 324 | 81.01 338 | 93.75 332 |
|
| OurMVSNet-221017-0 | | | 89.81 309 | 89.48 299 | 90.83 340 | 91.64 366 | 81.21 377 | 98.17 331 | 95.38 373 | 91.48 237 | 85.65 340 | 97.31 250 | 72.66 338 | 97.29 288 | 88.15 297 | 84.83 307 | 93.97 318 |
|
| mvs_tets | | | 91.81 263 | 91.08 266 | 94.00 289 | 91.63 367 | 90.58 299 | 98.67 305 | 97.43 267 | 92.43 208 | 87.37 320 | 97.05 260 | 71.76 341 | 97.32 283 | 94.75 196 | 88.68 272 | 94.11 306 |
|
| Gipuma |  | | 66.95 370 | 65.00 370 | 72.79 382 | 91.52 368 | 67.96 394 | 66.16 405 | 95.15 379 | 47.89 403 | 58.54 400 | 67.99 405 | 29.74 402 | 87.54 399 | 50.20 404 | 77.83 358 | 62.87 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 146 | 95.74 153 | 98.32 122 | 91.47 369 | 95.56 168 | 99.84 127 | 97.30 282 | 97.74 18 | 97.89 143 | 99.35 130 | 79.62 285 | 99.85 108 | 99.25 54 | 99.24 123 | 99.55 144 |
|
| jajsoiax | | | 91.92 261 | 91.18 264 | 94.15 281 | 91.35 370 | 90.95 291 | 99.00 271 | 97.42 269 | 92.61 198 | 87.38 319 | 97.08 257 | 72.46 339 | 97.36 279 | 94.53 202 | 88.77 269 | 94.13 305 |
|
| MDA-MVSNet-bldmvs | | | 84.09 345 | 81.52 352 | 91.81 333 | 91.32 371 | 88.00 339 | 98.67 305 | 95.92 362 | 80.22 375 | 55.60 403 | 93.32 361 | 68.29 358 | 93.60 379 | 73.76 378 | 76.61 369 | 93.82 330 |
|
| MVP-Stereo | | | 90.93 281 | 90.45 276 | 92.37 327 | 91.25 372 | 88.76 325 | 98.05 336 | 96.17 357 | 87.27 318 | 84.04 347 | 95.30 322 | 78.46 299 | 97.27 290 | 83.78 336 | 99.70 88 | 91.09 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 336 | 83.32 344 | 92.10 329 | 90.96 373 | 88.58 331 | 99.20 248 | 96.52 347 | 79.70 377 | 57.12 402 | 92.69 366 | 79.11 291 | 93.86 376 | 77.10 371 | 77.46 362 | 93.86 327 |
|
| YYNet1 | | | 85.50 337 | 83.33 343 | 92.00 330 | 90.89 374 | 88.38 335 | 99.22 247 | 96.55 346 | 79.60 378 | 57.26 401 | 92.72 365 | 79.09 293 | 93.78 377 | 77.25 370 | 77.37 363 | 93.84 328 |
|
| anonymousdsp | | | 91.79 268 | 90.92 268 | 94.41 275 | 90.76 375 | 92.93 243 | 98.93 278 | 97.17 295 | 89.08 283 | 87.46 318 | 95.30 322 | 78.43 300 | 96.92 312 | 92.38 239 | 88.73 271 | 93.39 343 |
|
| lessismore_v0 | | | | | 90.53 341 | 90.58 376 | 80.90 380 | | 95.80 363 | | 77.01 379 | 95.84 295 | 66.15 366 | 96.95 310 | 83.03 341 | 75.05 373 | 93.74 335 |
|
| EG-PatchMatch MVS | | | 85.35 338 | 83.81 341 | 89.99 348 | 90.39 377 | 81.89 373 | 98.21 330 | 96.09 359 | 81.78 369 | 74.73 386 | 93.72 358 | 51.56 394 | 97.12 298 | 79.16 363 | 88.61 273 | 90.96 373 |
|
| EGC-MVSNET | | | 69.38 363 | 63.76 373 | 86.26 366 | 90.32 378 | 81.66 376 | 96.24 369 | 93.85 391 | 0.99 413 | 3.22 414 | 92.33 371 | 52.44 391 | 92.92 384 | 59.53 400 | 84.90 306 | 84.21 394 |
|
| CMPMVS |  | 61.59 21 | 84.75 341 | 85.14 336 | 83.57 370 | 90.32 378 | 62.54 398 | 96.98 356 | 97.59 252 | 74.33 391 | 69.95 392 | 96.66 273 | 64.17 372 | 98.32 234 | 87.88 301 | 88.41 278 | 89.84 382 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 344 | 82.92 347 | 89.21 352 | 90.03 380 | 82.60 367 | 96.89 359 | 95.62 368 | 80.59 373 | 75.77 385 | 89.17 382 | 65.04 371 | 94.79 368 | 72.12 382 | 81.02 337 | 90.23 378 |
|
| pmmvs6 | | | 85.69 333 | 83.84 340 | 91.26 337 | 90.00 381 | 84.41 360 | 97.82 341 | 96.15 358 | 75.86 385 | 81.29 361 | 95.39 317 | 61.21 381 | 96.87 315 | 83.52 339 | 73.29 375 | 92.50 359 |
|
| DSMNet-mixed | | | 88.28 323 | 88.24 318 | 88.42 360 | 89.64 382 | 75.38 389 | 98.06 335 | 89.86 403 | 85.59 341 | 88.20 308 | 92.14 372 | 76.15 318 | 91.95 389 | 78.46 365 | 96.05 199 | 97.92 238 |
|
| UnsupCasMVSNet_eth | | | 85.52 335 | 83.99 337 | 90.10 346 | 89.36 383 | 83.51 364 | 96.65 361 | 97.99 211 | 89.14 282 | 75.89 384 | 93.83 356 | 63.25 375 | 93.92 374 | 81.92 349 | 67.90 389 | 92.88 353 |
|
| Anonymous20231206 | | | 86.32 331 | 85.42 334 | 89.02 354 | 89.11 384 | 80.53 383 | 99.05 266 | 95.28 374 | 85.43 343 | 82.82 353 | 93.92 355 | 74.40 332 | 93.44 380 | 66.99 390 | 81.83 328 | 93.08 350 |
|
| Anonymous20240521 | | | 85.15 339 | 83.81 341 | 89.16 353 | 88.32 385 | 82.69 366 | 98.80 294 | 95.74 364 | 79.72 376 | 81.53 360 | 90.99 375 | 65.38 369 | 94.16 372 | 72.69 380 | 81.11 335 | 90.63 376 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 348 | 81.68 351 | 90.03 347 | 88.30 386 | 82.82 365 | 98.46 314 | 95.22 376 | 73.92 392 | 76.00 383 | 91.29 374 | 55.00 388 | 96.94 311 | 68.40 388 | 88.51 277 | 90.34 377 |
|
| test20.03 | | | 84.72 342 | 83.99 337 | 86.91 364 | 88.19 387 | 80.62 382 | 98.88 283 | 95.94 361 | 88.36 304 | 78.87 370 | 94.62 345 | 68.75 354 | 89.11 395 | 66.52 392 | 75.82 370 | 91.00 372 |
|
| KD-MVS_self_test | | | 83.59 349 | 82.06 349 | 88.20 361 | 86.93 388 | 80.70 381 | 97.21 349 | 96.38 351 | 82.87 363 | 82.49 354 | 88.97 383 | 67.63 360 | 92.32 387 | 73.75 379 | 62.30 398 | 91.58 369 |
|
| MIMVSNet1 | | | 82.58 350 | 80.51 356 | 88.78 356 | 86.68 389 | 84.20 361 | 96.65 361 | 95.41 372 | 78.75 379 | 78.59 373 | 92.44 367 | 51.88 393 | 89.76 394 | 65.26 395 | 78.95 350 | 92.38 362 |
|
| CL-MVSNet_self_test | | | 84.50 343 | 83.15 346 | 88.53 359 | 86.00 390 | 81.79 374 | 98.82 291 | 97.35 275 | 85.12 345 | 83.62 351 | 90.91 377 | 76.66 310 | 91.40 390 | 69.53 386 | 60.36 399 | 92.40 361 |
|
| UnsupCasMVSNet_bld | | | 79.97 359 | 77.03 364 | 88.78 356 | 85.62 391 | 81.98 372 | 93.66 385 | 97.35 275 | 75.51 388 | 70.79 391 | 83.05 397 | 48.70 395 | 94.91 366 | 78.31 366 | 60.29 400 | 89.46 387 |
|
| Patchmatch-RL test | | | 86.90 329 | 85.98 333 | 89.67 349 | 84.45 392 | 75.59 388 | 89.71 398 | 92.43 396 | 86.89 325 | 77.83 377 | 90.94 376 | 94.22 79 | 93.63 378 | 87.75 302 | 69.61 381 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 346 | 81.97 350 | 90.20 345 | 84.15 393 | 87.09 344 | 98.10 334 | 94.73 382 | 83.05 361 | 74.10 388 | 87.77 389 | 65.56 368 | 94.01 373 | 81.08 353 | 69.24 383 | 89.49 386 |
|
| test_fmvs3 | | | 79.99 358 | 80.17 357 | 79.45 375 | 84.02 394 | 62.83 396 | 99.05 266 | 93.49 394 | 88.29 306 | 80.06 368 | 86.65 392 | 28.09 404 | 88.00 396 | 88.63 289 | 73.27 376 | 87.54 392 |
|
| PM-MVS | | | 80.47 355 | 78.88 360 | 85.26 367 | 83.79 395 | 72.22 391 | 95.89 376 | 91.08 400 | 85.71 340 | 76.56 382 | 88.30 385 | 36.64 400 | 93.90 375 | 82.39 345 | 69.57 382 | 89.66 385 |
|
| new-patchmatchnet | | | 81.19 352 | 79.34 359 | 86.76 365 | 82.86 396 | 80.36 384 | 97.92 338 | 95.27 375 | 82.09 368 | 72.02 389 | 86.87 391 | 62.81 377 | 90.74 393 | 71.10 383 | 63.08 396 | 89.19 389 |
|
| mvsany_test3 | | | 82.12 351 | 81.14 353 | 85.06 368 | 81.87 397 | 70.41 392 | 97.09 353 | 92.14 397 | 91.27 246 | 77.84 376 | 88.73 384 | 39.31 399 | 95.49 355 | 90.75 266 | 71.24 378 | 89.29 388 |
|
| WB-MVS | | | 76.28 361 | 77.28 363 | 73.29 381 | 81.18 398 | 54.68 406 | 97.87 340 | 94.19 386 | 81.30 370 | 69.43 393 | 90.70 378 | 77.02 305 | 82.06 404 | 35.71 409 | 68.11 388 | 83.13 395 |
|
| test_f | | | 78.40 360 | 77.59 362 | 80.81 374 | 80.82 399 | 62.48 399 | 96.96 357 | 93.08 395 | 83.44 359 | 74.57 387 | 84.57 396 | 27.95 405 | 92.63 385 | 84.15 331 | 72.79 377 | 87.32 393 |
|
| SSC-MVS | | | 75.42 362 | 76.40 365 | 72.49 385 | 80.68 400 | 53.62 407 | 97.42 345 | 94.06 388 | 80.42 374 | 68.75 394 | 90.14 380 | 76.54 312 | 81.66 405 | 33.25 410 | 66.34 392 | 82.19 396 |
|
| pmmvs3 | | | 80.27 356 | 77.77 361 | 87.76 363 | 80.32 401 | 82.43 369 | 98.23 328 | 91.97 398 | 72.74 394 | 78.75 371 | 87.97 388 | 57.30 387 | 90.99 392 | 70.31 384 | 62.37 397 | 89.87 381 |
|
| testf1 | | | 68.38 366 | 66.92 367 | 72.78 383 | 78.80 402 | 50.36 409 | 90.95 396 | 87.35 408 | 55.47 399 | 58.95 398 | 88.14 386 | 20.64 409 | 87.60 397 | 57.28 401 | 64.69 393 | 80.39 398 |
|
| APD_test2 | | | 68.38 366 | 66.92 367 | 72.78 383 | 78.80 402 | 50.36 409 | 90.95 396 | 87.35 408 | 55.47 399 | 58.95 398 | 88.14 386 | 20.64 409 | 87.60 397 | 57.28 401 | 64.69 393 | 80.39 398 |
|
| ambc | | | | | 83.23 371 | 77.17 404 | 62.61 397 | 87.38 400 | 94.55 385 | | 76.72 381 | 86.65 392 | 30.16 401 | 96.36 335 | 84.85 330 | 69.86 380 | 90.73 375 |
|
| test_vis3_rt | | | 68.82 364 | 66.69 369 | 75.21 380 | 76.24 405 | 60.41 401 | 96.44 364 | 68.71 415 | 75.13 389 | 50.54 406 | 69.52 404 | 16.42 414 | 96.32 337 | 80.27 356 | 66.92 391 | 68.89 402 |
|
| TDRefinement | | | 84.76 340 | 82.56 348 | 91.38 336 | 74.58 406 | 84.80 359 | 97.36 347 | 94.56 384 | 84.73 350 | 80.21 366 | 96.12 292 | 63.56 374 | 98.39 224 | 87.92 300 | 63.97 395 | 90.95 374 |
|
| E-PMN | | | 52.30 374 | 52.18 376 | 52.67 391 | 71.51 407 | 45.40 413 | 93.62 386 | 76.60 413 | 36.01 407 | 43.50 408 | 64.13 407 | 27.11 406 | 67.31 410 | 31.06 411 | 26.06 406 | 45.30 409 |
|
| EMVS | | | 51.44 376 | 51.22 378 | 52.11 392 | 70.71 408 | 44.97 415 | 94.04 382 | 75.66 414 | 35.34 409 | 42.40 409 | 61.56 410 | 28.93 403 | 65.87 411 | 27.64 412 | 24.73 407 | 45.49 408 |
|
| PMMVS2 | | | 67.15 369 | 64.15 372 | 76.14 379 | 70.56 409 | 62.07 400 | 93.89 383 | 87.52 407 | 58.09 398 | 60.02 397 | 78.32 399 | 22.38 408 | 84.54 402 | 59.56 399 | 47.03 404 | 81.80 397 |
|
| FPMVS | | | 68.72 365 | 68.72 366 | 68.71 387 | 65.95 410 | 44.27 416 | 95.97 375 | 94.74 381 | 51.13 402 | 53.26 404 | 90.50 379 | 25.11 407 | 83.00 403 | 60.80 398 | 80.97 339 | 78.87 400 |
|
| wuyk23d | | | 20.37 380 | 20.84 383 | 18.99 395 | 65.34 411 | 27.73 418 | 50.43 406 | 7.67 419 | 9.50 412 | 8.01 413 | 6.34 413 | 6.13 417 | 26.24 412 | 23.40 413 | 10.69 411 | 2.99 410 |
|
| LCM-MVSNet | | | 67.77 368 | 64.73 371 | 76.87 378 | 62.95 412 | 56.25 405 | 89.37 399 | 93.74 392 | 44.53 404 | 61.99 396 | 80.74 398 | 20.42 411 | 86.53 401 | 69.37 387 | 59.50 401 | 87.84 390 |
|
| MVE |  | 53.74 22 | 51.54 375 | 47.86 379 | 62.60 389 | 59.56 413 | 50.93 408 | 79.41 403 | 77.69 412 | 35.69 408 | 36.27 410 | 61.76 409 | 5.79 418 | 69.63 408 | 37.97 408 | 36.61 405 | 67.24 403 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 372 | 52.24 375 | 67.66 388 | 49.27 414 | 56.82 404 | 83.94 401 | 82.02 411 | 70.47 395 | 33.28 411 | 64.54 406 | 17.23 413 | 69.16 409 | 45.59 406 | 23.85 408 | 77.02 401 |
|
| tmp_tt | | | 65.23 371 | 62.94 374 | 72.13 386 | 44.90 415 | 50.03 411 | 81.05 402 | 89.42 406 | 38.45 405 | 48.51 407 | 99.90 18 | 54.09 390 | 78.70 407 | 91.84 248 | 18.26 409 | 87.64 391 |
|
| PMVS |  | 49.05 23 | 53.75 373 | 51.34 377 | 60.97 390 | 40.80 416 | 34.68 417 | 74.82 404 | 89.62 405 | 37.55 406 | 28.67 412 | 72.12 401 | 7.09 416 | 81.63 406 | 43.17 407 | 68.21 387 | 66.59 404 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 378 | 39.14 381 | 33.31 393 | 19.94 417 | 24.83 419 | 98.36 322 | 9.75 418 | 15.53 411 | 51.31 405 | 87.14 390 | 19.62 412 | 17.74 413 | 47.10 405 | 3.47 412 | 57.36 406 |
|
| testmvs | | | 40.60 377 | 44.45 380 | 29.05 394 | 19.49 418 | 14.11 420 | 99.68 178 | 18.47 417 | 20.74 410 | 64.59 395 | 98.48 212 | 10.95 415 | 17.09 414 | 56.66 403 | 11.01 410 | 55.94 407 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.02 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 23.43 379 | 31.24 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 98.09 203 | 0.00 414 | 0.00 415 | 99.67 95 | 83.37 252 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 7.60 382 | 10.13 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 91.20 153 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 8.28 381 | 11.04 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 99.40 124 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 415 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 90.97 288 | | | | | | | | 86.10 322 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 56 | 97.49 8 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 133 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 19 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 4 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 132 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 63 | | | | 99.59 132 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 78 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 181 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 377 | | | | 59.23 411 | 93.20 110 | 97.74 269 | 91.06 257 | | |
|
| test_post | | | | | | | | | | | | 63.35 408 | 94.43 68 | 98.13 249 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 373 | 95.12 49 | 97.95 260 | | | |
|
| MTMP | | | | | | | | 99.87 107 | 96.49 348 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 70 | 99.94 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 53 | | 95.78 80 | 99.73 32 | 99.76 64 | 96.00 32 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 218 | | 94.21 133 | 99.85 9 | | | 99.95 69 | 96.96 159 | | |
|
| 新几何2 | | | | | | | | 99.40 222 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 212 | 98.71 66 | 93.46 165 | | | | 100.00 1 | 94.36 204 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 93 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 270 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 24 | | | | |
|
| testdata1 | | | | | | | | 99.28 242 | | 96.35 69 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 225 | | | | | 98.37 230 | 97.79 135 | 89.55 259 | 94.52 268 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 200 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 278 | | | 96.63 56 | 93.01 230 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 127 | | 96.38 65 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 272 | 99.86 119 | | 96.76 52 | | | | | | 89.59 258 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 404 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 125 | | | | | | | | |
|
| door | | | | | | | | | 90.31 401 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 268 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 127 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 226 | | | 98.39 224 | | | 94.53 266 |
|
| HQP3-MVS | | | | | | | | | 97.89 223 | | | | | | | 89.60 256 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 276 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 137 | 96.11 371 | | 91.89 224 | 98.06 137 | | 94.40 70 | | 94.30 206 | | 99.67 115 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 292 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 280 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 121 | | | | |
|