This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10596.80 11298.51 11099.99 195.60 16799.09 25598.84 5893.32 17096.74 17499.72 8286.04 229100.00 198.01 12199.43 11499.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 21100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8999.92 1396.38 29100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11599.95 5398.38 16195.04 9898.61 11699.80 5293.39 100100.00 198.64 92100.00 199.98 48
CPTT-MVS97.64 8697.32 9198.58 10299.97 395.77 15699.96 3598.35 16789.90 27598.36 12699.79 5691.18 15699.99 3698.37 10599.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 8198.44 12592.06 22098.40 12599.84 4295.68 39100.00 198.19 11199.71 8799.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13395.35 9298.03 13899.75 7094.03 8699.98 4398.11 11699.83 7699.99 23
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9799.95 5398.61 8294.77 10699.31 7999.85 3194.22 79100.00 198.70 8799.98 3299.98 48
region2R98.54 3398.37 3699.05 6899.96 897.18 10499.96 3598.55 9894.87 10499.45 6799.85 3194.07 85100.00 198.67 89100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10499.95 5398.60 8494.77 10699.31 7999.84 4293.73 95100.00 198.70 8799.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 15100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 8399.96 896.62 12499.97 2898.39 15794.43 11998.90 9899.87 2494.30 77100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 15096.63 5699.75 2999.93 1197.49 8
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 133100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5999.94 1397.50 9399.94 6998.42 14596.22 7299.41 7199.78 6094.34 7599.96 6198.92 7399.95 4999.99 23
X-MVStestdata93.83 21592.06 24899.15 5999.94 1397.50 9399.94 6998.42 14596.22 7299.41 7141.37 41294.34 7599.96 6198.92 7399.95 4999.99 23
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 35100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15797.20 3899.46 6699.85 3195.53 4399.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10799.95 5398.39 15794.70 11098.26 13299.81 5191.84 147100.00 198.85 7999.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10798.33 17293.97 14799.76 2899.87 2494.99 5799.75 13298.55 97100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 9199.94 1396.13 14699.82 13798.43 13394.56 11497.52 15299.70 8694.40 7099.98 4397.00 15599.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9499.72 8294.03 8699.98 4398.73 86100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13397.27 3499.80 1799.94 496.71 22100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15097.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13397.26 3699.80 1799.88 2196.71 22100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17497.28 3299.83 1399.91 1497.22 17100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3598.42 14597.28 3299.86 799.94 497.22 17
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10199.95 5398.42 14597.50 2699.52 6299.88 2197.43 1499.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4298.43 13399.63 4699.85 108
FOURS199.92 3197.66 8799.95 5398.36 16595.58 8699.52 62
ZD-MVS99.92 3198.57 5698.52 10592.34 21299.31 7999.83 4495.06 5299.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8999.93 7698.39 15794.04 14298.80 10399.74 7792.98 115100.00 198.16 11399.76 8499.93 76
TEST999.92 3198.92 2999.96 3598.43 13393.90 15299.71 3599.86 2795.88 3699.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13394.35 12499.71 3599.86 2795.94 3399.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13394.35 12499.69 3899.85 3195.94 3399.85 108
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11199.75 15799.50 1893.90 15299.37 7699.76 6493.24 109100.00 197.75 13999.96 4699.98 48
ACMMPcopyleft97.74 8197.44 8498.66 9499.92 3196.13 14699.18 25099.45 1994.84 10596.41 18499.71 8491.40 15099.99 3697.99 12398.03 16199.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13396.48 5999.80 1799.93 1197.44 12100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 150100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6899.85 3195.38 46100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10798.36 16594.08 13799.74 3199.73 7994.08 8499.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24598.47 11798.14 1099.08 9099.91 1493.09 112100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5297.44 12100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10798.44 12597.48 2799.64 4599.94 496.68 2499.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 65
CSCG97.10 11097.04 10297.27 18499.89 4591.92 26799.90 9399.07 3488.67 29895.26 20699.82 4793.17 11199.98 4398.15 11499.47 10899.90 83
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8899.94 6998.44 12594.31 12798.50 12099.82 4793.06 11399.99 3698.30 10999.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 8099.88 4997.04 11099.84 12798.35 16794.92 10299.32 7899.80 5293.35 10299.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8798.33 17293.22 17399.78 2699.89 1994.57 6799.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11998.38 16193.19 17499.77 2799.94 495.54 41100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10999.98 1598.80 6290.78 26199.62 4999.78 6095.30 47100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7799.39 22698.28 18195.76 8197.18 16299.88 2192.74 123100.00 198.67 8999.88 6999.99 23
LS3D95.84 16295.11 17298.02 13899.85 5495.10 18898.74 29798.50 11487.22 31993.66 22499.86 2787.45 21199.95 6990.94 26199.81 8299.02 205
HPM-MVScopyleft97.96 6497.72 7298.68 9299.84 5696.39 13399.90 9398.17 19392.61 19898.62 11599.57 10891.87 14699.67 14598.87 7899.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8999.83 5796.59 12699.40 22298.51 10895.29 9498.51 11999.76 6493.60 9999.71 13898.53 9899.52 10399.95 71
save fliter99.82 5898.79 4099.96 3598.40 15497.66 21
PLCcopyleft95.54 397.93 6697.89 6798.05 13799.82 5894.77 19799.92 8198.46 11993.93 15097.20 16199.27 13595.44 4599.97 5397.41 14499.51 10699.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8699.81 6096.60 12599.82 13798.30 17993.95 14999.37 7699.77 6292.84 11999.76 13198.95 7099.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9999.80 6196.27 13699.36 23198.50 11495.21 9698.30 12999.75 7093.29 10699.73 13798.37 10599.30 12099.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 9099.79 6296.37 13499.76 15498.31 17694.43 11999.40 7399.75 7093.28 10799.78 12598.90 7699.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13499.76 15498.31 17694.43 11999.40 7399.75 7092.95 11698.90 7699.92 6399.97 58
HPM-MVS_fast97.80 7697.50 8298.68 9299.79 6296.42 12999.88 10498.16 19791.75 23098.94 9699.54 11191.82 14899.65 14797.62 14299.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9398.21 18893.53 16399.81 1599.89 1994.70 6599.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 9198.64 7699.85 3195.63 4099.94 5499.99 23
OMC-MVS97.28 10297.23 9497.41 17599.76 6693.36 23699.65 18397.95 21696.03 7697.41 15699.70 8689.61 18799.51 15396.73 16498.25 15399.38 170
新几何199.42 3799.75 6898.27 6398.63 8092.69 19399.55 5799.82 4794.40 70100.00 191.21 25399.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7699.38 4299.74 6998.41 6299.74 16098.18 19293.35 16896.45 18199.85 3192.64 12599.97 5398.91 7599.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14998.38 16196.73 5399.88 699.74 7794.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5798.40 15499.65 4294.76 6299.75 13299.98 3299.99 23
原ACMM198.96 7799.73 7296.99 11298.51 10894.06 14099.62 4999.85 3194.97 5899.96 6195.11 18499.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8499.73 7296.63 12399.97 2897.92 22198.07 1198.76 10799.55 10995.00 5699.94 7799.91 1597.68 16699.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10897.00 4398.52 11899.71 8487.80 20699.95 6999.75 2899.38 11699.83 91
F-COLMAP96.93 12196.95 10596.87 19499.71 7591.74 27299.85 12297.95 21693.11 17795.72 19999.16 14692.35 13599.94 7795.32 18299.35 11898.92 208
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 17196.38 6599.81 1599.76 6494.59 6699.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 22799.67 7786.91 34799.95 5398.89 4997.60 2299.90 399.76 6496.54 2799.98 4399.94 1199.82 8099.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12298.37 16494.68 11199.53 6099.83 4492.87 118100.00 198.66 9199.84 7599.99 23
DeepPCF-MVS95.94 297.71 8498.98 1293.92 29299.63 7981.76 37599.96 3598.56 9299.47 199.19 8799.99 194.16 83100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8899.62 8096.80 12099.90 9399.51 1797.60 2299.20 8599.36 12993.71 9699.91 8997.99 12398.71 14199.61 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7599.80 5290.49 17499.96 6199.89 1699.43 11499.98 48
PVSNet_BlendedMVS96.05 15695.82 15296.72 19999.59 8196.99 11299.95 5399.10 3194.06 14098.27 13095.80 29689.00 19899.95 6999.12 5887.53 29093.24 347
PVSNet_Blended97.94 6597.64 7698.83 8599.59 8196.99 112100.00 199.10 3195.38 9198.27 13099.08 14989.00 19899.95 6999.12 5899.25 12299.57 142
PatchMatch-RL96.04 15795.40 16197.95 14099.59 8195.22 18399.52 20699.07 3493.96 14896.49 18098.35 22182.28 25799.82 12090.15 27799.22 12598.81 215
dcpmvs_297.42 9798.09 5495.42 23299.58 8587.24 34399.23 24696.95 31994.28 13098.93 9799.73 7994.39 7399.16 17599.89 1699.82 8099.86 89
test22299.55 8697.41 9999.34 23298.55 9891.86 22599.27 8399.83 4493.84 9399.95 4999.99 23
CNLPA97.76 8097.38 8698.92 8199.53 8796.84 11799.87 10798.14 20193.78 15596.55 17999.69 8892.28 13799.98 4397.13 15099.44 11299.93 76
API-MVS97.86 7097.66 7598.47 11299.52 8895.41 17499.47 21598.87 5291.68 23198.84 10099.85 3192.34 13699.99 3698.44 10199.96 46100.00 1
PVSNet91.05 1397.13 10996.69 11798.45 11499.52 8895.81 15499.95 5399.65 1294.73 10899.04 9299.21 14284.48 24499.95 6994.92 18998.74 14099.58 140
114514_t97.41 9896.83 11099.14 6199.51 9097.83 7999.89 10198.27 18388.48 30299.06 9199.66 9790.30 17999.64 14896.32 16899.97 4299.96 64
cl2293.77 21993.25 22395.33 23699.49 9194.43 20199.61 19198.09 20390.38 26689.16 29195.61 30390.56 17097.34 28191.93 24584.45 31094.21 293
testdata98.42 11799.47 9295.33 17798.56 9293.78 15599.79 2599.85 3193.64 9899.94 7794.97 18799.94 54100.00 1
MAR-MVS97.43 9397.19 9698.15 13199.47 9294.79 19699.05 26698.76 6392.65 19698.66 11399.82 4788.52 20399.98 4398.12 11599.63 9299.67 115
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 19793.42 21697.91 14699.46 9494.04 21498.93 27897.48 26481.15 37190.04 26499.55 10987.02 21799.95 6988.97 28798.11 15799.73 105
MVS_111021_LR98.42 4498.38 3498.53 10999.39 9595.79 15599.87 10799.86 296.70 5498.78 10499.79 5692.03 14399.90 9199.17 5799.86 7499.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31499.42 2297.03 4299.02 9399.09 14899.35 198.21 24599.73 3299.78 8399.77 101
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10499.93 7699.90 196.81 5198.67 11299.77 6293.92 8899.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12597.96 1499.55 5799.94 497.18 19100.00 193.81 21799.94 5499.98 48
TAPA-MVS92.12 894.42 20293.60 20996.90 19399.33 9891.78 27199.78 14698.00 21089.89 27694.52 21299.47 11591.97 14499.18 17369.90 38599.52 10399.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6897.94 6397.70 15999.28 10095.20 18499.98 1597.15 29895.53 8899.62 4999.79 5692.08 14298.38 22898.75 8599.28 12199.52 153
test_fmvsm_n_192098.44 4198.61 2397.92 14499.27 10195.18 185100.00 198.90 4798.05 1299.80 1799.73 7992.64 12599.99 3699.58 3899.51 10698.59 225
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7899.98 1598.85 5698.25 499.92 299.75 7094.72 6399.97 5399.87 1999.64 9199.95 71
test_yl97.83 7297.37 8799.21 4999.18 10397.98 7499.64 18799.27 2791.43 24097.88 14498.99 15895.84 3799.84 11698.82 8095.32 21999.79 97
DCV-MVSNet97.83 7297.37 8799.21 4999.18 10397.98 7499.64 18799.27 2791.43 24097.88 14498.99 15895.84 3799.84 11698.82 8095.32 21999.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10799.65 1298.17 898.75 10999.75 7092.76 12299.94 7799.88 1899.44 11299.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 8199.98 1598.86 5398.25 499.90 399.76 6494.21 8199.97 5399.87 1999.52 10399.98 48
DeepC-MVS94.51 496.92 12296.40 12798.45 11499.16 10795.90 15299.66 18298.06 20696.37 6894.37 21599.49 11483.29 25399.90 9197.63 14199.61 9799.55 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13499.24 14092.58 12899.94 7798.63 9499.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7897.91 6597.43 17499.10 10994.42 20299.99 597.10 30395.07 9799.68 3999.75 7092.95 11698.34 23298.38 10399.14 12799.54 148
Anonymous20240521193.10 23791.99 24996.40 20999.10 10989.65 31798.88 28397.93 21883.71 35794.00 22198.75 18768.79 35399.88 10295.08 18591.71 25199.68 113
fmvsm_s_conf0.5_n97.80 7697.85 6897.67 16099.06 11194.41 20399.98 1598.97 4097.34 2999.63 4699.69 8887.27 21399.97 5399.62 3799.06 13198.62 224
HyFIR lowres test96.66 13696.43 12697.36 18099.05 11293.91 21999.70 17599.80 390.54 26496.26 18798.08 22892.15 14098.23 24496.84 16395.46 21499.93 76
LFMVS94.75 19093.56 21298.30 12399.03 11395.70 16198.74 29797.98 21387.81 31298.47 12199.39 12667.43 36199.53 15098.01 12195.20 22299.67 115
AllTest92.48 25191.64 25495.00 24699.01 11488.43 33298.94 27796.82 33386.50 32888.71 29698.47 21374.73 33099.88 10285.39 32596.18 19696.71 254
TestCases95.00 24699.01 11488.43 33296.82 33386.50 32888.71 29698.47 21374.73 33099.88 10285.39 32596.18 19696.71 254
COLMAP_ROBcopyleft90.47 1492.18 25891.49 26094.25 28099.00 11688.04 33898.42 32096.70 34082.30 36788.43 30499.01 15576.97 30699.85 10886.11 32196.50 19194.86 265
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 17695.68 15794.36 27698.99 11784.98 35799.96 3596.65 34297.60 2299.73 3298.96 16471.58 34399.93 8598.31 10899.37 11798.17 232
HY-MVS92.50 797.79 7897.17 9899.63 1798.98 11899.32 997.49 34499.52 1595.69 8398.32 12897.41 24793.32 10499.77 12898.08 11995.75 21099.81 94
VNet97.21 10696.57 12299.13 6598.97 11997.82 8099.03 26999.21 2994.31 12799.18 8898.88 17586.26 22899.89 9698.93 7294.32 23199.69 112
thres20096.96 11996.21 13399.22 4898.97 11998.84 3699.85 12299.71 793.17 17596.26 18798.88 17589.87 18499.51 15394.26 20794.91 22499.31 180
tfpn200view996.79 12695.99 13899.19 5198.94 12198.82 3799.78 14699.71 792.86 18396.02 19298.87 17889.33 19199.50 15593.84 21494.57 22799.27 186
thres40096.78 12895.99 13899.16 5798.94 12198.82 3799.78 14699.71 792.86 18396.02 19298.87 17889.33 19199.50 15593.84 21494.57 22799.16 193
sasdasda97.09 11296.32 12899.39 4098.93 12398.95 2799.72 16897.35 27594.45 11697.88 14499.42 11986.71 22099.52 15198.48 9993.97 23799.72 107
Anonymous2023121189.86 30888.44 31594.13 28398.93 12390.68 29698.54 31198.26 18476.28 38386.73 32595.54 30770.60 34997.56 27490.82 26480.27 34594.15 301
canonicalmvs97.09 11296.32 12899.39 4098.93 12398.95 2799.72 16897.35 27594.45 11697.88 14499.42 11986.71 22099.52 15198.48 9993.97 23799.72 107
SDMVSNet94.80 18693.96 20097.33 18298.92 12695.42 17399.59 19398.99 3792.41 20992.55 23997.85 23775.81 32098.93 18797.90 12991.62 25297.64 244
sd_testset93.55 22692.83 22995.74 22598.92 12690.89 29398.24 32698.85 5692.41 20992.55 23997.85 23771.07 34898.68 20493.93 21191.62 25297.64 244
EPNet_dtu95.71 16695.39 16296.66 20298.92 12693.41 23399.57 19898.90 4796.19 7497.52 15298.56 20592.65 12497.36 27977.89 36798.33 14899.20 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7899.60 2298.92 12699.28 1799.89 10199.52 1595.58 8698.24 13399.39 12693.33 10399.74 13497.98 12595.58 21399.78 100
CHOSEN 1792x268896.81 12596.53 12397.64 16298.91 13093.07 23899.65 18399.80 395.64 8495.39 20398.86 18084.35 24699.90 9196.98 15799.16 12699.95 71
thres100view90096.74 13195.92 14899.18 5298.90 13198.77 4299.74 16099.71 792.59 20095.84 19598.86 18089.25 19399.50 15593.84 21494.57 22799.27 186
thres600view796.69 13495.87 15199.14 6198.90 13198.78 4199.74 16099.71 792.59 20095.84 19598.86 18089.25 19399.50 15593.44 22694.50 23099.16 193
MSDG94.37 20493.36 22097.40 17698.88 13393.95 21899.37 22997.38 27385.75 33990.80 25799.17 14584.11 24899.88 10286.35 31898.43 14698.36 230
MGCFI-Net97.00 11796.22 13299.34 4398.86 13498.80 3999.67 18097.30 28294.31 12797.77 14899.41 12386.36 22699.50 15598.38 10393.90 23999.72 107
h-mvs3394.92 18494.36 18996.59 20498.85 13591.29 28498.93 27898.94 4195.90 7798.77 10598.42 21990.89 16499.77 12897.80 13270.76 37998.72 221
Anonymous2024052992.10 25990.65 27196.47 20598.82 13690.61 29898.72 29998.67 7375.54 38793.90 22398.58 20366.23 36599.90 9194.70 19890.67 25498.90 211
PVSNet_Blended_VisFu97.27 10396.81 11198.66 9498.81 13796.67 12299.92 8198.64 7694.51 11596.38 18598.49 20989.05 19799.88 10297.10 15398.34 14799.43 166
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20498.17 19397.34 2999.85 999.85 3191.20 15399.89 9699.41 4899.67 8998.69 222
CANet_DTU96.76 12996.15 13498.60 9998.78 13997.53 9099.84 12797.63 24397.25 3799.20 8599.64 10081.36 26699.98 4392.77 23798.89 13498.28 231
mvsany_test197.82 7497.90 6697.55 16798.77 14093.04 24199.80 14397.93 21896.95 4599.61 5599.68 9490.92 16199.83 11899.18 5698.29 15299.80 96
alignmvs97.81 7597.33 9099.25 4698.77 14098.66 5199.99 598.44 12594.40 12398.41 12399.47 11593.65 9799.42 16498.57 9694.26 23399.67 115
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8399.98 1598.44 12596.85 4699.80 1799.91 1497.57 699.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20698.08 20597.05 4199.86 799.86 2790.65 16799.71 13899.39 5098.63 14298.69 222
miper_enhance_ethall94.36 20693.98 19995.49 22898.68 14495.24 18199.73 16597.29 28593.28 17289.86 26995.97 29494.37 7497.05 30292.20 24184.45 31094.19 294
ETVMVS97.03 11696.64 11898.20 12798.67 14597.12 10899.89 10198.57 8991.10 25198.17 13598.59 20093.86 9298.19 24695.64 17995.24 22199.28 185
test250697.53 8897.19 9698.58 10298.66 14696.90 11698.81 29299.77 594.93 10097.95 14098.96 16492.51 13099.20 17194.93 18898.15 15499.64 121
ECVR-MVScopyleft95.66 16995.05 17497.51 17098.66 14693.71 22398.85 28998.45 12094.93 10096.86 17098.96 16475.22 32699.20 17195.34 18198.15 15499.64 121
fmvsm_s_conf0.5_n_a97.73 8397.72 7297.77 15498.63 14894.26 20899.96 3598.92 4697.18 3999.75 2999.69 8887.00 21899.97 5399.46 4498.89 13499.08 201
MVSMamba_pp98.05 6397.76 7198.92 8198.56 14998.06 6999.92 8197.75 23596.28 7099.71 3598.43 21890.37 17699.11 17698.99 6899.88 6999.58 140
testing22297.08 11596.75 11498.06 13698.56 14996.82 11899.85 12298.61 8292.53 20498.84 10098.84 18493.36 10198.30 23695.84 17694.30 23299.05 203
test111195.57 17194.98 17797.37 17898.56 14993.37 23598.86 28798.45 12094.95 9996.63 17698.95 16975.21 32799.11 17695.02 18698.14 15699.64 121
MVSTER95.53 17295.22 16896.45 20798.56 14997.72 8299.91 8797.67 24092.38 21191.39 24997.14 25497.24 1697.30 28594.80 19487.85 28594.34 285
bld_raw_dy_0_6497.44 9297.68 7496.72 19998.55 15391.46 283100.00 197.77 23494.03 14399.72 3499.87 2490.31 17899.11 17698.99 6899.88 6999.59 132
mamv497.88 6897.52 8198.95 7898.55 15398.15 6499.93 7697.74 23694.01 14499.65 4298.44 21790.50 17399.11 17699.00 6799.89 6699.59 132
VDD-MVS93.77 21992.94 22796.27 21398.55 15390.22 30798.77 29697.79 23290.85 25796.82 17299.42 11961.18 38299.77 12898.95 7094.13 23498.82 214
tpmvs94.28 20893.57 21196.40 20998.55 15391.50 28195.70 37898.55 9887.47 31492.15 24294.26 35391.42 14998.95 18688.15 29795.85 20698.76 217
UGNet95.33 17794.57 18697.62 16598.55 15394.85 19298.67 30599.32 2695.75 8296.80 17396.27 28572.18 34099.96 6194.58 20199.05 13298.04 236
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17894.10 19698.43 11698.55 15395.99 15097.91 33997.31 28190.35 26889.48 28099.22 14185.19 23799.89 9690.40 27498.47 14599.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 12696.72 11597.00 18998.51 15993.70 22499.71 17198.60 8492.96 17997.09 16398.34 22296.67 2698.85 19092.11 24396.50 19198.44 227
iter_conf05_1197.49 9097.34 8997.93 14398.51 15995.15 18799.58 19597.64 24293.76 15799.26 8498.38 22090.51 17299.10 18098.58 9599.88 6999.54 148
test_vis1_n_192095.44 17495.31 16595.82 22398.50 16188.74 32699.98 1597.30 28297.84 1699.85 999.19 14366.82 36399.97 5398.82 8099.46 11098.76 217
BH-w/o95.71 16695.38 16396.68 20198.49 16292.28 25899.84 12797.50 26292.12 21792.06 24598.79 18584.69 24298.67 20595.29 18399.66 9099.09 199
baseline195.78 16394.86 17998.54 10798.47 16398.07 6899.06 26297.99 21192.68 19494.13 22098.62 19993.28 10798.69 20393.79 21985.76 29898.84 213
EPMVS96.53 14096.01 13798.09 13498.43 16496.12 14896.36 36599.43 2193.53 16397.64 15095.04 33194.41 6998.38 22891.13 25598.11 15799.75 103
kuosan93.17 23492.60 23594.86 25398.40 16589.54 31998.44 31698.53 10484.46 35288.49 30097.92 23590.57 16997.05 30283.10 34093.49 24297.99 237
sss97.57 8797.03 10399.18 5298.37 16698.04 7199.73 16599.38 2393.46 16598.76 10799.06 15191.21 15299.89 9696.33 16797.01 18399.62 126
testing1197.48 9197.27 9298.10 13398.36 16796.02 14999.92 8198.45 12093.45 16798.15 13698.70 19095.48 4499.22 16797.85 13195.05 22399.07 202
BH-untuned95.18 17894.83 18096.22 21498.36 16791.22 28599.80 14397.32 28090.91 25591.08 25398.67 19283.51 25098.54 21194.23 20899.61 9798.92 208
testing9197.16 10896.90 10797.97 13998.35 16995.67 16499.91 8798.42 14592.91 18297.33 15898.72 18894.81 6199.21 16896.98 15794.63 22699.03 204
testing9997.17 10796.91 10697.95 14098.35 16995.70 16199.91 8798.43 13392.94 18097.36 15798.72 18894.83 6099.21 16897.00 15594.64 22598.95 207
ET-MVSNet_ETH3D94.37 20493.28 22297.64 16298.30 17197.99 7399.99 597.61 24894.35 12471.57 39099.45 11896.23 3095.34 35996.91 16285.14 30599.59 132
AUN-MVS93.28 23192.60 23595.34 23598.29 17290.09 31099.31 23698.56 9291.80 22996.35 18698.00 23189.38 19098.28 23992.46 23869.22 38497.64 244
FMVSNet392.69 24791.58 25695.99 21898.29 17297.42 9899.26 24497.62 24589.80 27789.68 27395.32 32181.62 26496.27 33987.01 31485.65 29994.29 287
PMMVS96.76 12996.76 11396.76 19798.28 17492.10 26299.91 8797.98 21394.12 13599.53 6099.39 12686.93 21998.73 19896.95 16097.73 16499.45 163
hse-mvs294.38 20394.08 19795.31 23798.27 17590.02 31199.29 24198.56 9295.90 7798.77 10598.00 23190.89 16498.26 24397.80 13269.20 38597.64 244
PVSNet_088.03 1991.80 26690.27 28096.38 21198.27 17590.46 30299.94 6999.61 1493.99 14686.26 33597.39 24971.13 34799.89 9698.77 8367.05 39098.79 216
UA-Net96.54 13995.96 14498.27 12498.23 17795.71 16098.00 33798.45 12093.72 15998.41 12399.27 13588.71 20299.66 14691.19 25497.69 16599.44 165
test_cas_vis1_n_192096.59 13896.23 13197.65 16198.22 17894.23 20999.99 597.25 28997.77 1799.58 5699.08 14977.10 30399.97 5397.64 14099.45 11198.74 219
FE-MVS95.70 16895.01 17697.79 15198.21 17994.57 19895.03 37998.69 6888.90 29397.50 15496.19 28792.60 12799.49 16089.99 27997.94 16399.31 180
GG-mvs-BLEND98.54 10798.21 17998.01 7293.87 38498.52 10597.92 14197.92 23599.02 297.94 26298.17 11299.58 10099.67 115
mvs_anonymous95.65 17095.03 17597.53 16898.19 18195.74 15899.33 23397.49 26390.87 25690.47 26097.10 25688.23 20497.16 29395.92 17497.66 16799.68 113
MVS_Test96.46 14295.74 15398.61 9898.18 18297.23 10299.31 23697.15 29891.07 25298.84 10097.05 26088.17 20598.97 18494.39 20397.50 16999.61 129
BH-RMVSNet95.18 17894.31 19297.80 14998.17 18395.23 18299.76 15497.53 25892.52 20594.27 21899.25 13976.84 30898.80 19290.89 26399.54 10299.35 175
dongtai91.55 27291.13 26592.82 32298.16 18486.35 34899.47 21598.51 10883.24 36085.07 34497.56 24390.33 17794.94 36576.09 37591.73 25097.18 251
RPSCF91.80 26692.79 23188.83 35598.15 18569.87 39398.11 33396.60 34483.93 35594.33 21699.27 13579.60 28699.46 16391.99 24493.16 24797.18 251
ETV-MVS97.92 6797.80 7098.25 12598.14 18696.48 12799.98 1597.63 24395.61 8599.29 8299.46 11792.55 12998.82 19199.02 6698.54 14399.46 161
IS-MVSNet96.29 15295.90 14997.45 17298.13 18794.80 19599.08 25797.61 24892.02 22295.54 20298.96 16490.64 16898.08 25193.73 22297.41 17399.47 160
test_fmvsmconf_n98.43 4398.32 4098.78 8698.12 18896.41 13099.99 598.83 5998.22 699.67 4099.64 10091.11 15799.94 7799.67 3699.62 9399.98 48
ab-mvs94.69 19193.42 21698.51 11098.07 18996.26 13796.49 36398.68 7090.31 26994.54 21197.00 26276.30 31599.71 13895.98 17393.38 24599.56 143
XVG-OURS-SEG-HR94.79 18794.70 18595.08 24398.05 19089.19 32199.08 25797.54 25693.66 16094.87 20999.58 10778.78 29499.79 12397.31 14693.40 24496.25 258
EIA-MVS97.53 8897.46 8397.76 15698.04 19194.84 19399.98 1597.61 24894.41 12297.90 14299.59 10592.40 13498.87 18898.04 12099.13 12899.59 132
XVG-OURS94.82 18594.74 18395.06 24498.00 19289.19 32199.08 25797.55 25494.10 13694.71 21099.62 10380.51 27899.74 13496.04 17293.06 24996.25 258
dp95.05 18194.43 18896.91 19297.99 19392.73 24896.29 36897.98 21389.70 27895.93 19494.67 34493.83 9498.45 21786.91 31796.53 19099.54 148
tpmrst96.27 15495.98 14097.13 18697.96 19493.15 23796.34 36698.17 19392.07 21898.71 11195.12 32993.91 8998.73 19894.91 19196.62 18899.50 157
TR-MVS94.54 19793.56 21297.49 17197.96 19494.34 20698.71 30097.51 26190.30 27094.51 21398.69 19175.56 32198.77 19592.82 23695.99 20099.35 175
Vis-MVSNet (Re-imp)96.32 14995.98 14097.35 18197.93 19694.82 19499.47 21598.15 20091.83 22695.09 20799.11 14791.37 15197.47 27793.47 22597.43 17099.74 104
MDTV_nov1_ep1395.69 15597.90 19794.15 21195.98 37498.44 12593.12 17697.98 13995.74 29895.10 5098.58 20890.02 27896.92 185
Fast-Effi-MVS+95.02 18294.19 19497.52 16997.88 19894.55 19999.97 2897.08 30688.85 29594.47 21497.96 23484.59 24398.41 22089.84 28197.10 17899.59 132
ADS-MVSNet293.80 21893.88 20393.55 30597.87 19985.94 35194.24 38096.84 33090.07 27296.43 18294.48 34990.29 18095.37 35887.44 30497.23 17599.36 173
ADS-MVSNet94.79 18794.02 19897.11 18897.87 19993.79 22094.24 38098.16 19790.07 27296.43 18294.48 34990.29 18098.19 24687.44 30497.23 17599.36 173
Effi-MVS+96.30 15195.69 15598.16 12897.85 20196.26 13797.41 34697.21 29190.37 26798.65 11498.58 20386.61 22398.70 20297.11 15297.37 17499.52 153
PatchmatchNetpermissive95.94 15995.45 16097.39 17797.83 20294.41 20396.05 37298.40 15492.86 18397.09 16395.28 32694.21 8198.07 25389.26 28598.11 15799.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 19493.61 20797.74 15897.82 20396.26 13799.96 3597.78 23385.76 33794.00 22197.54 24476.95 30799.21 16897.23 14895.43 21697.76 243
1112_ss96.01 15895.20 16998.42 11797.80 20496.41 13099.65 18396.66 34192.71 19192.88 23599.40 12492.16 13999.30 16591.92 24693.66 24099.55 144
Test_1112_low_res95.72 16494.83 18098.42 11797.79 20596.41 13099.65 18396.65 34292.70 19292.86 23696.13 29092.15 14099.30 16591.88 24793.64 24199.55 144
Effi-MVS+-dtu94.53 19995.30 16692.22 32897.77 20682.54 36899.59 19397.06 30894.92 10295.29 20595.37 31985.81 23097.89 26394.80 19497.07 17996.23 260
tpm cat193.51 22792.52 24196.47 20597.77 20691.47 28296.13 37098.06 20680.98 37292.91 23493.78 35789.66 18598.87 18887.03 31396.39 19499.09 199
FA-MVS(test-final)95.86 16095.09 17398.15 13197.74 20895.62 16696.31 36798.17 19391.42 24296.26 18796.13 29090.56 17099.47 16292.18 24297.07 17999.35 175
xiu_mvs_v1_base_debu97.43 9397.06 9998.55 10497.74 20898.14 6599.31 23697.86 22796.43 6299.62 4999.69 8885.56 23299.68 14299.05 6098.31 14997.83 239
xiu_mvs_v1_base97.43 9397.06 9998.55 10497.74 20898.14 6599.31 23697.86 22796.43 6299.62 4999.69 8885.56 23299.68 14299.05 6098.31 14997.83 239
xiu_mvs_v1_base_debi97.43 9397.06 9998.55 10497.74 20898.14 6599.31 23697.86 22796.43 6299.62 4999.69 8885.56 23299.68 14299.05 6098.31 14997.83 239
EPP-MVSNet96.69 13496.60 12096.96 19197.74 20893.05 24099.37 22998.56 9288.75 29695.83 19799.01 15596.01 3198.56 20996.92 16197.20 17799.25 188
gg-mvs-nofinetune93.51 22791.86 25398.47 11297.72 21397.96 7692.62 38898.51 10874.70 39097.33 15869.59 40398.91 397.79 26697.77 13799.56 10199.67 115
IB-MVS92.85 694.99 18393.94 20198.16 12897.72 21395.69 16399.99 598.81 6094.28 13092.70 23796.90 26495.08 5199.17 17496.07 17173.88 37499.60 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9897.02 10498.59 10197.71 21597.52 9199.97 2898.54 10191.83 22697.45 15599.04 15297.50 799.10 18094.75 19696.37 19599.16 193
Syy-MVS90.00 30690.63 27288.11 36297.68 21674.66 39099.71 17198.35 16790.79 25992.10 24398.67 19279.10 29293.09 38263.35 39695.95 20396.59 256
myMVS_eth3d94.46 20194.76 18293.55 30597.68 21690.97 28899.71 17198.35 16790.79 25992.10 24398.67 19292.46 13393.09 38287.13 31095.95 20396.59 256
test_fmvs1_n94.25 20994.36 18993.92 29297.68 21683.70 36399.90 9396.57 34597.40 2899.67 4098.88 17561.82 37999.92 8898.23 11099.13 12898.14 235
diffmvspermissive97.00 11796.64 11898.09 13497.64 21996.17 14599.81 13997.19 29294.67 11298.95 9599.28 13286.43 22498.76 19698.37 10597.42 17299.33 178
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 16495.15 17197.45 17297.62 22094.28 20799.28 24298.24 18594.27 13296.84 17198.94 17179.39 28798.76 19693.25 22798.49 14499.30 182
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 11096.72 11598.22 12697.60 22196.70 12199.92 8198.54 10191.11 25097.07 16598.97 16297.47 1099.03 18293.73 22296.09 19898.92 208
miper_ehance_all_eth93.16 23592.60 23594.82 25497.57 22293.56 22899.50 21097.07 30788.75 29688.85 29595.52 30990.97 16096.74 32090.77 26584.45 31094.17 295
testing393.92 21394.23 19392.99 31997.54 22390.23 30699.99 599.16 3090.57 26391.33 25298.63 19892.99 11492.52 38682.46 34495.39 21796.22 261
LCM-MVSNet-Re92.31 25592.60 23591.43 33597.53 22479.27 38599.02 27091.83 39992.07 21880.31 36594.38 35283.50 25195.48 35697.22 14997.58 16899.54 148
GBi-Net90.88 28389.82 28994.08 28497.53 22491.97 26398.43 31796.95 31987.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
test190.88 28389.82 28994.08 28497.53 22491.97 26398.43 31796.95 31987.05 32089.68 27394.72 34071.34 34496.11 34487.01 31485.65 29994.17 295
FMVSNet291.02 28089.56 29495.41 23397.53 22495.74 15898.98 27297.41 27187.05 32088.43 30495.00 33471.34 34496.24 34185.12 32785.21 30494.25 290
tttt051796.85 12396.49 12497.92 14497.48 22895.89 15399.85 12298.54 10190.72 26296.63 17698.93 17397.47 1099.02 18393.03 23495.76 20998.85 212
casdiffmvs_mvgpermissive96.43 14395.94 14697.89 14897.44 22995.47 17099.86 11997.29 28593.35 16896.03 19199.19 14385.39 23598.72 20097.89 13097.04 18199.49 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 10097.24 9397.80 14997.41 23095.64 16599.99 597.06 30894.59 11399.63 4699.32 13189.20 19698.14 24898.76 8499.23 12499.62 126
c3_l92.53 25091.87 25294.52 26697.40 23192.99 24299.40 22296.93 32487.86 31088.69 29895.44 31389.95 18396.44 33290.45 27180.69 34194.14 304
fmvsm_s_conf0.1_n97.30 10197.21 9597.60 16697.38 23294.40 20599.90 9398.64 7696.47 6199.51 6499.65 9984.99 24099.93 8599.22 5599.09 13098.46 226
CDS-MVSNet96.34 14896.07 13597.13 18697.37 23394.96 19099.53 20597.91 22291.55 23495.37 20498.32 22395.05 5397.13 29693.80 21895.75 21099.30 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 13196.26 13098.16 12897.36 23496.48 12799.96 3598.29 18091.93 22395.77 19898.07 22995.54 4198.29 23790.55 26998.89 13499.70 110
miper_lstm_enhance91.81 26391.39 26293.06 31897.34 23589.18 32399.38 22796.79 33586.70 32787.47 31795.22 32790.00 18295.86 35388.26 29581.37 33194.15 301
baseline96.43 14395.98 14097.76 15697.34 23595.17 18699.51 20897.17 29593.92 15196.90 16999.28 13285.37 23698.64 20697.50 14396.86 18799.46 161
cl____92.31 25591.58 25694.52 26697.33 23792.77 24499.57 19896.78 33686.97 32487.56 31595.51 31089.43 18996.62 32588.60 29082.44 32394.16 300
DIV-MVS_self_test92.32 25491.60 25594.47 27097.31 23892.74 24699.58 19596.75 33786.99 32387.64 31395.54 30789.55 18896.50 32988.58 29182.44 32394.17 295
casdiffmvspermissive96.42 14595.97 14397.77 15497.30 23994.98 18999.84 12797.09 30593.75 15896.58 17899.26 13885.07 23898.78 19497.77 13797.04 18199.54 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 20693.48 21496.99 19097.29 24093.54 22999.96 3596.72 33988.35 30593.43 22598.94 17182.05 25898.05 25488.12 29996.48 19399.37 172
eth_miper_zixun_eth92.41 25391.93 25093.84 29697.28 24190.68 29698.83 29096.97 31888.57 30189.19 29095.73 30089.24 19596.69 32389.97 28081.55 32994.15 301
MVSFormer96.94 12096.60 12097.95 14097.28 24197.70 8599.55 20297.27 28791.17 24799.43 6999.54 11190.92 16196.89 31394.67 19999.62 9399.25 188
lupinMVS97.85 7197.60 7898.62 9797.28 24197.70 8599.99 597.55 25495.50 9099.43 6999.67 9590.92 16198.71 20198.40 10299.62 9399.45 163
SCA94.69 19193.81 20597.33 18297.10 24494.44 20098.86 28798.32 17493.30 17196.17 19095.59 30576.48 31397.95 26091.06 25797.43 17099.59 132
TAMVS95.85 16195.58 15896.65 20397.07 24593.50 23099.17 25197.82 23191.39 24495.02 20898.01 23092.20 13897.30 28593.75 22195.83 20799.14 196
Fast-Effi-MVS+-dtu93.72 22293.86 20493.29 31097.06 24686.16 34999.80 14396.83 33192.66 19592.58 23897.83 23981.39 26597.67 27189.75 28296.87 18696.05 263
CostFormer96.10 15595.88 15096.78 19697.03 24792.55 25497.08 35497.83 23090.04 27498.72 11094.89 33895.01 5598.29 23796.54 16695.77 20899.50 157
test_fmvsmvis_n_192097.67 8597.59 8097.91 14697.02 24895.34 17699.95 5398.45 12097.87 1597.02 16699.59 10589.64 18699.98 4399.41 4899.34 11998.42 228
test-LLR96.47 14196.04 13697.78 15297.02 24895.44 17199.96 3598.21 18894.07 13895.55 20096.38 28193.90 9098.27 24190.42 27298.83 13899.64 121
test-mter96.39 14695.93 14797.78 15297.02 24895.44 17199.96 3598.21 18891.81 22895.55 20096.38 28195.17 4898.27 24190.42 27298.83 13899.64 121
gm-plane-assit96.97 25193.76 22291.47 23898.96 16498.79 19394.92 189
WB-MVSnew92.90 24192.77 23293.26 31296.95 25293.63 22699.71 17198.16 19791.49 23594.28 21798.14 22681.33 26796.48 33079.47 35995.46 21489.68 383
QAPM95.40 17594.17 19599.10 6696.92 25397.71 8399.40 22298.68 7089.31 28188.94 29498.89 17482.48 25699.96 6193.12 23399.83 7699.62 126
KD-MVS_2432*160088.00 32586.10 32993.70 30196.91 25494.04 21497.17 35197.12 30184.93 34781.96 35692.41 36892.48 13194.51 37079.23 36052.68 40292.56 357
miper_refine_blended88.00 32586.10 32993.70 30196.91 25494.04 21497.17 35197.12 30184.93 34781.96 35692.41 36892.48 13194.51 37079.23 36052.68 40292.56 357
tpm295.47 17395.18 17096.35 21296.91 25491.70 27696.96 35797.93 21888.04 30998.44 12295.40 31593.32 10497.97 25794.00 21095.61 21299.38 170
FMVSNet588.32 32287.47 32490.88 33896.90 25788.39 33497.28 34895.68 36682.60 36684.67 34592.40 37079.83 28491.16 39176.39 37481.51 33093.09 349
3Dnovator+91.53 1196.31 15095.24 16799.52 2896.88 25898.64 5499.72 16898.24 18595.27 9588.42 30698.98 16082.76 25599.94 7797.10 15399.83 7699.96 64
Patchmatch-test92.65 24991.50 25996.10 21796.85 25990.49 30191.50 39397.19 29282.76 36590.23 26195.59 30595.02 5498.00 25677.41 36996.98 18499.82 92
MVS96.60 13795.56 15999.72 1396.85 25999.22 2098.31 32398.94 4191.57 23390.90 25699.61 10486.66 22299.96 6197.36 14599.88 6999.99 23
3Dnovator91.47 1296.28 15395.34 16499.08 6796.82 26197.47 9699.45 21998.81 6095.52 8989.39 28199.00 15781.97 25999.95 6997.27 14799.83 7699.84 90
EI-MVSNet93.73 22193.40 21994.74 25596.80 26292.69 24999.06 26297.67 24088.96 29091.39 24999.02 15388.75 20197.30 28591.07 25687.85 28594.22 291
CVMVSNet94.68 19394.94 17893.89 29596.80 26286.92 34699.06 26298.98 3894.45 11694.23 21999.02 15385.60 23195.31 36090.91 26295.39 21799.43 166
IterMVS-LS92.69 24792.11 24694.43 27496.80 26292.74 24699.45 21996.89 32788.98 28889.65 27695.38 31888.77 20096.34 33690.98 26082.04 32694.22 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 28290.17 28493.12 31596.78 26590.42 30498.89 28197.05 31089.03 28586.49 33095.42 31476.59 31195.02 36287.22 30984.09 31393.93 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 12495.96 14499.48 3496.74 26698.52 5898.31 32398.86 5395.82 7989.91 26798.98 16087.49 21099.96 6197.80 13299.73 8699.96 64
IterMVS-SCA-FT90.85 28590.16 28592.93 32096.72 26789.96 31298.89 28196.99 31488.95 29186.63 32795.67 30176.48 31395.00 36387.04 31284.04 31693.84 328
MVS-HIRNet86.22 33283.19 34595.31 23796.71 26890.29 30592.12 39097.33 27962.85 39786.82 32470.37 40269.37 35297.49 27675.12 37797.99 16298.15 233
VDDNet93.12 23691.91 25196.76 19796.67 26992.65 25298.69 30398.21 18882.81 36497.75 14999.28 13261.57 38099.48 16198.09 11894.09 23598.15 233
dmvs_re93.20 23393.15 22493.34 30896.54 27083.81 36298.71 30098.51 10891.39 24492.37 24198.56 20578.66 29697.83 26593.89 21289.74 25598.38 229
MIMVSNet90.30 29888.67 31295.17 24296.45 27191.64 27892.39 38997.15 29885.99 33490.50 25993.19 36466.95 36294.86 36782.01 34893.43 24399.01 206
CR-MVSNet93.45 23092.62 23495.94 21996.29 27292.66 25092.01 39196.23 35592.62 19796.94 16793.31 36291.04 15896.03 34979.23 36095.96 20199.13 197
RPMNet89.76 31087.28 32597.19 18596.29 27292.66 25092.01 39198.31 17670.19 39696.94 16785.87 39587.25 21499.78 12562.69 39795.96 20199.13 197
tt080591.28 27590.18 28394.60 26196.26 27487.55 34098.39 32198.72 6589.00 28789.22 28798.47 21362.98 37698.96 18590.57 26888.00 28497.28 250
Patchmtry89.70 31188.49 31493.33 30996.24 27589.94 31591.37 39496.23 35578.22 38087.69 31293.31 36291.04 15896.03 34980.18 35882.10 32594.02 311
test_vis1_rt86.87 33086.05 33289.34 35196.12 27678.07 38699.87 10783.54 41092.03 22178.21 37589.51 38145.80 39699.91 8996.25 16993.11 24890.03 380
JIA-IIPM91.76 26990.70 27094.94 24896.11 27787.51 34193.16 38798.13 20275.79 38697.58 15177.68 40092.84 11997.97 25788.47 29496.54 18999.33 178
OpenMVScopyleft90.15 1594.77 18993.59 21098.33 12196.07 27897.48 9599.56 20098.57 8990.46 26586.51 32998.95 16978.57 29799.94 7793.86 21399.74 8597.57 248
PAPM98.60 3098.42 3199.14 6196.05 27998.96 2699.90 9399.35 2596.68 5598.35 12799.66 9796.45 2898.51 21299.45 4599.89 6699.96 64
CLD-MVS94.06 21293.90 20294.55 26596.02 28090.69 29599.98 1597.72 23796.62 5891.05 25598.85 18377.21 30298.47 21398.11 11689.51 26194.48 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 29588.75 31195.25 23995.99 28190.16 30891.22 39597.54 25676.80 38297.26 16086.01 39491.88 14596.07 34866.16 39395.91 20599.51 155
ACMH+89.98 1690.35 29689.54 29592.78 32495.99 28186.12 35098.81 29297.18 29489.38 28083.14 35297.76 24168.42 35798.43 21889.11 28686.05 29793.78 331
DeepMVS_CXcopyleft82.92 37295.98 28358.66 40396.01 36092.72 19078.34 37495.51 31058.29 38598.08 25182.57 34385.29 30292.03 365
ACMP92.05 992.74 24592.42 24393.73 29795.91 28488.72 32799.81 13997.53 25894.13 13487.00 32398.23 22474.07 33498.47 21396.22 17088.86 26893.99 316
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 22593.03 22695.35 23495.86 28586.94 34599.87 10796.36 35296.85 4699.54 5998.79 18552.41 39299.83 11898.64 9298.97 13399.29 184
HQP-NCC95.78 28699.87 10796.82 4893.37 226
ACMP_Plane95.78 28699.87 10796.82 4893.37 226
HQP-MVS94.61 19594.50 18794.92 24995.78 28691.85 26899.87 10797.89 22396.82 4893.37 22698.65 19580.65 27698.39 22497.92 12789.60 25694.53 266
NP-MVS95.77 28991.79 27098.65 195
test_fmvsmconf0.1_n97.74 8197.44 8498.64 9695.76 29096.20 14299.94 6998.05 20898.17 898.89 9999.42 11987.65 20899.90 9199.50 4199.60 9999.82 92
plane_prior695.76 29091.72 27580.47 280
ACMM91.95 1092.88 24292.52 24193.98 29195.75 29289.08 32499.77 14997.52 26093.00 17889.95 26697.99 23376.17 31798.46 21693.63 22488.87 26794.39 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 21592.84 22896.80 19595.73 29393.57 22799.88 10497.24 29092.57 20292.92 23296.66 27378.73 29597.67 27187.75 30294.06 23699.17 192
plane_prior195.73 293
jason97.24 10496.86 10998.38 12095.73 29397.32 10099.97 2897.40 27295.34 9398.60 11799.54 11187.70 20798.56 20997.94 12699.47 10899.25 188
jason: jason.
HQP_MVS94.49 20094.36 18994.87 25095.71 29691.74 27299.84 12797.87 22596.38 6593.01 23098.59 20080.47 28098.37 23097.79 13589.55 25994.52 268
plane_prior795.71 29691.59 280
ITE_SJBPF92.38 32695.69 29885.14 35595.71 36592.81 18689.33 28498.11 22770.23 35098.42 21985.91 32388.16 28193.59 339
fmvsm_s_conf0.1_n_a97.09 11296.90 10797.63 16495.65 29994.21 21099.83 13498.50 11496.27 7199.65 4299.64 10084.72 24199.93 8599.04 6398.84 13798.74 219
ACMH89.72 1790.64 28989.63 29293.66 30395.64 30088.64 33098.55 30997.45 26589.03 28581.62 35997.61 24269.75 35198.41 22089.37 28387.62 28993.92 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 13396.49 12497.37 17895.63 30195.96 15199.74 16098.88 5192.94 18091.61 24798.97 16297.72 598.62 20794.83 19398.08 16097.53 249
FMVSNet188.50 32186.64 32794.08 28495.62 30291.97 26398.43 31796.95 31983.00 36286.08 33794.72 34059.09 38496.11 34481.82 35084.07 31494.17 295
LPG-MVS_test92.96 23992.71 23393.71 29995.43 30388.67 32899.75 15797.62 24592.81 18690.05 26298.49 20975.24 32498.40 22295.84 17689.12 26394.07 308
LGP-MVS_train93.71 29995.43 30388.67 32897.62 24592.81 18690.05 26298.49 20975.24 32498.40 22295.84 17689.12 26394.07 308
tpm93.70 22393.41 21894.58 26395.36 30587.41 34297.01 35596.90 32690.85 25796.72 17594.14 35490.40 17596.84 31690.75 26688.54 27699.51 155
D2MVS92.76 24492.59 23993.27 31195.13 30689.54 31999.69 17699.38 2392.26 21487.59 31494.61 34685.05 23997.79 26691.59 25088.01 28392.47 360
VPA-MVSNet92.70 24691.55 25896.16 21595.09 30796.20 14298.88 28399.00 3691.02 25491.82 24695.29 32576.05 31997.96 25995.62 18081.19 33294.30 286
LTVRE_ROB88.28 1890.29 29989.05 30694.02 28795.08 30890.15 30997.19 35097.43 26784.91 34983.99 34897.06 25974.00 33598.28 23984.08 33287.71 28793.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 32786.51 32891.94 33195.05 30985.57 35397.65 34394.08 38784.40 35381.82 35896.85 26862.14 37898.33 23380.25 35786.37 29691.91 367
test0.0.03 193.86 21493.61 20794.64 25995.02 31092.18 26199.93 7698.58 8794.07 13887.96 31098.50 20893.90 9094.96 36481.33 35193.17 24696.78 253
UniMVSNet (Re)93.07 23892.13 24595.88 22094.84 31196.24 14199.88 10498.98 3892.49 20789.25 28595.40 31587.09 21697.14 29593.13 23278.16 35594.26 288
USDC90.00 30688.96 30793.10 31794.81 31288.16 33698.71 30095.54 37093.66 16083.75 35097.20 25365.58 36798.31 23583.96 33587.49 29192.85 354
VPNet91.81 26390.46 27495.85 22294.74 31395.54 16998.98 27298.59 8692.14 21690.77 25897.44 24668.73 35597.54 27594.89 19277.89 35794.46 272
FIs94.10 21093.43 21596.11 21694.70 31496.82 11899.58 19598.93 4592.54 20389.34 28397.31 25087.62 20997.10 29994.22 20986.58 29494.40 278
UniMVSNet_ETH3D90.06 30588.58 31394.49 26994.67 31588.09 33797.81 34297.57 25383.91 35688.44 30297.41 24757.44 38697.62 27391.41 25188.59 27597.77 242
UniMVSNet_NR-MVSNet92.95 24092.11 24695.49 22894.61 31695.28 17999.83 13499.08 3391.49 23589.21 28896.86 26787.14 21596.73 32193.20 22877.52 36094.46 272
test_fmvs289.47 31489.70 29188.77 35894.54 31775.74 38799.83 13494.70 38394.71 10991.08 25396.82 27254.46 38997.78 26892.87 23588.27 27992.80 355
WR-MVS92.31 25591.25 26395.48 23194.45 31895.29 17899.60 19298.68 7090.10 27188.07 30996.89 26580.68 27596.80 31993.14 23179.67 34894.36 281
nrg03093.51 22792.53 24096.45 20794.36 31997.20 10399.81 13997.16 29791.60 23289.86 26997.46 24586.37 22597.68 27095.88 17580.31 34494.46 272
tfpnnormal89.29 31787.61 32394.34 27794.35 32094.13 21298.95 27698.94 4183.94 35484.47 34695.51 31074.84 32997.39 27877.05 37280.41 34291.48 370
iter_conf0594.61 19594.72 18494.27 27894.31 32191.01 28799.93 7696.30 35494.01 14492.92 23298.46 21690.66 16697.32 28397.12 15188.75 27094.49 270
FC-MVSNet-test93.81 21793.15 22495.80 22494.30 32296.20 14299.42 22198.89 4992.33 21389.03 29397.27 25287.39 21296.83 31793.20 22886.48 29594.36 281
MS-PatchMatch90.65 28890.30 27991.71 33494.22 32385.50 35498.24 32697.70 23888.67 29886.42 33296.37 28367.82 35998.03 25583.62 33799.62 9391.60 368
WR-MVS_H91.30 27390.35 27794.15 28194.17 32492.62 25399.17 25198.94 4188.87 29486.48 33194.46 35184.36 24596.61 32688.19 29678.51 35393.21 348
DU-MVS92.46 25291.45 26195.49 22894.05 32595.28 17999.81 13998.74 6492.25 21589.21 28896.64 27581.66 26296.73 32193.20 22877.52 36094.46 272
NR-MVSNet91.56 27190.22 28195.60 22694.05 32595.76 15798.25 32598.70 6791.16 24980.78 36496.64 27583.23 25496.57 32791.41 25177.73 35994.46 272
CP-MVSNet91.23 27790.22 28194.26 27993.96 32792.39 25799.09 25598.57 8988.95 29186.42 33296.57 27879.19 29096.37 33490.29 27578.95 35094.02 311
XXY-MVS91.82 26290.46 27495.88 22093.91 32895.40 17598.87 28697.69 23988.63 30087.87 31197.08 25774.38 33397.89 26391.66 24984.07 31494.35 284
PS-CasMVS90.63 29089.51 29793.99 29093.83 32991.70 27698.98 27298.52 10588.48 30286.15 33696.53 28075.46 32296.31 33888.83 28878.86 35293.95 319
test_040285.58 33483.94 33990.50 34293.81 33085.04 35698.55 30995.20 37776.01 38479.72 36995.13 32864.15 37396.26 34066.04 39486.88 29390.21 379
XVG-ACMP-BASELINE91.22 27890.75 26992.63 32593.73 33185.61 35298.52 31397.44 26692.77 18989.90 26896.85 26866.64 36498.39 22492.29 24088.61 27393.89 324
TranMVSNet+NR-MVSNet91.68 27090.61 27394.87 25093.69 33293.98 21799.69 17698.65 7491.03 25388.44 30296.83 27180.05 28396.18 34290.26 27676.89 36894.45 277
mvsmamba94.10 21093.72 20695.25 23993.57 33394.13 21299.67 18096.45 35093.63 16291.34 25197.77 24086.29 22797.22 29196.65 16588.10 28294.40 278
TransMVSNet (Re)87.25 32885.28 33593.16 31493.56 33491.03 28698.54 31194.05 38983.69 35881.09 36296.16 28875.32 32396.40 33376.69 37368.41 38692.06 364
v1090.25 30088.82 30994.57 26493.53 33593.43 23299.08 25796.87 32985.00 34687.34 32194.51 34780.93 27297.02 30982.85 34279.23 34993.26 346
testgi89.01 31988.04 32091.90 33293.49 33684.89 35899.73 16595.66 36793.89 15485.14 34298.17 22559.68 38394.66 36977.73 36888.88 26696.16 262
v890.54 29289.17 30294.66 25893.43 33793.40 23499.20 24896.94 32385.76 33787.56 31594.51 34781.96 26097.19 29284.94 32978.25 35493.38 344
V4291.28 27590.12 28694.74 25593.42 33893.46 23199.68 17897.02 31187.36 31689.85 27195.05 33081.31 26897.34 28187.34 30780.07 34693.40 342
pm-mvs189.36 31687.81 32294.01 28893.40 33991.93 26698.62 30896.48 34986.25 33283.86 34996.14 28973.68 33697.04 30586.16 32075.73 37293.04 351
v114491.09 27989.83 28894.87 25093.25 34093.69 22599.62 19096.98 31686.83 32689.64 27794.99 33580.94 27197.05 30285.08 32881.16 33393.87 326
v119290.62 29189.25 30194.72 25793.13 34193.07 23899.50 21097.02 31186.33 33189.56 27995.01 33279.22 28997.09 30182.34 34681.16 33394.01 313
v2v48291.30 27390.07 28795.01 24593.13 34193.79 22099.77 14997.02 31188.05 30889.25 28595.37 31980.73 27497.15 29487.28 30880.04 34794.09 307
OPM-MVS93.21 23292.80 23094.44 27293.12 34390.85 29499.77 14997.61 24896.19 7491.56 24898.65 19575.16 32898.47 21393.78 22089.39 26293.99 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 28689.52 29694.59 26293.11 34492.77 24499.56 20096.99 31486.38 33089.82 27294.95 33780.50 27997.10 29983.98 33480.41 34293.90 323
PEN-MVS90.19 30289.06 30593.57 30493.06 34590.90 29299.06 26298.47 11788.11 30785.91 33896.30 28476.67 30995.94 35287.07 31176.91 36793.89 324
v124090.20 30188.79 31094.44 27293.05 34692.27 25999.38 22796.92 32585.89 33589.36 28294.87 33977.89 30197.03 30780.66 35481.08 33694.01 313
v14890.70 28789.63 29293.92 29292.97 34790.97 28899.75 15796.89 32787.51 31388.27 30795.01 33281.67 26197.04 30587.40 30677.17 36593.75 332
v192192090.46 29389.12 30394.50 26892.96 34892.46 25599.49 21296.98 31686.10 33389.61 27895.30 32278.55 29897.03 30782.17 34780.89 34094.01 313
Baseline_NR-MVSNet90.33 29789.51 29792.81 32392.84 34989.95 31399.77 14993.94 39084.69 35189.04 29295.66 30281.66 26296.52 32890.99 25976.98 36691.97 366
test_method80.79 35479.70 35884.08 36992.83 35067.06 39599.51 20895.42 37154.34 40181.07 36393.53 35944.48 39792.22 38878.90 36477.23 36492.94 352
pmmvs492.10 25991.07 26795.18 24192.82 35194.96 19099.48 21496.83 33187.45 31588.66 29996.56 27983.78 24996.83 31789.29 28484.77 30893.75 332
LF4IMVS89.25 31888.85 30890.45 34492.81 35281.19 37898.12 33294.79 38091.44 23986.29 33497.11 25565.30 37098.11 25088.53 29385.25 30392.07 363
DTE-MVSNet89.40 31588.24 31892.88 32192.66 35389.95 31399.10 25498.22 18787.29 31785.12 34396.22 28676.27 31695.30 36183.56 33875.74 37193.41 341
EU-MVSNet90.14 30490.34 27889.54 35092.55 35481.06 37998.69 30398.04 20991.41 24386.59 32896.84 27080.83 27393.31 38186.20 31981.91 32794.26 288
APD_test181.15 35380.92 35481.86 37392.45 35559.76 40296.04 37393.61 39373.29 39377.06 37896.64 27544.28 39896.16 34372.35 38182.52 32189.67 384
our_test_390.39 29489.48 29993.12 31592.40 35689.57 31899.33 23396.35 35387.84 31185.30 34194.99 33584.14 24796.09 34780.38 35584.56 30993.71 337
ppachtmachnet_test89.58 31388.35 31693.25 31392.40 35690.44 30399.33 23396.73 33885.49 34285.90 33995.77 29781.09 27096.00 35176.00 37682.49 32293.30 345
v7n89.65 31288.29 31793.72 29892.22 35890.56 30099.07 26197.10 30385.42 34486.73 32594.72 34080.06 28297.13 29681.14 35278.12 35693.49 340
dmvs_testset83.79 34786.07 33176.94 37792.14 35948.60 41296.75 36090.27 40289.48 27978.65 37298.55 20779.25 28886.65 40066.85 39182.69 32095.57 264
PS-MVSNAJss93.64 22493.31 22194.61 26092.11 36092.19 26099.12 25397.38 27392.51 20688.45 30196.99 26391.20 15397.29 28894.36 20487.71 28794.36 281
pmmvs590.17 30389.09 30493.40 30792.10 36189.77 31699.74 16095.58 36985.88 33687.24 32295.74 29873.41 33796.48 33088.54 29283.56 31793.95 319
N_pmnet80.06 35780.78 35577.89 37691.94 36245.28 41498.80 29456.82 41678.10 38180.08 36793.33 36077.03 30495.76 35468.14 38982.81 31992.64 356
test_djsdf92.83 24392.29 24494.47 27091.90 36392.46 25599.55 20297.27 28791.17 24789.96 26596.07 29381.10 26996.89 31394.67 19988.91 26594.05 310
SixPastTwentyTwo88.73 32088.01 32190.88 33891.85 36482.24 37098.22 32995.18 37888.97 28982.26 35596.89 26571.75 34296.67 32484.00 33382.98 31893.72 336
K. test v388.05 32487.24 32690.47 34391.82 36582.23 37198.96 27597.42 26989.05 28476.93 38095.60 30468.49 35695.42 35785.87 32481.01 33893.75 332
OurMVSNet-221017-089.81 30989.48 29990.83 34091.64 36681.21 37798.17 33195.38 37391.48 23785.65 34097.31 25072.66 33897.29 28888.15 29784.83 30793.97 318
mvs_tets91.81 26391.08 26694.00 28991.63 36790.58 29998.67 30597.43 26792.43 20887.37 32097.05 26071.76 34197.32 28394.75 19688.68 27294.11 306
Gipumacopyleft66.95 37065.00 37072.79 38291.52 36867.96 39466.16 40595.15 37947.89 40358.54 40067.99 40529.74 40287.54 39950.20 40477.83 35862.87 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 14695.74 15398.32 12291.47 36995.56 16899.84 12797.30 28297.74 1897.89 14399.35 13079.62 28599.85 10899.25 5499.24 12399.55 144
jajsoiax91.92 26191.18 26494.15 28191.35 37090.95 29199.00 27197.42 26992.61 19887.38 31997.08 25772.46 33997.36 27994.53 20288.77 26994.13 305
MDA-MVSNet-bldmvs84.09 34581.52 35291.81 33391.32 37188.00 33998.67 30595.92 36280.22 37555.60 40393.32 36168.29 35893.60 37973.76 37876.61 36993.82 330
MVP-Stereo90.93 28190.45 27692.37 32791.25 37288.76 32598.05 33696.17 35787.27 31884.04 34795.30 32278.46 29997.27 29083.78 33699.70 8891.09 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 33683.32 34492.10 32990.96 37388.58 33199.20 24896.52 34779.70 37757.12 40292.69 36679.11 29193.86 37677.10 37177.46 36293.86 327
YYNet185.50 33783.33 34392.00 33090.89 37488.38 33599.22 24796.55 34679.60 37857.26 40192.72 36579.09 29393.78 37777.25 37077.37 36393.84 328
anonymousdsp91.79 26890.92 26894.41 27590.76 37592.93 24398.93 27897.17 29589.08 28387.46 31895.30 32278.43 30096.92 31292.38 23988.73 27193.39 343
lessismore_v090.53 34190.58 37680.90 38095.80 36377.01 37995.84 29566.15 36696.95 31083.03 34175.05 37393.74 335
EG-PatchMatch MVS85.35 33883.81 34189.99 34890.39 37781.89 37398.21 33096.09 35981.78 36974.73 38693.72 35851.56 39497.12 29879.16 36388.61 27390.96 373
EGC-MVSNET69.38 36363.76 37386.26 36690.32 37881.66 37696.24 36993.85 3910.99 4133.22 41492.33 37152.44 39192.92 38459.53 40084.90 30684.21 394
CMPMVSbinary61.59 2184.75 34185.14 33683.57 37090.32 37862.54 39896.98 35697.59 25274.33 39169.95 39296.66 27364.17 37298.32 23487.88 30188.41 27889.84 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 34482.92 34789.21 35290.03 38082.60 36796.89 35995.62 36880.59 37375.77 38589.17 38265.04 37194.79 36872.12 38281.02 33790.23 378
pmmvs685.69 33383.84 34091.26 33790.00 38184.41 36097.82 34196.15 35875.86 38581.29 36195.39 31761.21 38196.87 31583.52 33973.29 37592.50 359
DSMNet-mixed88.28 32388.24 31888.42 36089.64 38275.38 38998.06 33589.86 40385.59 34188.20 30892.14 37276.15 31891.95 38978.46 36596.05 19997.92 238
UnsupCasMVSNet_eth85.52 33583.99 33790.10 34689.36 38383.51 36496.65 36197.99 21189.14 28275.89 38493.83 35663.25 37593.92 37481.92 34967.90 38992.88 353
Anonymous2023120686.32 33185.42 33489.02 35489.11 38480.53 38399.05 26695.28 37485.43 34382.82 35393.92 35574.40 33293.44 38066.99 39081.83 32893.08 350
Anonymous2024052185.15 33983.81 34189.16 35388.32 38582.69 36698.80 29495.74 36479.72 37681.53 36090.99 37565.38 36994.16 37272.69 38081.11 33590.63 376
OpenMVS_ROBcopyleft79.82 2083.77 34881.68 35190.03 34788.30 38682.82 36598.46 31495.22 37673.92 39276.00 38391.29 37455.00 38896.94 31168.40 38888.51 27790.34 377
test20.0384.72 34283.99 33786.91 36488.19 38780.62 38298.88 28395.94 36188.36 30478.87 37094.62 34568.75 35489.11 39566.52 39275.82 37091.00 372
KD-MVS_self_test83.59 34982.06 34988.20 36186.93 38880.70 38197.21 34996.38 35182.87 36382.49 35488.97 38367.63 36092.32 38773.75 37962.30 39891.58 369
MIMVSNet182.58 35080.51 35688.78 35686.68 38984.20 36196.65 36195.41 37278.75 37978.59 37392.44 36751.88 39389.76 39465.26 39578.95 35092.38 362
CL-MVSNet_self_test84.50 34383.15 34688.53 35986.00 39081.79 37498.82 29197.35 27585.12 34583.62 35190.91 37776.66 31091.40 39069.53 38660.36 39992.40 361
UnsupCasMVSNet_bld79.97 35977.03 36488.78 35685.62 39181.98 37293.66 38597.35 27575.51 38870.79 39183.05 39748.70 39594.91 36678.31 36660.29 40089.46 387
Patchmatch-RL test86.90 32985.98 33389.67 34984.45 39275.59 38889.71 39892.43 39686.89 32577.83 37790.94 37694.22 7993.63 37887.75 30269.61 38199.79 97
pmmvs-eth3d84.03 34681.97 35090.20 34584.15 39387.09 34498.10 33494.73 38283.05 36174.10 38887.77 38965.56 36894.01 37381.08 35369.24 38389.49 386
test_fmvs379.99 35880.17 35779.45 37584.02 39462.83 39699.05 26693.49 39488.29 30680.06 36886.65 39228.09 40488.00 39688.63 28973.27 37687.54 392
PM-MVS80.47 35578.88 36085.26 36783.79 39572.22 39195.89 37691.08 40085.71 34076.56 38288.30 38536.64 40093.90 37582.39 34569.57 38289.66 385
new-patchmatchnet81.19 35279.34 35986.76 36582.86 39680.36 38497.92 33895.27 37582.09 36872.02 38986.87 39162.81 37790.74 39371.10 38363.08 39689.19 389
mvsany_test382.12 35181.14 35385.06 36881.87 39770.41 39297.09 35392.14 39791.27 24677.84 37688.73 38439.31 39995.49 35590.75 26671.24 37889.29 388
WB-MVS76.28 36177.28 36373.29 38181.18 39854.68 40697.87 34094.19 38681.30 37069.43 39390.70 37877.02 30582.06 40435.71 40968.11 38883.13 395
test_f78.40 36077.59 36280.81 37480.82 39962.48 39996.96 35793.08 39583.44 35974.57 38784.57 39627.95 40592.63 38584.15 33172.79 37787.32 393
SSC-MVS75.42 36276.40 36572.49 38580.68 40053.62 40797.42 34594.06 38880.42 37468.75 39490.14 38076.54 31281.66 40533.25 41066.34 39282.19 396
pmmvs380.27 35677.77 36187.76 36380.32 40182.43 36998.23 32891.97 39872.74 39478.75 37187.97 38857.30 38790.99 39270.31 38462.37 39789.87 381
testf168.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
APD_test268.38 36666.92 36772.78 38378.80 40250.36 40990.95 39687.35 40855.47 39958.95 39888.14 38620.64 40987.60 39757.28 40164.69 39380.39 398
ambc83.23 37177.17 40462.61 39787.38 40094.55 38576.72 38186.65 39230.16 40196.36 33584.85 33069.86 38090.73 375
test_vis3_rt68.82 36466.69 36975.21 38076.24 40560.41 40196.44 36468.71 41575.13 38950.54 40669.52 40416.42 41496.32 33780.27 35666.92 39168.89 402
TDRefinement84.76 34082.56 34891.38 33674.58 40684.80 35997.36 34794.56 38484.73 35080.21 36696.12 29263.56 37498.39 22487.92 30063.97 39590.95 374
E-PMN52.30 37452.18 37652.67 39171.51 40745.40 41393.62 38676.60 41336.01 40743.50 40864.13 40727.11 40667.31 41031.06 41126.06 40645.30 409
EMVS51.44 37651.22 37852.11 39270.71 40844.97 41594.04 38275.66 41435.34 40942.40 40961.56 41028.93 40365.87 41127.64 41224.73 40745.49 408
PMMVS267.15 36964.15 37276.14 37970.56 40962.07 40093.89 38387.52 40758.09 39860.02 39778.32 39922.38 40884.54 40259.56 39947.03 40481.80 397
FPMVS68.72 36568.72 36668.71 38765.95 41044.27 41695.97 37594.74 38151.13 40253.26 40490.50 37925.11 40783.00 40360.80 39880.97 33978.87 400
wuyk23d20.37 38020.84 38318.99 39565.34 41127.73 41850.43 4067.67 4199.50 4128.01 4136.34 4136.13 41726.24 41223.40 41310.69 4112.99 410
LCM-MVSNet67.77 36864.73 37176.87 37862.95 41256.25 40589.37 39993.74 39244.53 40461.99 39680.74 39820.42 41186.53 40169.37 38759.50 40187.84 390
MVEpermissive53.74 2251.54 37547.86 37962.60 38959.56 41350.93 40879.41 40377.69 41235.69 40836.27 41061.76 4095.79 41869.63 40837.97 40836.61 40567.24 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 37252.24 37567.66 38849.27 41456.82 40483.94 40182.02 41170.47 39533.28 41164.54 40617.23 41369.16 40945.59 40623.85 40877.02 401
tmp_tt65.23 37162.94 37472.13 38644.90 41550.03 41181.05 40289.42 40638.45 40548.51 40799.90 1854.09 39078.70 40791.84 24818.26 40987.64 391
PMVScopyleft49.05 2353.75 37351.34 37760.97 39040.80 41634.68 41774.82 40489.62 40537.55 40628.67 41272.12 4017.09 41681.63 40643.17 40768.21 38766.59 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 37839.14 38133.31 39319.94 41724.83 41998.36 3229.75 41815.53 41151.31 40587.14 39019.62 41217.74 41347.10 4053.47 41257.36 406
testmvs40.60 37744.45 38029.05 39419.49 41814.11 42099.68 17818.47 41720.74 41064.59 39598.48 21210.95 41517.09 41456.66 40311.01 41055.94 407
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.02 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.43 37931.24 3820.00 3960.00 4190.00 4210.00 40798.09 2030.00 4140.00 41599.67 9583.37 2520.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.60 38210.13 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41591.20 1530.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.28 38111.04 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.40 1240.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.97 28886.10 322
PC_three_145296.96 4499.80 1799.79 5697.49 8100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13397.27 3499.80 1799.94 497.18 19100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 4100.00 199.92 12100.00 1100.00 1
GSMVS99.59 132
sam_mvs194.72 6399.59 132
sam_mvs94.25 78
MTGPAbinary98.28 181
test_post195.78 37759.23 41193.20 11097.74 26991.06 257
test_post63.35 40894.43 6898.13 249
patchmatchnet-post91.70 37395.12 4997.95 260
MTMP99.87 10796.49 348
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 7099.94 69
test_prior299.95 5395.78 8099.73 3299.76 6496.00 3299.78 27100.00 1
旧先验299.46 21894.21 13399.85 999.95 6996.96 159
新几何299.40 222
无先验99.49 21298.71 6693.46 165100.00 194.36 20499.99 23
原ACMM299.90 93
testdata299.99 3690.54 270
segment_acmp96.68 24
testdata199.28 24296.35 69
plane_prior597.87 22598.37 23097.79 13589.55 25994.52 268
plane_prior498.59 200
plane_prior391.64 27896.63 5693.01 230
plane_prior299.84 12796.38 65
plane_prior91.74 27299.86 11996.76 5289.59 258
n20.00 420
nn0.00 420
door-mid89.69 404
test1198.44 125
door90.31 401
HQP5-MVS91.85 268
BP-MVS97.92 127
HQP4-MVS93.37 22698.39 22494.53 266
HQP3-MVS97.89 22389.60 256
HQP2-MVS80.65 276
MDTV_nov1_ep13_2view96.26 13796.11 37191.89 22498.06 13794.40 7094.30 20699.67 115
ACMMP++_ref87.04 292
ACMMP++88.23 280
Test By Simon92.82 121