This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 11296.80 12098.51 11799.99 195.60 17899.09 26498.84 5993.32 17596.74 18499.72 8486.04 236100.00 198.01 13199.43 11699.94 78
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 7098.20 899.93 199.98 296.82 24100.00 199.75 33100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 3098.64 7898.47 399.13 9299.92 1396.38 34100.00 199.74 35100.00 1100.00 1
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12399.95 5698.38 16595.04 10498.61 12299.80 5493.39 111100.00 198.64 99100.00 199.98 51
CPTT-MVS97.64 9397.32 9698.58 10899.97 395.77 16799.96 3798.35 17189.90 28698.36 13499.79 5891.18 16799.99 3698.37 11499.99 2199.99 23
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8398.44 12992.06 22898.40 13399.84 4495.68 44100.00 198.19 12199.71 8899.97 61
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5698.43 13795.35 9898.03 14699.75 7294.03 9799.98 4798.11 12699.83 7799.99 23
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 10299.95 5698.61 8494.77 11399.31 8199.85 3394.22 90100.00 198.70 9499.98 3299.98 51
region2R98.54 3698.37 3999.05 7199.96 897.18 11199.96 3798.55 10194.87 11199.45 6899.85 3394.07 96100.00 198.67 96100.00 199.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 11199.95 5698.60 8694.77 11399.31 8199.84 4493.73 106100.00 198.70 9499.98 3299.98 51
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 3098.62 8398.02 1699.90 399.95 397.33 17100.00 199.54 45100.00 1100.00 1
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13399.97 3098.39 16194.43 12898.90 10499.87 2794.30 87100.00 199.04 7099.99 2199.99 23
test_one_060199.94 1399.30 1298.41 15496.63 6399.75 3099.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 5698.43 137100.00 199.99 5100.00 1100.00 1
XVS98.70 2998.55 2899.15 5999.94 1397.50 9899.94 7398.42 14996.22 7899.41 7399.78 6294.34 8499.96 6698.92 7999.95 5099.99 23
X-MVStestdata93.83 22692.06 25999.15 5999.94 1397.50 9899.94 7398.42 14996.22 7899.41 7341.37 42794.34 8499.96 6698.92 7999.95 5099.99 23
test_prior99.43 3599.94 1398.49 6098.65 7699.80 12799.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4399.80 1899.94 495.92 40100.00 199.51 46100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 9098.39 16197.20 4199.46 6799.85 3395.53 4899.79 12999.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11499.95 5698.39 16194.70 11798.26 14099.81 5391.84 158100.00 198.85 8599.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 11198.33 17693.97 15399.76 2999.87 2794.99 6299.75 13898.55 103100.00 199.98 51
PAPM_NR98.12 6597.93 6998.70 9799.94 1396.13 15799.82 14098.43 13794.56 12197.52 16099.70 8894.40 7999.98 4797.00 16599.98 3299.99 23
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19399.44 1997.33 3499.00 10099.72 8494.03 9799.98 4798.73 93100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3798.43 13797.27 3799.80 1899.94 496.71 27100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15497.71 2299.84 13100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13797.26 3999.80 1899.88 2496.71 27100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5698.32 17897.28 3599.83 1499.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3798.42 14997.28 3599.86 899.94 497.22 19
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10899.95 5698.42 14997.50 2999.52 6399.88 2497.43 1699.71 14499.50 4799.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4298.43 13799.63 4799.85 114
FOURS199.92 3197.66 9299.95 5698.36 16995.58 9299.52 63
ZD-MVS99.92 3198.57 5698.52 10992.34 22099.31 8199.83 4695.06 5799.80 12799.70 3999.97 42
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9499.93 8098.39 16194.04 15198.80 10999.74 7992.98 127100.00 198.16 12399.76 8599.93 79
TEST999.92 3198.92 2999.96 3798.43 13793.90 15999.71 3799.86 2995.88 4199.85 114
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3798.43 13794.35 13399.71 3799.86 2995.94 3899.85 11499.69 4099.98 3299.99 23
test_899.92 3198.88 3299.96 3798.43 13794.35 13399.69 3999.85 3395.94 3899.85 114
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11999.75 16199.50 1793.90 15999.37 7899.76 6693.24 120100.00 197.75 15099.96 4699.98 51
ACMMPcopyleft97.74 8897.44 9098.66 10099.92 3196.13 15799.18 25999.45 1894.84 11296.41 19499.71 8691.40 16199.99 3697.99 13398.03 17099.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5698.43 13796.48 6699.80 1899.93 1197.44 14100.00 199.92 1399.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 154100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 154100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5698.56 9597.56 2899.44 6999.85 3395.38 51100.00 199.31 5799.99 2199.87 90
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 11198.36 16994.08 14699.74 3399.73 8194.08 9599.74 14099.42 5399.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25498.47 12198.14 1299.08 9599.91 1493.09 124100.00 199.04 7099.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3799.80 5497.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 11198.44 12997.48 3099.64 4699.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 66
CSCG97.10 11797.04 10897.27 19499.89 4591.92 27899.90 9699.07 3488.67 31095.26 21799.82 4993.17 12399.98 4798.15 12499.47 11199.90 86
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9399.94 7398.44 12994.31 13698.50 12799.82 4993.06 12599.99 3698.30 11899.99 2199.93 79
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11899.84 13098.35 17194.92 10899.32 8099.80 5493.35 11399.78 13199.30 5899.95 5099.96 67
9.1498.38 3799.87 5199.91 9098.33 17693.22 17899.78 2799.89 2294.57 7599.85 11499.84 2299.97 42
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 12298.38 16593.19 17999.77 2899.94 495.54 46100.00 199.74 3599.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11699.98 1598.80 6490.78 26999.62 5099.78 6295.30 52100.00 199.80 2599.93 6199.99 23
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 8199.39 23498.28 18595.76 8797.18 17299.88 2492.74 134100.00 198.67 9699.88 7399.99 23
LS3D95.84 17195.11 18298.02 14799.85 5495.10 19898.74 30998.50 11887.22 33293.66 23599.86 2987.45 21999.95 7490.94 27399.81 8399.02 213
HPM-MVScopyleft97.96 6897.72 7698.68 9899.84 5696.39 14499.90 9698.17 20092.61 20698.62 12199.57 11591.87 15799.67 15198.87 8499.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9499.83 5796.59 13699.40 23098.51 11295.29 10098.51 12699.76 6693.60 11099.71 14498.53 10699.52 10599.95 74
save fliter99.82 5898.79 4099.96 3798.40 15897.66 24
PLCcopyleft95.54 397.93 7197.89 7298.05 14699.82 5894.77 20899.92 8398.46 12393.93 15697.20 17099.27 14295.44 5099.97 5797.41 15599.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 6098.08 5998.78 9199.81 6096.60 13499.82 14098.30 18393.95 15599.37 7899.77 6492.84 13199.76 13798.95 7699.92 6499.97 61
EI-MVSNet-UG-set98.14 6497.99 6298.60 10599.80 6196.27 14799.36 23998.50 11895.21 10298.30 13799.75 7293.29 11799.73 14398.37 11499.30 12399.81 97
SR-MVS-dyc-post98.31 5398.17 5298.71 9699.79 6296.37 14599.76 15798.31 18094.43 12899.40 7599.75 7293.28 11899.78 13198.90 8299.92 6499.97 61
RE-MVS-def98.13 5599.79 6296.37 14599.76 15798.31 18094.43 12899.40 7599.75 7292.95 12898.90 8299.92 6499.97 61
HPM-MVS_fast97.80 8397.50 8798.68 9899.79 6296.42 14099.88 10898.16 20591.75 23898.94 10299.54 11891.82 15999.65 15397.62 15399.99 2199.99 23
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9698.21 19593.53 16899.81 1699.89 2294.70 7199.86 11399.84 2299.93 6199.96 67
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6999.75 7293.24 12099.99 3699.94 1199.41 11899.95 74
旧先验199.76 6697.52 9698.64 7899.85 3395.63 4599.94 5599.99 23
OMC-MVS97.28 10897.23 10097.41 18599.76 6693.36 24799.65 18997.95 22496.03 8297.41 16599.70 8889.61 19399.51 15996.73 17498.25 16099.38 175
新几何199.42 3799.75 6998.27 6498.63 8292.69 20199.55 5899.82 4994.40 79100.00 191.21 26599.94 5599.99 23
MP-MVS-pluss98.07 6797.64 8199.38 4299.74 7098.41 6399.74 16498.18 19993.35 17396.45 19199.85 3392.64 13699.97 5798.91 8199.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 15298.38 16596.73 5999.88 799.74 7994.89 6499.59 15599.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 7098.56 5798.40 15899.65 4394.76 6799.75 13899.98 3299.99 23
原ACMM198.96 8299.73 7396.99 12098.51 11294.06 14999.62 5099.85 3394.97 6399.96 6695.11 19499.95 5099.92 84
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 13299.97 3097.92 22998.07 1398.76 11499.55 11695.00 6199.94 8299.91 1697.68 17599.99 23
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11297.00 4998.52 12499.71 8687.80 21499.95 7499.75 3399.38 11999.83 94
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11699.73 17198.23 19397.02 4899.18 9099.90 1894.54 7699.99 3699.77 2999.90 6999.99 23
F-COLMAP96.93 12996.95 11196.87 20499.71 7691.74 28399.85 12597.95 22493.11 18495.72 21099.16 15392.35 14699.94 8295.32 19299.35 12198.92 216
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10699.74 16498.25 18997.10 4399.10 9399.90 1894.59 7299.99 3699.77 2999.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10699.74 16498.25 18997.10 4399.10 9399.90 1894.59 7299.99 3699.77 2999.91 6799.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7398.34 17596.38 7299.81 1699.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 6199.12 595.59 23999.67 8186.91 35999.95 5698.89 4997.60 2599.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12598.37 16894.68 11899.53 6199.83 4692.87 130100.00 198.66 9899.84 7699.99 23
DeepPCF-MVS95.94 297.71 9198.98 1293.92 30299.63 8381.76 38999.96 3798.56 9599.47 199.19 8999.99 194.16 94100.00 199.92 1399.93 61100.00 1
EPNet98.49 4098.40 3598.77 9399.62 8496.80 12899.90 9699.51 1697.60 2599.20 8799.36 13693.71 10799.91 9597.99 13398.71 14799.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7799.80 5490.49 18299.96 6699.89 1799.43 11699.98 51
PVSNet_BlendedMVS96.05 16595.82 16196.72 20999.59 8596.99 12099.95 5699.10 3194.06 14998.27 13895.80 30689.00 20499.95 7499.12 6487.53 29993.24 358
PVSNet_Blended97.94 7097.64 8198.83 8899.59 8596.99 120100.00 199.10 3195.38 9798.27 13899.08 15689.00 20499.95 7499.12 6499.25 12599.57 145
PatchMatch-RL96.04 16695.40 17197.95 14999.59 8595.22 19499.52 21399.07 3493.96 15496.49 19098.35 22582.28 26699.82 12690.15 28999.22 12898.81 223
dcpmvs_297.42 10398.09 5895.42 24499.58 8987.24 35599.23 25596.95 33294.28 13998.93 10399.73 8194.39 8299.16 18599.89 1799.82 8199.86 92
test22299.55 9097.41 10499.34 24098.55 10191.86 23399.27 8599.83 4693.84 10499.95 5099.99 23
CNLPA97.76 8797.38 9298.92 8599.53 9196.84 12599.87 11198.14 20993.78 16296.55 18999.69 9192.28 14899.98 4797.13 16199.44 11599.93 79
API-MVS97.86 7597.66 7998.47 11999.52 9295.41 18599.47 22298.87 5291.68 23998.84 10699.85 3392.34 14799.99 3698.44 11099.96 46100.00 1
PVSNet91.05 1397.13 11696.69 12698.45 12199.52 9295.81 16599.95 5699.65 1294.73 11599.04 9899.21 14984.48 25199.95 7494.92 20098.74 14699.58 143
114514_t97.41 10496.83 11899.14 6199.51 9497.83 8399.89 10598.27 18788.48 31499.06 9799.66 10090.30 18599.64 15496.32 17899.97 4299.96 67
cl2293.77 23093.25 23495.33 24899.49 9594.43 21299.61 19898.09 21190.38 27589.16 30295.61 31390.56 18097.34 29491.93 25784.45 31994.21 304
testdata98.42 12599.47 9695.33 18898.56 9593.78 16299.79 2699.85 3393.64 10999.94 8294.97 19899.94 55100.00 1
MAR-MVS97.43 9997.19 10298.15 14099.47 9694.79 20799.05 27598.76 6592.65 20498.66 11999.82 4988.52 20999.98 4798.12 12599.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 20893.42 22797.91 15599.46 9894.04 22598.93 28997.48 27481.15 38590.04 27499.55 11687.02 22599.95 7488.97 29998.11 16699.73 108
MVS_111021_LR98.42 4798.38 3798.53 11599.39 9995.79 16699.87 11199.86 296.70 6098.78 11099.79 5892.03 15499.90 9799.17 6399.86 7599.88 88
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32799.42 2197.03 4799.02 9999.09 15599.35 298.21 25699.73 3799.78 8499.77 104
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 11199.93 8099.90 196.81 5798.67 11899.77 6493.92 9999.89 10299.27 5999.94 5599.96 67
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3798.44 12997.96 1799.55 5899.94 497.18 21100.00 193.81 22999.94 5599.98 51
TAPA-MVS92.12 894.42 21493.60 22096.90 20399.33 10291.78 28299.78 14998.00 21889.89 28794.52 22399.47 12291.97 15599.18 18269.90 40099.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
reproduce_monomvs95.38 18595.07 18496.32 22299.32 10496.60 13499.76 15798.85 5696.65 6287.83 32396.05 30399.52 198.11 26196.58 17581.07 34794.25 300
SPE-MVS-test97.88 7397.94 6897.70 16899.28 10595.20 19599.98 1597.15 30995.53 9499.62 5099.79 5892.08 15398.38 23998.75 9299.28 12499.52 157
test_fmvsm_n_192098.44 4498.61 2797.92 15399.27 10695.18 196100.00 198.90 4798.05 1499.80 1899.73 8192.64 13699.99 3699.58 4499.51 10898.59 233
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 8299.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
test_yl97.83 7897.37 9399.21 4999.18 10897.98 7799.64 19399.27 2791.43 24897.88 15298.99 16595.84 4299.84 12298.82 8695.32 22999.79 100
DCV-MVSNet97.83 7897.37 9399.21 4999.18 10897.98 7799.64 19399.27 2791.43 24897.88 15298.99 16595.84 4299.84 12298.82 8695.32 22999.79 100
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8599.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
DeepC-MVS94.51 496.92 13096.40 13698.45 12199.16 11195.90 16399.66 18898.06 21496.37 7594.37 22699.49 12183.29 26199.90 9797.63 15299.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 9097.70 2398.21 14299.24 14792.58 13999.94 8298.63 10199.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 8597.91 7097.43 18499.10 11394.42 21399.99 497.10 31495.07 10399.68 4099.75 7292.95 12898.34 24398.38 11299.14 13099.54 151
Anonymous20240521193.10 24891.99 26096.40 21899.10 11389.65 32798.88 29597.93 22683.71 37094.00 23298.75 19468.79 36599.88 10895.08 19591.71 26199.68 116
fmvsm_s_conf0.5_n97.80 8397.85 7397.67 16999.06 11594.41 21499.98 1598.97 4097.34 3299.63 4799.69 9187.27 22199.97 5799.62 4299.06 13498.62 232
HyFIR lowres test96.66 14496.43 13597.36 19099.05 11693.91 23099.70 18299.80 390.54 27396.26 19798.08 23592.15 15198.23 25596.84 17395.46 22499.93 79
LFMVS94.75 20293.56 22398.30 13199.03 11795.70 17298.74 30997.98 22187.81 32598.47 12899.39 13367.43 37499.53 15698.01 13195.20 23299.67 118
fmvsm_s_conf0.5_n_297.59 9497.28 9798.53 11599.01 11898.15 6599.98 1598.59 8898.17 1099.75 3099.63 10681.83 27199.94 8299.78 2798.79 14597.51 259
AllTest92.48 26291.64 26595.00 25799.01 11888.43 34398.94 28796.82 34686.50 34188.71 30798.47 22074.73 34299.88 10885.39 33896.18 20696.71 265
TestCases95.00 25799.01 11888.43 34396.82 34686.50 34188.71 30798.47 22074.73 34299.88 10885.39 33896.18 20696.71 265
COLMAP_ROBcopyleft90.47 1492.18 26991.49 27194.25 29099.00 12188.04 34998.42 33396.70 35382.30 38188.43 31599.01 16276.97 31899.85 11486.11 33496.50 20094.86 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_397.95 6997.66 7998.81 8998.99 12298.07 7199.98 1598.81 6198.18 999.89 699.70 8884.15 25499.97 5799.76 3299.50 11098.39 237
test_fmvs195.35 18695.68 16694.36 28798.99 12284.98 36999.96 3796.65 35597.60 2599.73 3598.96 17171.58 35599.93 9098.31 11799.37 12098.17 241
HY-MVS92.50 797.79 8597.17 10499.63 1798.98 12499.32 997.49 35899.52 1495.69 8998.32 13697.41 25593.32 11599.77 13498.08 12995.75 22099.81 97
VNet97.21 11396.57 13199.13 6598.97 12597.82 8499.03 27899.21 2994.31 13699.18 9098.88 18286.26 23599.89 10298.93 7894.32 24199.69 115
thres20096.96 12696.21 14299.22 4898.97 12598.84 3699.85 12599.71 793.17 18096.26 19798.88 18289.87 19099.51 15994.26 21994.91 23499.31 187
tfpn200view996.79 13495.99 14799.19 5198.94 12798.82 3799.78 14999.71 792.86 19096.02 20298.87 18589.33 19799.50 16193.84 22694.57 23799.27 193
thres40096.78 13695.99 14799.16 5798.94 12798.82 3799.78 14999.71 792.86 19096.02 20298.87 18589.33 19799.50 16193.84 22694.57 23799.16 200
sasdasda97.09 11996.32 13799.39 4098.93 12998.95 2799.72 17597.35 28694.45 12497.88 15299.42 12686.71 22899.52 15798.48 10793.97 24799.72 110
Anonymous2023121189.86 31988.44 32694.13 29398.93 12990.68 30698.54 32498.26 18876.28 39786.73 33795.54 31770.60 36197.56 28790.82 27680.27 35694.15 312
canonicalmvs97.09 11996.32 13799.39 4098.93 12998.95 2799.72 17597.35 28694.45 12497.88 15299.42 12686.71 22899.52 15798.48 10793.97 24799.72 110
SDMVSNet94.80 19893.96 21297.33 19298.92 13295.42 18499.59 20098.99 3792.41 21792.55 25097.85 24675.81 33298.93 19797.90 13991.62 26297.64 253
sd_testset93.55 23792.83 24095.74 23798.92 13290.89 30298.24 34098.85 5692.41 21792.55 25097.85 24671.07 36098.68 21593.93 22391.62 26297.64 253
EPNet_dtu95.71 17595.39 17296.66 21198.92 13293.41 24499.57 20598.90 4796.19 8097.52 16098.56 21292.65 13597.36 29277.89 38198.33 15599.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6697.60 8399.60 2298.92 13299.28 1799.89 10599.52 1495.58 9298.24 14199.39 13393.33 11499.74 14097.98 13595.58 22399.78 103
CHOSEN 1792x268896.81 13396.53 13297.64 17198.91 13693.07 24999.65 18999.80 395.64 9095.39 21498.86 18784.35 25399.90 9796.98 16799.16 12999.95 74
thres100view90096.74 13995.92 15799.18 5298.90 13798.77 4299.74 16499.71 792.59 20895.84 20698.86 18789.25 19999.50 16193.84 22694.57 23799.27 193
thres600view796.69 14295.87 16099.14 6198.90 13798.78 4199.74 16499.71 792.59 20895.84 20698.86 18789.25 19999.50 16193.44 23894.50 24099.16 200
MSDG94.37 21693.36 23197.40 18698.88 13993.95 22999.37 23797.38 28385.75 35290.80 26799.17 15284.11 25699.88 10886.35 33098.43 15398.36 239
MGCFI-Net97.00 12496.22 14199.34 4398.86 14098.80 3999.67 18797.30 29394.31 13697.77 15699.41 13086.36 23499.50 16198.38 11293.90 24999.72 110
h-mvs3394.92 19594.36 20096.59 21398.85 14191.29 29498.93 28998.94 4195.90 8398.77 11198.42 22390.89 17599.77 13497.80 14370.76 39298.72 229
Anonymous2024052992.10 27090.65 28296.47 21498.82 14290.61 30898.72 31198.67 7575.54 40193.90 23498.58 21066.23 37899.90 9794.70 20990.67 26598.90 219
PVSNet_Blended_VisFu97.27 10996.81 11998.66 10098.81 14396.67 13199.92 8398.64 7894.51 12396.38 19598.49 21689.05 20399.88 10897.10 16398.34 15499.43 171
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14498.92 2999.54 21198.17 20097.34 3299.85 1099.85 3391.20 16499.89 10299.41 5499.67 9098.69 230
CANet_DTU96.76 13796.15 14398.60 10598.78 14597.53 9599.84 13097.63 25297.25 4099.20 8799.64 10381.36 27799.98 4792.77 24998.89 13998.28 240
mvsany_test197.82 8197.90 7197.55 17698.77 14693.04 25299.80 14697.93 22696.95 5199.61 5699.68 9790.92 17299.83 12499.18 6298.29 15999.80 99
alignmvs97.81 8297.33 9599.25 4698.77 14698.66 5199.99 498.44 12994.40 13298.41 13199.47 12293.65 10899.42 17098.57 10294.26 24399.67 118
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14897.71 8899.98 1598.44 12996.85 5299.80 1899.91 1497.57 899.85 11499.44 5299.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14998.66 5199.52 21398.08 21397.05 4699.86 899.86 2990.65 17799.71 14499.39 5698.63 14898.69 230
miper_enhance_ethall94.36 21893.98 21195.49 24098.68 15095.24 19299.73 17197.29 29693.28 17789.86 27995.97 30494.37 8397.05 31492.20 25384.45 31994.19 305
ETVMVS97.03 12396.64 12798.20 13698.67 15197.12 11599.89 10598.57 9291.10 25998.17 14398.59 20793.86 10398.19 25795.64 18995.24 23199.28 192
test250697.53 9697.19 10298.58 10898.66 15296.90 12498.81 30499.77 594.93 10697.95 14898.96 17192.51 14199.20 18094.93 19998.15 16399.64 124
ECVR-MVScopyleft95.66 17895.05 18597.51 18098.66 15293.71 23498.85 30198.45 12494.93 10696.86 18098.96 17175.22 33899.20 18095.34 19198.15 16399.64 124
mamv495.24 18896.90 11390.25 35998.65 15472.11 40698.28 33897.64 25189.99 28595.93 20498.25 23094.74 6899.11 18699.01 7599.64 9299.53 155
balanced_conf0398.27 5697.99 6299.11 6698.64 15598.43 6299.47 22297.79 24094.56 12199.74 3398.35 22594.33 8699.25 17499.12 6499.96 4699.64 124
fmvsm_s_conf0.5_n_a97.73 9097.72 7697.77 16398.63 15694.26 22099.96 3798.92 4697.18 4299.75 3099.69 9187.00 22699.97 5799.46 5098.89 13999.08 209
MVSMamba_PlusPlus97.83 7897.45 8998.99 7898.60 15798.15 6599.58 20297.74 24490.34 27899.26 8698.32 22894.29 8899.23 17599.03 7399.89 7099.58 143
testing22297.08 12296.75 12298.06 14598.56 15896.82 12699.85 12598.61 8492.53 21298.84 10698.84 19193.36 11298.30 24795.84 18694.30 24299.05 211
test111195.57 18094.98 18897.37 18898.56 15893.37 24698.86 29998.45 12494.95 10596.63 18698.95 17675.21 33999.11 18695.02 19698.14 16599.64 124
MVSTER95.53 18195.22 17896.45 21698.56 15897.72 8799.91 9097.67 24992.38 21991.39 26097.14 26297.24 1897.30 29894.80 20587.85 29494.34 295
VDD-MVS93.77 23092.94 23896.27 22398.55 16190.22 31798.77 30897.79 24090.85 26596.82 18299.42 12661.18 39799.77 13498.95 7694.13 24498.82 222
tpmvs94.28 22093.57 22296.40 21898.55 16191.50 29295.70 39298.55 10187.47 32792.15 25394.26 36791.42 16098.95 19688.15 30995.85 21698.76 225
UGNet95.33 18794.57 19697.62 17498.55 16194.85 20398.67 31799.32 2695.75 8896.80 18396.27 29472.18 35299.96 6694.58 21299.05 13598.04 245
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 18994.10 20798.43 12398.55 16195.99 16197.91 35397.31 29290.35 27789.48 29199.22 14885.19 24499.89 10290.40 28698.47 15299.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UWE-MVS96.79 13496.72 12497.00 19998.51 16593.70 23599.71 17898.60 8692.96 18697.09 17398.34 22796.67 3198.85 20092.11 25596.50 20098.44 235
test_vis1_n_192095.44 18395.31 17595.82 23598.50 16688.74 33799.98 1597.30 29397.84 1999.85 1099.19 15066.82 37699.97 5798.82 8699.46 11398.76 225
BH-w/o95.71 17595.38 17396.68 21098.49 16792.28 26999.84 13097.50 27292.12 22592.06 25698.79 19284.69 24998.67 21695.29 19399.66 9199.09 207
baseline195.78 17294.86 19098.54 11398.47 16898.07 7199.06 27197.99 21992.68 20294.13 23198.62 20693.28 11898.69 21493.79 23185.76 30798.84 221
EPMVS96.53 14896.01 14698.09 14398.43 16996.12 15996.36 37999.43 2093.53 16897.64 15895.04 34494.41 7898.38 23991.13 26798.11 16699.75 106
kuosan93.17 24592.60 24694.86 26498.40 17089.54 32998.44 32998.53 10784.46 36588.49 31197.92 24390.57 17997.05 31483.10 35393.49 25297.99 246
WBMVS94.52 21194.03 20995.98 22998.38 17196.68 13099.92 8397.63 25290.75 27089.64 28795.25 33896.77 2596.90 32594.35 21783.57 32694.35 293
UBG97.84 7797.69 7898.29 13298.38 17196.59 13699.90 9698.53 10793.91 15898.52 12498.42 22396.77 2599.17 18398.54 10496.20 20599.11 206
sss97.57 9597.03 10999.18 5298.37 17398.04 7499.73 17199.38 2293.46 17098.76 11499.06 15891.21 16399.89 10296.33 17797.01 19299.62 130
testing1197.48 9897.27 9898.10 14298.36 17496.02 16099.92 8398.45 12493.45 17298.15 14498.70 19795.48 4999.22 17697.85 14195.05 23399.07 210
BH-untuned95.18 18994.83 19196.22 22498.36 17491.22 29599.80 14697.32 29190.91 26391.08 26398.67 19983.51 25898.54 22294.23 22099.61 9998.92 216
testing9197.16 11596.90 11397.97 14898.35 17695.67 17599.91 9098.42 14992.91 18997.33 16798.72 19594.81 6699.21 17796.98 16794.63 23699.03 212
testing9997.17 11496.91 11297.95 14998.35 17695.70 17299.91 9098.43 13792.94 18797.36 16698.72 19594.83 6599.21 17797.00 16594.64 23598.95 215
ET-MVSNet_ETH3D94.37 21693.28 23397.64 17198.30 17897.99 7699.99 497.61 25894.35 13371.57 40499.45 12596.23 3595.34 37496.91 17285.14 31499.59 137
AUN-MVS93.28 24292.60 24695.34 24798.29 17990.09 32099.31 24498.56 9591.80 23796.35 19698.00 23889.38 19698.28 25092.46 25069.22 39797.64 253
FMVSNet392.69 25891.58 26795.99 22898.29 17997.42 10399.26 25397.62 25589.80 28889.68 28395.32 33281.62 27596.27 35387.01 32685.65 30894.29 297
PMMVS96.76 13796.76 12196.76 20798.28 18192.10 27399.91 9097.98 22194.12 14499.53 6199.39 13386.93 22798.73 20996.95 17097.73 17399.45 168
hse-mvs294.38 21594.08 20895.31 24998.27 18290.02 32199.29 24998.56 9595.90 8398.77 11198.00 23890.89 17598.26 25497.80 14369.20 39897.64 253
PVSNet_088.03 1991.80 27790.27 29196.38 22098.27 18290.46 31299.94 7399.61 1393.99 15286.26 34797.39 25771.13 35999.89 10298.77 9067.05 40398.79 224
UA-Net96.54 14795.96 15398.27 13398.23 18495.71 17198.00 35198.45 12493.72 16598.41 13199.27 14288.71 20899.66 15291.19 26697.69 17499.44 170
test_cas_vis1_n_192096.59 14696.23 14097.65 17098.22 18594.23 22199.99 497.25 30097.77 2099.58 5799.08 15677.10 31599.97 5797.64 15199.45 11498.74 227
FE-MVS95.70 17795.01 18797.79 16098.21 18694.57 20995.03 39398.69 7088.90 30497.50 16296.19 29692.60 13899.49 16689.99 29197.94 17299.31 187
GG-mvs-BLEND98.54 11398.21 18698.01 7593.87 39898.52 10997.92 14997.92 24399.02 397.94 27498.17 12299.58 10299.67 118
mvs_anonymous95.65 17995.03 18697.53 17898.19 18895.74 16999.33 24197.49 27390.87 26490.47 27097.10 26488.23 21197.16 30595.92 18497.66 17699.68 116
MVS_Test96.46 15095.74 16298.61 10498.18 18997.23 10999.31 24497.15 30991.07 26098.84 10697.05 26888.17 21298.97 19394.39 21497.50 17899.61 134
BH-RMVSNet95.18 18994.31 20397.80 15898.17 19095.23 19399.76 15797.53 26892.52 21394.27 22999.25 14676.84 32098.80 20290.89 27599.54 10499.35 182
dongtai91.55 28391.13 27692.82 33298.16 19186.35 36099.47 22298.51 11283.24 37385.07 35697.56 25190.33 18494.94 38076.09 38991.73 26097.18 262
RPSCF91.80 27792.79 24288.83 37098.15 19269.87 40898.11 34796.60 35783.93 36894.33 22799.27 14279.60 29899.46 16991.99 25693.16 25797.18 262
ETV-MVS97.92 7297.80 7598.25 13498.14 19396.48 13899.98 1597.63 25295.61 9199.29 8499.46 12492.55 14098.82 20199.02 7498.54 15099.46 166
IS-MVSNet96.29 16095.90 15897.45 18298.13 19494.80 20699.08 26697.61 25892.02 23095.54 21398.96 17190.64 17898.08 26393.73 23497.41 18299.47 165
test_fmvsmconf_n98.43 4698.32 4398.78 9198.12 19596.41 14199.99 498.83 6098.22 799.67 4199.64 10391.11 16899.94 8299.67 4199.62 9599.98 51
fmvsm_s_conf0.1_n_297.25 11096.85 11798.43 12398.08 19698.08 7099.92 8397.76 24398.05 1499.65 4399.58 11280.88 28499.93 9099.59 4398.17 16197.29 260
ab-mvs94.69 20393.42 22798.51 11798.07 19796.26 14896.49 37798.68 7290.31 27994.54 22297.00 27076.30 32799.71 14495.98 18393.38 25599.56 146
XVG-OURS-SEG-HR94.79 19994.70 19595.08 25498.05 19889.19 33199.08 26697.54 26693.66 16694.87 22099.58 11278.78 30699.79 12997.31 15793.40 25496.25 269
EIA-MVS97.53 9697.46 8897.76 16598.04 19994.84 20499.98 1597.61 25894.41 13197.90 15099.59 10992.40 14598.87 19898.04 13099.13 13199.59 137
XVG-OURS94.82 19694.74 19495.06 25598.00 20089.19 33199.08 26697.55 26494.10 14594.71 22199.62 10780.51 29099.74 14096.04 18293.06 25996.25 269
mvsmamba96.94 12796.73 12397.55 17697.99 20194.37 21799.62 19697.70 24693.13 18298.42 13097.92 24388.02 21398.75 20898.78 8999.01 13699.52 157
dp95.05 19294.43 19896.91 20297.99 20192.73 25996.29 38297.98 22189.70 28995.93 20494.67 35793.83 10598.45 22886.91 32996.53 19999.54 151
tpmrst96.27 16295.98 14997.13 19697.96 20393.15 24896.34 38098.17 20092.07 22698.71 11795.12 34193.91 10098.73 20994.91 20296.62 19799.50 162
TR-MVS94.54 20893.56 22397.49 18197.96 20394.34 21898.71 31297.51 27190.30 28094.51 22498.69 19875.56 33398.77 20592.82 24895.99 21099.35 182
Vis-MVSNet (Re-imp)96.32 15795.98 14997.35 19197.93 20594.82 20599.47 22298.15 20891.83 23495.09 21899.11 15491.37 16297.47 29093.47 23797.43 17999.74 107
MDTV_nov1_ep1395.69 16497.90 20694.15 22395.98 38898.44 12993.12 18397.98 14795.74 30895.10 5598.58 21990.02 29096.92 194
Fast-Effi-MVS+95.02 19394.19 20597.52 17997.88 20794.55 21099.97 3097.08 31888.85 30694.47 22597.96 24284.59 25098.41 23189.84 29397.10 18799.59 137
ADS-MVSNet293.80 22993.88 21593.55 31597.87 20885.94 36394.24 39496.84 34390.07 28296.43 19294.48 36290.29 18695.37 37387.44 31697.23 18499.36 179
ADS-MVSNet94.79 19994.02 21097.11 19897.87 20893.79 23194.24 39498.16 20590.07 28296.43 19294.48 36290.29 18698.19 25787.44 31697.23 18499.36 179
Effi-MVS+96.30 15995.69 16498.16 13797.85 21096.26 14897.41 36097.21 30290.37 27698.65 12098.58 21086.61 23198.70 21397.11 16297.37 18399.52 157
PatchmatchNetpermissive95.94 16895.45 17097.39 18797.83 21194.41 21496.05 38698.40 15892.86 19097.09 17395.28 33794.21 9298.07 26589.26 29798.11 16699.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 20693.61 21897.74 16797.82 21296.26 14899.96 3797.78 24285.76 35094.00 23297.54 25276.95 31999.21 17797.23 15995.43 22697.76 252
1112_ss96.01 16795.20 17998.42 12597.80 21396.41 14199.65 18996.66 35492.71 19992.88 24699.40 13192.16 15099.30 17291.92 25893.66 25099.55 147
Test_1112_low_res95.72 17394.83 19198.42 12597.79 21496.41 14199.65 18996.65 35592.70 20092.86 24796.13 29992.15 15199.30 17291.88 25993.64 25199.55 147
Effi-MVS+-dtu94.53 21095.30 17692.22 33897.77 21582.54 38299.59 20097.06 32094.92 10895.29 21695.37 33085.81 23797.89 27594.80 20597.07 18896.23 271
tpm cat193.51 23892.52 25296.47 21497.77 21591.47 29396.13 38498.06 21480.98 38692.91 24593.78 37189.66 19198.87 19887.03 32596.39 20399.09 207
FA-MVS(test-final)95.86 16995.09 18398.15 14097.74 21795.62 17796.31 38198.17 20091.42 25096.26 19796.13 29990.56 18099.47 16892.18 25497.07 18899.35 182
xiu_mvs_v1_base_debu97.43 9997.06 10598.55 11097.74 21798.14 6799.31 24497.86 23596.43 6999.62 5099.69 9185.56 23999.68 14899.05 6798.31 15697.83 248
xiu_mvs_v1_base97.43 9997.06 10598.55 11097.74 21798.14 6799.31 24497.86 23596.43 6999.62 5099.69 9185.56 23999.68 14899.05 6798.31 15697.83 248
xiu_mvs_v1_base_debi97.43 9997.06 10598.55 11097.74 21798.14 6799.31 24497.86 23596.43 6999.62 5099.69 9185.56 23999.68 14899.05 6798.31 15697.83 248
EPP-MVSNet96.69 14296.60 12996.96 20197.74 21793.05 25199.37 23798.56 9588.75 30895.83 20899.01 16296.01 3698.56 22096.92 17197.20 18699.25 195
gg-mvs-nofinetune93.51 23891.86 26498.47 11997.72 22297.96 8092.62 40298.51 11274.70 40497.33 16769.59 41898.91 497.79 27897.77 14899.56 10399.67 118
IB-MVS92.85 694.99 19493.94 21398.16 13797.72 22295.69 17499.99 498.81 6194.28 13992.70 24896.90 27295.08 5699.17 18396.07 18173.88 38699.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 10497.02 11098.59 10797.71 22497.52 9699.97 3098.54 10491.83 23497.45 16399.04 15997.50 999.10 18894.75 20796.37 20499.16 200
Syy-MVS90.00 31790.63 28388.11 37797.68 22574.66 40499.71 17898.35 17190.79 26792.10 25498.67 19979.10 30493.09 39763.35 41195.95 21396.59 267
myMVS_eth3d94.46 21394.76 19393.55 31597.68 22590.97 29799.71 17898.35 17190.79 26792.10 25498.67 19992.46 14493.09 39787.13 32295.95 21396.59 267
test_fmvs1_n94.25 22194.36 20093.92 30297.68 22583.70 37699.90 9696.57 35897.40 3199.67 4198.88 18261.82 39499.92 9498.23 12099.13 13198.14 244
RRT-MVS96.24 16395.68 16697.94 15297.65 22894.92 20299.27 25297.10 31492.79 19697.43 16497.99 24081.85 27099.37 17198.46 10998.57 14999.53 155
diffmvspermissive97.00 12496.64 12798.09 14397.64 22996.17 15699.81 14297.19 30394.67 11998.95 10199.28 13986.43 23298.76 20698.37 11497.42 18199.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 17395.15 18197.45 18297.62 23094.28 21999.28 25098.24 19194.27 14196.84 18198.94 17879.39 29998.76 20693.25 23998.49 15199.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 11796.72 12498.22 13597.60 23196.70 12999.92 8398.54 10491.11 25897.07 17598.97 16997.47 1299.03 19193.73 23496.09 20898.92 216
GDP-MVS97.88 7397.59 8598.75 9497.59 23297.81 8599.95 5697.37 28594.44 12799.08 9599.58 11297.13 2399.08 18994.99 19798.17 16199.37 177
miper_ehance_all_eth93.16 24692.60 24694.82 26597.57 23393.56 23999.50 21797.07 31988.75 30888.85 30695.52 31990.97 17196.74 33490.77 27784.45 31994.17 306
testing393.92 22494.23 20492.99 32997.54 23490.23 31699.99 499.16 3090.57 27291.33 26298.63 20592.99 12692.52 40182.46 35795.39 22796.22 272
LCM-MVSNet-Re92.31 26692.60 24691.43 34797.53 23579.27 39999.02 28091.83 41492.07 22680.31 37994.38 36583.50 25995.48 37197.22 16097.58 17799.54 151
GBi-Net90.88 29489.82 30094.08 29497.53 23591.97 27498.43 33096.95 33287.05 33389.68 28394.72 35371.34 35696.11 35887.01 32685.65 30894.17 306
test190.88 29489.82 30094.08 29497.53 23591.97 27498.43 33096.95 33287.05 33389.68 28394.72 35371.34 35696.11 35887.01 32685.65 30894.17 306
FMVSNet291.02 29189.56 30595.41 24597.53 23595.74 16998.98 28297.41 28187.05 33388.43 31595.00 34771.34 35696.24 35585.12 34085.21 31394.25 300
tttt051796.85 13196.49 13397.92 15397.48 23995.89 16499.85 12598.54 10490.72 27196.63 18698.93 18097.47 1299.02 19293.03 24695.76 21998.85 220
BP-MVS198.33 5298.18 5198.81 8997.44 24097.98 7799.96 3798.17 20094.88 11098.77 11199.59 10997.59 799.08 18998.24 11998.93 13899.36 179
casdiffmvs_mvgpermissive96.43 15195.94 15597.89 15797.44 24095.47 18199.86 12297.29 29693.35 17396.03 20199.19 15085.39 24298.72 21197.89 14097.04 19099.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 10697.24 9997.80 15897.41 24295.64 17699.99 497.06 32094.59 12099.63 4799.32 13889.20 20298.14 25998.76 9199.23 12799.62 130
c3_l92.53 26191.87 26394.52 27797.40 24392.99 25399.40 23096.93 33787.86 32388.69 30995.44 32489.95 18996.44 34690.45 28380.69 35294.14 315
fmvsm_s_conf0.1_n97.30 10797.21 10197.60 17597.38 24494.40 21699.90 9698.64 7896.47 6899.51 6599.65 10284.99 24799.93 9099.22 6199.09 13398.46 234
CDS-MVSNet96.34 15696.07 14497.13 19697.37 24594.96 20099.53 21297.91 23091.55 24295.37 21598.32 22895.05 5897.13 30893.80 23095.75 22099.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 13996.26 13998.16 13797.36 24696.48 13899.96 3798.29 18491.93 23195.77 20998.07 23695.54 4698.29 24890.55 28198.89 13999.70 113
miper_lstm_enhance91.81 27491.39 27393.06 32897.34 24789.18 33399.38 23596.79 34886.70 34087.47 32995.22 33990.00 18895.86 36788.26 30781.37 34194.15 312
baseline96.43 15195.98 14997.76 16597.34 24795.17 19799.51 21597.17 30693.92 15796.90 17999.28 13985.37 24398.64 21797.50 15496.86 19699.46 166
cl____92.31 26691.58 26794.52 27797.33 24992.77 25599.57 20596.78 34986.97 33787.56 32795.51 32089.43 19596.62 33988.60 30282.44 33394.16 311
DIV-MVS_self_test92.32 26591.60 26694.47 28197.31 25092.74 25799.58 20296.75 35086.99 33687.64 32595.54 31789.55 19496.50 34388.58 30382.44 33394.17 306
casdiffmvspermissive96.42 15395.97 15297.77 16397.30 25194.98 19999.84 13097.09 31793.75 16496.58 18899.26 14585.07 24598.78 20497.77 14897.04 19099.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 21893.48 22596.99 20097.29 25293.54 24099.96 3796.72 35288.35 31793.43 23698.94 17882.05 26798.05 26688.12 31196.48 20299.37 177
eth_miper_zixun_eth92.41 26491.93 26193.84 30697.28 25390.68 30698.83 30296.97 33188.57 31389.19 30195.73 31089.24 20196.69 33789.97 29281.55 33994.15 312
MVSFormer96.94 12796.60 12997.95 14997.28 25397.70 9099.55 20997.27 29891.17 25599.43 7199.54 11890.92 17296.89 32694.67 21099.62 9599.25 195
lupinMVS97.85 7697.60 8398.62 10397.28 25397.70 9099.99 497.55 26495.50 9699.43 7199.67 9890.92 17298.71 21298.40 11199.62 9599.45 168
SCA94.69 20393.81 21797.33 19297.10 25694.44 21198.86 29998.32 17893.30 17696.17 20095.59 31576.48 32597.95 27291.06 26997.43 17999.59 137
TAMVS95.85 17095.58 16896.65 21297.07 25793.50 24199.17 26097.82 23991.39 25295.02 21998.01 23792.20 14997.30 29893.75 23395.83 21799.14 203
Fast-Effi-MVS+-dtu93.72 23393.86 21693.29 32097.06 25886.16 36199.80 14696.83 34492.66 20392.58 24997.83 24881.39 27697.67 28389.75 29496.87 19596.05 274
CostFormer96.10 16495.88 15996.78 20697.03 25992.55 26597.08 36897.83 23890.04 28498.72 11694.89 35195.01 6098.29 24896.54 17695.77 21899.50 162
test_fmvsmvis_n_192097.67 9297.59 8597.91 15597.02 26095.34 18799.95 5698.45 12497.87 1897.02 17699.59 10989.64 19299.98 4799.41 5499.34 12298.42 236
test-LLR96.47 14996.04 14597.78 16197.02 26095.44 18299.96 3798.21 19594.07 14795.55 21196.38 28993.90 10198.27 25290.42 28498.83 14399.64 124
test-mter96.39 15495.93 15697.78 16197.02 26095.44 18299.96 3798.21 19591.81 23695.55 21196.38 28995.17 5398.27 25290.42 28498.83 14399.64 124
gm-plane-assit96.97 26393.76 23391.47 24698.96 17198.79 20394.92 200
WB-MVSnew92.90 25292.77 24393.26 32296.95 26493.63 23799.71 17898.16 20591.49 24394.28 22898.14 23381.33 27896.48 34479.47 37295.46 22489.68 398
QAPM95.40 18494.17 20699.10 6796.92 26597.71 8899.40 23098.68 7289.31 29288.94 30598.89 18182.48 26599.96 6693.12 24599.83 7799.62 130
KD-MVS_2432*160088.00 33886.10 34293.70 31196.91 26694.04 22597.17 36597.12 31284.93 36081.96 37092.41 38292.48 14294.51 38579.23 37352.68 41792.56 368
miper_refine_blended88.00 33886.10 34293.70 31196.91 26694.04 22597.17 36597.12 31284.93 36081.96 37092.41 38292.48 14294.51 38579.23 37352.68 41792.56 368
tpm295.47 18295.18 18096.35 22196.91 26691.70 28796.96 37197.93 22688.04 32198.44 12995.40 32693.32 11597.97 26994.00 22295.61 22299.38 175
FMVSNet588.32 33487.47 33690.88 35096.90 26988.39 34597.28 36295.68 37882.60 38084.67 35892.40 38479.83 29691.16 40676.39 38881.51 34093.09 360
3Dnovator+91.53 1196.31 15895.24 17799.52 2896.88 27098.64 5499.72 17598.24 19195.27 10188.42 31798.98 16782.76 26499.94 8297.10 16399.83 7799.96 67
Patchmatch-test92.65 26091.50 27096.10 22796.85 27190.49 31191.50 40797.19 30382.76 37990.23 27195.59 31595.02 5998.00 26877.41 38396.98 19399.82 95
MVS96.60 14595.56 16999.72 1396.85 27199.22 2098.31 33698.94 4191.57 24190.90 26699.61 10886.66 23099.96 6697.36 15699.88 7399.99 23
3Dnovator91.47 1296.28 16195.34 17499.08 7096.82 27397.47 10199.45 22798.81 6195.52 9589.39 29299.00 16481.97 26899.95 7497.27 15899.83 7799.84 93
EI-MVSNet93.73 23293.40 23094.74 26696.80 27492.69 26099.06 27197.67 24988.96 30191.39 26099.02 16088.75 20797.30 29891.07 26887.85 29494.22 302
CVMVSNet94.68 20594.94 18993.89 30596.80 27486.92 35899.06 27198.98 3894.45 12494.23 23099.02 16085.60 23895.31 37590.91 27495.39 22799.43 171
IterMVS-LS92.69 25892.11 25794.43 28596.80 27492.74 25799.45 22796.89 34088.98 29989.65 28695.38 32988.77 20696.34 35090.98 27282.04 33694.22 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 29390.17 29593.12 32596.78 27790.42 31498.89 29397.05 32389.03 29686.49 34295.42 32576.59 32395.02 37787.22 32184.09 32293.93 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 13295.96 15399.48 3496.74 27898.52 5898.31 33698.86 5395.82 8589.91 27798.98 16787.49 21899.96 6697.80 14399.73 8799.96 67
IterMVS-SCA-FT90.85 29690.16 29692.93 33096.72 27989.96 32298.89 29396.99 32788.95 30286.63 33995.67 31176.48 32595.00 37887.04 32484.04 32593.84 339
MVS-HIRNet86.22 34583.19 35895.31 24996.71 28090.29 31592.12 40497.33 29062.85 41286.82 33670.37 41769.37 36497.49 28975.12 39197.99 17198.15 242
VDDNet93.12 24791.91 26296.76 20796.67 28192.65 26398.69 31598.21 19582.81 37897.75 15799.28 13961.57 39599.48 16798.09 12894.09 24598.15 242
dmvs_re93.20 24493.15 23593.34 31896.54 28283.81 37598.71 31298.51 11291.39 25292.37 25298.56 21278.66 30897.83 27793.89 22489.74 26698.38 238
MIMVSNet90.30 30988.67 32395.17 25396.45 28391.64 28992.39 40397.15 30985.99 34790.50 26993.19 37866.95 37594.86 38282.01 36193.43 25399.01 214
CR-MVSNet93.45 24192.62 24595.94 23196.29 28492.66 26192.01 40596.23 36692.62 20596.94 17793.31 37691.04 16996.03 36379.23 37395.96 21199.13 204
RPMNet89.76 32187.28 33797.19 19596.29 28492.66 26192.01 40598.31 18070.19 41196.94 17785.87 41087.25 22299.78 13162.69 41295.96 21199.13 204
tt080591.28 28690.18 29494.60 27296.26 28687.55 35198.39 33498.72 6789.00 29889.22 29898.47 22062.98 39098.96 19590.57 28088.00 29397.28 261
Patchmtry89.70 32288.49 32593.33 31996.24 28789.94 32591.37 40896.23 36678.22 39487.69 32493.31 37691.04 16996.03 36380.18 37182.10 33594.02 322
test_vis1_rt86.87 34386.05 34589.34 36696.12 28878.07 40099.87 11183.54 42592.03 22978.21 38989.51 39645.80 41199.91 9596.25 17993.11 25890.03 395
JIA-IIPM91.76 28090.70 28194.94 25996.11 28987.51 35293.16 40198.13 21075.79 40097.58 15977.68 41592.84 13197.97 26988.47 30696.54 19899.33 185
OpenMVScopyleft90.15 1594.77 20193.59 22198.33 12996.07 29097.48 10099.56 20798.57 9290.46 27486.51 34198.95 17678.57 30999.94 8293.86 22599.74 8697.57 257
PAPM98.60 3398.42 3499.14 6196.05 29198.96 2699.90 9699.35 2496.68 6198.35 13599.66 10096.45 3398.51 22399.45 5199.89 7099.96 67
CLD-MVS94.06 22393.90 21494.55 27696.02 29290.69 30599.98 1597.72 24596.62 6591.05 26598.85 19077.21 31498.47 22498.11 12689.51 27294.48 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 30688.75 32295.25 25195.99 29390.16 31891.22 40997.54 26676.80 39697.26 16986.01 40991.88 15696.07 36266.16 40895.91 21599.51 160
ACMH+89.98 1690.35 30789.54 30692.78 33495.99 29386.12 36298.81 30497.18 30589.38 29183.14 36697.76 24968.42 36998.43 22989.11 29886.05 30693.78 342
DeepMVS_CXcopyleft82.92 38795.98 29558.66 41896.01 37192.72 19878.34 38895.51 32058.29 40098.08 26382.57 35685.29 31192.03 376
ACMP92.05 992.74 25692.42 25493.73 30795.91 29688.72 33899.81 14297.53 26894.13 14387.00 33598.23 23174.07 34698.47 22496.22 18088.86 27993.99 327
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 23693.03 23795.35 24695.86 29786.94 35799.87 11196.36 36496.85 5299.54 6098.79 19252.41 40799.83 12498.64 9998.97 13799.29 191
HQP-NCC95.78 29899.87 11196.82 5493.37 237
ACMP_Plane95.78 29899.87 11196.82 5493.37 237
HQP-MVS94.61 20794.50 19794.92 26095.78 29891.85 27999.87 11197.89 23196.82 5493.37 23798.65 20280.65 28898.39 23597.92 13789.60 26794.53 277
NP-MVS95.77 30191.79 28198.65 202
test_fmvsmconf0.1_n97.74 8897.44 9098.64 10295.76 30296.20 15399.94 7398.05 21698.17 1098.89 10599.42 12687.65 21699.90 9799.50 4799.60 10199.82 95
plane_prior695.76 30291.72 28680.47 292
ACMM91.95 1092.88 25392.52 25293.98 30195.75 30489.08 33599.77 15297.52 27093.00 18589.95 27697.99 24076.17 32998.46 22793.63 23688.87 27894.39 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 22692.84 23996.80 20595.73 30593.57 23899.88 10897.24 30192.57 21092.92 24496.66 28178.73 30797.67 28387.75 31494.06 24699.17 199
plane_prior195.73 305
jason97.24 11196.86 11698.38 12895.73 30597.32 10599.97 3097.40 28295.34 9998.60 12399.54 11887.70 21598.56 22097.94 13699.47 11199.25 195
jason: jason.
mmtdpeth88.52 33287.75 33490.85 35295.71 30883.47 37898.94 28794.85 39288.78 30797.19 17189.58 39563.29 38898.97 19398.54 10462.86 41190.10 394
HQP_MVS94.49 21294.36 20094.87 26195.71 30891.74 28399.84 13097.87 23396.38 7293.01 24298.59 20780.47 29298.37 24197.79 14689.55 27094.52 279
plane_prior795.71 30891.59 291
ITE_SJBPF92.38 33695.69 31185.14 36795.71 37792.81 19389.33 29598.11 23470.23 36298.42 23085.91 33688.16 29193.59 350
fmvsm_s_conf0.1_n_a97.09 11996.90 11397.63 17395.65 31294.21 22299.83 13798.50 11896.27 7799.65 4399.64 10384.72 24899.93 9099.04 7098.84 14298.74 227
ACMH89.72 1790.64 30089.63 30393.66 31395.64 31388.64 34198.55 32297.45 27589.03 29681.62 37397.61 25069.75 36398.41 23189.37 29587.62 29893.92 333
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 14196.49 13397.37 18895.63 31495.96 16299.74 16498.88 5192.94 18791.61 25898.97 16997.72 698.62 21894.83 20498.08 16997.53 258
FMVSNet188.50 33386.64 34094.08 29495.62 31591.97 27498.43 33096.95 33283.00 37686.08 34994.72 35359.09 39996.11 35881.82 36384.07 32394.17 306
LPG-MVS_test92.96 25092.71 24493.71 30995.43 31688.67 33999.75 16197.62 25592.81 19390.05 27298.49 21675.24 33698.40 23395.84 18689.12 27494.07 319
LGP-MVS_train93.71 30995.43 31688.67 33997.62 25592.81 19390.05 27298.49 21675.24 33698.40 23395.84 18689.12 27494.07 319
tpm93.70 23493.41 22994.58 27495.36 31887.41 35397.01 36996.90 33990.85 26596.72 18594.14 36890.40 18396.84 32990.75 27888.54 28699.51 160
D2MVS92.76 25592.59 25093.27 32195.13 31989.54 32999.69 18399.38 2292.26 22287.59 32694.61 35985.05 24697.79 27891.59 26288.01 29292.47 371
VPA-MVSNet92.70 25791.55 26996.16 22595.09 32096.20 15398.88 29599.00 3691.02 26291.82 25795.29 33676.05 33197.96 27195.62 19081.19 34294.30 296
LTVRE_ROB88.28 1890.29 31089.05 31794.02 29795.08 32190.15 31997.19 36497.43 27784.91 36283.99 36297.06 26774.00 34798.28 25084.08 34587.71 29693.62 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 34086.51 34191.94 34195.05 32285.57 36597.65 35794.08 40184.40 36681.82 37296.85 27662.14 39398.33 24480.25 37086.37 30591.91 378
test0.0.03 193.86 22593.61 21894.64 27095.02 32392.18 27299.93 8098.58 9094.07 14787.96 32198.50 21593.90 10194.96 37981.33 36493.17 25696.78 264
UniMVSNet (Re)93.07 24992.13 25695.88 23294.84 32496.24 15299.88 10898.98 3892.49 21589.25 29695.40 32687.09 22497.14 30793.13 24478.16 36694.26 298
USDC90.00 31788.96 31893.10 32794.81 32588.16 34798.71 31295.54 38293.66 16683.75 36497.20 26165.58 38098.31 24683.96 34887.49 30092.85 365
VPNet91.81 27490.46 28595.85 23494.74 32695.54 18098.98 28298.59 8892.14 22490.77 26897.44 25468.73 36797.54 28894.89 20377.89 36894.46 282
FIs94.10 22293.43 22696.11 22694.70 32796.82 12699.58 20298.93 4592.54 21189.34 29497.31 25887.62 21797.10 31194.22 22186.58 30394.40 288
UniMVSNet_ETH3D90.06 31688.58 32494.49 28094.67 32888.09 34897.81 35697.57 26383.91 36988.44 31397.41 25557.44 40197.62 28591.41 26388.59 28597.77 251
UniMVSNet_NR-MVSNet92.95 25192.11 25795.49 24094.61 32995.28 19099.83 13799.08 3391.49 24389.21 29996.86 27587.14 22396.73 33593.20 24077.52 37194.46 282
test_fmvs289.47 32589.70 30288.77 37394.54 33075.74 40199.83 13794.70 39794.71 11691.08 26396.82 28054.46 40497.78 28092.87 24788.27 28992.80 366
MonoMVSNet94.82 19694.43 19895.98 22994.54 33090.73 30499.03 27897.06 32093.16 18193.15 24195.47 32388.29 21097.57 28697.85 14191.33 26499.62 130
WR-MVS92.31 26691.25 27495.48 24394.45 33295.29 18999.60 19998.68 7290.10 28188.07 32096.89 27380.68 28796.80 33393.14 24379.67 35994.36 290
nrg03093.51 23892.53 25196.45 21694.36 33397.20 11099.81 14297.16 30891.60 24089.86 27997.46 25386.37 23397.68 28295.88 18580.31 35594.46 282
tfpnnormal89.29 32887.61 33594.34 28894.35 33494.13 22498.95 28698.94 4183.94 36784.47 35995.51 32074.84 34197.39 29177.05 38680.41 35391.48 381
FC-MVSNet-test93.81 22893.15 23595.80 23694.30 33596.20 15399.42 22998.89 4992.33 22189.03 30497.27 26087.39 22096.83 33193.20 24086.48 30494.36 290
MS-PatchMatch90.65 29990.30 29091.71 34694.22 33685.50 36698.24 34097.70 24688.67 31086.42 34496.37 29167.82 37298.03 26783.62 35099.62 9591.60 379
WR-MVS_H91.30 28490.35 28894.15 29194.17 33792.62 26499.17 26098.94 4188.87 30586.48 34394.46 36484.36 25296.61 34088.19 30878.51 36493.21 359
DU-MVS92.46 26391.45 27295.49 24094.05 33895.28 19099.81 14298.74 6692.25 22389.21 29996.64 28381.66 27396.73 33593.20 24077.52 37194.46 282
NR-MVSNet91.56 28290.22 29295.60 23894.05 33895.76 16898.25 33998.70 6991.16 25780.78 37896.64 28383.23 26296.57 34191.41 26377.73 37094.46 282
CP-MVSNet91.23 28890.22 29294.26 28993.96 34092.39 26899.09 26498.57 9288.95 30286.42 34496.57 28679.19 30296.37 34890.29 28778.95 36194.02 322
XXY-MVS91.82 27390.46 28595.88 23293.91 34195.40 18698.87 29897.69 24888.63 31287.87 32297.08 26574.38 34597.89 27591.66 26184.07 32394.35 293
PS-CasMVS90.63 30189.51 30893.99 30093.83 34291.70 28798.98 28298.52 10988.48 31486.15 34896.53 28875.46 33496.31 35288.83 30078.86 36393.95 330
test_040285.58 34783.94 35290.50 35693.81 34385.04 36898.55 32295.20 38976.01 39879.72 38395.13 34064.15 38696.26 35466.04 40986.88 30290.21 392
XVG-ACMP-BASELINE91.22 28990.75 28092.63 33593.73 34485.61 36498.52 32697.44 27692.77 19789.90 27896.85 27666.64 37798.39 23592.29 25288.61 28393.89 335
TranMVSNet+NR-MVSNet91.68 28190.61 28494.87 26193.69 34593.98 22899.69 18398.65 7691.03 26188.44 31396.83 27980.05 29596.18 35690.26 28876.89 37994.45 287
TransMVSNet (Re)87.25 34185.28 34893.16 32493.56 34691.03 29698.54 32494.05 40383.69 37181.09 37696.16 29775.32 33596.40 34776.69 38768.41 39992.06 375
v1090.25 31188.82 32094.57 27593.53 34793.43 24399.08 26696.87 34285.00 35987.34 33394.51 36080.93 28397.02 32182.85 35579.23 36093.26 357
testgi89.01 33088.04 33191.90 34293.49 34884.89 37099.73 17195.66 37993.89 16185.14 35498.17 23259.68 39894.66 38477.73 38288.88 27796.16 273
v890.54 30389.17 31394.66 26993.43 34993.40 24599.20 25796.94 33685.76 35087.56 32794.51 36081.96 26997.19 30484.94 34278.25 36593.38 355
V4291.28 28690.12 29794.74 26693.42 35093.46 24299.68 18597.02 32487.36 32989.85 28195.05 34381.31 27997.34 29487.34 31980.07 35793.40 353
pm-mvs189.36 32787.81 33394.01 29893.40 35191.93 27798.62 32096.48 36286.25 34583.86 36396.14 29873.68 34897.04 31786.16 33375.73 38493.04 362
v114491.09 29089.83 29994.87 26193.25 35293.69 23699.62 19696.98 32986.83 33989.64 28794.99 34880.94 28297.05 31485.08 34181.16 34393.87 337
v119290.62 30289.25 31294.72 26893.13 35393.07 24999.50 21797.02 32486.33 34489.56 29095.01 34579.22 30197.09 31382.34 35981.16 34394.01 324
v2v48291.30 28490.07 29895.01 25693.13 35393.79 23199.77 15297.02 32488.05 32089.25 29695.37 33080.73 28697.15 30687.28 32080.04 35894.09 318
OPM-MVS93.21 24392.80 24194.44 28393.12 35590.85 30399.77 15297.61 25896.19 8091.56 25998.65 20275.16 34098.47 22493.78 23289.39 27393.99 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 29789.52 30794.59 27393.11 35692.77 25599.56 20796.99 32786.38 34389.82 28294.95 35080.50 29197.10 31183.98 34780.41 35393.90 334
PEN-MVS90.19 31389.06 31693.57 31493.06 35790.90 30199.06 27198.47 12188.11 31985.91 35096.30 29376.67 32195.94 36687.07 32376.91 37893.89 335
v124090.20 31288.79 32194.44 28393.05 35892.27 27099.38 23596.92 33885.89 34889.36 29394.87 35277.89 31397.03 31980.66 36781.08 34694.01 324
v14890.70 29889.63 30393.92 30292.97 35990.97 29799.75 16196.89 34087.51 32688.27 31895.01 34581.67 27297.04 31787.40 31877.17 37693.75 343
v192192090.46 30489.12 31494.50 27992.96 36092.46 26699.49 21996.98 32986.10 34689.61 28995.30 33378.55 31097.03 31982.17 36080.89 35194.01 324
MVStest185.03 35382.76 36291.83 34392.95 36189.16 33498.57 32194.82 39371.68 40968.54 40995.11 34283.17 26395.66 36974.69 39265.32 40690.65 388
Baseline_NR-MVSNet90.33 30889.51 30892.81 33392.84 36289.95 32399.77 15293.94 40484.69 36489.04 30395.66 31281.66 27396.52 34290.99 27176.98 37791.97 377
test_method80.79 36979.70 37384.08 38492.83 36367.06 41099.51 21595.42 38354.34 41681.07 37793.53 37344.48 41292.22 40378.90 37777.23 37592.94 363
pmmvs492.10 27091.07 27895.18 25292.82 36494.96 20099.48 22196.83 34487.45 32888.66 31096.56 28783.78 25796.83 33189.29 29684.77 31793.75 343
LF4IMVS89.25 32988.85 31990.45 35892.81 36581.19 39298.12 34694.79 39491.44 24786.29 34697.11 26365.30 38398.11 26188.53 30585.25 31292.07 374
DTE-MVSNet89.40 32688.24 32992.88 33192.66 36689.95 32399.10 26398.22 19487.29 33085.12 35596.22 29576.27 32895.30 37683.56 35175.74 38393.41 352
EU-MVSNet90.14 31590.34 28989.54 36592.55 36781.06 39398.69 31598.04 21791.41 25186.59 34096.84 27880.83 28593.31 39686.20 33281.91 33794.26 298
APD_test181.15 36880.92 36981.86 38892.45 36859.76 41796.04 38793.61 40773.29 40777.06 39296.64 28344.28 41396.16 35772.35 39682.52 33189.67 399
our_test_390.39 30589.48 31093.12 32592.40 36989.57 32899.33 24196.35 36587.84 32485.30 35394.99 34884.14 25596.09 36180.38 36884.56 31893.71 348
ppachtmachnet_test89.58 32488.35 32793.25 32392.40 36990.44 31399.33 24196.73 35185.49 35585.90 35195.77 30781.09 28196.00 36576.00 39082.49 33293.30 356
v7n89.65 32388.29 32893.72 30892.22 37190.56 31099.07 27097.10 31485.42 35786.73 33794.72 35380.06 29497.13 30881.14 36578.12 36793.49 351
dmvs_testset83.79 36286.07 34476.94 39292.14 37248.60 42796.75 37490.27 41789.48 29078.65 38698.55 21479.25 30086.65 41566.85 40682.69 33095.57 275
PS-MVSNAJss93.64 23593.31 23294.61 27192.11 37392.19 27199.12 26297.38 28392.51 21488.45 31296.99 27191.20 16497.29 30194.36 21587.71 29694.36 290
pmmvs590.17 31489.09 31593.40 31792.10 37489.77 32699.74 16495.58 38185.88 34987.24 33495.74 30873.41 34996.48 34488.54 30483.56 32793.95 330
N_pmnet80.06 37280.78 37077.89 39191.94 37545.28 42998.80 30656.82 43178.10 39580.08 38193.33 37477.03 31695.76 36868.14 40482.81 32992.64 367
test_djsdf92.83 25492.29 25594.47 28191.90 37692.46 26699.55 20997.27 29891.17 25589.96 27596.07 30281.10 28096.89 32694.67 21088.91 27694.05 321
SixPastTwentyTwo88.73 33188.01 33290.88 35091.85 37782.24 38498.22 34395.18 39088.97 30082.26 36996.89 27371.75 35496.67 33884.00 34682.98 32893.72 347
K. test v388.05 33787.24 33890.47 35791.82 37882.23 38598.96 28597.42 27989.05 29576.93 39495.60 31468.49 36895.42 37285.87 33781.01 34993.75 343
OurMVSNet-221017-089.81 32089.48 31090.83 35391.64 37981.21 39198.17 34595.38 38591.48 24585.65 35297.31 25872.66 35097.29 30188.15 30984.83 31693.97 329
mvs_tets91.81 27491.08 27794.00 29991.63 38090.58 30998.67 31797.43 27792.43 21687.37 33297.05 26871.76 35397.32 29694.75 20788.68 28294.11 317
Gipumacopyleft66.95 38565.00 38572.79 39791.52 38167.96 40966.16 42095.15 39147.89 41858.54 41567.99 42029.74 41787.54 41450.20 41977.83 36962.87 420
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 15495.74 16298.32 13091.47 38295.56 17999.84 13097.30 29397.74 2197.89 15199.35 13779.62 29799.85 11499.25 6099.24 12699.55 147
jajsoiax91.92 27291.18 27594.15 29191.35 38390.95 30099.00 28197.42 27992.61 20687.38 33197.08 26572.46 35197.36 29294.53 21388.77 28094.13 316
MDA-MVSNet-bldmvs84.09 36081.52 36791.81 34491.32 38488.00 35098.67 31795.92 37380.22 38955.60 41893.32 37568.29 37093.60 39473.76 39376.61 38093.82 341
MVP-Stereo90.93 29290.45 28792.37 33791.25 38588.76 33698.05 35096.17 36887.27 33184.04 36095.30 33378.46 31197.27 30383.78 34999.70 8991.09 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 34983.32 35792.10 33990.96 38688.58 34299.20 25796.52 36079.70 39157.12 41792.69 38079.11 30393.86 39177.10 38577.46 37393.86 338
YYNet185.50 35083.33 35692.00 34090.89 38788.38 34699.22 25696.55 35979.60 39257.26 41692.72 37979.09 30593.78 39277.25 38477.37 37493.84 339
anonymousdsp91.79 27990.92 27994.41 28690.76 38892.93 25498.93 28997.17 30689.08 29487.46 33095.30 33378.43 31296.92 32492.38 25188.73 28193.39 354
lessismore_v090.53 35590.58 38980.90 39495.80 37477.01 39395.84 30566.15 37996.95 32283.03 35475.05 38593.74 346
EG-PatchMatch MVS85.35 35183.81 35489.99 36390.39 39081.89 38798.21 34496.09 37081.78 38374.73 40093.72 37251.56 40997.12 31079.16 37688.61 28390.96 385
EGC-MVSNET69.38 37863.76 38886.26 38190.32 39181.66 39096.24 38393.85 4050.99 4283.22 42992.33 38552.44 40692.92 39959.53 41584.90 31584.21 409
CMPMVSbinary61.59 2184.75 35685.14 34983.57 38590.32 39162.54 41396.98 37097.59 26274.33 40569.95 40696.66 28164.17 38598.32 24587.88 31388.41 28889.84 397
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 35982.92 36089.21 36790.03 39382.60 38196.89 37395.62 38080.59 38775.77 39989.17 39765.04 38494.79 38372.12 39781.02 34890.23 391
pmmvs685.69 34683.84 35391.26 34990.00 39484.41 37397.82 35596.15 36975.86 39981.29 37595.39 32861.21 39696.87 32883.52 35273.29 38792.50 370
ttmdpeth88.23 33687.06 33991.75 34589.91 39587.35 35498.92 29295.73 37687.92 32284.02 36196.31 29268.23 37196.84 32986.33 33176.12 38191.06 383
DSMNet-mixed88.28 33588.24 32988.42 37589.64 39675.38 40398.06 34989.86 41885.59 35488.20 31992.14 38676.15 33091.95 40478.46 37996.05 20997.92 247
UnsupCasMVSNet_eth85.52 34883.99 35090.10 36189.36 39783.51 37796.65 37597.99 21989.14 29375.89 39893.83 37063.25 38993.92 38981.92 36267.90 40292.88 364
Anonymous2023120686.32 34485.42 34789.02 36989.11 39880.53 39799.05 27595.28 38685.43 35682.82 36793.92 36974.40 34493.44 39566.99 40581.83 33893.08 361
Anonymous2024052185.15 35283.81 35489.16 36888.32 39982.69 38098.80 30695.74 37579.72 39081.53 37490.99 38965.38 38294.16 38772.69 39581.11 34590.63 389
OpenMVS_ROBcopyleft79.82 2083.77 36381.68 36690.03 36288.30 40082.82 37998.46 32795.22 38873.92 40676.00 39791.29 38855.00 40396.94 32368.40 40388.51 28790.34 390
test20.0384.72 35783.99 35086.91 37988.19 40180.62 39698.88 29595.94 37288.36 31678.87 38494.62 35868.75 36689.11 41066.52 40775.82 38291.00 384
KD-MVS_self_test83.59 36482.06 36488.20 37686.93 40280.70 39597.21 36396.38 36382.87 37782.49 36888.97 39867.63 37392.32 40273.75 39462.30 41391.58 380
MIMVSNet182.58 36580.51 37188.78 37186.68 40384.20 37496.65 37595.41 38478.75 39378.59 38792.44 38151.88 40889.76 40965.26 41078.95 36192.38 373
CL-MVSNet_self_test84.50 35883.15 35988.53 37486.00 40481.79 38898.82 30397.35 28685.12 35883.62 36590.91 39176.66 32291.40 40569.53 40160.36 41492.40 372
UnsupCasMVSNet_bld79.97 37477.03 37988.78 37185.62 40581.98 38693.66 39997.35 28675.51 40270.79 40583.05 41248.70 41094.91 38178.31 38060.29 41589.46 402
mvs5depth84.87 35482.90 36190.77 35485.59 40684.84 37191.10 41093.29 40983.14 37485.07 35694.33 36662.17 39297.32 29678.83 37872.59 39090.14 393
Patchmatch-RL test86.90 34285.98 34689.67 36484.45 40775.59 40289.71 41392.43 41186.89 33877.83 39190.94 39094.22 9093.63 39387.75 31469.61 39499.79 100
pmmvs-eth3d84.03 36181.97 36590.20 36084.15 40887.09 35698.10 34894.73 39683.05 37574.10 40287.77 40465.56 38194.01 38881.08 36669.24 39689.49 401
test_fmvs379.99 37380.17 37279.45 39084.02 40962.83 41199.05 27593.49 40888.29 31880.06 38286.65 40728.09 41988.00 41188.63 30173.27 38887.54 407
PM-MVS80.47 37078.88 37585.26 38283.79 41072.22 40595.89 39091.08 41585.71 35376.56 39688.30 40036.64 41593.90 39082.39 35869.57 39589.66 400
new-patchmatchnet81.19 36779.34 37486.76 38082.86 41180.36 39897.92 35295.27 38782.09 38272.02 40386.87 40662.81 39190.74 40871.10 39863.08 41089.19 404
mvsany_test382.12 36681.14 36885.06 38381.87 41270.41 40797.09 36792.14 41291.27 25477.84 39088.73 39939.31 41495.49 37090.75 27871.24 39189.29 403
WB-MVS76.28 37677.28 37873.29 39681.18 41354.68 42197.87 35494.19 40081.30 38469.43 40790.70 39277.02 31782.06 41935.71 42468.11 40183.13 410
test_f78.40 37577.59 37780.81 38980.82 41462.48 41496.96 37193.08 41083.44 37274.57 40184.57 41127.95 42092.63 40084.15 34472.79 38987.32 408
SSC-MVS75.42 37776.40 38072.49 40080.68 41553.62 42297.42 35994.06 40280.42 38868.75 40890.14 39476.54 32481.66 42033.25 42566.34 40582.19 411
pmmvs380.27 37177.77 37687.76 37880.32 41682.43 38398.23 34291.97 41372.74 40878.75 38587.97 40357.30 40290.99 40770.31 39962.37 41289.87 396
testf168.38 38166.92 38272.78 39878.80 41750.36 42490.95 41187.35 42355.47 41458.95 41388.14 40120.64 42487.60 41257.28 41664.69 40780.39 413
APD_test268.38 38166.92 38272.78 39878.80 41750.36 42490.95 41187.35 42355.47 41458.95 41388.14 40120.64 42487.60 41257.28 41664.69 40780.39 413
ambc83.23 38677.17 41962.61 41287.38 41594.55 39976.72 39586.65 40730.16 41696.36 34984.85 34369.86 39390.73 387
test_vis3_rt68.82 37966.69 38475.21 39576.24 42060.41 41696.44 37868.71 43075.13 40350.54 42169.52 41916.42 42996.32 35180.27 36966.92 40468.89 417
TDRefinement84.76 35582.56 36391.38 34874.58 42184.80 37297.36 36194.56 39884.73 36380.21 38096.12 30163.56 38798.39 23587.92 31263.97 40990.95 386
E-PMN52.30 38952.18 39152.67 40671.51 42245.40 42893.62 40076.60 42836.01 42243.50 42364.13 42227.11 42167.31 42531.06 42626.06 42145.30 424
EMVS51.44 39151.22 39352.11 40770.71 42344.97 43094.04 39675.66 42935.34 42442.40 42461.56 42528.93 41865.87 42627.64 42724.73 42245.49 423
PMMVS267.15 38464.15 38776.14 39470.56 42462.07 41593.89 39787.52 42258.09 41360.02 41278.32 41422.38 42384.54 41759.56 41447.03 41981.80 412
FPMVS68.72 38068.72 38168.71 40265.95 42544.27 43195.97 38994.74 39551.13 41753.26 41990.50 39325.11 42283.00 41860.80 41380.97 35078.87 415
wuyk23d20.37 39520.84 39818.99 41065.34 42627.73 43350.43 4217.67 4349.50 4278.01 4286.34 4286.13 43226.24 42723.40 42810.69 4262.99 425
LCM-MVSNet67.77 38364.73 38676.87 39362.95 42756.25 42089.37 41493.74 40644.53 41961.99 41180.74 41320.42 42686.53 41669.37 40259.50 41687.84 405
MVEpermissive53.74 2251.54 39047.86 39462.60 40459.56 42850.93 42379.41 41877.69 42735.69 42336.27 42561.76 4245.79 43369.63 42337.97 42336.61 42067.24 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 38752.24 39067.66 40349.27 42956.82 41983.94 41682.02 42670.47 41033.28 42664.54 42117.23 42869.16 42445.59 42123.85 42377.02 416
tmp_tt65.23 38662.94 38972.13 40144.90 43050.03 42681.05 41789.42 42138.45 42048.51 42299.90 1854.09 40578.70 42291.84 26018.26 42487.64 406
PMVScopyleft49.05 2353.75 38851.34 39260.97 40540.80 43134.68 43274.82 41989.62 42037.55 42128.67 42772.12 4167.09 43181.63 42143.17 42268.21 40066.59 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 39339.14 39633.31 40819.94 43224.83 43498.36 3359.75 43315.53 42651.31 42087.14 40519.62 42717.74 42847.10 4203.47 42757.36 421
testmvs40.60 39244.45 39529.05 40919.49 43314.11 43599.68 18518.47 43220.74 42564.59 41098.48 21910.95 43017.09 42956.66 41811.01 42555.94 422
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.02 4290.00 4340.00 4300.00 4290.00 4280.00 426
eth-test20.00 434
eth-test0.00 434
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k23.43 39431.24 3970.00 4110.00 4340.00 4360.00 42298.09 2110.00 4290.00 43099.67 9883.37 2600.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas7.60 39710.13 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 43091.20 1640.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.28 39611.04 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43099.40 1310.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4300.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS90.97 29786.10 335
PC_three_145296.96 5099.80 1899.79 5897.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 13797.27 3799.80 1899.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 6699.83 1499.91 1497.87 5100.00 199.92 13100.00 1100.00 1
GSMVS99.59 137
sam_mvs194.72 6999.59 137
sam_mvs94.25 89
MTGPAbinary98.28 185
test_post195.78 39159.23 42693.20 12297.74 28191.06 269
test_post63.35 42394.43 7798.13 260
patchmatchnet-post91.70 38795.12 5497.95 272
MTMP99.87 11196.49 361
test9_res99.71 3899.99 21100.00 1
agg_prior299.48 49100.00 1100.00 1
test_prior498.05 7399.94 73
test_prior299.95 5695.78 8699.73 3599.76 6696.00 3799.78 27100.00 1
旧先验299.46 22694.21 14299.85 1099.95 7496.96 169
新几何299.40 230
无先验99.49 21998.71 6893.46 170100.00 194.36 21599.99 23
原ACMM299.90 96
testdata299.99 3690.54 282
segment_acmp96.68 29
testdata199.28 25096.35 76
plane_prior597.87 23398.37 24197.79 14689.55 27094.52 279
plane_prior498.59 207
plane_prior391.64 28996.63 6393.01 242
plane_prior299.84 13096.38 72
plane_prior91.74 28399.86 12296.76 5889.59 269
n20.00 435
nn0.00 435
door-mid89.69 419
test1198.44 129
door90.31 416
HQP5-MVS91.85 279
BP-MVS97.92 137
HQP4-MVS93.37 23798.39 23594.53 277
HQP3-MVS97.89 23189.60 267
HQP2-MVS80.65 288
MDTV_nov1_ep13_2view96.26 14896.11 38591.89 23298.06 14594.40 7994.30 21899.67 118
ACMMP++_ref87.04 301
ACMMP++88.23 290
Test By Simon92.82 133