| AdaColmap |  | | 97.23 112 | 96.80 120 | 98.51 117 | 99.99 1 | 95.60 178 | 99.09 264 | 98.84 59 | 93.32 175 | 96.74 184 | 99.72 84 | 86.04 236 | 100.00 1 | 98.01 131 | 99.43 116 | 99.94 78 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 70 | 98.20 8 | 99.93 1 | 99.98 2 | 96.82 24 | 100.00 1 | 99.75 33 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 30 | 98.64 78 | 98.47 3 | 99.13 92 | 99.92 13 | 96.38 34 | 100.00 1 | 99.74 35 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 50 | 98.20 49 | 98.97 81 | 99.97 3 | 96.92 123 | 99.95 56 | 98.38 165 | 95.04 104 | 98.61 122 | 99.80 54 | 93.39 111 | 100.00 1 | 98.64 99 | 100.00 1 | 99.98 51 |
|
| CPTT-MVS | | | 97.64 93 | 97.32 96 | 98.58 108 | 99.97 3 | 95.77 167 | 99.96 37 | 98.35 171 | 89.90 286 | 98.36 134 | 99.79 58 | 91.18 167 | 99.99 36 | 98.37 114 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 48 | 98.02 61 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 83 | 98.44 129 | 92.06 228 | 98.40 133 | 99.84 44 | 95.68 44 | 100.00 1 | 98.19 121 | 99.71 88 | 99.97 61 |
|
| PAPR | | | 98.52 38 | 98.16 53 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 56 | 98.43 137 | 95.35 98 | 98.03 146 | 99.75 72 | 94.03 97 | 99.98 47 | 98.11 126 | 99.83 77 | 99.99 23 |
|
| HFP-MVS | | | 98.56 35 | 98.37 39 | 99.14 61 | 99.96 8 | 97.43 102 | 99.95 56 | 98.61 84 | 94.77 113 | 99.31 81 | 99.85 33 | 94.22 90 | 100.00 1 | 98.70 94 | 99.98 32 | 99.98 51 |
|
| region2R | | | 98.54 36 | 98.37 39 | 99.05 71 | 99.96 8 | 97.18 111 | 99.96 37 | 98.55 101 | 94.87 111 | 99.45 68 | 99.85 33 | 94.07 96 | 100.00 1 | 98.67 96 | 100.00 1 | 99.98 51 |
|
| ACMMPR | | | 98.50 39 | 98.32 43 | 99.05 71 | 99.96 8 | 97.18 111 | 99.95 56 | 98.60 86 | 94.77 113 | 99.31 81 | 99.84 44 | 93.73 106 | 100.00 1 | 98.70 94 | 99.98 32 | 99.98 51 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 15 | 99.96 8 | 99.15 22 | 99.97 30 | 98.62 83 | 98.02 16 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 45 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 43 | 98.32 43 | 98.87 86 | 99.96 8 | 96.62 133 | 99.97 30 | 98.39 161 | 94.43 128 | 98.90 104 | 99.87 27 | 94.30 87 | 100.00 1 | 99.04 70 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 154 | 96.63 63 | 99.75 30 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 56 | 98.43 137 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 29 | 98.55 28 | 99.15 59 | 99.94 13 | 97.50 98 | 99.94 73 | 98.42 149 | 96.22 78 | 99.41 73 | 99.78 62 | 94.34 84 | 99.96 66 | 98.92 79 | 99.95 50 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 226 | 92.06 259 | 99.15 59 | 99.94 13 | 97.50 98 | 99.94 73 | 98.42 149 | 96.22 78 | 99.41 73 | 41.37 427 | 94.34 84 | 99.96 66 | 98.92 79 | 99.95 50 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 76 | | | | | 99.80 127 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 43 | 99.80 18 | 99.94 4 | 95.92 40 | 100.00 1 | 99.51 46 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 90 | 98.39 161 | 97.20 41 | 99.46 67 | 99.85 33 | 95.53 48 | 99.79 129 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 62 | 97.97 64 | 99.03 73 | 99.94 13 | 97.17 114 | 99.95 56 | 98.39 161 | 94.70 117 | 98.26 140 | 99.81 53 | 91.84 158 | 100.00 1 | 98.85 85 | 99.97 42 | 99.93 79 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 31 | 98.36 41 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 111 | 98.33 176 | 93.97 153 | 99.76 29 | 99.87 27 | 94.99 62 | 99.75 138 | 98.55 103 | 100.00 1 | 99.98 51 |
|
| PAPM_NR | | | 98.12 65 | 97.93 69 | 98.70 97 | 99.94 13 | 96.13 157 | 99.82 140 | 98.43 137 | 94.56 121 | 97.52 160 | 99.70 88 | 94.40 79 | 99.98 47 | 97.00 165 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 19 | 98.65 24 | 99.68 16 | 99.94 13 | 99.07 24 | 99.64 193 | 99.44 19 | 97.33 34 | 99.00 100 | 99.72 84 | 94.03 97 | 99.98 47 | 98.73 93 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 37 | 98.43 137 | 97.27 37 | 99.80 18 | 99.94 4 | 96.71 27 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 154 | 97.71 22 | 99.84 13 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 137 | 97.26 39 | 99.80 18 | 99.88 24 | 96.71 27 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 56 | 98.32 178 | 97.28 35 | 99.83 14 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 87 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 37 | 98.42 149 | 97.28 35 | 99.86 8 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 80 | 99.93 24 | 97.24 108 | 99.95 56 | 98.42 149 | 97.50 29 | 99.52 63 | 99.88 24 | 97.43 16 | 99.71 144 | 99.50 47 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 137 | | 99.63 47 | | | 99.85 114 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 92 | 99.95 56 | 98.36 169 | 95.58 92 | 99.52 63 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 109 | 92.34 220 | 99.31 81 | 99.83 46 | 95.06 57 | 99.80 127 | 99.70 39 | 99.97 42 | |
|
| GST-MVS | | | 98.27 56 | 97.97 64 | 99.17 55 | 99.92 31 | 97.57 94 | 99.93 80 | 98.39 161 | 94.04 151 | 98.80 109 | 99.74 79 | 92.98 127 | 100.00 1 | 98.16 123 | 99.76 85 | 99.93 79 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 37 | 98.43 137 | 93.90 159 | 99.71 37 | 99.86 29 | 95.88 41 | 99.85 114 | | | |
|
| train_agg | | | 98.88 20 | 98.65 24 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 37 | 98.43 137 | 94.35 133 | 99.71 37 | 99.86 29 | 95.94 38 | 99.85 114 | 99.69 40 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 37 | 98.43 137 | 94.35 133 | 99.69 39 | 99.85 33 | 95.94 38 | 99.85 114 | | | |
|
| PGM-MVS | | | 98.34 51 | 98.13 55 | 98.99 78 | 99.92 31 | 97.00 119 | 99.75 161 | 99.50 17 | 93.90 159 | 99.37 78 | 99.76 66 | 93.24 120 | 100.00 1 | 97.75 150 | 99.96 46 | 99.98 51 |
|
| ACMMP |  | | 97.74 88 | 97.44 90 | 98.66 100 | 99.92 31 | 96.13 157 | 99.18 259 | 99.45 18 | 94.84 112 | 96.41 194 | 99.71 86 | 91.40 161 | 99.99 36 | 97.99 133 | 98.03 170 | 99.87 90 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 56 | 98.43 137 | 96.48 66 | 99.80 18 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 13 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 154 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 154 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 56 | 98.56 95 | 97.56 28 | 99.44 69 | 99.85 33 | 95.38 51 | 100.00 1 | 99.31 57 | 99.99 21 | 99.87 90 |
|
| APD-MVS |  | | 98.62 32 | 98.35 42 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 111 | 98.36 169 | 94.08 146 | 99.74 33 | 99.73 81 | 94.08 95 | 99.74 140 | 99.42 53 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 29 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 254 | 98.47 121 | 98.14 12 | 99.08 95 | 99.91 14 | 93.09 124 | 100.00 1 | 99.04 70 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 37 | | | | 99.80 54 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 111 | 98.44 129 | 97.48 30 | 99.64 46 | 99.94 4 | 96.68 29 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 66 | | | | | | |
|
| CSCG | | | 97.10 117 | 97.04 108 | 97.27 194 | 99.89 45 | 91.92 278 | 99.90 96 | 99.07 34 | 88.67 310 | 95.26 217 | 99.82 49 | 93.17 123 | 99.98 47 | 98.15 124 | 99.47 111 | 99.90 86 |
|
| ZNCC-MVS | | | 98.31 53 | 98.03 60 | 99.17 55 | 99.88 49 | 97.59 93 | 99.94 73 | 98.44 129 | 94.31 136 | 98.50 127 | 99.82 49 | 93.06 125 | 99.99 36 | 98.30 118 | 99.99 21 | 99.93 79 |
|
| SR-MVS | | | 98.46 42 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 118 | 99.84 130 | 98.35 171 | 94.92 108 | 99.32 80 | 99.80 54 | 93.35 113 | 99.78 131 | 99.30 58 | 99.95 50 | 99.96 67 |
|
| 9.14 | | | | 98.38 37 | | 99.87 51 | | 99.91 90 | 98.33 176 | 93.22 178 | 99.78 27 | 99.89 22 | 94.57 75 | 99.85 114 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 26 | 98.48 32 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 122 | 98.38 165 | 93.19 179 | 99.77 28 | 99.94 4 | 95.54 46 | 100.00 1 | 99.74 35 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 48 | 98.21 48 | 99.03 73 | 99.86 53 | 97.10 116 | 99.98 15 | 98.80 64 | 90.78 269 | 99.62 50 | 99.78 62 | 95.30 52 | 100.00 1 | 99.80 25 | 99.93 61 | 99.99 23 |
|
| MTAPA | | | 98.29 55 | 97.96 67 | 99.30 44 | 99.85 54 | 97.93 81 | 99.39 234 | 98.28 185 | 95.76 87 | 97.18 172 | 99.88 24 | 92.74 134 | 100.00 1 | 98.67 96 | 99.88 73 | 99.99 23 |
|
| LS3D | | | 95.84 171 | 95.11 182 | 98.02 147 | 99.85 54 | 95.10 198 | 98.74 309 | 98.50 118 | 87.22 332 | 93.66 235 | 99.86 29 | 87.45 219 | 99.95 74 | 90.94 273 | 99.81 83 | 99.02 213 |
|
| HPM-MVS |  | | 97.96 68 | 97.72 76 | 98.68 98 | 99.84 56 | 96.39 144 | 99.90 96 | 98.17 200 | 92.61 206 | 98.62 121 | 99.57 115 | 91.87 157 | 99.67 151 | 98.87 84 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 56 | 98.11 57 | 98.75 94 | 99.83 57 | 96.59 136 | 99.40 230 | 98.51 112 | 95.29 100 | 98.51 126 | 99.76 66 | 93.60 110 | 99.71 144 | 98.53 106 | 99.52 105 | 99.95 74 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 37 | 98.40 158 | 97.66 24 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 71 | 97.89 72 | 98.05 146 | 99.82 58 | 94.77 208 | 99.92 83 | 98.46 123 | 93.93 156 | 97.20 170 | 99.27 142 | 95.44 50 | 99.97 57 | 97.41 155 | 99.51 108 | 99.41 173 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 60 | 98.08 59 | 98.78 91 | 99.81 60 | 96.60 134 | 99.82 140 | 98.30 183 | 93.95 155 | 99.37 78 | 99.77 64 | 92.84 131 | 99.76 137 | 98.95 76 | 99.92 64 | 99.97 61 |
|
| EI-MVSNet-UG-set | | | 98.14 64 | 97.99 62 | 98.60 105 | 99.80 61 | 96.27 147 | 99.36 239 | 98.50 118 | 95.21 102 | 98.30 137 | 99.75 72 | 93.29 117 | 99.73 143 | 98.37 114 | 99.30 123 | 99.81 97 |
|
| SR-MVS-dyc-post | | | 98.31 53 | 98.17 52 | 98.71 96 | 99.79 62 | 96.37 145 | 99.76 157 | 98.31 180 | 94.43 128 | 99.40 75 | 99.75 72 | 93.28 118 | 99.78 131 | 98.90 82 | 99.92 64 | 99.97 61 |
|
| RE-MVS-def | | | | 98.13 55 | | 99.79 62 | 96.37 145 | 99.76 157 | 98.31 180 | 94.43 128 | 99.40 75 | 99.75 72 | 92.95 128 | | 98.90 82 | 99.92 64 | 99.97 61 |
|
| HPM-MVS_fast | | | 97.80 83 | 97.50 87 | 98.68 98 | 99.79 62 | 96.42 140 | 99.88 108 | 98.16 205 | 91.75 238 | 98.94 102 | 99.54 118 | 91.82 159 | 99.65 153 | 97.62 153 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 96 | 98.21 195 | 93.53 168 | 99.81 16 | 99.89 22 | 94.70 71 | 99.86 113 | 99.84 22 | 99.93 61 | 99.96 67 |
|
| MVS_0304 | | | 99.06 11 | 98.84 17 | 99.72 13 | 99.76 66 | 99.21 21 | 99.99 4 | 99.34 25 | 98.70 2 | 99.44 69 | 99.75 72 | 93.24 120 | 99.99 36 | 99.94 11 | 99.41 118 | 99.95 74 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 96 | | 98.64 78 | | | 99.85 33 | 95.63 45 | | | 99.94 55 | 99.99 23 |
|
| OMC-MVS | | | 97.28 108 | 97.23 100 | 97.41 185 | 99.76 66 | 93.36 247 | 99.65 189 | 97.95 224 | 96.03 82 | 97.41 165 | 99.70 88 | 89.61 193 | 99.51 159 | 96.73 174 | 98.25 160 | 99.38 175 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 69 | 98.27 64 | | 98.63 82 | 92.69 201 | 99.55 58 | 99.82 49 | 94.40 79 | 100.00 1 | 91.21 265 | 99.94 55 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 67 | 97.64 81 | 99.38 42 | 99.74 70 | 98.41 63 | 99.74 164 | 98.18 199 | 93.35 173 | 96.45 191 | 99.85 33 | 92.64 136 | 99.97 57 | 98.91 81 | 99.89 70 | 99.77 104 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 17 | 98.77 19 | 99.41 38 | 99.74 70 | 98.67 49 | 99.77 152 | 98.38 165 | 96.73 59 | 99.88 7 | 99.74 79 | 94.89 64 | 99.59 155 | 99.80 25 | 99.98 32 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 70 | 98.56 57 | | 98.40 158 | | 99.65 43 | | 94.76 67 | 99.75 138 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 82 | 99.73 73 | 96.99 120 | | 98.51 112 | 94.06 149 | 99.62 50 | 99.85 33 | 94.97 63 | 99.96 66 | 95.11 194 | 99.95 50 | 99.92 84 |
|
| TSAR-MVS + GP. | | | 98.60 33 | 98.51 31 | 98.86 87 | 99.73 73 | 96.63 132 | 99.97 30 | 97.92 229 | 98.07 13 | 98.76 114 | 99.55 116 | 95.00 61 | 99.94 82 | 99.91 16 | 97.68 175 | 99.99 23 |
|
| CANet | | | 98.27 56 | 97.82 74 | 99.63 17 | 99.72 75 | 99.10 23 | 99.98 15 | 98.51 112 | 97.00 49 | 98.52 124 | 99.71 86 | 87.80 214 | 99.95 74 | 99.75 33 | 99.38 119 | 99.83 94 |
|
| reproduce_model | | | 98.75 27 | 98.66 23 | 99.03 73 | 99.71 76 | 97.10 116 | 99.73 171 | 98.23 193 | 97.02 48 | 99.18 90 | 99.90 18 | 94.54 76 | 99.99 36 | 99.77 29 | 99.90 69 | 99.99 23 |
|
| F-COLMAP | | | 96.93 129 | 96.95 111 | 96.87 204 | 99.71 76 | 91.74 283 | 99.85 125 | 97.95 224 | 93.11 184 | 95.72 210 | 99.16 153 | 92.35 146 | 99.94 82 | 95.32 192 | 99.35 121 | 98.92 216 |
|
| reproduce-ours | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 106 | 99.74 164 | 98.25 189 | 97.10 43 | 99.10 93 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 29 | 99.91 67 | 99.99 23 |
|
| our_new_method | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 106 | 99.74 164 | 98.25 189 | 97.10 43 | 99.10 93 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 29 | 99.91 67 | 99.99 23 |
|
| SD-MVS | | | 98.92 18 | 98.70 20 | 99.56 25 | 99.70 78 | 98.73 46 | 99.94 73 | 98.34 175 | 96.38 72 | 99.81 16 | 99.76 66 | 94.59 72 | 99.98 47 | 99.84 22 | 99.96 46 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 61 | 99.12 5 | 95.59 239 | 99.67 81 | 86.91 359 | 99.95 56 | 98.89 49 | 97.60 25 | 99.90 3 | 99.76 66 | 96.54 32 | 99.98 47 | 99.94 11 | 99.82 81 | 99.88 88 |
|
| ACMMP_NAP | | | 98.49 40 | 98.14 54 | 99.54 27 | 99.66 82 | 98.62 55 | 99.85 125 | 98.37 168 | 94.68 118 | 99.53 61 | 99.83 46 | 92.87 130 | 100.00 1 | 98.66 98 | 99.84 76 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 91 | 98.98 12 | 93.92 302 | 99.63 83 | 81.76 389 | 99.96 37 | 98.56 95 | 99.47 1 | 99.19 89 | 99.99 1 | 94.16 94 | 100.00 1 | 99.92 13 | 99.93 61 | 100.00 1 |
|
| EPNet | | | 98.49 40 | 98.40 35 | 98.77 93 | 99.62 84 | 96.80 128 | 99.90 96 | 99.51 16 | 97.60 25 | 99.20 87 | 99.36 136 | 93.71 107 | 99.91 95 | 97.99 133 | 98.71 147 | 99.61 134 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 30 | 99.76 10 | 99.59 85 | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 4 | 99.39 77 | 99.80 54 | 90.49 182 | 99.96 66 | 99.89 17 | 99.43 116 | 99.98 51 |
|
| PVSNet_BlendedMVS | | | 96.05 165 | 95.82 161 | 96.72 209 | 99.59 85 | 96.99 120 | 99.95 56 | 99.10 31 | 94.06 149 | 98.27 138 | 95.80 306 | 89.00 204 | 99.95 74 | 99.12 64 | 87.53 299 | 93.24 358 |
|
| PVSNet_Blended | | | 97.94 70 | 97.64 81 | 98.83 88 | 99.59 85 | 96.99 120 | 100.00 1 | 99.10 31 | 95.38 97 | 98.27 138 | 99.08 156 | 89.00 204 | 99.95 74 | 99.12 64 | 99.25 125 | 99.57 145 |
|
| PatchMatch-RL | | | 96.04 166 | 95.40 171 | 97.95 149 | 99.59 85 | 95.22 194 | 99.52 213 | 99.07 34 | 93.96 154 | 96.49 190 | 98.35 225 | 82.28 266 | 99.82 126 | 90.15 289 | 99.22 128 | 98.81 223 |
|
| dcpmvs_2 | | | 97.42 103 | 98.09 58 | 95.42 244 | 99.58 89 | 87.24 355 | 99.23 255 | 96.95 332 | 94.28 139 | 98.93 103 | 99.73 81 | 94.39 82 | 99.16 185 | 99.89 17 | 99.82 81 | 99.86 92 |
|
| test222 | | | | | | 99.55 90 | 97.41 104 | 99.34 240 | 98.55 101 | 91.86 233 | 99.27 85 | 99.83 46 | 93.84 104 | | | 99.95 50 | 99.99 23 |
|
| CNLPA | | | 97.76 87 | 97.38 92 | 98.92 85 | 99.53 91 | 96.84 125 | 99.87 111 | 98.14 209 | 93.78 162 | 96.55 189 | 99.69 91 | 92.28 148 | 99.98 47 | 97.13 161 | 99.44 115 | 99.93 79 |
|
| API-MVS | | | 97.86 75 | 97.66 79 | 98.47 119 | 99.52 92 | 95.41 185 | 99.47 222 | 98.87 52 | 91.68 239 | 98.84 106 | 99.85 33 | 92.34 147 | 99.99 36 | 98.44 110 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 116 | 96.69 126 | 98.45 121 | 99.52 92 | 95.81 165 | 99.95 56 | 99.65 12 | 94.73 115 | 99.04 98 | 99.21 149 | 84.48 251 | 99.95 74 | 94.92 200 | 98.74 146 | 99.58 143 |
|
| 114514_t | | | 97.41 104 | 96.83 118 | 99.14 61 | 99.51 94 | 97.83 83 | 99.89 105 | 98.27 187 | 88.48 314 | 99.06 97 | 99.66 100 | 90.30 185 | 99.64 154 | 96.32 178 | 99.97 42 | 99.96 67 |
|
| cl22 | | | 93.77 230 | 93.25 234 | 95.33 248 | 99.49 95 | 94.43 212 | 99.61 198 | 98.09 211 | 90.38 275 | 89.16 302 | 95.61 313 | 90.56 180 | 97.34 294 | 91.93 257 | 84.45 319 | 94.21 304 |
|
| testdata | | | | | 98.42 125 | 99.47 96 | 95.33 188 | | 98.56 95 | 93.78 162 | 99.79 26 | 99.85 33 | 93.64 109 | 99.94 82 | 94.97 198 | 99.94 55 | 100.00 1 |
|
| MAR-MVS | | | 97.43 99 | 97.19 102 | 98.15 140 | 99.47 96 | 94.79 207 | 99.05 275 | 98.76 65 | 92.65 204 | 98.66 119 | 99.82 49 | 88.52 209 | 99.98 47 | 98.12 125 | 99.63 94 | 99.67 118 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 208 | 93.42 227 | 97.91 155 | 99.46 98 | 94.04 225 | 98.93 289 | 97.48 274 | 81.15 385 | 90.04 274 | 99.55 116 | 87.02 225 | 99.95 74 | 88.97 299 | 98.11 166 | 99.73 108 |
|
| MVS_111021_LR | | | 98.42 47 | 98.38 37 | 98.53 115 | 99.39 99 | 95.79 166 | 99.87 111 | 99.86 2 | 96.70 60 | 98.78 110 | 99.79 58 | 92.03 154 | 99.90 97 | 99.17 63 | 99.86 75 | 99.88 88 |
|
| CHOSEN 280x420 | | | 99.01 14 | 99.03 10 | 98.95 83 | 99.38 100 | 98.87 33 | 98.46 327 | 99.42 21 | 97.03 47 | 99.02 99 | 99.09 155 | 99.35 2 | 98.21 256 | 99.73 37 | 99.78 84 | 99.77 104 |
|
| MVS_111021_HR | | | 98.72 28 | 98.62 26 | 99.01 77 | 99.36 101 | 97.18 111 | 99.93 80 | 99.90 1 | 96.81 57 | 98.67 118 | 99.77 64 | 93.92 99 | 99.89 102 | 99.27 59 | 99.94 55 | 99.96 67 |
|
| DPM-MVS | | | 98.83 21 | 98.46 33 | 99.97 1 | 99.33 102 | 99.92 1 | 99.96 37 | 98.44 129 | 97.96 17 | 99.55 58 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 229 | 99.94 55 | 99.98 51 |
|
| TAPA-MVS | | 92.12 8 | 94.42 214 | 93.60 220 | 96.90 203 | 99.33 102 | 91.78 282 | 99.78 149 | 98.00 218 | 89.89 287 | 94.52 223 | 99.47 122 | 91.97 155 | 99.18 182 | 69.90 400 | 99.52 105 | 99.73 108 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| reproduce_monomvs | | | 95.38 185 | 95.07 184 | 96.32 222 | 99.32 104 | 96.60 134 | 99.76 157 | 98.85 56 | 96.65 62 | 87.83 323 | 96.05 303 | 99.52 1 | 98.11 261 | 96.58 175 | 81.07 347 | 94.25 300 |
|
| SPE-MVS-test | | | 97.88 73 | 97.94 68 | 97.70 168 | 99.28 105 | 95.20 195 | 99.98 15 | 97.15 309 | 95.53 94 | 99.62 50 | 99.79 58 | 92.08 153 | 98.38 239 | 98.75 92 | 99.28 124 | 99.52 157 |
|
| test_fmvsm_n_1920 | | | 98.44 44 | 98.61 27 | 97.92 153 | 99.27 106 | 95.18 196 | 100.00 1 | 98.90 47 | 98.05 14 | 99.80 18 | 99.73 81 | 92.64 136 | 99.99 36 | 99.58 44 | 99.51 108 | 98.59 233 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 15 | 98.91 14 | 99.28 45 | 99.21 107 | 97.91 82 | 99.98 15 | 98.85 56 | 98.25 5 | 99.92 2 | 99.75 72 | 94.72 69 | 99.97 57 | 99.87 19 | 99.64 92 | 99.95 74 |
|
| test_yl | | | 97.83 78 | 97.37 93 | 99.21 49 | 99.18 108 | 97.98 77 | 99.64 193 | 99.27 27 | 91.43 248 | 97.88 152 | 98.99 165 | 95.84 42 | 99.84 122 | 98.82 86 | 95.32 229 | 99.79 100 |
|
| DCV-MVSNet | | | 97.83 78 | 97.37 93 | 99.21 49 | 99.18 108 | 97.98 77 | 99.64 193 | 99.27 27 | 91.43 248 | 97.88 152 | 98.99 165 | 95.84 42 | 99.84 122 | 98.82 86 | 95.32 229 | 99.79 100 |
|
| fmvsm_l_conf0.5_n | | | 98.94 16 | 98.84 17 | 99.25 46 | 99.17 110 | 97.81 85 | 99.98 15 | 98.86 53 | 98.25 5 | 99.90 3 | 99.76 66 | 94.21 92 | 99.97 57 | 99.87 19 | 99.52 105 | 99.98 51 |
|
| DeepC-MVS | | 94.51 4 | 96.92 130 | 96.40 136 | 98.45 121 | 99.16 111 | 95.90 163 | 99.66 188 | 98.06 214 | 96.37 75 | 94.37 226 | 99.49 121 | 83.29 261 | 99.90 97 | 97.63 152 | 99.61 99 | 99.55 147 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 36 | 98.22 47 | 99.50 30 | 99.15 112 | 98.65 53 | 100.00 1 | 98.58 90 | 97.70 23 | 98.21 142 | 99.24 147 | 92.58 139 | 99.94 82 | 98.63 101 | 99.94 55 | 99.92 84 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 85 | 97.91 70 | 97.43 184 | 99.10 113 | 94.42 213 | 99.99 4 | 97.10 314 | 95.07 103 | 99.68 40 | 99.75 72 | 92.95 128 | 98.34 243 | 98.38 112 | 99.14 130 | 99.54 151 |
|
| Anonymous202405211 | | | 93.10 248 | 91.99 260 | 96.40 218 | 99.10 113 | 89.65 327 | 98.88 295 | 97.93 226 | 83.71 370 | 94.00 232 | 98.75 194 | 68.79 365 | 99.88 108 | 95.08 195 | 91.71 261 | 99.68 116 |
|
| fmvsm_s_conf0.5_n | | | 97.80 83 | 97.85 73 | 97.67 169 | 99.06 115 | 94.41 214 | 99.98 15 | 98.97 40 | 97.34 32 | 99.63 47 | 99.69 91 | 87.27 221 | 99.97 57 | 99.62 42 | 99.06 134 | 98.62 232 |
|
| HyFIR lowres test | | | 96.66 144 | 96.43 135 | 97.36 190 | 99.05 116 | 93.91 230 | 99.70 182 | 99.80 3 | 90.54 273 | 96.26 197 | 98.08 235 | 92.15 151 | 98.23 255 | 96.84 173 | 95.46 224 | 99.93 79 |
|
| LFMVS | | | 94.75 202 | 93.56 223 | 98.30 131 | 99.03 117 | 95.70 172 | 98.74 309 | 97.98 221 | 87.81 325 | 98.47 128 | 99.39 133 | 67.43 374 | 99.53 156 | 98.01 131 | 95.20 232 | 99.67 118 |
|
| fmvsm_s_conf0.5_n_2 | | | 97.59 94 | 97.28 97 | 98.53 115 | 99.01 118 | 98.15 65 | 99.98 15 | 98.59 88 | 98.17 10 | 99.75 30 | 99.63 106 | 81.83 271 | 99.94 82 | 99.78 27 | 98.79 145 | 97.51 259 |
|
| AllTest | | | 92.48 262 | 91.64 265 | 95.00 257 | 99.01 118 | 88.43 343 | 98.94 287 | 96.82 346 | 86.50 341 | 88.71 307 | 98.47 220 | 74.73 342 | 99.88 108 | 85.39 338 | 96.18 206 | 96.71 265 |
|
| TestCases | | | | | 95.00 257 | 99.01 118 | 88.43 343 | | 96.82 346 | 86.50 341 | 88.71 307 | 98.47 220 | 74.73 342 | 99.88 108 | 85.39 338 | 96.18 206 | 96.71 265 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 269 | 91.49 271 | 94.25 290 | 99.00 121 | 88.04 349 | 98.42 333 | 96.70 353 | 82.30 381 | 88.43 315 | 99.01 162 | 76.97 318 | 99.85 114 | 86.11 334 | 96.50 200 | 94.86 276 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| fmvsm_s_conf0.5_n_3 | | | 97.95 69 | 97.66 79 | 98.81 89 | 98.99 122 | 98.07 71 | 99.98 15 | 98.81 61 | 98.18 9 | 99.89 6 | 99.70 88 | 84.15 254 | 99.97 57 | 99.76 32 | 99.50 110 | 98.39 237 |
|
| test_fmvs1 | | | 95.35 186 | 95.68 166 | 94.36 287 | 98.99 122 | 84.98 369 | 99.96 37 | 96.65 355 | 97.60 25 | 99.73 35 | 98.96 171 | 71.58 355 | 99.93 90 | 98.31 117 | 99.37 120 | 98.17 241 |
|
| HY-MVS | | 92.50 7 | 97.79 85 | 97.17 104 | 99.63 17 | 98.98 124 | 99.32 9 | 97.49 358 | 99.52 14 | 95.69 89 | 98.32 136 | 97.41 255 | 93.32 115 | 99.77 134 | 98.08 129 | 95.75 220 | 99.81 97 |
|
| VNet | | | 97.21 113 | 96.57 131 | 99.13 65 | 98.97 125 | 97.82 84 | 99.03 278 | 99.21 29 | 94.31 136 | 99.18 90 | 98.88 182 | 86.26 235 | 99.89 102 | 98.93 78 | 94.32 241 | 99.69 115 |
|
| thres200 | | | 96.96 126 | 96.21 142 | 99.22 48 | 98.97 125 | 98.84 36 | 99.85 125 | 99.71 7 | 93.17 180 | 96.26 197 | 98.88 182 | 89.87 190 | 99.51 159 | 94.26 219 | 94.91 234 | 99.31 187 |
|
| tfpn200view9 | | | 96.79 134 | 95.99 147 | 99.19 51 | 98.94 127 | 98.82 37 | 99.78 149 | 99.71 7 | 92.86 190 | 96.02 202 | 98.87 185 | 89.33 197 | 99.50 161 | 93.84 226 | 94.57 237 | 99.27 193 |
|
| thres400 | | | 96.78 136 | 95.99 147 | 99.16 57 | 98.94 127 | 98.82 37 | 99.78 149 | 99.71 7 | 92.86 190 | 96.02 202 | 98.87 185 | 89.33 197 | 99.50 161 | 93.84 226 | 94.57 237 | 99.16 200 |
|
| sasdasda | | | 97.09 119 | 96.32 137 | 99.39 40 | 98.93 129 | 98.95 27 | 99.72 175 | 97.35 286 | 94.45 124 | 97.88 152 | 99.42 126 | 86.71 228 | 99.52 157 | 98.48 107 | 93.97 247 | 99.72 110 |
|
| Anonymous20231211 | | | 89.86 319 | 88.44 326 | 94.13 293 | 98.93 129 | 90.68 306 | 98.54 324 | 98.26 188 | 76.28 397 | 86.73 337 | 95.54 317 | 70.60 361 | 97.56 287 | 90.82 276 | 80.27 356 | 94.15 312 |
|
| canonicalmvs | | | 97.09 119 | 96.32 137 | 99.39 40 | 98.93 129 | 98.95 27 | 99.72 175 | 97.35 286 | 94.45 124 | 97.88 152 | 99.42 126 | 86.71 228 | 99.52 157 | 98.48 107 | 93.97 247 | 99.72 110 |
|
| SDMVSNet | | | 94.80 198 | 93.96 212 | 97.33 192 | 98.92 132 | 95.42 184 | 99.59 200 | 98.99 37 | 92.41 217 | 92.55 250 | 97.85 246 | 75.81 332 | 98.93 197 | 97.90 139 | 91.62 262 | 97.64 253 |
|
| sd_testset | | | 93.55 237 | 92.83 240 | 95.74 237 | 98.92 132 | 90.89 302 | 98.24 340 | 98.85 56 | 92.41 217 | 92.55 250 | 97.85 246 | 71.07 360 | 98.68 215 | 93.93 223 | 91.62 262 | 97.64 253 |
|
| EPNet_dtu | | | 95.71 175 | 95.39 172 | 96.66 211 | 98.92 132 | 93.41 244 | 99.57 205 | 98.90 47 | 96.19 80 | 97.52 160 | 98.56 212 | 92.65 135 | 97.36 292 | 77.89 381 | 98.33 155 | 99.20 198 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 66 | 97.60 83 | 99.60 22 | 98.92 132 | 99.28 17 | 99.89 105 | 99.52 14 | 95.58 92 | 98.24 141 | 99.39 133 | 93.33 114 | 99.74 140 | 97.98 135 | 95.58 223 | 99.78 103 |
|
| CHOSEN 1792x2688 | | | 96.81 133 | 96.53 132 | 97.64 171 | 98.91 136 | 93.07 249 | 99.65 189 | 99.80 3 | 95.64 90 | 95.39 214 | 98.86 187 | 84.35 253 | 99.90 97 | 96.98 167 | 99.16 129 | 99.95 74 |
|
| thres100view900 | | | 96.74 139 | 95.92 157 | 99.18 52 | 98.90 137 | 98.77 42 | 99.74 164 | 99.71 7 | 92.59 208 | 95.84 206 | 98.86 187 | 89.25 199 | 99.50 161 | 93.84 226 | 94.57 237 | 99.27 193 |
|
| thres600view7 | | | 96.69 142 | 95.87 160 | 99.14 61 | 98.90 137 | 98.78 41 | 99.74 164 | 99.71 7 | 92.59 208 | 95.84 206 | 98.86 187 | 89.25 199 | 99.50 161 | 93.44 238 | 94.50 240 | 99.16 200 |
|
| MSDG | | | 94.37 216 | 93.36 231 | 97.40 186 | 98.88 139 | 93.95 229 | 99.37 237 | 97.38 283 | 85.75 352 | 90.80 267 | 99.17 152 | 84.11 256 | 99.88 108 | 86.35 330 | 98.43 153 | 98.36 239 |
|
| MGCFI-Net | | | 97.00 124 | 96.22 141 | 99.34 43 | 98.86 140 | 98.80 39 | 99.67 187 | 97.30 293 | 94.31 136 | 97.77 156 | 99.41 130 | 86.36 234 | 99.50 161 | 98.38 112 | 93.90 249 | 99.72 110 |
|
| h-mvs33 | | | 94.92 195 | 94.36 200 | 96.59 213 | 98.85 141 | 91.29 294 | 98.93 289 | 98.94 41 | 95.90 83 | 98.77 111 | 98.42 223 | 90.89 175 | 99.77 134 | 97.80 143 | 70.76 392 | 98.72 229 |
|
| Anonymous20240529 | | | 92.10 270 | 90.65 282 | 96.47 214 | 98.82 142 | 90.61 308 | 98.72 311 | 98.67 75 | 75.54 401 | 93.90 234 | 98.58 210 | 66.23 378 | 99.90 97 | 94.70 209 | 90.67 265 | 98.90 219 |
|
| PVSNet_Blended_VisFu | | | 97.27 109 | 96.81 119 | 98.66 100 | 98.81 143 | 96.67 131 | 99.92 83 | 98.64 78 | 94.51 123 | 96.38 195 | 98.49 216 | 89.05 203 | 99.88 108 | 97.10 163 | 98.34 154 | 99.43 171 |
|
| PS-MVSNAJ | | | 98.44 44 | 98.20 49 | 99.16 57 | 98.80 144 | 98.92 29 | 99.54 211 | 98.17 200 | 97.34 32 | 99.85 10 | 99.85 33 | 91.20 164 | 99.89 102 | 99.41 54 | 99.67 90 | 98.69 230 |
|
| CANet_DTU | | | 96.76 137 | 96.15 143 | 98.60 105 | 98.78 145 | 97.53 95 | 99.84 130 | 97.63 252 | 97.25 40 | 99.20 87 | 99.64 103 | 81.36 277 | 99.98 47 | 92.77 249 | 98.89 139 | 98.28 240 |
|
| mvsany_test1 | | | 97.82 81 | 97.90 71 | 97.55 176 | 98.77 146 | 93.04 252 | 99.80 146 | 97.93 226 | 96.95 51 | 99.61 56 | 99.68 97 | 90.92 172 | 99.83 124 | 99.18 62 | 98.29 159 | 99.80 99 |
|
| alignmvs | | | 97.81 82 | 97.33 95 | 99.25 46 | 98.77 146 | 98.66 51 | 99.99 4 | 98.44 129 | 94.40 132 | 98.41 131 | 99.47 122 | 93.65 108 | 99.42 170 | 98.57 102 | 94.26 243 | 99.67 118 |
|
| SteuartSystems-ACMMP | | | 99.02 13 | 98.97 13 | 99.18 52 | 98.72 148 | 97.71 88 | 99.98 15 | 98.44 129 | 96.85 52 | 99.80 18 | 99.91 14 | 97.57 8 | 99.85 114 | 99.44 52 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 62 | 97.97 64 | 99.02 76 | 98.69 149 | 98.66 51 | 99.52 213 | 98.08 213 | 97.05 46 | 99.86 8 | 99.86 29 | 90.65 177 | 99.71 144 | 99.39 56 | 98.63 148 | 98.69 230 |
|
| miper_enhance_ethall | | | 94.36 218 | 93.98 211 | 95.49 240 | 98.68 150 | 95.24 192 | 99.73 171 | 97.29 296 | 93.28 177 | 89.86 279 | 95.97 304 | 94.37 83 | 97.05 314 | 92.20 253 | 84.45 319 | 94.19 305 |
|
| ETVMVS | | | 97.03 123 | 96.64 127 | 98.20 136 | 98.67 151 | 97.12 115 | 99.89 105 | 98.57 92 | 91.10 259 | 98.17 143 | 98.59 207 | 93.86 103 | 98.19 257 | 95.64 189 | 95.24 231 | 99.28 192 |
|
| test2506 | | | 97.53 96 | 97.19 102 | 98.58 108 | 98.66 152 | 96.90 124 | 98.81 304 | 99.77 5 | 94.93 106 | 97.95 148 | 98.96 171 | 92.51 141 | 99.20 180 | 94.93 199 | 98.15 163 | 99.64 124 |
|
| ECVR-MVS |  | | 95.66 178 | 95.05 185 | 97.51 180 | 98.66 152 | 93.71 234 | 98.85 301 | 98.45 124 | 94.93 106 | 96.86 180 | 98.96 171 | 75.22 338 | 99.20 180 | 95.34 191 | 98.15 163 | 99.64 124 |
|
| mamv4 | | | 95.24 188 | 96.90 113 | 90.25 359 | 98.65 154 | 72.11 406 | 98.28 338 | 97.64 251 | 89.99 285 | 95.93 204 | 98.25 230 | 94.74 68 | 99.11 186 | 99.01 75 | 99.64 92 | 99.53 155 |
|
| balanced_conf03 | | | 98.27 56 | 97.99 62 | 99.11 66 | 98.64 155 | 98.43 62 | 99.47 222 | 97.79 240 | 94.56 121 | 99.74 33 | 98.35 225 | 94.33 86 | 99.25 174 | 99.12 64 | 99.96 46 | 99.64 124 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 90 | 97.72 76 | 97.77 163 | 98.63 156 | 94.26 220 | 99.96 37 | 98.92 46 | 97.18 42 | 99.75 30 | 99.69 91 | 87.00 226 | 99.97 57 | 99.46 50 | 98.89 139 | 99.08 209 |
|
| MVSMamba_PlusPlus | | | 97.83 78 | 97.45 89 | 98.99 78 | 98.60 157 | 98.15 65 | 99.58 202 | 97.74 244 | 90.34 278 | 99.26 86 | 98.32 228 | 94.29 88 | 99.23 175 | 99.03 73 | 99.89 70 | 99.58 143 |
|
| testing222 | | | 97.08 122 | 96.75 122 | 98.06 145 | 98.56 158 | 96.82 126 | 99.85 125 | 98.61 84 | 92.53 212 | 98.84 106 | 98.84 191 | 93.36 112 | 98.30 247 | 95.84 186 | 94.30 242 | 99.05 211 |
|
| test1111 | | | 95.57 180 | 94.98 188 | 97.37 188 | 98.56 158 | 93.37 246 | 98.86 299 | 98.45 124 | 94.95 105 | 96.63 186 | 98.95 176 | 75.21 339 | 99.11 186 | 95.02 196 | 98.14 165 | 99.64 124 |
|
| MVSTER | | | 95.53 181 | 95.22 178 | 96.45 216 | 98.56 158 | 97.72 87 | 99.91 90 | 97.67 249 | 92.38 219 | 91.39 260 | 97.14 262 | 97.24 18 | 97.30 298 | 94.80 205 | 87.85 294 | 94.34 295 |
|
| VDD-MVS | | | 93.77 230 | 92.94 238 | 96.27 223 | 98.55 161 | 90.22 317 | 98.77 308 | 97.79 240 | 90.85 265 | 96.82 182 | 99.42 126 | 61.18 397 | 99.77 134 | 98.95 76 | 94.13 244 | 98.82 222 |
|
| tpmvs | | | 94.28 220 | 93.57 222 | 96.40 218 | 98.55 161 | 91.50 292 | 95.70 392 | 98.55 101 | 87.47 327 | 92.15 253 | 94.26 367 | 91.42 160 | 98.95 196 | 88.15 309 | 95.85 216 | 98.76 225 |
|
| UGNet | | | 95.33 187 | 94.57 196 | 97.62 174 | 98.55 161 | 94.85 203 | 98.67 317 | 99.32 26 | 95.75 88 | 96.80 183 | 96.27 294 | 72.18 352 | 99.96 66 | 94.58 212 | 99.05 135 | 98.04 245 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 189 | 94.10 207 | 98.43 123 | 98.55 161 | 95.99 161 | 97.91 353 | 97.31 292 | 90.35 277 | 89.48 291 | 99.22 148 | 85.19 244 | 99.89 102 | 90.40 286 | 98.47 152 | 99.41 173 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 134 | 96.72 124 | 97.00 199 | 98.51 165 | 93.70 235 | 99.71 178 | 98.60 86 | 92.96 186 | 97.09 173 | 98.34 227 | 96.67 31 | 98.85 200 | 92.11 255 | 96.50 200 | 98.44 235 |
|
| test_vis1_n_1920 | | | 95.44 183 | 95.31 175 | 95.82 235 | 98.50 166 | 88.74 337 | 99.98 15 | 97.30 293 | 97.84 19 | 99.85 10 | 99.19 150 | 66.82 376 | 99.97 57 | 98.82 86 | 99.46 113 | 98.76 225 |
|
| BH-w/o | | | 95.71 175 | 95.38 173 | 96.68 210 | 98.49 167 | 92.28 269 | 99.84 130 | 97.50 272 | 92.12 225 | 92.06 256 | 98.79 192 | 84.69 249 | 98.67 216 | 95.29 193 | 99.66 91 | 99.09 207 |
|
| baseline1 | | | 95.78 172 | 94.86 190 | 98.54 113 | 98.47 168 | 98.07 71 | 99.06 271 | 97.99 219 | 92.68 202 | 94.13 231 | 98.62 206 | 93.28 118 | 98.69 214 | 93.79 231 | 85.76 307 | 98.84 221 |
|
| EPMVS | | | 96.53 148 | 96.01 146 | 98.09 143 | 98.43 169 | 96.12 159 | 96.36 379 | 99.43 20 | 93.53 168 | 97.64 158 | 95.04 344 | 94.41 78 | 98.38 239 | 91.13 267 | 98.11 166 | 99.75 106 |
|
| kuosan | | | 93.17 245 | 92.60 246 | 94.86 264 | 98.40 170 | 89.54 329 | 98.44 329 | 98.53 107 | 84.46 365 | 88.49 311 | 97.92 243 | 90.57 179 | 97.05 314 | 83.10 353 | 93.49 252 | 97.99 246 |
|
| WBMVS | | | 94.52 211 | 94.03 209 | 95.98 229 | 98.38 171 | 96.68 130 | 99.92 83 | 97.63 252 | 90.75 270 | 89.64 287 | 95.25 338 | 96.77 25 | 96.90 325 | 94.35 217 | 83.57 326 | 94.35 293 |
|
| UBG | | | 97.84 77 | 97.69 78 | 98.29 132 | 98.38 171 | 96.59 136 | 99.90 96 | 98.53 107 | 93.91 158 | 98.52 124 | 98.42 223 | 96.77 25 | 99.17 183 | 98.54 104 | 96.20 205 | 99.11 206 |
|
| sss | | | 97.57 95 | 97.03 109 | 99.18 52 | 98.37 173 | 98.04 74 | 99.73 171 | 99.38 22 | 93.46 170 | 98.76 114 | 99.06 158 | 91.21 163 | 99.89 102 | 96.33 177 | 97.01 192 | 99.62 130 |
|
| testing11 | | | 97.48 98 | 97.27 98 | 98.10 142 | 98.36 174 | 96.02 160 | 99.92 83 | 98.45 124 | 93.45 172 | 98.15 144 | 98.70 197 | 95.48 49 | 99.22 176 | 97.85 141 | 95.05 233 | 99.07 210 |
|
| BH-untuned | | | 95.18 189 | 94.83 191 | 96.22 224 | 98.36 174 | 91.22 295 | 99.80 146 | 97.32 291 | 90.91 263 | 91.08 263 | 98.67 199 | 83.51 258 | 98.54 222 | 94.23 220 | 99.61 99 | 98.92 216 |
|
| testing91 | | | 97.16 115 | 96.90 113 | 97.97 148 | 98.35 176 | 95.67 175 | 99.91 90 | 98.42 149 | 92.91 189 | 97.33 167 | 98.72 195 | 94.81 66 | 99.21 177 | 96.98 167 | 94.63 236 | 99.03 212 |
|
| testing99 | | | 97.17 114 | 96.91 112 | 97.95 149 | 98.35 176 | 95.70 172 | 99.91 90 | 98.43 137 | 92.94 187 | 97.36 166 | 98.72 195 | 94.83 65 | 99.21 177 | 97.00 165 | 94.64 235 | 98.95 215 |
|
| ET-MVSNet_ETH3D | | | 94.37 216 | 93.28 233 | 97.64 171 | 98.30 178 | 97.99 76 | 99.99 4 | 97.61 258 | 94.35 133 | 71.57 404 | 99.45 125 | 96.23 35 | 95.34 374 | 96.91 172 | 85.14 314 | 99.59 137 |
|
| AUN-MVS | | | 93.28 242 | 92.60 246 | 95.34 247 | 98.29 179 | 90.09 320 | 99.31 244 | 98.56 95 | 91.80 237 | 96.35 196 | 98.00 238 | 89.38 196 | 98.28 250 | 92.46 250 | 69.22 397 | 97.64 253 |
|
| FMVSNet3 | | | 92.69 258 | 91.58 267 | 95.99 228 | 98.29 179 | 97.42 103 | 99.26 253 | 97.62 255 | 89.80 288 | 89.68 283 | 95.32 332 | 81.62 275 | 96.27 353 | 87.01 326 | 85.65 308 | 94.29 297 |
|
| PMMVS | | | 96.76 137 | 96.76 121 | 96.76 207 | 98.28 181 | 92.10 273 | 99.91 90 | 97.98 221 | 94.12 144 | 99.53 61 | 99.39 133 | 86.93 227 | 98.73 209 | 96.95 170 | 97.73 173 | 99.45 168 |
|
| hse-mvs2 | | | 94.38 215 | 94.08 208 | 95.31 249 | 98.27 182 | 90.02 321 | 99.29 249 | 98.56 95 | 95.90 83 | 98.77 111 | 98.00 238 | 90.89 175 | 98.26 254 | 97.80 143 | 69.20 398 | 97.64 253 |
|
| PVSNet_0 | | 88.03 19 | 91.80 277 | 90.27 291 | 96.38 220 | 98.27 182 | 90.46 312 | 99.94 73 | 99.61 13 | 93.99 152 | 86.26 347 | 97.39 257 | 71.13 359 | 99.89 102 | 98.77 90 | 67.05 403 | 98.79 224 |
|
| UA-Net | | | 96.54 147 | 95.96 153 | 98.27 133 | 98.23 184 | 95.71 171 | 98.00 351 | 98.45 124 | 93.72 165 | 98.41 131 | 99.27 142 | 88.71 208 | 99.66 152 | 91.19 266 | 97.69 174 | 99.44 170 |
|
| test_cas_vis1_n_1920 | | | 96.59 146 | 96.23 140 | 97.65 170 | 98.22 185 | 94.23 221 | 99.99 4 | 97.25 300 | 97.77 20 | 99.58 57 | 99.08 156 | 77.10 315 | 99.97 57 | 97.64 151 | 99.45 114 | 98.74 227 |
|
| FE-MVS | | | 95.70 177 | 95.01 187 | 97.79 160 | 98.21 186 | 94.57 209 | 95.03 393 | 98.69 70 | 88.90 304 | 97.50 162 | 96.19 296 | 92.60 138 | 99.49 166 | 89.99 291 | 97.94 172 | 99.31 187 |
|
| GG-mvs-BLEND | | | | | 98.54 113 | 98.21 186 | 98.01 75 | 93.87 398 | 98.52 109 | | 97.92 149 | 97.92 243 | 99.02 3 | 97.94 274 | 98.17 122 | 99.58 102 | 99.67 118 |
|
| mvs_anonymous | | | 95.65 179 | 95.03 186 | 97.53 178 | 98.19 188 | 95.74 169 | 99.33 241 | 97.49 273 | 90.87 264 | 90.47 270 | 97.10 264 | 88.23 211 | 97.16 305 | 95.92 184 | 97.66 176 | 99.68 116 |
|
| MVS_Test | | | 96.46 150 | 95.74 162 | 98.61 104 | 98.18 189 | 97.23 109 | 99.31 244 | 97.15 309 | 91.07 260 | 98.84 106 | 97.05 268 | 88.17 212 | 98.97 193 | 94.39 214 | 97.50 178 | 99.61 134 |
|
| BH-RMVSNet | | | 95.18 189 | 94.31 203 | 97.80 158 | 98.17 190 | 95.23 193 | 99.76 157 | 97.53 268 | 92.52 213 | 94.27 229 | 99.25 146 | 76.84 320 | 98.80 202 | 90.89 275 | 99.54 104 | 99.35 182 |
|
| dongtai | | | 91.55 283 | 91.13 276 | 92.82 332 | 98.16 191 | 86.35 360 | 99.47 222 | 98.51 112 | 83.24 373 | 85.07 356 | 97.56 251 | 90.33 184 | 94.94 380 | 76.09 389 | 91.73 260 | 97.18 262 |
|
| RPSCF | | | 91.80 277 | 92.79 242 | 88.83 370 | 98.15 192 | 69.87 408 | 98.11 347 | 96.60 357 | 83.93 368 | 94.33 227 | 99.27 142 | 79.60 298 | 99.46 169 | 91.99 256 | 93.16 257 | 97.18 262 |
|
| ETV-MVS | | | 97.92 72 | 97.80 75 | 98.25 134 | 98.14 193 | 96.48 138 | 99.98 15 | 97.63 252 | 95.61 91 | 99.29 84 | 99.46 124 | 92.55 140 | 98.82 201 | 99.02 74 | 98.54 150 | 99.46 166 |
|
| IS-MVSNet | | | 96.29 160 | 95.90 158 | 97.45 182 | 98.13 194 | 94.80 206 | 99.08 266 | 97.61 258 | 92.02 230 | 95.54 213 | 98.96 171 | 90.64 178 | 98.08 263 | 93.73 234 | 97.41 182 | 99.47 165 |
|
| test_fmvsmconf_n | | | 98.43 46 | 98.32 43 | 98.78 91 | 98.12 195 | 96.41 141 | 99.99 4 | 98.83 60 | 98.22 7 | 99.67 41 | 99.64 103 | 91.11 168 | 99.94 82 | 99.67 41 | 99.62 95 | 99.98 51 |
|
| fmvsm_s_conf0.1_n_2 | | | 97.25 110 | 96.85 117 | 98.43 123 | 98.08 196 | 98.08 70 | 99.92 83 | 97.76 243 | 98.05 14 | 99.65 43 | 99.58 112 | 80.88 284 | 99.93 90 | 99.59 43 | 98.17 161 | 97.29 260 |
|
| ab-mvs | | | 94.69 203 | 93.42 227 | 98.51 117 | 98.07 197 | 96.26 148 | 96.49 377 | 98.68 72 | 90.31 279 | 94.54 222 | 97.00 270 | 76.30 327 | 99.71 144 | 95.98 183 | 93.38 255 | 99.56 146 |
|
| XVG-OURS-SEG-HR | | | 94.79 199 | 94.70 195 | 95.08 254 | 98.05 198 | 89.19 331 | 99.08 266 | 97.54 266 | 93.66 166 | 94.87 220 | 99.58 112 | 78.78 306 | 99.79 129 | 97.31 157 | 93.40 254 | 96.25 269 |
|
| EIA-MVS | | | 97.53 96 | 97.46 88 | 97.76 165 | 98.04 199 | 94.84 204 | 99.98 15 | 97.61 258 | 94.41 131 | 97.90 150 | 99.59 109 | 92.40 145 | 98.87 198 | 98.04 130 | 99.13 131 | 99.59 137 |
|
| XVG-OURS | | | 94.82 196 | 94.74 194 | 95.06 255 | 98.00 200 | 89.19 331 | 99.08 266 | 97.55 264 | 94.10 145 | 94.71 221 | 99.62 107 | 80.51 290 | 99.74 140 | 96.04 182 | 93.06 259 | 96.25 269 |
|
| mvsmamba | | | 96.94 127 | 96.73 123 | 97.55 176 | 97.99 201 | 94.37 217 | 99.62 196 | 97.70 246 | 93.13 182 | 98.42 130 | 97.92 243 | 88.02 213 | 98.75 208 | 98.78 89 | 99.01 136 | 99.52 157 |
|
| dp | | | 95.05 192 | 94.43 198 | 96.91 202 | 97.99 201 | 92.73 259 | 96.29 382 | 97.98 221 | 89.70 289 | 95.93 204 | 94.67 357 | 93.83 105 | 98.45 228 | 86.91 329 | 96.53 199 | 99.54 151 |
|
| tpmrst | | | 96.27 162 | 95.98 149 | 97.13 196 | 97.96 203 | 93.15 248 | 96.34 380 | 98.17 200 | 92.07 226 | 98.71 117 | 95.12 341 | 93.91 100 | 98.73 209 | 94.91 202 | 96.62 197 | 99.50 162 |
|
| TR-MVS | | | 94.54 208 | 93.56 223 | 97.49 181 | 97.96 203 | 94.34 218 | 98.71 312 | 97.51 271 | 90.30 280 | 94.51 224 | 98.69 198 | 75.56 333 | 98.77 205 | 92.82 248 | 95.99 210 | 99.35 182 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 157 | 95.98 149 | 97.35 191 | 97.93 205 | 94.82 205 | 99.47 222 | 98.15 208 | 91.83 234 | 95.09 218 | 99.11 154 | 91.37 162 | 97.47 290 | 93.47 237 | 97.43 179 | 99.74 107 |
|
| MDTV_nov1_ep13 | | | | 95.69 164 | | 97.90 206 | 94.15 223 | 95.98 388 | 98.44 129 | 93.12 183 | 97.98 147 | 95.74 308 | 95.10 55 | 98.58 219 | 90.02 290 | 96.92 194 | |
|
| Fast-Effi-MVS+ | | | 95.02 193 | 94.19 205 | 97.52 179 | 97.88 207 | 94.55 210 | 99.97 30 | 97.08 318 | 88.85 306 | 94.47 225 | 97.96 242 | 84.59 250 | 98.41 231 | 89.84 293 | 97.10 187 | 99.59 137 |
|
| ADS-MVSNet2 | | | 93.80 229 | 93.88 215 | 93.55 315 | 97.87 208 | 85.94 363 | 94.24 394 | 96.84 343 | 90.07 282 | 96.43 192 | 94.48 362 | 90.29 186 | 95.37 373 | 87.44 316 | 97.23 184 | 99.36 179 |
|
| ADS-MVSNet | | | 94.79 199 | 94.02 210 | 97.11 198 | 97.87 208 | 93.79 231 | 94.24 394 | 98.16 205 | 90.07 282 | 96.43 192 | 94.48 362 | 90.29 186 | 98.19 257 | 87.44 316 | 97.23 184 | 99.36 179 |
|
| Effi-MVS+ | | | 96.30 159 | 95.69 164 | 98.16 137 | 97.85 210 | 96.26 148 | 97.41 360 | 97.21 302 | 90.37 276 | 98.65 120 | 98.58 210 | 86.61 231 | 98.70 213 | 97.11 162 | 97.37 183 | 99.52 157 |
|
| PatchmatchNet |  | | 95.94 168 | 95.45 170 | 97.39 187 | 97.83 211 | 94.41 214 | 96.05 386 | 98.40 158 | 92.86 190 | 97.09 173 | 95.28 337 | 94.21 92 | 98.07 265 | 89.26 297 | 98.11 166 | 99.70 113 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 206 | 93.61 218 | 97.74 167 | 97.82 212 | 96.26 148 | 99.96 37 | 97.78 242 | 85.76 350 | 94.00 232 | 97.54 252 | 76.95 319 | 99.21 177 | 97.23 159 | 95.43 226 | 97.76 252 |
|
| 1112_ss | | | 96.01 167 | 95.20 179 | 98.42 125 | 97.80 213 | 96.41 141 | 99.65 189 | 96.66 354 | 92.71 199 | 92.88 246 | 99.40 131 | 92.16 150 | 99.30 172 | 91.92 258 | 93.66 250 | 99.55 147 |
|
| Test_1112_low_res | | | 95.72 173 | 94.83 191 | 98.42 125 | 97.79 214 | 96.41 141 | 99.65 189 | 96.65 355 | 92.70 200 | 92.86 247 | 96.13 299 | 92.15 151 | 99.30 172 | 91.88 259 | 93.64 251 | 99.55 147 |
|
| Effi-MVS+-dtu | | | 94.53 210 | 95.30 176 | 92.22 338 | 97.77 215 | 82.54 382 | 99.59 200 | 97.06 320 | 94.92 108 | 95.29 216 | 95.37 330 | 85.81 237 | 97.89 275 | 94.80 205 | 97.07 188 | 96.23 271 |
|
| tpm cat1 | | | 93.51 238 | 92.52 252 | 96.47 214 | 97.77 215 | 91.47 293 | 96.13 384 | 98.06 214 | 80.98 386 | 92.91 245 | 93.78 371 | 89.66 191 | 98.87 198 | 87.03 325 | 96.39 203 | 99.09 207 |
|
| FA-MVS(test-final) | | | 95.86 169 | 95.09 183 | 98.15 140 | 97.74 217 | 95.62 177 | 96.31 381 | 98.17 200 | 91.42 250 | 96.26 197 | 96.13 299 | 90.56 180 | 99.47 168 | 92.18 254 | 97.07 188 | 99.35 182 |
|
| xiu_mvs_v1_base_debu | | | 97.43 99 | 97.06 105 | 98.55 110 | 97.74 217 | 98.14 67 | 99.31 244 | 97.86 235 | 96.43 69 | 99.62 50 | 99.69 91 | 85.56 239 | 99.68 148 | 99.05 67 | 98.31 156 | 97.83 248 |
|
| xiu_mvs_v1_base | | | 97.43 99 | 97.06 105 | 98.55 110 | 97.74 217 | 98.14 67 | 99.31 244 | 97.86 235 | 96.43 69 | 99.62 50 | 99.69 91 | 85.56 239 | 99.68 148 | 99.05 67 | 98.31 156 | 97.83 248 |
|
| xiu_mvs_v1_base_debi | | | 97.43 99 | 97.06 105 | 98.55 110 | 97.74 217 | 98.14 67 | 99.31 244 | 97.86 235 | 96.43 69 | 99.62 50 | 99.69 91 | 85.56 239 | 99.68 148 | 99.05 67 | 98.31 156 | 97.83 248 |
|
| EPP-MVSNet | | | 96.69 142 | 96.60 129 | 96.96 201 | 97.74 217 | 93.05 251 | 99.37 237 | 98.56 95 | 88.75 308 | 95.83 208 | 99.01 162 | 96.01 36 | 98.56 220 | 96.92 171 | 97.20 186 | 99.25 195 |
|
| gg-mvs-nofinetune | | | 93.51 238 | 91.86 264 | 98.47 119 | 97.72 222 | 97.96 80 | 92.62 402 | 98.51 112 | 74.70 404 | 97.33 167 | 69.59 418 | 98.91 4 | 97.79 278 | 97.77 148 | 99.56 103 | 99.67 118 |
|
| IB-MVS | | 92.85 6 | 94.99 194 | 93.94 213 | 98.16 137 | 97.72 222 | 95.69 174 | 99.99 4 | 98.81 61 | 94.28 139 | 92.70 248 | 96.90 272 | 95.08 56 | 99.17 183 | 96.07 181 | 73.88 386 | 99.60 136 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 104 | 97.02 110 | 98.59 107 | 97.71 224 | 97.52 96 | 99.97 30 | 98.54 104 | 91.83 234 | 97.45 163 | 99.04 159 | 97.50 9 | 99.10 188 | 94.75 207 | 96.37 204 | 99.16 200 |
|
| Syy-MVS | | | 90.00 317 | 90.63 283 | 88.11 377 | 97.68 225 | 74.66 404 | 99.71 178 | 98.35 171 | 90.79 267 | 92.10 254 | 98.67 199 | 79.10 304 | 93.09 397 | 63.35 411 | 95.95 213 | 96.59 267 |
|
| myMVS_eth3d | | | 94.46 213 | 94.76 193 | 93.55 315 | 97.68 225 | 90.97 297 | 99.71 178 | 98.35 171 | 90.79 267 | 92.10 254 | 98.67 199 | 92.46 144 | 93.09 397 | 87.13 322 | 95.95 213 | 96.59 267 |
|
| test_fmvs1_n | | | 94.25 221 | 94.36 200 | 93.92 302 | 97.68 225 | 83.70 376 | 99.90 96 | 96.57 358 | 97.40 31 | 99.67 41 | 98.88 182 | 61.82 394 | 99.92 94 | 98.23 120 | 99.13 131 | 98.14 244 |
|
| RRT-MVS | | | 96.24 163 | 95.68 166 | 97.94 152 | 97.65 228 | 94.92 202 | 99.27 252 | 97.10 314 | 92.79 196 | 97.43 164 | 97.99 240 | 81.85 270 | 99.37 171 | 98.46 109 | 98.57 149 | 99.53 155 |
|
| diffmvs |  | | 97.00 124 | 96.64 127 | 98.09 143 | 97.64 229 | 96.17 156 | 99.81 142 | 97.19 303 | 94.67 119 | 98.95 101 | 99.28 139 | 86.43 232 | 98.76 206 | 98.37 114 | 97.42 181 | 99.33 185 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 173 | 95.15 181 | 97.45 182 | 97.62 230 | 94.28 219 | 99.28 250 | 98.24 191 | 94.27 141 | 96.84 181 | 98.94 178 | 79.39 299 | 98.76 206 | 93.25 239 | 98.49 151 | 99.30 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 117 | 96.72 124 | 98.22 135 | 97.60 231 | 96.70 129 | 99.92 83 | 98.54 104 | 91.11 258 | 97.07 175 | 98.97 169 | 97.47 12 | 99.03 191 | 93.73 234 | 96.09 208 | 98.92 216 |
|
| GDP-MVS | | | 97.88 73 | 97.59 85 | 98.75 94 | 97.59 232 | 97.81 85 | 99.95 56 | 97.37 285 | 94.44 127 | 99.08 95 | 99.58 112 | 97.13 23 | 99.08 189 | 94.99 197 | 98.17 161 | 99.37 177 |
|
| miper_ehance_all_eth | | | 93.16 246 | 92.60 246 | 94.82 265 | 97.57 233 | 93.56 239 | 99.50 217 | 97.07 319 | 88.75 308 | 88.85 306 | 95.52 319 | 90.97 171 | 96.74 334 | 90.77 277 | 84.45 319 | 94.17 306 |
|
| testing3 | | | 93.92 224 | 94.23 204 | 92.99 329 | 97.54 234 | 90.23 316 | 99.99 4 | 99.16 30 | 90.57 272 | 91.33 262 | 98.63 205 | 92.99 126 | 92.52 401 | 82.46 357 | 95.39 227 | 96.22 272 |
|
| LCM-MVSNet-Re | | | 92.31 266 | 92.60 246 | 91.43 347 | 97.53 235 | 79.27 399 | 99.02 280 | 91.83 414 | 92.07 226 | 80.31 379 | 94.38 365 | 83.50 259 | 95.48 371 | 97.22 160 | 97.58 177 | 99.54 151 |
|
| GBi-Net | | | 90.88 294 | 89.82 300 | 94.08 294 | 97.53 235 | 91.97 274 | 98.43 330 | 96.95 332 | 87.05 333 | 89.68 283 | 94.72 353 | 71.34 356 | 96.11 358 | 87.01 326 | 85.65 308 | 94.17 306 |
|
| test1 | | | 90.88 294 | 89.82 300 | 94.08 294 | 97.53 235 | 91.97 274 | 98.43 330 | 96.95 332 | 87.05 333 | 89.68 283 | 94.72 353 | 71.34 356 | 96.11 358 | 87.01 326 | 85.65 308 | 94.17 306 |
|
| FMVSNet2 | | | 91.02 291 | 89.56 305 | 95.41 245 | 97.53 235 | 95.74 169 | 98.98 282 | 97.41 281 | 87.05 333 | 88.43 315 | 95.00 347 | 71.34 356 | 96.24 355 | 85.12 340 | 85.21 313 | 94.25 300 |
|
| tttt0517 | | | 96.85 131 | 96.49 133 | 97.92 153 | 97.48 239 | 95.89 164 | 99.85 125 | 98.54 104 | 90.72 271 | 96.63 186 | 98.93 180 | 97.47 12 | 99.02 192 | 93.03 246 | 95.76 219 | 98.85 220 |
|
| BP-MVS1 | | | 98.33 52 | 98.18 51 | 98.81 89 | 97.44 240 | 97.98 77 | 99.96 37 | 98.17 200 | 94.88 110 | 98.77 111 | 99.59 109 | 97.59 7 | 99.08 189 | 98.24 119 | 98.93 138 | 99.36 179 |
|
| casdiffmvs_mvg |  | | 96.43 151 | 95.94 155 | 97.89 157 | 97.44 240 | 95.47 181 | 99.86 122 | 97.29 296 | 93.35 173 | 96.03 201 | 99.19 150 | 85.39 242 | 98.72 211 | 97.89 140 | 97.04 190 | 99.49 164 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 106 | 97.24 99 | 97.80 158 | 97.41 242 | 95.64 176 | 99.99 4 | 97.06 320 | 94.59 120 | 99.63 47 | 99.32 138 | 89.20 202 | 98.14 259 | 98.76 91 | 99.23 127 | 99.62 130 |
|
| c3_l | | | 92.53 261 | 91.87 263 | 94.52 277 | 97.40 243 | 92.99 253 | 99.40 230 | 96.93 337 | 87.86 323 | 88.69 309 | 95.44 324 | 89.95 189 | 96.44 346 | 90.45 283 | 80.69 352 | 94.14 315 |
|
| fmvsm_s_conf0.1_n | | | 97.30 107 | 97.21 101 | 97.60 175 | 97.38 244 | 94.40 216 | 99.90 96 | 98.64 78 | 96.47 68 | 99.51 65 | 99.65 102 | 84.99 247 | 99.93 90 | 99.22 61 | 99.09 133 | 98.46 234 |
|
| CDS-MVSNet | | | 96.34 156 | 96.07 144 | 97.13 196 | 97.37 245 | 94.96 200 | 99.53 212 | 97.91 230 | 91.55 242 | 95.37 215 | 98.32 228 | 95.05 58 | 97.13 308 | 93.80 230 | 95.75 220 | 99.30 189 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 139 | 96.26 139 | 98.16 137 | 97.36 246 | 96.48 138 | 99.96 37 | 98.29 184 | 91.93 231 | 95.77 209 | 98.07 236 | 95.54 46 | 98.29 248 | 90.55 281 | 98.89 139 | 99.70 113 |
|
| miper_lstm_enhance | | | 91.81 274 | 91.39 273 | 93.06 328 | 97.34 247 | 89.18 333 | 99.38 235 | 96.79 348 | 86.70 340 | 87.47 329 | 95.22 339 | 90.00 188 | 95.86 367 | 88.26 307 | 81.37 341 | 94.15 312 |
|
| baseline | | | 96.43 151 | 95.98 149 | 97.76 165 | 97.34 247 | 95.17 197 | 99.51 215 | 97.17 306 | 93.92 157 | 96.90 179 | 99.28 139 | 85.37 243 | 98.64 217 | 97.50 154 | 96.86 196 | 99.46 166 |
|
| cl____ | | | 92.31 266 | 91.58 267 | 94.52 277 | 97.33 249 | 92.77 255 | 99.57 205 | 96.78 349 | 86.97 337 | 87.56 327 | 95.51 320 | 89.43 195 | 96.62 339 | 88.60 302 | 82.44 333 | 94.16 311 |
|
| DIV-MVS_self_test | | | 92.32 265 | 91.60 266 | 94.47 281 | 97.31 250 | 92.74 257 | 99.58 202 | 96.75 350 | 86.99 336 | 87.64 325 | 95.54 317 | 89.55 194 | 96.50 343 | 88.58 303 | 82.44 333 | 94.17 306 |
|
| casdiffmvs |  | | 96.42 153 | 95.97 152 | 97.77 163 | 97.30 251 | 94.98 199 | 99.84 130 | 97.09 317 | 93.75 164 | 96.58 188 | 99.26 145 | 85.07 245 | 98.78 204 | 97.77 148 | 97.04 190 | 99.54 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 218 | 93.48 225 | 96.99 200 | 97.29 252 | 93.54 240 | 99.96 37 | 96.72 352 | 88.35 317 | 93.43 236 | 98.94 178 | 82.05 267 | 98.05 266 | 88.12 311 | 96.48 202 | 99.37 177 |
|
| eth_miper_zixun_eth | | | 92.41 264 | 91.93 261 | 93.84 306 | 97.28 253 | 90.68 306 | 98.83 302 | 96.97 331 | 88.57 313 | 89.19 301 | 95.73 310 | 89.24 201 | 96.69 337 | 89.97 292 | 81.55 339 | 94.15 312 |
|
| MVSFormer | | | 96.94 127 | 96.60 129 | 97.95 149 | 97.28 253 | 97.70 90 | 99.55 209 | 97.27 298 | 91.17 255 | 99.43 71 | 99.54 118 | 90.92 172 | 96.89 326 | 94.67 210 | 99.62 95 | 99.25 195 |
|
| lupinMVS | | | 97.85 76 | 97.60 83 | 98.62 103 | 97.28 253 | 97.70 90 | 99.99 4 | 97.55 264 | 95.50 96 | 99.43 71 | 99.67 98 | 90.92 172 | 98.71 212 | 98.40 111 | 99.62 95 | 99.45 168 |
|
| SCA | | | 94.69 203 | 93.81 217 | 97.33 192 | 97.10 256 | 94.44 211 | 98.86 299 | 98.32 178 | 93.30 176 | 96.17 200 | 95.59 315 | 76.48 325 | 97.95 272 | 91.06 269 | 97.43 179 | 99.59 137 |
|
| TAMVS | | | 95.85 170 | 95.58 168 | 96.65 212 | 97.07 257 | 93.50 241 | 99.17 260 | 97.82 239 | 91.39 252 | 95.02 219 | 98.01 237 | 92.20 149 | 97.30 298 | 93.75 233 | 95.83 217 | 99.14 203 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 233 | 93.86 216 | 93.29 320 | 97.06 258 | 86.16 361 | 99.80 146 | 96.83 344 | 92.66 203 | 92.58 249 | 97.83 248 | 81.39 276 | 97.67 283 | 89.75 294 | 96.87 195 | 96.05 274 |
|
| CostFormer | | | 96.10 164 | 95.88 159 | 96.78 206 | 97.03 259 | 92.55 265 | 97.08 368 | 97.83 238 | 90.04 284 | 98.72 116 | 94.89 351 | 95.01 60 | 98.29 248 | 96.54 176 | 95.77 218 | 99.50 162 |
|
| test_fmvsmvis_n_1920 | | | 97.67 92 | 97.59 85 | 97.91 155 | 97.02 260 | 95.34 187 | 99.95 56 | 98.45 124 | 97.87 18 | 97.02 176 | 99.59 109 | 89.64 192 | 99.98 47 | 99.41 54 | 99.34 122 | 98.42 236 |
|
| test-LLR | | | 96.47 149 | 96.04 145 | 97.78 161 | 97.02 260 | 95.44 182 | 99.96 37 | 98.21 195 | 94.07 147 | 95.55 211 | 96.38 289 | 93.90 101 | 98.27 252 | 90.42 284 | 98.83 143 | 99.64 124 |
|
| test-mter | | | 96.39 154 | 95.93 156 | 97.78 161 | 97.02 260 | 95.44 182 | 99.96 37 | 98.21 195 | 91.81 236 | 95.55 211 | 96.38 289 | 95.17 53 | 98.27 252 | 90.42 284 | 98.83 143 | 99.64 124 |
|
| gm-plane-assit | | | | | | 96.97 263 | 93.76 233 | | | 91.47 246 | | 98.96 171 | | 98.79 203 | 94.92 200 | | |
|
| WB-MVSnew | | | 92.90 252 | 92.77 243 | 93.26 322 | 96.95 264 | 93.63 237 | 99.71 178 | 98.16 205 | 91.49 243 | 94.28 228 | 98.14 233 | 81.33 278 | 96.48 344 | 79.47 372 | 95.46 224 | 89.68 398 |
|
| QAPM | | | 95.40 184 | 94.17 206 | 99.10 67 | 96.92 265 | 97.71 88 | 99.40 230 | 98.68 72 | 89.31 292 | 88.94 305 | 98.89 181 | 82.48 265 | 99.96 66 | 93.12 245 | 99.83 77 | 99.62 130 |
|
| KD-MVS_2432*1600 | | | 88.00 338 | 86.10 342 | 93.70 311 | 96.91 266 | 94.04 225 | 97.17 365 | 97.12 312 | 84.93 360 | 81.96 370 | 92.41 382 | 92.48 142 | 94.51 385 | 79.23 373 | 52.68 417 | 92.56 368 |
|
| miper_refine_blended | | | 88.00 338 | 86.10 342 | 93.70 311 | 96.91 266 | 94.04 225 | 97.17 365 | 97.12 312 | 84.93 360 | 81.96 370 | 92.41 382 | 92.48 142 | 94.51 385 | 79.23 373 | 52.68 417 | 92.56 368 |
|
| tpm2 | | | 95.47 182 | 95.18 180 | 96.35 221 | 96.91 266 | 91.70 287 | 96.96 371 | 97.93 226 | 88.04 321 | 98.44 129 | 95.40 326 | 93.32 115 | 97.97 269 | 94.00 222 | 95.61 222 | 99.38 175 |
|
| FMVSNet5 | | | 88.32 334 | 87.47 336 | 90.88 350 | 96.90 269 | 88.39 345 | 97.28 362 | 95.68 378 | 82.60 380 | 84.67 358 | 92.40 384 | 79.83 296 | 91.16 406 | 76.39 388 | 81.51 340 | 93.09 360 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 158 | 95.24 177 | 99.52 28 | 96.88 270 | 98.64 54 | 99.72 175 | 98.24 191 | 95.27 101 | 88.42 317 | 98.98 167 | 82.76 264 | 99.94 82 | 97.10 163 | 99.83 77 | 99.96 67 |
|
| Patchmatch-test | | | 92.65 260 | 91.50 270 | 96.10 227 | 96.85 271 | 90.49 311 | 91.50 407 | 97.19 303 | 82.76 379 | 90.23 271 | 95.59 315 | 95.02 59 | 98.00 268 | 77.41 383 | 96.98 193 | 99.82 95 |
|
| MVS | | | 96.60 145 | 95.56 169 | 99.72 13 | 96.85 271 | 99.22 20 | 98.31 336 | 98.94 41 | 91.57 241 | 90.90 266 | 99.61 108 | 86.66 230 | 99.96 66 | 97.36 156 | 99.88 73 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 161 | 95.34 174 | 99.08 70 | 96.82 273 | 97.47 101 | 99.45 227 | 98.81 61 | 95.52 95 | 89.39 292 | 99.00 164 | 81.97 268 | 99.95 74 | 97.27 158 | 99.83 77 | 99.84 93 |
|
| EI-MVSNet | | | 93.73 232 | 93.40 230 | 94.74 266 | 96.80 274 | 92.69 260 | 99.06 271 | 97.67 249 | 88.96 301 | 91.39 260 | 99.02 160 | 88.75 207 | 97.30 298 | 91.07 268 | 87.85 294 | 94.22 302 |
|
| CVMVSNet | | | 94.68 205 | 94.94 189 | 93.89 305 | 96.80 274 | 86.92 358 | 99.06 271 | 98.98 38 | 94.45 124 | 94.23 230 | 99.02 160 | 85.60 238 | 95.31 375 | 90.91 274 | 95.39 227 | 99.43 171 |
|
| IterMVS-LS | | | 92.69 258 | 92.11 257 | 94.43 285 | 96.80 274 | 92.74 257 | 99.45 227 | 96.89 340 | 88.98 299 | 89.65 286 | 95.38 329 | 88.77 206 | 96.34 350 | 90.98 272 | 82.04 336 | 94.22 302 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 293 | 90.17 295 | 93.12 325 | 96.78 277 | 90.42 314 | 98.89 293 | 97.05 323 | 89.03 296 | 86.49 342 | 95.42 325 | 76.59 323 | 95.02 377 | 87.22 321 | 84.09 322 | 93.93 332 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 132 | 95.96 153 | 99.48 34 | 96.74 278 | 98.52 58 | 98.31 336 | 98.86 53 | 95.82 85 | 89.91 277 | 98.98 167 | 87.49 218 | 99.96 66 | 97.80 143 | 99.73 87 | 99.96 67 |
|
| IterMVS-SCA-FT | | | 90.85 296 | 90.16 296 | 92.93 330 | 96.72 279 | 89.96 322 | 98.89 293 | 96.99 327 | 88.95 302 | 86.63 339 | 95.67 311 | 76.48 325 | 95.00 378 | 87.04 324 | 84.04 325 | 93.84 339 |
|
| MVS-HIRNet | | | 86.22 345 | 83.19 358 | 95.31 249 | 96.71 280 | 90.29 315 | 92.12 404 | 97.33 290 | 62.85 412 | 86.82 336 | 70.37 417 | 69.37 364 | 97.49 289 | 75.12 391 | 97.99 171 | 98.15 242 |
|
| VDDNet | | | 93.12 247 | 91.91 262 | 96.76 207 | 96.67 281 | 92.65 263 | 98.69 315 | 98.21 195 | 82.81 378 | 97.75 157 | 99.28 139 | 61.57 395 | 99.48 167 | 98.09 128 | 94.09 245 | 98.15 242 |
|
| dmvs_re | | | 93.20 244 | 93.15 235 | 93.34 318 | 96.54 282 | 83.81 375 | 98.71 312 | 98.51 112 | 91.39 252 | 92.37 252 | 98.56 212 | 78.66 308 | 97.83 277 | 93.89 224 | 89.74 266 | 98.38 238 |
|
| MIMVSNet | | | 90.30 309 | 88.67 323 | 95.17 253 | 96.45 283 | 91.64 289 | 92.39 403 | 97.15 309 | 85.99 347 | 90.50 269 | 93.19 378 | 66.95 375 | 94.86 382 | 82.01 361 | 93.43 253 | 99.01 214 |
|
| CR-MVSNet | | | 93.45 241 | 92.62 245 | 95.94 231 | 96.29 284 | 92.66 261 | 92.01 405 | 96.23 366 | 92.62 205 | 96.94 177 | 93.31 376 | 91.04 169 | 96.03 363 | 79.23 373 | 95.96 211 | 99.13 204 |
|
| RPMNet | | | 89.76 321 | 87.28 337 | 97.19 195 | 96.29 284 | 92.66 261 | 92.01 405 | 98.31 180 | 70.19 411 | 96.94 177 | 85.87 410 | 87.25 222 | 99.78 131 | 62.69 412 | 95.96 211 | 99.13 204 |
|
| tt0805 | | | 91.28 286 | 90.18 294 | 94.60 272 | 96.26 286 | 87.55 351 | 98.39 334 | 98.72 67 | 89.00 298 | 89.22 298 | 98.47 220 | 62.98 390 | 98.96 195 | 90.57 280 | 88.00 293 | 97.28 261 |
|
| Patchmtry | | | 89.70 322 | 88.49 325 | 93.33 319 | 96.24 287 | 89.94 325 | 91.37 408 | 96.23 366 | 78.22 394 | 87.69 324 | 93.31 376 | 91.04 169 | 96.03 363 | 80.18 371 | 82.10 335 | 94.02 322 |
|
| test_vis1_rt | | | 86.87 343 | 86.05 345 | 89.34 366 | 96.12 288 | 78.07 400 | 99.87 111 | 83.54 425 | 92.03 229 | 78.21 389 | 89.51 396 | 45.80 411 | 99.91 95 | 96.25 179 | 93.11 258 | 90.03 395 |
|
| JIA-IIPM | | | 91.76 280 | 90.70 281 | 94.94 259 | 96.11 289 | 87.51 352 | 93.16 401 | 98.13 210 | 75.79 400 | 97.58 159 | 77.68 415 | 92.84 131 | 97.97 269 | 88.47 306 | 96.54 198 | 99.33 185 |
|
| OpenMVS |  | 90.15 15 | 94.77 201 | 93.59 221 | 98.33 129 | 96.07 290 | 97.48 100 | 99.56 207 | 98.57 92 | 90.46 274 | 86.51 341 | 98.95 176 | 78.57 309 | 99.94 82 | 93.86 225 | 99.74 86 | 97.57 257 |
|
| PAPM | | | 98.60 33 | 98.42 34 | 99.14 61 | 96.05 291 | 98.96 26 | 99.90 96 | 99.35 24 | 96.68 61 | 98.35 135 | 99.66 100 | 96.45 33 | 98.51 223 | 99.45 51 | 99.89 70 | 99.96 67 |
|
| CLD-MVS | | | 94.06 223 | 93.90 214 | 94.55 276 | 96.02 292 | 90.69 305 | 99.98 15 | 97.72 245 | 96.62 65 | 91.05 265 | 98.85 190 | 77.21 314 | 98.47 224 | 98.11 126 | 89.51 272 | 94.48 281 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 306 | 88.75 322 | 95.25 251 | 95.99 293 | 90.16 318 | 91.22 409 | 97.54 266 | 76.80 396 | 97.26 169 | 86.01 409 | 91.88 156 | 96.07 362 | 66.16 408 | 95.91 215 | 99.51 160 |
|
| ACMH+ | | 89.98 16 | 90.35 307 | 89.54 306 | 92.78 334 | 95.99 293 | 86.12 362 | 98.81 304 | 97.18 305 | 89.38 291 | 83.14 366 | 97.76 249 | 68.42 369 | 98.43 229 | 89.11 298 | 86.05 306 | 93.78 342 |
|
| DeepMVS_CX |  | | | | 82.92 387 | 95.98 295 | 58.66 418 | | 96.01 371 | 92.72 198 | 78.34 388 | 95.51 320 | 58.29 400 | 98.08 263 | 82.57 356 | 85.29 311 | 92.03 376 |
|
| ACMP | | 92.05 9 | 92.74 256 | 92.42 254 | 93.73 307 | 95.91 296 | 88.72 338 | 99.81 142 | 97.53 268 | 94.13 143 | 87.00 335 | 98.23 231 | 74.07 346 | 98.47 224 | 96.22 180 | 88.86 279 | 93.99 327 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 236 | 93.03 237 | 95.35 246 | 95.86 297 | 86.94 357 | 99.87 111 | 96.36 364 | 96.85 52 | 99.54 60 | 98.79 192 | 52.41 407 | 99.83 124 | 98.64 99 | 98.97 137 | 99.29 191 |
|
| HQP-NCC | | | | | | 95.78 298 | | 99.87 111 | | 96.82 54 | 93.37 237 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 298 | | 99.87 111 | | 96.82 54 | 93.37 237 | | | | | | |
|
| HQP-MVS | | | 94.61 207 | 94.50 197 | 94.92 260 | 95.78 298 | 91.85 279 | 99.87 111 | 97.89 231 | 96.82 54 | 93.37 237 | 98.65 202 | 80.65 288 | 98.39 235 | 97.92 137 | 89.60 267 | 94.53 277 |
|
| NP-MVS | | | | | | 95.77 301 | 91.79 281 | | | | | 98.65 202 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 88 | 97.44 90 | 98.64 102 | 95.76 302 | 96.20 153 | 99.94 73 | 98.05 216 | 98.17 10 | 98.89 105 | 99.42 126 | 87.65 216 | 99.90 97 | 99.50 47 | 99.60 101 | 99.82 95 |
|
| plane_prior6 | | | | | | 95.76 302 | 91.72 286 | | | | | | 80.47 292 | | | | |
|
| ACMM | | 91.95 10 | 92.88 253 | 92.52 252 | 93.98 301 | 95.75 304 | 89.08 335 | 99.77 152 | 97.52 270 | 93.00 185 | 89.95 276 | 97.99 240 | 76.17 329 | 98.46 227 | 93.63 236 | 88.87 278 | 94.39 289 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 226 | 92.84 239 | 96.80 205 | 95.73 305 | 93.57 238 | 99.88 108 | 97.24 301 | 92.57 210 | 92.92 244 | 96.66 281 | 78.73 307 | 97.67 283 | 87.75 314 | 94.06 246 | 99.17 199 |
|
| plane_prior1 | | | | | | 95.73 305 | | | | | | | | | | | |
|
| jason | | | 97.24 111 | 96.86 116 | 98.38 128 | 95.73 305 | 97.32 105 | 99.97 30 | 97.40 282 | 95.34 99 | 98.60 123 | 99.54 118 | 87.70 215 | 98.56 220 | 97.94 136 | 99.47 111 | 99.25 195 |
| jason: jason. |
| mmtdpeth | | | 88.52 332 | 87.75 334 | 90.85 352 | 95.71 308 | 83.47 378 | 98.94 287 | 94.85 392 | 88.78 307 | 97.19 171 | 89.58 395 | 63.29 388 | 98.97 193 | 98.54 104 | 62.86 411 | 90.10 394 |
|
| HQP_MVS | | | 94.49 212 | 94.36 200 | 94.87 261 | 95.71 308 | 91.74 283 | 99.84 130 | 97.87 233 | 96.38 72 | 93.01 242 | 98.59 207 | 80.47 292 | 98.37 241 | 97.79 146 | 89.55 270 | 94.52 279 |
|
| plane_prior7 | | | | | | 95.71 308 | 91.59 291 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 336 | 95.69 311 | 85.14 367 | | 95.71 377 | 92.81 193 | 89.33 295 | 98.11 234 | 70.23 362 | 98.42 230 | 85.91 336 | 88.16 291 | 93.59 350 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 119 | 96.90 113 | 97.63 173 | 95.65 312 | 94.21 222 | 99.83 137 | 98.50 118 | 96.27 77 | 99.65 43 | 99.64 103 | 84.72 248 | 99.93 90 | 99.04 70 | 98.84 142 | 98.74 227 |
|
| ACMH | | 89.72 17 | 90.64 300 | 89.63 303 | 93.66 313 | 95.64 313 | 88.64 341 | 98.55 322 | 97.45 275 | 89.03 296 | 81.62 373 | 97.61 250 | 69.75 363 | 98.41 231 | 89.37 295 | 87.62 298 | 93.92 333 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 141 | 96.49 133 | 97.37 188 | 95.63 314 | 95.96 162 | 99.74 164 | 98.88 51 | 92.94 187 | 91.61 258 | 98.97 169 | 97.72 6 | 98.62 218 | 94.83 204 | 98.08 169 | 97.53 258 |
|
| FMVSNet1 | | | 88.50 333 | 86.64 340 | 94.08 294 | 95.62 315 | 91.97 274 | 98.43 330 | 96.95 332 | 83.00 376 | 86.08 349 | 94.72 353 | 59.09 399 | 96.11 358 | 81.82 363 | 84.07 323 | 94.17 306 |
|
| LPG-MVS_test | | | 92.96 250 | 92.71 244 | 93.71 309 | 95.43 316 | 88.67 339 | 99.75 161 | 97.62 255 | 92.81 193 | 90.05 272 | 98.49 216 | 75.24 336 | 98.40 233 | 95.84 186 | 89.12 274 | 94.07 319 |
|
| LGP-MVS_train | | | | | 93.71 309 | 95.43 316 | 88.67 339 | | 97.62 255 | 92.81 193 | 90.05 272 | 98.49 216 | 75.24 336 | 98.40 233 | 95.84 186 | 89.12 274 | 94.07 319 |
|
| tpm | | | 93.70 234 | 93.41 229 | 94.58 274 | 95.36 318 | 87.41 353 | 97.01 369 | 96.90 339 | 90.85 265 | 96.72 185 | 94.14 368 | 90.40 183 | 96.84 329 | 90.75 278 | 88.54 286 | 99.51 160 |
|
| D2MVS | | | 92.76 255 | 92.59 250 | 93.27 321 | 95.13 319 | 89.54 329 | 99.69 183 | 99.38 22 | 92.26 222 | 87.59 326 | 94.61 359 | 85.05 246 | 97.79 278 | 91.59 262 | 88.01 292 | 92.47 371 |
|
| VPA-MVSNet | | | 92.70 257 | 91.55 269 | 96.16 225 | 95.09 320 | 96.20 153 | 98.88 295 | 99.00 36 | 91.02 262 | 91.82 257 | 95.29 336 | 76.05 331 | 97.96 271 | 95.62 190 | 81.19 342 | 94.30 296 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 310 | 89.05 317 | 94.02 297 | 95.08 321 | 90.15 319 | 97.19 364 | 97.43 277 | 84.91 362 | 83.99 362 | 97.06 267 | 74.00 347 | 98.28 250 | 84.08 345 | 87.71 296 | 93.62 349 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 340 | 86.51 341 | 91.94 341 | 95.05 322 | 85.57 365 | 97.65 357 | 94.08 401 | 84.40 366 | 81.82 372 | 96.85 276 | 62.14 393 | 98.33 244 | 80.25 370 | 86.37 305 | 91.91 378 |
|
| test0.0.03 1 | | | 93.86 225 | 93.61 218 | 94.64 270 | 95.02 323 | 92.18 272 | 99.93 80 | 98.58 90 | 94.07 147 | 87.96 321 | 98.50 215 | 93.90 101 | 94.96 379 | 81.33 364 | 93.17 256 | 96.78 264 |
|
| UniMVSNet (Re) | | | 93.07 249 | 92.13 256 | 95.88 232 | 94.84 324 | 96.24 152 | 99.88 108 | 98.98 38 | 92.49 215 | 89.25 296 | 95.40 326 | 87.09 224 | 97.14 307 | 93.13 244 | 78.16 366 | 94.26 298 |
|
| USDC | | | 90.00 317 | 88.96 318 | 93.10 327 | 94.81 325 | 88.16 347 | 98.71 312 | 95.54 382 | 93.66 166 | 83.75 364 | 97.20 261 | 65.58 380 | 98.31 246 | 83.96 348 | 87.49 300 | 92.85 365 |
|
| VPNet | | | 91.81 274 | 90.46 285 | 95.85 234 | 94.74 326 | 95.54 180 | 98.98 282 | 98.59 88 | 92.14 224 | 90.77 268 | 97.44 254 | 68.73 367 | 97.54 288 | 94.89 203 | 77.89 368 | 94.46 282 |
|
| FIs | | | 94.10 222 | 93.43 226 | 96.11 226 | 94.70 327 | 96.82 126 | 99.58 202 | 98.93 45 | 92.54 211 | 89.34 294 | 97.31 258 | 87.62 217 | 97.10 311 | 94.22 221 | 86.58 303 | 94.40 288 |
|
| UniMVSNet_ETH3D | | | 90.06 316 | 88.58 324 | 94.49 280 | 94.67 328 | 88.09 348 | 97.81 356 | 97.57 263 | 83.91 369 | 88.44 313 | 97.41 255 | 57.44 401 | 97.62 285 | 91.41 263 | 88.59 285 | 97.77 251 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 251 | 92.11 257 | 95.49 240 | 94.61 329 | 95.28 190 | 99.83 137 | 99.08 33 | 91.49 243 | 89.21 299 | 96.86 275 | 87.14 223 | 96.73 335 | 93.20 240 | 77.52 371 | 94.46 282 |
|
| test_fmvs2 | | | 89.47 325 | 89.70 302 | 88.77 373 | 94.54 330 | 75.74 401 | 99.83 137 | 94.70 397 | 94.71 116 | 91.08 263 | 96.82 280 | 54.46 404 | 97.78 280 | 92.87 247 | 88.27 289 | 92.80 366 |
|
| MonoMVSNet | | | 94.82 196 | 94.43 198 | 95.98 229 | 94.54 330 | 90.73 304 | 99.03 278 | 97.06 320 | 93.16 181 | 93.15 241 | 95.47 323 | 88.29 210 | 97.57 286 | 97.85 141 | 91.33 264 | 99.62 130 |
|
| WR-MVS | | | 92.31 266 | 91.25 274 | 95.48 243 | 94.45 332 | 95.29 189 | 99.60 199 | 98.68 72 | 90.10 281 | 88.07 320 | 96.89 273 | 80.68 287 | 96.80 333 | 93.14 243 | 79.67 359 | 94.36 290 |
|
| nrg030 | | | 93.51 238 | 92.53 251 | 96.45 216 | 94.36 333 | 97.20 110 | 99.81 142 | 97.16 308 | 91.60 240 | 89.86 279 | 97.46 253 | 86.37 233 | 97.68 282 | 95.88 185 | 80.31 355 | 94.46 282 |
|
| tfpnnormal | | | 89.29 328 | 87.61 335 | 94.34 288 | 94.35 334 | 94.13 224 | 98.95 286 | 98.94 41 | 83.94 367 | 84.47 359 | 95.51 320 | 74.84 341 | 97.39 291 | 77.05 386 | 80.41 353 | 91.48 381 |
|
| FC-MVSNet-test | | | 93.81 228 | 93.15 235 | 95.80 236 | 94.30 335 | 96.20 153 | 99.42 229 | 98.89 49 | 92.33 221 | 89.03 304 | 97.27 260 | 87.39 220 | 96.83 331 | 93.20 240 | 86.48 304 | 94.36 290 |
|
| MS-PatchMatch | | | 90.65 299 | 90.30 290 | 91.71 346 | 94.22 336 | 85.50 366 | 98.24 340 | 97.70 246 | 88.67 310 | 86.42 344 | 96.37 291 | 67.82 372 | 98.03 267 | 83.62 350 | 99.62 95 | 91.60 379 |
|
| WR-MVS_H | | | 91.30 284 | 90.35 288 | 94.15 291 | 94.17 337 | 92.62 264 | 99.17 260 | 98.94 41 | 88.87 305 | 86.48 343 | 94.46 364 | 84.36 252 | 96.61 340 | 88.19 308 | 78.51 364 | 93.21 359 |
|
| DU-MVS | | | 92.46 263 | 91.45 272 | 95.49 240 | 94.05 338 | 95.28 190 | 99.81 142 | 98.74 66 | 92.25 223 | 89.21 299 | 96.64 283 | 81.66 273 | 96.73 335 | 93.20 240 | 77.52 371 | 94.46 282 |
|
| NR-MVSNet | | | 91.56 282 | 90.22 292 | 95.60 238 | 94.05 338 | 95.76 168 | 98.25 339 | 98.70 69 | 91.16 257 | 80.78 378 | 96.64 283 | 83.23 262 | 96.57 341 | 91.41 263 | 77.73 370 | 94.46 282 |
|
| CP-MVSNet | | | 91.23 288 | 90.22 292 | 94.26 289 | 93.96 340 | 92.39 268 | 99.09 264 | 98.57 92 | 88.95 302 | 86.42 344 | 96.57 286 | 79.19 302 | 96.37 348 | 90.29 287 | 78.95 361 | 94.02 322 |
|
| XXY-MVS | | | 91.82 273 | 90.46 285 | 95.88 232 | 93.91 341 | 95.40 186 | 98.87 298 | 97.69 248 | 88.63 312 | 87.87 322 | 97.08 265 | 74.38 345 | 97.89 275 | 91.66 261 | 84.07 323 | 94.35 293 |
|
| PS-CasMVS | | | 90.63 301 | 89.51 308 | 93.99 300 | 93.83 342 | 91.70 287 | 98.98 282 | 98.52 109 | 88.48 314 | 86.15 348 | 96.53 288 | 75.46 334 | 96.31 352 | 88.83 300 | 78.86 363 | 93.95 330 |
|
| test_0402 | | | 85.58 347 | 83.94 352 | 90.50 356 | 93.81 343 | 85.04 368 | 98.55 322 | 95.20 389 | 76.01 398 | 79.72 383 | 95.13 340 | 64.15 386 | 96.26 354 | 66.04 409 | 86.88 302 | 90.21 392 |
|
| XVG-ACMP-BASELINE | | | 91.22 289 | 90.75 280 | 92.63 335 | 93.73 344 | 85.61 364 | 98.52 326 | 97.44 276 | 92.77 197 | 89.90 278 | 96.85 276 | 66.64 377 | 98.39 235 | 92.29 252 | 88.61 283 | 93.89 335 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 281 | 90.61 284 | 94.87 261 | 93.69 345 | 93.98 228 | 99.69 183 | 98.65 76 | 91.03 261 | 88.44 313 | 96.83 279 | 80.05 295 | 96.18 356 | 90.26 288 | 76.89 379 | 94.45 287 |
|
| TransMVSNet (Re) | | | 87.25 341 | 85.28 348 | 93.16 324 | 93.56 346 | 91.03 296 | 98.54 324 | 94.05 403 | 83.69 371 | 81.09 376 | 96.16 297 | 75.32 335 | 96.40 347 | 76.69 387 | 68.41 399 | 92.06 375 |
|
| v10 | | | 90.25 311 | 88.82 320 | 94.57 275 | 93.53 347 | 93.43 243 | 99.08 266 | 96.87 342 | 85.00 359 | 87.34 333 | 94.51 360 | 80.93 283 | 97.02 321 | 82.85 355 | 79.23 360 | 93.26 357 |
|
| testgi | | | 89.01 330 | 88.04 331 | 91.90 342 | 93.49 348 | 84.89 370 | 99.73 171 | 95.66 379 | 93.89 161 | 85.14 354 | 98.17 232 | 59.68 398 | 94.66 384 | 77.73 382 | 88.88 277 | 96.16 273 |
|
| v8 | | | 90.54 303 | 89.17 313 | 94.66 269 | 93.43 349 | 93.40 245 | 99.20 257 | 96.94 336 | 85.76 350 | 87.56 327 | 94.51 360 | 81.96 269 | 97.19 304 | 84.94 342 | 78.25 365 | 93.38 355 |
|
| V42 | | | 91.28 286 | 90.12 297 | 94.74 266 | 93.42 350 | 93.46 242 | 99.68 185 | 97.02 324 | 87.36 329 | 89.85 281 | 95.05 343 | 81.31 279 | 97.34 294 | 87.34 319 | 80.07 357 | 93.40 353 |
|
| pm-mvs1 | | | 89.36 327 | 87.81 333 | 94.01 298 | 93.40 351 | 91.93 277 | 98.62 320 | 96.48 362 | 86.25 345 | 83.86 363 | 96.14 298 | 73.68 348 | 97.04 317 | 86.16 333 | 75.73 384 | 93.04 362 |
|
| v1144 | | | 91.09 290 | 89.83 299 | 94.87 261 | 93.25 352 | 93.69 236 | 99.62 196 | 96.98 329 | 86.83 339 | 89.64 287 | 94.99 348 | 80.94 282 | 97.05 314 | 85.08 341 | 81.16 343 | 93.87 337 |
|
| v1192 | | | 90.62 302 | 89.25 312 | 94.72 268 | 93.13 353 | 93.07 249 | 99.50 217 | 97.02 324 | 86.33 344 | 89.56 290 | 95.01 345 | 79.22 301 | 97.09 313 | 82.34 359 | 81.16 343 | 94.01 324 |
|
| v2v482 | | | 91.30 284 | 90.07 298 | 95.01 256 | 93.13 353 | 93.79 231 | 99.77 152 | 97.02 324 | 88.05 320 | 89.25 296 | 95.37 330 | 80.73 286 | 97.15 306 | 87.28 320 | 80.04 358 | 94.09 318 |
|
| OPM-MVS | | | 93.21 243 | 92.80 241 | 94.44 283 | 93.12 355 | 90.85 303 | 99.77 152 | 97.61 258 | 96.19 80 | 91.56 259 | 98.65 202 | 75.16 340 | 98.47 224 | 93.78 232 | 89.39 273 | 93.99 327 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 297 | 89.52 307 | 94.59 273 | 93.11 356 | 92.77 255 | 99.56 207 | 96.99 327 | 86.38 343 | 89.82 282 | 94.95 350 | 80.50 291 | 97.10 311 | 83.98 347 | 80.41 353 | 93.90 334 |
|
| PEN-MVS | | | 90.19 313 | 89.06 316 | 93.57 314 | 93.06 357 | 90.90 301 | 99.06 271 | 98.47 121 | 88.11 319 | 85.91 350 | 96.30 293 | 76.67 321 | 95.94 366 | 87.07 323 | 76.91 378 | 93.89 335 |
|
| v1240 | | | 90.20 312 | 88.79 321 | 94.44 283 | 93.05 358 | 92.27 270 | 99.38 235 | 96.92 338 | 85.89 348 | 89.36 293 | 94.87 352 | 77.89 313 | 97.03 319 | 80.66 367 | 81.08 346 | 94.01 324 |
|
| v148 | | | 90.70 298 | 89.63 303 | 93.92 302 | 92.97 359 | 90.97 297 | 99.75 161 | 96.89 340 | 87.51 326 | 88.27 318 | 95.01 345 | 81.67 272 | 97.04 317 | 87.40 318 | 77.17 376 | 93.75 343 |
|
| v1921920 | | | 90.46 304 | 89.12 314 | 94.50 279 | 92.96 360 | 92.46 266 | 99.49 219 | 96.98 329 | 86.10 346 | 89.61 289 | 95.30 333 | 78.55 310 | 97.03 319 | 82.17 360 | 80.89 351 | 94.01 324 |
|
| MVStest1 | | | 85.03 353 | 82.76 362 | 91.83 343 | 92.95 361 | 89.16 334 | 98.57 321 | 94.82 393 | 71.68 409 | 68.54 409 | 95.11 342 | 83.17 263 | 95.66 369 | 74.69 392 | 65.32 406 | 90.65 388 |
|
| Baseline_NR-MVSNet | | | 90.33 308 | 89.51 308 | 92.81 333 | 92.84 362 | 89.95 323 | 99.77 152 | 93.94 404 | 84.69 364 | 89.04 303 | 95.66 312 | 81.66 273 | 96.52 342 | 90.99 271 | 76.98 377 | 91.97 377 |
|
| test_method | | | 80.79 369 | 79.70 373 | 84.08 384 | 92.83 363 | 67.06 410 | 99.51 215 | 95.42 383 | 54.34 416 | 81.07 377 | 93.53 373 | 44.48 412 | 92.22 403 | 78.90 377 | 77.23 375 | 92.94 363 |
|
| pmmvs4 | | | 92.10 270 | 91.07 278 | 95.18 252 | 92.82 364 | 94.96 200 | 99.48 221 | 96.83 344 | 87.45 328 | 88.66 310 | 96.56 287 | 83.78 257 | 96.83 331 | 89.29 296 | 84.77 317 | 93.75 343 |
|
| LF4IMVS | | | 89.25 329 | 88.85 319 | 90.45 358 | 92.81 365 | 81.19 392 | 98.12 346 | 94.79 394 | 91.44 247 | 86.29 346 | 97.11 263 | 65.30 383 | 98.11 261 | 88.53 305 | 85.25 312 | 92.07 374 |
|
| DTE-MVSNet | | | 89.40 326 | 88.24 329 | 92.88 331 | 92.66 366 | 89.95 323 | 99.10 263 | 98.22 194 | 87.29 330 | 85.12 355 | 96.22 295 | 76.27 328 | 95.30 376 | 83.56 351 | 75.74 383 | 93.41 352 |
|
| EU-MVSNet | | | 90.14 315 | 90.34 289 | 89.54 365 | 92.55 367 | 81.06 393 | 98.69 315 | 98.04 217 | 91.41 251 | 86.59 340 | 96.84 278 | 80.83 285 | 93.31 396 | 86.20 332 | 81.91 337 | 94.26 298 |
|
| APD_test1 | | | 81.15 368 | 80.92 369 | 81.86 388 | 92.45 368 | 59.76 417 | 96.04 387 | 93.61 407 | 73.29 407 | 77.06 392 | 96.64 283 | 44.28 413 | 96.16 357 | 72.35 396 | 82.52 331 | 89.67 399 |
|
| our_test_3 | | | 90.39 305 | 89.48 310 | 93.12 325 | 92.40 369 | 89.57 328 | 99.33 241 | 96.35 365 | 87.84 324 | 85.30 353 | 94.99 348 | 84.14 255 | 96.09 361 | 80.38 368 | 84.56 318 | 93.71 348 |
|
| ppachtmachnet_test | | | 89.58 324 | 88.35 327 | 93.25 323 | 92.40 369 | 90.44 313 | 99.33 241 | 96.73 351 | 85.49 355 | 85.90 351 | 95.77 307 | 81.09 281 | 96.00 365 | 76.00 390 | 82.49 332 | 93.30 356 |
|
| v7n | | | 89.65 323 | 88.29 328 | 93.72 308 | 92.22 371 | 90.56 310 | 99.07 270 | 97.10 314 | 85.42 357 | 86.73 337 | 94.72 353 | 80.06 294 | 97.13 308 | 81.14 365 | 78.12 367 | 93.49 351 |
|
| dmvs_testset | | | 83.79 362 | 86.07 344 | 76.94 392 | 92.14 372 | 48.60 427 | 96.75 374 | 90.27 417 | 89.48 290 | 78.65 386 | 98.55 214 | 79.25 300 | 86.65 415 | 66.85 406 | 82.69 330 | 95.57 275 |
|
| PS-MVSNAJss | | | 93.64 235 | 93.31 232 | 94.61 271 | 92.11 373 | 92.19 271 | 99.12 262 | 97.38 283 | 92.51 214 | 88.45 312 | 96.99 271 | 91.20 164 | 97.29 301 | 94.36 215 | 87.71 296 | 94.36 290 |
|
| pmmvs5 | | | 90.17 314 | 89.09 315 | 93.40 317 | 92.10 374 | 89.77 326 | 99.74 164 | 95.58 381 | 85.88 349 | 87.24 334 | 95.74 308 | 73.41 349 | 96.48 344 | 88.54 304 | 83.56 327 | 93.95 330 |
|
| N_pmnet | | | 80.06 372 | 80.78 370 | 77.89 391 | 91.94 375 | 45.28 429 | 98.80 306 | 56.82 431 | 78.10 395 | 80.08 381 | 93.33 374 | 77.03 316 | 95.76 368 | 68.14 404 | 82.81 329 | 92.64 367 |
|
| test_djsdf | | | 92.83 254 | 92.29 255 | 94.47 281 | 91.90 376 | 92.46 266 | 99.55 209 | 97.27 298 | 91.17 255 | 89.96 275 | 96.07 302 | 81.10 280 | 96.89 326 | 94.67 210 | 88.91 276 | 94.05 321 |
|
| SixPastTwentyTwo | | | 88.73 331 | 88.01 332 | 90.88 350 | 91.85 377 | 82.24 384 | 98.22 343 | 95.18 390 | 88.97 300 | 82.26 369 | 96.89 273 | 71.75 354 | 96.67 338 | 84.00 346 | 82.98 328 | 93.72 347 |
|
| K. test v3 | | | 88.05 337 | 87.24 338 | 90.47 357 | 91.82 378 | 82.23 385 | 98.96 285 | 97.42 279 | 89.05 295 | 76.93 394 | 95.60 314 | 68.49 368 | 95.42 372 | 85.87 337 | 81.01 349 | 93.75 343 |
|
| OurMVSNet-221017-0 | | | 89.81 320 | 89.48 310 | 90.83 353 | 91.64 379 | 81.21 391 | 98.17 345 | 95.38 385 | 91.48 245 | 85.65 352 | 97.31 258 | 72.66 350 | 97.29 301 | 88.15 309 | 84.83 316 | 93.97 329 |
|
| mvs_tets | | | 91.81 274 | 91.08 277 | 94.00 299 | 91.63 380 | 90.58 309 | 98.67 317 | 97.43 277 | 92.43 216 | 87.37 332 | 97.05 268 | 71.76 353 | 97.32 296 | 94.75 207 | 88.68 282 | 94.11 317 |
|
| Gipuma |  | | 66.95 385 | 65.00 385 | 72.79 397 | 91.52 381 | 67.96 409 | 66.16 420 | 95.15 391 | 47.89 418 | 58.54 415 | 67.99 420 | 29.74 417 | 87.54 414 | 50.20 419 | 77.83 369 | 62.87 420 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 154 | 95.74 162 | 98.32 130 | 91.47 382 | 95.56 179 | 99.84 130 | 97.30 293 | 97.74 21 | 97.89 151 | 99.35 137 | 79.62 297 | 99.85 114 | 99.25 60 | 99.24 126 | 99.55 147 |
|
| jajsoiax | | | 91.92 272 | 91.18 275 | 94.15 291 | 91.35 383 | 90.95 300 | 99.00 281 | 97.42 279 | 92.61 206 | 87.38 331 | 97.08 265 | 72.46 351 | 97.36 292 | 94.53 213 | 88.77 280 | 94.13 316 |
|
| MDA-MVSNet-bldmvs | | | 84.09 360 | 81.52 367 | 91.81 344 | 91.32 384 | 88.00 350 | 98.67 317 | 95.92 373 | 80.22 389 | 55.60 418 | 93.32 375 | 68.29 370 | 93.60 394 | 73.76 393 | 76.61 380 | 93.82 341 |
|
| MVP-Stereo | | | 90.93 292 | 90.45 287 | 92.37 337 | 91.25 385 | 88.76 336 | 98.05 350 | 96.17 368 | 87.27 331 | 84.04 360 | 95.30 333 | 78.46 311 | 97.27 303 | 83.78 349 | 99.70 89 | 91.09 382 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 349 | 83.32 357 | 92.10 339 | 90.96 386 | 88.58 342 | 99.20 257 | 96.52 360 | 79.70 391 | 57.12 417 | 92.69 380 | 79.11 303 | 93.86 391 | 77.10 385 | 77.46 373 | 93.86 338 |
|
| YYNet1 | | | 85.50 350 | 83.33 356 | 92.00 340 | 90.89 387 | 88.38 346 | 99.22 256 | 96.55 359 | 79.60 392 | 57.26 416 | 92.72 379 | 79.09 305 | 93.78 392 | 77.25 384 | 77.37 374 | 93.84 339 |
|
| anonymousdsp | | | 91.79 279 | 90.92 279 | 94.41 286 | 90.76 388 | 92.93 254 | 98.93 289 | 97.17 306 | 89.08 294 | 87.46 330 | 95.30 333 | 78.43 312 | 96.92 324 | 92.38 251 | 88.73 281 | 93.39 354 |
|
| lessismore_v0 | | | | | 90.53 355 | 90.58 389 | 80.90 394 | | 95.80 374 | | 77.01 393 | 95.84 305 | 66.15 379 | 96.95 322 | 83.03 354 | 75.05 385 | 93.74 346 |
|
| EG-PatchMatch MVS | | | 85.35 351 | 83.81 354 | 89.99 363 | 90.39 390 | 81.89 387 | 98.21 344 | 96.09 370 | 81.78 383 | 74.73 400 | 93.72 372 | 51.56 409 | 97.12 310 | 79.16 376 | 88.61 283 | 90.96 385 |
|
| EGC-MVSNET | | | 69.38 378 | 63.76 388 | 86.26 381 | 90.32 391 | 81.66 390 | 96.24 383 | 93.85 405 | 0.99 428 | 3.22 429 | 92.33 385 | 52.44 406 | 92.92 399 | 59.53 415 | 84.90 315 | 84.21 409 |
|
| CMPMVS |  | 61.59 21 | 84.75 356 | 85.14 349 | 83.57 385 | 90.32 391 | 62.54 413 | 96.98 370 | 97.59 262 | 74.33 405 | 69.95 406 | 96.66 281 | 64.17 385 | 98.32 245 | 87.88 313 | 88.41 288 | 89.84 397 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 359 | 82.92 360 | 89.21 367 | 90.03 393 | 82.60 381 | 96.89 373 | 95.62 380 | 80.59 387 | 75.77 399 | 89.17 397 | 65.04 384 | 94.79 383 | 72.12 397 | 81.02 348 | 90.23 391 |
|
| pmmvs6 | | | 85.69 346 | 83.84 353 | 91.26 349 | 90.00 394 | 84.41 373 | 97.82 355 | 96.15 369 | 75.86 399 | 81.29 375 | 95.39 328 | 61.21 396 | 96.87 328 | 83.52 352 | 73.29 387 | 92.50 370 |
|
| ttmdpeth | | | 88.23 336 | 87.06 339 | 91.75 345 | 89.91 395 | 87.35 354 | 98.92 292 | 95.73 376 | 87.92 322 | 84.02 361 | 96.31 292 | 68.23 371 | 96.84 329 | 86.33 331 | 76.12 381 | 91.06 383 |
|
| DSMNet-mixed | | | 88.28 335 | 88.24 329 | 88.42 375 | 89.64 396 | 75.38 403 | 98.06 349 | 89.86 418 | 85.59 354 | 88.20 319 | 92.14 386 | 76.15 330 | 91.95 404 | 78.46 379 | 96.05 209 | 97.92 247 |
|
| UnsupCasMVSNet_eth | | | 85.52 348 | 83.99 350 | 90.10 361 | 89.36 397 | 83.51 377 | 96.65 375 | 97.99 219 | 89.14 293 | 75.89 398 | 93.83 370 | 63.25 389 | 93.92 389 | 81.92 362 | 67.90 402 | 92.88 364 |
|
| Anonymous20231206 | | | 86.32 344 | 85.42 347 | 89.02 369 | 89.11 398 | 80.53 397 | 99.05 275 | 95.28 386 | 85.43 356 | 82.82 367 | 93.92 369 | 74.40 344 | 93.44 395 | 66.99 405 | 81.83 338 | 93.08 361 |
|
| Anonymous20240521 | | | 85.15 352 | 83.81 354 | 89.16 368 | 88.32 399 | 82.69 380 | 98.80 306 | 95.74 375 | 79.72 390 | 81.53 374 | 90.99 389 | 65.38 382 | 94.16 387 | 72.69 395 | 81.11 345 | 90.63 389 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 363 | 81.68 366 | 90.03 362 | 88.30 400 | 82.82 379 | 98.46 327 | 95.22 388 | 73.92 406 | 76.00 397 | 91.29 388 | 55.00 403 | 96.94 323 | 68.40 403 | 88.51 287 | 90.34 390 |
|
| test20.03 | | | 84.72 357 | 83.99 350 | 86.91 379 | 88.19 401 | 80.62 396 | 98.88 295 | 95.94 372 | 88.36 316 | 78.87 384 | 94.62 358 | 68.75 366 | 89.11 410 | 66.52 407 | 75.82 382 | 91.00 384 |
|
| KD-MVS_self_test | | | 83.59 364 | 82.06 364 | 88.20 376 | 86.93 402 | 80.70 395 | 97.21 363 | 96.38 363 | 82.87 377 | 82.49 368 | 88.97 398 | 67.63 373 | 92.32 402 | 73.75 394 | 62.30 413 | 91.58 380 |
|
| MIMVSNet1 | | | 82.58 365 | 80.51 371 | 88.78 371 | 86.68 403 | 84.20 374 | 96.65 375 | 95.41 384 | 78.75 393 | 78.59 387 | 92.44 381 | 51.88 408 | 89.76 409 | 65.26 410 | 78.95 361 | 92.38 373 |
|
| CL-MVSNet_self_test | | | 84.50 358 | 83.15 359 | 88.53 374 | 86.00 404 | 81.79 388 | 98.82 303 | 97.35 286 | 85.12 358 | 83.62 365 | 90.91 391 | 76.66 322 | 91.40 405 | 69.53 401 | 60.36 414 | 92.40 372 |
|
| UnsupCasMVSNet_bld | | | 79.97 374 | 77.03 379 | 88.78 371 | 85.62 405 | 81.98 386 | 93.66 399 | 97.35 286 | 75.51 402 | 70.79 405 | 83.05 412 | 48.70 410 | 94.91 381 | 78.31 380 | 60.29 415 | 89.46 402 |
|
| mvs5depth | | | 84.87 354 | 82.90 361 | 90.77 354 | 85.59 406 | 84.84 371 | 91.10 410 | 93.29 409 | 83.14 374 | 85.07 356 | 94.33 366 | 62.17 392 | 97.32 296 | 78.83 378 | 72.59 390 | 90.14 393 |
|
| Patchmatch-RL test | | | 86.90 342 | 85.98 346 | 89.67 364 | 84.45 407 | 75.59 402 | 89.71 413 | 92.43 411 | 86.89 338 | 77.83 391 | 90.94 390 | 94.22 90 | 93.63 393 | 87.75 314 | 69.61 394 | 99.79 100 |
|
| pmmvs-eth3d | | | 84.03 361 | 81.97 365 | 90.20 360 | 84.15 408 | 87.09 356 | 98.10 348 | 94.73 396 | 83.05 375 | 74.10 402 | 87.77 404 | 65.56 381 | 94.01 388 | 81.08 366 | 69.24 396 | 89.49 401 |
|
| test_fmvs3 | | | 79.99 373 | 80.17 372 | 79.45 390 | 84.02 409 | 62.83 411 | 99.05 275 | 93.49 408 | 88.29 318 | 80.06 382 | 86.65 407 | 28.09 419 | 88.00 411 | 88.63 301 | 73.27 388 | 87.54 407 |
|
| PM-MVS | | | 80.47 370 | 78.88 375 | 85.26 382 | 83.79 410 | 72.22 405 | 95.89 390 | 91.08 415 | 85.71 353 | 76.56 396 | 88.30 400 | 36.64 415 | 93.90 390 | 82.39 358 | 69.57 395 | 89.66 400 |
|
| new-patchmatchnet | | | 81.19 367 | 79.34 374 | 86.76 380 | 82.86 411 | 80.36 398 | 97.92 352 | 95.27 387 | 82.09 382 | 72.02 403 | 86.87 406 | 62.81 391 | 90.74 408 | 71.10 398 | 63.08 410 | 89.19 404 |
|
| mvsany_test3 | | | 82.12 366 | 81.14 368 | 85.06 383 | 81.87 412 | 70.41 407 | 97.09 367 | 92.14 412 | 91.27 254 | 77.84 390 | 88.73 399 | 39.31 414 | 95.49 370 | 90.75 278 | 71.24 391 | 89.29 403 |
|
| WB-MVS | | | 76.28 376 | 77.28 378 | 73.29 396 | 81.18 413 | 54.68 421 | 97.87 354 | 94.19 400 | 81.30 384 | 69.43 407 | 90.70 392 | 77.02 317 | 82.06 419 | 35.71 424 | 68.11 401 | 83.13 410 |
|
| test_f | | | 78.40 375 | 77.59 377 | 80.81 389 | 80.82 414 | 62.48 414 | 96.96 371 | 93.08 410 | 83.44 372 | 74.57 401 | 84.57 411 | 27.95 420 | 92.63 400 | 84.15 344 | 72.79 389 | 87.32 408 |
|
| SSC-MVS | | | 75.42 377 | 76.40 380 | 72.49 400 | 80.68 415 | 53.62 422 | 97.42 359 | 94.06 402 | 80.42 388 | 68.75 408 | 90.14 394 | 76.54 324 | 81.66 420 | 33.25 425 | 66.34 405 | 82.19 411 |
|
| pmmvs3 | | | 80.27 371 | 77.77 376 | 87.76 378 | 80.32 416 | 82.43 383 | 98.23 342 | 91.97 413 | 72.74 408 | 78.75 385 | 87.97 403 | 57.30 402 | 90.99 407 | 70.31 399 | 62.37 412 | 89.87 396 |
|
| testf1 | | | 68.38 381 | 66.92 382 | 72.78 398 | 78.80 417 | 50.36 424 | 90.95 411 | 87.35 423 | 55.47 414 | 58.95 413 | 88.14 401 | 20.64 424 | 87.60 412 | 57.28 416 | 64.69 407 | 80.39 413 |
|
| APD_test2 | | | 68.38 381 | 66.92 382 | 72.78 398 | 78.80 417 | 50.36 424 | 90.95 411 | 87.35 423 | 55.47 414 | 58.95 413 | 88.14 401 | 20.64 424 | 87.60 412 | 57.28 416 | 64.69 407 | 80.39 413 |
|
| ambc | | | | | 83.23 386 | 77.17 419 | 62.61 412 | 87.38 415 | 94.55 399 | | 76.72 395 | 86.65 407 | 30.16 416 | 96.36 349 | 84.85 343 | 69.86 393 | 90.73 387 |
|
| test_vis3_rt | | | 68.82 379 | 66.69 384 | 75.21 395 | 76.24 420 | 60.41 416 | 96.44 378 | 68.71 430 | 75.13 403 | 50.54 421 | 69.52 419 | 16.42 429 | 96.32 351 | 80.27 369 | 66.92 404 | 68.89 417 |
|
| TDRefinement | | | 84.76 355 | 82.56 363 | 91.38 348 | 74.58 421 | 84.80 372 | 97.36 361 | 94.56 398 | 84.73 363 | 80.21 380 | 96.12 301 | 63.56 387 | 98.39 235 | 87.92 312 | 63.97 409 | 90.95 386 |
|
| E-PMN | | | 52.30 389 | 52.18 391 | 52.67 406 | 71.51 422 | 45.40 428 | 93.62 400 | 76.60 428 | 36.01 422 | 43.50 423 | 64.13 422 | 27.11 421 | 67.31 425 | 31.06 426 | 26.06 421 | 45.30 424 |
|
| EMVS | | | 51.44 391 | 51.22 393 | 52.11 407 | 70.71 423 | 44.97 430 | 94.04 396 | 75.66 429 | 35.34 424 | 42.40 424 | 61.56 425 | 28.93 418 | 65.87 426 | 27.64 427 | 24.73 422 | 45.49 423 |
|
| PMMVS2 | | | 67.15 384 | 64.15 387 | 76.14 394 | 70.56 424 | 62.07 415 | 93.89 397 | 87.52 422 | 58.09 413 | 60.02 412 | 78.32 414 | 22.38 423 | 84.54 417 | 59.56 414 | 47.03 419 | 81.80 412 |
|
| FPMVS | | | 68.72 380 | 68.72 381 | 68.71 402 | 65.95 425 | 44.27 431 | 95.97 389 | 94.74 395 | 51.13 417 | 53.26 419 | 90.50 393 | 25.11 422 | 83.00 418 | 60.80 413 | 80.97 350 | 78.87 415 |
|
| wuyk23d | | | 20.37 395 | 20.84 398 | 18.99 410 | 65.34 426 | 27.73 433 | 50.43 421 | 7.67 434 | 9.50 427 | 8.01 428 | 6.34 428 | 6.13 432 | 26.24 427 | 23.40 428 | 10.69 426 | 2.99 425 |
|
| LCM-MVSNet | | | 67.77 383 | 64.73 386 | 76.87 393 | 62.95 427 | 56.25 420 | 89.37 414 | 93.74 406 | 44.53 419 | 61.99 411 | 80.74 413 | 20.42 426 | 86.53 416 | 69.37 402 | 59.50 416 | 87.84 405 |
|
| MVE |  | 53.74 22 | 51.54 390 | 47.86 394 | 62.60 404 | 59.56 428 | 50.93 423 | 79.41 418 | 77.69 427 | 35.69 423 | 36.27 425 | 61.76 424 | 5.79 433 | 69.63 423 | 37.97 423 | 36.61 420 | 67.24 418 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 387 | 52.24 390 | 67.66 403 | 49.27 429 | 56.82 419 | 83.94 416 | 82.02 426 | 70.47 410 | 33.28 426 | 64.54 421 | 17.23 428 | 69.16 424 | 45.59 421 | 23.85 423 | 77.02 416 |
|
| tmp_tt | | | 65.23 386 | 62.94 389 | 72.13 401 | 44.90 430 | 50.03 426 | 81.05 417 | 89.42 421 | 38.45 420 | 48.51 422 | 99.90 18 | 54.09 405 | 78.70 422 | 91.84 260 | 18.26 424 | 87.64 406 |
|
| PMVS |  | 49.05 23 | 53.75 388 | 51.34 392 | 60.97 405 | 40.80 431 | 34.68 432 | 74.82 419 | 89.62 420 | 37.55 421 | 28.67 427 | 72.12 416 | 7.09 431 | 81.63 421 | 43.17 422 | 68.21 400 | 66.59 419 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 393 | 39.14 396 | 33.31 408 | 19.94 432 | 24.83 434 | 98.36 335 | 9.75 433 | 15.53 426 | 51.31 420 | 87.14 405 | 19.62 427 | 17.74 428 | 47.10 420 | 3.47 427 | 57.36 421 |
|
| testmvs | | | 40.60 392 | 44.45 395 | 29.05 409 | 19.49 433 | 14.11 435 | 99.68 185 | 18.47 432 | 20.74 425 | 64.59 410 | 98.48 219 | 10.95 430 | 17.09 429 | 56.66 418 | 11.01 425 | 55.94 422 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.02 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| cdsmvs_eth3d_5k | | | 23.43 394 | 31.24 397 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 98.09 211 | 0.00 429 | 0.00 430 | 99.67 98 | 83.37 260 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 7.60 397 | 10.13 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 91.20 164 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| ab-mvs-re | | | 8.28 396 | 11.04 399 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 99.40 131 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 430 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| WAC-MVS | | | | | | | 90.97 297 | | | | | | | | 86.10 335 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 50 | 99.80 18 | 99.79 58 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 137 | 97.27 37 | 99.80 18 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 66 | 99.83 14 | 99.91 14 | 97.87 5 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 137 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 69 | | | | 99.59 137 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 89 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 185 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 391 | | | | 59.23 426 | 93.20 122 | 97.74 281 | 91.06 269 | | |
|
| test_post | | | | | | | | | | | | 63.35 423 | 94.43 77 | 98.13 260 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 387 | 95.12 54 | 97.95 272 | | | |
|
| MTMP | | | | | | | | 99.87 111 | 96.49 361 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 38 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 49 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 73 | 99.94 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 56 | | 95.78 86 | 99.73 35 | 99.76 66 | 96.00 37 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 226 | | 94.21 142 | 99.85 10 | | | 99.95 74 | 96.96 169 | | |
|
| 新几何2 | | | | | | | | 99.40 230 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 219 | 98.71 68 | 93.46 170 | | | | 100.00 1 | 94.36 215 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 96 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 282 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 29 | | | | |
|
| testdata1 | | | | | | | | 99.28 250 | | 96.35 76 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 233 | | | | | 98.37 241 | 97.79 146 | 89.55 270 | 94.52 279 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 207 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 289 | | | 96.63 63 | 93.01 242 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 130 | | 96.38 72 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 283 | 99.86 122 | | 96.76 58 | | | | | | 89.59 269 | |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 419 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 129 | | | | | | | | |
|
| door | | | | | | | | | 90.31 416 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 279 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 137 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 237 | | | 98.39 235 | | | 94.53 277 |
|
| HQP3-MVS | | | | | | | | | 97.89 231 | | | | | | | 89.60 267 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 288 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 148 | 96.11 385 | | 91.89 232 | 98.06 145 | | 94.40 79 | | 94.30 218 | | 99.67 118 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 301 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 290 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 133 | | | | |
|