This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 10096.80 10598.51 10699.99 195.60 16299.09 24798.84 5893.32 16496.74 16499.72 8186.04 218100.00 198.01 11599.43 11099.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4798.20 4698.97 7499.97 396.92 11399.95 5298.38 15595.04 9798.61 11299.80 5193.39 98100.00 198.64 89100.00 199.98 48
CPTT-MVS97.64 8497.32 8798.58 9899.97 395.77 15399.96 3498.35 16189.90 26898.36 12299.79 5591.18 15499.99 3698.37 9999.99 2199.99 23
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4699.92 7898.44 12192.06 21398.40 12199.84 4195.68 40100.00 198.19 10599.71 8399.97 58
PAPR98.52 3598.16 4999.58 2499.97 398.77 4099.95 5298.43 12995.35 9198.03 13399.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
HFP-MVS98.56 3298.37 3699.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
region2R98.54 3398.37 3699.05 6699.96 897.18 10199.96 3498.55 9794.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 93100.00 198.70 8499.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 4098.32 4098.87 7999.96 896.62 12299.97 2798.39 15194.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14496.63 5699.75 2999.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 129100.00 199.99 5100.00 1100.00 1
XVS98.70 2698.55 2599.15 5799.94 1397.50 9099.94 6898.42 14096.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 20692.06 23999.15 5799.94 1397.50 9099.94 6898.42 14096.22 7199.41 6841.37 40394.34 7399.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 15197.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5797.97 5999.03 6899.94 1397.17 10499.95 5298.39 15194.70 10998.26 12899.81 5091.84 145100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4499.87 10198.33 16693.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
PAPM_NR98.12 6097.93 6498.70 8799.94 1396.13 14499.82 13298.43 12994.56 11397.52 14599.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18099.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12997.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14497.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12997.26 3699.80 1799.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16897.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 14097.28 3299.86 799.94 497.22 19
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 14097.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4098.43 12999.63 4399.85 108
FOURS199.92 3197.66 8399.95 5298.36 15995.58 8599.52 59
ZD-MVS99.92 3198.57 5498.52 10392.34 20599.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
GST-MVS98.27 5297.97 5999.17 5399.92 3197.57 8599.93 7598.39 15194.04 14198.80 9999.74 7692.98 113100.00 198.16 10799.76 8099.93 76
TEST999.92 3198.92 2899.96 3498.43 12993.90 14899.71 3499.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12994.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 12994.35 12299.69 3699.85 3095.94 3499.85 108
PGM-MVS98.34 4898.13 5198.99 7299.92 3197.00 10999.75 15299.50 1893.90 14899.37 7399.76 6393.24 107100.00 197.75 13299.96 4699.98 48
ACMMPcopyleft97.74 7997.44 8198.66 9099.92 3196.13 14499.18 24199.45 1994.84 10496.41 17499.71 8391.40 14899.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12996.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 144100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 144100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9197.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5799.87 10198.36 15994.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3499.24 23698.47 11498.14 1099.08 8699.91 1493.09 110100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10198.44 12197.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 62
CSCG97.10 10397.04 9797.27 17699.89 4591.92 26199.90 8799.07 3488.67 29195.26 19699.82 4693.17 10999.98 4398.15 10899.47 10499.90 83
ZNCC-MVS98.31 4998.03 5699.17 5399.88 4997.59 8499.94 6898.44 12194.31 12598.50 11699.82 4693.06 11199.99 3698.30 10399.99 2199.93 76
SR-MVS98.46 3998.30 4398.93 7799.88 4997.04 10799.84 12298.35 16194.92 10199.32 7599.80 5193.35 10099.78 12599.30 5299.95 4999.96 64
9.1498.38 3499.87 5199.91 8298.33 16693.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3299.86 11498.38 15593.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4598.21 4599.03 6899.86 5397.10 10699.98 1498.80 6290.78 25499.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5197.96 6299.30 4299.85 5497.93 7399.39 21798.28 17595.76 8097.18 15399.88 2192.74 121100.00 198.67 8699.88 6899.99 23
LS3D95.84 15495.11 16498.02 13399.85 5495.10 18298.74 28998.50 11187.22 31293.66 21499.86 2687.45 20299.95 6990.94 25499.81 7899.02 197
HPM-MVScopyleft97.96 6397.72 7198.68 8899.84 5696.39 13199.90 8798.17 18792.61 19098.62 11199.57 10791.87 14499.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8599.83 5796.59 12499.40 21398.51 10695.29 9398.51 11599.76 6393.60 9799.71 13898.53 9499.52 9999.95 71
save fliter99.82 5898.79 3899.96 3498.40 14897.66 21
PLCcopyleft95.54 397.93 6597.89 6798.05 13299.82 5894.77 19199.92 7898.46 11693.93 14697.20 15299.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5598.08 5598.78 8299.81 6096.60 12399.82 13298.30 17393.95 14599.37 7399.77 6192.84 11799.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5997.99 5898.60 9599.80 6196.27 13499.36 22298.50 11195.21 9598.30 12599.75 6993.29 10499.73 13798.37 9999.30 11699.81 94
SR-MVS-dyc-post98.31 4998.17 4898.71 8699.79 6296.37 13299.76 14998.31 17094.43 11799.40 7099.75 6993.28 10599.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13299.76 14998.31 17094.43 11799.40 7099.75 6992.95 11498.90 7399.92 6399.97 58
HPM-MVS_fast97.80 7497.50 7998.68 8899.79 6296.42 12799.88 9898.16 19191.75 22398.94 9299.54 11091.82 14699.65 14797.62 13599.99 2199.99 23
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4799.90 8798.21 18293.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9797.23 8997.41 16799.76 6693.36 23099.65 17697.95 21096.03 7597.41 14999.70 8589.61 17899.51 15296.73 15698.25 14999.38 164
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24699.94 5499.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4199.74 6998.41 6099.74 15598.18 18693.35 16296.45 17199.85 3092.64 12399.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14498.38 15596.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14899.65 4094.76 6099.75 13299.98 3299.99 23
原ACMM198.96 7599.73 7296.99 11098.51 10694.06 13899.62 4699.85 3094.97 5899.96 6195.11 17699.95 4999.92 81
TSAR-MVS + GP.98.60 3098.51 2898.86 8099.73 7296.63 12199.97 2797.92 21598.07 1198.76 10399.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1498.51 10697.00 4398.52 11499.71 8387.80 19799.95 6999.75 2899.38 11299.83 91
F-COLMAP96.93 11296.95 10096.87 18599.71 7591.74 26699.85 11797.95 21093.11 17195.72 18999.16 14392.35 13399.94 7795.32 17499.35 11498.92 199
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16596.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5699.12 595.59 21999.67 7786.91 33999.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5399.85 11798.37 15894.68 11099.53 5799.83 4392.87 116100.00 198.66 8899.84 7199.99 23
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28399.63 7981.76 36699.96 3498.56 9199.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
EPNet98.49 3798.40 3298.77 8499.62 8096.80 11899.90 8799.51 1797.60 2299.20 8199.36 12693.71 9499.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16899.96 6199.89 1699.43 11099.98 48
PVSNet_BlendedMVS96.05 14795.82 14496.72 19099.59 8196.99 11099.95 5299.10 3194.06 13898.27 12695.80 28789.00 18999.95 6999.12 5887.53 28093.24 338
PVSNet_Blended97.94 6497.64 7498.83 8199.59 8196.99 110100.00 199.10 3195.38 9098.27 12699.08 14689.00 18999.95 6999.12 5899.25 11899.57 137
PatchMatch-RL96.04 14895.40 15397.95 13499.59 8195.22 17899.52 19899.07 3493.96 14496.49 17098.35 21182.28 24799.82 12090.15 27099.22 12198.81 206
dcpmvs_297.42 9298.09 5495.42 22499.58 8587.24 33599.23 23796.95 30994.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
test22299.55 8697.41 9699.34 22398.55 9791.86 21899.27 8099.83 4393.84 9199.95 4999.99 23
CNLPA97.76 7897.38 8398.92 7899.53 8796.84 11599.87 10198.14 19593.78 15196.55 16999.69 8792.28 13599.98 4397.13 14499.44 10899.93 76
API-MVS97.86 6897.66 7398.47 10899.52 8895.41 16999.47 20798.87 5291.68 22498.84 9699.85 3092.34 13499.99 3698.44 9699.96 46100.00 1
PVSNet91.05 1397.13 10296.69 10998.45 11099.52 8895.81 15199.95 5299.65 1294.73 10799.04 8899.21 13984.48 23399.95 6994.92 18298.74 13699.58 136
114514_t97.41 9396.83 10399.14 5999.51 9097.83 7599.89 9598.27 17788.48 29599.06 8799.66 9690.30 17099.64 14896.32 16099.97 4299.96 64
cl2293.77 21093.25 21495.33 22899.49 9194.43 19599.61 18498.09 19790.38 25989.16 28395.61 29490.56 16697.34 27191.93 23884.45 30194.21 283
testdata98.42 11399.47 9295.33 17298.56 9193.78 15199.79 2599.85 3093.64 9699.94 7794.97 18099.94 54100.00 1
MAR-MVS97.43 8897.19 9198.15 12799.47 9294.79 19099.05 25898.76 6392.65 18898.66 10999.82 4688.52 19499.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 18893.42 20797.91 13899.46 9494.04 20898.93 27097.48 25581.15 36290.04 25699.55 10887.02 20899.95 6988.97 28098.11 15399.73 105
MVS_111021_LR98.42 4498.38 3498.53 10599.39 9595.79 15299.87 10199.86 296.70 5498.78 10099.79 5592.03 14199.90 9199.17 5799.86 7099.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9698.87 3298.46 30699.42 2297.03 4299.02 8999.09 14599.35 198.21 23599.73 3299.78 7999.77 101
MVS_111021_HR98.72 2598.62 2299.01 7199.36 9797.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3498.44 12197.96 1499.55 5499.94 497.18 21100.00 193.81 21199.94 5499.98 48
TAPA-MVS92.12 894.42 19393.60 20096.90 18499.33 9891.78 26599.78 14198.00 20489.89 26994.52 20299.47 11491.97 14299.18 16869.90 37699.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6797.94 6397.70 15199.28 10095.20 17999.98 1497.15 28795.53 8799.62 4699.79 5592.08 14098.38 21898.75 8299.28 11799.52 147
test_fmvsm_n_192098.44 4198.61 2397.92 13699.27 10195.18 180100.00 198.90 4798.05 1299.80 1799.73 7892.64 12399.99 3699.58 3899.51 10298.59 216
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10297.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
test_yl97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18099.27 2791.43 23397.88 13998.99 15595.84 3899.84 11698.82 7795.32 21499.79 97
DCV-MVSNet97.83 7097.37 8499.21 4799.18 10397.98 7099.64 18099.27 2791.43 23397.88 13998.99 15595.84 3899.84 11698.82 7795.32 21499.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10199.65 1298.17 898.75 10599.75 6992.76 12099.94 7799.88 1899.44 10899.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10697.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
DeepC-MVS94.51 496.92 11396.40 11998.45 11099.16 10795.90 14999.66 17498.06 20096.37 6894.37 20599.49 11383.29 24399.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 51100.00 198.58 8697.70 2098.21 13099.24 13792.58 12699.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7697.91 6597.43 16699.10 10994.42 19699.99 497.10 29295.07 9699.68 3799.75 6992.95 11498.34 22298.38 9899.14 12399.54 143
Anonymous20240521193.10 22891.99 24196.40 20099.10 10989.65 31098.88 27597.93 21283.71 34994.00 21198.75 18468.79 34499.88 10295.08 17891.71 23999.68 111
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15299.06 11194.41 19799.98 1498.97 4097.34 2999.63 4399.69 8787.27 20499.97 5399.62 3799.06 12798.62 215
HyFIR lowres test96.66 12696.43 11897.36 17299.05 11293.91 21399.70 16899.80 390.54 25796.26 17798.08 21792.15 13898.23 23496.84 15595.46 20999.93 76
LFMVS94.75 18293.56 20398.30 11999.03 11395.70 15898.74 28997.98 20787.81 30598.47 11799.39 12367.43 35299.53 15098.01 11595.20 21799.67 113
AllTest92.48 24391.64 24695.00 23899.01 11488.43 32498.94 26996.82 32486.50 32188.71 28998.47 20774.73 32199.88 10285.39 31896.18 19196.71 242
TestCases95.00 23899.01 11488.43 32496.82 32486.50 32188.71 28998.47 20774.73 32199.88 10285.39 31896.18 19196.71 242
COLMAP_ROBcopyleft90.47 1492.18 25091.49 25294.25 27199.00 11688.04 33098.42 31196.70 33182.30 35888.43 29699.01 15276.97 29799.85 10886.11 31496.50 18794.86 253
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 16895.68 14994.36 26898.99 11784.98 34899.96 3496.65 33397.60 2299.73 3298.96 16171.58 33499.93 8598.31 10299.37 11398.17 222
HY-MVS92.50 797.79 7697.17 9399.63 1798.98 11899.32 997.49 33599.52 1595.69 8298.32 12497.41 23893.32 10299.77 12898.08 11395.75 20599.81 94
VNet97.21 10196.57 11499.13 6398.97 11997.82 7699.03 26199.21 2994.31 12599.18 8498.88 17286.26 21799.89 9698.93 6994.32 22399.69 110
thres20096.96 11096.21 12399.22 4698.97 11998.84 3599.85 11799.71 793.17 16996.26 17798.88 17289.87 17599.51 15294.26 20094.91 21899.31 174
tfpn200view996.79 11795.99 12899.19 4998.94 12198.82 3699.78 14199.71 792.86 17496.02 18298.87 17589.33 18299.50 15493.84 20894.57 21999.27 180
thres40096.78 11895.99 12899.16 5598.94 12198.82 3699.78 14199.71 792.86 17496.02 18298.87 17589.33 18299.50 15493.84 20894.57 21999.16 187
Anonymous2023121189.86 29988.44 30694.13 27498.93 12390.68 28898.54 30398.26 17876.28 37486.73 31795.54 29870.60 34097.56 26490.82 25780.27 33694.15 291
canonicalmvs97.09 10596.32 12099.39 4098.93 12398.95 2799.72 16397.35 26694.45 11597.88 13999.42 11886.71 21199.52 15198.48 9593.97 22999.72 107
SDMVSNet94.80 17893.96 19197.33 17498.92 12595.42 16899.59 18698.99 3792.41 20292.55 22997.85 22775.81 31198.93 17897.90 12391.62 24097.64 233
sd_testset93.55 21792.83 22195.74 21798.92 12590.89 28598.24 31798.85 5692.41 20292.55 22997.85 22771.07 33998.68 19493.93 20591.62 24097.64 233
EPNet_dtu95.71 15895.39 15496.66 19298.92 12593.41 22799.57 19098.90 4796.19 7397.52 14598.56 19992.65 12297.36 26977.89 35998.33 14499.20 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6197.60 7699.60 2298.92 12599.28 1799.89 9599.52 1595.58 8598.24 12999.39 12393.33 10199.74 13497.98 11995.58 20899.78 100
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 12993.07 23299.65 17699.80 395.64 8395.39 19398.86 17784.35 23699.90 9196.98 15099.16 12299.95 71
thres100view90096.74 12195.92 14099.18 5098.90 13098.77 4099.74 15599.71 792.59 19295.84 18598.86 17789.25 18499.50 15493.84 20894.57 21999.27 180
thres600view796.69 12495.87 14399.14 5998.90 13098.78 3999.74 15599.71 792.59 19295.84 18598.86 17789.25 18499.50 15493.44 22094.50 22299.16 187
MSDG94.37 19593.36 21197.40 16898.88 13293.95 21299.37 22097.38 26485.75 33290.80 24899.17 14284.11 23899.88 10286.35 31198.43 14298.36 220
h-mvs3394.92 17694.36 18096.59 19498.85 13391.29 27798.93 27098.94 4195.90 7698.77 10198.42 21090.89 16299.77 12897.80 12570.76 37098.72 212
Anonymous2024052992.10 25190.65 26296.47 19598.82 13490.61 29098.72 29198.67 7375.54 37893.90 21398.58 19766.23 35699.90 9194.70 19190.67 24298.90 202
PVSNet_Blended_VisFu97.27 9896.81 10498.66 9098.81 13596.67 12099.92 7898.64 7694.51 11496.38 17598.49 20389.05 18899.88 10297.10 14698.34 14399.43 160
PS-MVSNAJ98.44 4198.20 4699.16 5598.80 13698.92 2899.54 19698.17 18797.34 2999.85 999.85 3091.20 15199.89 9699.41 4899.67 8598.69 213
CANet_DTU96.76 11996.15 12498.60 9598.78 13797.53 8699.84 12297.63 23497.25 3799.20 8199.64 9981.36 25699.98 4392.77 23198.89 13098.28 221
mvsany_test197.82 7297.90 6697.55 15998.77 13893.04 23599.80 13897.93 21296.95 4599.61 5299.68 9390.92 15999.83 11899.18 5698.29 14899.80 96
alignmvs97.81 7397.33 8699.25 4498.77 13898.66 4999.99 498.44 12194.40 12198.41 11999.47 11493.65 9599.42 16298.57 9294.26 22599.67 113
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 14097.71 7999.98 1498.44 12196.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5797.97 5999.02 7098.69 14198.66 4999.52 19898.08 19997.05 4199.86 799.86 2690.65 16499.71 13899.39 5098.63 13898.69 213
miper_enhance_ethall94.36 19793.98 19095.49 22098.68 14295.24 17699.73 16097.29 27493.28 16689.86 26195.97 28594.37 7297.05 29392.20 23584.45 30194.19 284
ETVMVS97.03 10896.64 11098.20 12398.67 14397.12 10599.89 9598.57 8891.10 24498.17 13198.59 19493.86 9098.19 23695.64 17195.24 21699.28 179
test250697.53 8697.19 9198.58 9898.66 14496.90 11498.81 28499.77 594.93 9997.95 13598.96 16192.51 12899.20 16694.93 18198.15 15099.64 119
ECVR-MVScopyleft95.66 16195.05 16697.51 16298.66 14493.71 21798.85 28198.45 11794.93 9996.86 16098.96 16175.22 31799.20 16695.34 17398.15 15099.64 119
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 14698.63 14694.26 20299.96 3498.92 4697.18 3999.75 2999.69 8787.00 20999.97 5399.46 4498.89 13099.08 195
testing22297.08 10796.75 10798.06 13198.56 14796.82 11699.85 11798.61 8292.53 19698.84 9698.84 18193.36 9998.30 22695.84 16894.30 22499.05 196
test111195.57 16394.98 16997.37 17098.56 14793.37 22998.86 27998.45 11794.95 9896.63 16698.95 16675.21 31899.11 17195.02 17998.14 15299.64 119
MVSTER95.53 16495.22 16096.45 19798.56 14797.72 7899.91 8297.67 23292.38 20491.39 24097.14 24597.24 1897.30 27694.80 18787.85 27494.34 275
VDD-MVS93.77 21092.94 21896.27 20598.55 15090.22 29998.77 28897.79 22690.85 25096.82 16299.42 11861.18 37399.77 12898.95 6794.13 22698.82 205
tpmvs94.28 19993.57 20296.40 20098.55 15091.50 27595.70 36998.55 9787.47 30792.15 23394.26 34491.42 14798.95 17788.15 29095.85 20198.76 208
UGNet95.33 16994.57 17797.62 15798.55 15094.85 18698.67 29799.32 2695.75 8196.80 16396.27 27672.18 33199.96 6194.58 19499.05 12898.04 226
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 17094.10 18798.43 11298.55 15095.99 14797.91 33097.31 27190.35 26189.48 27299.22 13885.19 22699.89 9690.40 26798.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192095.44 16695.31 15795.82 21598.50 15488.74 31899.98 1497.30 27297.84 1699.85 999.19 14066.82 35499.97 5398.82 7799.46 10698.76 208
BH-w/o95.71 15895.38 15596.68 19198.49 15592.28 25299.84 12297.50 25392.12 21092.06 23698.79 18284.69 23198.67 19595.29 17599.66 8699.09 193
baseline195.78 15594.86 17198.54 10398.47 15698.07 6599.06 25497.99 20592.68 18694.13 21098.62 19393.28 10598.69 19393.79 21385.76 28998.84 204
iter_conf0596.07 14695.95 13696.44 19998.43 15797.52 8799.91 8296.85 32094.16 13192.49 23197.98 22398.20 497.34 27197.26 14188.29 26794.45 265
EPMVS96.53 13096.01 12798.09 12998.43 15796.12 14696.36 35699.43 2193.53 15897.64 14395.04 32294.41 6798.38 21891.13 24898.11 15399.75 103
iter_conf_final96.01 14995.93 13896.28 20498.38 15997.03 10899.87 10197.03 30094.05 14092.61 22797.98 22398.01 597.34 27197.02 14888.39 26694.47 259
sss97.57 8597.03 9899.18 5098.37 16098.04 6799.73 16099.38 2393.46 16098.76 10399.06 14891.21 15099.89 9696.33 15997.01 17999.62 124
BH-untuned95.18 17094.83 17296.22 20698.36 16191.22 27899.80 13897.32 27090.91 24891.08 24498.67 18683.51 24098.54 20194.23 20199.61 9398.92 199
ET-MVSNet_ETH3D94.37 19593.28 21397.64 15498.30 16297.99 6999.99 497.61 23994.35 12271.57 38199.45 11796.23 3195.34 35196.91 15485.14 29699.59 130
AUN-MVS93.28 22292.60 22795.34 22798.29 16390.09 30299.31 22798.56 9191.80 22296.35 17698.00 22089.38 18198.28 22992.46 23269.22 37597.64 233
FMVSNet392.69 23991.58 24895.99 21098.29 16397.42 9599.26 23597.62 23689.80 27089.68 26595.32 31281.62 25496.27 33187.01 30785.65 29094.29 277
PMMVS96.76 11996.76 10696.76 18898.28 16592.10 25699.91 8297.98 20794.12 13399.53 5799.39 12386.93 21098.73 18896.95 15297.73 16099.45 157
hse-mvs294.38 19494.08 18895.31 22998.27 16690.02 30499.29 23298.56 9195.90 7698.77 10198.00 22090.89 16298.26 23397.80 12569.20 37697.64 233
PVSNet_088.03 1991.80 25890.27 27196.38 20298.27 16690.46 29499.94 6899.61 1493.99 14286.26 32797.39 24071.13 33899.89 9698.77 8067.05 38198.79 207
UA-Net96.54 12995.96 13498.27 12098.23 16895.71 15798.00 32898.45 11793.72 15498.41 11999.27 13288.71 19399.66 14691.19 24797.69 16199.44 159
test_cas_vis1_n_192096.59 12896.23 12297.65 15398.22 16994.23 20399.99 497.25 27897.77 1799.58 5399.08 14677.10 29499.97 5397.64 13399.45 10798.74 210
FE-MVS95.70 16095.01 16897.79 14398.21 17094.57 19295.03 37098.69 6888.90 28697.50 14796.19 27892.60 12599.49 15889.99 27297.94 15999.31 174
GG-mvs-BLEND98.54 10398.21 17098.01 6893.87 37598.52 10397.92 13697.92 22699.02 297.94 25298.17 10699.58 9699.67 113
mvs_anonymous95.65 16295.03 16797.53 16098.19 17295.74 15599.33 22497.49 25490.87 24990.47 25197.10 24788.23 19597.16 28495.92 16697.66 16399.68 111
MVS_Test96.46 13295.74 14598.61 9498.18 17397.23 9999.31 22797.15 28791.07 24598.84 9697.05 25188.17 19698.97 17594.39 19697.50 16599.61 127
BH-RMVSNet95.18 17094.31 18397.80 14198.17 17495.23 17799.76 14997.53 24992.52 19894.27 20899.25 13676.84 29998.80 18290.89 25699.54 9899.35 169
RPSCF91.80 25892.79 22388.83 34698.15 17569.87 38498.11 32496.60 33583.93 34794.33 20699.27 13279.60 27699.46 16191.99 23793.16 23697.18 240
ETV-MVS97.92 6697.80 7098.25 12198.14 17696.48 12599.98 1497.63 23495.61 8499.29 7999.46 11692.55 12798.82 18199.02 6698.54 13999.46 155
IS-MVSNet96.29 14295.90 14197.45 16498.13 17794.80 18999.08 24997.61 23992.02 21595.54 19298.96 16190.64 16598.08 24193.73 21697.41 16999.47 154
test_fmvsmconf_n98.43 4398.32 4098.78 8298.12 17896.41 12899.99 498.83 5998.22 699.67 3899.64 9991.11 15599.94 7799.67 3699.62 8999.98 48
ab-mvs94.69 18393.42 20798.51 10698.07 17996.26 13596.49 35498.68 7090.31 26294.54 20197.00 25376.30 30699.71 13895.98 16593.38 23499.56 138
XVG-OURS-SEG-HR94.79 17994.70 17695.08 23598.05 18089.19 31399.08 24997.54 24793.66 15594.87 19999.58 10678.78 28499.79 12397.31 13993.40 23396.25 246
EIA-MVS97.53 8697.46 8097.76 14898.04 18194.84 18799.98 1497.61 23994.41 12097.90 13799.59 10492.40 13298.87 17998.04 11499.13 12499.59 130
XVG-OURS94.82 17794.74 17595.06 23698.00 18289.19 31399.08 24997.55 24594.10 13494.71 20099.62 10280.51 26899.74 13496.04 16493.06 23896.25 246
dp95.05 17394.43 17996.91 18397.99 18392.73 24296.29 35997.98 20789.70 27195.93 18494.67 33593.83 9298.45 20786.91 31096.53 18699.54 143
tpmrst96.27 14495.98 13097.13 17897.96 18493.15 23196.34 35798.17 18792.07 21198.71 10795.12 32093.91 8798.73 18894.91 18496.62 18499.50 151
TR-MVS94.54 18893.56 20397.49 16397.96 18494.34 20098.71 29297.51 25290.30 26394.51 20398.69 18575.56 31298.77 18592.82 23095.99 19599.35 169
Vis-MVSNet (Re-imp)96.32 13995.98 13097.35 17397.93 18694.82 18899.47 20798.15 19491.83 21995.09 19799.11 14491.37 14997.47 26793.47 21997.43 16699.74 104
MDTV_nov1_ep1395.69 14797.90 18794.15 20595.98 36598.44 12193.12 17097.98 13495.74 28995.10 5098.58 19890.02 27196.92 181
Fast-Effi-MVS+95.02 17494.19 18597.52 16197.88 18894.55 19399.97 2797.08 29588.85 28894.47 20497.96 22584.59 23298.41 21089.84 27497.10 17499.59 130
ADS-MVSNet293.80 20993.88 19493.55 29797.87 18985.94 34294.24 37196.84 32190.07 26596.43 17294.48 34090.29 17195.37 35087.44 29797.23 17199.36 167
ADS-MVSNet94.79 17994.02 18997.11 18097.87 18993.79 21494.24 37198.16 19190.07 26596.43 17294.48 34090.29 17198.19 23687.44 29797.23 17199.36 167
Effi-MVS+96.30 14195.69 14798.16 12497.85 19196.26 13597.41 33797.21 28090.37 26098.65 11098.58 19786.61 21398.70 19297.11 14597.37 17099.52 147
PatchmatchNetpermissive95.94 15195.45 15297.39 16997.83 19294.41 19796.05 36398.40 14892.86 17497.09 15495.28 31794.21 7998.07 24389.26 27898.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 18693.61 19897.74 15097.82 19396.26 13599.96 3497.78 22785.76 33094.00 21197.54 23476.95 29899.21 16597.23 14295.43 21197.76 232
1112_ss96.01 14995.20 16198.42 11397.80 19496.41 12899.65 17696.66 33292.71 18392.88 22499.40 12192.16 13799.30 16391.92 23993.66 23099.55 139
Test_1112_low_res95.72 15694.83 17298.42 11397.79 19596.41 12899.65 17696.65 33392.70 18492.86 22596.13 28192.15 13899.30 16391.88 24093.64 23199.55 139
Effi-MVS+-dtu94.53 19095.30 15892.22 31997.77 19682.54 35999.59 18697.06 29794.92 10195.29 19595.37 31085.81 21997.89 25394.80 18797.07 17596.23 248
tpm cat193.51 21892.52 23296.47 19597.77 19691.47 27696.13 36198.06 20080.98 36392.91 22393.78 34889.66 17698.87 17987.03 30696.39 18999.09 193
FA-MVS(test-final)95.86 15295.09 16598.15 12797.74 19895.62 16196.31 35898.17 18791.42 23596.26 17796.13 28190.56 16699.47 16092.18 23697.07 17599.35 169
xiu_mvs_v1_base_debu97.43 8897.06 9498.55 10097.74 19898.14 6299.31 22797.86 22196.43 6299.62 4699.69 8785.56 22199.68 14299.05 6098.31 14597.83 228
xiu_mvs_v1_base97.43 8897.06 9498.55 10097.74 19898.14 6299.31 22797.86 22196.43 6299.62 4699.69 8785.56 22199.68 14299.05 6098.31 14597.83 228
xiu_mvs_v1_base_debi97.43 8897.06 9498.55 10097.74 19898.14 6299.31 22797.86 22196.43 6299.62 4699.69 8785.56 22199.68 14299.05 6098.31 14597.83 228
EPP-MVSNet96.69 12496.60 11296.96 18297.74 19893.05 23499.37 22098.56 9188.75 28995.83 18799.01 15296.01 3298.56 19996.92 15397.20 17399.25 182
gg-mvs-nofinetune93.51 21891.86 24598.47 10897.72 20397.96 7292.62 37998.51 10674.70 38197.33 15069.59 39498.91 397.79 25697.77 13099.56 9799.67 113
IB-MVS92.85 694.99 17593.94 19298.16 12497.72 20395.69 15999.99 498.81 6094.28 12792.70 22696.90 25595.08 5199.17 16996.07 16373.88 36599.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9397.02 9998.59 9797.71 20597.52 8799.97 2798.54 10091.83 21997.45 14899.04 14997.50 999.10 17294.75 18996.37 19099.16 187
Syy-MVS90.00 29790.63 26388.11 35397.68 20674.66 38199.71 16598.35 16190.79 25292.10 23498.67 18679.10 28293.09 37363.35 38795.95 19896.59 244
myMVS_eth3d94.46 19294.76 17493.55 29797.68 20690.97 28099.71 16598.35 16190.79 25292.10 23498.67 18692.46 13193.09 37387.13 30395.95 19896.59 244
test_fmvs1_n94.25 20094.36 18093.92 28397.68 20683.70 35499.90 8796.57 33697.40 2899.67 3898.88 17261.82 37099.92 8898.23 10499.13 12498.14 225
diffmvspermissive97.00 10996.64 11098.09 12997.64 20996.17 14399.81 13497.19 28194.67 11198.95 9199.28 12986.43 21498.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 15695.15 16397.45 16497.62 21094.28 20199.28 23398.24 17994.27 12996.84 16198.94 16879.39 27798.76 18693.25 22198.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10396.72 10898.22 12297.60 21196.70 11999.92 7898.54 10091.11 24397.07 15598.97 15997.47 1299.03 17393.73 21696.09 19398.92 199
miper_ehance_all_eth93.16 22592.60 22794.82 24697.57 21293.56 22199.50 20297.07 29688.75 28988.85 28895.52 30090.97 15896.74 31290.77 25884.45 30194.17 285
testing393.92 20494.23 18492.99 31197.54 21390.23 29899.99 499.16 3090.57 25691.33 24398.63 19292.99 11292.52 37782.46 33695.39 21296.22 249
LCM-MVSNet-Re92.31 24792.60 22791.43 32697.53 21479.27 37699.02 26291.83 39092.07 21180.31 35694.38 34383.50 24195.48 34897.22 14397.58 16499.54 143
GBi-Net90.88 27489.82 28094.08 27597.53 21491.97 25798.43 30896.95 30987.05 31389.68 26594.72 33171.34 33596.11 33687.01 30785.65 29094.17 285
test190.88 27489.82 28094.08 27597.53 21491.97 25798.43 30896.95 30987.05 31389.68 26594.72 33171.34 33596.11 33687.01 30785.65 29094.17 285
FMVSNet291.02 27189.56 28595.41 22597.53 21495.74 15598.98 26497.41 26287.05 31388.43 29695.00 32571.34 33596.24 33385.12 32085.21 29594.25 280
tttt051796.85 11496.49 11697.92 13697.48 21895.89 15099.85 11798.54 10090.72 25596.63 16698.93 17097.47 1299.02 17493.03 22895.76 20498.85 203
casdiffmvs_mvgpermissive96.43 13395.94 13797.89 14097.44 21995.47 16599.86 11497.29 27493.35 16296.03 18199.19 14085.39 22498.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9597.24 8897.80 14197.41 22095.64 16099.99 497.06 29794.59 11299.63 4399.32 12889.20 18798.14 23898.76 8199.23 12099.62 124
c3_l92.53 24291.87 24494.52 25897.40 22192.99 23699.40 21396.93 31487.86 30388.69 29195.44 30489.95 17496.44 32490.45 26480.69 33294.14 294
fmvsm_s_conf0.1_n97.30 9697.21 9097.60 15897.38 22294.40 19999.90 8798.64 7696.47 6199.51 6199.65 9884.99 22999.93 8599.22 5599.09 12698.46 217
CDS-MVSNet96.34 13896.07 12597.13 17897.37 22394.96 18499.53 19797.91 21691.55 22795.37 19498.32 21295.05 5397.13 28793.80 21295.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 12196.26 12198.16 12497.36 22496.48 12599.96 3498.29 17491.93 21695.77 18898.07 21895.54 4298.29 22790.55 26298.89 13099.70 108
miper_lstm_enhance91.81 25591.39 25493.06 31097.34 22589.18 31599.38 21896.79 32686.70 32087.47 30995.22 31890.00 17395.86 34588.26 28881.37 32294.15 291
baseline96.43 13395.98 13097.76 14897.34 22595.17 18199.51 20097.17 28493.92 14796.90 15999.28 12985.37 22598.64 19697.50 13696.86 18399.46 155
cl____92.31 24791.58 24894.52 25897.33 22792.77 23899.57 19096.78 32786.97 31787.56 30795.51 30189.43 18096.62 31788.60 28382.44 31494.16 290
DIV-MVS_self_test92.32 24691.60 24794.47 26297.31 22892.74 24099.58 18896.75 32886.99 31687.64 30595.54 29889.55 17996.50 32188.58 28482.44 31494.17 285
casdiffmvspermissive96.42 13595.97 13397.77 14697.30 22994.98 18399.84 12297.09 29493.75 15396.58 16899.26 13585.07 22798.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 19793.48 20596.99 18197.29 23093.54 22299.96 3496.72 33088.35 29893.43 21598.94 16882.05 24898.05 24488.12 29296.48 18899.37 166
eth_miper_zixun_eth92.41 24591.93 24293.84 28797.28 23190.68 28898.83 28296.97 30888.57 29489.19 28295.73 29189.24 18696.69 31589.97 27381.55 32094.15 291
MVSFormer96.94 11196.60 11297.95 13497.28 23197.70 8199.55 19497.27 27691.17 24099.43 6699.54 11090.92 15996.89 30594.67 19299.62 8999.25 182
lupinMVS97.85 6997.60 7698.62 9397.28 23197.70 8199.99 497.55 24595.50 8999.43 6699.67 9490.92 15998.71 19198.40 9799.62 8999.45 157
SCA94.69 18393.81 19697.33 17497.10 23494.44 19498.86 27998.32 16893.30 16596.17 18095.59 29676.48 30497.95 25091.06 25097.43 16699.59 130
TAMVS95.85 15395.58 15096.65 19397.07 23593.50 22399.17 24297.82 22591.39 23795.02 19898.01 21992.20 13697.30 27693.75 21595.83 20299.14 190
Fast-Effi-MVS+-dtu93.72 21393.86 19593.29 30297.06 23686.16 34099.80 13896.83 32292.66 18792.58 22897.83 22981.39 25597.67 26189.75 27596.87 18296.05 251
CostFormer96.10 14595.88 14296.78 18797.03 23792.55 24897.08 34597.83 22490.04 26798.72 10694.89 32995.01 5598.29 22796.54 15895.77 20399.50 151
test_fmvsmvis_n_192097.67 8397.59 7897.91 13897.02 23895.34 17199.95 5298.45 11797.87 1597.02 15699.59 10489.64 17799.98 4399.41 4899.34 11598.42 218
test-LLR96.47 13196.04 12697.78 14497.02 23895.44 16699.96 3498.21 18294.07 13695.55 19096.38 27293.90 8898.27 23190.42 26598.83 13499.64 119
test-mter96.39 13695.93 13897.78 14497.02 23895.44 16699.96 3498.21 18291.81 22195.55 19096.38 27295.17 4898.27 23190.42 26598.83 13499.64 119
gm-plane-assit96.97 24193.76 21691.47 23198.96 16198.79 18394.92 182
WB-MVSnew92.90 23292.77 22493.26 30496.95 24293.63 21999.71 16598.16 19191.49 22894.28 20798.14 21581.33 25796.48 32279.47 35195.46 20989.68 374
QAPM95.40 16794.17 18699.10 6496.92 24397.71 7999.40 21398.68 7089.31 27488.94 28698.89 17182.48 24699.96 6193.12 22799.83 7299.62 124
KD-MVS_2432*160088.00 31686.10 32093.70 29396.91 24494.04 20897.17 34297.12 29084.93 34081.96 34792.41 35992.48 12994.51 36179.23 35252.68 39392.56 348
miper_refine_blended88.00 31686.10 32093.70 29396.91 24494.04 20897.17 34297.12 29084.93 34081.96 34792.41 35992.48 12994.51 36179.23 35252.68 39392.56 348
tpm295.47 16595.18 16296.35 20396.91 24491.70 27096.96 34897.93 21288.04 30298.44 11895.40 30693.32 10297.97 24794.00 20395.61 20799.38 164
FMVSNet588.32 31387.47 31590.88 32996.90 24788.39 32697.28 33995.68 35682.60 35784.67 33692.40 36179.83 27491.16 38276.39 36681.51 32193.09 340
3Dnovator+91.53 1196.31 14095.24 15999.52 2896.88 24898.64 5299.72 16398.24 17995.27 9488.42 29898.98 15782.76 24599.94 7797.10 14699.83 7299.96 64
Patchmatch-test92.65 24191.50 25196.10 20996.85 24990.49 29391.50 38497.19 28182.76 35690.23 25395.59 29695.02 5498.00 24677.41 36196.98 18099.82 92
MVS96.60 12795.56 15199.72 1396.85 24999.22 2098.31 31498.94 4191.57 22690.90 24799.61 10386.66 21299.96 6197.36 13899.88 6899.99 23
3Dnovator91.47 1296.28 14395.34 15699.08 6596.82 25197.47 9399.45 21098.81 6095.52 8889.39 27399.00 15481.97 24999.95 6997.27 14099.83 7299.84 90
EI-MVSNet93.73 21293.40 21094.74 24796.80 25292.69 24399.06 25497.67 23288.96 28391.39 24099.02 15088.75 19297.30 27691.07 24987.85 27494.22 281
CVMVSNet94.68 18594.94 17093.89 28696.80 25286.92 33899.06 25498.98 3894.45 11594.23 20999.02 15085.60 22095.31 35290.91 25595.39 21299.43 160
IterMVS-LS92.69 23992.11 23794.43 26696.80 25292.74 24099.45 21096.89 31788.98 28189.65 26895.38 30988.77 19196.34 32890.98 25382.04 31794.22 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27390.17 27593.12 30796.78 25590.42 29698.89 27397.05 29989.03 27886.49 32295.42 30576.59 30295.02 35487.22 30284.09 30493.93 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11595.96 13499.48 3496.74 25698.52 5698.31 31498.86 5395.82 7889.91 25998.98 15787.49 20199.96 6197.80 12599.73 8299.96 64
IterMVS-SCA-FT90.85 27690.16 27692.93 31296.72 25789.96 30598.89 27396.99 30488.95 28486.63 31995.67 29276.48 30495.00 35587.04 30584.04 30793.84 319
MVS-HIRNet86.22 32383.19 33695.31 22996.71 25890.29 29792.12 38197.33 26962.85 38886.82 31670.37 39369.37 34397.49 26675.12 36897.99 15898.15 223
VDDNet93.12 22791.91 24396.76 18896.67 25992.65 24698.69 29598.21 18282.81 35597.75 14299.28 12961.57 37199.48 15998.09 11294.09 22798.15 223
dmvs_re93.20 22493.15 21593.34 30096.54 26083.81 35398.71 29298.51 10691.39 23792.37 23298.56 19978.66 28697.83 25593.89 20689.74 24398.38 219
MIMVSNet90.30 28988.67 30395.17 23496.45 26191.64 27292.39 38097.15 28785.99 32790.50 25093.19 35566.95 35394.86 35882.01 34093.43 23299.01 198
CR-MVSNet93.45 22192.62 22695.94 21196.29 26292.66 24492.01 38296.23 34592.62 18996.94 15793.31 35391.04 15696.03 34179.23 35295.96 19699.13 191
RPMNet89.76 30187.28 31697.19 17796.29 26292.66 24492.01 38298.31 17070.19 38796.94 15785.87 38687.25 20599.78 12562.69 38895.96 19699.13 191
tt080591.28 26690.18 27494.60 25396.26 26487.55 33298.39 31298.72 6589.00 28089.22 27998.47 20762.98 36798.96 17690.57 26188.00 27397.28 239
Patchmtry89.70 30288.49 30593.33 30196.24 26589.94 30891.37 38596.23 34578.22 37187.69 30493.31 35391.04 15696.03 34180.18 35082.10 31694.02 302
test_vis1_rt86.87 32186.05 32389.34 34296.12 26678.07 37799.87 10183.54 40192.03 21478.21 36689.51 37245.80 38799.91 8996.25 16193.11 23790.03 371
JIA-IIPM91.76 26190.70 26194.94 24096.11 26787.51 33393.16 37898.13 19675.79 37797.58 14477.68 39192.84 11797.97 24788.47 28796.54 18599.33 172
OpenMVScopyleft90.15 1594.77 18193.59 20198.33 11796.07 26897.48 9299.56 19298.57 8890.46 25886.51 32198.95 16678.57 28799.94 7793.86 20799.74 8197.57 237
PAPM98.60 3098.42 3199.14 5996.05 26998.96 2699.90 8799.35 2596.68 5598.35 12399.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
CLD-MVS94.06 20393.90 19394.55 25796.02 27090.69 28799.98 1497.72 22896.62 5891.05 24698.85 18077.21 29398.47 20398.11 11089.51 24994.48 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 28688.75 30295.25 23195.99 27190.16 30091.22 38697.54 24776.80 37397.26 15186.01 38591.88 14396.07 34066.16 38495.91 20099.51 149
ACMH+89.98 1690.35 28789.54 28692.78 31595.99 27186.12 34198.81 28497.18 28389.38 27383.14 34397.76 23168.42 34898.43 20889.11 27986.05 28893.78 322
DeepMVS_CXcopyleft82.92 36395.98 27358.66 39496.01 35092.72 18278.34 36595.51 30158.29 37698.08 24182.57 33585.29 29392.03 356
ACMP92.05 992.74 23692.42 23493.73 28995.91 27488.72 31999.81 13497.53 24994.13 13287.00 31598.23 21374.07 32598.47 20396.22 16288.86 25693.99 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 21693.03 21795.35 22695.86 27586.94 33799.87 10196.36 34396.85 4699.54 5698.79 18252.41 38399.83 11898.64 8998.97 12999.29 178
HQP-NCC95.78 27699.87 10196.82 4893.37 216
ACMP_Plane95.78 27699.87 10196.82 4893.37 216
HQP-MVS94.61 18794.50 17894.92 24195.78 27691.85 26299.87 10197.89 21796.82 4893.37 21698.65 18980.65 26698.39 21497.92 12189.60 24494.53 254
NP-MVS95.77 27991.79 26498.65 189
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9295.76 28096.20 14099.94 6898.05 20298.17 898.89 9599.42 11887.65 19999.90 9199.50 4199.60 9599.82 92
plane_prior695.76 28091.72 26980.47 270
ACMM91.95 1092.88 23392.52 23293.98 28295.75 28289.08 31699.77 14497.52 25193.00 17289.95 25897.99 22276.17 30898.46 20693.63 21888.87 25594.39 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 20692.84 22096.80 18695.73 28393.57 22099.88 9897.24 27992.57 19492.92 22296.66 26478.73 28597.67 26187.75 29594.06 22899.17 186
plane_prior195.73 283
jason97.24 9996.86 10298.38 11695.73 28397.32 9799.97 2797.40 26395.34 9298.60 11399.54 11087.70 19898.56 19997.94 12099.47 10499.25 182
jason: jason.
HQP_MVS94.49 19194.36 18094.87 24295.71 28691.74 26699.84 12297.87 21996.38 6593.01 22098.59 19480.47 27098.37 22097.79 12889.55 24794.52 256
plane_prior795.71 28691.59 274
ITE_SJBPF92.38 31795.69 28885.14 34695.71 35592.81 17889.33 27698.11 21670.23 34198.42 20985.91 31688.16 27093.59 330
fmvsm_s_conf0.1_n_a97.09 10596.90 10197.63 15695.65 28994.21 20499.83 12998.50 11196.27 7099.65 4099.64 9984.72 23099.93 8599.04 6398.84 13398.74 210
ACMH89.72 1790.64 28089.63 28393.66 29595.64 29088.64 32298.55 30197.45 25689.03 27881.62 35097.61 23369.75 34298.41 21089.37 27687.62 27993.92 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12396.49 11697.37 17095.63 29195.96 14899.74 15598.88 5192.94 17391.61 23898.97 15997.72 798.62 19794.83 18698.08 15697.53 238
FMVSNet188.50 31286.64 31894.08 27595.62 29291.97 25798.43 30896.95 30983.00 35386.08 32994.72 33159.09 37596.11 33681.82 34284.07 30594.17 285
LPG-MVS_test92.96 23092.71 22593.71 29195.43 29388.67 32099.75 15297.62 23692.81 17890.05 25498.49 20375.24 31598.40 21295.84 16889.12 25194.07 299
LGP-MVS_train93.71 29195.43 29388.67 32097.62 23692.81 17890.05 25498.49 20375.24 31598.40 21295.84 16889.12 25194.07 299
tpm93.70 21493.41 20994.58 25595.36 29587.41 33497.01 34696.90 31690.85 25096.72 16594.14 34590.40 16996.84 30890.75 25988.54 26399.51 149
D2MVS92.76 23592.59 23093.27 30395.13 29689.54 31299.69 16999.38 2392.26 20787.59 30694.61 33785.05 22897.79 25691.59 24388.01 27292.47 351
VPA-MVSNet92.70 23891.55 25096.16 20795.09 29796.20 14098.88 27599.00 3691.02 24791.82 23795.29 31676.05 31097.96 24995.62 17281.19 32394.30 276
LTVRE_ROB88.28 1890.29 29089.05 29794.02 27895.08 29890.15 30197.19 34197.43 25884.91 34283.99 33997.06 25074.00 32698.28 22984.08 32587.71 27793.62 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 31886.51 31991.94 32295.05 29985.57 34497.65 33494.08 37884.40 34581.82 34996.85 25962.14 36998.33 22380.25 34986.37 28791.91 358
test0.0.03 193.86 20593.61 19894.64 25195.02 30092.18 25599.93 7598.58 8694.07 13687.96 30298.50 20293.90 8894.96 35681.33 34393.17 23596.78 241
UniMVSNet (Re)93.07 22992.13 23695.88 21294.84 30196.24 13999.88 9898.98 3892.49 20089.25 27795.40 30687.09 20797.14 28693.13 22678.16 34694.26 278
USDC90.00 29788.96 29893.10 30994.81 30288.16 32898.71 29295.54 36093.66 15583.75 34197.20 24465.58 35898.31 22583.96 32887.49 28192.85 345
VPNet91.81 25590.46 26595.85 21494.74 30395.54 16498.98 26498.59 8592.14 20990.77 24997.44 23768.73 34697.54 26594.89 18577.89 34894.46 260
FIs94.10 20193.43 20696.11 20894.70 30496.82 11699.58 18898.93 4592.54 19589.34 27597.31 24187.62 20097.10 29094.22 20286.58 28594.40 267
UniMVSNet_ETH3D90.06 29688.58 30494.49 26194.67 30588.09 32997.81 33397.57 24483.91 34888.44 29497.41 23857.44 37797.62 26391.41 24488.59 26297.77 231
UniMVSNet_NR-MVSNet92.95 23192.11 23795.49 22094.61 30695.28 17499.83 12999.08 3391.49 22889.21 28096.86 25887.14 20696.73 31393.20 22277.52 35194.46 260
test_fmvs289.47 30589.70 28288.77 34994.54 30775.74 37899.83 12994.70 37494.71 10891.08 24496.82 26354.46 38097.78 25892.87 22988.27 26892.80 346
WR-MVS92.31 24791.25 25595.48 22394.45 30895.29 17399.60 18598.68 7090.10 26488.07 30196.89 25680.68 26596.80 31193.14 22579.67 33994.36 271
nrg03093.51 21892.53 23196.45 19794.36 30997.20 10099.81 13497.16 28691.60 22589.86 26197.46 23686.37 21597.68 26095.88 16780.31 33594.46 260
tfpnnormal89.29 30887.61 31494.34 26994.35 31094.13 20698.95 26898.94 4183.94 34684.47 33795.51 30174.84 32097.39 26877.05 36480.41 33391.48 361
FC-MVSNet-test93.81 20893.15 21595.80 21694.30 31196.20 14099.42 21298.89 4992.33 20689.03 28597.27 24387.39 20396.83 30993.20 22286.48 28694.36 271
MS-PatchMatch90.65 27990.30 27091.71 32594.22 31285.50 34598.24 31797.70 22988.67 29186.42 32496.37 27467.82 35098.03 24583.62 33099.62 8991.60 359
WR-MVS_H91.30 26490.35 26894.15 27294.17 31392.62 24799.17 24298.94 4188.87 28786.48 32394.46 34284.36 23496.61 31888.19 28978.51 34493.21 339
DU-MVS92.46 24491.45 25395.49 22094.05 31495.28 17499.81 13498.74 6492.25 20889.21 28096.64 26681.66 25296.73 31393.20 22277.52 35194.46 260
NR-MVSNet91.56 26390.22 27295.60 21894.05 31495.76 15498.25 31698.70 6791.16 24280.78 35596.64 26683.23 24496.57 31991.41 24477.73 35094.46 260
CP-MVSNet91.23 26890.22 27294.26 27093.96 31692.39 25199.09 24798.57 8888.95 28486.42 32496.57 26979.19 28096.37 32690.29 26878.95 34194.02 302
XXY-MVS91.82 25490.46 26595.88 21293.91 31795.40 17098.87 27897.69 23088.63 29387.87 30397.08 24874.38 32497.89 25391.66 24284.07 30594.35 274
PS-CasMVS90.63 28189.51 28893.99 28193.83 31891.70 27098.98 26498.52 10388.48 29586.15 32896.53 27175.46 31396.31 33088.83 28178.86 34393.95 310
test_040285.58 32583.94 33090.50 33393.81 31985.04 34798.55 30195.20 36876.01 37579.72 36095.13 31964.15 36496.26 33266.04 38586.88 28490.21 370
XVG-ACMP-BASELINE91.22 26990.75 26092.63 31693.73 32085.61 34398.52 30597.44 25792.77 18189.90 26096.85 25966.64 35598.39 21492.29 23488.61 26093.89 315
TranMVSNet+NR-MVSNet91.68 26290.61 26494.87 24293.69 32193.98 21199.69 16998.65 7491.03 24688.44 29496.83 26280.05 27396.18 33490.26 26976.89 35994.45 265
mvsmamba94.10 20193.72 19795.25 23193.57 32294.13 20699.67 17396.45 34193.63 15791.34 24297.77 23086.29 21697.22 28296.65 15788.10 27194.40 267
TransMVSNet (Re)87.25 31985.28 32693.16 30693.56 32391.03 27998.54 30394.05 38083.69 35081.09 35396.16 27975.32 31496.40 32576.69 36568.41 37792.06 355
v1090.25 29188.82 30094.57 25693.53 32493.43 22699.08 24996.87 31985.00 33987.34 31394.51 33880.93 26297.02 30082.85 33479.23 34093.26 337
testgi89.01 31088.04 31191.90 32393.49 32584.89 34999.73 16095.66 35793.89 15085.14 33498.17 21459.68 37494.66 36077.73 36088.88 25496.16 250
v890.54 28389.17 29394.66 25093.43 32693.40 22899.20 23996.94 31385.76 33087.56 30794.51 33881.96 25097.19 28384.94 32278.25 34593.38 335
V4291.28 26690.12 27794.74 24793.42 32793.46 22499.68 17197.02 30187.36 30989.85 26395.05 32181.31 25897.34 27187.34 30080.07 33793.40 333
pm-mvs189.36 30787.81 31394.01 27993.40 32891.93 26098.62 30096.48 34086.25 32583.86 34096.14 28073.68 32797.04 29586.16 31375.73 36393.04 342
RRT_MVS93.14 22692.92 21993.78 28893.31 32990.04 30399.66 17497.69 23092.53 19688.91 28797.76 23184.36 23496.93 30395.10 17786.99 28394.37 270
v114491.09 27089.83 27994.87 24293.25 33093.69 21899.62 18396.98 30686.83 31989.64 26994.99 32680.94 26197.05 29385.08 32181.16 32493.87 317
v119290.62 28289.25 29294.72 24993.13 33193.07 23299.50 20297.02 30186.33 32489.56 27195.01 32379.22 27997.09 29282.34 33881.16 32494.01 304
v2v48291.30 26490.07 27895.01 23793.13 33193.79 21499.77 14497.02 30188.05 30189.25 27795.37 31080.73 26497.15 28587.28 30180.04 33894.09 298
OPM-MVS93.21 22392.80 22294.44 26493.12 33390.85 28699.77 14497.61 23996.19 7391.56 23998.65 18975.16 31998.47 20393.78 21489.39 25093.99 307
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 27789.52 28794.59 25493.11 33492.77 23899.56 19296.99 30486.38 32389.82 26494.95 32880.50 26997.10 29083.98 32780.41 33393.90 314
bld_raw_dy_0_6492.74 23692.03 24094.87 24293.09 33593.46 22499.12 24495.41 36292.84 17790.44 25297.54 23478.08 29197.04 29593.94 20487.77 27694.11 296
PEN-MVS90.19 29389.06 29693.57 29693.06 33690.90 28499.06 25498.47 11488.11 30085.91 33096.30 27576.67 30095.94 34487.07 30476.91 35893.89 315
v124090.20 29288.79 30194.44 26493.05 33792.27 25399.38 21896.92 31585.89 32889.36 27494.87 33077.89 29297.03 29880.66 34681.08 32794.01 304
v14890.70 27889.63 28393.92 28392.97 33890.97 28099.75 15296.89 31787.51 30688.27 29995.01 32381.67 25197.04 29587.40 29977.17 35693.75 323
v192192090.46 28489.12 29494.50 26092.96 33992.46 24999.49 20496.98 30686.10 32689.61 27095.30 31378.55 28897.03 29882.17 33980.89 33194.01 304
Baseline_NR-MVSNet90.33 28889.51 28892.81 31492.84 34089.95 30699.77 14493.94 38184.69 34489.04 28495.66 29381.66 25296.52 32090.99 25276.98 35791.97 357
test_method80.79 34579.70 34984.08 36092.83 34167.06 38699.51 20095.42 36154.34 39281.07 35493.53 35044.48 38892.22 37978.90 35677.23 35592.94 343
pmmvs492.10 25191.07 25895.18 23392.82 34294.96 18499.48 20696.83 32287.45 30888.66 29296.56 27083.78 23996.83 30989.29 27784.77 29993.75 323
LF4IMVS89.25 30988.85 29990.45 33592.81 34381.19 36998.12 32394.79 37191.44 23286.29 32697.11 24665.30 36198.11 24088.53 28685.25 29492.07 354
DTE-MVSNet89.40 30688.24 30992.88 31392.66 34489.95 30699.10 24698.22 18187.29 31085.12 33596.22 27776.27 30795.30 35383.56 33175.74 36293.41 332
EU-MVSNet90.14 29590.34 26989.54 34192.55 34581.06 37098.69 29598.04 20391.41 23686.59 32096.84 26180.83 26393.31 37286.20 31281.91 31894.26 278
APD_test181.15 34480.92 34581.86 36492.45 34659.76 39396.04 36493.61 38473.29 38477.06 36996.64 26644.28 38996.16 33572.35 37282.52 31289.67 375
our_test_390.39 28589.48 29093.12 30792.40 34789.57 31199.33 22496.35 34487.84 30485.30 33394.99 32684.14 23796.09 33980.38 34784.56 30093.71 328
ppachtmachnet_test89.58 30488.35 30793.25 30592.40 34790.44 29599.33 22496.73 32985.49 33585.90 33195.77 28881.09 26096.00 34376.00 36782.49 31393.30 336
v7n89.65 30388.29 30893.72 29092.22 34990.56 29299.07 25397.10 29285.42 33786.73 31794.72 33180.06 27297.13 28781.14 34478.12 34793.49 331
dmvs_testset83.79 33886.07 32276.94 36892.14 35048.60 40396.75 35190.27 39389.48 27278.65 36398.55 20179.25 27886.65 39166.85 38282.69 31195.57 252
PS-MVSNAJss93.64 21593.31 21294.61 25292.11 35192.19 25499.12 24497.38 26492.51 19988.45 29396.99 25491.20 15197.29 27994.36 19787.71 27794.36 271
pmmvs590.17 29489.09 29593.40 29992.10 35289.77 30999.74 15595.58 35985.88 32987.24 31495.74 28973.41 32896.48 32288.54 28583.56 30893.95 310
N_pmnet80.06 34880.78 34677.89 36791.94 35345.28 40598.80 28656.82 40778.10 37280.08 35893.33 35177.03 29595.76 34668.14 38082.81 31092.64 347
test_djsdf92.83 23492.29 23594.47 26291.90 35492.46 24999.55 19497.27 27691.17 24089.96 25796.07 28481.10 25996.89 30594.67 19288.91 25394.05 301
SixPastTwentyTwo88.73 31188.01 31290.88 32991.85 35582.24 36198.22 32095.18 36988.97 28282.26 34696.89 25671.75 33396.67 31684.00 32682.98 30993.72 327
K. test v388.05 31587.24 31790.47 33491.82 35682.23 36298.96 26797.42 26089.05 27776.93 37195.60 29568.49 34795.42 34985.87 31781.01 32993.75 323
OurMVSNet-221017-089.81 30089.48 29090.83 33191.64 35781.21 36898.17 32295.38 36491.48 23085.65 33297.31 24172.66 32997.29 27988.15 29084.83 29893.97 309
mvs_tets91.81 25591.08 25794.00 28091.63 35890.58 29198.67 29797.43 25892.43 20187.37 31297.05 25171.76 33297.32 27594.75 18988.68 25994.11 296
Gipumacopyleft66.95 36165.00 36172.79 37391.52 35967.96 38566.16 39695.15 37047.89 39458.54 39167.99 39629.74 39387.54 39050.20 39577.83 34962.87 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 13695.74 14598.32 11891.47 36095.56 16399.84 12297.30 27297.74 1897.89 13899.35 12779.62 27599.85 10899.25 5499.24 11999.55 139
jajsoiax91.92 25391.18 25694.15 27291.35 36190.95 28399.00 26397.42 26092.61 19087.38 31197.08 24872.46 33097.36 26994.53 19588.77 25794.13 295
MDA-MVSNet-bldmvs84.09 33681.52 34391.81 32491.32 36288.00 33198.67 29795.92 35280.22 36655.60 39493.32 35268.29 34993.60 37073.76 36976.61 36093.82 321
MVP-Stereo90.93 27290.45 26792.37 31891.25 36388.76 31798.05 32796.17 34787.27 31184.04 33895.30 31378.46 28997.27 28183.78 32999.70 8491.09 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 32783.32 33592.10 32090.96 36488.58 32399.20 23996.52 33879.70 36857.12 39392.69 35779.11 28193.86 36777.10 36377.46 35393.86 318
YYNet185.50 32883.33 33492.00 32190.89 36588.38 32799.22 23896.55 33779.60 36957.26 39292.72 35679.09 28393.78 36877.25 36277.37 35493.84 319
anonymousdsp91.79 26090.92 25994.41 26790.76 36692.93 23798.93 27097.17 28489.08 27687.46 31095.30 31378.43 29096.92 30492.38 23388.73 25893.39 334
lessismore_v090.53 33290.58 36780.90 37195.80 35377.01 37095.84 28666.15 35796.95 30183.03 33375.05 36493.74 326
EG-PatchMatch MVS85.35 32983.81 33289.99 33990.39 36881.89 36498.21 32196.09 34981.78 36074.73 37793.72 34951.56 38597.12 28979.16 35588.61 26090.96 364
EGC-MVSNET69.38 35463.76 36486.26 35790.32 36981.66 36796.24 36093.85 3820.99 4043.22 40592.33 36252.44 38292.92 37559.53 39184.90 29784.21 385
CMPMVSbinary61.59 2184.75 33285.14 32783.57 36190.32 36962.54 38996.98 34797.59 24374.33 38269.95 38396.66 26464.17 36398.32 22487.88 29488.41 26589.84 373
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 33582.92 33889.21 34390.03 37182.60 35896.89 35095.62 35880.59 36475.77 37689.17 37365.04 36294.79 35972.12 37381.02 32890.23 369
pmmvs685.69 32483.84 33191.26 32890.00 37284.41 35197.82 33296.15 34875.86 37681.29 35295.39 30861.21 37296.87 30783.52 33273.29 36692.50 350
DSMNet-mixed88.28 31488.24 30988.42 35189.64 37375.38 38098.06 32689.86 39485.59 33488.20 30092.14 36376.15 30991.95 38078.46 35796.05 19497.92 227
UnsupCasMVSNet_eth85.52 32683.99 32890.10 33789.36 37483.51 35596.65 35297.99 20589.14 27575.89 37593.83 34763.25 36693.92 36581.92 34167.90 38092.88 344
Anonymous2023120686.32 32285.42 32589.02 34589.11 37580.53 37499.05 25895.28 36585.43 33682.82 34493.92 34674.40 32393.44 37166.99 38181.83 31993.08 341
Anonymous2024052185.15 33083.81 33289.16 34488.32 37682.69 35798.80 28695.74 35479.72 36781.53 35190.99 36665.38 36094.16 36372.69 37181.11 32690.63 367
OpenMVS_ROBcopyleft79.82 2083.77 33981.68 34290.03 33888.30 37782.82 35698.46 30695.22 36773.92 38376.00 37491.29 36555.00 37996.94 30268.40 37988.51 26490.34 368
test20.0384.72 33383.99 32886.91 35588.19 37880.62 37398.88 27595.94 35188.36 29778.87 36194.62 33668.75 34589.11 38666.52 38375.82 36191.00 363
KD-MVS_self_test83.59 34082.06 34088.20 35286.93 37980.70 37297.21 34096.38 34282.87 35482.49 34588.97 37467.63 35192.32 37873.75 37062.30 38991.58 360
MIMVSNet182.58 34180.51 34788.78 34786.68 38084.20 35296.65 35295.41 36278.75 37078.59 36492.44 35851.88 38489.76 38565.26 38678.95 34192.38 353
CL-MVSNet_self_test84.50 33483.15 33788.53 35086.00 38181.79 36598.82 28397.35 26685.12 33883.62 34290.91 36876.66 30191.40 38169.53 37760.36 39092.40 352
UnsupCasMVSNet_bld79.97 35077.03 35588.78 34785.62 38281.98 36393.66 37697.35 26675.51 37970.79 38283.05 38848.70 38694.91 35778.31 35860.29 39189.46 378
Patchmatch-RL test86.90 32085.98 32489.67 34084.45 38375.59 37989.71 38992.43 38786.89 31877.83 36890.94 36794.22 7793.63 36987.75 29569.61 37299.79 97
pmmvs-eth3d84.03 33781.97 34190.20 33684.15 38487.09 33698.10 32594.73 37383.05 35274.10 37987.77 38065.56 35994.01 36481.08 34569.24 37489.49 377
test_fmvs379.99 34980.17 34879.45 36684.02 38562.83 38799.05 25893.49 38588.29 29980.06 35986.65 38328.09 39588.00 38788.63 28273.27 36787.54 383
PM-MVS80.47 34678.88 35185.26 35883.79 38672.22 38295.89 36791.08 39185.71 33376.56 37388.30 37636.64 39193.90 36682.39 33769.57 37389.66 376
new-patchmatchnet81.19 34379.34 35086.76 35682.86 38780.36 37597.92 32995.27 36682.09 35972.02 38086.87 38262.81 36890.74 38471.10 37463.08 38789.19 380
mvsany_test382.12 34281.14 34485.06 35981.87 38870.41 38397.09 34492.14 38891.27 23977.84 36788.73 37539.31 39095.49 34790.75 25971.24 36989.29 379
WB-MVS76.28 35277.28 35473.29 37281.18 38954.68 39797.87 33194.19 37781.30 36169.43 38490.70 36977.02 29682.06 39535.71 40068.11 37983.13 386
test_f78.40 35177.59 35380.81 36580.82 39062.48 39096.96 34893.08 38683.44 35174.57 37884.57 38727.95 39692.63 37684.15 32472.79 36887.32 384
SSC-MVS75.42 35376.40 35672.49 37680.68 39153.62 39897.42 33694.06 37980.42 36568.75 38590.14 37176.54 30381.66 39633.25 40166.34 38382.19 387
pmmvs380.27 34777.77 35287.76 35480.32 39282.43 36098.23 31991.97 38972.74 38578.75 36287.97 37957.30 37890.99 38370.31 37562.37 38889.87 372
testf168.38 35766.92 35872.78 37478.80 39350.36 40090.95 38787.35 39955.47 39058.95 38988.14 37720.64 40087.60 38857.28 39264.69 38480.39 389
APD_test268.38 35766.92 35872.78 37478.80 39350.36 40090.95 38787.35 39955.47 39058.95 38988.14 37720.64 40087.60 38857.28 39264.69 38480.39 389
ambc83.23 36277.17 39562.61 38887.38 39194.55 37676.72 37286.65 38330.16 39296.36 32784.85 32369.86 37190.73 366
test_vis3_rt68.82 35566.69 36075.21 37176.24 39660.41 39296.44 35568.71 40675.13 38050.54 39769.52 39516.42 40596.32 32980.27 34866.92 38268.89 393
TDRefinement84.76 33182.56 33991.38 32774.58 39784.80 35097.36 33894.56 37584.73 34380.21 35796.12 28363.56 36598.39 21487.92 29363.97 38690.95 365
E-PMN52.30 36552.18 36752.67 38271.51 39845.40 40493.62 37776.60 40436.01 39843.50 39964.13 39827.11 39767.31 40131.06 40226.06 39745.30 400
EMVS51.44 36751.22 36952.11 38370.71 39944.97 40694.04 37375.66 40535.34 40042.40 40061.56 40128.93 39465.87 40227.64 40324.73 39845.49 399
PMMVS267.15 36064.15 36376.14 37070.56 40062.07 39193.89 37487.52 39858.09 38960.02 38878.32 39022.38 39984.54 39359.56 39047.03 39581.80 388
FPMVS68.72 35668.72 35768.71 37865.95 40144.27 40795.97 36694.74 37251.13 39353.26 39590.50 37025.11 39883.00 39460.80 38980.97 33078.87 391
wuyk23d20.37 37120.84 37418.99 38665.34 40227.73 40950.43 3977.67 4109.50 4038.01 4046.34 4046.13 40826.24 40323.40 40410.69 4022.99 401
LCM-MVSNet67.77 35964.73 36276.87 36962.95 40356.25 39689.37 39093.74 38344.53 39561.99 38780.74 38920.42 40286.53 39269.37 37859.50 39287.84 381
MVEpermissive53.74 2251.54 36647.86 37062.60 38059.56 40450.93 39979.41 39477.69 40335.69 39936.27 40161.76 4005.79 40969.63 39937.97 39936.61 39667.24 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36352.24 36667.66 37949.27 40556.82 39583.94 39282.02 40270.47 38633.28 40264.54 39717.23 40469.16 40045.59 39723.85 39977.02 392
tmp_tt65.23 36262.94 36572.13 37744.90 40650.03 40281.05 39389.42 39738.45 39648.51 39899.90 1854.09 38178.70 39891.84 24118.26 40087.64 382
PMVScopyleft49.05 2353.75 36451.34 36860.97 38140.80 40734.68 40874.82 39589.62 39637.55 39728.67 40372.12 3927.09 40781.63 39743.17 39868.21 37866.59 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 36939.14 37233.31 38419.94 40824.83 41098.36 3139.75 40915.53 40251.31 39687.14 38119.62 40317.74 40447.10 3963.47 40357.36 397
testmvs40.60 36844.45 37129.05 38519.49 40914.11 41199.68 17118.47 40820.74 40164.59 38698.48 20610.95 40617.09 40556.66 39411.01 40155.94 398
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.02 4050.00 4100.00 4060.00 4050.00 4040.00 402
eth-test20.00 410
eth-test0.00 410
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k23.43 37031.24 3730.00 3870.00 4100.00 4120.00 39898.09 1970.00 4050.00 40699.67 9483.37 2420.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas7.60 37310.13 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40691.20 1510.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.28 37211.04 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40699.40 1210.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4060.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS90.97 28086.10 315
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 12997.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
MTGPAbinary98.28 175
test_post195.78 36859.23 40293.20 10897.74 25991.06 250
test_post63.35 39994.43 6698.13 239
patchmatchnet-post91.70 36495.12 4997.95 250
MTMP99.87 10196.49 339
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
旧先验299.46 20994.21 13099.85 999.95 6996.96 151
新几何299.40 213
无先验99.49 20498.71 6693.46 160100.00 194.36 19799.99 23
原ACMM299.90 87
testdata299.99 3690.54 263
segment_acmp96.68 26
testdata199.28 23396.35 69
plane_prior597.87 21998.37 22097.79 12889.55 24794.52 256
plane_prior498.59 194
plane_prior391.64 27296.63 5693.01 220
plane_prior299.84 12296.38 65
plane_prior91.74 26699.86 11496.76 5289.59 246
n20.00 411
nn0.00 411
door-mid89.69 395
test1198.44 121
door90.31 392
HQP5-MVS91.85 262
BP-MVS97.92 121
HQP4-MVS93.37 21698.39 21494.53 254
HQP3-MVS97.89 21789.60 244
HQP2-MVS80.65 266
MDTV_nov1_ep13_2view96.26 13596.11 36291.89 21798.06 13294.40 6894.30 19999.67 113
ACMMP++_ref87.04 282
ACMMP++88.23 269
Test By Simon92.82 119