This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16199.09 24698.84 5893.32 16496.74 16399.72 8186.04 217100.00 198.01 11599.43 11099.94 74
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15495.04 9798.61 11299.80 5193.39 97100.00 198.64 89100.00 199.98 48
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15299.96 3498.35 16089.90 26798.36 12299.79 5591.18 15399.99 3698.37 9999.99 2199.99 23
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 12092.06 21398.40 12199.84 4195.68 40100.00 198.19 10599.71 8399.97 58
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12895.35 9198.03 13299.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9694.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8494.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12199.97 2798.39 15094.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
test_one_060199.94 1399.30 1298.41 14396.63 5699.75 2999.93 1197.49 10
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 128100.00 199.99 5100.00 1100.00 1
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13996.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 20492.06 23799.15 5799.94 1397.50 9099.94 6898.42 13996.22 7199.41 6841.37 40294.34 7399.96 6198.92 7099.95 4999.99 23
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 15097.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 15094.70 10998.26 12899.81 5091.84 144100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16593.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14399.82 13198.43 12894.56 11397.52 14499.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17999.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12897.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14397.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12897.26 3699.80 1799.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16797.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1599.96 3498.42 13997.28 3299.86 799.94 497.22 19
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13997.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.93 2498.77 4098.43 12899.63 4399.85 108
FOURS199.92 3197.66 8399.95 5298.36 15895.58 8599.52 59
ZD-MVS99.92 3198.57 5498.52 10292.34 20599.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 15094.04 14198.80 9999.74 7692.98 112100.00 198.16 10799.76 8099.93 76
TEST999.92 3198.92 2899.96 3498.43 12893.90 14899.71 3499.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12894.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3199.96 3498.43 12894.35 12299.69 3699.85 3095.94 3499.85 108
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15199.50 1893.90 14899.37 7399.76 6393.24 106100.00 197.75 13299.96 4699.98 48
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14399.18 24099.45 1994.84 10496.41 17399.71 8391.40 14799.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12896.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
MSC_two_6792asdad99.93 299.91 3999.80 298.41 143100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 143100.00 199.96 9100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 9097.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15894.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23598.47 11398.14 1099.08 8699.91 1493.09 109100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 12097.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 62
CSCG97.10 10297.04 9697.27 17599.89 4591.92 26099.90 8799.07 3488.67 29095.26 19599.82 4693.17 10899.98 4398.15 10899.47 10499.90 83
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 12094.31 12598.50 11699.82 4693.06 11099.99 3698.30 10399.99 2199.93 76
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12198.35 16094.92 10199.32 7599.80 5193.35 9999.78 12599.30 5299.95 4999.96 64
9.1498.38 3399.87 5199.91 8298.33 16593.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15493.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25399.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21698.28 17495.76 8097.18 15299.88 2192.74 120100.00 198.67 8699.88 6899.99 23
LS3D95.84 15295.11 16298.02 13299.85 5495.10 18198.74 28898.50 11087.22 31193.66 21399.86 2687.45 20199.95 6990.94 25399.81 7899.02 196
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 13099.90 8798.17 18692.61 19098.62 11199.57 10791.87 14399.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12399.40 21298.51 10595.29 9398.51 11599.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
save fliter99.82 5898.79 3899.96 3498.40 14797.66 21
PLCcopyleft95.54 397.93 6497.89 6698.05 13199.82 5894.77 19099.92 7898.46 11593.93 14697.20 15199.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12299.82 13198.30 17293.95 14599.37 7399.77 6192.84 11699.76 13198.95 6799.92 6399.97 58
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13399.36 22198.50 11095.21 9598.30 12599.75 6993.29 10399.73 13798.37 9999.30 11699.81 94
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13199.76 14898.31 16994.43 11799.40 7099.75 6993.28 10499.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5099.79 6296.37 13199.76 14898.31 16994.43 11799.40 7099.75 6992.95 11398.90 7399.92 6399.97 58
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12699.88 9798.16 19091.75 22398.94 9299.54 11091.82 14599.65 14797.62 13599.99 2199.99 23
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18193.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
OMC-MVS97.28 9697.23 8897.41 16699.76 6693.36 22999.65 17597.95 20996.03 7597.41 14899.70 8589.61 17799.51 15296.73 15698.25 14999.38 164
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24599.94 5499.99 23
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15498.18 18593.35 16296.45 17099.85 3092.64 12299.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14398.38 15496.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1299.43 3599.74 6998.56 5598.40 14799.65 4094.76 6099.75 13299.98 3299.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10594.06 13899.62 4699.85 3094.97 5899.96 6195.11 17599.95 4999.92 81
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 12099.97 2797.92 21498.07 1198.76 10399.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10597.00 4398.52 11499.71 8387.80 19699.95 6999.75 2899.38 11299.83 91
F-COLMAP96.93 11096.95 9996.87 18499.71 7591.74 26599.85 11697.95 20993.11 17195.72 18899.16 14392.35 13299.94 7795.32 17399.35 11498.92 198
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16496.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
patch_mono-298.24 5599.12 595.59 21899.67 7786.91 33899.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15794.68 11099.53 5799.83 4392.87 115100.00 198.66 8899.84 7199.99 23
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28299.63 7981.76 36599.96 3498.56 9099.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11799.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS96.05 14595.82 14296.72 18999.59 8196.99 10999.95 5299.10 3194.06 13898.27 12695.80 28689.00 18899.95 6999.12 5887.53 27993.24 337
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12699.08 14689.00 18899.95 6999.12 5899.25 11899.57 137
PatchMatch-RL96.04 14695.40 15197.95 13399.59 8195.22 17799.52 19799.07 3493.96 14496.49 16998.35 21082.28 24699.82 12090.15 26999.22 12198.81 205
dcpmvs_297.42 9198.09 5395.42 22399.58 8487.24 33499.23 23696.95 30894.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
test22299.55 8597.41 9699.34 22298.55 9691.86 21899.27 8099.83 4393.84 9099.95 4999.99 23
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19493.78 15196.55 16899.69 8792.28 13499.98 4397.13 14499.44 10899.93 76
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16899.47 20698.87 5291.68 22498.84 9699.85 3092.34 13399.99 3698.44 9699.96 46100.00 1
PVSNet91.05 1397.13 10196.69 10898.45 11099.52 8795.81 15099.95 5299.65 1294.73 10799.04 8899.21 13984.48 23299.95 6994.92 18198.74 13699.58 136
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17688.48 29499.06 8799.66 9690.30 16999.64 14896.32 16099.97 4299.96 64
cl2293.77 20893.25 21295.33 22799.49 9094.43 19499.61 18398.09 19690.38 25889.16 28295.61 29390.56 16597.34 27091.93 23784.45 30094.21 282
testdata98.42 11399.47 9195.33 17198.56 9093.78 15199.79 2599.85 3093.64 9599.94 7794.97 17999.94 54100.00 1
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18999.05 25798.76 6392.65 18898.66 10999.82 4688.52 19399.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS94.54 18693.42 20597.91 13799.46 9394.04 20798.93 26997.48 25481.15 36190.04 25599.55 10887.02 20799.95 6988.97 27998.11 15399.73 105
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15199.87 10099.86 296.70 5498.78 10099.79 5592.03 14099.90 9199.17 5799.86 7099.88 85
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30599.42 2297.03 4299.02 8999.09 14599.35 198.21 23599.73 3299.78 7999.77 101
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10899.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 12097.96 1499.55 5499.94 497.18 21100.00 193.81 21099.94 5499.98 48
TAPA-MVS92.12 894.42 19193.60 19896.90 18399.33 9791.78 26499.78 14098.00 20389.89 26894.52 20199.47 11491.97 14199.18 16869.90 37599.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test97.88 6697.94 6297.70 15099.28 9995.20 17899.98 1497.15 28695.53 8799.62 4699.79 5592.08 13998.38 21898.75 8299.28 11799.52 147
test_fmvsm_n_192098.44 4098.61 2397.92 13599.27 10095.18 179100.00 198.90 4798.05 1299.80 1799.73 7892.64 12299.99 3699.58 3899.51 10298.59 215
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17999.27 2791.43 23397.88 13898.99 15595.84 3899.84 11698.82 7795.32 21499.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17999.27 2791.43 23397.88 13898.99 15595.84 3899.84 11698.82 7795.32 21499.79 97
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10599.75 6992.76 11999.94 7799.88 1899.44 10899.94 74
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
DeepC-MVS94.51 496.92 11196.40 11798.45 11099.16 10695.90 14899.66 17398.06 19996.37 6894.37 20499.49 11383.29 24299.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8697.70 2098.21 13099.24 13792.58 12599.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS97.79 7597.91 6497.43 16599.10 10894.42 19599.99 497.10 29195.07 9699.68 3799.75 6992.95 11398.34 22298.38 9899.14 12399.54 143
Anonymous20240521193.10 22691.99 23996.40 19999.10 10889.65 30998.88 27497.93 21183.71 34894.00 21098.75 18468.79 34399.88 10295.08 17791.71 23899.68 111
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15199.06 11094.41 19699.98 1498.97 4097.34 2999.63 4399.69 8787.27 20399.97 5399.62 3799.06 12798.62 214
HyFIR lowres test96.66 12496.43 11697.36 17199.05 11193.91 21299.70 16799.80 390.54 25696.26 17698.08 21692.15 13798.23 23496.84 15595.46 20999.93 76
LFMVS94.75 18093.56 20198.30 11999.03 11295.70 15798.74 28897.98 20687.81 30498.47 11799.39 12367.43 35199.53 15098.01 11595.20 21699.67 113
AllTest92.48 24191.64 24495.00 23799.01 11388.43 32398.94 26896.82 32386.50 32088.71 28898.47 20674.73 32099.88 10285.39 31796.18 19196.71 241
TestCases95.00 23799.01 11388.43 32396.82 32386.50 32088.71 28898.47 20674.73 32099.88 10285.39 31796.18 19196.71 241
COLMAP_ROBcopyleft90.47 1492.18 24891.49 25094.25 27099.00 11588.04 32998.42 31096.70 33082.30 35788.43 29599.01 15276.97 29699.85 10886.11 31396.50 18794.86 252
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs195.35 16695.68 14794.36 26798.99 11684.98 34799.96 3496.65 33297.60 2299.73 3298.96 16171.58 33399.93 8598.31 10299.37 11398.17 221
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33499.52 1595.69 8298.32 12497.41 23793.32 10199.77 12898.08 11395.75 20599.81 94
VNet97.21 10096.57 11299.13 6398.97 11897.82 7699.03 26099.21 2994.31 12599.18 8498.88 17286.26 21699.89 9698.93 6994.32 22299.69 110
thres20096.96 10896.21 12199.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17698.88 17289.87 17499.51 15294.26 19994.91 21799.31 174
tfpn200view996.79 11595.99 12699.19 4998.94 12098.82 3699.78 14099.71 792.86 17496.02 18198.87 17589.33 18199.50 15493.84 20794.57 21899.27 179
thres40096.78 11695.99 12699.16 5598.94 12098.82 3699.78 14099.71 792.86 17496.02 18198.87 17589.33 18199.50 15493.84 20794.57 21899.16 186
Anonymous2023121189.86 29788.44 30494.13 27398.93 12290.68 28798.54 30298.26 17776.28 37386.73 31695.54 29770.60 33997.56 26390.82 25680.27 33594.15 290
canonicalmvs97.09 10496.32 11899.39 4098.93 12298.95 2799.72 16297.35 26594.45 11597.88 13899.42 11886.71 21099.52 15198.48 9593.97 22899.72 107
SDMVSNet94.80 17693.96 18997.33 17398.92 12495.42 16799.59 18598.99 3792.41 20292.55 22897.85 22675.81 31098.93 17897.90 12391.62 23997.64 232
sd_testset93.55 21592.83 21995.74 21698.92 12490.89 28498.24 31698.85 5692.41 20292.55 22897.85 22671.07 33898.68 19493.93 20491.62 23997.64 232
EPNet_dtu95.71 15695.39 15296.66 19198.92 12493.41 22699.57 18998.90 4796.19 7397.52 14498.56 19892.65 12197.36 26877.89 35898.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12999.39 12393.33 10099.74 13497.98 11995.58 20899.78 100
CHOSEN 1792x268896.81 11496.53 11397.64 15398.91 12893.07 23199.65 17599.80 395.64 8395.39 19298.86 17784.35 23599.90 9196.98 15099.16 12299.95 71
thres100view90096.74 11995.92 13899.18 5098.90 12998.77 4099.74 15499.71 792.59 19295.84 18498.86 17789.25 18399.50 15493.84 20794.57 21899.27 179
thres600view796.69 12295.87 14199.14 5998.90 12998.78 3999.74 15499.71 792.59 19295.84 18498.86 17789.25 18399.50 15493.44 21994.50 22199.16 186
MSDG94.37 19393.36 20997.40 16798.88 13193.95 21199.37 21997.38 26385.75 33190.80 24799.17 14284.11 23799.88 10286.35 31098.43 14298.36 219
h-mvs3394.92 17494.36 17896.59 19398.85 13291.29 27698.93 26998.94 4195.90 7698.77 10198.42 20990.89 16199.77 12897.80 12570.76 36998.72 211
Anonymous2024052992.10 24990.65 26096.47 19498.82 13390.61 28998.72 29098.67 7375.54 37793.90 21298.58 19666.23 35599.90 9194.70 19090.67 24198.90 201
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11999.92 7898.64 7694.51 11496.38 17498.49 20289.05 18799.88 10297.10 14698.34 14399.43 160
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19598.17 18697.34 2999.85 999.85 3091.20 15099.89 9699.41 4899.67 8598.69 212
CANet_DTU96.76 11796.15 12298.60 9598.78 13697.53 8699.84 12197.63 23397.25 3799.20 8199.64 9981.36 25599.98 4392.77 23098.89 13098.28 220
mvsany_test197.82 7197.90 6597.55 15898.77 13793.04 23499.80 13797.93 21196.95 4599.61 5299.68 9390.92 15899.83 11899.18 5698.29 14899.80 96
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 12094.40 12198.41 11999.47 11493.65 9499.42 16298.57 9294.26 22499.67 113
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 12096.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19798.08 19897.05 4199.86 799.86 2690.65 16399.71 13899.39 5098.63 13898.69 212
miper_enhance_ethall94.36 19593.98 18895.49 21998.68 14195.24 17599.73 15997.29 27393.28 16689.86 26095.97 28494.37 7297.05 29292.20 23484.45 30094.19 283
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28399.77 594.93 9997.95 13498.96 16192.51 12799.20 16694.93 18098.15 15099.64 119
ECVR-MVScopyleft95.66 15995.05 16497.51 16198.66 14293.71 21698.85 28098.45 11694.93 9996.86 15998.96 16175.22 31699.20 16695.34 17298.15 15099.64 119
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14598.63 14494.26 20199.96 3498.92 4697.18 3999.75 2999.69 8787.00 20899.97 5399.46 4498.89 13099.08 194
testing22297.08 10696.75 10698.06 13098.56 14596.82 11599.85 11698.61 8292.53 19698.84 9698.84 18193.36 9898.30 22695.84 16894.30 22399.05 195
test111195.57 16194.98 16797.37 16998.56 14593.37 22898.86 27898.45 11694.95 9896.63 16598.95 16675.21 31799.11 17195.02 17898.14 15299.64 119
MVSTER95.53 16295.22 15896.45 19698.56 14597.72 7899.91 8297.67 23192.38 20491.39 23997.14 24497.24 1897.30 27594.80 18687.85 27394.34 274
VDD-MVS93.77 20892.94 21696.27 20498.55 14890.22 29898.77 28797.79 22590.85 24996.82 16199.42 11861.18 37299.77 12898.95 6794.13 22598.82 204
tpmvs94.28 19793.57 20096.40 19998.55 14891.50 27495.70 36898.55 9687.47 30692.15 23294.26 34391.42 14698.95 17788.15 28995.85 20198.76 207
UGNet95.33 16794.57 17597.62 15698.55 14894.85 18598.67 29699.32 2695.75 8196.80 16296.27 27572.18 33099.96 6194.58 19399.05 12898.04 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PCF-MVS94.20 595.18 16894.10 18598.43 11298.55 14895.99 14697.91 32997.31 27090.35 26089.48 27199.22 13885.19 22599.89 9690.40 26698.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192095.44 16495.31 15595.82 21498.50 15288.74 31799.98 1497.30 27197.84 1699.85 999.19 14066.82 35399.97 5398.82 7799.46 10698.76 207
BH-w/o95.71 15695.38 15396.68 19098.49 15392.28 25199.84 12197.50 25292.12 21092.06 23598.79 18284.69 23098.67 19595.29 17499.66 8699.09 192
baseline195.78 15394.86 16998.54 10398.47 15498.07 6599.06 25397.99 20492.68 18694.13 20998.62 19393.28 10498.69 19393.79 21285.76 28898.84 203
iter_conf0596.07 14495.95 13496.44 19898.43 15597.52 8799.91 8296.85 31994.16 13192.49 23097.98 22298.20 497.34 27097.26 14188.29 26694.45 264
EPMVS96.53 12896.01 12598.09 12898.43 15596.12 14596.36 35599.43 2193.53 15897.64 14295.04 32194.41 6798.38 21891.13 24798.11 15399.75 103
iter_conf_final96.01 14795.93 13696.28 20398.38 15797.03 10799.87 10097.03 29994.05 14092.61 22697.98 22298.01 597.34 27097.02 14888.39 26594.47 258
sss97.57 8497.03 9799.18 5098.37 15898.04 6799.73 15999.38 2393.46 16098.76 10399.06 14891.21 14999.89 9696.33 15997.01 17999.62 124
BH-untuned95.18 16894.83 17096.22 20598.36 15991.22 27799.80 13797.32 26990.91 24791.08 24398.67 18683.51 23998.54 20194.23 20099.61 9398.92 198
ET-MVSNet_ETH3D94.37 19393.28 21197.64 15398.30 16097.99 6999.99 497.61 23894.35 12271.57 38099.45 11796.23 3195.34 35096.91 15485.14 29599.59 130
AUN-MVS93.28 22092.60 22595.34 22698.29 16190.09 30199.31 22698.56 9091.80 22296.35 17598.00 21989.38 18098.28 22992.46 23169.22 37497.64 232
FMVSNet392.69 23791.58 24695.99 20998.29 16197.42 9599.26 23497.62 23589.80 26989.68 26495.32 31181.62 25396.27 33087.01 30685.65 28994.29 276
PMMVS96.76 11796.76 10596.76 18798.28 16392.10 25599.91 8297.98 20694.12 13399.53 5799.39 12386.93 20998.73 18896.95 15297.73 16099.45 157
hse-mvs294.38 19294.08 18695.31 22898.27 16490.02 30399.29 23198.56 9095.90 7698.77 10198.00 21990.89 16198.26 23397.80 12569.20 37597.64 232
PVSNet_088.03 1991.80 25690.27 26996.38 20198.27 16490.46 29399.94 6899.61 1493.99 14286.26 32697.39 23971.13 33799.89 9698.77 8067.05 38098.79 206
UA-Net96.54 12795.96 13298.27 12098.23 16695.71 15698.00 32798.45 11693.72 15498.41 11999.27 13288.71 19299.66 14691.19 24697.69 16199.44 159
test_cas_vis1_n_192096.59 12696.23 12097.65 15298.22 16794.23 20299.99 497.25 27797.77 1799.58 5399.08 14677.10 29399.97 5397.64 13399.45 10798.74 209
FE-MVS95.70 15895.01 16697.79 14298.21 16894.57 19195.03 36998.69 6888.90 28597.50 14696.19 27792.60 12499.49 15889.99 27197.94 15999.31 174
GG-mvs-BLEND98.54 10398.21 16898.01 6893.87 37498.52 10297.92 13597.92 22599.02 297.94 25198.17 10699.58 9699.67 113
mvs_anonymous95.65 16095.03 16597.53 15998.19 17095.74 15499.33 22397.49 25390.87 24890.47 25097.10 24688.23 19497.16 28395.92 16697.66 16399.68 111
MVS_Test96.46 13095.74 14398.61 9498.18 17197.23 9999.31 22697.15 28691.07 24498.84 9697.05 25088.17 19598.97 17594.39 19597.50 16599.61 127
BH-RMVSNet95.18 16894.31 18197.80 14098.17 17295.23 17699.76 14897.53 24892.52 19894.27 20799.25 13676.84 29898.80 18290.89 25599.54 9899.35 169
RPSCF91.80 25692.79 22188.83 34598.15 17369.87 38398.11 32396.60 33483.93 34694.33 20599.27 13279.60 27599.46 16191.99 23693.16 23597.18 239
ETV-MVS97.92 6597.80 6998.25 12198.14 17496.48 12499.98 1497.63 23395.61 8499.29 7999.46 11692.55 12698.82 18199.02 6698.54 13999.46 155
IS-MVSNet96.29 14095.90 13997.45 16398.13 17594.80 18899.08 24897.61 23892.02 21595.54 19198.96 16190.64 16498.08 24093.73 21597.41 16999.47 154
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17696.41 12799.99 498.83 5998.22 699.67 3899.64 9991.11 15499.94 7799.67 3699.62 8999.98 48
ab-mvs94.69 18193.42 20598.51 10698.07 17796.26 13496.49 35398.68 7090.31 26194.54 20097.00 25276.30 30599.71 13895.98 16593.38 23399.56 138
XVG-OURS-SEG-HR94.79 17794.70 17495.08 23498.05 17889.19 31299.08 24897.54 24693.66 15594.87 19899.58 10678.78 28399.79 12397.31 13993.40 23296.25 245
EIA-MVS97.53 8597.46 7997.76 14798.04 17994.84 18699.98 1497.61 23894.41 12097.90 13699.59 10492.40 13198.87 17998.04 11499.13 12499.59 130
XVG-OURS94.82 17594.74 17395.06 23598.00 18089.19 31299.08 24897.55 24494.10 13494.71 19999.62 10280.51 26799.74 13496.04 16493.06 23796.25 245
dp95.05 17194.43 17796.91 18297.99 18192.73 24196.29 35897.98 20689.70 27095.93 18394.67 33493.83 9198.45 20786.91 30996.53 18699.54 143
tpmrst96.27 14295.98 12897.13 17797.96 18293.15 23096.34 35698.17 18692.07 21198.71 10795.12 31993.91 8798.73 18894.91 18396.62 18499.50 151
TR-MVS94.54 18693.56 20197.49 16297.96 18294.34 19998.71 29197.51 25190.30 26294.51 20298.69 18575.56 31198.77 18592.82 22995.99 19599.35 169
Vis-MVSNet (Re-imp)96.32 13795.98 12897.35 17297.93 18494.82 18799.47 20698.15 19391.83 21995.09 19699.11 14491.37 14897.47 26693.47 21897.43 16699.74 104
MDTV_nov1_ep1395.69 14597.90 18594.15 20495.98 36498.44 12093.12 17097.98 13395.74 28895.10 5098.58 19890.02 27096.92 181
Fast-Effi-MVS+95.02 17294.19 18397.52 16097.88 18694.55 19299.97 2797.08 29488.85 28794.47 20397.96 22484.59 23198.41 21089.84 27397.10 17499.59 130
ADS-MVSNet293.80 20793.88 19293.55 29697.87 18785.94 34194.24 37096.84 32090.07 26496.43 17194.48 33990.29 17095.37 34987.44 29697.23 17199.36 167
ADS-MVSNet94.79 17794.02 18797.11 17997.87 18793.79 21394.24 37098.16 19090.07 26496.43 17194.48 33990.29 17098.19 23687.44 29697.23 17199.36 167
Effi-MVS+96.30 13995.69 14598.16 12397.85 18996.26 13497.41 33697.21 27990.37 25998.65 11098.58 19686.61 21298.70 19297.11 14597.37 17099.52 147
PatchmatchNetpermissive95.94 14995.45 15097.39 16897.83 19094.41 19696.05 36298.40 14792.86 17497.09 15395.28 31694.21 7998.07 24289.26 27798.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas94.64 18493.61 19697.74 14997.82 19196.26 13499.96 3497.78 22685.76 32994.00 21097.54 23376.95 29799.21 16597.23 14295.43 21197.76 231
1112_ss96.01 14795.20 15998.42 11397.80 19296.41 12799.65 17596.66 33192.71 18392.88 22399.40 12192.16 13699.30 16391.92 23893.66 22999.55 139
Test_1112_low_res95.72 15494.83 17098.42 11397.79 19396.41 12799.65 17596.65 33292.70 18492.86 22496.13 28092.15 13799.30 16391.88 23993.64 23099.55 139
Effi-MVS+-dtu94.53 18895.30 15692.22 31897.77 19482.54 35899.59 18597.06 29694.92 10195.29 19495.37 30985.81 21897.89 25294.80 18697.07 17596.23 247
tpm cat193.51 21692.52 23096.47 19497.77 19491.47 27596.13 36098.06 19980.98 36292.91 22293.78 34789.66 17598.87 17987.03 30596.39 18999.09 192
FA-MVS(test-final)95.86 15095.09 16398.15 12697.74 19695.62 16096.31 35798.17 18691.42 23596.26 17696.13 28090.56 16599.47 16092.18 23597.07 17599.35 169
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19698.14 6299.31 22697.86 22096.43 6299.62 4699.69 8785.56 22099.68 14299.05 6098.31 14597.83 227
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19698.14 6299.31 22697.86 22096.43 6299.62 4699.69 8785.56 22099.68 14299.05 6098.31 14597.83 227
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19698.14 6299.31 22697.86 22096.43 6299.62 4699.69 8785.56 22099.68 14299.05 6098.31 14597.83 227
EPP-MVSNet96.69 12296.60 11096.96 18197.74 19693.05 23399.37 21998.56 9088.75 28895.83 18699.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
gg-mvs-nofinetune93.51 21691.86 24398.47 10897.72 20197.96 7292.62 37898.51 10574.70 38097.33 14969.59 39398.91 397.79 25597.77 13099.56 9799.67 113
IB-MVS92.85 694.99 17393.94 19098.16 12397.72 20195.69 15899.99 498.81 6094.28 12792.70 22596.90 25495.08 5199.17 16996.07 16373.88 36499.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051597.41 9297.02 9898.59 9797.71 20397.52 8799.97 2798.54 9991.83 21997.45 14799.04 14997.50 999.10 17294.75 18896.37 19099.16 186
Syy-MVS90.00 29590.63 26188.11 35297.68 20474.66 38099.71 16498.35 16090.79 25192.10 23398.67 18679.10 28193.09 37263.35 38695.95 19896.59 243
myMVS_eth3d94.46 19094.76 17293.55 29697.68 20490.97 27999.71 16498.35 16090.79 25192.10 23398.67 18692.46 13093.09 37287.13 30295.95 19896.59 243
test_fmvs1_n94.25 19894.36 17893.92 28297.68 20483.70 35399.90 8796.57 33597.40 2899.67 3898.88 17261.82 36999.92 8898.23 10499.13 12498.14 224
diffmvspermissive97.00 10796.64 10998.09 12897.64 20796.17 14299.81 13397.19 28094.67 11198.95 9199.28 12986.43 21398.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.72 15495.15 16197.45 16397.62 20894.28 20099.28 23298.24 17894.27 12996.84 16098.94 16879.39 27698.76 18693.25 22098.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053097.10 10296.72 10798.22 12297.60 20996.70 11899.92 7898.54 9991.11 24397.07 15498.97 15997.47 1299.03 17393.73 21596.09 19398.92 198
miper_ehance_all_eth93.16 22392.60 22594.82 24597.57 21093.56 22099.50 20197.07 29588.75 28888.85 28795.52 29990.97 15796.74 31190.77 25784.45 30094.17 284
testing393.92 20294.23 18292.99 31097.54 21190.23 29799.99 499.16 3090.57 25591.33 24298.63 19292.99 11192.52 37682.46 33595.39 21296.22 248
LCM-MVSNet-Re92.31 24592.60 22591.43 32597.53 21279.27 37599.02 26191.83 38992.07 21180.31 35594.38 34283.50 24095.48 34797.22 14397.58 16499.54 143
GBi-Net90.88 27289.82 27894.08 27497.53 21291.97 25698.43 30796.95 30887.05 31289.68 26494.72 33071.34 33496.11 33587.01 30685.65 28994.17 284
test190.88 27289.82 27894.08 27497.53 21291.97 25698.43 30796.95 30887.05 31289.68 26494.72 33071.34 33496.11 33587.01 30685.65 28994.17 284
FMVSNet291.02 26989.56 28395.41 22497.53 21295.74 15498.98 26397.41 26187.05 31288.43 29595.00 32471.34 33496.24 33285.12 31985.21 29494.25 279
tttt051796.85 11296.49 11497.92 13597.48 21695.89 14999.85 11698.54 9990.72 25496.63 16598.93 17097.47 1299.02 17493.03 22795.76 20498.85 202
casdiffmvs_mvgpermissive96.43 13195.94 13597.89 13997.44 21795.47 16499.86 11397.29 27393.35 16296.03 18099.19 14085.39 22398.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet97.38 9497.24 8797.80 14097.41 21895.64 15999.99 497.06 29694.59 11299.63 4399.32 12889.20 18698.14 23798.76 8199.23 12099.62 124
c3_l92.53 24091.87 24294.52 25797.40 21992.99 23599.40 21296.93 31387.86 30288.69 29095.44 30389.95 17396.44 32390.45 26380.69 33194.14 293
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15797.38 22094.40 19899.90 8798.64 7696.47 6199.51 6199.65 9884.99 22899.93 8599.22 5599.09 12698.46 216
CDS-MVSNet96.34 13696.07 12397.13 17797.37 22194.96 18399.53 19697.91 21591.55 22795.37 19398.32 21195.05 5397.13 28693.80 21195.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TESTMET0.1,196.74 11996.26 11998.16 12397.36 22296.48 12499.96 3498.29 17391.93 21695.77 18798.07 21795.54 4298.29 22790.55 26198.89 13099.70 108
miper_lstm_enhance91.81 25391.39 25293.06 30997.34 22389.18 31499.38 21796.79 32586.70 31987.47 30895.22 31790.00 17295.86 34488.26 28781.37 32194.15 290
baseline96.43 13195.98 12897.76 14797.34 22395.17 18099.51 19997.17 28393.92 14796.90 15899.28 12985.37 22498.64 19697.50 13696.86 18399.46 155
cl____92.31 24591.58 24694.52 25797.33 22592.77 23799.57 18996.78 32686.97 31687.56 30695.51 30089.43 17996.62 31688.60 28282.44 31394.16 289
DIV-MVS_self_test92.32 24491.60 24594.47 26197.31 22692.74 23999.58 18796.75 32786.99 31587.64 30495.54 29789.55 17896.50 32088.58 28382.44 31394.17 284
casdiffmvspermissive96.42 13395.97 13197.77 14597.30 22794.98 18299.84 12197.09 29393.75 15396.58 16799.26 13585.07 22698.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.36 19593.48 20396.99 18097.29 22893.54 22199.96 3496.72 32988.35 29793.43 21498.94 16882.05 24798.05 24388.12 29196.48 18899.37 166
eth_miper_zixun_eth92.41 24391.93 24093.84 28697.28 22990.68 28798.83 28196.97 30788.57 29389.19 28195.73 29089.24 18596.69 31489.97 27281.55 31994.15 290
MVSFormer96.94 10996.60 11097.95 13397.28 22997.70 8199.55 19397.27 27591.17 24099.43 6699.54 11090.92 15896.89 30494.67 19199.62 8999.25 181
lupinMVS97.85 6897.60 7598.62 9397.28 22997.70 8199.99 497.55 24495.50 8999.43 6699.67 9490.92 15898.71 19198.40 9799.62 8999.45 157
SCA94.69 18193.81 19497.33 17397.10 23294.44 19398.86 27898.32 16793.30 16596.17 17995.59 29576.48 30397.95 24991.06 24997.43 16699.59 130
TAMVS95.85 15195.58 14896.65 19297.07 23393.50 22299.17 24197.82 22491.39 23795.02 19798.01 21892.20 13597.30 27593.75 21495.83 20299.14 189
Fast-Effi-MVS+-dtu93.72 21193.86 19393.29 30197.06 23486.16 33999.80 13796.83 32192.66 18792.58 22797.83 22881.39 25497.67 26089.75 27496.87 18296.05 250
CostFormer96.10 14395.88 14096.78 18697.03 23592.55 24797.08 34497.83 22390.04 26698.72 10694.89 32895.01 5598.29 22796.54 15895.77 20399.50 151
test_fmvsmvis_n_192097.67 8297.59 7797.91 13797.02 23695.34 17099.95 5298.45 11697.87 1597.02 15599.59 10489.64 17699.98 4399.41 4899.34 11598.42 217
test-LLR96.47 12996.04 12497.78 14397.02 23695.44 16599.96 3498.21 18194.07 13695.55 18996.38 27193.90 8898.27 23190.42 26498.83 13499.64 119
test-mter96.39 13495.93 13697.78 14397.02 23695.44 16599.96 3498.21 18191.81 22195.55 18996.38 27195.17 4898.27 23190.42 26498.83 13499.64 119
gm-plane-assit96.97 23993.76 21591.47 23198.96 16198.79 18394.92 181
WB-MVSnew92.90 23092.77 22293.26 30396.95 24093.63 21899.71 16498.16 19091.49 22894.28 20698.14 21481.33 25696.48 32179.47 35095.46 20989.68 373
QAPM95.40 16594.17 18499.10 6496.92 24197.71 7999.40 21298.68 7089.31 27388.94 28598.89 17182.48 24599.96 6193.12 22699.83 7299.62 124
KD-MVS_2432*160088.00 31486.10 31893.70 29296.91 24294.04 20797.17 34197.12 28984.93 33981.96 34692.41 35892.48 12894.51 36079.23 35152.68 39292.56 347
miper_refine_blended88.00 31486.10 31893.70 29296.91 24294.04 20797.17 34197.12 28984.93 33981.96 34692.41 35892.48 12894.51 36079.23 35152.68 39292.56 347
tpm295.47 16395.18 16096.35 20296.91 24291.70 26996.96 34797.93 21188.04 30198.44 11895.40 30593.32 10197.97 24694.00 20295.61 20799.38 164
FMVSNet588.32 31187.47 31390.88 32896.90 24588.39 32597.28 33895.68 35582.60 35684.67 33592.40 36079.83 27391.16 38176.39 36581.51 32093.09 339
3Dnovator+91.53 1196.31 13895.24 15799.52 2896.88 24698.64 5299.72 16298.24 17895.27 9488.42 29798.98 15782.76 24499.94 7797.10 14699.83 7299.96 64
Patchmatch-test92.65 23991.50 24996.10 20896.85 24790.49 29291.50 38397.19 28082.76 35590.23 25295.59 29595.02 5498.00 24577.41 36096.98 18099.82 92
MVS96.60 12595.56 14999.72 1396.85 24799.22 2098.31 31398.94 4191.57 22690.90 24699.61 10386.66 21199.96 6197.36 13899.88 6899.99 23
3Dnovator91.47 1296.28 14195.34 15499.08 6596.82 24997.47 9399.45 20998.81 6095.52 8889.39 27299.00 15481.97 24899.95 6997.27 14099.83 7299.84 90
EI-MVSNet93.73 21093.40 20894.74 24696.80 25092.69 24299.06 25397.67 23188.96 28291.39 23999.02 15088.75 19197.30 27591.07 24887.85 27394.22 280
CVMVSNet94.68 18394.94 16893.89 28596.80 25086.92 33799.06 25398.98 3894.45 11594.23 20899.02 15085.60 21995.31 35190.91 25495.39 21299.43 160
IterMVS-LS92.69 23792.11 23594.43 26596.80 25092.74 23999.45 20996.89 31688.98 28089.65 26795.38 30888.77 19096.34 32790.98 25282.04 31694.22 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.91 27190.17 27393.12 30696.78 25390.42 29598.89 27297.05 29889.03 27786.49 32195.42 30476.59 30195.02 35387.22 30184.09 30393.93 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.84 11395.96 13299.48 3496.74 25498.52 5698.31 31398.86 5395.82 7889.91 25898.98 15787.49 20099.96 6197.80 12599.73 8299.96 64
IterMVS-SCA-FT90.85 27490.16 27492.93 31196.72 25589.96 30498.89 27296.99 30388.95 28386.63 31895.67 29176.48 30395.00 35487.04 30484.04 30693.84 318
MVS-HIRNet86.22 32183.19 33495.31 22896.71 25690.29 29692.12 38097.33 26862.85 38786.82 31570.37 39269.37 34297.49 26575.12 36797.99 15898.15 222
VDDNet93.12 22591.91 24196.76 18796.67 25792.65 24598.69 29498.21 18182.81 35497.75 14199.28 12961.57 37099.48 15998.09 11294.09 22698.15 222
dmvs_re93.20 22293.15 21393.34 29996.54 25883.81 35298.71 29198.51 10591.39 23792.37 23198.56 19878.66 28597.83 25493.89 20589.74 24298.38 218
MIMVSNet90.30 28788.67 30195.17 23396.45 25991.64 27192.39 37997.15 28685.99 32690.50 24993.19 35466.95 35294.86 35782.01 33993.43 23199.01 197
CR-MVSNet93.45 21992.62 22495.94 21096.29 26092.66 24392.01 38196.23 34492.62 18996.94 15693.31 35291.04 15596.03 34079.23 35195.96 19699.13 190
RPMNet89.76 29987.28 31497.19 17696.29 26092.66 24392.01 38198.31 16970.19 38696.94 15685.87 38587.25 20499.78 12562.69 38795.96 19699.13 190
tt080591.28 26490.18 27294.60 25296.26 26287.55 33198.39 31198.72 6589.00 27989.22 27898.47 20662.98 36698.96 17690.57 26088.00 27297.28 238
Patchmtry89.70 30088.49 30393.33 30096.24 26389.94 30791.37 38496.23 34478.22 37087.69 30393.31 35291.04 15596.03 34080.18 34982.10 31594.02 301
test_vis1_rt86.87 31986.05 32189.34 34196.12 26478.07 37699.87 10083.54 40092.03 21478.21 36589.51 37145.80 38699.91 8996.25 16193.11 23690.03 370
JIA-IIPM91.76 25990.70 25994.94 23996.11 26587.51 33293.16 37798.13 19575.79 37697.58 14377.68 39092.84 11697.97 24688.47 28696.54 18599.33 172
OpenMVScopyleft90.15 1594.77 17993.59 19998.33 11796.07 26697.48 9299.56 19198.57 8890.46 25786.51 32098.95 16678.57 28699.94 7793.86 20699.74 8197.57 236
PAPM98.60 2998.42 3099.14 5996.05 26798.96 2699.90 8799.35 2596.68 5598.35 12399.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
CLD-MVS94.06 20193.90 19194.55 25696.02 26890.69 28699.98 1497.72 22796.62 5891.05 24598.85 18077.21 29298.47 20398.11 11089.51 24894.48 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT90.38 28488.75 30095.25 23095.99 26990.16 29991.22 38597.54 24676.80 37297.26 15086.01 38491.88 14296.07 33966.16 38395.91 20099.51 149
ACMH+89.98 1690.35 28589.54 28492.78 31495.99 26986.12 34098.81 28397.18 28289.38 27283.14 34297.76 23068.42 34798.43 20889.11 27886.05 28793.78 321
DeepMVS_CXcopyleft82.92 36295.98 27158.66 39396.01 34992.72 18278.34 36495.51 30058.29 37598.08 24082.57 33485.29 29292.03 355
ACMP92.05 992.74 23492.42 23293.73 28895.91 27288.72 31899.81 13397.53 24894.13 13287.00 31498.23 21274.07 32498.47 20396.22 16288.86 25593.99 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n93.61 21493.03 21595.35 22595.86 27386.94 33699.87 10096.36 34296.85 4699.54 5698.79 18252.41 38299.83 11898.64 8998.97 12999.29 178
HQP-NCC95.78 27499.87 10096.82 4893.37 215
ACMP_Plane95.78 27499.87 10096.82 4893.37 215
HQP-MVS94.61 18594.50 17694.92 24095.78 27491.85 26199.87 10097.89 21696.82 4893.37 21598.65 18980.65 26598.39 21497.92 12189.60 24394.53 253
NP-MVS95.77 27791.79 26398.65 189
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27896.20 13999.94 6898.05 20198.17 898.89 9599.42 11887.65 19899.90 9199.50 4199.60 9599.82 92
plane_prior695.76 27891.72 26880.47 269
ACMM91.95 1092.88 23192.52 23093.98 28195.75 28089.08 31599.77 14397.52 25093.00 17289.95 25797.99 22176.17 30798.46 20693.63 21788.87 25494.39 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS93.83 20492.84 21896.80 18595.73 28193.57 21999.88 9797.24 27892.57 19492.92 22196.66 26378.73 28497.67 26087.75 29494.06 22799.17 185
plane_prior195.73 281
jason97.24 9896.86 10198.38 11695.73 28197.32 9799.97 2797.40 26295.34 9298.60 11399.54 11087.70 19798.56 19997.94 12099.47 10499.25 181
jason: jason.
HQP_MVS94.49 18994.36 17894.87 24195.71 28491.74 26599.84 12197.87 21896.38 6593.01 21998.59 19480.47 26998.37 22097.79 12889.55 24694.52 255
plane_prior795.71 28491.59 273
ITE_SJBPF92.38 31695.69 28685.14 34595.71 35492.81 17889.33 27598.11 21570.23 34098.42 20985.91 31588.16 26993.59 329
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15595.65 28794.21 20399.83 12898.50 11096.27 7099.65 4099.64 9984.72 22999.93 8599.04 6398.84 13398.74 209
ACMH89.72 1790.64 27889.63 28193.66 29495.64 28888.64 32198.55 30097.45 25589.03 27781.62 34997.61 23269.75 34198.41 21089.37 27587.62 27893.92 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12196.49 11497.37 16995.63 28995.96 14799.74 15498.88 5192.94 17391.61 23798.97 15997.72 798.62 19794.83 18598.08 15697.53 237
FMVSNet188.50 31086.64 31694.08 27495.62 29091.97 25698.43 30796.95 30883.00 35286.08 32894.72 33059.09 37496.11 33581.82 34184.07 30494.17 284
LPG-MVS_test92.96 22892.71 22393.71 29095.43 29188.67 31999.75 15197.62 23592.81 17890.05 25398.49 20275.24 31498.40 21295.84 16889.12 25094.07 298
LGP-MVS_train93.71 29095.43 29188.67 31997.62 23592.81 17890.05 25398.49 20275.24 31498.40 21295.84 16889.12 25094.07 298
tpm93.70 21293.41 20794.58 25495.36 29387.41 33397.01 34596.90 31590.85 24996.72 16494.14 34490.40 16896.84 30790.75 25888.54 26299.51 149
D2MVS92.76 23392.59 22893.27 30295.13 29489.54 31199.69 16899.38 2392.26 20787.59 30594.61 33685.05 22797.79 25591.59 24288.01 27192.47 350
VPA-MVSNet92.70 23691.55 24896.16 20695.09 29596.20 13998.88 27499.00 3691.02 24691.82 23695.29 31576.05 30997.96 24895.62 17181.19 32294.30 275
LTVRE_ROB88.28 1890.29 28889.05 29594.02 27795.08 29690.15 30097.19 34097.43 25784.91 34183.99 33897.06 24974.00 32598.28 22984.08 32487.71 27693.62 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TinyColmap87.87 31686.51 31791.94 32195.05 29785.57 34397.65 33394.08 37784.40 34481.82 34896.85 25862.14 36898.33 22380.25 34886.37 28691.91 357
test0.0.03 193.86 20393.61 19694.64 25095.02 29892.18 25499.93 7598.58 8694.07 13687.96 30198.50 20193.90 8894.96 35581.33 34293.17 23496.78 240
UniMVSNet (Re)93.07 22792.13 23495.88 21194.84 29996.24 13899.88 9798.98 3892.49 20089.25 27695.40 30587.09 20697.14 28593.13 22578.16 34594.26 277
USDC90.00 29588.96 29693.10 30894.81 30088.16 32798.71 29195.54 35993.66 15583.75 34097.20 24365.58 35798.31 22583.96 32787.49 28092.85 344
VPNet91.81 25390.46 26395.85 21394.74 30195.54 16398.98 26398.59 8592.14 20990.77 24897.44 23668.73 34597.54 26494.89 18477.89 34794.46 259
FIs94.10 19993.43 20496.11 20794.70 30296.82 11599.58 18798.93 4592.54 19589.34 27497.31 24087.62 19997.10 28994.22 20186.58 28494.40 266
UniMVSNet_ETH3D90.06 29488.58 30294.49 26094.67 30388.09 32897.81 33297.57 24383.91 34788.44 29397.41 23757.44 37697.62 26291.41 24388.59 26197.77 230
UniMVSNet_NR-MVSNet92.95 22992.11 23595.49 21994.61 30495.28 17399.83 12899.08 3391.49 22889.21 27996.86 25787.14 20596.73 31293.20 22177.52 35094.46 259
test_fmvs289.47 30389.70 28088.77 34894.54 30575.74 37799.83 12894.70 37394.71 10891.08 24396.82 26254.46 37997.78 25792.87 22888.27 26792.80 345
WR-MVS92.31 24591.25 25395.48 22294.45 30695.29 17299.60 18498.68 7090.10 26388.07 30096.89 25580.68 26496.80 31093.14 22479.67 33894.36 270
nrg03093.51 21692.53 22996.45 19694.36 30797.20 10099.81 13397.16 28591.60 22589.86 26097.46 23586.37 21497.68 25995.88 16780.31 33494.46 259
tfpnnormal89.29 30687.61 31294.34 26894.35 30894.13 20598.95 26798.94 4183.94 34584.47 33695.51 30074.84 31997.39 26777.05 36380.41 33291.48 360
FC-MVSNet-test93.81 20693.15 21395.80 21594.30 30996.20 13999.42 21198.89 4992.33 20689.03 28497.27 24287.39 20296.83 30893.20 22186.48 28594.36 270
MS-PatchMatch90.65 27790.30 26891.71 32494.22 31085.50 34498.24 31697.70 22888.67 29086.42 32396.37 27367.82 34998.03 24483.62 32999.62 8991.60 358
WR-MVS_H91.30 26290.35 26694.15 27194.17 31192.62 24699.17 24198.94 4188.87 28686.48 32294.46 34184.36 23396.61 31788.19 28878.51 34393.21 338
DU-MVS92.46 24291.45 25195.49 21994.05 31295.28 17399.81 13398.74 6492.25 20889.21 27996.64 26581.66 25196.73 31293.20 22177.52 35094.46 259
NR-MVSNet91.56 26190.22 27095.60 21794.05 31295.76 15398.25 31598.70 6791.16 24280.78 35496.64 26583.23 24396.57 31891.41 24377.73 34994.46 259
CP-MVSNet91.23 26690.22 27094.26 26993.96 31492.39 25099.09 24698.57 8888.95 28386.42 32396.57 26879.19 27996.37 32590.29 26778.95 34094.02 301
XXY-MVS91.82 25290.46 26395.88 21193.91 31595.40 16998.87 27797.69 22988.63 29287.87 30297.08 24774.38 32397.89 25291.66 24184.07 30494.35 273
PS-CasMVS90.63 27989.51 28693.99 28093.83 31691.70 26998.98 26398.52 10288.48 29486.15 32796.53 27075.46 31296.31 32988.83 28078.86 34293.95 309
test_040285.58 32383.94 32890.50 33293.81 31785.04 34698.55 30095.20 36776.01 37479.72 35995.13 31864.15 36396.26 33166.04 38486.88 28390.21 369
XVG-ACMP-BASELINE91.22 26790.75 25892.63 31593.73 31885.61 34298.52 30497.44 25692.77 18189.90 25996.85 25866.64 35498.39 21492.29 23388.61 25993.89 314
TranMVSNet+NR-MVSNet91.68 26090.61 26294.87 24193.69 31993.98 21099.69 16898.65 7491.03 24588.44 29396.83 26180.05 27296.18 33390.26 26876.89 35894.45 264
mvsmamba94.10 19993.72 19595.25 23093.57 32094.13 20599.67 17296.45 34093.63 15791.34 24197.77 22986.29 21597.22 28196.65 15788.10 27094.40 266
TransMVSNet (Re)87.25 31785.28 32493.16 30593.56 32191.03 27898.54 30294.05 37983.69 34981.09 35296.16 27875.32 31396.40 32476.69 36468.41 37692.06 354
v1090.25 28988.82 29894.57 25593.53 32293.43 22599.08 24896.87 31885.00 33887.34 31294.51 33780.93 26197.02 29982.85 33379.23 33993.26 336
testgi89.01 30888.04 30991.90 32293.49 32384.89 34899.73 15995.66 35693.89 15085.14 33398.17 21359.68 37394.66 35977.73 35988.88 25396.16 249
v890.54 28189.17 29194.66 24993.43 32493.40 22799.20 23896.94 31285.76 32987.56 30694.51 33781.96 24997.19 28284.94 32178.25 34493.38 334
V4291.28 26490.12 27594.74 24693.42 32593.46 22399.68 17097.02 30087.36 30889.85 26295.05 32081.31 25797.34 27087.34 29980.07 33693.40 332
pm-mvs189.36 30587.81 31194.01 27893.40 32691.93 25998.62 29996.48 33986.25 32483.86 33996.14 27973.68 32697.04 29486.16 31275.73 36293.04 341
RRT_MVS93.14 22492.92 21793.78 28793.31 32790.04 30299.66 17397.69 22992.53 19688.91 28697.76 23084.36 23396.93 30295.10 17686.99 28294.37 269
v114491.09 26889.83 27794.87 24193.25 32893.69 21799.62 18296.98 30586.83 31889.64 26894.99 32580.94 26097.05 29285.08 32081.16 32393.87 316
v119290.62 28089.25 29094.72 24893.13 32993.07 23199.50 20197.02 30086.33 32389.56 27095.01 32279.22 27897.09 29182.34 33781.16 32394.01 303
v2v48291.30 26290.07 27695.01 23693.13 32993.79 21399.77 14397.02 30088.05 30089.25 27695.37 30980.73 26397.15 28487.28 30080.04 33794.09 297
OPM-MVS93.21 22192.80 22094.44 26393.12 33190.85 28599.77 14397.61 23896.19 7391.56 23898.65 18975.16 31898.47 20393.78 21389.39 24993.99 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419290.79 27589.52 28594.59 25393.11 33292.77 23799.56 19196.99 30386.38 32289.82 26394.95 32780.50 26897.10 28983.98 32680.41 33293.90 313
bld_raw_dy_0_6492.74 23492.03 23894.87 24193.09 33393.46 22399.12 24395.41 36192.84 17790.44 25197.54 23378.08 29097.04 29493.94 20387.77 27594.11 295
PEN-MVS90.19 29189.06 29493.57 29593.06 33490.90 28399.06 25398.47 11388.11 29985.91 32996.30 27476.67 29995.94 34387.07 30376.91 35793.89 314
v124090.20 29088.79 29994.44 26393.05 33592.27 25299.38 21796.92 31485.89 32789.36 27394.87 32977.89 29197.03 29780.66 34581.08 32694.01 303
v14890.70 27689.63 28193.92 28292.97 33690.97 27999.75 15196.89 31687.51 30588.27 29895.01 32281.67 25097.04 29487.40 29877.17 35593.75 322
v192192090.46 28289.12 29294.50 25992.96 33792.46 24899.49 20396.98 30586.10 32589.61 26995.30 31278.55 28797.03 29782.17 33880.89 33094.01 303
Baseline_NR-MVSNet90.33 28689.51 28692.81 31392.84 33889.95 30599.77 14393.94 38084.69 34389.04 28395.66 29281.66 25196.52 31990.99 25176.98 35691.97 356
test_method80.79 34379.70 34784.08 35992.83 33967.06 38599.51 19995.42 36054.34 39181.07 35393.53 34944.48 38792.22 37878.90 35577.23 35492.94 342
pmmvs492.10 24991.07 25695.18 23292.82 34094.96 18399.48 20596.83 32187.45 30788.66 29196.56 26983.78 23896.83 30889.29 27684.77 29893.75 322
LF4IMVS89.25 30788.85 29790.45 33492.81 34181.19 36898.12 32294.79 37091.44 23286.29 32597.11 24565.30 36098.11 23988.53 28585.25 29392.07 353
DTE-MVSNet89.40 30488.24 30792.88 31292.66 34289.95 30599.10 24598.22 18087.29 30985.12 33496.22 27676.27 30695.30 35283.56 33075.74 36193.41 331
EU-MVSNet90.14 29390.34 26789.54 34092.55 34381.06 36998.69 29498.04 20291.41 23686.59 31996.84 26080.83 26293.31 37186.20 31181.91 31794.26 277
APD_test181.15 34280.92 34381.86 36392.45 34459.76 39296.04 36393.61 38373.29 38377.06 36896.64 26544.28 38896.16 33472.35 37182.52 31189.67 374
our_test_390.39 28389.48 28893.12 30692.40 34589.57 31099.33 22396.35 34387.84 30385.30 33294.99 32584.14 23696.09 33880.38 34684.56 29993.71 327
ppachtmachnet_test89.58 30288.35 30593.25 30492.40 34590.44 29499.33 22396.73 32885.49 33485.90 33095.77 28781.09 25996.00 34276.00 36682.49 31293.30 335
v7n89.65 30188.29 30693.72 28992.22 34790.56 29199.07 25297.10 29185.42 33686.73 31694.72 33080.06 27197.13 28681.14 34378.12 34693.49 330
dmvs_testset83.79 33686.07 32076.94 36792.14 34848.60 40296.75 35090.27 39289.48 27178.65 36298.55 20079.25 27786.65 39066.85 38182.69 31095.57 251
PS-MVSNAJss93.64 21393.31 21094.61 25192.11 34992.19 25399.12 24397.38 26392.51 19988.45 29296.99 25391.20 15097.29 27894.36 19687.71 27694.36 270
pmmvs590.17 29289.09 29393.40 29892.10 35089.77 30899.74 15495.58 35885.88 32887.24 31395.74 28873.41 32796.48 32188.54 28483.56 30793.95 309
N_pmnet80.06 34680.78 34477.89 36691.94 35145.28 40498.80 28556.82 40678.10 37180.08 35793.33 35077.03 29495.76 34568.14 37982.81 30992.64 346
test_djsdf92.83 23292.29 23394.47 26191.90 35292.46 24899.55 19397.27 27591.17 24089.96 25696.07 28381.10 25896.89 30494.67 19188.91 25294.05 300
SixPastTwentyTwo88.73 30988.01 31090.88 32891.85 35382.24 36098.22 31995.18 36888.97 28182.26 34596.89 25571.75 33296.67 31584.00 32582.98 30893.72 326
K. test v388.05 31387.24 31590.47 33391.82 35482.23 36198.96 26697.42 25989.05 27676.93 37095.60 29468.49 34695.42 34885.87 31681.01 32893.75 322
OurMVSNet-221017-089.81 29889.48 28890.83 33091.64 35581.21 36798.17 32195.38 36391.48 23085.65 33197.31 24072.66 32897.29 27888.15 28984.83 29793.97 308
mvs_tets91.81 25391.08 25594.00 27991.63 35690.58 29098.67 29697.43 25792.43 20187.37 31197.05 25071.76 33197.32 27494.75 18888.68 25894.11 295
Gipumacopyleft66.95 35965.00 35972.79 37291.52 35767.96 38466.16 39595.15 36947.89 39358.54 39067.99 39529.74 39287.54 38950.20 39477.83 34862.87 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.01_n96.39 13495.74 14398.32 11891.47 35895.56 16299.84 12197.30 27197.74 1897.89 13799.35 12779.62 27499.85 10899.25 5499.24 11999.55 139
jajsoiax91.92 25191.18 25494.15 27191.35 35990.95 28299.00 26297.42 25992.61 19087.38 31097.08 24772.46 32997.36 26894.53 19488.77 25694.13 294
MDA-MVSNet-bldmvs84.09 33481.52 34191.81 32391.32 36088.00 33098.67 29695.92 35180.22 36555.60 39393.32 35168.29 34893.60 36973.76 36876.61 35993.82 320
MVP-Stereo90.93 27090.45 26592.37 31791.25 36188.76 31698.05 32696.17 34687.27 31084.04 33795.30 31278.46 28897.27 28083.78 32899.70 8491.09 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet_test_wron85.51 32583.32 33392.10 31990.96 36288.58 32299.20 23896.52 33779.70 36757.12 39292.69 35679.11 28093.86 36677.10 36277.46 35293.86 317
YYNet185.50 32683.33 33292.00 32090.89 36388.38 32699.22 23796.55 33679.60 36857.26 39192.72 35579.09 28293.78 36777.25 36177.37 35393.84 318
anonymousdsp91.79 25890.92 25794.41 26690.76 36492.93 23698.93 26997.17 28389.08 27587.46 30995.30 31278.43 28996.92 30392.38 23288.73 25793.39 333
lessismore_v090.53 33190.58 36580.90 37095.80 35277.01 36995.84 28566.15 35696.95 30083.03 33275.05 36393.74 325
EG-PatchMatch MVS85.35 32783.81 33089.99 33890.39 36681.89 36398.21 32096.09 34881.78 35974.73 37693.72 34851.56 38497.12 28879.16 35488.61 25990.96 363
EGC-MVSNET69.38 35263.76 36286.26 35690.32 36781.66 36696.24 35993.85 3810.99 4033.22 40492.33 36152.44 38192.92 37459.53 39084.90 29684.21 384
CMPMVSbinary61.59 2184.75 33085.14 32583.57 36090.32 36762.54 38896.98 34697.59 24274.33 38169.95 38296.66 26364.17 36298.32 22487.88 29388.41 26489.84 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet84.49 33382.92 33689.21 34290.03 36982.60 35796.89 34995.62 35780.59 36375.77 37589.17 37265.04 36194.79 35872.12 37281.02 32790.23 368
pmmvs685.69 32283.84 32991.26 32790.00 37084.41 35097.82 33196.15 34775.86 37581.29 35195.39 30761.21 37196.87 30683.52 33173.29 36592.50 349
DSMNet-mixed88.28 31288.24 30788.42 35089.64 37175.38 37998.06 32589.86 39385.59 33388.20 29992.14 36276.15 30891.95 37978.46 35696.05 19497.92 226
UnsupCasMVSNet_eth85.52 32483.99 32690.10 33689.36 37283.51 35496.65 35197.99 20489.14 27475.89 37493.83 34663.25 36593.92 36481.92 34067.90 37992.88 343
Anonymous2023120686.32 32085.42 32389.02 34489.11 37380.53 37399.05 25795.28 36485.43 33582.82 34393.92 34574.40 32293.44 37066.99 38081.83 31893.08 340
Anonymous2024052185.15 32883.81 33089.16 34388.32 37482.69 35698.80 28595.74 35379.72 36681.53 35090.99 36565.38 35994.16 36272.69 37081.11 32590.63 366
OpenMVS_ROBcopyleft79.82 2083.77 33781.68 34090.03 33788.30 37582.82 35598.46 30595.22 36673.92 38276.00 37391.29 36455.00 37896.94 30168.40 37888.51 26390.34 367
test20.0384.72 33183.99 32686.91 35488.19 37680.62 37298.88 27495.94 35088.36 29678.87 36094.62 33568.75 34489.11 38566.52 38275.82 36091.00 362
KD-MVS_self_test83.59 33882.06 33888.20 35186.93 37780.70 37197.21 33996.38 34182.87 35382.49 34488.97 37367.63 35092.32 37773.75 36962.30 38891.58 359
MIMVSNet182.58 33980.51 34588.78 34686.68 37884.20 35196.65 35195.41 36178.75 36978.59 36392.44 35751.88 38389.76 38465.26 38578.95 34092.38 352
CL-MVSNet_self_test84.50 33283.15 33588.53 34986.00 37981.79 36498.82 28297.35 26585.12 33783.62 34190.91 36776.66 30091.40 38069.53 37660.36 38992.40 351
UnsupCasMVSNet_bld79.97 34877.03 35388.78 34685.62 38081.98 36293.66 37597.35 26575.51 37870.79 38183.05 38748.70 38594.91 35678.31 35760.29 39089.46 377
Patchmatch-RL test86.90 31885.98 32289.67 33984.45 38175.59 37889.71 38892.43 38686.89 31777.83 36790.94 36694.22 7793.63 36887.75 29469.61 37199.79 97
pmmvs-eth3d84.03 33581.97 33990.20 33584.15 38287.09 33598.10 32494.73 37283.05 35174.10 37887.77 37965.56 35894.01 36381.08 34469.24 37389.49 376
test_fmvs379.99 34780.17 34679.45 36584.02 38362.83 38699.05 25793.49 38488.29 29880.06 35886.65 38228.09 39488.00 38688.63 28173.27 36687.54 382
PM-MVS80.47 34478.88 34985.26 35783.79 38472.22 38195.89 36691.08 39085.71 33276.56 37288.30 37536.64 39093.90 36582.39 33669.57 37289.66 375
new-patchmatchnet81.19 34179.34 34886.76 35582.86 38580.36 37497.92 32895.27 36582.09 35872.02 37986.87 38162.81 36790.74 38371.10 37363.08 38689.19 379
mvsany_test382.12 34081.14 34285.06 35881.87 38670.41 38297.09 34392.14 38791.27 23977.84 36688.73 37439.31 38995.49 34690.75 25871.24 36889.29 378
WB-MVS76.28 35077.28 35273.29 37181.18 38754.68 39697.87 33094.19 37681.30 36069.43 38390.70 36877.02 29582.06 39435.71 39968.11 37883.13 385
test_f78.40 34977.59 35180.81 36480.82 38862.48 38996.96 34793.08 38583.44 35074.57 37784.57 38627.95 39592.63 37584.15 32372.79 36787.32 383
SSC-MVS75.42 35176.40 35472.49 37580.68 38953.62 39797.42 33594.06 37880.42 36468.75 38490.14 37076.54 30281.66 39533.25 40066.34 38282.19 386
pmmvs380.27 34577.77 35087.76 35380.32 39082.43 35998.23 31891.97 38872.74 38478.75 36187.97 37857.30 37790.99 38270.31 37462.37 38789.87 371
testf168.38 35566.92 35672.78 37378.80 39150.36 39990.95 38687.35 39855.47 38958.95 38888.14 37620.64 39987.60 38757.28 39164.69 38380.39 388
APD_test268.38 35566.92 35672.78 37378.80 39150.36 39990.95 38687.35 39855.47 38958.95 38888.14 37620.64 39987.60 38757.28 39164.69 38380.39 388
ambc83.23 36177.17 39362.61 38787.38 39094.55 37576.72 37186.65 38230.16 39196.36 32684.85 32269.86 37090.73 365
test_vis3_rt68.82 35366.69 35875.21 37076.24 39460.41 39196.44 35468.71 40575.13 37950.54 39669.52 39416.42 40496.32 32880.27 34766.92 38168.89 392
TDRefinement84.76 32982.56 33791.38 32674.58 39584.80 34997.36 33794.56 37484.73 34280.21 35696.12 28263.56 36498.39 21487.92 29263.97 38590.95 364
E-PMN52.30 36352.18 36552.67 38171.51 39645.40 40393.62 37676.60 40336.01 39743.50 39864.13 39727.11 39667.31 40031.06 40126.06 39645.30 399
EMVS51.44 36551.22 36752.11 38270.71 39744.97 40594.04 37275.66 40435.34 39942.40 39961.56 40028.93 39365.87 40127.64 40224.73 39745.49 398
PMMVS267.15 35864.15 36176.14 36970.56 39862.07 39093.89 37387.52 39758.09 38860.02 38778.32 38922.38 39884.54 39259.56 38947.03 39481.80 387
FPMVS68.72 35468.72 35568.71 37765.95 39944.27 40695.97 36594.74 37151.13 39253.26 39490.50 36925.11 39783.00 39360.80 38880.97 32978.87 390
wuyk23d20.37 36920.84 37218.99 38565.34 40027.73 40850.43 3967.67 4099.50 4028.01 4036.34 4036.13 40726.24 40223.40 40310.69 4012.99 400
LCM-MVSNet67.77 35764.73 36076.87 36862.95 40156.25 39589.37 38993.74 38244.53 39461.99 38680.74 38820.42 40186.53 39169.37 37759.50 39187.84 380
MVEpermissive53.74 2251.54 36447.86 36862.60 37959.56 40250.93 39879.41 39377.69 40235.69 39836.27 40061.76 3995.79 40869.63 39837.97 39836.61 39567.24 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36152.24 36467.66 37849.27 40356.82 39483.94 39182.02 40170.47 38533.28 40164.54 39617.23 40369.16 39945.59 39623.85 39877.02 391
tmp_tt65.23 36062.94 36372.13 37644.90 40450.03 40181.05 39289.42 39638.45 39548.51 39799.90 1854.09 38078.70 39791.84 24018.26 39987.64 381
PMVScopyleft49.05 2353.75 36251.34 36660.97 38040.80 40534.68 40774.82 39489.62 39537.55 39628.67 40272.12 3917.09 40681.63 39643.17 39768.21 37766.59 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12337.68 36739.14 37033.31 38319.94 40624.83 40998.36 3129.75 40815.53 40151.31 39587.14 38019.62 40217.74 40347.10 3953.47 40257.36 396
testmvs40.60 36644.45 36929.05 38419.49 40714.11 41099.68 17018.47 40720.74 40064.59 38598.48 20510.95 40517.09 40456.66 39311.01 40055.94 397
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.02 4040.00 4090.00 4050.00 4040.00 4030.00 401
eth-test20.00 408
eth-test0.00 408
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k23.43 36831.24 3710.00 3860.00 4080.00 4110.00 39798.09 1960.00 4040.00 40599.67 9483.37 2410.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas7.60 37110.13 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40591.20 1500.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.28 37011.04 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40599.40 1210.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4050.00 4090.00 4050.00 4040.00 4030.00 401
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16799.96 6199.89 1699.43 11099.98 48
WAC-MVS90.97 27986.10 314
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
test_241102_TWO98.43 12897.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
MTGPAbinary98.28 174
test_post195.78 36759.23 40193.20 10797.74 25891.06 249
test_post63.35 39894.43 6698.13 238
patchmatchnet-post91.70 36395.12 4997.95 249
MTMP99.87 10096.49 338
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
旧先验299.46 20894.21 13099.85 999.95 6996.96 151
新几何299.40 212
无先验99.49 20398.71 6693.46 160100.00 194.36 19699.99 23
原ACMM299.90 87
testdata299.99 3690.54 262
segment_acmp96.68 26
testdata199.28 23296.35 69
plane_prior597.87 21898.37 22097.79 12889.55 24694.52 255
plane_prior498.59 194
plane_prior391.64 27196.63 5693.01 219
plane_prior299.84 12196.38 65
plane_prior91.74 26599.86 11396.76 5289.59 245
n20.00 410
nn0.00 410
door-mid89.69 394
test1198.44 120
door90.31 391
HQP5-MVS91.85 261
BP-MVS97.92 121
HQP4-MVS93.37 21598.39 21494.53 253
HQP3-MVS97.89 21689.60 243
HQP2-MVS80.65 265
MDTV_nov1_ep13_2view96.26 13496.11 36191.89 21798.06 13194.40 6894.30 19899.67 113
ACMMP++_ref87.04 281
ACMMP++88.23 268
Test By Simon92.82 118