| AdaColmap |  | | 97.23 101 | 96.80 108 | 98.51 106 | 99.99 1 | 95.60 165 | 99.09 251 | 98.84 58 | 93.32 165 | 96.74 168 | 99.72 81 | 86.04 222 | 100.00 1 | 98.01 115 | 99.43 110 | 99.94 74 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 14 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 23 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 27 | 98.64 76 | 98.47 2 | 99.13 85 | 99.92 13 | 96.38 31 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 74 | 99.97 3 | 96.92 113 | 99.95 52 | 98.38 159 | 95.04 97 | 98.61 112 | 99.80 51 | 93.39 102 | 100.00 1 | 98.64 89 | 100.00 1 | 99.98 48 |
|
| CPTT-MVS | | | 97.64 84 | 97.32 87 | 98.58 98 | 99.97 3 | 95.77 154 | 99.96 34 | 98.35 165 | 89.90 272 | 98.36 122 | 99.79 55 | 91.18 158 | 99.99 36 | 98.37 99 | 99.99 21 | 99.99 23 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 46 | 99.92 78 | 98.44 123 | 92.06 217 | 98.40 121 | 99.84 41 | 95.68 41 | 100.00 1 | 98.19 105 | 99.71 83 | 99.97 58 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 40 | 99.95 52 | 98.43 131 | 95.35 91 | 98.03 134 | 99.75 69 | 94.03 88 | 99.98 43 | 98.11 110 | 99.83 72 | 99.99 23 |
|
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 59 | 99.96 8 | 97.43 94 | 99.95 52 | 98.61 82 | 94.77 105 | 99.31 76 | 99.85 30 | 94.22 81 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 66 | 99.96 8 | 97.18 101 | 99.96 34 | 98.55 98 | 94.87 103 | 99.45 64 | 99.85 30 | 94.07 87 | 100.00 1 | 98.67 86 | 100.00 1 | 99.98 48 |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 66 | 99.96 8 | 97.18 101 | 99.95 52 | 98.60 84 | 94.77 105 | 99.31 76 | 99.84 41 | 93.73 97 | 100.00 1 | 98.70 84 | 99.98 32 | 99.98 48 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 27 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 79 | 99.96 8 | 96.62 122 | 99.97 27 | 98.39 155 | 94.43 117 | 98.90 94 | 99.87 24 | 94.30 79 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 148 | 96.63 56 | 99.75 29 | 99.93 11 | 97.49 10 | | | | |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 52 | 98.43 131 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 143 | 96.22 71 | 99.41 68 | 99.78 59 | 94.34 77 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 210 | 92.06 243 | 99.15 57 | 99.94 13 | 97.50 90 | 99.94 68 | 98.42 143 | 96.22 71 | 99.41 68 | 41.37 407 | 94.34 77 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 58 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 59 | 99.98 14 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 37 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 43 | 99.91 83 | 98.39 155 | 97.20 38 | 99.46 63 | 99.85 30 | 95.53 45 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MP-MVS |  | | 98.23 57 | 97.97 59 | 99.03 68 | 99.94 13 | 97.17 104 | 99.95 52 | 98.39 155 | 94.70 109 | 98.26 128 | 99.81 50 | 91.84 149 | 100.00 1 | 98.85 76 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 44 | 99.87 104 | 98.33 170 | 93.97 143 | 99.76 28 | 99.87 24 | 94.99 59 | 99.75 132 | 98.55 93 | 100.00 1 | 99.98 48 |
|
| PAPM_NR | | | 98.12 60 | 97.93 64 | 98.70 87 | 99.94 13 | 96.13 144 | 99.82 135 | 98.43 131 | 94.56 113 | 97.52 146 | 99.70 85 | 94.40 72 | 99.98 43 | 97.00 150 | 99.98 32 | 99.99 23 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 184 | 99.44 20 | 97.33 31 | 99.00 90 | 99.72 81 | 94.03 88 | 99.98 43 | 98.73 83 | 100.00 1 | 100.00 1 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 34 | 98.43 131 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 24 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 148 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 131 | 97.26 36 | 99.80 17 | 99.88 21 | 96.71 24 | 100.00 1 | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 52 | 98.32 172 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 34 | 98.42 143 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 19 | | | | |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 73 | 99.93 24 | 97.24 98 | 99.95 52 | 98.42 143 | 97.50 26 | 99.52 59 | 99.88 21 | 97.43 16 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.93 24 | 98.77 40 | | 98.43 131 | | 99.63 43 | | | 99.85 108 | | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 83 | 99.95 52 | 98.36 163 | 95.58 85 | 99.52 59 | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 54 | | 98.52 104 | 92.34 209 | 99.31 76 | 99.83 43 | 95.06 54 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| GST-MVS | | | 98.27 52 | 97.97 59 | 99.17 53 | 99.92 31 | 97.57 85 | 99.93 75 | 98.39 155 | 94.04 141 | 98.80 99 | 99.74 76 | 92.98 117 | 100.00 1 | 98.16 107 | 99.76 80 | 99.93 76 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 131 | 93.90 148 | 99.71 34 | 99.86 26 | 95.88 38 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 28 | 99.96 34 | 98.43 131 | 94.35 122 | 99.71 34 | 99.86 26 | 95.94 35 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 31 | 99.96 34 | 98.43 131 | 94.35 122 | 99.69 36 | 99.85 30 | 95.94 35 | 99.85 108 | | | |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 72 | 99.92 31 | 97.00 109 | 99.75 155 | 99.50 18 | 93.90 148 | 99.37 73 | 99.76 63 | 93.24 111 | 100.00 1 | 97.75 133 | 99.96 46 | 99.98 48 |
|
| ACMMP |  | | 97.74 79 | 97.44 81 | 98.66 90 | 99.92 31 | 96.13 144 | 99.18 245 | 99.45 19 | 94.84 104 | 96.41 178 | 99.71 83 | 91.40 152 | 99.99 36 | 97.99 117 | 98.03 157 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 52 | 98.43 131 | 96.48 59 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 52 | 98.56 92 | 97.56 25 | 99.44 65 | 99.85 30 | 95.38 48 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 57 | 99.87 104 | 98.36 163 | 94.08 135 | 99.74 31 | 99.73 78 | 94.08 86 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 34 | 99.24 240 | 98.47 115 | 98.14 10 | 99.08 86 | 99.91 14 | 93.09 114 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 34 | | | | 99.80 51 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 104 | 98.44 123 | 97.48 27 | 99.64 42 | 99.94 4 | 96.68 26 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 62 | | | | | | |
|
| CSCG | | | 97.10 106 | 97.04 98 | 97.27 179 | 99.89 45 | 91.92 265 | 99.90 90 | 99.07 34 | 88.67 295 | 95.26 200 | 99.82 46 | 93.17 113 | 99.98 43 | 98.15 108 | 99.47 104 | 99.90 83 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 53 | 99.88 49 | 97.59 84 | 99.94 68 | 98.44 123 | 94.31 125 | 98.50 116 | 99.82 46 | 93.06 115 | 99.99 36 | 98.30 103 | 99.99 21 | 99.93 76 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 77 | 99.88 49 | 97.04 107 | 99.84 125 | 98.35 165 | 94.92 101 | 99.32 75 | 99.80 51 | 93.35 104 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 83 | 98.33 170 | 93.22 168 | 99.78 26 | 99.89 19 | 94.57 69 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 32 | 99.86 117 | 98.38 159 | 93.19 169 | 99.77 27 | 99.94 4 | 95.54 43 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 68 | 99.86 53 | 97.10 106 | 99.98 14 | 98.80 62 | 90.78 258 | 99.62 46 | 99.78 59 | 95.30 49 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| MTAPA | | | 98.29 51 | 97.96 62 | 99.30 42 | 99.85 54 | 97.93 73 | 99.39 221 | 98.28 179 | 95.76 80 | 97.18 156 | 99.88 21 | 92.74 125 | 100.00 1 | 98.67 86 | 99.88 68 | 99.99 23 |
|
| LS3D | | | 95.84 158 | 95.11 168 | 98.02 134 | 99.85 54 | 95.10 185 | 98.74 293 | 98.50 112 | 87.22 316 | 93.66 218 | 99.86 26 | 87.45 206 | 99.95 69 | 90.94 258 | 99.81 78 | 99.02 199 |
|
| HPM-MVS |  | | 97.96 63 | 97.72 71 | 98.68 88 | 99.84 56 | 96.39 131 | 99.90 90 | 98.17 191 | 92.61 194 | 98.62 111 | 99.57 107 | 91.87 148 | 99.67 145 | 98.87 75 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 85 | 99.83 57 | 96.59 124 | 99.40 217 | 98.51 107 | 95.29 93 | 98.51 115 | 99.76 63 | 93.60 101 | 99.71 138 | 98.53 94 | 99.52 99 | 99.95 71 |
|
| save fliter | | | | | | 99.82 58 | 98.79 38 | 99.96 34 | 98.40 152 | 97.66 21 | | | | | | | |
|
| PLC |  | 95.54 3 | 97.93 65 | 97.89 67 | 98.05 133 | 99.82 58 | 94.77 194 | 99.92 78 | 98.46 117 | 93.93 146 | 97.20 155 | 99.27 132 | 95.44 47 | 99.97 53 | 97.41 138 | 99.51 102 | 99.41 162 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| APD-MVS_3200maxsize | | | 98.25 55 | 98.08 55 | 98.78 82 | 99.81 60 | 96.60 123 | 99.82 135 | 98.30 177 | 93.95 145 | 99.37 73 | 99.77 61 | 92.84 121 | 99.76 131 | 98.95 67 | 99.92 63 | 99.97 58 |
|
| EI-MVSNet-UG-set | | | 98.14 59 | 97.99 58 | 98.60 95 | 99.80 61 | 96.27 134 | 99.36 226 | 98.50 112 | 95.21 95 | 98.30 125 | 99.75 69 | 93.29 108 | 99.73 137 | 98.37 99 | 99.30 116 | 99.81 94 |
|
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 86 | 99.79 62 | 96.37 132 | 99.76 152 | 98.31 174 | 94.43 117 | 99.40 70 | 99.75 69 | 93.28 109 | 99.78 125 | 98.90 73 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 132 | 99.76 152 | 98.31 174 | 94.43 117 | 99.40 70 | 99.75 69 | 92.95 118 | | 98.90 73 | 99.92 63 | 99.97 58 |
|
| HPM-MVS_fast | | | 97.80 74 | 97.50 79 | 98.68 88 | 99.79 62 | 96.42 127 | 99.88 101 | 98.16 195 | 91.75 227 | 98.94 92 | 99.54 110 | 91.82 150 | 99.65 147 | 97.62 136 | 99.99 21 | 99.99 23 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 47 | 99.90 90 | 98.21 186 | 93.53 158 | 99.81 15 | 99.89 19 | 94.70 67 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 87 | | 98.64 76 | | | 99.85 30 | 95.63 42 | | | 99.94 54 | 99.99 23 |
|
| OMC-MVS | | | 97.28 98 | 97.23 90 | 97.41 170 | 99.76 66 | 93.36 234 | 99.65 180 | 97.95 214 | 96.03 75 | 97.41 150 | 99.70 85 | 89.61 182 | 99.51 152 | 96.73 159 | 98.25 149 | 99.38 164 |
|
| 新几何1 | | | | | 99.42 37 | 99.75 68 | 98.27 61 | | 98.63 80 | 92.69 189 | 99.55 54 | 99.82 46 | 94.40 72 | 100.00 1 | 91.21 250 | 99.94 54 | 99.99 23 |
|
| MP-MVS-pluss | | | 98.07 62 | 97.64 74 | 99.38 41 | 99.74 69 | 98.41 60 | 99.74 158 | 98.18 190 | 93.35 163 | 96.45 175 | 99.85 30 | 92.64 127 | 99.97 53 | 98.91 72 | 99.89 66 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 47 | 99.77 147 | 98.38 159 | 96.73 53 | 99.88 6 | 99.74 76 | 94.89 61 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 55 | | 98.40 152 | | 99.65 40 | | 94.76 64 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 75 | 99.73 72 | 96.99 110 | | 98.51 107 | 94.06 138 | 99.62 46 | 99.85 30 | 94.97 60 | 99.96 61 | 95.11 179 | 99.95 49 | 99.92 81 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 80 | 99.73 72 | 96.63 121 | 99.97 27 | 97.92 219 | 98.07 11 | 98.76 103 | 99.55 108 | 95.00 58 | 99.94 77 | 99.91 15 | 97.68 162 | 99.99 23 |
|
| CANet | | | 98.27 52 | 97.82 69 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 14 | 98.51 107 | 97.00 43 | 98.52 114 | 99.71 83 | 87.80 201 | 99.95 69 | 99.75 28 | 99.38 112 | 99.83 91 |
|
| F-COLMAP | | | 96.93 115 | 96.95 101 | 96.87 189 | 99.71 75 | 91.74 270 | 99.85 120 | 97.95 214 | 93.11 172 | 95.72 193 | 99.16 143 | 92.35 137 | 99.94 77 | 95.32 177 | 99.35 114 | 98.92 202 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 44 | 99.94 68 | 98.34 169 | 96.38 65 | 99.81 15 | 99.76 63 | 94.59 68 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| patch_mono-2 | | | 98.24 56 | 99.12 5 | 95.59 223 | 99.67 77 | 86.91 343 | 99.95 52 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 63 | 96.54 29 | 99.98 43 | 99.94 11 | 99.82 76 | 99.88 85 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 78 | 98.62 53 | 99.85 120 | 98.37 162 | 94.68 110 | 99.53 57 | 99.83 43 | 92.87 120 | 100.00 1 | 98.66 88 | 99.84 71 | 99.99 23 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 82 | 98.98 12 | 93.92 287 | 99.63 79 | 81.76 370 | 99.96 34 | 98.56 92 | 99.47 1 | 99.19 83 | 99.99 1 | 94.16 85 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 84 | 99.62 80 | 96.80 118 | 99.90 90 | 99.51 17 | 97.60 22 | 99.20 81 | 99.36 126 | 93.71 98 | 99.91 89 | 97.99 117 | 98.71 137 | 99.61 127 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 81 | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 3 | 99.39 72 | 99.80 51 | 90.49 172 | 99.96 61 | 99.89 16 | 99.43 110 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 151 | 95.82 148 | 96.72 194 | 99.59 81 | 96.99 110 | 99.95 52 | 99.10 31 | 94.06 138 | 98.27 126 | 95.80 291 | 89.00 193 | 99.95 69 | 99.12 58 | 87.53 284 | 93.24 342 |
|
| PVSNet_Blended | | | 97.94 64 | 97.64 74 | 98.83 81 | 99.59 81 | 96.99 110 | 100.00 1 | 99.10 31 | 95.38 90 | 98.27 126 | 99.08 146 | 89.00 193 | 99.95 69 | 99.12 58 | 99.25 118 | 99.57 137 |
|
| PatchMatch-RL | | | 96.04 152 | 95.40 157 | 97.95 136 | 99.59 81 | 95.22 181 | 99.52 202 | 99.07 34 | 93.96 144 | 96.49 174 | 98.35 214 | 82.28 251 | 99.82 120 | 90.15 274 | 99.22 121 | 98.81 209 |
|
| dcpmvs_2 | | | 97.42 93 | 98.09 54 | 95.42 228 | 99.58 85 | 87.24 339 | 99.23 241 | 96.95 313 | 94.28 127 | 98.93 93 | 99.73 78 | 94.39 75 | 99.16 173 | 99.89 16 | 99.82 76 | 99.86 89 |
|
| test222 | | | | | | 99.55 86 | 97.41 96 | 99.34 227 | 98.55 98 | 91.86 222 | 99.27 80 | 99.83 43 | 93.84 95 | | | 99.95 49 | 99.99 23 |
|
| CNLPA | | | 97.76 78 | 97.38 83 | 98.92 78 | 99.53 87 | 96.84 115 | 99.87 104 | 98.14 199 | 93.78 151 | 96.55 173 | 99.69 87 | 92.28 139 | 99.98 43 | 97.13 145 | 99.44 108 | 99.93 76 |
|
| API-MVS | | | 97.86 68 | 97.66 73 | 98.47 108 | 99.52 88 | 95.41 172 | 99.47 211 | 98.87 52 | 91.68 228 | 98.84 96 | 99.85 30 | 92.34 138 | 99.99 36 | 98.44 96 | 99.96 46 | 100.00 1 |
|
| PVSNet | | 91.05 13 | 97.13 105 | 96.69 113 | 98.45 110 | 99.52 88 | 95.81 152 | 99.95 52 | 99.65 12 | 94.73 107 | 99.04 88 | 99.21 139 | 84.48 237 | 99.95 69 | 94.92 185 | 98.74 136 | 99.58 136 |
|
| 114514_t | | | 97.41 94 | 96.83 106 | 99.14 59 | 99.51 90 | 97.83 75 | 99.89 98 | 98.27 181 | 88.48 299 | 99.06 87 | 99.66 96 | 90.30 174 | 99.64 148 | 96.32 163 | 99.97 42 | 99.96 64 |
|
| cl22 | | | 93.77 214 | 93.25 218 | 95.33 232 | 99.49 91 | 94.43 198 | 99.61 188 | 98.09 201 | 90.38 263 | 89.16 287 | 95.61 298 | 90.56 170 | 97.34 275 | 91.93 242 | 84.45 305 | 94.21 287 |
|
| testdata | | | | | 98.42 113 | 99.47 92 | 95.33 175 | | 98.56 92 | 93.78 151 | 99.79 25 | 99.85 30 | 93.64 100 | 99.94 77 | 94.97 183 | 99.94 54 | 100.00 1 |
|
| MAR-MVS | | | 97.43 89 | 97.19 92 | 98.15 127 | 99.47 92 | 94.79 193 | 99.05 262 | 98.76 63 | 92.65 192 | 98.66 109 | 99.82 46 | 88.52 198 | 99.98 43 | 98.12 109 | 99.63 88 | 99.67 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DP-MVS | | | 94.54 192 | 93.42 211 | 97.91 141 | 99.46 94 | 94.04 211 | 98.93 274 | 97.48 259 | 81.15 366 | 90.04 260 | 99.55 108 | 87.02 212 | 99.95 69 | 88.97 284 | 98.11 153 | 99.73 105 |
|
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 105 | 99.39 95 | 95.79 153 | 99.87 104 | 99.86 2 | 96.70 54 | 98.78 100 | 99.79 55 | 92.03 145 | 99.90 91 | 99.17 57 | 99.86 70 | 99.88 85 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 76 | 99.38 96 | 98.87 32 | 98.46 310 | 99.42 22 | 97.03 42 | 99.02 89 | 99.09 145 | 99.35 1 | 98.21 239 | 99.73 32 | 99.78 79 | 99.77 101 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 22 | 99.01 71 | 99.36 97 | 97.18 101 | 99.93 75 | 99.90 1 | 96.81 51 | 98.67 108 | 99.77 61 | 93.92 90 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 98 | 99.92 1 | 99.96 34 | 98.44 123 | 97.96 14 | 99.55 54 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 214 | 99.94 54 | 99.98 48 |
|
| TAPA-MVS | | 92.12 8 | 94.42 197 | 93.60 204 | 96.90 188 | 99.33 98 | 91.78 269 | 99.78 144 | 98.00 208 | 89.89 273 | 94.52 206 | 99.47 114 | 91.97 146 | 99.18 171 | 69.90 380 | 99.52 99 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 97.88 67 | 97.94 63 | 97.70 154 | 99.28 100 | 95.20 182 | 99.98 14 | 97.15 291 | 95.53 87 | 99.62 46 | 99.79 55 | 92.08 144 | 98.38 222 | 98.75 82 | 99.28 117 | 99.52 147 |
|
| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 23 | 97.92 139 | 99.27 101 | 95.18 183 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 78 | 92.64 127 | 99.99 36 | 99.58 38 | 99.51 102 | 98.59 219 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 43 | 99.21 102 | 97.91 74 | 99.98 14 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 69 | 94.72 65 | 99.97 53 | 99.87 19 | 99.64 87 | 99.95 71 |
|
| test_yl | | | 97.83 70 | 97.37 84 | 99.21 47 | 99.18 103 | 97.98 70 | 99.64 184 | 99.27 27 | 91.43 237 | 97.88 140 | 98.99 155 | 95.84 39 | 99.84 116 | 98.82 77 | 95.32 215 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 70 | 97.37 84 | 99.21 47 | 99.18 103 | 97.98 70 | 99.64 184 | 99.27 27 | 91.43 237 | 97.88 140 | 98.99 155 | 95.84 39 | 99.84 116 | 98.82 77 | 95.32 215 | 99.79 97 |
|
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 103 | 99.13 22 | 99.87 104 | 99.65 12 | 98.17 8 | 98.75 105 | 99.75 69 | 92.76 124 | 99.94 77 | 99.88 18 | 99.44 108 | 99.94 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 44 | 99.17 106 | 97.81 77 | 99.98 14 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 63 | 94.21 83 | 99.97 53 | 99.87 19 | 99.52 99 | 99.98 48 |
|
| DeepC-MVS | | 94.51 4 | 96.92 116 | 96.40 123 | 98.45 110 | 99.16 107 | 95.90 150 | 99.66 178 | 98.06 204 | 96.37 68 | 94.37 209 | 99.49 113 | 83.29 247 | 99.90 91 | 97.63 135 | 99.61 93 | 99.55 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 51 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 130 | 99.24 137 | 92.58 130 | 99.94 77 | 98.63 91 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 97.79 76 | 97.91 65 | 97.43 169 | 99.10 109 | 94.42 199 | 99.99 4 | 97.10 296 | 95.07 96 | 99.68 37 | 99.75 69 | 92.95 118 | 98.34 226 | 98.38 98 | 99.14 123 | 99.54 143 |
|
| Anonymous202405211 | | | 93.10 232 | 91.99 245 | 96.40 204 | 99.10 109 | 89.65 314 | 98.88 279 | 97.93 216 | 83.71 353 | 94.00 215 | 98.75 184 | 68.79 348 | 99.88 102 | 95.08 181 | 91.71 243 | 99.68 111 |
|
| fmvsm_s_conf0.5_n | | | 97.80 74 | 97.85 68 | 97.67 155 | 99.06 111 | 94.41 200 | 99.98 14 | 98.97 40 | 97.34 29 | 99.63 43 | 99.69 87 | 87.27 208 | 99.97 53 | 99.62 37 | 99.06 127 | 98.62 218 |
|
| HyFIR lowres test | | | 96.66 130 | 96.43 122 | 97.36 175 | 99.05 112 | 93.91 216 | 99.70 172 | 99.80 3 | 90.54 261 | 96.26 181 | 98.08 221 | 92.15 142 | 98.23 238 | 96.84 158 | 95.46 210 | 99.93 76 |
|
| LFMVS | | | 94.75 186 | 93.56 207 | 98.30 119 | 99.03 113 | 95.70 159 | 98.74 293 | 97.98 211 | 87.81 309 | 98.47 117 | 99.39 123 | 67.43 356 | 99.53 150 | 98.01 115 | 95.20 218 | 99.67 113 |
|
| AllTest | | | 92.48 247 | 91.64 250 | 95.00 242 | 99.01 114 | 88.43 328 | 98.94 273 | 96.82 328 | 86.50 325 | 88.71 293 | 98.47 210 | 74.73 325 | 99.88 102 | 85.39 322 | 96.18 192 | 96.71 246 |
|
| TestCases | | | | | 95.00 242 | 99.01 114 | 88.43 328 | | 96.82 328 | 86.50 325 | 88.71 293 | 98.47 210 | 74.73 325 | 99.88 102 | 85.39 322 | 96.18 192 | 96.71 246 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 254 | 91.49 256 | 94.25 275 | 99.00 116 | 88.04 334 | 98.42 315 | 96.70 335 | 82.30 362 | 88.43 300 | 99.01 152 | 76.97 301 | 99.85 108 | 86.11 318 | 96.50 187 | 94.86 257 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_fmvs1 | | | 95.35 172 | 95.68 153 | 94.36 272 | 98.99 117 | 84.98 352 | 99.96 34 | 96.65 337 | 97.60 22 | 99.73 32 | 98.96 161 | 71.58 338 | 99.93 85 | 98.31 102 | 99.37 113 | 98.17 226 |
|
| HY-MVS | | 92.50 7 | 97.79 76 | 97.17 94 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 339 | 99.52 15 | 95.69 82 | 98.32 124 | 97.41 242 | 93.32 106 | 99.77 128 | 98.08 113 | 95.75 206 | 99.81 94 |
|
| VNet | | | 97.21 102 | 96.57 118 | 99.13 63 | 98.97 119 | 97.82 76 | 99.03 265 | 99.21 29 | 94.31 125 | 99.18 84 | 98.88 172 | 86.26 221 | 99.89 96 | 98.93 69 | 94.32 227 | 99.69 110 |
|
| thres200 | | | 96.96 113 | 96.21 127 | 99.22 46 | 98.97 119 | 98.84 35 | 99.85 120 | 99.71 7 | 93.17 170 | 96.26 181 | 98.88 172 | 89.87 179 | 99.51 152 | 94.26 203 | 94.91 220 | 99.31 174 |
|
| tfpn200view9 | | | 96.79 120 | 95.99 132 | 99.19 49 | 98.94 121 | 98.82 36 | 99.78 144 | 99.71 7 | 92.86 178 | 96.02 186 | 98.87 175 | 89.33 186 | 99.50 154 | 93.84 211 | 94.57 223 | 99.27 180 |
|
| thres400 | | | 96.78 122 | 95.99 132 | 99.16 55 | 98.94 121 | 98.82 36 | 99.78 144 | 99.71 7 | 92.86 178 | 96.02 186 | 98.87 175 | 89.33 186 | 99.50 154 | 93.84 211 | 94.57 223 | 99.16 187 |
|
| Anonymous20231211 | | | 89.86 303 | 88.44 310 | 94.13 278 | 98.93 123 | 90.68 292 | 98.54 307 | 98.26 182 | 76.28 378 | 86.73 321 | 95.54 302 | 70.60 344 | 97.56 268 | 90.82 261 | 80.27 340 | 94.15 295 |
|
| canonicalmvs | | | 97.09 108 | 96.32 124 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 166 | 97.35 270 | 94.45 115 | 97.88 140 | 99.42 118 | 86.71 215 | 99.52 151 | 98.48 95 | 93.97 233 | 99.72 107 |
|
| SDMVSNet | | | 94.80 182 | 93.96 195 | 97.33 177 | 98.92 125 | 95.42 171 | 99.59 190 | 98.99 37 | 92.41 206 | 92.55 233 | 97.85 231 | 75.81 315 | 98.93 181 | 97.90 123 | 91.62 244 | 97.64 237 |
|
| sd_testset | | | 93.55 221 | 92.83 225 | 95.74 221 | 98.92 125 | 90.89 289 | 98.24 321 | 98.85 56 | 92.41 206 | 92.55 233 | 97.85 231 | 71.07 343 | 98.68 198 | 93.93 208 | 91.62 244 | 97.64 237 |
|
| EPNet_dtu | | | 95.71 162 | 95.39 158 | 96.66 196 | 98.92 125 | 93.41 231 | 99.57 194 | 98.90 47 | 96.19 73 | 97.52 146 | 98.56 202 | 92.65 126 | 97.36 273 | 77.89 363 | 98.33 144 | 99.20 185 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WTY-MVS | | | 98.10 61 | 97.60 76 | 99.60 22 | 98.92 125 | 99.28 17 | 99.89 98 | 99.52 15 | 95.58 85 | 98.24 129 | 99.39 123 | 93.33 105 | 99.74 134 | 97.98 119 | 95.58 209 | 99.78 100 |
|
| CHOSEN 1792x2688 | | | 96.81 119 | 96.53 119 | 97.64 157 | 98.91 129 | 93.07 236 | 99.65 180 | 99.80 3 | 95.64 83 | 95.39 197 | 98.86 177 | 84.35 240 | 99.90 91 | 96.98 152 | 99.16 122 | 99.95 71 |
|
| thres100view900 | | | 96.74 125 | 95.92 144 | 99.18 50 | 98.90 130 | 98.77 40 | 99.74 158 | 99.71 7 | 92.59 196 | 95.84 189 | 98.86 177 | 89.25 188 | 99.50 154 | 93.84 211 | 94.57 223 | 99.27 180 |
|
| thres600view7 | | | 96.69 128 | 95.87 147 | 99.14 59 | 98.90 130 | 98.78 39 | 99.74 158 | 99.71 7 | 92.59 196 | 95.84 189 | 98.86 177 | 89.25 188 | 99.50 154 | 93.44 223 | 94.50 226 | 99.16 187 |
|
| MSDG | | | 94.37 199 | 93.36 215 | 97.40 171 | 98.88 132 | 93.95 215 | 99.37 224 | 97.38 268 | 85.75 336 | 90.80 252 | 99.17 142 | 84.11 242 | 99.88 102 | 86.35 315 | 98.43 142 | 98.36 224 |
|
| h-mvs33 | | | 94.92 180 | 94.36 184 | 96.59 198 | 98.85 133 | 91.29 281 | 98.93 274 | 98.94 41 | 95.90 76 | 98.77 101 | 98.42 213 | 90.89 166 | 99.77 128 | 97.80 126 | 70.76 374 | 98.72 215 |
|
| Anonymous20240529 | | | 92.10 255 | 90.65 266 | 96.47 199 | 98.82 134 | 90.61 294 | 98.72 295 | 98.67 73 | 75.54 382 | 93.90 217 | 98.58 200 | 66.23 360 | 99.90 91 | 94.70 194 | 90.67 246 | 98.90 205 |
|
| PVSNet_Blended_VisFu | | | 97.27 99 | 96.81 107 | 98.66 90 | 98.81 135 | 96.67 120 | 99.92 78 | 98.64 76 | 94.51 114 | 96.38 179 | 98.49 206 | 89.05 192 | 99.88 102 | 97.10 147 | 98.34 143 | 99.43 160 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 55 | 98.80 136 | 98.92 28 | 99.54 200 | 98.17 191 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 155 | 99.89 96 | 99.41 48 | 99.67 85 | 98.69 216 |
|
| CANet_DTU | | | 96.76 123 | 96.15 128 | 98.60 95 | 98.78 137 | 97.53 86 | 99.84 125 | 97.63 238 | 97.25 37 | 99.20 81 | 99.64 99 | 81.36 260 | 99.98 43 | 92.77 234 | 98.89 130 | 98.28 225 |
|
| mvsany_test1 | | | 97.82 72 | 97.90 66 | 97.55 162 | 98.77 138 | 93.04 239 | 99.80 141 | 97.93 216 | 96.95 45 | 99.61 52 | 99.68 93 | 90.92 163 | 99.83 118 | 99.18 56 | 98.29 148 | 99.80 96 |
|
| alignmvs | | | 97.81 73 | 97.33 86 | 99.25 44 | 98.77 138 | 98.66 49 | 99.99 4 | 98.44 123 | 94.40 121 | 98.41 119 | 99.47 114 | 93.65 99 | 99.42 162 | 98.57 92 | 94.26 229 | 99.67 113 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 50 | 98.72 140 | 97.71 79 | 99.98 14 | 98.44 123 | 96.85 46 | 99.80 17 | 99.91 14 | 97.57 8 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| xiu_mvs_v2_base | | | 98.23 57 | 97.97 59 | 99.02 70 | 98.69 141 | 98.66 49 | 99.52 202 | 98.08 203 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 168 | 99.71 138 | 99.39 50 | 98.63 138 | 98.69 216 |
|
| miper_enhance_ethall | | | 94.36 201 | 93.98 194 | 95.49 224 | 98.68 142 | 95.24 179 | 99.73 163 | 97.29 278 | 93.28 167 | 89.86 265 | 95.97 289 | 94.37 76 | 97.05 297 | 92.20 238 | 84.45 305 | 94.19 288 |
|
| ETVMVS | | | 97.03 111 | 96.64 114 | 98.20 123 | 98.67 143 | 97.12 105 | 99.89 98 | 98.57 89 | 91.10 248 | 98.17 131 | 98.59 197 | 93.86 94 | 98.19 240 | 95.64 174 | 95.24 217 | 99.28 179 |
|
| test2506 | | | 97.53 86 | 97.19 92 | 98.58 98 | 98.66 144 | 96.90 114 | 98.81 288 | 99.77 5 | 94.93 99 | 97.95 136 | 98.96 161 | 92.51 132 | 99.20 169 | 94.93 184 | 98.15 150 | 99.64 119 |
|
| ECVR-MVS |  | | 95.66 165 | 95.05 170 | 97.51 165 | 98.66 144 | 93.71 220 | 98.85 285 | 98.45 118 | 94.93 99 | 96.86 164 | 98.96 161 | 75.22 321 | 99.20 169 | 95.34 176 | 98.15 150 | 99.64 119 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 81 | 97.72 71 | 97.77 149 | 98.63 146 | 94.26 205 | 99.96 34 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 87 | 87.00 213 | 99.97 53 | 99.46 44 | 98.89 130 | 99.08 195 |
|
| testing222 | | | 97.08 110 | 96.75 110 | 98.06 132 | 98.56 147 | 96.82 116 | 99.85 120 | 98.61 82 | 92.53 200 | 98.84 96 | 98.84 181 | 93.36 103 | 98.30 230 | 95.84 171 | 94.30 228 | 99.05 197 |
|
| test1111 | | | 95.57 167 | 94.98 173 | 97.37 173 | 98.56 147 | 93.37 233 | 98.86 283 | 98.45 118 | 94.95 98 | 96.63 170 | 98.95 166 | 75.21 322 | 99.11 174 | 95.02 182 | 98.14 152 | 99.64 119 |
|
| MVSTER | | | 95.53 168 | 95.22 164 | 96.45 201 | 98.56 147 | 97.72 78 | 99.91 83 | 97.67 236 | 92.38 208 | 91.39 244 | 97.14 249 | 97.24 18 | 97.30 280 | 94.80 190 | 87.85 278 | 94.34 279 |
|
| VDD-MVS | | | 93.77 214 | 92.94 222 | 96.27 209 | 98.55 150 | 90.22 303 | 98.77 292 | 97.79 230 | 90.85 254 | 96.82 166 | 99.42 118 | 61.18 377 | 99.77 128 | 98.95 67 | 94.13 230 | 98.82 208 |
|
| tpmvs | | | 94.28 203 | 93.57 206 | 96.40 204 | 98.55 150 | 91.50 279 | 95.70 373 | 98.55 98 | 87.47 311 | 92.15 237 | 94.26 348 | 91.42 151 | 98.95 180 | 88.15 294 | 95.85 202 | 98.76 211 |
|
| UGNet | | | 95.33 173 | 94.57 181 | 97.62 160 | 98.55 150 | 94.85 189 | 98.67 301 | 99.32 26 | 95.75 81 | 96.80 167 | 96.27 280 | 72.18 335 | 99.96 61 | 94.58 197 | 99.05 128 | 98.04 230 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PCF-MVS | | 94.20 5 | 95.18 174 | 94.10 191 | 98.43 112 | 98.55 150 | 95.99 148 | 97.91 334 | 97.31 275 | 90.35 265 | 89.48 276 | 99.22 138 | 85.19 230 | 99.89 96 | 90.40 271 | 98.47 141 | 99.41 162 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UWE-MVS | | | 96.79 120 | 96.72 111 | 97.00 184 | 98.51 154 | 93.70 221 | 99.71 168 | 98.60 84 | 92.96 174 | 97.09 157 | 98.34 215 | 96.67 28 | 98.85 184 | 92.11 240 | 96.50 187 | 98.44 221 |
|
| test_vis1_n_1920 | | | 95.44 170 | 95.31 161 | 95.82 219 | 98.50 155 | 88.74 322 | 99.98 14 | 97.30 276 | 97.84 16 | 99.85 9 | 99.19 140 | 66.82 358 | 99.97 53 | 98.82 77 | 99.46 106 | 98.76 211 |
|
| BH-w/o | | | 95.71 162 | 95.38 159 | 96.68 195 | 98.49 156 | 92.28 256 | 99.84 125 | 97.50 257 | 92.12 214 | 92.06 240 | 98.79 182 | 84.69 235 | 98.67 199 | 95.29 178 | 99.66 86 | 99.09 193 |
|
| baseline1 | | | 95.78 159 | 94.86 175 | 98.54 103 | 98.47 157 | 98.07 65 | 99.06 258 | 97.99 209 | 92.68 190 | 94.13 214 | 98.62 196 | 93.28 109 | 98.69 197 | 93.79 216 | 85.76 293 | 98.84 207 |
|
| iter_conf05 | | | 96.07 150 | 95.95 140 | 96.44 203 | 98.43 158 | 97.52 87 | 99.91 83 | 96.85 324 | 94.16 131 | 92.49 235 | 97.98 227 | 98.20 4 | 97.34 275 | 97.26 142 | 88.29 271 | 94.45 269 |
|
| EPMVS | | | 96.53 134 | 96.01 131 | 98.09 130 | 98.43 158 | 96.12 146 | 96.36 360 | 99.43 21 | 93.53 158 | 97.64 144 | 95.04 326 | 94.41 71 | 98.38 222 | 91.13 252 | 98.11 153 | 99.75 103 |
|
| iter_conf_final | | | 96.01 153 | 95.93 142 | 96.28 208 | 98.38 160 | 97.03 108 | 99.87 104 | 97.03 304 | 94.05 140 | 92.61 231 | 97.98 227 | 98.01 5 | 97.34 275 | 97.02 149 | 88.39 270 | 94.47 263 |
|
| sss | | | 97.57 85 | 97.03 99 | 99.18 50 | 98.37 161 | 98.04 67 | 99.73 163 | 99.38 23 | 93.46 160 | 98.76 103 | 99.06 148 | 91.21 154 | 99.89 96 | 96.33 162 | 97.01 179 | 99.62 124 |
|
| testing11 | | | 97.48 88 | 97.27 88 | 98.10 129 | 98.36 162 | 96.02 147 | 99.92 78 | 98.45 118 | 93.45 162 | 98.15 132 | 98.70 187 | 95.48 46 | 99.22 165 | 97.85 125 | 95.05 219 | 99.07 196 |
|
| BH-untuned | | | 95.18 174 | 94.83 176 | 96.22 210 | 98.36 162 | 91.22 282 | 99.80 141 | 97.32 274 | 90.91 252 | 91.08 248 | 98.67 189 | 83.51 244 | 98.54 205 | 94.23 204 | 99.61 93 | 98.92 202 |
|
| testing91 | | | 97.16 104 | 96.90 103 | 97.97 135 | 98.35 164 | 95.67 162 | 99.91 83 | 98.42 143 | 92.91 177 | 97.33 152 | 98.72 185 | 94.81 63 | 99.21 166 | 96.98 152 | 94.63 222 | 99.03 198 |
|
| testing99 | | | 97.17 103 | 96.91 102 | 97.95 136 | 98.35 164 | 95.70 159 | 99.91 83 | 98.43 131 | 92.94 175 | 97.36 151 | 98.72 185 | 94.83 62 | 99.21 166 | 97.00 150 | 94.64 221 | 98.95 201 |
|
| ET-MVSNet_ETH3D | | | 94.37 199 | 93.28 217 | 97.64 157 | 98.30 166 | 97.99 69 | 99.99 4 | 97.61 243 | 94.35 122 | 71.57 385 | 99.45 117 | 96.23 32 | 95.34 355 | 96.91 157 | 85.14 300 | 99.59 130 |
|
| AUN-MVS | | | 93.28 226 | 92.60 231 | 95.34 231 | 98.29 167 | 90.09 306 | 99.31 231 | 98.56 92 | 91.80 226 | 96.35 180 | 98.00 224 | 89.38 185 | 98.28 233 | 92.46 235 | 69.22 379 | 97.64 237 |
|
| FMVSNet3 | | | 92.69 243 | 91.58 252 | 95.99 214 | 98.29 167 | 97.42 95 | 99.26 239 | 97.62 240 | 89.80 274 | 89.68 269 | 95.32 316 | 81.62 258 | 96.27 335 | 87.01 311 | 85.65 294 | 94.29 281 |
|
| PMMVS | | | 96.76 123 | 96.76 109 | 96.76 192 | 98.28 169 | 92.10 260 | 99.91 83 | 97.98 211 | 94.12 133 | 99.53 57 | 99.39 123 | 86.93 214 | 98.73 192 | 96.95 155 | 97.73 160 | 99.45 157 |
|
| hse-mvs2 | | | 94.38 198 | 94.08 192 | 95.31 233 | 98.27 170 | 90.02 308 | 99.29 236 | 98.56 92 | 95.90 76 | 98.77 101 | 98.00 224 | 90.89 166 | 98.26 237 | 97.80 126 | 69.20 380 | 97.64 237 |
|
| PVSNet_0 | | 88.03 19 | 91.80 262 | 90.27 275 | 96.38 206 | 98.27 170 | 90.46 298 | 99.94 68 | 99.61 14 | 93.99 142 | 86.26 331 | 97.39 244 | 71.13 342 | 99.89 96 | 98.77 80 | 67.05 385 | 98.79 210 |
|
| UA-Net | | | 96.54 133 | 95.96 138 | 98.27 120 | 98.23 172 | 95.71 158 | 98.00 332 | 98.45 118 | 93.72 154 | 98.41 119 | 99.27 132 | 88.71 197 | 99.66 146 | 91.19 251 | 97.69 161 | 99.44 159 |
|
| test_cas_vis1_n_1920 | | | 96.59 132 | 96.23 126 | 97.65 156 | 98.22 173 | 94.23 206 | 99.99 4 | 97.25 282 | 97.77 17 | 99.58 53 | 99.08 146 | 77.10 298 | 99.97 53 | 97.64 134 | 99.45 107 | 98.74 213 |
|
| FE-MVS | | | 95.70 164 | 95.01 172 | 97.79 146 | 98.21 174 | 94.57 195 | 95.03 374 | 98.69 68 | 88.90 290 | 97.50 148 | 96.19 282 | 92.60 129 | 99.49 158 | 89.99 276 | 97.94 159 | 99.31 174 |
|
| GG-mvs-BLEND | | | | | 98.54 103 | 98.21 174 | 98.01 68 | 93.87 379 | 98.52 104 | | 97.92 137 | 97.92 230 | 99.02 2 | 97.94 256 | 98.17 106 | 99.58 96 | 99.67 113 |
|
| mvs_anonymous | | | 95.65 166 | 95.03 171 | 97.53 163 | 98.19 176 | 95.74 156 | 99.33 228 | 97.49 258 | 90.87 253 | 90.47 255 | 97.10 251 | 88.23 199 | 97.16 288 | 95.92 169 | 97.66 163 | 99.68 111 |
|
| MVS_Test | | | 96.46 136 | 95.74 149 | 98.61 94 | 98.18 177 | 97.23 99 | 99.31 231 | 97.15 291 | 91.07 249 | 98.84 96 | 97.05 255 | 88.17 200 | 98.97 178 | 94.39 199 | 97.50 165 | 99.61 127 |
|
| BH-RMVSNet | | | 95.18 174 | 94.31 187 | 97.80 144 | 98.17 178 | 95.23 180 | 99.76 152 | 97.53 253 | 92.52 202 | 94.27 212 | 99.25 136 | 76.84 303 | 98.80 186 | 90.89 260 | 99.54 98 | 99.35 169 |
|
| RPSCF | | | 91.80 262 | 92.79 227 | 88.83 350 | 98.15 179 | 69.87 388 | 98.11 328 | 96.60 339 | 83.93 351 | 94.33 210 | 99.27 132 | 79.60 280 | 99.46 161 | 91.99 241 | 93.16 240 | 97.18 244 |
|
| ETV-MVS | | | 97.92 66 | 97.80 70 | 98.25 121 | 98.14 180 | 96.48 125 | 99.98 14 | 97.63 238 | 95.61 84 | 99.29 79 | 99.46 116 | 92.55 131 | 98.82 185 | 99.02 66 | 98.54 139 | 99.46 155 |
|
| IS-MVSNet | | | 96.29 146 | 95.90 145 | 97.45 167 | 98.13 181 | 94.80 192 | 99.08 253 | 97.61 243 | 92.02 219 | 95.54 196 | 98.96 161 | 90.64 169 | 98.08 245 | 93.73 219 | 97.41 169 | 99.47 154 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 82 | 98.12 182 | 96.41 128 | 99.99 4 | 98.83 59 | 98.22 6 | 99.67 38 | 99.64 99 | 91.11 159 | 99.94 77 | 99.67 36 | 99.62 89 | 99.98 48 |
|
| ab-mvs | | | 94.69 187 | 93.42 211 | 98.51 106 | 98.07 183 | 96.26 135 | 96.49 358 | 98.68 70 | 90.31 266 | 94.54 205 | 97.00 257 | 76.30 310 | 99.71 138 | 95.98 168 | 93.38 238 | 99.56 138 |
|
| XVG-OURS-SEG-HR | | | 94.79 183 | 94.70 180 | 95.08 239 | 98.05 184 | 89.19 317 | 99.08 253 | 97.54 251 | 93.66 155 | 94.87 203 | 99.58 106 | 78.78 288 | 99.79 123 | 97.31 140 | 93.40 237 | 96.25 250 |
|
| EIA-MVS | | | 97.53 86 | 97.46 80 | 97.76 151 | 98.04 185 | 94.84 190 | 99.98 14 | 97.61 243 | 94.41 120 | 97.90 138 | 99.59 104 | 92.40 136 | 98.87 182 | 98.04 114 | 99.13 124 | 99.59 130 |
|
| XVG-OURS | | | 94.82 181 | 94.74 179 | 95.06 240 | 98.00 186 | 89.19 317 | 99.08 253 | 97.55 249 | 94.10 134 | 94.71 204 | 99.62 102 | 80.51 272 | 99.74 134 | 96.04 167 | 93.06 242 | 96.25 250 |
|
| dp | | | 95.05 177 | 94.43 183 | 96.91 187 | 97.99 187 | 92.73 246 | 96.29 363 | 97.98 211 | 89.70 275 | 95.93 188 | 94.67 339 | 93.83 96 | 98.45 211 | 86.91 314 | 96.53 186 | 99.54 143 |
|
| tpmrst | | | 96.27 148 | 95.98 134 | 97.13 181 | 97.96 188 | 93.15 235 | 96.34 361 | 98.17 191 | 92.07 215 | 98.71 107 | 95.12 324 | 93.91 91 | 98.73 192 | 94.91 187 | 96.62 184 | 99.50 151 |
|
| TR-MVS | | | 94.54 192 | 93.56 207 | 97.49 166 | 97.96 188 | 94.34 203 | 98.71 296 | 97.51 256 | 90.30 267 | 94.51 207 | 98.69 188 | 75.56 316 | 98.77 189 | 92.82 233 | 95.99 196 | 99.35 169 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 143 | 95.98 134 | 97.35 176 | 97.93 190 | 94.82 191 | 99.47 211 | 98.15 198 | 91.83 223 | 95.09 201 | 99.11 144 | 91.37 153 | 97.47 271 | 93.47 222 | 97.43 166 | 99.74 104 |
|
| MDTV_nov1_ep13 | | | | 95.69 151 | | 97.90 191 | 94.15 208 | 95.98 369 | 98.44 123 | 93.12 171 | 97.98 135 | 95.74 293 | 95.10 52 | 98.58 202 | 90.02 275 | 96.92 181 | |
|
| Fast-Effi-MVS+ | | | 95.02 178 | 94.19 189 | 97.52 164 | 97.88 192 | 94.55 196 | 99.97 27 | 97.08 299 | 88.85 292 | 94.47 208 | 97.96 229 | 84.59 236 | 98.41 214 | 89.84 278 | 97.10 174 | 99.59 130 |
|
| ADS-MVSNet2 | | | 93.80 213 | 93.88 198 | 93.55 301 | 97.87 193 | 85.94 346 | 94.24 375 | 96.84 325 | 90.07 269 | 96.43 176 | 94.48 344 | 90.29 175 | 95.37 354 | 87.44 301 | 97.23 171 | 99.36 167 |
|
| ADS-MVSNet | | | 94.79 183 | 94.02 193 | 97.11 183 | 97.87 193 | 93.79 217 | 94.24 375 | 98.16 195 | 90.07 269 | 96.43 176 | 94.48 344 | 90.29 175 | 98.19 240 | 87.44 301 | 97.23 171 | 99.36 167 |
|
| Effi-MVS+ | | | 96.30 145 | 95.69 151 | 98.16 124 | 97.85 195 | 96.26 135 | 97.41 341 | 97.21 284 | 90.37 264 | 98.65 110 | 98.58 200 | 86.61 217 | 98.70 196 | 97.11 146 | 97.37 170 | 99.52 147 |
|
| PatchmatchNet |  | | 95.94 155 | 95.45 156 | 97.39 172 | 97.83 196 | 94.41 200 | 96.05 367 | 98.40 152 | 92.86 178 | 97.09 157 | 95.28 321 | 94.21 83 | 98.07 247 | 89.26 282 | 98.11 153 | 99.70 108 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cascas | | | 94.64 190 | 93.61 202 | 97.74 153 | 97.82 197 | 96.26 135 | 99.96 34 | 97.78 231 | 85.76 334 | 94.00 215 | 97.54 238 | 76.95 302 | 99.21 166 | 97.23 143 | 95.43 212 | 97.76 236 |
|
| 1112_ss | | | 96.01 153 | 95.20 165 | 98.42 113 | 97.80 198 | 96.41 128 | 99.65 180 | 96.66 336 | 92.71 187 | 92.88 228 | 99.40 121 | 92.16 141 | 99.30 163 | 91.92 243 | 93.66 234 | 99.55 139 |
|
| Test_1112_low_res | | | 95.72 160 | 94.83 176 | 98.42 113 | 97.79 199 | 96.41 128 | 99.65 180 | 96.65 337 | 92.70 188 | 92.86 229 | 96.13 285 | 92.15 142 | 99.30 163 | 91.88 244 | 93.64 235 | 99.55 139 |
|
| Effi-MVS+-dtu | | | 94.53 194 | 95.30 162 | 92.22 323 | 97.77 200 | 82.54 363 | 99.59 190 | 97.06 301 | 94.92 101 | 95.29 199 | 95.37 314 | 85.81 223 | 97.89 257 | 94.80 190 | 97.07 175 | 96.23 252 |
|
| tpm cat1 | | | 93.51 222 | 92.52 236 | 96.47 199 | 97.77 200 | 91.47 280 | 96.13 365 | 98.06 204 | 80.98 367 | 92.91 227 | 93.78 352 | 89.66 180 | 98.87 182 | 87.03 310 | 96.39 190 | 99.09 193 |
|
| FA-MVS(test-final) | | | 95.86 156 | 95.09 169 | 98.15 127 | 97.74 202 | 95.62 164 | 96.31 362 | 98.17 191 | 91.42 239 | 96.26 181 | 96.13 285 | 90.56 170 | 99.47 160 | 92.18 239 | 97.07 175 | 99.35 169 |
|
| xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 95 | 98.55 100 | 97.74 202 | 98.14 62 | 99.31 231 | 97.86 225 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 232 |
|
| xiu_mvs_v1_base | | | 97.43 89 | 97.06 95 | 98.55 100 | 97.74 202 | 98.14 62 | 99.31 231 | 97.86 225 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 232 |
|
| xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 95 | 98.55 100 | 97.74 202 | 98.14 62 | 99.31 231 | 97.86 225 | 96.43 62 | 99.62 46 | 99.69 87 | 85.56 225 | 99.68 142 | 99.05 60 | 98.31 145 | 97.83 232 |
|
| EPP-MVSNet | | | 96.69 128 | 96.60 116 | 96.96 186 | 97.74 202 | 93.05 238 | 99.37 224 | 98.56 92 | 88.75 293 | 95.83 191 | 99.01 152 | 96.01 33 | 98.56 203 | 96.92 156 | 97.20 173 | 99.25 182 |
|
| gg-mvs-nofinetune | | | 93.51 222 | 91.86 249 | 98.47 108 | 97.72 207 | 97.96 72 | 92.62 383 | 98.51 107 | 74.70 385 | 97.33 152 | 69.59 398 | 98.91 3 | 97.79 260 | 97.77 131 | 99.56 97 | 99.67 113 |
|
| IB-MVS | | 92.85 6 | 94.99 179 | 93.94 196 | 98.16 124 | 97.72 207 | 95.69 161 | 99.99 4 | 98.81 60 | 94.28 127 | 92.70 230 | 96.90 259 | 95.08 53 | 99.17 172 | 96.07 166 | 73.88 369 | 99.60 129 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thisisatest0515 | | | 97.41 94 | 97.02 100 | 98.59 97 | 97.71 209 | 97.52 87 | 99.97 27 | 98.54 101 | 91.83 223 | 97.45 149 | 99.04 149 | 97.50 9 | 99.10 175 | 94.75 192 | 96.37 191 | 99.16 187 |
|
| Syy-MVS | | | 90.00 301 | 90.63 267 | 88.11 357 | 97.68 210 | 74.66 385 | 99.71 168 | 98.35 165 | 90.79 256 | 92.10 238 | 98.67 189 | 79.10 286 | 93.09 377 | 63.35 391 | 95.95 199 | 96.59 248 |
|
| myMVS_eth3d | | | 94.46 196 | 94.76 178 | 93.55 301 | 97.68 210 | 90.97 284 | 99.71 168 | 98.35 165 | 90.79 256 | 92.10 238 | 98.67 189 | 92.46 135 | 93.09 377 | 87.13 307 | 95.95 199 | 96.59 248 |
|
| test_fmvs1_n | | | 94.25 204 | 94.36 184 | 93.92 287 | 97.68 210 | 83.70 358 | 99.90 90 | 96.57 340 | 97.40 28 | 99.67 38 | 98.88 172 | 61.82 374 | 99.92 88 | 98.23 104 | 99.13 124 | 98.14 229 |
|
| diffmvs |  | | 97.00 112 | 96.64 114 | 98.09 130 | 97.64 213 | 96.17 143 | 99.81 137 | 97.19 285 | 94.67 111 | 98.95 91 | 99.28 129 | 86.43 218 | 98.76 190 | 98.37 99 | 97.42 168 | 99.33 172 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 95.72 160 | 95.15 167 | 97.45 167 | 97.62 214 | 94.28 204 | 99.28 237 | 98.24 183 | 94.27 129 | 96.84 165 | 98.94 168 | 79.39 281 | 98.76 190 | 93.25 224 | 98.49 140 | 99.30 176 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| thisisatest0530 | | | 97.10 106 | 96.72 111 | 98.22 122 | 97.60 215 | 96.70 119 | 99.92 78 | 98.54 101 | 91.11 247 | 97.07 159 | 98.97 159 | 97.47 12 | 99.03 176 | 93.73 219 | 96.09 194 | 98.92 202 |
|
| miper_ehance_all_eth | | | 93.16 229 | 92.60 231 | 94.82 250 | 97.57 216 | 93.56 225 | 99.50 206 | 97.07 300 | 88.75 293 | 88.85 292 | 95.52 304 | 90.97 162 | 96.74 316 | 90.77 262 | 84.45 305 | 94.17 289 |
|
| testing3 | | | 93.92 208 | 94.23 188 | 92.99 315 | 97.54 217 | 90.23 302 | 99.99 4 | 99.16 30 | 90.57 260 | 91.33 247 | 98.63 195 | 92.99 116 | 92.52 381 | 82.46 340 | 95.39 213 | 96.22 253 |
|
| LCM-MVSNet-Re | | | 92.31 251 | 92.60 231 | 91.43 330 | 97.53 218 | 79.27 380 | 99.02 266 | 91.83 394 | 92.07 215 | 80.31 360 | 94.38 347 | 83.50 245 | 95.48 352 | 97.22 144 | 97.58 164 | 99.54 143 |
|
| GBi-Net | | | 90.88 278 | 89.82 284 | 94.08 279 | 97.53 218 | 91.97 261 | 98.43 312 | 96.95 313 | 87.05 317 | 89.68 269 | 94.72 335 | 71.34 339 | 96.11 340 | 87.01 311 | 85.65 294 | 94.17 289 |
|
| test1 | | | 90.88 278 | 89.82 284 | 94.08 279 | 97.53 218 | 91.97 261 | 98.43 312 | 96.95 313 | 87.05 317 | 89.68 269 | 94.72 335 | 71.34 339 | 96.11 340 | 87.01 311 | 85.65 294 | 94.17 289 |
|
| FMVSNet2 | | | 91.02 275 | 89.56 289 | 95.41 229 | 97.53 218 | 95.74 156 | 98.98 268 | 97.41 266 | 87.05 317 | 88.43 300 | 95.00 329 | 71.34 339 | 96.24 337 | 85.12 324 | 85.21 299 | 94.25 284 |
|
| tttt0517 | | | 96.85 117 | 96.49 120 | 97.92 139 | 97.48 222 | 95.89 151 | 99.85 120 | 98.54 101 | 90.72 259 | 96.63 170 | 98.93 170 | 97.47 12 | 99.02 177 | 93.03 231 | 95.76 205 | 98.85 206 |
|
| casdiffmvs_mvg |  | | 96.43 137 | 95.94 141 | 97.89 143 | 97.44 223 | 95.47 168 | 99.86 117 | 97.29 278 | 93.35 163 | 96.03 185 | 99.19 140 | 85.39 228 | 98.72 194 | 97.89 124 | 97.04 177 | 99.49 153 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 97.38 96 | 97.24 89 | 97.80 144 | 97.41 224 | 95.64 163 | 99.99 4 | 97.06 301 | 94.59 112 | 99.63 43 | 99.32 128 | 89.20 191 | 98.14 242 | 98.76 81 | 99.23 120 | 99.62 124 |
|
| c3_l | | | 92.53 246 | 91.87 248 | 94.52 262 | 97.40 225 | 92.99 240 | 99.40 217 | 96.93 318 | 87.86 307 | 88.69 295 | 95.44 308 | 89.95 178 | 96.44 328 | 90.45 268 | 80.69 336 | 94.14 298 |
|
| fmvsm_s_conf0.1_n | | | 97.30 97 | 97.21 91 | 97.60 161 | 97.38 226 | 94.40 202 | 99.90 90 | 98.64 76 | 96.47 61 | 99.51 61 | 99.65 98 | 84.99 233 | 99.93 85 | 99.22 55 | 99.09 126 | 98.46 220 |
|
| CDS-MVSNet | | | 96.34 142 | 96.07 129 | 97.13 181 | 97.37 227 | 94.96 187 | 99.53 201 | 97.91 220 | 91.55 231 | 95.37 198 | 98.32 216 | 95.05 55 | 97.13 291 | 93.80 215 | 95.75 206 | 99.30 176 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TESTMET0.1,1 | | | 96.74 125 | 96.26 125 | 98.16 124 | 97.36 228 | 96.48 125 | 99.96 34 | 98.29 178 | 91.93 220 | 95.77 192 | 98.07 222 | 95.54 43 | 98.29 231 | 90.55 266 | 98.89 130 | 99.70 108 |
|
| miper_lstm_enhance | | | 91.81 259 | 91.39 258 | 93.06 314 | 97.34 229 | 89.18 319 | 99.38 222 | 96.79 330 | 86.70 324 | 87.47 313 | 95.22 322 | 90.00 177 | 95.86 349 | 88.26 292 | 81.37 326 | 94.15 295 |
|
| baseline | | | 96.43 137 | 95.98 134 | 97.76 151 | 97.34 229 | 95.17 184 | 99.51 204 | 97.17 288 | 93.92 147 | 96.90 163 | 99.28 129 | 85.37 229 | 98.64 200 | 97.50 137 | 96.86 183 | 99.46 155 |
|
| cl____ | | | 92.31 251 | 91.58 252 | 94.52 262 | 97.33 231 | 92.77 242 | 99.57 194 | 96.78 331 | 86.97 321 | 87.56 311 | 95.51 305 | 89.43 184 | 96.62 321 | 88.60 287 | 82.44 318 | 94.16 294 |
|
| DIV-MVS_self_test | | | 92.32 250 | 91.60 251 | 94.47 266 | 97.31 232 | 92.74 244 | 99.58 192 | 96.75 332 | 86.99 320 | 87.64 309 | 95.54 302 | 89.55 183 | 96.50 325 | 88.58 288 | 82.44 318 | 94.17 289 |
|
| casdiffmvs |  | | 96.42 139 | 95.97 137 | 97.77 149 | 97.30 233 | 94.98 186 | 99.84 125 | 97.09 298 | 93.75 153 | 96.58 172 | 99.26 135 | 85.07 231 | 98.78 188 | 97.77 131 | 97.04 177 | 99.54 143 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GeoE | | | 94.36 201 | 93.48 209 | 96.99 185 | 97.29 234 | 93.54 226 | 99.96 34 | 96.72 334 | 88.35 302 | 93.43 219 | 98.94 168 | 82.05 252 | 98.05 248 | 88.12 296 | 96.48 189 | 99.37 166 |
|
| eth_miper_zixun_eth | | | 92.41 249 | 91.93 246 | 93.84 291 | 97.28 235 | 90.68 292 | 98.83 286 | 96.97 312 | 88.57 298 | 89.19 286 | 95.73 295 | 89.24 190 | 96.69 319 | 89.97 277 | 81.55 324 | 94.15 295 |
|
| MVSFormer | | | 96.94 114 | 96.60 116 | 97.95 136 | 97.28 235 | 97.70 81 | 99.55 198 | 97.27 280 | 91.17 244 | 99.43 66 | 99.54 110 | 90.92 163 | 96.89 309 | 94.67 195 | 99.62 89 | 99.25 182 |
|
| lupinMVS | | | 97.85 69 | 97.60 76 | 98.62 93 | 97.28 235 | 97.70 81 | 99.99 4 | 97.55 249 | 95.50 89 | 99.43 66 | 99.67 94 | 90.92 163 | 98.71 195 | 98.40 97 | 99.62 89 | 99.45 157 |
|
| SCA | | | 94.69 187 | 93.81 200 | 97.33 177 | 97.10 238 | 94.44 197 | 98.86 283 | 98.32 172 | 93.30 166 | 96.17 184 | 95.59 300 | 76.48 308 | 97.95 254 | 91.06 254 | 97.43 166 | 99.59 130 |
|
| TAMVS | | | 95.85 157 | 95.58 154 | 96.65 197 | 97.07 239 | 93.50 227 | 99.17 246 | 97.82 229 | 91.39 241 | 95.02 202 | 98.01 223 | 92.20 140 | 97.30 280 | 93.75 218 | 95.83 203 | 99.14 190 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 217 | 93.86 199 | 93.29 306 | 97.06 240 | 86.16 344 | 99.80 141 | 96.83 326 | 92.66 191 | 92.58 232 | 97.83 233 | 81.39 259 | 97.67 265 | 89.75 279 | 96.87 182 | 96.05 255 |
|
| CostFormer | | | 96.10 149 | 95.88 146 | 96.78 191 | 97.03 241 | 92.55 252 | 97.08 349 | 97.83 228 | 90.04 271 | 98.72 106 | 94.89 333 | 95.01 57 | 98.29 231 | 96.54 161 | 95.77 204 | 99.50 151 |
|
| test_fmvsmvis_n_1920 | | | 97.67 83 | 97.59 78 | 97.91 141 | 97.02 242 | 95.34 174 | 99.95 52 | 98.45 118 | 97.87 15 | 97.02 160 | 99.59 104 | 89.64 181 | 99.98 43 | 99.41 48 | 99.34 115 | 98.42 222 |
|
| test-LLR | | | 96.47 135 | 96.04 130 | 97.78 147 | 97.02 242 | 95.44 169 | 99.96 34 | 98.21 186 | 94.07 136 | 95.55 194 | 96.38 276 | 93.90 92 | 98.27 235 | 90.42 269 | 98.83 134 | 99.64 119 |
|
| test-mter | | | 96.39 140 | 95.93 142 | 97.78 147 | 97.02 242 | 95.44 169 | 99.96 34 | 98.21 186 | 91.81 225 | 95.55 194 | 96.38 276 | 95.17 50 | 98.27 235 | 90.42 269 | 98.83 134 | 99.64 119 |
|
| gm-plane-assit | | | | | | 96.97 245 | 93.76 219 | | | 91.47 235 | | 98.96 161 | | 98.79 187 | 94.92 185 | | |
|
| WB-MVSnew | | | 92.90 236 | 92.77 228 | 93.26 308 | 96.95 246 | 93.63 223 | 99.71 168 | 98.16 195 | 91.49 232 | 94.28 211 | 98.14 219 | 81.33 261 | 96.48 326 | 79.47 355 | 95.46 210 | 89.68 378 |
|
| QAPM | | | 95.40 171 | 94.17 190 | 99.10 64 | 96.92 247 | 97.71 79 | 99.40 217 | 98.68 70 | 89.31 278 | 88.94 290 | 98.89 171 | 82.48 250 | 99.96 61 | 93.12 230 | 99.83 72 | 99.62 124 |
|
| KD-MVS_2432*1600 | | | 88.00 320 | 86.10 324 | 93.70 297 | 96.91 248 | 94.04 211 | 97.17 346 | 97.12 294 | 84.93 344 | 81.96 351 | 92.41 363 | 92.48 133 | 94.51 365 | 79.23 356 | 52.68 397 | 92.56 352 |
|
| miper_refine_blended | | | 88.00 320 | 86.10 324 | 93.70 297 | 96.91 248 | 94.04 211 | 97.17 346 | 97.12 294 | 84.93 344 | 81.96 351 | 92.41 363 | 92.48 133 | 94.51 365 | 79.23 356 | 52.68 397 | 92.56 352 |
|
| tpm2 | | | 95.47 169 | 95.18 166 | 96.35 207 | 96.91 248 | 91.70 274 | 96.96 352 | 97.93 216 | 88.04 306 | 98.44 118 | 95.40 310 | 93.32 106 | 97.97 251 | 94.00 206 | 95.61 208 | 99.38 164 |
|
| FMVSNet5 | | | 88.32 317 | 87.47 319 | 90.88 333 | 96.90 251 | 88.39 330 | 97.28 343 | 95.68 360 | 82.60 361 | 84.67 340 | 92.40 365 | 79.83 278 | 91.16 386 | 76.39 370 | 81.51 325 | 93.09 344 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 144 | 95.24 163 | 99.52 28 | 96.88 252 | 98.64 52 | 99.72 166 | 98.24 183 | 95.27 94 | 88.42 302 | 98.98 157 | 82.76 249 | 99.94 77 | 97.10 147 | 99.83 72 | 99.96 64 |
|
| Patchmatch-test | | | 92.65 245 | 91.50 255 | 96.10 213 | 96.85 253 | 90.49 297 | 91.50 388 | 97.19 285 | 82.76 360 | 90.23 257 | 95.59 300 | 95.02 56 | 98.00 250 | 77.41 365 | 96.98 180 | 99.82 92 |
|
| MVS | | | 96.60 131 | 95.56 155 | 99.72 13 | 96.85 253 | 99.22 20 | 98.31 318 | 98.94 41 | 91.57 230 | 90.90 251 | 99.61 103 | 86.66 216 | 99.96 61 | 97.36 139 | 99.88 68 | 99.99 23 |
|
| 3Dnovator | | 91.47 12 | 96.28 147 | 95.34 160 | 99.08 65 | 96.82 255 | 97.47 93 | 99.45 214 | 98.81 60 | 95.52 88 | 89.39 277 | 99.00 154 | 81.97 253 | 99.95 69 | 97.27 141 | 99.83 72 | 99.84 90 |
|
| EI-MVSNet | | | 93.73 216 | 93.40 214 | 94.74 251 | 96.80 256 | 92.69 247 | 99.06 258 | 97.67 236 | 88.96 287 | 91.39 244 | 99.02 150 | 88.75 196 | 97.30 280 | 91.07 253 | 87.85 278 | 94.22 285 |
|
| CVMVSNet | | | 94.68 189 | 94.94 174 | 93.89 290 | 96.80 256 | 86.92 342 | 99.06 258 | 98.98 38 | 94.45 115 | 94.23 213 | 99.02 150 | 85.60 224 | 95.31 356 | 90.91 259 | 95.39 213 | 99.43 160 |
|
| IterMVS-LS | | | 92.69 243 | 92.11 241 | 94.43 270 | 96.80 256 | 92.74 244 | 99.45 214 | 96.89 321 | 88.98 285 | 89.65 272 | 95.38 313 | 88.77 195 | 96.34 332 | 90.98 257 | 82.04 321 | 94.22 285 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS | | | 90.91 277 | 90.17 279 | 93.12 311 | 96.78 259 | 90.42 300 | 98.89 277 | 97.05 303 | 89.03 282 | 86.49 326 | 95.42 309 | 76.59 306 | 95.02 358 | 87.22 306 | 84.09 308 | 93.93 316 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 1314 | | | 96.84 118 | 95.96 138 | 99.48 34 | 96.74 260 | 98.52 56 | 98.31 318 | 98.86 53 | 95.82 78 | 89.91 263 | 98.98 157 | 87.49 205 | 99.96 61 | 97.80 126 | 99.73 82 | 99.96 64 |
|
| IterMVS-SCA-FT | | | 90.85 280 | 90.16 280 | 92.93 316 | 96.72 261 | 89.96 309 | 98.89 277 | 96.99 308 | 88.95 288 | 86.63 323 | 95.67 296 | 76.48 308 | 95.00 359 | 87.04 309 | 84.04 311 | 93.84 323 |
|
| MVS-HIRNet | | | 86.22 327 | 83.19 340 | 95.31 233 | 96.71 262 | 90.29 301 | 92.12 385 | 97.33 273 | 62.85 392 | 86.82 320 | 70.37 397 | 69.37 347 | 97.49 270 | 75.12 372 | 97.99 158 | 98.15 227 |
|
| VDDNet | | | 93.12 231 | 91.91 247 | 96.76 192 | 96.67 263 | 92.65 250 | 98.69 299 | 98.21 186 | 82.81 359 | 97.75 143 | 99.28 129 | 61.57 375 | 99.48 159 | 98.09 112 | 94.09 231 | 98.15 227 |
|
| dmvs_re | | | 93.20 228 | 93.15 219 | 93.34 304 | 96.54 264 | 83.81 357 | 98.71 296 | 98.51 107 | 91.39 241 | 92.37 236 | 98.56 202 | 78.66 290 | 97.83 259 | 93.89 209 | 89.74 247 | 98.38 223 |
|
| MIMVSNet | | | 90.30 293 | 88.67 307 | 95.17 238 | 96.45 265 | 91.64 276 | 92.39 384 | 97.15 291 | 85.99 331 | 90.50 254 | 93.19 359 | 66.95 357 | 94.86 362 | 82.01 344 | 93.43 236 | 99.01 200 |
|
| CR-MVSNet | | | 93.45 225 | 92.62 230 | 95.94 215 | 96.29 266 | 92.66 248 | 92.01 386 | 96.23 349 | 92.62 193 | 96.94 161 | 93.31 357 | 91.04 160 | 96.03 345 | 79.23 356 | 95.96 197 | 99.13 191 |
|
| RPMNet | | | 89.76 305 | 87.28 320 | 97.19 180 | 96.29 266 | 92.66 248 | 92.01 386 | 98.31 174 | 70.19 391 | 96.94 161 | 85.87 390 | 87.25 209 | 99.78 125 | 62.69 392 | 95.96 197 | 99.13 191 |
|
| tt0805 | | | 91.28 270 | 90.18 278 | 94.60 257 | 96.26 268 | 87.55 336 | 98.39 316 | 98.72 65 | 89.00 284 | 89.22 283 | 98.47 210 | 62.98 371 | 98.96 179 | 90.57 265 | 88.00 277 | 97.28 243 |
|
| Patchmtry | | | 89.70 306 | 88.49 309 | 93.33 305 | 96.24 269 | 89.94 312 | 91.37 389 | 96.23 349 | 78.22 375 | 87.69 308 | 93.31 357 | 91.04 160 | 96.03 345 | 80.18 354 | 82.10 320 | 94.02 306 |
|
| test_vis1_rt | | | 86.87 325 | 86.05 327 | 89.34 346 | 96.12 270 | 78.07 381 | 99.87 104 | 83.54 405 | 92.03 218 | 78.21 370 | 89.51 376 | 45.80 391 | 99.91 89 | 96.25 164 | 93.11 241 | 90.03 375 |
|
| JIA-IIPM | | | 91.76 265 | 90.70 265 | 94.94 244 | 96.11 271 | 87.51 337 | 93.16 382 | 98.13 200 | 75.79 381 | 97.58 145 | 77.68 395 | 92.84 121 | 97.97 251 | 88.47 291 | 96.54 185 | 99.33 172 |
|
| OpenMVS |  | 90.15 15 | 94.77 185 | 93.59 205 | 98.33 117 | 96.07 272 | 97.48 92 | 99.56 196 | 98.57 89 | 90.46 262 | 86.51 325 | 98.95 166 | 78.57 291 | 99.94 77 | 93.86 210 | 99.74 81 | 97.57 241 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 59 | 96.05 273 | 98.96 26 | 99.90 90 | 99.35 25 | 96.68 55 | 98.35 123 | 99.66 96 | 96.45 30 | 98.51 206 | 99.45 45 | 99.89 66 | 99.96 64 |
|
| CLD-MVS | | | 94.06 207 | 93.90 197 | 94.55 261 | 96.02 274 | 90.69 291 | 99.98 14 | 97.72 232 | 96.62 58 | 91.05 250 | 98.85 180 | 77.21 297 | 98.47 207 | 98.11 110 | 89.51 253 | 94.48 262 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 90.38 290 | 88.75 306 | 95.25 235 | 95.99 275 | 90.16 304 | 91.22 390 | 97.54 251 | 76.80 377 | 97.26 154 | 86.01 389 | 91.88 147 | 96.07 344 | 66.16 388 | 95.91 201 | 99.51 149 |
|
| ACMH+ | | 89.98 16 | 90.35 291 | 89.54 290 | 92.78 319 | 95.99 275 | 86.12 345 | 98.81 288 | 97.18 287 | 89.38 277 | 83.14 347 | 97.76 235 | 68.42 352 | 98.43 212 | 89.11 283 | 86.05 292 | 93.78 326 |
|
| DeepMVS_CX |  | | | | 82.92 367 | 95.98 277 | 58.66 398 | | 96.01 354 | 92.72 186 | 78.34 369 | 95.51 305 | 58.29 380 | 98.08 245 | 82.57 339 | 85.29 297 | 92.03 360 |
|
| ACMP | | 92.05 9 | 92.74 240 | 92.42 238 | 93.73 293 | 95.91 278 | 88.72 323 | 99.81 137 | 97.53 253 | 94.13 132 | 87.00 319 | 98.23 217 | 74.07 329 | 98.47 207 | 96.22 165 | 88.86 260 | 93.99 311 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_vis1_n | | | 93.61 220 | 93.03 221 | 95.35 230 | 95.86 279 | 86.94 341 | 99.87 104 | 96.36 347 | 96.85 46 | 99.54 56 | 98.79 182 | 52.41 387 | 99.83 118 | 98.64 89 | 98.97 129 | 99.29 178 |
|
| HQP-NCC | | | | | | 95.78 280 | | 99.87 104 | | 96.82 48 | 93.37 220 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 280 | | 99.87 104 | | 96.82 48 | 93.37 220 | | | | | | |
|
| HQP-MVS | | | 94.61 191 | 94.50 182 | 94.92 245 | 95.78 280 | 91.85 266 | 99.87 104 | 97.89 221 | 96.82 48 | 93.37 220 | 98.65 192 | 80.65 270 | 98.39 218 | 97.92 121 | 89.60 248 | 94.53 258 |
|
| NP-MVS | | | | | | 95.77 283 | 91.79 268 | | | | | 98.65 192 | | | | | |
|
| test_fmvsmconf0.1_n | | | 97.74 79 | 97.44 81 | 98.64 92 | 95.76 284 | 96.20 140 | 99.94 68 | 98.05 206 | 98.17 8 | 98.89 95 | 99.42 118 | 87.65 203 | 99.90 91 | 99.50 41 | 99.60 95 | 99.82 92 |
|
| plane_prior6 | | | | | | 95.76 284 | 91.72 273 | | | | | | 80.47 274 | | | | |
|
| ACMM | | 91.95 10 | 92.88 237 | 92.52 236 | 93.98 286 | 95.75 286 | 89.08 320 | 99.77 147 | 97.52 255 | 93.00 173 | 89.95 262 | 97.99 226 | 76.17 312 | 98.46 210 | 93.63 221 | 88.87 259 | 94.39 273 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GA-MVS | | | 93.83 210 | 92.84 224 | 96.80 190 | 95.73 287 | 93.57 224 | 99.88 101 | 97.24 283 | 92.57 198 | 92.92 226 | 96.66 268 | 78.73 289 | 97.67 265 | 87.75 299 | 94.06 232 | 99.17 186 |
|
| plane_prior1 | | | | | | 95.73 287 | | | | | | | | | | | |
|
| jason | | | 97.24 100 | 96.86 105 | 98.38 116 | 95.73 287 | 97.32 97 | 99.97 27 | 97.40 267 | 95.34 92 | 98.60 113 | 99.54 110 | 87.70 202 | 98.56 203 | 97.94 120 | 99.47 104 | 99.25 182 |
| jason: jason. |
| HQP_MVS | | | 94.49 195 | 94.36 184 | 94.87 246 | 95.71 290 | 91.74 270 | 99.84 125 | 97.87 223 | 96.38 65 | 93.01 224 | 98.59 197 | 80.47 274 | 98.37 224 | 97.79 129 | 89.55 251 | 94.52 260 |
|
| plane_prior7 | | | | | | 95.71 290 | 91.59 278 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 92.38 321 | 95.69 292 | 85.14 350 | | 95.71 359 | 92.81 182 | 89.33 280 | 98.11 220 | 70.23 345 | 98.42 213 | 85.91 320 | 88.16 274 | 93.59 334 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 108 | 96.90 103 | 97.63 159 | 95.65 293 | 94.21 207 | 99.83 132 | 98.50 112 | 96.27 70 | 99.65 40 | 99.64 99 | 84.72 234 | 99.93 85 | 99.04 63 | 98.84 133 | 98.74 213 |
|
| ACMH | | 89.72 17 | 90.64 284 | 89.63 287 | 93.66 299 | 95.64 294 | 88.64 326 | 98.55 305 | 97.45 260 | 89.03 282 | 81.62 354 | 97.61 237 | 69.75 346 | 98.41 214 | 89.37 280 | 87.62 283 | 93.92 317 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline2 | | | 96.71 127 | 96.49 120 | 97.37 173 | 95.63 295 | 95.96 149 | 99.74 158 | 98.88 51 | 92.94 175 | 91.61 242 | 98.97 159 | 97.72 7 | 98.62 201 | 94.83 189 | 98.08 156 | 97.53 242 |
|
| FMVSNet1 | | | 88.50 316 | 86.64 322 | 94.08 279 | 95.62 296 | 91.97 261 | 98.43 312 | 96.95 313 | 83.00 357 | 86.08 333 | 94.72 335 | 59.09 379 | 96.11 340 | 81.82 346 | 84.07 309 | 94.17 289 |
|
| LPG-MVS_test | | | 92.96 234 | 92.71 229 | 93.71 295 | 95.43 297 | 88.67 324 | 99.75 155 | 97.62 240 | 92.81 182 | 90.05 258 | 98.49 206 | 75.24 319 | 98.40 216 | 95.84 171 | 89.12 255 | 94.07 303 |
|
| LGP-MVS_train | | | | | 93.71 295 | 95.43 297 | 88.67 324 | | 97.62 240 | 92.81 182 | 90.05 258 | 98.49 206 | 75.24 319 | 98.40 216 | 95.84 171 | 89.12 255 | 94.07 303 |
|
| tpm | | | 93.70 218 | 93.41 213 | 94.58 259 | 95.36 299 | 87.41 338 | 97.01 350 | 96.90 320 | 90.85 254 | 96.72 169 | 94.14 349 | 90.40 173 | 96.84 312 | 90.75 263 | 88.54 267 | 99.51 149 |
|
| D2MVS | | | 92.76 239 | 92.59 234 | 93.27 307 | 95.13 300 | 89.54 316 | 99.69 173 | 99.38 23 | 92.26 211 | 87.59 310 | 94.61 341 | 85.05 232 | 97.79 260 | 91.59 247 | 88.01 276 | 92.47 355 |
|
| VPA-MVSNet | | | 92.70 242 | 91.55 254 | 96.16 211 | 95.09 301 | 96.20 140 | 98.88 279 | 99.00 36 | 91.02 251 | 91.82 241 | 95.29 320 | 76.05 314 | 97.96 253 | 95.62 175 | 81.19 327 | 94.30 280 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 294 | 89.05 301 | 94.02 282 | 95.08 302 | 90.15 305 | 97.19 345 | 97.43 262 | 84.91 346 | 83.99 343 | 97.06 254 | 74.00 330 | 98.28 233 | 84.08 329 | 87.71 281 | 93.62 333 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TinyColmap | | | 87.87 322 | 86.51 323 | 91.94 326 | 95.05 303 | 85.57 348 | 97.65 338 | 94.08 382 | 84.40 349 | 81.82 353 | 96.85 263 | 62.14 373 | 98.33 227 | 80.25 353 | 86.37 291 | 91.91 362 |
|
| test0.0.03 1 | | | 93.86 209 | 93.61 202 | 94.64 255 | 95.02 304 | 92.18 259 | 99.93 75 | 98.58 87 | 94.07 136 | 87.96 306 | 98.50 205 | 93.90 92 | 94.96 360 | 81.33 347 | 93.17 239 | 96.78 245 |
|
| UniMVSNet (Re) | | | 93.07 233 | 92.13 240 | 95.88 216 | 94.84 305 | 96.24 139 | 99.88 101 | 98.98 38 | 92.49 204 | 89.25 281 | 95.40 310 | 87.09 211 | 97.14 290 | 93.13 229 | 78.16 350 | 94.26 282 |
|
| USDC | | | 90.00 301 | 88.96 302 | 93.10 313 | 94.81 306 | 88.16 332 | 98.71 296 | 95.54 364 | 93.66 155 | 83.75 345 | 97.20 248 | 65.58 362 | 98.31 229 | 83.96 332 | 87.49 285 | 92.85 349 |
|
| VPNet | | | 91.81 259 | 90.46 269 | 95.85 218 | 94.74 307 | 95.54 167 | 98.98 268 | 98.59 86 | 92.14 213 | 90.77 253 | 97.44 241 | 68.73 350 | 97.54 269 | 94.89 188 | 77.89 352 | 94.46 264 |
|
| FIs | | | 94.10 205 | 93.43 210 | 96.11 212 | 94.70 308 | 96.82 116 | 99.58 192 | 98.93 45 | 92.54 199 | 89.34 279 | 97.31 245 | 87.62 204 | 97.10 294 | 94.22 205 | 86.58 289 | 94.40 271 |
|
| UniMVSNet_ETH3D | | | 90.06 300 | 88.58 308 | 94.49 265 | 94.67 309 | 88.09 333 | 97.81 337 | 97.57 248 | 83.91 352 | 88.44 298 | 97.41 242 | 57.44 381 | 97.62 267 | 91.41 248 | 88.59 266 | 97.77 235 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 235 | 92.11 241 | 95.49 224 | 94.61 310 | 95.28 177 | 99.83 132 | 99.08 33 | 91.49 232 | 89.21 284 | 96.86 262 | 87.14 210 | 96.73 317 | 93.20 225 | 77.52 355 | 94.46 264 |
|
| test_fmvs2 | | | 89.47 309 | 89.70 286 | 88.77 353 | 94.54 311 | 75.74 382 | 99.83 132 | 94.70 378 | 94.71 108 | 91.08 248 | 96.82 267 | 54.46 384 | 97.78 262 | 92.87 232 | 88.27 272 | 92.80 350 |
|
| WR-MVS | | | 92.31 251 | 91.25 259 | 95.48 227 | 94.45 312 | 95.29 176 | 99.60 189 | 98.68 70 | 90.10 268 | 88.07 305 | 96.89 260 | 80.68 269 | 96.80 315 | 93.14 228 | 79.67 343 | 94.36 275 |
|
| nrg030 | | | 93.51 222 | 92.53 235 | 96.45 201 | 94.36 313 | 97.20 100 | 99.81 137 | 97.16 290 | 91.60 229 | 89.86 265 | 97.46 240 | 86.37 219 | 97.68 264 | 95.88 170 | 80.31 339 | 94.46 264 |
|
| tfpnnormal | | | 89.29 312 | 87.61 318 | 94.34 273 | 94.35 314 | 94.13 209 | 98.95 272 | 98.94 41 | 83.94 350 | 84.47 341 | 95.51 305 | 74.84 324 | 97.39 272 | 77.05 368 | 80.41 337 | 91.48 365 |
|
| FC-MVSNet-test | | | 93.81 212 | 93.15 219 | 95.80 220 | 94.30 315 | 96.20 140 | 99.42 216 | 98.89 49 | 92.33 210 | 89.03 289 | 97.27 247 | 87.39 207 | 96.83 313 | 93.20 225 | 86.48 290 | 94.36 275 |
|
| MS-PatchMatch | | | 90.65 283 | 90.30 274 | 91.71 329 | 94.22 316 | 85.50 349 | 98.24 321 | 97.70 233 | 88.67 295 | 86.42 328 | 96.37 278 | 67.82 354 | 98.03 249 | 83.62 334 | 99.62 89 | 91.60 363 |
|
| WR-MVS_H | | | 91.30 268 | 90.35 272 | 94.15 276 | 94.17 317 | 92.62 251 | 99.17 246 | 98.94 41 | 88.87 291 | 86.48 327 | 94.46 346 | 84.36 238 | 96.61 322 | 88.19 293 | 78.51 348 | 93.21 343 |
|
| DU-MVS | | | 92.46 248 | 91.45 257 | 95.49 224 | 94.05 318 | 95.28 177 | 99.81 137 | 98.74 64 | 92.25 212 | 89.21 284 | 96.64 270 | 81.66 256 | 96.73 317 | 93.20 225 | 77.52 355 | 94.46 264 |
|
| NR-MVSNet | | | 91.56 267 | 90.22 276 | 95.60 222 | 94.05 318 | 95.76 155 | 98.25 320 | 98.70 67 | 91.16 246 | 80.78 359 | 96.64 270 | 83.23 248 | 96.57 323 | 91.41 248 | 77.73 354 | 94.46 264 |
|
| CP-MVSNet | | | 91.23 272 | 90.22 276 | 94.26 274 | 93.96 320 | 92.39 255 | 99.09 251 | 98.57 89 | 88.95 288 | 86.42 328 | 96.57 273 | 79.19 284 | 96.37 330 | 90.29 272 | 78.95 345 | 94.02 306 |
|
| XXY-MVS | | | 91.82 258 | 90.46 269 | 95.88 216 | 93.91 321 | 95.40 173 | 98.87 282 | 97.69 234 | 88.63 297 | 87.87 307 | 97.08 252 | 74.38 328 | 97.89 257 | 91.66 246 | 84.07 309 | 94.35 278 |
|
| PS-CasMVS | | | 90.63 285 | 89.51 292 | 93.99 285 | 93.83 322 | 91.70 274 | 98.98 268 | 98.52 104 | 88.48 299 | 86.15 332 | 96.53 275 | 75.46 317 | 96.31 334 | 88.83 285 | 78.86 347 | 93.95 314 |
|
| test_0402 | | | 85.58 329 | 83.94 334 | 90.50 337 | 93.81 323 | 85.04 351 | 98.55 305 | 95.20 372 | 76.01 379 | 79.72 364 | 95.13 323 | 64.15 368 | 96.26 336 | 66.04 389 | 86.88 288 | 90.21 374 |
|
| XVG-ACMP-BASELINE | | | 91.22 273 | 90.75 264 | 92.63 320 | 93.73 324 | 85.61 347 | 98.52 309 | 97.44 261 | 92.77 185 | 89.90 264 | 96.85 263 | 66.64 359 | 98.39 218 | 92.29 237 | 88.61 264 | 93.89 319 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 266 | 90.61 268 | 94.87 246 | 93.69 325 | 93.98 214 | 99.69 173 | 98.65 74 | 91.03 250 | 88.44 298 | 96.83 266 | 80.05 277 | 96.18 338 | 90.26 273 | 76.89 363 | 94.45 269 |
|
| mvsmamba | | | 94.10 205 | 93.72 201 | 95.25 235 | 93.57 326 | 94.13 209 | 99.67 177 | 96.45 345 | 93.63 157 | 91.34 246 | 97.77 234 | 86.29 220 | 97.22 286 | 96.65 160 | 88.10 275 | 94.40 271 |
|
| TransMVSNet (Re) | | | 87.25 323 | 85.28 330 | 93.16 310 | 93.56 327 | 91.03 283 | 98.54 307 | 94.05 384 | 83.69 354 | 81.09 357 | 96.16 283 | 75.32 318 | 96.40 329 | 76.69 369 | 68.41 381 | 92.06 359 |
|
| v10 | | | 90.25 295 | 88.82 304 | 94.57 260 | 93.53 328 | 93.43 230 | 99.08 253 | 96.87 323 | 85.00 343 | 87.34 317 | 94.51 342 | 80.93 266 | 97.02 304 | 82.85 338 | 79.23 344 | 93.26 341 |
|
| testgi | | | 89.01 314 | 88.04 315 | 91.90 327 | 93.49 329 | 84.89 353 | 99.73 163 | 95.66 361 | 93.89 150 | 85.14 338 | 98.17 218 | 59.68 378 | 94.66 364 | 77.73 364 | 88.88 258 | 96.16 254 |
|
| v8 | | | 90.54 287 | 89.17 297 | 94.66 254 | 93.43 330 | 93.40 232 | 99.20 243 | 96.94 317 | 85.76 334 | 87.56 311 | 94.51 342 | 81.96 254 | 97.19 287 | 84.94 326 | 78.25 349 | 93.38 339 |
|
| V42 | | | 91.28 270 | 90.12 281 | 94.74 251 | 93.42 331 | 93.46 228 | 99.68 175 | 97.02 305 | 87.36 313 | 89.85 267 | 95.05 325 | 81.31 262 | 97.34 275 | 87.34 304 | 80.07 341 | 93.40 337 |
|
| pm-mvs1 | | | 89.36 311 | 87.81 317 | 94.01 283 | 93.40 332 | 91.93 264 | 98.62 304 | 96.48 344 | 86.25 329 | 83.86 344 | 96.14 284 | 73.68 331 | 97.04 299 | 86.16 317 | 75.73 367 | 93.04 346 |
|
| RRT_MVS | | | 93.14 230 | 92.92 223 | 93.78 292 | 93.31 333 | 90.04 307 | 99.66 178 | 97.69 234 | 92.53 200 | 88.91 291 | 97.76 235 | 84.36 238 | 96.93 307 | 95.10 180 | 86.99 287 | 94.37 274 |
|
| v1144 | | | 91.09 274 | 89.83 283 | 94.87 246 | 93.25 334 | 93.69 222 | 99.62 187 | 96.98 310 | 86.83 323 | 89.64 273 | 94.99 330 | 80.94 265 | 97.05 297 | 85.08 325 | 81.16 328 | 93.87 321 |
|
| v1192 | | | 90.62 286 | 89.25 296 | 94.72 253 | 93.13 335 | 93.07 236 | 99.50 206 | 97.02 305 | 86.33 328 | 89.56 275 | 95.01 327 | 79.22 283 | 97.09 296 | 82.34 342 | 81.16 328 | 94.01 308 |
|
| v2v482 | | | 91.30 268 | 90.07 282 | 95.01 241 | 93.13 335 | 93.79 217 | 99.77 147 | 97.02 305 | 88.05 305 | 89.25 281 | 95.37 314 | 80.73 268 | 97.15 289 | 87.28 305 | 80.04 342 | 94.09 302 |
|
| OPM-MVS | | | 93.21 227 | 92.80 226 | 94.44 268 | 93.12 337 | 90.85 290 | 99.77 147 | 97.61 243 | 96.19 73 | 91.56 243 | 98.65 192 | 75.16 323 | 98.47 207 | 93.78 217 | 89.39 254 | 93.99 311 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v144192 | | | 90.79 281 | 89.52 291 | 94.59 258 | 93.11 338 | 92.77 242 | 99.56 196 | 96.99 308 | 86.38 327 | 89.82 268 | 94.95 332 | 80.50 273 | 97.10 294 | 83.98 331 | 80.41 337 | 93.90 318 |
|
| bld_raw_dy_0_64 | | | 92.74 240 | 92.03 244 | 94.87 246 | 93.09 339 | 93.46 228 | 99.12 248 | 95.41 366 | 92.84 181 | 90.44 256 | 97.54 238 | 78.08 295 | 97.04 299 | 93.94 207 | 87.77 280 | 94.11 300 |
|
| PEN-MVS | | | 90.19 297 | 89.06 300 | 93.57 300 | 93.06 340 | 90.90 288 | 99.06 258 | 98.47 115 | 88.11 304 | 85.91 334 | 96.30 279 | 76.67 304 | 95.94 348 | 87.07 308 | 76.91 362 | 93.89 319 |
|
| v1240 | | | 90.20 296 | 88.79 305 | 94.44 268 | 93.05 341 | 92.27 257 | 99.38 222 | 96.92 319 | 85.89 332 | 89.36 278 | 94.87 334 | 77.89 296 | 97.03 302 | 80.66 350 | 81.08 331 | 94.01 308 |
|
| v148 | | | 90.70 282 | 89.63 287 | 93.92 287 | 92.97 342 | 90.97 284 | 99.75 155 | 96.89 321 | 87.51 310 | 88.27 303 | 95.01 327 | 81.67 255 | 97.04 299 | 87.40 303 | 77.17 360 | 93.75 327 |
|
| v1921920 | | | 90.46 288 | 89.12 298 | 94.50 264 | 92.96 343 | 92.46 253 | 99.49 208 | 96.98 310 | 86.10 330 | 89.61 274 | 95.30 317 | 78.55 292 | 97.03 302 | 82.17 343 | 80.89 335 | 94.01 308 |
|
| Baseline_NR-MVSNet | | | 90.33 292 | 89.51 292 | 92.81 318 | 92.84 344 | 89.95 310 | 99.77 147 | 93.94 385 | 84.69 348 | 89.04 288 | 95.66 297 | 81.66 256 | 96.52 324 | 90.99 256 | 76.98 361 | 91.97 361 |
|
| test_method | | | 80.79 349 | 79.70 353 | 84.08 364 | 92.83 345 | 67.06 390 | 99.51 204 | 95.42 365 | 54.34 396 | 81.07 358 | 93.53 354 | 44.48 392 | 92.22 383 | 78.90 360 | 77.23 359 | 92.94 347 |
|
| pmmvs4 | | | 92.10 255 | 91.07 262 | 95.18 237 | 92.82 346 | 94.96 187 | 99.48 210 | 96.83 326 | 87.45 312 | 88.66 296 | 96.56 274 | 83.78 243 | 96.83 313 | 89.29 281 | 84.77 303 | 93.75 327 |
|
| LF4IMVS | | | 89.25 313 | 88.85 303 | 90.45 339 | 92.81 347 | 81.19 373 | 98.12 327 | 94.79 375 | 91.44 236 | 86.29 330 | 97.11 250 | 65.30 365 | 98.11 244 | 88.53 290 | 85.25 298 | 92.07 358 |
|
| DTE-MVSNet | | | 89.40 310 | 88.24 313 | 92.88 317 | 92.66 348 | 89.95 310 | 99.10 250 | 98.22 185 | 87.29 314 | 85.12 339 | 96.22 281 | 76.27 311 | 95.30 357 | 83.56 335 | 75.74 366 | 93.41 336 |
|
| EU-MVSNet | | | 90.14 299 | 90.34 273 | 89.54 345 | 92.55 349 | 81.06 374 | 98.69 299 | 98.04 207 | 91.41 240 | 86.59 324 | 96.84 265 | 80.83 267 | 93.31 376 | 86.20 316 | 81.91 322 | 94.26 282 |
|
| APD_test1 | | | 81.15 348 | 80.92 349 | 81.86 368 | 92.45 350 | 59.76 397 | 96.04 368 | 93.61 388 | 73.29 388 | 77.06 373 | 96.64 270 | 44.28 393 | 96.16 339 | 72.35 376 | 82.52 316 | 89.67 379 |
|
| our_test_3 | | | 90.39 289 | 89.48 294 | 93.12 311 | 92.40 351 | 89.57 315 | 99.33 228 | 96.35 348 | 87.84 308 | 85.30 337 | 94.99 330 | 84.14 241 | 96.09 343 | 80.38 351 | 84.56 304 | 93.71 332 |
|
| ppachtmachnet_test | | | 89.58 308 | 88.35 311 | 93.25 309 | 92.40 351 | 90.44 299 | 99.33 228 | 96.73 333 | 85.49 339 | 85.90 335 | 95.77 292 | 81.09 264 | 96.00 347 | 76.00 371 | 82.49 317 | 93.30 340 |
|
| v7n | | | 89.65 307 | 88.29 312 | 93.72 294 | 92.22 353 | 90.56 296 | 99.07 257 | 97.10 296 | 85.42 341 | 86.73 321 | 94.72 335 | 80.06 276 | 97.13 291 | 81.14 348 | 78.12 351 | 93.49 335 |
|
| dmvs_testset | | | 83.79 342 | 86.07 326 | 76.94 372 | 92.14 354 | 48.60 407 | 96.75 355 | 90.27 397 | 89.48 276 | 78.65 367 | 98.55 204 | 79.25 282 | 86.65 395 | 66.85 386 | 82.69 315 | 95.57 256 |
|
| PS-MVSNAJss | | | 93.64 219 | 93.31 216 | 94.61 256 | 92.11 355 | 92.19 258 | 99.12 248 | 97.38 268 | 92.51 203 | 88.45 297 | 96.99 258 | 91.20 155 | 97.29 283 | 94.36 200 | 87.71 281 | 94.36 275 |
|
| pmmvs5 | | | 90.17 298 | 89.09 299 | 93.40 303 | 92.10 356 | 89.77 313 | 99.74 158 | 95.58 363 | 85.88 333 | 87.24 318 | 95.74 293 | 73.41 332 | 96.48 326 | 88.54 289 | 83.56 312 | 93.95 314 |
|
| N_pmnet | | | 80.06 352 | 80.78 350 | 77.89 371 | 91.94 357 | 45.28 409 | 98.80 290 | 56.82 411 | 78.10 376 | 80.08 362 | 93.33 355 | 77.03 299 | 95.76 350 | 68.14 384 | 82.81 314 | 92.64 351 |
|
| test_djsdf | | | 92.83 238 | 92.29 239 | 94.47 266 | 91.90 358 | 92.46 253 | 99.55 198 | 97.27 280 | 91.17 244 | 89.96 261 | 96.07 288 | 81.10 263 | 96.89 309 | 94.67 195 | 88.91 257 | 94.05 305 |
|
| SixPastTwentyTwo | | | 88.73 315 | 88.01 316 | 90.88 333 | 91.85 359 | 82.24 365 | 98.22 324 | 95.18 373 | 88.97 286 | 82.26 350 | 96.89 260 | 71.75 337 | 96.67 320 | 84.00 330 | 82.98 313 | 93.72 331 |
|
| K. test v3 | | | 88.05 319 | 87.24 321 | 90.47 338 | 91.82 360 | 82.23 366 | 98.96 271 | 97.42 264 | 89.05 281 | 76.93 375 | 95.60 299 | 68.49 351 | 95.42 353 | 85.87 321 | 81.01 333 | 93.75 327 |
|
| OurMVSNet-221017-0 | | | 89.81 304 | 89.48 294 | 90.83 335 | 91.64 361 | 81.21 372 | 98.17 326 | 95.38 368 | 91.48 234 | 85.65 336 | 97.31 245 | 72.66 333 | 97.29 283 | 88.15 294 | 84.83 302 | 93.97 313 |
|
| mvs_tets | | | 91.81 259 | 91.08 261 | 94.00 284 | 91.63 362 | 90.58 295 | 98.67 301 | 97.43 262 | 92.43 205 | 87.37 316 | 97.05 255 | 71.76 336 | 97.32 279 | 94.75 192 | 88.68 263 | 94.11 300 |
|
| Gipuma |  | | 66.95 365 | 65.00 365 | 72.79 377 | 91.52 363 | 67.96 389 | 66.16 400 | 95.15 374 | 47.89 398 | 58.54 395 | 67.99 400 | 29.74 397 | 87.54 394 | 50.20 399 | 77.83 353 | 62.87 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.01_n | | | 96.39 140 | 95.74 149 | 98.32 118 | 91.47 364 | 95.56 166 | 99.84 125 | 97.30 276 | 97.74 18 | 97.89 139 | 99.35 127 | 79.62 279 | 99.85 108 | 99.25 54 | 99.24 119 | 99.55 139 |
|
| jajsoiax | | | 91.92 257 | 91.18 260 | 94.15 276 | 91.35 365 | 90.95 287 | 99.00 267 | 97.42 264 | 92.61 194 | 87.38 315 | 97.08 252 | 72.46 334 | 97.36 273 | 94.53 198 | 88.77 261 | 94.13 299 |
|
| MDA-MVSNet-bldmvs | | | 84.09 340 | 81.52 347 | 91.81 328 | 91.32 366 | 88.00 335 | 98.67 301 | 95.92 356 | 80.22 370 | 55.60 398 | 93.32 356 | 68.29 353 | 93.60 374 | 73.76 373 | 76.61 364 | 93.82 325 |
|
| MVP-Stereo | | | 90.93 276 | 90.45 271 | 92.37 322 | 91.25 367 | 88.76 321 | 98.05 331 | 96.17 351 | 87.27 315 | 84.04 342 | 95.30 317 | 78.46 293 | 97.27 285 | 83.78 333 | 99.70 84 | 91.09 366 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MDA-MVSNet_test_wron | | | 85.51 331 | 83.32 339 | 92.10 324 | 90.96 368 | 88.58 327 | 99.20 243 | 96.52 342 | 79.70 372 | 57.12 397 | 92.69 361 | 79.11 285 | 93.86 371 | 77.10 367 | 77.46 357 | 93.86 322 |
|
| YYNet1 | | | 85.50 332 | 83.33 338 | 92.00 325 | 90.89 369 | 88.38 331 | 99.22 242 | 96.55 341 | 79.60 373 | 57.26 396 | 92.72 360 | 79.09 287 | 93.78 372 | 77.25 366 | 77.37 358 | 93.84 323 |
|
| anonymousdsp | | | 91.79 264 | 90.92 263 | 94.41 271 | 90.76 370 | 92.93 241 | 98.93 274 | 97.17 288 | 89.08 280 | 87.46 314 | 95.30 317 | 78.43 294 | 96.92 308 | 92.38 236 | 88.73 262 | 93.39 338 |
|
| lessismore_v0 | | | | | 90.53 336 | 90.58 371 | 80.90 375 | | 95.80 357 | | 77.01 374 | 95.84 290 | 66.15 361 | 96.95 305 | 83.03 337 | 75.05 368 | 93.74 330 |
|
| EG-PatchMatch MVS | | | 85.35 333 | 83.81 336 | 89.99 343 | 90.39 372 | 81.89 368 | 98.21 325 | 96.09 353 | 81.78 364 | 74.73 381 | 93.72 353 | 51.56 389 | 97.12 293 | 79.16 359 | 88.61 264 | 90.96 368 |
|
| EGC-MVSNET | | | 69.38 358 | 63.76 368 | 86.26 361 | 90.32 373 | 81.66 371 | 96.24 364 | 93.85 386 | 0.99 408 | 3.22 409 | 92.33 366 | 52.44 386 | 92.92 379 | 59.53 395 | 84.90 301 | 84.21 389 |
|
| CMPMVS |  | 61.59 21 | 84.75 336 | 85.14 331 | 83.57 365 | 90.32 373 | 62.54 393 | 96.98 351 | 97.59 247 | 74.33 386 | 69.95 387 | 96.66 268 | 64.17 367 | 98.32 228 | 87.88 298 | 88.41 269 | 89.84 377 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| new_pmnet | | | 84.49 339 | 82.92 342 | 89.21 347 | 90.03 375 | 82.60 362 | 96.89 354 | 95.62 362 | 80.59 368 | 75.77 380 | 89.17 377 | 65.04 366 | 94.79 363 | 72.12 377 | 81.02 332 | 90.23 373 |
|
| pmmvs6 | | | 85.69 328 | 83.84 335 | 91.26 332 | 90.00 376 | 84.41 355 | 97.82 336 | 96.15 352 | 75.86 380 | 81.29 356 | 95.39 312 | 61.21 376 | 96.87 311 | 83.52 336 | 73.29 370 | 92.50 354 |
|
| DSMNet-mixed | | | 88.28 318 | 88.24 313 | 88.42 355 | 89.64 377 | 75.38 384 | 98.06 330 | 89.86 398 | 85.59 338 | 88.20 304 | 92.14 367 | 76.15 313 | 91.95 384 | 78.46 361 | 96.05 195 | 97.92 231 |
|
| UnsupCasMVSNet_eth | | | 85.52 330 | 83.99 332 | 90.10 341 | 89.36 378 | 83.51 359 | 96.65 356 | 97.99 209 | 89.14 279 | 75.89 379 | 93.83 351 | 63.25 370 | 93.92 369 | 81.92 345 | 67.90 384 | 92.88 348 |
|
| Anonymous20231206 | | | 86.32 326 | 85.42 329 | 89.02 349 | 89.11 379 | 80.53 378 | 99.05 262 | 95.28 369 | 85.43 340 | 82.82 348 | 93.92 350 | 74.40 327 | 93.44 375 | 66.99 385 | 81.83 323 | 93.08 345 |
|
| Anonymous20240521 | | | 85.15 334 | 83.81 336 | 89.16 348 | 88.32 380 | 82.69 361 | 98.80 290 | 95.74 358 | 79.72 371 | 81.53 355 | 90.99 370 | 65.38 364 | 94.16 367 | 72.69 375 | 81.11 330 | 90.63 371 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 343 | 81.68 346 | 90.03 342 | 88.30 381 | 82.82 360 | 98.46 310 | 95.22 371 | 73.92 387 | 76.00 378 | 91.29 369 | 55.00 383 | 96.94 306 | 68.40 383 | 88.51 268 | 90.34 372 |
|
| test20.03 | | | 84.72 337 | 83.99 332 | 86.91 359 | 88.19 382 | 80.62 377 | 98.88 279 | 95.94 355 | 88.36 301 | 78.87 365 | 94.62 340 | 68.75 349 | 89.11 390 | 66.52 387 | 75.82 365 | 91.00 367 |
|
| KD-MVS_self_test | | | 83.59 344 | 82.06 344 | 88.20 356 | 86.93 383 | 80.70 376 | 97.21 344 | 96.38 346 | 82.87 358 | 82.49 349 | 88.97 378 | 67.63 355 | 92.32 382 | 73.75 374 | 62.30 393 | 91.58 364 |
|
| MIMVSNet1 | | | 82.58 345 | 80.51 351 | 88.78 351 | 86.68 384 | 84.20 356 | 96.65 356 | 95.41 366 | 78.75 374 | 78.59 368 | 92.44 362 | 51.88 388 | 89.76 389 | 65.26 390 | 78.95 345 | 92.38 357 |
|
| CL-MVSNet_self_test | | | 84.50 338 | 83.15 341 | 88.53 354 | 86.00 385 | 81.79 369 | 98.82 287 | 97.35 270 | 85.12 342 | 83.62 346 | 90.91 372 | 76.66 305 | 91.40 385 | 69.53 381 | 60.36 394 | 92.40 356 |
|
| UnsupCasMVSNet_bld | | | 79.97 354 | 77.03 359 | 88.78 351 | 85.62 386 | 81.98 367 | 93.66 380 | 97.35 270 | 75.51 383 | 70.79 386 | 83.05 392 | 48.70 390 | 94.91 361 | 78.31 362 | 60.29 395 | 89.46 382 |
|
| Patchmatch-RL test | | | 86.90 324 | 85.98 328 | 89.67 344 | 84.45 387 | 75.59 383 | 89.71 393 | 92.43 391 | 86.89 322 | 77.83 372 | 90.94 371 | 94.22 81 | 93.63 373 | 87.75 299 | 69.61 376 | 99.79 97 |
|
| pmmvs-eth3d | | | 84.03 341 | 81.97 345 | 90.20 340 | 84.15 388 | 87.09 340 | 98.10 329 | 94.73 377 | 83.05 356 | 74.10 383 | 87.77 384 | 65.56 363 | 94.01 368 | 81.08 349 | 69.24 378 | 89.49 381 |
|
| test_fmvs3 | | | 79.99 353 | 80.17 352 | 79.45 370 | 84.02 389 | 62.83 391 | 99.05 262 | 93.49 389 | 88.29 303 | 80.06 363 | 86.65 387 | 28.09 399 | 88.00 391 | 88.63 286 | 73.27 371 | 87.54 387 |
|
| PM-MVS | | | 80.47 350 | 78.88 355 | 85.26 362 | 83.79 390 | 72.22 386 | 95.89 371 | 91.08 395 | 85.71 337 | 76.56 377 | 88.30 380 | 36.64 395 | 93.90 370 | 82.39 341 | 69.57 377 | 89.66 380 |
|
| new-patchmatchnet | | | 81.19 347 | 79.34 354 | 86.76 360 | 82.86 391 | 80.36 379 | 97.92 333 | 95.27 370 | 82.09 363 | 72.02 384 | 86.87 386 | 62.81 372 | 90.74 388 | 71.10 378 | 63.08 391 | 89.19 384 |
|
| mvsany_test3 | | | 82.12 346 | 81.14 348 | 85.06 363 | 81.87 392 | 70.41 387 | 97.09 348 | 92.14 392 | 91.27 243 | 77.84 371 | 88.73 379 | 39.31 394 | 95.49 351 | 90.75 263 | 71.24 373 | 89.29 383 |
|
| WB-MVS | | | 76.28 356 | 77.28 358 | 73.29 376 | 81.18 393 | 54.68 401 | 97.87 335 | 94.19 381 | 81.30 365 | 69.43 388 | 90.70 373 | 77.02 300 | 82.06 399 | 35.71 404 | 68.11 383 | 83.13 390 |
|
| test_f | | | 78.40 355 | 77.59 357 | 80.81 369 | 80.82 394 | 62.48 394 | 96.96 352 | 93.08 390 | 83.44 355 | 74.57 382 | 84.57 391 | 27.95 400 | 92.63 380 | 84.15 328 | 72.79 372 | 87.32 388 |
|
| SSC-MVS | | | 75.42 357 | 76.40 360 | 72.49 380 | 80.68 395 | 53.62 402 | 97.42 340 | 94.06 383 | 80.42 369 | 68.75 389 | 90.14 375 | 76.54 307 | 81.66 400 | 33.25 405 | 66.34 387 | 82.19 391 |
|
| pmmvs3 | | | 80.27 351 | 77.77 356 | 87.76 358 | 80.32 396 | 82.43 364 | 98.23 323 | 91.97 393 | 72.74 389 | 78.75 366 | 87.97 383 | 57.30 382 | 90.99 387 | 70.31 379 | 62.37 392 | 89.87 376 |
|
| testf1 | | | 68.38 361 | 66.92 362 | 72.78 378 | 78.80 397 | 50.36 404 | 90.95 391 | 87.35 403 | 55.47 394 | 58.95 393 | 88.14 381 | 20.64 404 | 87.60 392 | 57.28 396 | 64.69 388 | 80.39 393 |
|
| APD_test2 | | | 68.38 361 | 66.92 362 | 72.78 378 | 78.80 397 | 50.36 404 | 90.95 391 | 87.35 403 | 55.47 394 | 58.95 393 | 88.14 381 | 20.64 404 | 87.60 392 | 57.28 396 | 64.69 388 | 80.39 393 |
|
| ambc | | | | | 83.23 366 | 77.17 399 | 62.61 392 | 87.38 395 | 94.55 380 | | 76.72 376 | 86.65 387 | 30.16 396 | 96.36 331 | 84.85 327 | 69.86 375 | 90.73 370 |
|
| test_vis3_rt | | | 68.82 359 | 66.69 364 | 75.21 375 | 76.24 400 | 60.41 396 | 96.44 359 | 68.71 410 | 75.13 384 | 50.54 401 | 69.52 399 | 16.42 409 | 96.32 333 | 80.27 352 | 66.92 386 | 68.89 397 |
|
| TDRefinement | | | 84.76 335 | 82.56 343 | 91.38 331 | 74.58 401 | 84.80 354 | 97.36 342 | 94.56 379 | 84.73 347 | 80.21 361 | 96.12 287 | 63.56 369 | 98.39 218 | 87.92 297 | 63.97 390 | 90.95 369 |
|
| E-PMN | | | 52.30 369 | 52.18 371 | 52.67 386 | 71.51 402 | 45.40 408 | 93.62 381 | 76.60 408 | 36.01 402 | 43.50 403 | 64.13 402 | 27.11 401 | 67.31 405 | 31.06 406 | 26.06 401 | 45.30 404 |
|
| EMVS | | | 51.44 371 | 51.22 373 | 52.11 387 | 70.71 403 | 44.97 410 | 94.04 377 | 75.66 409 | 35.34 404 | 42.40 404 | 61.56 405 | 28.93 398 | 65.87 406 | 27.64 407 | 24.73 402 | 45.49 403 |
|
| PMMVS2 | | | 67.15 364 | 64.15 367 | 76.14 374 | 70.56 404 | 62.07 395 | 93.89 378 | 87.52 402 | 58.09 393 | 60.02 392 | 78.32 394 | 22.38 403 | 84.54 397 | 59.56 394 | 47.03 399 | 81.80 392 |
|
| FPMVS | | | 68.72 360 | 68.72 361 | 68.71 382 | 65.95 405 | 44.27 411 | 95.97 370 | 94.74 376 | 51.13 397 | 53.26 399 | 90.50 374 | 25.11 402 | 83.00 398 | 60.80 393 | 80.97 334 | 78.87 395 |
|
| wuyk23d | | | 20.37 375 | 20.84 378 | 18.99 390 | 65.34 406 | 27.73 413 | 50.43 401 | 7.67 414 | 9.50 407 | 8.01 408 | 6.34 408 | 6.13 412 | 26.24 407 | 23.40 408 | 10.69 406 | 2.99 405 |
|
| LCM-MVSNet | | | 67.77 363 | 64.73 366 | 76.87 373 | 62.95 407 | 56.25 400 | 89.37 394 | 93.74 387 | 44.53 399 | 61.99 391 | 80.74 393 | 20.42 406 | 86.53 396 | 69.37 382 | 59.50 396 | 87.84 385 |
|
| MVE |  | 53.74 22 | 51.54 370 | 47.86 374 | 62.60 384 | 59.56 408 | 50.93 403 | 79.41 398 | 77.69 407 | 35.69 403 | 36.27 405 | 61.76 404 | 5.79 413 | 69.63 403 | 37.97 403 | 36.61 400 | 67.24 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 56.10 367 | 52.24 370 | 67.66 383 | 49.27 409 | 56.82 399 | 83.94 396 | 82.02 406 | 70.47 390 | 33.28 406 | 64.54 401 | 17.23 408 | 69.16 404 | 45.59 401 | 23.85 403 | 77.02 396 |
|
| tmp_tt | | | 65.23 366 | 62.94 369 | 72.13 381 | 44.90 410 | 50.03 406 | 81.05 397 | 89.42 401 | 38.45 400 | 48.51 402 | 99.90 18 | 54.09 385 | 78.70 402 | 91.84 245 | 18.26 404 | 87.64 386 |
|
| PMVS |  | 49.05 23 | 53.75 368 | 51.34 372 | 60.97 385 | 40.80 411 | 34.68 412 | 74.82 399 | 89.62 400 | 37.55 401 | 28.67 407 | 72.12 396 | 7.09 411 | 81.63 401 | 43.17 402 | 68.21 382 | 66.59 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test123 | | | 37.68 373 | 39.14 376 | 33.31 388 | 19.94 412 | 24.83 414 | 98.36 317 | 9.75 413 | 15.53 406 | 51.31 400 | 87.14 385 | 19.62 407 | 17.74 408 | 47.10 400 | 3.47 407 | 57.36 401 |
|
| testmvs | | | 40.60 372 | 44.45 375 | 29.05 389 | 19.49 413 | 14.11 415 | 99.68 175 | 18.47 412 | 20.74 405 | 64.59 390 | 98.48 209 | 10.95 410 | 17.09 409 | 56.66 398 | 11.01 405 | 55.94 402 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.02 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 23.43 374 | 31.24 377 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 98.09 201 | 0.00 409 | 0.00 410 | 99.67 94 | 83.37 246 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 7.60 377 | 10.13 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 91.20 155 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 8.28 376 | 11.04 379 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 99.40 121 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 410 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 90.97 284 | | | | | | | | 86.10 319 | | |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 17 | 99.79 55 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 131 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_0728_THIRD | | | | | | | | | | 96.48 59 | 99.83 13 | 99.91 14 | 97.87 6 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 65 | | | | 99.59 130 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 80 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 179 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 372 | | | | 59.23 406 | 93.20 112 | 97.74 263 | 91.06 254 | | |
|
| test_post | | | | | | | | | | | | 63.35 403 | 94.43 70 | 98.13 243 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 368 | 95.12 51 | 97.95 254 | | | |
|
| MTMP | | | | | | | | 99.87 104 | 96.49 343 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| test_prior4 | | | | | | | 98.05 66 | 99.94 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 52 | | 95.78 79 | 99.73 32 | 99.76 63 | 96.00 34 | | 99.78 27 | 100.00 1 | |
|
| 旧先验2 | | | | | | | | 99.46 213 | | 94.21 130 | 99.85 9 | | | 99.95 69 | 96.96 154 | | |
|
| 新几何2 | | | | | | | | 99.40 217 | | | | | | | | | |
|
| 无先验 | | | | | | | | 99.49 208 | 98.71 66 | 93.46 160 | | | | 100.00 1 | 94.36 200 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 90 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 267 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 26 | | | | |
|
| testdata1 | | | | | | | | 99.28 237 | | 96.35 69 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 223 | | | | | 98.37 224 | 97.79 129 | 89.55 251 | 94.52 260 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 197 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 276 | | | 96.63 56 | 93.01 224 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 125 | | 96.38 65 | | | | | | | |
|
| plane_prior | | | | | | | 91.74 270 | 99.86 117 | | 96.76 52 | | | | | | 89.59 250 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 399 | | | | | | | | |
|
| test11 | | | | | | | | | 98.44 123 | | | | | | | | |
|
| door | | | | | | | | | 90.31 396 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 266 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 121 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 220 | | | 98.39 218 | | | 94.53 258 |
|
| HQP3-MVS | | | | | | | | | 97.89 221 | | | | | | | 89.60 248 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 270 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 135 | 96.11 366 | | 91.89 221 | 98.06 133 | | 94.40 72 | | 94.30 202 | | 99.67 113 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 286 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 273 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|