| AdaColmap |  | | 97.23 105 | 96.80 112 | 98.51 111 | 99.99 1 | 95.60 168 | 99.09 254 | 98.84 58 | 93.32 170 | 96.74 174 | 99.72 83 | 86.04 227 | 100.00 1 | 98.01 121 | 99.43 114 | 99.94 74 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 16 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 21 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 29 | 98.64 76 | 98.47 2 | 99.13 89 | 99.92 13 | 96.38 29 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 77 | 99.97 3 | 96.92 116 | 99.95 54 | 98.38 159 | 95.04 99 | 98.61 116 | 99.80 53 | 93.39 100 | 100.00 1 | 98.64 93 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 87 | 97.32 91 | 98.58 103 | 99.97 3 | 95.77 157 | 99.96 36 | 98.35 165 | 89.90 275 | 98.36 126 | 99.79 57 | 91.18 156 | 99.99 36 | 98.37 105 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 82 | 98.44 123 | 92.06 220 | 98.40 125 | 99.84 43 | 95.68 39 | 100.00 1 | 98.19 111 | 99.71 87 | 99.97 58 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 54 | 98.43 131 | 95.35 93 | 98.03 138 | 99.75 71 | 94.03 86 | 99.98 43 | 98.11 116 | 99.83 76 | 99.99 23 |
|
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 61 | 99.96 8 | 97.43 98 | 99.95 54 | 98.61 82 | 94.77 107 | 99.31 80 | 99.85 32 | 94.22 79 | 100.00 1 | 98.70 88 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 69 | 99.96 8 | 97.18 105 | 99.96 36 | 98.55 98 | 94.87 105 | 99.45 68 | 99.85 32 | 94.07 85 | 100.00 1 | 98.67 90 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 69 | 99.96 8 | 97.18 105 | 99.95 54 | 98.60 84 | 94.77 107 | 99.31 80 | 99.84 43 | 93.73 95 | 100.00 1 | 98.70 88 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 29 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 15 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 84 | 99.96 8 | 96.62 125 | 99.97 29 | 98.39 155 | 94.43 120 | 98.90 98 | 99.87 24 | 94.30 77 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 148 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 8 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 54 | 98.43 131 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 59 | 99.94 13 | 97.50 94 | 99.94 70 | 98.42 143 | 96.22 73 | 99.41 72 | 99.78 61 | 94.34 75 | 99.96 61 | 98.92 74 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 215 | 92.06 247 | 99.15 59 | 99.94 13 | 97.50 94 | 99.94 70 | 98.42 143 | 96.22 73 | 99.41 72 | 41.37 410 | 94.34 75 | 99.96 61 | 98.92 74 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 61 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 62 | 99.98 16 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 35 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 88 | 98.39 155 | 97.20 38 | 99.46 67 | 99.85 32 | 95.53 43 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 57 | 97.97 59 | 99.03 71 | 99.94 13 | 97.17 108 | 99.95 54 | 98.39 155 | 94.70 111 | 98.26 132 | 99.81 52 | 91.84 147 | 100.00 1 | 98.85 80 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 108 | 98.33 170 | 93.97 148 | 99.76 28 | 99.87 24 | 94.99 57 | 99.75 132 | 98.55 97 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 61 | 97.93 64 | 98.70 92 | 99.94 13 | 96.13 147 | 99.82 138 | 98.43 131 | 94.56 115 | 97.52 152 | 99.70 87 | 94.40 70 | 99.98 43 | 97.00 155 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 188 | 99.44 20 | 97.33 31 | 99.00 94 | 99.72 83 | 94.03 86 | 99.98 43 | 98.73 87 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 36 | 98.43 131 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 22 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 148 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 131 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 22 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 54 | 98.32 172 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 17 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 36 | 98.42 143 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 17 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 76 | 99.93 24 | 97.24 102 | 99.95 54 | 98.42 143 | 97.50 26 | 99.52 63 | 99.88 21 | 97.43 14 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 131 | | 99.63 47 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 88 | 99.95 54 | 98.36 163 | 95.58 87 | 99.52 63 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 104 | 92.34 212 | 99.31 80 | 99.83 45 | 95.06 52 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 52 | 97.97 59 | 99.17 55 | 99.92 31 | 97.57 90 | 99.93 77 | 98.39 155 | 94.04 143 | 98.80 103 | 99.74 78 | 92.98 115 | 100.00 1 | 98.16 113 | 99.76 84 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 36 | 98.43 131 | 93.90 153 | 99.71 36 | 99.86 28 | 95.88 36 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 36 | 98.43 131 | 94.35 125 | 99.71 36 | 99.86 28 | 95.94 33 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 36 | 98.43 131 | 94.35 125 | 99.69 39 | 99.85 32 | 95.94 33 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 75 | 99.92 31 | 97.00 112 | 99.75 158 | 99.50 18 | 93.90 153 | 99.37 77 | 99.76 65 | 93.24 109 | 100.00 1 | 97.75 139 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 82 | 97.44 85 | 98.66 95 | 99.92 31 | 96.13 147 | 99.18 249 | 99.45 19 | 94.84 106 | 96.41 184 | 99.71 85 | 91.40 150 | 99.99 36 | 97.99 123 | 98.03 161 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 54 | 98.43 131 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 12 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 54 | 98.56 92 | 97.56 25 | 99.44 69 | 99.85 32 | 95.38 46 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 60 | 99.87 108 | 98.36 163 | 94.08 138 | 99.74 31 | 99.73 80 | 94.08 84 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 244 | 98.47 115 | 98.14 10 | 99.08 90 | 99.91 14 | 93.09 112 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 36 | | | | 99.80 53 | 97.44 12 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 108 | 98.44 123 | 97.48 27 | 99.64 46 | 99.94 4 | 96.68 24 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 66 | | | | | | |
|
| CSCG | | | 97.10 110 | 97.04 102 | 97.27 184 | 99.89 45 | 91.92 267 | 99.90 94 | 99.07 34 | 88.67 298 | 95.26 206 | 99.82 48 | 93.17 111 | 99.98 43 | 98.15 114 | 99.47 108 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 55 | 99.88 49 | 97.59 89 | 99.94 70 | 98.44 123 | 94.31 128 | 98.50 120 | 99.82 48 | 93.06 113 | 99.99 36 | 98.30 109 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 81 | 99.88 49 | 97.04 111 | 99.84 128 | 98.35 165 | 94.92 103 | 99.32 79 | 99.80 53 | 93.35 102 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 88 | 98.33 170 | 93.22 173 | 99.78 26 | 99.89 19 | 94.57 67 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 120 | 98.38 159 | 93.19 174 | 99.77 27 | 99.94 4 | 95.54 41 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 71 | 99.86 53 | 97.10 110 | 99.98 16 | 98.80 62 | 90.78 261 | 99.62 50 | 99.78 61 | 95.30 47 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 51 | 97.96 62 | 99.30 44 | 99.85 54 | 97.93 78 | 99.39 225 | 98.28 179 | 95.76 82 | 97.18 162 | 99.88 21 | 92.74 123 | 100.00 1 | 98.67 90 | 99.88 70 | 99.99 23 |
|
| LS3D | | | 95.84 162 | 95.11 172 | 98.02 139 | 99.85 54 | 95.10 188 | 98.74 296 | 98.50 112 | 87.22 319 | 93.66 224 | 99.86 28 | 87.45 209 | 99.95 69 | 90.94 261 | 99.81 82 | 99.02 205 |
|
| HPM-MVS |  | | 97.96 65 | 97.72 73 | 98.68 93 | 99.84 56 | 96.39 134 | 99.90 94 | 98.17 191 | 92.61 198 | 98.62 115 | 99.57 109 | 91.87 146 | 99.67 145 | 98.87 79 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 90 | 99.83 57 | 96.59 127 | 99.40 221 | 98.51 107 | 95.29 95 | 98.51 119 | 99.76 65 | 93.60 99 | 99.71 138 | 98.53 98 | 99.52 103 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 36 | 98.40 152 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 67 | 97.89 68 | 98.05 138 | 99.82 58 | 94.77 197 | 99.92 82 | 98.46 117 | 93.93 151 | 97.20 161 | 99.27 136 | 95.44 45 | 99.97 53 | 97.41 144 | 99.51 106 | 99.41 168 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 55 | 98.08 55 | 98.78 87 | 99.81 60 | 96.60 126 | 99.82 138 | 98.30 177 | 93.95 150 | 99.37 77 | 99.77 63 | 92.84 119 | 99.76 131 | 98.95 71 | 99.92 63 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 60 | 97.99 58 | 98.60 100 | 99.80 61 | 96.27 137 | 99.36 230 | 98.50 112 | 95.21 97 | 98.30 129 | 99.75 71 | 93.29 106 | 99.73 137 | 98.37 105 | 99.30 120 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 91 | 99.79 62 | 96.37 135 | 99.76 155 | 98.31 174 | 94.43 120 | 99.40 74 | 99.75 71 | 93.28 107 | 99.78 125 | 98.90 77 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 135 | 99.76 155 | 98.31 174 | 94.43 120 | 99.40 74 | 99.75 71 | 92.95 116 | | 98.90 77 | 99.92 63 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 77 | 97.50 83 | 98.68 93 | 99.79 62 | 96.42 130 | 99.88 105 | 98.16 195 | 91.75 230 | 98.94 96 | 99.54 112 | 91.82 148 | 99.65 147 | 97.62 142 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 94 | 98.21 186 | 93.53 163 | 99.81 15 | 99.89 19 | 94.70 65 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 92 | | 98.64 76 | | | 99.85 32 | 95.63 40 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 102 | 97.23 94 | 97.41 175 | 99.76 66 | 93.36 236 | 99.65 184 | 97.95 214 | 96.03 77 | 97.41 156 | 99.70 87 | 89.61 185 | 99.51 153 | 96.73 164 | 98.25 153 | 99.38 170 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 64 | | 98.63 80 | 92.69 193 | 99.55 58 | 99.82 48 | 94.40 70 | 100.00 1 | 91.21 253 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 63 | 97.64 77 | 99.38 42 | 99.74 69 | 98.41 63 | 99.74 161 | 98.18 190 | 93.35 168 | 96.45 181 | 99.85 32 | 92.64 125 | 99.97 53 | 98.91 76 | 99.89 67 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 49 | 99.77 150 | 98.38 159 | 96.73 53 | 99.88 6 | 99.74 78 | 94.89 59 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 57 | | 98.40 152 | | 99.65 43 | | 94.76 62 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 78 | 99.73 72 | 96.99 113 | | 98.51 107 | 94.06 141 | 99.62 50 | 99.85 32 | 94.97 58 | 99.96 61 | 95.11 184 | 99.95 49 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 85 | 99.73 72 | 96.63 124 | 99.97 29 | 97.92 219 | 98.07 11 | 98.76 107 | 99.55 110 | 95.00 56 | 99.94 77 | 99.91 15 | 97.68 166 | 99.99 23 |
|
| CANet | | | 98.27 52 | 97.82 70 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 16 | 98.51 107 | 97.00 43 | 98.52 118 | 99.71 85 | 87.80 204 | 99.95 69 | 99.75 28 | 99.38 116 | 99.83 91 |
|
| F-COLMAP | | | 96.93 121 | 96.95 105 | 96.87 194 | 99.71 75 | 91.74 272 | 99.85 123 | 97.95 214 | 93.11 177 | 95.72 199 | 99.16 147 | 92.35 135 | 99.94 77 | 95.32 182 | 99.35 118 | 98.92 208 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 46 | 99.94 70 | 98.34 169 | 96.38 65 | 99.81 15 | 99.76 65 | 94.59 66 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 56 | 99.12 5 | 95.59 227 | 99.67 77 | 86.91 346 | 99.95 54 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 65 | 96.54 27 | 99.98 43 | 99.94 11 | 99.82 80 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 78 | 98.62 55 | 99.85 123 | 98.37 162 | 94.68 112 | 99.53 61 | 99.83 45 | 92.87 118 | 100.00 1 | 98.66 92 | 99.84 75 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 85 | 98.98 12 | 93.92 291 | 99.63 79 | 81.76 373 | 99.96 36 | 98.56 92 | 99.47 1 | 99.19 87 | 99.99 1 | 94.16 83 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 89 | 99.62 80 | 96.80 121 | 99.90 94 | 99.51 17 | 97.60 22 | 99.20 85 | 99.36 130 | 93.71 96 | 99.91 89 | 97.99 123 | 98.71 141 | 99.61 130 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 81 | 99.33 8 | 99.99 6 | 99.76 6 | 98.39 3 | 99.39 76 | 99.80 53 | 90.49 172 | 99.96 61 | 99.89 16 | 99.43 114 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 156 | 95.82 152 | 96.72 199 | 99.59 81 | 96.99 113 | 99.95 54 | 99.10 31 | 94.06 141 | 98.27 130 | 95.80 294 | 89.00 196 | 99.95 69 | 99.12 58 | 87.53 288 | 93.24 345 |
|
| PVSNet_Blended | | | 97.94 66 | 97.64 77 | 98.83 86 | 99.59 81 | 96.99 113 | 100.00 1 | 99.10 31 | 95.38 92 | 98.27 130 | 99.08 150 | 89.00 196 | 99.95 69 | 99.12 58 | 99.25 122 | 99.57 143 |
|
| PatchMatch-RL | | | 96.04 157 | 95.40 161 | 97.95 141 | 99.59 81 | 95.22 184 | 99.52 206 | 99.07 34 | 93.96 149 | 96.49 180 | 98.35 221 | 82.28 255 | 99.82 120 | 90.15 277 | 99.22 125 | 98.81 215 |
|
| dcpmvs_2 | | | 97.42 97 | 98.09 54 | 95.42 232 | 99.58 85 | 87.24 342 | 99.23 245 | 96.95 317 | 94.28 131 | 98.93 97 | 99.73 80 | 94.39 73 | 99.16 175 | 99.89 16 | 99.82 80 | 99.86 89 |
|
| test222 | | | | | | 99.55 86 | 97.41 100 | 99.34 231 | 98.55 98 | 91.86 225 | 99.27 84 | 99.83 45 | 93.84 93 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 81 | 97.38 87 | 98.92 82 | 99.53 87 | 96.84 118 | 99.87 108 | 98.14 199 | 93.78 156 | 96.55 179 | 99.69 89 | 92.28 137 | 99.98 43 | 97.13 150 | 99.44 112 | 99.93 76 |
|
| API-MVS | | | 97.86 71 | 97.66 76 | 98.47 113 | 99.52 88 | 95.41 175 | 99.47 215 | 98.87 52 | 91.68 231 | 98.84 100 | 99.85 32 | 92.34 136 | 99.99 36 | 98.44 101 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 109 | 96.69 117 | 98.45 115 | 99.52 88 | 95.81 155 | 99.95 54 | 99.65 12 | 94.73 109 | 99.04 92 | 99.21 143 | 84.48 242 | 99.95 69 | 94.92 189 | 98.74 140 | 99.58 141 |
|
| 114514_t | | | 97.41 98 | 96.83 110 | 99.14 61 | 99.51 90 | 97.83 80 | 99.89 102 | 98.27 181 | 88.48 302 | 99.06 91 | 99.66 98 | 90.30 176 | 99.64 148 | 96.32 168 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 219 | 93.25 223 | 95.33 236 | 99.49 91 | 94.43 201 | 99.61 192 | 98.09 201 | 90.38 266 | 89.16 291 | 95.61 301 | 90.56 169 | 97.34 281 | 91.93 245 | 84.45 308 | 94.21 291 |
|
| testdata | | | | | 98.42 118 | 99.47 92 | 95.33 178 | | 98.56 92 | 93.78 156 | 99.79 25 | 99.85 32 | 93.64 98 | 99.94 77 | 94.97 187 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 93 | 97.19 96 | 98.15 132 | 99.47 92 | 94.79 196 | 99.05 265 | 98.76 63 | 92.65 196 | 98.66 113 | 99.82 48 | 88.52 201 | 99.98 43 | 98.12 115 | 99.63 92 | 99.67 115 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 197 | 93.42 216 | 97.91 146 | 99.46 94 | 94.04 214 | 98.93 277 | 97.48 262 | 81.15 369 | 90.04 264 | 99.55 110 | 87.02 215 | 99.95 69 | 88.97 287 | 98.11 157 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 110 | 99.39 95 | 95.79 156 | 99.87 108 | 99.86 2 | 96.70 54 | 98.78 104 | 99.79 57 | 92.03 143 | 99.90 91 | 99.17 57 | 99.86 74 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 79 | 99.38 96 | 98.87 33 | 98.46 313 | 99.42 22 | 97.03 42 | 99.02 93 | 99.09 149 | 99.35 1 | 98.21 245 | 99.73 32 | 99.78 83 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 22 | 99.01 74 | 99.36 97 | 97.18 105 | 99.93 77 | 99.90 1 | 96.81 51 | 98.67 112 | 99.77 63 | 93.92 88 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 98 | 99.92 1 | 99.96 36 | 98.44 123 | 97.96 14 | 99.55 58 | 99.94 4 | 97.18 19 | 100.00 1 | 93.81 217 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 202 | 93.60 209 | 96.90 193 | 99.33 98 | 91.78 271 | 99.78 147 | 98.00 208 | 89.89 276 | 94.52 212 | 99.47 116 | 91.97 144 | 99.18 173 | 69.90 383 | 99.52 103 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 69 | 97.94 63 | 97.70 159 | 99.28 100 | 95.20 185 | 99.98 16 | 97.15 296 | 95.53 89 | 99.62 50 | 99.79 57 | 92.08 142 | 98.38 228 | 98.75 86 | 99.28 121 | 99.52 153 |
|
| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 23 | 97.92 144 | 99.27 101 | 95.18 186 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 80 | 92.64 125 | 99.99 36 | 99.58 38 | 99.51 106 | 98.59 225 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 45 | 99.21 102 | 97.91 79 | 99.98 16 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 71 | 94.72 63 | 99.97 53 | 99.87 19 | 99.64 91 | 99.95 71 |
|
| test_yl | | | 97.83 73 | 97.37 88 | 99.21 49 | 99.18 103 | 97.98 75 | 99.64 188 | 99.27 27 | 91.43 240 | 97.88 144 | 98.99 159 | 95.84 37 | 99.84 116 | 98.82 81 | 95.32 219 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 73 | 97.37 88 | 99.21 49 | 99.18 103 | 97.98 75 | 99.64 188 | 99.27 27 | 91.43 240 | 97.88 144 | 98.99 159 | 95.84 37 | 99.84 116 | 98.82 81 | 95.32 219 | 99.79 97 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 103 | 99.13 22 | 99.87 108 | 99.65 12 | 98.17 8 | 98.75 109 | 99.75 71 | 92.76 122 | 99.94 77 | 99.88 18 | 99.44 112 | 99.94 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 46 | 99.17 106 | 97.81 82 | 99.98 16 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 65 | 94.21 81 | 99.97 53 | 99.87 19 | 99.52 103 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 122 | 96.40 127 | 98.45 115 | 99.16 107 | 95.90 153 | 99.66 183 | 98.06 204 | 96.37 68 | 94.37 215 | 99.49 115 | 83.29 251 | 99.90 91 | 97.63 141 | 99.61 97 | 99.55 145 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 53 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 134 | 99.24 141 | 92.58 128 | 99.94 77 | 98.63 95 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 79 | 97.91 66 | 97.43 174 | 99.10 109 | 94.42 202 | 99.99 6 | 97.10 301 | 95.07 98 | 99.68 40 | 99.75 71 | 92.95 116 | 98.34 232 | 98.38 103 | 99.14 127 | 99.54 149 |
|
| Anonymous202405211 | | | 93.10 236 | 91.99 248 | 96.40 209 | 99.10 109 | 89.65 317 | 98.88 282 | 97.93 216 | 83.71 356 | 94.00 221 | 98.75 188 | 68.79 351 | 99.88 102 | 95.08 185 | 91.71 249 | 99.68 113 |
|
| fmvsm_s_conf0.5_n | | | 97.80 77 | 97.85 69 | 97.67 160 | 99.06 111 | 94.41 203 | 99.98 16 | 98.97 40 | 97.34 29 | 99.63 47 | 99.69 89 | 87.27 211 | 99.97 53 | 99.62 37 | 99.06 131 | 98.62 224 |
|
| HyFIR lowres test | | | 96.66 136 | 96.43 126 | 97.36 180 | 99.05 112 | 93.91 219 | 99.70 176 | 99.80 3 | 90.54 264 | 96.26 187 | 98.08 228 | 92.15 140 | 98.23 244 | 96.84 163 | 95.46 214 | 99.93 76 |
|
| LFMVS | | | 94.75 190 | 93.56 212 | 98.30 124 | 99.03 113 | 95.70 162 | 98.74 296 | 97.98 211 | 87.81 312 | 98.47 121 | 99.39 127 | 67.43 359 | 99.53 150 | 98.01 121 | 95.20 222 | 99.67 115 |
|
| AllTest | | | 92.48 250 | 91.64 253 | 95.00 246 | 99.01 114 | 88.43 331 | 98.94 276 | 96.82 331 | 86.50 328 | 88.71 296 | 98.47 214 | 74.73 328 | 99.88 102 | 85.39 325 | 96.18 196 | 96.71 252 |
|
| TestCases | | | | | 95.00 246 | 99.01 114 | 88.43 331 | | 96.82 331 | 86.50 328 | 88.71 296 | 98.47 214 | 74.73 328 | 99.88 102 | 85.39 325 | 96.18 196 | 96.71 252 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 257 | 91.49 259 | 94.25 279 | 99.00 116 | 88.04 337 | 98.42 318 | 96.70 338 | 82.30 365 | 88.43 303 | 99.01 156 | 76.97 304 | 99.85 108 | 86.11 321 | 96.50 191 | 94.86 263 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 176 | 95.68 157 | 94.36 275 | 98.99 117 | 84.98 355 | 99.96 36 | 96.65 340 | 97.60 22 | 99.73 32 | 98.96 165 | 71.58 341 | 99.93 85 | 98.31 108 | 99.37 117 | 98.17 232 |
|
| HY-MVS | | 92.50 7 | 97.79 79 | 97.17 98 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 342 | 99.52 15 | 95.69 84 | 98.32 128 | 97.41 245 | 93.32 104 | 99.77 128 | 98.08 119 | 95.75 210 | 99.81 94 |
|
| VNet | | | 97.21 106 | 96.57 122 | 99.13 65 | 98.97 119 | 97.82 81 | 99.03 268 | 99.21 29 | 94.31 128 | 99.18 88 | 98.88 176 | 86.26 226 | 99.89 96 | 98.93 73 | 94.32 231 | 99.69 112 |
|
| thres200 | | | 96.96 119 | 96.21 133 | 99.22 48 | 98.97 119 | 98.84 36 | 99.85 123 | 99.71 7 | 93.17 175 | 96.26 187 | 98.88 176 | 89.87 182 | 99.51 153 | 94.26 207 | 94.91 224 | 99.31 180 |
|
| tfpn200view9 | | | 96.79 126 | 95.99 138 | 99.19 51 | 98.94 121 | 98.82 37 | 99.78 147 | 99.71 7 | 92.86 183 | 96.02 192 | 98.87 179 | 89.33 189 | 99.50 155 | 93.84 214 | 94.57 227 | 99.27 186 |
|
| thres400 | | | 96.78 128 | 95.99 138 | 99.16 57 | 98.94 121 | 98.82 37 | 99.78 147 | 99.71 7 | 92.86 183 | 96.02 192 | 98.87 179 | 89.33 189 | 99.50 155 | 93.84 214 | 94.57 227 | 99.16 193 |
|
| sasdasda | | | 97.09 112 | 96.32 128 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 169 | 97.35 273 | 94.45 117 | 97.88 144 | 99.42 120 | 86.71 218 | 99.52 151 | 98.48 99 | 93.97 237 | 99.72 107 |
|
| Anonymous20231211 | | | 89.86 306 | 88.44 313 | 94.13 282 | 98.93 123 | 90.68 296 | 98.54 310 | 98.26 182 | 76.28 381 | 86.73 324 | 95.54 305 | 70.60 347 | 97.56 274 | 90.82 264 | 80.27 343 | 94.15 299 |
|
| canonicalmvs | | | 97.09 112 | 96.32 128 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 169 | 97.35 273 | 94.45 117 | 97.88 144 | 99.42 120 | 86.71 218 | 99.52 151 | 98.48 99 | 93.97 237 | 99.72 107 |
|
| SDMVSNet | | | 94.80 186 | 93.96 200 | 97.33 182 | 98.92 126 | 95.42 174 | 99.59 194 | 98.99 37 | 92.41 209 | 92.55 239 | 97.85 236 | 75.81 318 | 98.93 187 | 97.90 129 | 91.62 250 | 97.64 243 |
|
| sd_testset | | | 93.55 226 | 92.83 229 | 95.74 225 | 98.92 126 | 90.89 293 | 98.24 324 | 98.85 56 | 92.41 209 | 92.55 239 | 97.85 236 | 71.07 346 | 98.68 204 | 93.93 211 | 91.62 250 | 97.64 243 |
|
| EPNet_dtu | | | 95.71 166 | 95.39 162 | 96.66 202 | 98.92 126 | 93.41 233 | 99.57 198 | 98.90 47 | 96.19 75 | 97.52 152 | 98.56 206 | 92.65 124 | 97.36 279 | 77.89 366 | 98.33 148 | 99.20 191 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 62 | 97.60 79 | 99.60 22 | 98.92 126 | 99.28 17 | 99.89 102 | 99.52 15 | 95.58 87 | 98.24 133 | 99.39 127 | 93.33 103 | 99.74 134 | 97.98 125 | 95.58 213 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 125 | 96.53 123 | 97.64 162 | 98.91 130 | 93.07 238 | 99.65 184 | 99.80 3 | 95.64 85 | 95.39 203 | 98.86 181 | 84.35 244 | 99.90 91 | 96.98 157 | 99.16 126 | 99.95 71 |
|
| thres100view900 | | | 96.74 131 | 95.92 148 | 99.18 52 | 98.90 131 | 98.77 42 | 99.74 161 | 99.71 7 | 92.59 200 | 95.84 195 | 98.86 181 | 89.25 191 | 99.50 155 | 93.84 214 | 94.57 227 | 99.27 186 |
|
| thres600view7 | | | 96.69 134 | 95.87 151 | 99.14 61 | 98.90 131 | 98.78 41 | 99.74 161 | 99.71 7 | 92.59 200 | 95.84 195 | 98.86 181 | 89.25 191 | 99.50 155 | 93.44 226 | 94.50 230 | 99.16 193 |
|
| MSDG | | | 94.37 204 | 93.36 220 | 97.40 176 | 98.88 133 | 93.95 218 | 99.37 228 | 97.38 271 | 85.75 339 | 90.80 257 | 99.17 146 | 84.11 246 | 99.88 102 | 86.35 318 | 98.43 146 | 98.36 230 |
|
| MGCFI-Net | | | 97.00 117 | 96.22 132 | 99.34 43 | 98.86 134 | 98.80 39 | 99.67 181 | 97.30 280 | 94.31 128 | 97.77 148 | 99.41 124 | 86.36 224 | 99.50 155 | 98.38 103 | 93.90 239 | 99.72 107 |
|
| h-mvs33 | | | 94.92 184 | 94.36 189 | 96.59 204 | 98.85 135 | 91.29 284 | 98.93 277 | 98.94 41 | 95.90 78 | 98.77 105 | 98.42 220 | 90.89 164 | 99.77 128 | 97.80 132 | 70.76 377 | 98.72 221 |
|
| Anonymous20240529 | | | 92.10 258 | 90.65 269 | 96.47 205 | 98.82 136 | 90.61 298 | 98.72 298 | 98.67 73 | 75.54 385 | 93.90 223 | 98.58 204 | 66.23 363 | 99.90 91 | 94.70 198 | 90.67 252 | 98.90 211 |
|
| PVSNet_Blended_VisFu | | | 97.27 103 | 96.81 111 | 98.66 95 | 98.81 137 | 96.67 123 | 99.92 82 | 98.64 76 | 94.51 116 | 96.38 185 | 98.49 210 | 89.05 195 | 99.88 102 | 97.10 153 | 98.34 147 | 99.43 166 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 57 | 98.80 138 | 98.92 29 | 99.54 204 | 98.17 191 | 97.34 29 | 99.85 9 | 99.85 32 | 91.20 153 | 99.89 96 | 99.41 48 | 99.67 89 | 98.69 222 |
|
| CANet_DTU | | | 96.76 129 | 96.15 134 | 98.60 100 | 98.78 139 | 97.53 91 | 99.84 128 | 97.63 241 | 97.25 37 | 99.20 85 | 99.64 101 | 81.36 264 | 99.98 43 | 92.77 237 | 98.89 134 | 98.28 231 |
|
| mvsany_test1 | | | 97.82 75 | 97.90 67 | 97.55 167 | 98.77 140 | 93.04 241 | 99.80 144 | 97.93 216 | 96.95 45 | 99.61 56 | 99.68 95 | 90.92 161 | 99.83 118 | 99.18 56 | 98.29 152 | 99.80 96 |
|
| alignmvs | | | 97.81 76 | 97.33 90 | 99.25 46 | 98.77 140 | 98.66 51 | 99.99 6 | 98.44 123 | 94.40 124 | 98.41 123 | 99.47 116 | 93.65 97 | 99.42 164 | 98.57 96 | 94.26 233 | 99.67 115 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 52 | 98.72 142 | 97.71 84 | 99.98 16 | 98.44 123 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 6 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 57 | 97.97 59 | 99.02 73 | 98.69 143 | 98.66 51 | 99.52 206 | 98.08 203 | 97.05 41 | 99.86 7 | 99.86 28 | 90.65 167 | 99.71 138 | 99.39 50 | 98.63 142 | 98.69 222 |
|
| miper_enhance_ethall | | | 94.36 206 | 93.98 199 | 95.49 228 | 98.68 144 | 95.24 182 | 99.73 166 | 97.29 283 | 93.28 172 | 89.86 269 | 95.97 292 | 94.37 74 | 97.05 302 | 92.20 241 | 84.45 308 | 94.19 292 |
|
| ETVMVS | | | 97.03 116 | 96.64 118 | 98.20 128 | 98.67 145 | 97.12 109 | 99.89 102 | 98.57 89 | 91.10 251 | 98.17 135 | 98.59 201 | 93.86 92 | 98.19 246 | 95.64 179 | 95.24 221 | 99.28 185 |
|
| test2506 | | | 97.53 89 | 97.19 96 | 98.58 103 | 98.66 146 | 96.90 117 | 98.81 291 | 99.77 5 | 94.93 101 | 97.95 140 | 98.96 165 | 92.51 130 | 99.20 171 | 94.93 188 | 98.15 154 | 99.64 121 |
|
| ECVR-MVS |  | | 95.66 169 | 95.05 174 | 97.51 170 | 98.66 146 | 93.71 223 | 98.85 288 | 98.45 118 | 94.93 101 | 96.86 170 | 98.96 165 | 75.22 324 | 99.20 171 | 95.34 181 | 98.15 154 | 99.64 121 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 84 | 97.72 73 | 97.77 154 | 98.63 148 | 94.26 208 | 99.96 36 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 89 | 87.00 216 | 99.97 53 | 99.46 44 | 98.89 134 | 99.08 201 |
|
| MVSMamba_pp | | | 98.05 64 | 97.76 72 | 98.92 82 | 98.56 149 | 98.06 70 | 99.92 82 | 97.75 234 | 96.28 71 | 99.71 36 | 98.43 219 | 90.37 174 | 99.11 177 | 98.99 69 | 99.88 70 | 99.58 141 |
|
| testing222 | | | 97.08 115 | 96.75 114 | 98.06 137 | 98.56 149 | 96.82 119 | 99.85 123 | 98.61 82 | 92.53 204 | 98.84 100 | 98.84 185 | 93.36 101 | 98.30 236 | 95.84 176 | 94.30 232 | 99.05 203 |
|
| iter_conf05_11 | | | 98.22 59 | 97.93 64 | 99.09 67 | 98.56 149 | 98.52 58 | 100.00 1 | 97.77 232 | 96.34 70 | 99.73 32 | 99.87 24 | 90.18 179 | 99.13 176 | 99.03 66 | 99.90 66 | 99.63 126 |
|
| test1111 | | | 95.57 171 | 94.98 177 | 97.37 178 | 98.56 149 | 93.37 235 | 98.86 286 | 98.45 118 | 94.95 100 | 96.63 176 | 98.95 170 | 75.21 325 | 99.11 177 | 95.02 186 | 98.14 156 | 99.64 121 |
|
| MVSTER | | | 95.53 172 | 95.22 168 | 96.45 207 | 98.56 149 | 97.72 83 | 99.91 88 | 97.67 239 | 92.38 211 | 91.39 249 | 97.14 252 | 97.24 16 | 97.30 285 | 94.80 194 | 87.85 283 | 94.34 283 |
|
| bld_raw_dy_0_64 | | | 97.44 92 | 97.68 75 | 96.72 199 | 98.55 154 | 91.46 283 | 100.00 1 | 97.77 232 | 94.03 144 | 99.72 35 | 99.87 24 | 90.31 175 | 99.11 177 | 98.99 69 | 99.88 70 | 99.59 133 |
|
| mamv4 | | | 97.88 69 | 97.52 82 | 98.95 79 | 98.55 154 | 98.15 65 | 99.93 77 | 97.74 235 | 94.01 145 | 99.65 43 | 98.44 218 | 90.50 171 | 99.11 177 | 99.00 68 | 99.89 67 | 99.59 133 |
|
| VDD-MVS | | | 93.77 219 | 92.94 227 | 96.27 213 | 98.55 154 | 90.22 307 | 98.77 295 | 97.79 230 | 90.85 257 | 96.82 172 | 99.42 120 | 61.18 380 | 99.77 128 | 98.95 71 | 94.13 234 | 98.82 214 |
|
| tpmvs | | | 94.28 208 | 93.57 211 | 96.40 209 | 98.55 154 | 91.50 281 | 95.70 376 | 98.55 98 | 87.47 314 | 92.15 242 | 94.26 351 | 91.42 149 | 98.95 186 | 88.15 297 | 95.85 206 | 98.76 217 |
|
| UGNet | | | 95.33 177 | 94.57 186 | 97.62 165 | 98.55 154 | 94.85 192 | 98.67 304 | 99.32 26 | 95.75 83 | 96.80 173 | 96.27 283 | 72.18 338 | 99.96 61 | 94.58 201 | 99.05 132 | 98.04 236 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 178 | 94.10 196 | 98.43 117 | 98.55 154 | 95.99 151 | 97.91 337 | 97.31 279 | 90.35 268 | 89.48 280 | 99.22 142 | 85.19 235 | 99.89 96 | 90.40 274 | 98.47 145 | 99.41 168 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 126 | 96.72 115 | 97.00 189 | 98.51 160 | 93.70 224 | 99.71 172 | 98.60 84 | 92.96 179 | 97.09 163 | 98.34 222 | 96.67 26 | 98.85 190 | 92.11 243 | 96.50 191 | 98.44 227 |
|
| test_vis1_n_1920 | | | 95.44 174 | 95.31 165 | 95.82 223 | 98.50 161 | 88.74 325 | 99.98 16 | 97.30 280 | 97.84 16 | 99.85 9 | 99.19 144 | 66.82 361 | 99.97 53 | 98.82 81 | 99.46 110 | 98.76 217 |
|
| BH-w/o | | | 95.71 166 | 95.38 163 | 96.68 201 | 98.49 162 | 92.28 258 | 99.84 128 | 97.50 260 | 92.12 217 | 92.06 245 | 98.79 186 | 84.69 240 | 98.67 205 | 95.29 183 | 99.66 90 | 99.09 199 |
|
| baseline1 | | | 95.78 163 | 94.86 179 | 98.54 108 | 98.47 163 | 98.07 69 | 99.06 261 | 97.99 209 | 92.68 194 | 94.13 220 | 98.62 200 | 93.28 107 | 98.69 203 | 93.79 219 | 85.76 296 | 98.84 213 |
|
| EPMVS | | | 96.53 140 | 96.01 137 | 98.09 135 | 98.43 164 | 96.12 149 | 96.36 363 | 99.43 21 | 93.53 163 | 97.64 150 | 95.04 329 | 94.41 69 | 98.38 228 | 91.13 255 | 98.11 157 | 99.75 103 |
|
| sss | | | 97.57 88 | 97.03 103 | 99.18 52 | 98.37 165 | 98.04 72 | 99.73 166 | 99.38 23 | 93.46 165 | 98.76 107 | 99.06 152 | 91.21 152 | 99.89 96 | 96.33 167 | 97.01 183 | 99.62 127 |
|
| testing11 | | | 97.48 91 | 97.27 92 | 98.10 134 | 98.36 166 | 96.02 150 | 99.92 82 | 98.45 118 | 93.45 167 | 98.15 136 | 98.70 191 | 95.48 44 | 99.22 167 | 97.85 131 | 95.05 223 | 99.07 202 |
|
| BH-untuned | | | 95.18 178 | 94.83 180 | 96.22 214 | 98.36 166 | 91.22 285 | 99.80 144 | 97.32 278 | 90.91 255 | 91.08 253 | 98.67 193 | 83.51 248 | 98.54 211 | 94.23 208 | 99.61 97 | 98.92 208 |
|
| testing91 | | | 97.16 108 | 96.90 107 | 97.97 140 | 98.35 168 | 95.67 165 | 99.91 88 | 98.42 143 | 92.91 182 | 97.33 158 | 98.72 189 | 94.81 61 | 99.21 168 | 96.98 157 | 94.63 226 | 99.03 204 |
|
| testing99 | | | 97.17 107 | 96.91 106 | 97.95 141 | 98.35 168 | 95.70 162 | 99.91 88 | 98.43 131 | 92.94 180 | 97.36 157 | 98.72 189 | 94.83 60 | 99.21 168 | 97.00 155 | 94.64 225 | 98.95 207 |
|
| ET-MVSNet_ETH3D | | | 94.37 204 | 93.28 222 | 97.64 162 | 98.30 170 | 97.99 74 | 99.99 6 | 97.61 246 | 94.35 125 | 71.57 388 | 99.45 119 | 96.23 30 | 95.34 358 | 96.91 162 | 85.14 303 | 99.59 133 |
|
| AUN-MVS | | | 93.28 231 | 92.60 235 | 95.34 235 | 98.29 171 | 90.09 310 | 99.31 235 | 98.56 92 | 91.80 229 | 96.35 186 | 98.00 231 | 89.38 188 | 98.28 239 | 92.46 238 | 69.22 382 | 97.64 243 |
|
| FMVSNet3 | | | 92.69 246 | 91.58 255 | 95.99 218 | 98.29 171 | 97.42 99 | 99.26 243 | 97.62 243 | 89.80 277 | 89.68 273 | 95.32 319 | 81.62 262 | 96.27 338 | 87.01 314 | 85.65 297 | 94.29 285 |
|
| PMMVS | | | 96.76 129 | 96.76 113 | 96.76 197 | 98.28 173 | 92.10 262 | 99.91 88 | 97.98 211 | 94.12 136 | 99.53 61 | 99.39 127 | 86.93 217 | 98.73 198 | 96.95 160 | 97.73 164 | 99.45 163 |
|
| hse-mvs2 | | | 94.38 203 | 94.08 197 | 95.31 237 | 98.27 174 | 90.02 311 | 99.29 240 | 98.56 92 | 95.90 78 | 98.77 105 | 98.00 231 | 90.89 164 | 98.26 243 | 97.80 132 | 69.20 383 | 97.64 243 |
|
| PVSNet_0 | | 88.03 19 | 91.80 265 | 90.27 278 | 96.38 211 | 98.27 174 | 90.46 302 | 99.94 70 | 99.61 14 | 93.99 147 | 86.26 334 | 97.39 247 | 71.13 345 | 99.89 96 | 98.77 84 | 67.05 388 | 98.79 216 |
|
| UA-Net | | | 96.54 139 | 95.96 144 | 98.27 125 | 98.23 176 | 95.71 161 | 98.00 335 | 98.45 118 | 93.72 159 | 98.41 123 | 99.27 136 | 88.71 200 | 99.66 146 | 91.19 254 | 97.69 165 | 99.44 165 |
|
| test_cas_vis1_n_1920 | | | 96.59 138 | 96.23 131 | 97.65 161 | 98.22 177 | 94.23 209 | 99.99 6 | 97.25 287 | 97.77 17 | 99.58 57 | 99.08 150 | 77.10 301 | 99.97 53 | 97.64 140 | 99.45 111 | 98.74 219 |
|
| FE-MVS | | | 95.70 168 | 95.01 176 | 97.79 151 | 98.21 178 | 94.57 198 | 95.03 377 | 98.69 68 | 88.90 293 | 97.50 154 | 96.19 285 | 92.60 127 | 99.49 160 | 89.99 279 | 97.94 163 | 99.31 180 |
|
| GG-mvs-BLEND | | | | | 98.54 108 | 98.21 178 | 98.01 73 | 93.87 382 | 98.52 104 | | 97.92 141 | 97.92 235 | 99.02 2 | 97.94 262 | 98.17 112 | 99.58 100 | 99.67 115 |
|
| mvs_anonymous | | | 95.65 170 | 95.03 175 | 97.53 168 | 98.19 180 | 95.74 159 | 99.33 232 | 97.49 261 | 90.87 256 | 90.47 260 | 97.10 254 | 88.23 202 | 97.16 293 | 95.92 174 | 97.66 167 | 99.68 113 |
|
| MVS_Test | | | 96.46 142 | 95.74 153 | 98.61 99 | 98.18 181 | 97.23 103 | 99.31 235 | 97.15 296 | 91.07 252 | 98.84 100 | 97.05 258 | 88.17 203 | 98.97 184 | 94.39 203 | 97.50 169 | 99.61 130 |
|
| BH-RMVSNet | | | 95.18 178 | 94.31 192 | 97.80 149 | 98.17 182 | 95.23 183 | 99.76 155 | 97.53 256 | 92.52 205 | 94.27 218 | 99.25 140 | 76.84 306 | 98.80 192 | 90.89 263 | 99.54 102 | 99.35 175 |
|
| RPSCF | | | 91.80 265 | 92.79 231 | 88.83 353 | 98.15 183 | 69.87 391 | 98.11 331 | 96.60 342 | 83.93 354 | 94.33 216 | 99.27 136 | 79.60 284 | 99.46 163 | 91.99 244 | 93.16 246 | 97.18 250 |
|
| ETV-MVS | | | 97.92 68 | 97.80 71 | 98.25 126 | 98.14 184 | 96.48 128 | 99.98 16 | 97.63 241 | 95.61 86 | 99.29 83 | 99.46 118 | 92.55 129 | 98.82 191 | 99.02 67 | 98.54 143 | 99.46 161 |
|
| IS-MVSNet | | | 96.29 152 | 95.90 149 | 97.45 172 | 98.13 185 | 94.80 195 | 99.08 256 | 97.61 246 | 92.02 222 | 95.54 202 | 98.96 165 | 90.64 168 | 98.08 251 | 93.73 222 | 97.41 173 | 99.47 160 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 87 | 98.12 186 | 96.41 131 | 99.99 6 | 98.83 59 | 98.22 6 | 99.67 41 | 99.64 101 | 91.11 157 | 99.94 77 | 99.67 36 | 99.62 93 | 99.98 48 |
|
| ab-mvs | | | 94.69 191 | 93.42 216 | 98.51 111 | 98.07 187 | 96.26 138 | 96.49 361 | 98.68 70 | 90.31 269 | 94.54 211 | 97.00 260 | 76.30 313 | 99.71 138 | 95.98 173 | 93.38 244 | 99.56 144 |
|
| XVG-OURS-SEG-HR | | | 94.79 187 | 94.70 185 | 95.08 243 | 98.05 188 | 89.19 320 | 99.08 256 | 97.54 254 | 93.66 160 | 94.87 209 | 99.58 108 | 78.78 292 | 99.79 123 | 97.31 146 | 93.40 243 | 96.25 256 |
|
| EIA-MVS | | | 97.53 89 | 97.46 84 | 97.76 156 | 98.04 189 | 94.84 193 | 99.98 16 | 97.61 246 | 94.41 123 | 97.90 142 | 99.59 106 | 92.40 134 | 98.87 188 | 98.04 120 | 99.13 128 | 99.59 133 |
|
| XVG-OURS | | | 94.82 185 | 94.74 183 | 95.06 244 | 98.00 190 | 89.19 320 | 99.08 256 | 97.55 252 | 94.10 137 | 94.71 210 | 99.62 104 | 80.51 276 | 99.74 134 | 96.04 172 | 93.06 248 | 96.25 256 |
|
| dp | | | 95.05 181 | 94.43 188 | 96.91 192 | 97.99 191 | 92.73 248 | 96.29 366 | 97.98 211 | 89.70 278 | 95.93 194 | 94.67 342 | 93.83 94 | 98.45 217 | 86.91 317 | 96.53 190 | 99.54 149 |
|
| tpmrst | | | 96.27 154 | 95.98 140 | 97.13 186 | 97.96 192 | 93.15 237 | 96.34 364 | 98.17 191 | 92.07 218 | 98.71 111 | 95.12 327 | 93.91 89 | 98.73 198 | 94.91 191 | 96.62 188 | 99.50 157 |
|
| TR-MVS | | | 94.54 197 | 93.56 212 | 97.49 171 | 97.96 192 | 94.34 206 | 98.71 299 | 97.51 259 | 90.30 270 | 94.51 213 | 98.69 192 | 75.56 319 | 98.77 195 | 92.82 236 | 95.99 200 | 99.35 175 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 149 | 95.98 140 | 97.35 181 | 97.93 194 | 94.82 194 | 99.47 215 | 98.15 198 | 91.83 226 | 95.09 207 | 99.11 148 | 91.37 151 | 97.47 277 | 93.47 225 | 97.43 170 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 155 | | 97.90 195 | 94.15 211 | 95.98 372 | 98.44 123 | 93.12 176 | 97.98 139 | 95.74 296 | 95.10 50 | 98.58 208 | 90.02 278 | 96.92 185 | |
|
| Fast-Effi-MVS+ | | | 95.02 182 | 94.19 194 | 97.52 169 | 97.88 196 | 94.55 199 | 99.97 29 | 97.08 304 | 88.85 295 | 94.47 214 | 97.96 234 | 84.59 241 | 98.41 220 | 89.84 281 | 97.10 178 | 99.59 133 |
|
| ADS-MVSNet2 | | | 93.80 218 | 93.88 203 | 93.55 304 | 97.87 197 | 85.94 349 | 94.24 378 | 96.84 328 | 90.07 272 | 96.43 182 | 94.48 347 | 90.29 177 | 95.37 357 | 87.44 304 | 97.23 175 | 99.36 173 |
|
| ADS-MVSNet | | | 94.79 187 | 94.02 198 | 97.11 188 | 97.87 197 | 93.79 220 | 94.24 378 | 98.16 195 | 90.07 272 | 96.43 182 | 94.48 347 | 90.29 177 | 98.19 246 | 87.44 304 | 97.23 175 | 99.36 173 |
|
| Effi-MVS+ | | | 96.30 151 | 95.69 155 | 98.16 129 | 97.85 199 | 96.26 138 | 97.41 344 | 97.21 289 | 90.37 267 | 98.65 114 | 98.58 204 | 86.61 221 | 98.70 202 | 97.11 152 | 97.37 174 | 99.52 153 |
|
| PatchmatchNet |  | | 95.94 159 | 95.45 160 | 97.39 177 | 97.83 200 | 94.41 203 | 96.05 370 | 98.40 152 | 92.86 183 | 97.09 163 | 95.28 324 | 94.21 81 | 98.07 253 | 89.26 285 | 98.11 157 | 99.70 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 194 | 93.61 207 | 97.74 158 | 97.82 201 | 96.26 138 | 99.96 36 | 97.78 231 | 85.76 337 | 94.00 221 | 97.54 242 | 76.95 305 | 99.21 168 | 97.23 148 | 95.43 216 | 97.76 242 |
|
| 1112_ss | | | 96.01 158 | 95.20 169 | 98.42 118 | 97.80 202 | 96.41 131 | 99.65 184 | 96.66 339 | 92.71 191 | 92.88 235 | 99.40 125 | 92.16 139 | 99.30 165 | 91.92 246 | 93.66 240 | 99.55 145 |
|
| Test_1112_low_res | | | 95.72 164 | 94.83 180 | 98.42 118 | 97.79 203 | 96.41 131 | 99.65 184 | 96.65 340 | 92.70 192 | 92.86 236 | 96.13 288 | 92.15 140 | 99.30 165 | 91.88 247 | 93.64 241 | 99.55 145 |
|
| Effi-MVS+-dtu | | | 94.53 199 | 95.30 166 | 92.22 326 | 97.77 204 | 82.54 366 | 99.59 194 | 97.06 306 | 94.92 103 | 95.29 205 | 95.37 317 | 85.81 228 | 97.89 263 | 94.80 194 | 97.07 179 | 96.23 258 |
|
| tpm cat1 | | | 93.51 227 | 92.52 240 | 96.47 205 | 97.77 204 | 91.47 282 | 96.13 368 | 98.06 204 | 80.98 370 | 92.91 234 | 93.78 355 | 89.66 183 | 98.87 188 | 87.03 313 | 96.39 194 | 99.09 199 |
|
| FA-MVS(test-final) | | | 95.86 160 | 95.09 173 | 98.15 132 | 97.74 206 | 95.62 167 | 96.31 365 | 98.17 191 | 91.42 242 | 96.26 187 | 96.13 288 | 90.56 169 | 99.47 162 | 92.18 242 | 97.07 179 | 99.35 175 |
|
| xiu_mvs_v1_base_debu | | | 97.43 93 | 97.06 99 | 98.55 105 | 97.74 206 | 98.14 66 | 99.31 235 | 97.86 225 | 96.43 62 | 99.62 50 | 99.69 89 | 85.56 230 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 238 |
|
| xiu_mvs_v1_base | | | 97.43 93 | 97.06 99 | 98.55 105 | 97.74 206 | 98.14 66 | 99.31 235 | 97.86 225 | 96.43 62 | 99.62 50 | 99.69 89 | 85.56 230 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 238 |
|
| xiu_mvs_v1_base_debi | | | 97.43 93 | 97.06 99 | 98.55 105 | 97.74 206 | 98.14 66 | 99.31 235 | 97.86 225 | 96.43 62 | 99.62 50 | 99.69 89 | 85.56 230 | 99.68 142 | 99.05 60 | 98.31 149 | 97.83 238 |
|
| EPP-MVSNet | | | 96.69 134 | 96.60 120 | 96.96 191 | 97.74 206 | 93.05 240 | 99.37 228 | 98.56 92 | 88.75 296 | 95.83 197 | 99.01 156 | 96.01 31 | 98.56 209 | 96.92 161 | 97.20 177 | 99.25 188 |
|
| gg-mvs-nofinetune | | | 93.51 227 | 91.86 252 | 98.47 113 | 97.72 211 | 97.96 77 | 92.62 386 | 98.51 107 | 74.70 388 | 97.33 158 | 69.59 401 | 98.91 3 | 97.79 266 | 97.77 137 | 99.56 101 | 99.67 115 |
|
| IB-MVS | | 92.85 6 | 94.99 183 | 93.94 201 | 98.16 129 | 97.72 211 | 95.69 164 | 99.99 6 | 98.81 60 | 94.28 131 | 92.70 237 | 96.90 262 | 95.08 51 | 99.17 174 | 96.07 171 | 73.88 372 | 99.60 132 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 98 | 97.02 104 | 98.59 102 | 97.71 213 | 97.52 92 | 99.97 29 | 98.54 101 | 91.83 226 | 97.45 155 | 99.04 153 | 97.50 7 | 99.10 181 | 94.75 196 | 96.37 195 | 99.16 193 |
|
| Syy-MVS | | | 90.00 304 | 90.63 270 | 88.11 360 | 97.68 214 | 74.66 388 | 99.71 172 | 98.35 165 | 90.79 259 | 92.10 243 | 98.67 193 | 79.10 290 | 93.09 380 | 63.35 394 | 95.95 203 | 96.59 254 |
|
| myMVS_eth3d | | | 94.46 201 | 94.76 182 | 93.55 304 | 97.68 214 | 90.97 288 | 99.71 172 | 98.35 165 | 90.79 259 | 92.10 243 | 98.67 193 | 92.46 133 | 93.09 380 | 87.13 310 | 95.95 203 | 96.59 254 |
|
| test_fmvs1_n | | | 94.25 209 | 94.36 189 | 93.92 291 | 97.68 214 | 83.70 361 | 99.90 94 | 96.57 343 | 97.40 28 | 99.67 41 | 98.88 176 | 61.82 377 | 99.92 88 | 98.23 110 | 99.13 128 | 98.14 235 |
|
| diffmvs |  | | 97.00 117 | 96.64 118 | 98.09 135 | 97.64 217 | 96.17 146 | 99.81 140 | 97.19 290 | 94.67 113 | 98.95 95 | 99.28 133 | 86.43 222 | 98.76 196 | 98.37 105 | 97.42 172 | 99.33 178 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 164 | 95.15 171 | 97.45 172 | 97.62 218 | 94.28 207 | 99.28 241 | 98.24 183 | 94.27 133 | 96.84 171 | 98.94 172 | 79.39 285 | 98.76 196 | 93.25 227 | 98.49 144 | 99.30 182 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 110 | 96.72 115 | 98.22 127 | 97.60 219 | 96.70 122 | 99.92 82 | 98.54 101 | 91.11 250 | 97.07 165 | 98.97 163 | 97.47 10 | 99.03 182 | 93.73 222 | 96.09 198 | 98.92 208 |
|
| miper_ehance_all_eth | | | 93.16 234 | 92.60 235 | 94.82 253 | 97.57 220 | 93.56 228 | 99.50 210 | 97.07 305 | 88.75 296 | 88.85 295 | 95.52 307 | 90.97 160 | 96.74 319 | 90.77 265 | 84.45 308 | 94.17 293 |
|
| testing3 | | | 93.92 213 | 94.23 193 | 92.99 318 | 97.54 221 | 90.23 306 | 99.99 6 | 99.16 30 | 90.57 263 | 91.33 252 | 98.63 199 | 92.99 114 | 92.52 384 | 82.46 343 | 95.39 217 | 96.22 259 |
|
| LCM-MVSNet-Re | | | 92.31 254 | 92.60 235 | 91.43 333 | 97.53 222 | 79.27 383 | 99.02 269 | 91.83 397 | 92.07 218 | 80.31 363 | 94.38 350 | 83.50 249 | 95.48 355 | 97.22 149 | 97.58 168 | 99.54 149 |
|
| GBi-Net | | | 90.88 281 | 89.82 287 | 94.08 283 | 97.53 222 | 91.97 263 | 98.43 315 | 96.95 317 | 87.05 320 | 89.68 273 | 94.72 338 | 71.34 342 | 96.11 343 | 87.01 314 | 85.65 297 | 94.17 293 |
|
| test1 | | | 90.88 281 | 89.82 287 | 94.08 283 | 97.53 222 | 91.97 263 | 98.43 315 | 96.95 317 | 87.05 320 | 89.68 273 | 94.72 338 | 71.34 342 | 96.11 343 | 87.01 314 | 85.65 297 | 94.17 293 |
|
| FMVSNet2 | | | 91.02 278 | 89.56 292 | 95.41 233 | 97.53 222 | 95.74 159 | 98.98 271 | 97.41 269 | 87.05 320 | 88.43 303 | 95.00 332 | 71.34 342 | 96.24 340 | 85.12 327 | 85.21 302 | 94.25 288 |
|
| tttt0517 | | | 96.85 123 | 96.49 124 | 97.92 144 | 97.48 226 | 95.89 154 | 99.85 123 | 98.54 101 | 90.72 262 | 96.63 176 | 98.93 174 | 97.47 10 | 99.02 183 | 93.03 234 | 95.76 209 | 98.85 212 |
|
| casdiffmvs_mvg |  | | 96.43 143 | 95.94 146 | 97.89 148 | 97.44 227 | 95.47 171 | 99.86 120 | 97.29 283 | 93.35 168 | 96.03 191 | 99.19 144 | 85.39 233 | 98.72 200 | 97.89 130 | 97.04 181 | 99.49 159 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 100 | 97.24 93 | 97.80 149 | 97.41 228 | 95.64 166 | 99.99 6 | 97.06 306 | 94.59 114 | 99.63 47 | 99.32 132 | 89.20 194 | 98.14 248 | 98.76 85 | 99.23 124 | 99.62 127 |
|
| c3_l | | | 92.53 249 | 91.87 251 | 94.52 265 | 97.40 229 | 92.99 242 | 99.40 221 | 96.93 322 | 87.86 310 | 88.69 298 | 95.44 311 | 89.95 181 | 96.44 331 | 90.45 271 | 80.69 339 | 94.14 302 |
|
| fmvsm_s_conf0.1_n | | | 97.30 101 | 97.21 95 | 97.60 166 | 97.38 230 | 94.40 205 | 99.90 94 | 98.64 76 | 96.47 61 | 99.51 65 | 99.65 100 | 84.99 238 | 99.93 85 | 99.22 55 | 99.09 130 | 98.46 226 |
|
| CDS-MVSNet | | | 96.34 148 | 96.07 135 | 97.13 186 | 97.37 231 | 94.96 190 | 99.53 205 | 97.91 220 | 91.55 234 | 95.37 204 | 98.32 223 | 95.05 53 | 97.13 296 | 93.80 218 | 95.75 210 | 99.30 182 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 131 | 96.26 130 | 98.16 129 | 97.36 232 | 96.48 128 | 99.96 36 | 98.29 178 | 91.93 223 | 95.77 198 | 98.07 229 | 95.54 41 | 98.29 237 | 90.55 269 | 98.89 134 | 99.70 110 |
|
| miper_lstm_enhance | | | 91.81 262 | 91.39 261 | 93.06 317 | 97.34 233 | 89.18 322 | 99.38 226 | 96.79 333 | 86.70 327 | 87.47 316 | 95.22 325 | 90.00 180 | 95.86 352 | 88.26 295 | 81.37 329 | 94.15 299 |
|
| baseline | | | 96.43 143 | 95.98 140 | 97.76 156 | 97.34 233 | 95.17 187 | 99.51 208 | 97.17 293 | 93.92 152 | 96.90 169 | 99.28 133 | 85.37 234 | 98.64 206 | 97.50 143 | 96.86 187 | 99.46 161 |
|
| cl____ | | | 92.31 254 | 91.58 255 | 94.52 265 | 97.33 235 | 92.77 244 | 99.57 198 | 96.78 334 | 86.97 324 | 87.56 314 | 95.51 308 | 89.43 187 | 96.62 324 | 88.60 290 | 82.44 321 | 94.16 298 |
|
| DIV-MVS_self_test | | | 92.32 253 | 91.60 254 | 94.47 269 | 97.31 236 | 92.74 246 | 99.58 196 | 96.75 335 | 86.99 323 | 87.64 312 | 95.54 305 | 89.55 186 | 96.50 328 | 88.58 291 | 82.44 321 | 94.17 293 |
|
| casdiffmvs |  | | 96.42 145 | 95.97 143 | 97.77 154 | 97.30 237 | 94.98 189 | 99.84 128 | 97.09 303 | 93.75 158 | 96.58 178 | 99.26 139 | 85.07 236 | 98.78 194 | 97.77 137 | 97.04 181 | 99.54 149 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 206 | 93.48 214 | 96.99 190 | 97.29 238 | 93.54 229 | 99.96 36 | 96.72 337 | 88.35 305 | 93.43 225 | 98.94 172 | 82.05 256 | 98.05 254 | 88.12 299 | 96.48 193 | 99.37 172 |
|
| eth_miper_zixun_eth | | | 92.41 252 | 91.93 249 | 93.84 295 | 97.28 239 | 90.68 296 | 98.83 289 | 96.97 316 | 88.57 301 | 89.19 290 | 95.73 298 | 89.24 193 | 96.69 322 | 89.97 280 | 81.55 327 | 94.15 299 |
|
| MVSFormer | | | 96.94 120 | 96.60 120 | 97.95 141 | 97.28 239 | 97.70 86 | 99.55 202 | 97.27 285 | 91.17 247 | 99.43 70 | 99.54 112 | 90.92 161 | 96.89 312 | 94.67 199 | 99.62 93 | 99.25 188 |
|
| lupinMVS | | | 97.85 72 | 97.60 79 | 98.62 98 | 97.28 239 | 97.70 86 | 99.99 6 | 97.55 252 | 95.50 91 | 99.43 70 | 99.67 96 | 90.92 161 | 98.71 201 | 98.40 102 | 99.62 93 | 99.45 163 |
|
| SCA | | | 94.69 191 | 93.81 205 | 97.33 182 | 97.10 242 | 94.44 200 | 98.86 286 | 98.32 172 | 93.30 171 | 96.17 190 | 95.59 303 | 76.48 311 | 97.95 260 | 91.06 257 | 97.43 170 | 99.59 133 |
|
| TAMVS | | | 95.85 161 | 95.58 158 | 96.65 203 | 97.07 243 | 93.50 230 | 99.17 250 | 97.82 229 | 91.39 244 | 95.02 208 | 98.01 230 | 92.20 138 | 97.30 285 | 93.75 221 | 95.83 207 | 99.14 196 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 222 | 93.86 204 | 93.29 309 | 97.06 244 | 86.16 347 | 99.80 144 | 96.83 329 | 92.66 195 | 92.58 238 | 97.83 238 | 81.39 263 | 97.67 271 | 89.75 282 | 96.87 186 | 96.05 261 |
|
| CostFormer | | | 96.10 155 | 95.88 150 | 96.78 196 | 97.03 245 | 92.55 254 | 97.08 352 | 97.83 228 | 90.04 274 | 98.72 110 | 94.89 336 | 95.01 55 | 98.29 237 | 96.54 166 | 95.77 208 | 99.50 157 |
|
| test_fmvsmvis_n_1920 | | | 97.67 86 | 97.59 81 | 97.91 146 | 97.02 246 | 95.34 177 | 99.95 54 | 98.45 118 | 97.87 15 | 97.02 166 | 99.59 106 | 89.64 184 | 99.98 43 | 99.41 48 | 99.34 119 | 98.42 228 |
|
| test-LLR | | | 96.47 141 | 96.04 136 | 97.78 152 | 97.02 246 | 95.44 172 | 99.96 36 | 98.21 186 | 94.07 139 | 95.55 200 | 96.38 279 | 93.90 90 | 98.27 241 | 90.42 272 | 98.83 138 | 99.64 121 |
|
| test-mter | | | 96.39 146 | 95.93 147 | 97.78 152 | 97.02 246 | 95.44 172 | 99.96 36 | 98.21 186 | 91.81 228 | 95.55 200 | 96.38 279 | 95.17 48 | 98.27 241 | 90.42 272 | 98.83 138 | 99.64 121 |
|
| gm-plane-assit | | | | | | 96.97 249 | 93.76 222 | | | 91.47 238 | | 98.96 165 | | 98.79 193 | 94.92 189 | | |
|
| WB-MVSnew | | | 92.90 240 | 92.77 232 | 93.26 311 | 96.95 250 | 93.63 226 | 99.71 172 | 98.16 195 | 91.49 235 | 94.28 217 | 98.14 226 | 81.33 265 | 96.48 329 | 79.47 358 | 95.46 214 | 89.68 381 |
|
| QAPM | | | 95.40 175 | 94.17 195 | 99.10 66 | 96.92 251 | 97.71 84 | 99.40 221 | 98.68 70 | 89.31 281 | 88.94 294 | 98.89 175 | 82.48 254 | 99.96 61 | 93.12 233 | 99.83 76 | 99.62 127 |
|
| KD-MVS_2432*1600 | | | 88.00 323 | 86.10 327 | 93.70 300 | 96.91 252 | 94.04 214 | 97.17 349 | 97.12 299 | 84.93 347 | 81.96 354 | 92.41 366 | 92.48 131 | 94.51 368 | 79.23 359 | 52.68 400 | 92.56 355 |
|
| miper_refine_blended | | | 88.00 323 | 86.10 327 | 93.70 300 | 96.91 252 | 94.04 214 | 97.17 349 | 97.12 299 | 84.93 347 | 81.96 354 | 92.41 366 | 92.48 131 | 94.51 368 | 79.23 359 | 52.68 400 | 92.56 355 |
|
| tpm2 | | | 95.47 173 | 95.18 170 | 96.35 212 | 96.91 252 | 91.70 276 | 96.96 355 | 97.93 216 | 88.04 309 | 98.44 122 | 95.40 313 | 93.32 104 | 97.97 257 | 94.00 210 | 95.61 212 | 99.38 170 |
|
| FMVSNet5 | | | 88.32 320 | 87.47 322 | 90.88 336 | 96.90 255 | 88.39 333 | 97.28 346 | 95.68 364 | 82.60 364 | 84.67 343 | 92.40 368 | 79.83 282 | 91.16 389 | 76.39 373 | 81.51 328 | 93.09 347 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 150 | 95.24 167 | 99.52 28 | 96.88 256 | 98.64 54 | 99.72 169 | 98.24 183 | 95.27 96 | 88.42 305 | 98.98 161 | 82.76 253 | 99.94 77 | 97.10 153 | 99.83 76 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 248 | 91.50 258 | 96.10 217 | 96.85 257 | 90.49 301 | 91.50 391 | 97.19 290 | 82.76 363 | 90.23 261 | 95.59 303 | 95.02 54 | 98.00 256 | 77.41 368 | 96.98 184 | 99.82 92 |
|
| MVS | | | 96.60 137 | 95.56 159 | 99.72 13 | 96.85 257 | 99.22 20 | 98.31 321 | 98.94 41 | 91.57 233 | 90.90 256 | 99.61 105 | 86.66 220 | 99.96 61 | 97.36 145 | 99.88 70 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 153 | 95.34 164 | 99.08 68 | 96.82 259 | 97.47 97 | 99.45 218 | 98.81 60 | 95.52 90 | 89.39 281 | 99.00 158 | 81.97 257 | 99.95 69 | 97.27 147 | 99.83 76 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 221 | 93.40 219 | 94.74 254 | 96.80 260 | 92.69 249 | 99.06 261 | 97.67 239 | 88.96 290 | 91.39 249 | 99.02 154 | 88.75 199 | 97.30 285 | 91.07 256 | 87.85 283 | 94.22 289 |
|
| CVMVSNet | | | 94.68 193 | 94.94 178 | 93.89 294 | 96.80 260 | 86.92 345 | 99.06 261 | 98.98 38 | 94.45 117 | 94.23 219 | 99.02 154 | 85.60 229 | 95.31 359 | 90.91 262 | 95.39 217 | 99.43 166 |
|
| IterMVS-LS | | | 92.69 246 | 92.11 245 | 94.43 273 | 96.80 260 | 92.74 246 | 99.45 218 | 96.89 325 | 88.98 288 | 89.65 276 | 95.38 316 | 88.77 198 | 96.34 335 | 90.98 260 | 82.04 324 | 94.22 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 280 | 90.17 282 | 93.12 314 | 96.78 263 | 90.42 304 | 98.89 280 | 97.05 308 | 89.03 285 | 86.49 329 | 95.42 312 | 76.59 309 | 95.02 361 | 87.22 309 | 84.09 311 | 93.93 319 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 124 | 95.96 144 | 99.48 34 | 96.74 264 | 98.52 58 | 98.31 321 | 98.86 53 | 95.82 80 | 89.91 267 | 98.98 161 | 87.49 208 | 99.96 61 | 97.80 132 | 99.73 86 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 283 | 90.16 283 | 92.93 319 | 96.72 265 | 89.96 312 | 98.89 280 | 96.99 312 | 88.95 291 | 86.63 326 | 95.67 299 | 76.48 311 | 95.00 362 | 87.04 312 | 84.04 314 | 93.84 326 |
|
| MVS-HIRNet | | | 86.22 330 | 83.19 343 | 95.31 237 | 96.71 266 | 90.29 305 | 92.12 388 | 97.33 277 | 62.85 395 | 86.82 323 | 70.37 400 | 69.37 350 | 97.49 276 | 75.12 375 | 97.99 162 | 98.15 233 |
|
| VDDNet | | | 93.12 235 | 91.91 250 | 96.76 197 | 96.67 267 | 92.65 252 | 98.69 302 | 98.21 186 | 82.81 362 | 97.75 149 | 99.28 133 | 61.57 378 | 99.48 161 | 98.09 118 | 94.09 235 | 98.15 233 |
|
| dmvs_re | | | 93.20 233 | 93.15 224 | 93.34 307 | 96.54 268 | 83.81 360 | 98.71 299 | 98.51 107 | 91.39 244 | 92.37 241 | 98.56 206 | 78.66 294 | 97.83 265 | 93.89 212 | 89.74 253 | 98.38 229 |
|
| MIMVSNet | | | 90.30 296 | 88.67 310 | 95.17 242 | 96.45 269 | 91.64 278 | 92.39 387 | 97.15 296 | 85.99 334 | 90.50 259 | 93.19 362 | 66.95 360 | 94.86 365 | 82.01 347 | 93.43 242 | 99.01 206 |
|
| CR-MVSNet | | | 93.45 230 | 92.62 234 | 95.94 219 | 96.29 270 | 92.66 250 | 92.01 389 | 96.23 353 | 92.62 197 | 96.94 167 | 93.31 360 | 91.04 158 | 96.03 348 | 79.23 359 | 95.96 201 | 99.13 197 |
|
| RPMNet | | | 89.76 308 | 87.28 323 | 97.19 185 | 96.29 270 | 92.66 250 | 92.01 389 | 98.31 174 | 70.19 394 | 96.94 167 | 85.87 393 | 87.25 212 | 99.78 125 | 62.69 395 | 95.96 201 | 99.13 197 |
|
| tt0805 | | | 91.28 273 | 90.18 281 | 94.60 260 | 96.26 272 | 87.55 339 | 98.39 319 | 98.72 65 | 89.00 287 | 89.22 287 | 98.47 214 | 62.98 374 | 98.96 185 | 90.57 268 | 88.00 282 | 97.28 249 |
|
| Patchmtry | | | 89.70 309 | 88.49 312 | 93.33 308 | 96.24 273 | 89.94 315 | 91.37 392 | 96.23 353 | 78.22 378 | 87.69 311 | 93.31 360 | 91.04 158 | 96.03 348 | 80.18 357 | 82.10 323 | 94.02 309 |
|
| test_vis1_rt | | | 86.87 328 | 86.05 330 | 89.34 349 | 96.12 274 | 78.07 384 | 99.87 108 | 83.54 408 | 92.03 221 | 78.21 373 | 89.51 379 | 45.80 394 | 99.91 89 | 96.25 169 | 93.11 247 | 90.03 378 |
|
| JIA-IIPM | | | 91.76 268 | 90.70 268 | 94.94 248 | 96.11 275 | 87.51 340 | 93.16 385 | 98.13 200 | 75.79 384 | 97.58 151 | 77.68 398 | 92.84 119 | 97.97 257 | 88.47 294 | 96.54 189 | 99.33 178 |
|
| OpenMVS |  | 90.15 15 | 94.77 189 | 93.59 210 | 98.33 122 | 96.07 276 | 97.48 96 | 99.56 200 | 98.57 89 | 90.46 265 | 86.51 328 | 98.95 170 | 78.57 295 | 99.94 77 | 93.86 213 | 99.74 85 | 97.57 247 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 61 | 96.05 277 | 98.96 26 | 99.90 94 | 99.35 25 | 96.68 55 | 98.35 127 | 99.66 98 | 96.45 28 | 98.51 212 | 99.45 45 | 99.89 67 | 99.96 64 |
|
| CLD-MVS | | | 94.06 212 | 93.90 202 | 94.55 264 | 96.02 278 | 90.69 295 | 99.98 16 | 97.72 236 | 96.62 58 | 91.05 255 | 98.85 184 | 77.21 300 | 98.47 213 | 98.11 116 | 89.51 259 | 94.48 269 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 293 | 88.75 309 | 95.25 239 | 95.99 279 | 90.16 308 | 91.22 393 | 97.54 254 | 76.80 380 | 97.26 160 | 86.01 392 | 91.88 145 | 96.07 347 | 66.16 391 | 95.91 205 | 99.51 155 |
|
| ACMH+ | | 89.98 16 | 90.35 294 | 89.54 293 | 92.78 322 | 95.99 279 | 86.12 348 | 98.81 291 | 97.18 292 | 89.38 280 | 83.14 350 | 97.76 240 | 68.42 355 | 98.43 218 | 89.11 286 | 86.05 295 | 93.78 329 |
|
| DeepMVS_CX |  | | | | 82.92 370 | 95.98 281 | 58.66 401 | | 96.01 358 | 92.72 190 | 78.34 372 | 95.51 308 | 58.29 383 | 98.08 251 | 82.57 342 | 85.29 300 | 92.03 363 |
|
| ACMP | | 92.05 9 | 92.74 244 | 92.42 242 | 93.73 296 | 95.91 282 | 88.72 326 | 99.81 140 | 97.53 256 | 94.13 135 | 87.00 322 | 98.23 224 | 74.07 332 | 98.47 213 | 96.22 170 | 88.86 266 | 93.99 314 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 225 | 93.03 226 | 95.35 234 | 95.86 283 | 86.94 344 | 99.87 108 | 96.36 350 | 96.85 46 | 99.54 60 | 98.79 186 | 52.41 390 | 99.83 118 | 98.64 93 | 98.97 133 | 99.29 184 |
|
| HQP-NCC | | | | | | 95.78 284 | | 99.87 108 | | 96.82 48 | 93.37 226 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 284 | | 99.87 108 | | 96.82 48 | 93.37 226 | | | | | | |
|
| HQP-MVS | | | 94.61 195 | 94.50 187 | 94.92 249 | 95.78 284 | 91.85 268 | 99.87 108 | 97.89 221 | 96.82 48 | 93.37 226 | 98.65 196 | 80.65 274 | 98.39 224 | 97.92 127 | 89.60 254 | 94.53 264 |
|
| NP-MVS | | | | | | 95.77 287 | 91.79 270 | | | | | 98.65 196 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 82 | 97.44 85 | 98.64 97 | 95.76 288 | 96.20 143 | 99.94 70 | 98.05 206 | 98.17 8 | 98.89 99 | 99.42 120 | 87.65 206 | 99.90 91 | 99.50 41 | 99.60 99 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 288 | 91.72 275 | | | | | | 80.47 278 | | | | |
|
| ACMM | | 91.95 10 | 92.88 241 | 92.52 240 | 93.98 290 | 95.75 290 | 89.08 323 | 99.77 150 | 97.52 258 | 93.00 178 | 89.95 266 | 97.99 233 | 76.17 315 | 98.46 216 | 93.63 224 | 88.87 265 | 94.39 278 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 215 | 92.84 228 | 96.80 195 | 95.73 291 | 93.57 227 | 99.88 105 | 97.24 288 | 92.57 202 | 92.92 232 | 96.66 271 | 78.73 293 | 97.67 271 | 87.75 302 | 94.06 236 | 99.17 192 |
|
| plane_prior1 | | | | | | 95.73 291 | | | | | | | | | | | |
|
| jason | | | 97.24 104 | 96.86 109 | 98.38 121 | 95.73 291 | 97.32 101 | 99.97 29 | 97.40 270 | 95.34 94 | 98.60 117 | 99.54 112 | 87.70 205 | 98.56 209 | 97.94 126 | 99.47 108 | 99.25 188 |
| jason: jason. |
| HQP_MVS | | | 94.49 200 | 94.36 189 | 94.87 250 | 95.71 294 | 91.74 272 | 99.84 128 | 97.87 223 | 96.38 65 | 93.01 230 | 98.59 201 | 80.47 278 | 98.37 230 | 97.79 135 | 89.55 257 | 94.52 266 |
|
| plane_prior7 | | | | | | 95.71 294 | 91.59 280 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 324 | 95.69 296 | 85.14 353 | | 95.71 363 | 92.81 186 | 89.33 284 | 98.11 227 | 70.23 348 | 98.42 219 | 85.91 323 | 88.16 279 | 93.59 337 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 112 | 96.90 107 | 97.63 164 | 95.65 297 | 94.21 210 | 99.83 135 | 98.50 112 | 96.27 72 | 99.65 43 | 99.64 101 | 84.72 239 | 99.93 85 | 99.04 63 | 98.84 137 | 98.74 219 |
|
| ACMH | | 89.72 17 | 90.64 287 | 89.63 290 | 93.66 302 | 95.64 298 | 88.64 329 | 98.55 308 | 97.45 263 | 89.03 285 | 81.62 357 | 97.61 241 | 69.75 349 | 98.41 220 | 89.37 283 | 87.62 287 | 93.92 320 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 133 | 96.49 124 | 97.37 178 | 95.63 299 | 95.96 152 | 99.74 161 | 98.88 51 | 92.94 180 | 91.61 247 | 98.97 163 | 97.72 5 | 98.62 207 | 94.83 193 | 98.08 160 | 97.53 248 |
|
| FMVSNet1 | | | 88.50 319 | 86.64 325 | 94.08 283 | 95.62 300 | 91.97 263 | 98.43 315 | 96.95 317 | 83.00 360 | 86.08 336 | 94.72 338 | 59.09 382 | 96.11 343 | 81.82 349 | 84.07 312 | 94.17 293 |
|
| LPG-MVS_test | | | 92.96 238 | 92.71 233 | 93.71 298 | 95.43 301 | 88.67 327 | 99.75 158 | 97.62 243 | 92.81 186 | 90.05 262 | 98.49 210 | 75.24 322 | 98.40 222 | 95.84 176 | 89.12 261 | 94.07 306 |
|
| LGP-MVS_train | | | | | 93.71 298 | 95.43 301 | 88.67 327 | | 97.62 243 | 92.81 186 | 90.05 262 | 98.49 210 | 75.24 322 | 98.40 222 | 95.84 176 | 89.12 261 | 94.07 306 |
|
| tpm | | | 93.70 223 | 93.41 218 | 94.58 262 | 95.36 303 | 87.41 341 | 97.01 353 | 96.90 324 | 90.85 257 | 96.72 175 | 94.14 352 | 90.40 173 | 96.84 315 | 90.75 266 | 88.54 274 | 99.51 155 |
|
| D2MVS | | | 92.76 243 | 92.59 238 | 93.27 310 | 95.13 304 | 89.54 319 | 99.69 177 | 99.38 23 | 92.26 214 | 87.59 313 | 94.61 344 | 85.05 237 | 97.79 266 | 91.59 250 | 88.01 281 | 92.47 358 |
|
| VPA-MVSNet | | | 92.70 245 | 91.55 257 | 96.16 215 | 95.09 305 | 96.20 143 | 98.88 282 | 99.00 36 | 91.02 254 | 91.82 246 | 95.29 323 | 76.05 317 | 97.96 259 | 95.62 180 | 81.19 330 | 94.30 284 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 297 | 89.05 304 | 94.02 286 | 95.08 306 | 90.15 309 | 97.19 348 | 97.43 265 | 84.91 349 | 83.99 346 | 97.06 257 | 74.00 333 | 98.28 239 | 84.08 332 | 87.71 285 | 93.62 336 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 325 | 86.51 326 | 91.94 329 | 95.05 307 | 85.57 351 | 97.65 341 | 94.08 385 | 84.40 352 | 81.82 356 | 96.85 266 | 62.14 376 | 98.33 233 | 80.25 356 | 86.37 294 | 91.91 365 |
|
| test0.0.03 1 | | | 93.86 214 | 93.61 207 | 94.64 258 | 95.02 308 | 92.18 261 | 99.93 77 | 98.58 87 | 94.07 139 | 87.96 309 | 98.50 209 | 93.90 90 | 94.96 363 | 81.33 350 | 93.17 245 | 96.78 251 |
|
| UniMVSNet (Re) | | | 93.07 237 | 92.13 244 | 95.88 220 | 94.84 309 | 96.24 142 | 99.88 105 | 98.98 38 | 92.49 207 | 89.25 285 | 95.40 313 | 87.09 214 | 97.14 295 | 93.13 232 | 78.16 353 | 94.26 286 |
|
| USDC | | | 90.00 304 | 88.96 305 | 93.10 316 | 94.81 310 | 88.16 335 | 98.71 299 | 95.54 368 | 93.66 160 | 83.75 348 | 97.20 251 | 65.58 365 | 98.31 235 | 83.96 335 | 87.49 289 | 92.85 352 |
|
| VPNet | | | 91.81 262 | 90.46 272 | 95.85 222 | 94.74 311 | 95.54 170 | 98.98 271 | 98.59 86 | 92.14 216 | 90.77 258 | 97.44 244 | 68.73 353 | 97.54 275 | 94.89 192 | 77.89 355 | 94.46 270 |
|
| FIs | | | 94.10 210 | 93.43 215 | 96.11 216 | 94.70 312 | 96.82 119 | 99.58 196 | 98.93 45 | 92.54 203 | 89.34 283 | 97.31 248 | 87.62 207 | 97.10 299 | 94.22 209 | 86.58 292 | 94.40 276 |
|
| UniMVSNet_ETH3D | | | 90.06 303 | 88.58 311 | 94.49 268 | 94.67 313 | 88.09 336 | 97.81 340 | 97.57 251 | 83.91 355 | 88.44 301 | 97.41 245 | 57.44 384 | 97.62 273 | 91.41 251 | 88.59 273 | 97.77 241 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 239 | 92.11 245 | 95.49 228 | 94.61 314 | 95.28 180 | 99.83 135 | 99.08 33 | 91.49 235 | 89.21 288 | 96.86 265 | 87.14 213 | 96.73 320 | 93.20 228 | 77.52 358 | 94.46 270 |
|
| test_fmvs2 | | | 89.47 312 | 89.70 289 | 88.77 356 | 94.54 315 | 75.74 385 | 99.83 135 | 94.70 381 | 94.71 110 | 91.08 253 | 96.82 270 | 54.46 387 | 97.78 268 | 92.87 235 | 88.27 277 | 92.80 353 |
|
| WR-MVS | | | 92.31 254 | 91.25 262 | 95.48 231 | 94.45 316 | 95.29 179 | 99.60 193 | 98.68 70 | 90.10 271 | 88.07 308 | 96.89 263 | 80.68 273 | 96.80 318 | 93.14 231 | 79.67 346 | 94.36 279 |
|
| nrg030 | | | 93.51 227 | 92.53 239 | 96.45 207 | 94.36 317 | 97.20 104 | 99.81 140 | 97.16 295 | 91.60 232 | 89.86 269 | 97.46 243 | 86.37 223 | 97.68 270 | 95.88 175 | 80.31 342 | 94.46 270 |
|
| tfpnnormal | | | 89.29 315 | 87.61 321 | 94.34 276 | 94.35 318 | 94.13 212 | 98.95 275 | 98.94 41 | 83.94 353 | 84.47 344 | 95.51 308 | 74.84 327 | 97.39 278 | 77.05 371 | 80.41 340 | 91.48 368 |
|
| iter_conf05 | | | 94.61 195 | 94.72 184 | 94.27 277 | 94.31 319 | 91.01 287 | 99.93 77 | 96.30 352 | 94.01 145 | 92.92 232 | 98.46 217 | 90.66 166 | 97.32 283 | 97.12 151 | 88.75 268 | 94.49 268 |
|
| FC-MVSNet-test | | | 93.81 217 | 93.15 224 | 95.80 224 | 94.30 320 | 96.20 143 | 99.42 220 | 98.89 49 | 92.33 213 | 89.03 293 | 97.27 250 | 87.39 210 | 96.83 316 | 93.20 228 | 86.48 293 | 94.36 279 |
|
| MS-PatchMatch | | | 90.65 286 | 90.30 277 | 91.71 332 | 94.22 321 | 85.50 352 | 98.24 324 | 97.70 237 | 88.67 298 | 86.42 331 | 96.37 281 | 67.82 357 | 98.03 255 | 83.62 337 | 99.62 93 | 91.60 366 |
|
| WR-MVS_H | | | 91.30 271 | 90.35 275 | 94.15 280 | 94.17 322 | 92.62 253 | 99.17 250 | 98.94 41 | 88.87 294 | 86.48 330 | 94.46 349 | 84.36 243 | 96.61 325 | 88.19 296 | 78.51 351 | 93.21 346 |
|
| DU-MVS | | | 92.46 251 | 91.45 260 | 95.49 228 | 94.05 323 | 95.28 180 | 99.81 140 | 98.74 64 | 92.25 215 | 89.21 288 | 96.64 273 | 81.66 260 | 96.73 320 | 93.20 228 | 77.52 358 | 94.46 270 |
|
| NR-MVSNet | | | 91.56 270 | 90.22 279 | 95.60 226 | 94.05 323 | 95.76 158 | 98.25 323 | 98.70 67 | 91.16 249 | 80.78 362 | 96.64 273 | 83.23 252 | 96.57 326 | 91.41 251 | 77.73 357 | 94.46 270 |
|
| CP-MVSNet | | | 91.23 275 | 90.22 279 | 94.26 278 | 93.96 325 | 92.39 257 | 99.09 254 | 98.57 89 | 88.95 291 | 86.42 331 | 96.57 276 | 79.19 288 | 96.37 333 | 90.29 275 | 78.95 348 | 94.02 309 |
|
| XXY-MVS | | | 91.82 261 | 90.46 272 | 95.88 220 | 93.91 326 | 95.40 176 | 98.87 285 | 97.69 238 | 88.63 300 | 87.87 310 | 97.08 255 | 74.38 331 | 97.89 263 | 91.66 249 | 84.07 312 | 94.35 282 |
|
| PS-CasMVS | | | 90.63 288 | 89.51 295 | 93.99 289 | 93.83 327 | 91.70 276 | 98.98 271 | 98.52 104 | 88.48 302 | 86.15 335 | 96.53 278 | 75.46 320 | 96.31 337 | 88.83 288 | 78.86 350 | 93.95 317 |
|
| test_0402 | | | 85.58 332 | 83.94 337 | 90.50 340 | 93.81 328 | 85.04 354 | 98.55 308 | 95.20 375 | 76.01 382 | 79.72 367 | 95.13 326 | 64.15 371 | 96.26 339 | 66.04 392 | 86.88 291 | 90.21 377 |
|
| XVG-ACMP-BASELINE | | | 91.22 276 | 90.75 267 | 92.63 323 | 93.73 329 | 85.61 350 | 98.52 312 | 97.44 264 | 92.77 189 | 89.90 268 | 96.85 266 | 66.64 362 | 98.39 224 | 92.29 240 | 88.61 271 | 93.89 322 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 269 | 90.61 271 | 94.87 250 | 93.69 330 | 93.98 217 | 99.69 177 | 98.65 74 | 91.03 253 | 88.44 301 | 96.83 269 | 80.05 281 | 96.18 341 | 90.26 276 | 76.89 366 | 94.45 275 |
|
| mvsmamba | | | 94.10 210 | 93.72 206 | 95.25 239 | 93.57 331 | 94.13 212 | 99.67 181 | 96.45 348 | 93.63 162 | 91.34 251 | 97.77 239 | 86.29 225 | 97.22 291 | 96.65 165 | 88.10 280 | 94.40 276 |
|
| TransMVSNet (Re) | | | 87.25 326 | 85.28 333 | 93.16 313 | 93.56 332 | 91.03 286 | 98.54 310 | 94.05 387 | 83.69 357 | 81.09 360 | 96.16 286 | 75.32 321 | 96.40 332 | 76.69 372 | 68.41 384 | 92.06 362 |
|
| v10 | | | 90.25 298 | 88.82 307 | 94.57 263 | 93.53 333 | 93.43 232 | 99.08 256 | 96.87 327 | 85.00 346 | 87.34 320 | 94.51 345 | 80.93 270 | 97.02 308 | 82.85 341 | 79.23 347 | 93.26 344 |
|
| testgi | | | 89.01 317 | 88.04 318 | 91.90 330 | 93.49 334 | 84.89 356 | 99.73 166 | 95.66 365 | 93.89 155 | 85.14 341 | 98.17 225 | 59.68 381 | 94.66 367 | 77.73 367 | 88.88 264 | 96.16 260 |
|
| v8 | | | 90.54 290 | 89.17 300 | 94.66 257 | 93.43 335 | 93.40 234 | 99.20 247 | 96.94 321 | 85.76 337 | 87.56 314 | 94.51 345 | 81.96 258 | 97.19 292 | 84.94 329 | 78.25 352 | 93.38 342 |
|
| V42 | | | 91.28 273 | 90.12 284 | 94.74 254 | 93.42 336 | 93.46 231 | 99.68 179 | 97.02 309 | 87.36 316 | 89.85 271 | 95.05 328 | 81.31 266 | 97.34 281 | 87.34 307 | 80.07 344 | 93.40 340 |
|
| pm-mvs1 | | | 89.36 314 | 87.81 320 | 94.01 287 | 93.40 337 | 91.93 266 | 98.62 307 | 96.48 347 | 86.25 332 | 83.86 347 | 96.14 287 | 73.68 334 | 97.04 304 | 86.16 320 | 75.73 370 | 93.04 349 |
|
| v1144 | | | 91.09 277 | 89.83 286 | 94.87 250 | 93.25 338 | 93.69 225 | 99.62 191 | 96.98 314 | 86.83 326 | 89.64 277 | 94.99 333 | 80.94 269 | 97.05 302 | 85.08 328 | 81.16 331 | 93.87 324 |
|
| v1192 | | | 90.62 289 | 89.25 299 | 94.72 256 | 93.13 339 | 93.07 238 | 99.50 210 | 97.02 309 | 86.33 331 | 89.56 279 | 95.01 330 | 79.22 287 | 97.09 301 | 82.34 345 | 81.16 331 | 94.01 311 |
|
| v2v482 | | | 91.30 271 | 90.07 285 | 95.01 245 | 93.13 339 | 93.79 220 | 99.77 150 | 97.02 309 | 88.05 308 | 89.25 285 | 95.37 317 | 80.73 272 | 97.15 294 | 87.28 308 | 80.04 345 | 94.09 305 |
|
| OPM-MVS | | | 93.21 232 | 92.80 230 | 94.44 271 | 93.12 341 | 90.85 294 | 99.77 150 | 97.61 246 | 96.19 75 | 91.56 248 | 98.65 196 | 75.16 326 | 98.47 213 | 93.78 220 | 89.39 260 | 93.99 314 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 284 | 89.52 294 | 94.59 261 | 93.11 342 | 92.77 244 | 99.56 200 | 96.99 312 | 86.38 330 | 89.82 272 | 94.95 335 | 80.50 277 | 97.10 299 | 83.98 334 | 80.41 340 | 93.90 321 |
|
| PEN-MVS | | | 90.19 300 | 89.06 303 | 93.57 303 | 93.06 343 | 90.90 292 | 99.06 261 | 98.47 115 | 88.11 307 | 85.91 337 | 96.30 282 | 76.67 307 | 95.94 351 | 87.07 311 | 76.91 365 | 93.89 322 |
|
| v1240 | | | 90.20 299 | 88.79 308 | 94.44 271 | 93.05 344 | 92.27 259 | 99.38 226 | 96.92 323 | 85.89 335 | 89.36 282 | 94.87 337 | 77.89 299 | 97.03 306 | 80.66 353 | 81.08 334 | 94.01 311 |
|
| v148 | | | 90.70 285 | 89.63 290 | 93.92 291 | 92.97 345 | 90.97 288 | 99.75 158 | 96.89 325 | 87.51 313 | 88.27 306 | 95.01 330 | 81.67 259 | 97.04 304 | 87.40 306 | 77.17 363 | 93.75 330 |
|
| v1921920 | | | 90.46 291 | 89.12 301 | 94.50 267 | 92.96 346 | 92.46 255 | 99.49 212 | 96.98 314 | 86.10 333 | 89.61 278 | 95.30 320 | 78.55 296 | 97.03 306 | 82.17 346 | 80.89 338 | 94.01 311 |
|
| Baseline_NR-MVSNet | | | 90.33 295 | 89.51 295 | 92.81 321 | 92.84 347 | 89.95 313 | 99.77 150 | 93.94 388 | 84.69 351 | 89.04 292 | 95.66 300 | 81.66 260 | 96.52 327 | 90.99 259 | 76.98 364 | 91.97 364 |
|
| test_method | | | 80.79 352 | 79.70 356 | 84.08 367 | 92.83 348 | 67.06 393 | 99.51 208 | 95.42 369 | 54.34 399 | 81.07 361 | 93.53 357 | 44.48 395 | 92.22 386 | 78.90 363 | 77.23 362 | 92.94 350 |
|
| pmmvs4 | | | 92.10 258 | 91.07 265 | 95.18 241 | 92.82 349 | 94.96 190 | 99.48 214 | 96.83 329 | 87.45 315 | 88.66 299 | 96.56 277 | 83.78 247 | 96.83 316 | 89.29 284 | 84.77 306 | 93.75 330 |
|
| LF4IMVS | | | 89.25 316 | 88.85 306 | 90.45 342 | 92.81 350 | 81.19 376 | 98.12 330 | 94.79 378 | 91.44 239 | 86.29 333 | 97.11 253 | 65.30 368 | 98.11 250 | 88.53 293 | 85.25 301 | 92.07 361 |
|
| DTE-MVSNet | | | 89.40 313 | 88.24 316 | 92.88 320 | 92.66 351 | 89.95 313 | 99.10 253 | 98.22 185 | 87.29 317 | 85.12 342 | 96.22 284 | 76.27 314 | 95.30 360 | 83.56 338 | 75.74 369 | 93.41 339 |
|
| EU-MVSNet | | | 90.14 302 | 90.34 276 | 89.54 348 | 92.55 352 | 81.06 377 | 98.69 302 | 98.04 207 | 91.41 243 | 86.59 327 | 96.84 268 | 80.83 271 | 93.31 379 | 86.20 319 | 81.91 325 | 94.26 286 |
|
| APD_test1 | | | 81.15 351 | 80.92 352 | 81.86 371 | 92.45 353 | 59.76 400 | 96.04 371 | 93.61 391 | 73.29 391 | 77.06 376 | 96.64 273 | 44.28 396 | 96.16 342 | 72.35 379 | 82.52 319 | 89.67 382 |
|
| our_test_3 | | | 90.39 292 | 89.48 297 | 93.12 314 | 92.40 354 | 89.57 318 | 99.33 232 | 96.35 351 | 87.84 311 | 85.30 340 | 94.99 333 | 84.14 245 | 96.09 346 | 80.38 354 | 84.56 307 | 93.71 335 |
|
| ppachtmachnet_test | | | 89.58 311 | 88.35 314 | 93.25 312 | 92.40 354 | 90.44 303 | 99.33 232 | 96.73 336 | 85.49 342 | 85.90 338 | 95.77 295 | 81.09 268 | 96.00 350 | 76.00 374 | 82.49 320 | 93.30 343 |
|
| v7n | | | 89.65 310 | 88.29 315 | 93.72 297 | 92.22 356 | 90.56 300 | 99.07 260 | 97.10 301 | 85.42 344 | 86.73 324 | 94.72 338 | 80.06 280 | 97.13 296 | 81.14 351 | 78.12 354 | 93.49 338 |
|
| dmvs_testset | | | 83.79 345 | 86.07 329 | 76.94 375 | 92.14 357 | 48.60 410 | 96.75 358 | 90.27 400 | 89.48 279 | 78.65 370 | 98.55 208 | 79.25 286 | 86.65 398 | 66.85 389 | 82.69 318 | 95.57 262 |
|
| PS-MVSNAJss | | | 93.64 224 | 93.31 221 | 94.61 259 | 92.11 358 | 92.19 260 | 99.12 252 | 97.38 271 | 92.51 206 | 88.45 300 | 96.99 261 | 91.20 153 | 97.29 288 | 94.36 204 | 87.71 285 | 94.36 279 |
|
| pmmvs5 | | | 90.17 301 | 89.09 302 | 93.40 306 | 92.10 359 | 89.77 316 | 99.74 161 | 95.58 367 | 85.88 336 | 87.24 321 | 95.74 296 | 73.41 335 | 96.48 329 | 88.54 292 | 83.56 315 | 93.95 317 |
|
| N_pmnet | | | 80.06 355 | 80.78 353 | 77.89 374 | 91.94 360 | 45.28 412 | 98.80 293 | 56.82 414 | 78.10 379 | 80.08 365 | 93.33 358 | 77.03 302 | 95.76 353 | 68.14 387 | 82.81 317 | 92.64 354 |
|
| test_djsdf | | | 92.83 242 | 92.29 243 | 94.47 269 | 91.90 361 | 92.46 255 | 99.55 202 | 97.27 285 | 91.17 247 | 89.96 265 | 96.07 291 | 81.10 267 | 96.89 312 | 94.67 199 | 88.91 263 | 94.05 308 |
|
| SixPastTwentyTwo | | | 88.73 318 | 88.01 319 | 90.88 336 | 91.85 362 | 82.24 368 | 98.22 327 | 95.18 376 | 88.97 289 | 82.26 353 | 96.89 263 | 71.75 340 | 96.67 323 | 84.00 333 | 82.98 316 | 93.72 334 |
|
| K. test v3 | | | 88.05 322 | 87.24 324 | 90.47 341 | 91.82 363 | 82.23 369 | 98.96 274 | 97.42 267 | 89.05 284 | 76.93 378 | 95.60 302 | 68.49 354 | 95.42 356 | 85.87 324 | 81.01 336 | 93.75 330 |
|
| OurMVSNet-221017-0 | | | 89.81 307 | 89.48 297 | 90.83 338 | 91.64 364 | 81.21 375 | 98.17 329 | 95.38 371 | 91.48 237 | 85.65 339 | 97.31 248 | 72.66 336 | 97.29 288 | 88.15 297 | 84.83 305 | 93.97 316 |
|
| mvs_tets | | | 91.81 262 | 91.08 264 | 94.00 288 | 91.63 365 | 90.58 299 | 98.67 304 | 97.43 265 | 92.43 208 | 87.37 319 | 97.05 258 | 71.76 339 | 97.32 283 | 94.75 196 | 88.68 270 | 94.11 304 |
|
| Gipuma |  | | 66.95 368 | 65.00 368 | 72.79 380 | 91.52 366 | 67.96 392 | 66.16 403 | 95.15 377 | 47.89 401 | 58.54 398 | 67.99 403 | 29.74 400 | 87.54 397 | 50.20 402 | 77.83 356 | 62.87 403 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 146 | 95.74 153 | 98.32 123 | 91.47 367 | 95.56 169 | 99.84 128 | 97.30 280 | 97.74 18 | 97.89 143 | 99.35 131 | 79.62 283 | 99.85 108 | 99.25 54 | 99.24 123 | 99.55 145 |
|
| jajsoiax | | | 91.92 260 | 91.18 263 | 94.15 280 | 91.35 368 | 90.95 291 | 99.00 270 | 97.42 267 | 92.61 198 | 87.38 318 | 97.08 255 | 72.46 337 | 97.36 279 | 94.53 202 | 88.77 267 | 94.13 303 |
|
| MDA-MVSNet-bldmvs | | | 84.09 343 | 81.52 350 | 91.81 331 | 91.32 369 | 88.00 338 | 98.67 304 | 95.92 360 | 80.22 373 | 55.60 401 | 93.32 359 | 68.29 356 | 93.60 377 | 73.76 376 | 76.61 367 | 93.82 328 |
|
| MVP-Stereo | | | 90.93 279 | 90.45 274 | 92.37 325 | 91.25 370 | 88.76 324 | 98.05 334 | 96.17 355 | 87.27 318 | 84.04 345 | 95.30 320 | 78.46 297 | 97.27 290 | 83.78 336 | 99.70 88 | 91.09 369 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 334 | 83.32 342 | 92.10 327 | 90.96 371 | 88.58 330 | 99.20 247 | 96.52 345 | 79.70 375 | 57.12 400 | 92.69 364 | 79.11 289 | 93.86 374 | 77.10 370 | 77.46 360 | 93.86 325 |
|
| YYNet1 | | | 85.50 335 | 83.33 341 | 92.00 328 | 90.89 372 | 88.38 334 | 99.22 246 | 96.55 344 | 79.60 376 | 57.26 399 | 92.72 363 | 79.09 291 | 93.78 375 | 77.25 369 | 77.37 361 | 93.84 326 |
|
| anonymousdsp | | | 91.79 267 | 90.92 266 | 94.41 274 | 90.76 373 | 92.93 243 | 98.93 277 | 97.17 293 | 89.08 283 | 87.46 317 | 95.30 320 | 78.43 298 | 96.92 311 | 92.38 239 | 88.73 269 | 93.39 341 |
|
| lessismore_v0 | | | | | 90.53 339 | 90.58 374 | 80.90 378 | | 95.80 361 | | 77.01 377 | 95.84 293 | 66.15 364 | 96.95 309 | 83.03 340 | 75.05 371 | 93.74 333 |
|
| EG-PatchMatch MVS | | | 85.35 336 | 83.81 339 | 89.99 346 | 90.39 375 | 81.89 371 | 98.21 328 | 96.09 357 | 81.78 367 | 74.73 384 | 93.72 356 | 51.56 392 | 97.12 298 | 79.16 362 | 88.61 271 | 90.96 371 |
|
| EGC-MVSNET | | | 69.38 361 | 63.76 371 | 86.26 364 | 90.32 376 | 81.66 374 | 96.24 367 | 93.85 389 | 0.99 411 | 3.22 412 | 92.33 369 | 52.44 389 | 92.92 382 | 59.53 398 | 84.90 304 | 84.21 392 |
|
| CMPMVS |  | 61.59 21 | 84.75 339 | 85.14 334 | 83.57 368 | 90.32 376 | 62.54 396 | 96.98 354 | 97.59 250 | 74.33 389 | 69.95 390 | 96.66 271 | 64.17 370 | 98.32 234 | 87.88 301 | 88.41 276 | 89.84 380 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 342 | 82.92 345 | 89.21 350 | 90.03 378 | 82.60 365 | 96.89 357 | 95.62 366 | 80.59 371 | 75.77 383 | 89.17 380 | 65.04 369 | 94.79 366 | 72.12 380 | 81.02 335 | 90.23 376 |
|
| pmmvs6 | | | 85.69 331 | 83.84 338 | 91.26 335 | 90.00 379 | 84.41 358 | 97.82 339 | 96.15 356 | 75.86 383 | 81.29 359 | 95.39 315 | 61.21 379 | 96.87 314 | 83.52 339 | 73.29 373 | 92.50 357 |
|
| DSMNet-mixed | | | 88.28 321 | 88.24 316 | 88.42 358 | 89.64 380 | 75.38 387 | 98.06 333 | 89.86 401 | 85.59 341 | 88.20 307 | 92.14 370 | 76.15 316 | 91.95 387 | 78.46 364 | 96.05 199 | 97.92 237 |
|
| UnsupCasMVSNet_eth | | | 85.52 333 | 83.99 335 | 90.10 344 | 89.36 381 | 83.51 362 | 96.65 359 | 97.99 209 | 89.14 282 | 75.89 382 | 93.83 354 | 63.25 373 | 93.92 372 | 81.92 348 | 67.90 387 | 92.88 351 |
|
| Anonymous20231206 | | | 86.32 329 | 85.42 332 | 89.02 352 | 89.11 382 | 80.53 381 | 99.05 265 | 95.28 372 | 85.43 343 | 82.82 351 | 93.92 353 | 74.40 330 | 93.44 378 | 66.99 388 | 81.83 326 | 93.08 348 |
|
| Anonymous20240521 | | | 85.15 337 | 83.81 339 | 89.16 351 | 88.32 383 | 82.69 364 | 98.80 293 | 95.74 362 | 79.72 374 | 81.53 358 | 90.99 373 | 65.38 367 | 94.16 370 | 72.69 378 | 81.11 333 | 90.63 374 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 346 | 81.68 349 | 90.03 345 | 88.30 384 | 82.82 363 | 98.46 313 | 95.22 374 | 73.92 390 | 76.00 381 | 91.29 372 | 55.00 386 | 96.94 310 | 68.40 386 | 88.51 275 | 90.34 375 |
|
| test20.03 | | | 84.72 340 | 83.99 335 | 86.91 362 | 88.19 385 | 80.62 380 | 98.88 282 | 95.94 359 | 88.36 304 | 78.87 368 | 94.62 343 | 68.75 352 | 89.11 393 | 66.52 390 | 75.82 368 | 91.00 370 |
|
| KD-MVS_self_test | | | 83.59 347 | 82.06 347 | 88.20 359 | 86.93 386 | 80.70 379 | 97.21 347 | 96.38 349 | 82.87 361 | 82.49 352 | 88.97 381 | 67.63 358 | 92.32 385 | 73.75 377 | 62.30 396 | 91.58 367 |
|
| MIMVSNet1 | | | 82.58 348 | 80.51 354 | 88.78 354 | 86.68 387 | 84.20 359 | 96.65 359 | 95.41 370 | 78.75 377 | 78.59 371 | 92.44 365 | 51.88 391 | 89.76 392 | 65.26 393 | 78.95 348 | 92.38 360 |
|
| CL-MVSNet_self_test | | | 84.50 341 | 83.15 344 | 88.53 357 | 86.00 388 | 81.79 372 | 98.82 290 | 97.35 273 | 85.12 345 | 83.62 349 | 90.91 375 | 76.66 308 | 91.40 388 | 69.53 384 | 60.36 397 | 92.40 359 |
|
| UnsupCasMVSNet_bld | | | 79.97 357 | 77.03 362 | 88.78 354 | 85.62 389 | 81.98 370 | 93.66 383 | 97.35 273 | 75.51 386 | 70.79 389 | 83.05 395 | 48.70 393 | 94.91 364 | 78.31 365 | 60.29 398 | 89.46 385 |
|
| Patchmatch-RL test | | | 86.90 327 | 85.98 331 | 89.67 347 | 84.45 390 | 75.59 386 | 89.71 396 | 92.43 394 | 86.89 325 | 77.83 375 | 90.94 374 | 94.22 79 | 93.63 376 | 87.75 302 | 69.61 379 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 344 | 81.97 348 | 90.20 343 | 84.15 391 | 87.09 343 | 98.10 332 | 94.73 380 | 83.05 359 | 74.10 386 | 87.77 387 | 65.56 366 | 94.01 371 | 81.08 352 | 69.24 381 | 89.49 384 |
|
| test_fmvs3 | | | 79.99 356 | 80.17 355 | 79.45 373 | 84.02 392 | 62.83 394 | 99.05 265 | 93.49 392 | 88.29 306 | 80.06 366 | 86.65 390 | 28.09 402 | 88.00 394 | 88.63 289 | 73.27 374 | 87.54 390 |
|
| PM-MVS | | | 80.47 353 | 78.88 358 | 85.26 365 | 83.79 393 | 72.22 389 | 95.89 374 | 91.08 398 | 85.71 340 | 76.56 380 | 88.30 383 | 36.64 398 | 93.90 373 | 82.39 344 | 69.57 380 | 89.66 383 |
|
| new-patchmatchnet | | | 81.19 350 | 79.34 357 | 86.76 363 | 82.86 394 | 80.36 382 | 97.92 336 | 95.27 373 | 82.09 366 | 72.02 387 | 86.87 389 | 62.81 375 | 90.74 391 | 71.10 381 | 63.08 394 | 89.19 387 |
|
| mvsany_test3 | | | 82.12 349 | 81.14 351 | 85.06 366 | 81.87 395 | 70.41 390 | 97.09 351 | 92.14 395 | 91.27 246 | 77.84 374 | 88.73 382 | 39.31 397 | 95.49 354 | 90.75 266 | 71.24 376 | 89.29 386 |
|
| WB-MVS | | | 76.28 359 | 77.28 361 | 73.29 379 | 81.18 396 | 54.68 404 | 97.87 338 | 94.19 384 | 81.30 368 | 69.43 391 | 90.70 376 | 77.02 303 | 82.06 402 | 35.71 407 | 68.11 386 | 83.13 393 |
|
| test_f | | | 78.40 358 | 77.59 360 | 80.81 372 | 80.82 397 | 62.48 397 | 96.96 355 | 93.08 393 | 83.44 358 | 74.57 385 | 84.57 394 | 27.95 403 | 92.63 383 | 84.15 331 | 72.79 375 | 87.32 391 |
|
| SSC-MVS | | | 75.42 360 | 76.40 363 | 72.49 383 | 80.68 398 | 53.62 405 | 97.42 343 | 94.06 386 | 80.42 372 | 68.75 392 | 90.14 378 | 76.54 310 | 81.66 403 | 33.25 408 | 66.34 390 | 82.19 394 |
|
| pmmvs3 | | | 80.27 354 | 77.77 359 | 87.76 361 | 80.32 399 | 82.43 367 | 98.23 326 | 91.97 396 | 72.74 392 | 78.75 369 | 87.97 386 | 57.30 385 | 90.99 390 | 70.31 382 | 62.37 395 | 89.87 379 |
|
| testf1 | | | 68.38 364 | 66.92 365 | 72.78 381 | 78.80 400 | 50.36 407 | 90.95 394 | 87.35 406 | 55.47 397 | 58.95 396 | 88.14 384 | 20.64 407 | 87.60 395 | 57.28 399 | 64.69 391 | 80.39 396 |
|
| APD_test2 | | | 68.38 364 | 66.92 365 | 72.78 381 | 78.80 400 | 50.36 407 | 90.95 394 | 87.35 406 | 55.47 397 | 58.95 396 | 88.14 384 | 20.64 407 | 87.60 395 | 57.28 399 | 64.69 391 | 80.39 396 |
|
| ambc | | | | | 83.23 369 | 77.17 402 | 62.61 395 | 87.38 398 | 94.55 383 | | 76.72 379 | 86.65 390 | 30.16 399 | 96.36 334 | 84.85 330 | 69.86 378 | 90.73 373 |
|
| test_vis3_rt | | | 68.82 362 | 66.69 367 | 75.21 378 | 76.24 403 | 60.41 399 | 96.44 362 | 68.71 413 | 75.13 387 | 50.54 404 | 69.52 402 | 16.42 412 | 96.32 336 | 80.27 355 | 66.92 389 | 68.89 400 |
|
| TDRefinement | | | 84.76 338 | 82.56 346 | 91.38 334 | 74.58 404 | 84.80 357 | 97.36 345 | 94.56 382 | 84.73 350 | 80.21 364 | 96.12 290 | 63.56 372 | 98.39 224 | 87.92 300 | 63.97 393 | 90.95 372 |
|
| E-PMN | | | 52.30 372 | 52.18 374 | 52.67 389 | 71.51 405 | 45.40 411 | 93.62 384 | 76.60 411 | 36.01 405 | 43.50 406 | 64.13 405 | 27.11 404 | 67.31 408 | 31.06 409 | 26.06 404 | 45.30 407 |
|
| EMVS | | | 51.44 374 | 51.22 376 | 52.11 390 | 70.71 406 | 44.97 413 | 94.04 380 | 75.66 412 | 35.34 407 | 42.40 407 | 61.56 408 | 28.93 401 | 65.87 409 | 27.64 410 | 24.73 405 | 45.49 406 |
|
| PMMVS2 | | | 67.15 367 | 64.15 370 | 76.14 377 | 70.56 407 | 62.07 398 | 93.89 381 | 87.52 405 | 58.09 396 | 60.02 395 | 78.32 397 | 22.38 406 | 84.54 400 | 59.56 397 | 47.03 402 | 81.80 395 |
|
| FPMVS | | | 68.72 363 | 68.72 364 | 68.71 385 | 65.95 408 | 44.27 414 | 95.97 373 | 94.74 379 | 51.13 400 | 53.26 402 | 90.50 377 | 25.11 405 | 83.00 401 | 60.80 396 | 80.97 337 | 78.87 398 |
|
| wuyk23d | | | 20.37 378 | 20.84 381 | 18.99 393 | 65.34 409 | 27.73 416 | 50.43 404 | 7.67 417 | 9.50 410 | 8.01 411 | 6.34 411 | 6.13 415 | 26.24 410 | 23.40 411 | 10.69 409 | 2.99 408 |
|
| LCM-MVSNet | | | 67.77 366 | 64.73 369 | 76.87 376 | 62.95 410 | 56.25 403 | 89.37 397 | 93.74 390 | 44.53 402 | 61.99 394 | 80.74 396 | 20.42 409 | 86.53 399 | 69.37 385 | 59.50 399 | 87.84 388 |
|
| MVE |  | 53.74 22 | 51.54 373 | 47.86 377 | 62.60 387 | 59.56 411 | 50.93 406 | 79.41 401 | 77.69 410 | 35.69 406 | 36.27 408 | 61.76 407 | 5.79 416 | 69.63 406 | 37.97 406 | 36.61 403 | 67.24 401 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 370 | 52.24 373 | 67.66 386 | 49.27 412 | 56.82 402 | 83.94 399 | 82.02 409 | 70.47 393 | 33.28 409 | 64.54 404 | 17.23 411 | 69.16 407 | 45.59 404 | 23.85 406 | 77.02 399 |
|
| tmp_tt | | | 65.23 369 | 62.94 372 | 72.13 384 | 44.90 413 | 50.03 409 | 81.05 400 | 89.42 404 | 38.45 403 | 48.51 405 | 99.90 18 | 54.09 388 | 78.70 405 | 91.84 248 | 18.26 407 | 87.64 389 |
|
| PMVS |  | 49.05 23 | 53.75 371 | 51.34 375 | 60.97 388 | 40.80 414 | 34.68 415 | 74.82 402 | 89.62 403 | 37.55 404 | 28.67 410 | 72.12 399 | 7.09 414 | 81.63 404 | 43.17 405 | 68.21 385 | 66.59 402 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 376 | 39.14 379 | 33.31 391 | 19.94 415 | 24.83 417 | 98.36 320 | 9.75 416 | 15.53 409 | 51.31 403 | 87.14 388 | 19.62 410 | 17.74 411 | 47.10 403 | 3.47 410 | 57.36 404 |
|
| testmvs | | | 40.60 375 | 44.45 378 | 29.05 392 | 19.49 416 | 14.11 418 | 99.68 179 | 18.47 415 | 20.74 408 | 64.59 393 | 98.48 213 | 10.95 413 | 17.09 412 | 56.66 401 | 11.01 408 | 55.94 405 |
|
| test_blank | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.02 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| eth-test2 | | | | | | 0.00 417 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 417 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| DCPMVS | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| cdsmvs_eth3d_5k | | | 23.43 377 | 31.24 380 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 98.09 201 | 0.00 412 | 0.00 413 | 99.67 96 | 83.37 250 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| pcd_1.5k_mvsjas | | | 7.60 380 | 10.13 383 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 91.20 153 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet-low-res | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uncertanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| Regformer | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| ab-mvs-re | | | 8.28 379 | 11.04 382 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 99.40 125 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 413 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| WAC-MVS | | | | | | | 90.97 288 | | | | | | | | 86.10 322 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 57 | 97.49 8 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 131 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 19 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 4 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 133 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 63 | | | | 99.59 133 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 78 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 179 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 375 | | | | 59.23 409 | 93.20 110 | 97.74 269 | 91.06 257 | | |
|
| test_post | | | | | | | | | | | | 63.35 406 | 94.43 68 | 98.13 249 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 371 | 95.12 49 | 97.95 260 | | | |
|
| MTMP | | | | | | | | 99.87 108 | 96.49 346 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 71 | 99.94 70 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 54 | | 95.78 81 | 99.73 32 | 99.76 65 | 96.00 32 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 217 | | 94.21 134 | 99.85 9 | | | 99.95 69 | 96.96 159 | | |
|
| 新几何2 | | | | | | | | 99.40 221 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 212 | 98.71 66 | 93.46 165 | | | | 100.00 1 | 94.36 204 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 94 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 270 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 24 | | | | |
|
| testdata1 | | | | | | | | 99.28 241 | | 96.35 69 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 223 | | | | | 98.37 230 | 97.79 135 | 89.55 257 | 94.52 266 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 201 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 278 | | | 96.63 56 | 93.01 230 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 128 | | 96.38 65 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 272 | 99.86 120 | | 96.76 52 | | | | | | 89.59 256 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 402 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 123 | | | | | | | | |
|
| door | | | | | | | | | 90.31 399 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 268 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 127 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 226 | | | 98.39 224 | | | 94.53 264 |
|
| HQP3-MVS | | | | | | | | | 97.89 221 | | | | | | | 89.60 254 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 274 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 138 | 96.11 369 | | 91.89 224 | 98.06 137 | | 94.40 70 | | 94.30 206 | | 99.67 115 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 290 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 278 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 121 | | | | |
|