| DP-MVS Recon | | | 91.72 75 | 90.85 84 | 94.34 34 | 99.50 1 | 85.00 64 | 98.51 35 | 95.96 143 | 80.57 239 | 88.08 136 | 97.63 78 | 76.84 116 | 99.89 7 | 85.67 154 | 94.88 116 | 98.13 74 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 23 | 97.10 31 | 95.17 3 | 92.11 78 | 98.46 26 | 87.33 24 | 99.97 2 | 97.21 28 | 99.31 4 | 99.63 7 |
|
| MG-MVS | | | 94.25 27 | 93.72 33 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 59 | 98.09 9 | 89.99 51 | 92.34 74 | 96.97 108 | 81.30 58 | 98.99 107 | 88.54 129 | 98.88 20 | 99.20 22 |
|
| AdaColmap |  | | 88.81 137 | 87.61 148 | 92.39 108 | 99.33 4 | 79.95 171 | 96.70 159 | 95.58 163 | 77.51 292 | 83.05 188 | 96.69 121 | 61.90 261 | 99.72 43 | 84.29 164 | 93.47 137 | 97.50 123 |
|
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 22 | 99.06 16 | 97.12 29 | 94.66 5 | 96.79 16 | 98.78 9 | 86.42 29 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 27 |
|
| NCCC | | | 95.63 6 | 95.94 8 | 94.69 28 | 99.21 6 | 85.15 59 | 99.16 6 | 96.96 38 | 94.11 9 | 95.59 32 | 98.64 17 | 85.07 33 | 99.91 4 | 95.61 45 | 99.10 9 | 99.00 27 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 11 | | | | 98.54 20 | 92.06 3 | 99.84 12 | 99.11 2 | 99.37 1 | 99.74 1 |
|
| ZD-MVS | | | | | | 99.09 8 | 83.22 97 | | 96.60 82 | 82.88 200 | 93.61 61 | 98.06 50 | 82.93 50 | 99.14 97 | 95.51 48 | 98.49 37 | |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 22 | 99.05 9 | 85.34 49 | 98.13 49 | 96.77 56 | 88.38 73 | 97.70 8 | 98.77 10 | 92.06 3 | 99.84 12 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 47 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 47 | | | | | 99.81 21 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 30 | 99.05 9 | 85.18 54 | 99.06 16 | 96.46 97 | 88.75 64 | 96.69 17 | 98.76 12 | 87.69 22 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 34 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.05 9 | 85.18 54 | 99.11 14 | 96.78 50 | 88.75 64 | 97.65 11 | 98.91 2 | 87.69 22 | | | | |
|
| test_0728_SECOND | | | | | 95.14 18 | 99.04 14 | 86.14 35 | 99.06 16 | 96.77 56 | | | | | 99.84 12 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 23 | 99.03 15 | 85.03 62 | 99.12 11 | 96.78 50 | 88.72 66 | 97.79 6 | 98.91 2 | 88.48 17 | 99.82 18 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 49 | | 96.86 46 | 92.05 27 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 62 | | 96.78 50 | 88.72 66 | 97.79 6 | 98.90 5 | 88.48 17 | 99.82 18 | | | |
|
| test_one_0601 | | | | | | 98.91 18 | 84.56 72 | | 96.70 66 | 88.06 79 | 96.57 22 | 98.77 10 | 88.04 20 | | | | |
|
| test_part2 | | | | | | 98.90 19 | 85.14 60 | | | | 96.07 28 | | | | | | |
|
| PAPR | | | 92.74 51 | 92.17 65 | 94.45 32 | 98.89 20 | 84.87 67 | 97.20 113 | 96.20 124 | 87.73 88 | 88.40 131 | 98.12 43 | 78.71 87 | 99.76 31 | 87.99 136 | 96.28 97 | 98.74 35 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 23 | 94.30 28 | 95.02 20 | 98.86 21 | 85.68 44 | 98.06 55 | 96.64 76 | 93.64 12 | 91.74 84 | 98.54 20 | 80.17 69 | 99.90 5 | 92.28 84 | 98.75 28 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APDe-MVS |  | | 94.56 22 | 94.75 19 | 93.96 46 | 98.84 22 | 83.40 93 | 98.04 57 | 96.41 103 | 85.79 125 | 95.00 42 | 98.28 34 | 84.32 41 | 99.18 94 | 97.35 26 | 98.77 27 | 99.28 19 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DPE-MVS |  | | 95.32 10 | 95.55 11 | 94.64 29 | 98.79 23 | 84.87 67 | 97.77 72 | 96.74 61 | 86.11 117 | 96.54 23 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 18 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| APD-MVS |  | | 93.61 36 | 93.59 37 | 93.69 56 | 98.76 24 | 83.26 96 | 97.21 111 | 96.09 132 | 82.41 211 | 94.65 48 | 98.21 36 | 81.96 56 | 98.81 119 | 94.65 56 | 98.36 45 | 99.01 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 92.89 48 | 92.86 50 | 92.98 83 | 98.71 25 | 81.12 139 | 97.58 86 | 96.70 66 | 85.20 138 | 91.75 83 | 97.97 57 | 78.47 89 | 99.71 45 | 90.95 95 | 98.41 41 | 98.12 75 |
|
| region2R | | | 92.72 54 | 92.70 52 | 92.79 91 | 98.68 26 | 80.53 159 | 97.53 90 | 96.51 91 | 85.22 136 | 91.94 81 | 97.98 55 | 77.26 108 | 99.67 53 | 90.83 99 | 98.37 44 | 98.18 69 |
|
| test_prior | | | | | 93.09 79 | 98.68 26 | 81.91 119 | | 96.40 105 | | | | | 99.06 104 | | | 98.29 64 |
|
| ACMMPR | | | 92.69 56 | 92.67 53 | 92.75 92 | 98.66 28 | 80.57 155 | 97.58 86 | 96.69 68 | 85.20 138 | 91.57 85 | 97.92 58 | 77.01 113 | 99.67 53 | 90.95 95 | 98.41 41 | 98.00 84 |
|
| API-MVS | | | 90.18 110 | 88.97 122 | 93.80 50 | 98.66 28 | 82.95 101 | 97.50 94 | 95.63 162 | 75.16 312 | 86.31 151 | 97.69 70 | 72.49 188 | 99.90 5 | 81.26 195 | 96.07 102 | 98.56 47 |
|
| CDPH-MVS | | | 93.12 42 | 92.91 48 | 93.74 52 | 98.65 30 | 83.88 81 | 97.67 81 | 96.26 118 | 83.00 197 | 93.22 65 | 98.24 35 | 81.31 57 | 99.21 88 | 89.12 124 | 98.74 29 | 98.14 73 |
|
| TEST9 | | | | | | 98.64 31 | 83.71 85 | 97.82 68 | 96.65 73 | 84.29 165 | 95.16 35 | 98.09 45 | 84.39 37 | 99.36 81 | | | |
|
| train_agg | | | 94.28 25 | 94.45 24 | 93.74 52 | 98.64 31 | 83.71 85 | 97.82 68 | 96.65 73 | 84.50 156 | 95.16 35 | 98.09 45 | 84.33 38 | 99.36 81 | 95.91 41 | 98.96 19 | 98.16 71 |
|
| test_8 | | | | | | 98.63 33 | 83.64 88 | 97.81 70 | 96.63 78 | 84.50 156 | 95.10 39 | 98.11 44 | 84.33 38 | 99.23 86 | | | |
|
| HPM-MVS++ |  | | 95.32 10 | 95.48 13 | 94.85 24 | 98.62 34 | 86.04 36 | 97.81 70 | 96.93 41 | 92.45 20 | 95.69 31 | 98.50 24 | 85.38 31 | 99.85 10 | 94.75 54 | 99.18 7 | 98.65 43 |
|
| agg_prior | | | | | | 98.59 35 | 83.13 98 | | 96.56 87 | | 94.19 53 | | | 99.16 96 | | | |
|
| CSCG | | | 92.02 69 | 91.65 74 | 93.12 77 | 98.53 36 | 80.59 154 | 97.47 95 | 97.18 26 | 77.06 300 | 84.64 169 | 97.98 55 | 83.98 43 | 99.52 69 | 90.72 101 | 97.33 76 | 99.23 21 |
|
| XVS | | | 92.69 56 | 92.71 51 | 92.63 99 | 98.52 37 | 80.29 162 | 97.37 105 | 96.44 99 | 87.04 105 | 91.38 87 | 97.83 66 | 77.24 110 | 99.59 60 | 90.46 105 | 98.07 52 | 98.02 79 |
|
| X-MVStestdata | | | 86.26 186 | 84.14 205 | 92.63 99 | 98.52 37 | 80.29 162 | 97.37 105 | 96.44 99 | 87.04 105 | 91.38 87 | 20.73 400 | 77.24 110 | 99.59 60 | 90.46 105 | 98.07 52 | 98.02 79 |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 228 | 98.13 49 | 96.21 123 | 83.04 195 | 94.39 51 | | | | | | |
|
| CP-MVS | | | 92.54 61 | 92.60 55 | 92.34 109 | 98.50 40 | 79.90 173 | 98.40 38 | 96.40 105 | 84.75 147 | 90.48 104 | 98.09 45 | 77.40 107 | 99.21 88 | 91.15 94 | 98.23 50 | 97.92 90 |
|
| PAPM_NR | | | 91.46 81 | 90.82 85 | 93.37 70 | 98.50 40 | 81.81 125 | 95.03 244 | 96.13 129 | 84.65 152 | 86.10 154 | 97.65 76 | 79.24 78 | 99.75 36 | 83.20 183 | 96.88 86 | 98.56 47 |
|
| MAR-MVS | | | 90.63 101 | 90.22 99 | 91.86 134 | 98.47 42 | 78.20 224 | 97.18 115 | 96.61 79 | 83.87 177 | 88.18 135 | 98.18 38 | 68.71 217 | 99.75 36 | 83.66 177 | 97.15 80 | 97.63 113 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 111 | 98.44 43 | 77.84 236 | 98.43 36 | 97.21 23 | 92.58 19 | 97.68 10 | 97.65 76 | 86.88 26 | 99.83 16 | 98.25 9 | 97.60 67 | 99.33 17 |
|
| mPP-MVS | | | 91.88 71 | 91.82 70 | 92.07 125 | 98.38 44 | 78.63 208 | 97.29 108 | 96.09 132 | 85.12 140 | 88.45 130 | 97.66 72 | 75.53 142 | 99.68 51 | 89.83 115 | 98.02 55 | 97.88 91 |
|
| SR-MVS | | | 92.16 66 | 92.27 61 | 91.83 137 | 98.37 45 | 78.41 214 | 96.67 160 | 95.76 154 | 82.19 215 | 91.97 79 | 98.07 49 | 76.44 124 | 98.64 123 | 93.71 66 | 97.27 78 | 98.45 54 |
|
| test12 | | | | | 94.25 37 | 98.34 46 | 85.55 46 | | 96.35 112 | | 92.36 73 | | 80.84 59 | 99.22 87 | | 98.31 47 | 97.98 86 |
|
| CPTT-MVS | | | 89.72 118 | 89.87 111 | 89.29 206 | 98.33 47 | 73.30 298 | 97.70 78 | 95.35 180 | 75.68 308 | 87.40 140 | 97.44 88 | 70.43 210 | 98.25 143 | 89.56 120 | 96.90 84 | 96.33 172 |
|
| MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 88 | 98.31 48 | 80.10 170 | 97.42 102 | 96.78 50 | 92.20 22 | 97.11 14 | 98.29 33 | 93.46 1 | 99.10 101 | 96.01 38 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MSLP-MVS++ | | | 94.28 25 | 94.39 26 | 93.97 45 | 98.30 49 | 84.06 80 | 98.64 31 | 96.93 41 | 90.71 40 | 93.08 67 | 98.70 15 | 79.98 71 | 99.21 88 | 94.12 62 | 99.07 11 | 98.63 44 |
|
| PGM-MVS | | | 91.93 70 | 91.80 71 | 92.32 113 | 98.27 50 | 79.74 179 | 95.28 228 | 97.27 21 | 83.83 178 | 90.89 99 | 97.78 68 | 76.12 131 | 99.56 66 | 88.82 127 | 97.93 60 | 97.66 110 |
|
| ZNCC-MVS | | | 92.75 50 | 92.60 55 | 93.23 74 | 98.24 51 | 81.82 124 | 97.63 82 | 96.50 93 | 85.00 144 | 91.05 95 | 97.74 69 | 78.38 90 | 99.80 25 | 90.48 104 | 98.34 46 | 98.07 77 |
|
| save fliter | | | | | | 98.24 51 | 83.34 94 | 98.61 33 | 96.57 85 | 91.32 32 | | | | | | | |
|
| 114514_t | | | 88.79 139 | 87.57 149 | 92.45 104 | 98.21 53 | 81.74 127 | 96.99 133 | 95.45 172 | 75.16 312 | 82.48 191 | 95.69 139 | 68.59 218 | 98.50 130 | 80.33 201 | 95.18 114 | 97.10 143 |
|
| GST-MVS | | | 92.43 63 | 92.22 64 | 93.04 81 | 98.17 54 | 81.64 131 | 97.40 104 | 96.38 108 | 84.71 150 | 90.90 98 | 97.40 90 | 77.55 105 | 99.76 31 | 89.75 117 | 97.74 63 | 97.72 105 |
|
| DP-MVS | | | 81.47 265 | 78.28 282 | 91.04 160 | 98.14 55 | 78.48 210 | 95.09 243 | 86.97 361 | 61.14 372 | 71.12 314 | 92.78 209 | 59.59 272 | 99.38 78 | 53.11 363 | 86.61 196 | 95.27 197 |
|
| MP-MVS |  | | 92.61 59 | 92.67 53 | 92.42 107 | 98.13 56 | 79.73 180 | 97.33 107 | 96.20 124 | 85.63 127 | 90.53 102 | 97.66 72 | 78.14 95 | 99.70 48 | 92.12 86 | 98.30 48 | 97.85 95 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| 9.14 | | | | 94.26 29 | | 98.10 57 | | 98.14 46 | 96.52 90 | 84.74 148 | 94.83 46 | 98.80 7 | 82.80 52 | 99.37 80 | 95.95 40 | 98.42 40 | |
|
| PHI-MVS | | | 93.59 37 | 93.63 36 | 93.48 67 | 98.05 58 | 81.76 126 | 98.64 31 | 97.13 27 | 82.60 207 | 94.09 55 | 98.49 25 | 80.35 64 | 99.85 10 | 94.74 55 | 98.62 32 | 98.83 32 |
|
| SMA-MVS |  | | 94.70 20 | 94.68 20 | 94.76 26 | 98.02 59 | 85.94 39 | 97.47 95 | 96.77 56 | 85.32 133 | 97.92 3 | 98.70 15 | 83.09 49 | 99.84 12 | 95.79 42 | 99.08 10 | 98.49 51 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PLC |  | 83.97 7 | 88.00 159 | 87.38 155 | 89.83 198 | 98.02 59 | 76.46 262 | 97.16 119 | 94.43 229 | 79.26 271 | 81.98 202 | 96.28 126 | 69.36 215 | 99.27 84 | 77.71 227 | 92.25 153 | 93.77 225 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MTAPA | | | 92.45 62 | 92.31 60 | 92.86 88 | 97.90 61 | 80.85 148 | 92.88 295 | 96.33 113 | 87.92 83 | 90.20 107 | 98.18 38 | 76.71 121 | 99.76 31 | 92.57 83 | 98.09 51 | 97.96 89 |
|
| APD-MVS_3200maxsize | | | 91.23 88 | 91.35 78 | 90.89 166 | 97.89 62 | 76.35 265 | 96.30 183 | 95.52 167 | 79.82 258 | 91.03 96 | 97.88 63 | 74.70 161 | 98.54 128 | 92.11 87 | 96.89 85 | 97.77 102 |
|
| HPM-MVS |  | | 91.62 78 | 91.53 76 | 91.89 133 | 97.88 63 | 79.22 192 | 96.99 133 | 95.73 157 | 82.07 217 | 89.50 118 | 97.19 99 | 75.59 140 | 98.93 114 | 90.91 97 | 97.94 58 | 97.54 117 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SD-MVS | | | 94.84 17 | 95.02 18 | 94.29 36 | 97.87 64 | 84.61 70 | 97.76 74 | 96.19 126 | 89.59 56 | 96.66 19 | 98.17 41 | 84.33 38 | 99.60 59 | 96.09 37 | 98.50 36 | 98.66 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| dcpmvs_2 | | | 93.10 43 | 93.46 41 | 92.02 129 | 97.77 65 | 79.73 180 | 94.82 248 | 93.86 261 | 86.91 107 | 91.33 90 | 96.76 117 | 85.20 32 | 98.06 148 | 96.90 32 | 97.60 67 | 98.27 66 |
|
| 原ACMM1 | | | | | 91.22 156 | 97.77 65 | 78.10 226 | | 96.61 79 | 81.05 229 | 91.28 92 | 97.42 89 | 77.92 99 | 98.98 108 | 79.85 209 | 98.51 34 | 96.59 163 |
|
| SR-MVS-dyc-post | | | 91.29 86 | 91.45 77 | 90.80 168 | 97.76 67 | 76.03 270 | 96.20 190 | 95.44 173 | 80.56 240 | 90.72 100 | 97.84 64 | 75.76 137 | 98.61 124 | 91.99 88 | 96.79 89 | 97.75 103 |
|
| RE-MVS-def | | | | 91.18 82 | | 97.76 67 | 76.03 270 | 96.20 190 | 95.44 173 | 80.56 240 | 90.72 100 | 97.84 64 | 73.36 181 | | 91.99 88 | 96.79 89 | 97.75 103 |
|
| TSAR-MVS + MP. | | | 94.79 19 | 95.17 17 | 93.64 57 | 97.66 69 | 84.10 79 | 95.85 208 | 96.42 102 | 91.26 33 | 97.49 12 | 96.80 116 | 86.50 28 | 98.49 131 | 95.54 47 | 99.03 13 | 98.33 59 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| HPM-MVS_fast | | | 90.38 108 | 90.17 102 | 91.03 161 | 97.61 70 | 77.35 248 | 97.15 121 | 95.48 169 | 79.51 264 | 88.79 125 | 96.90 109 | 71.64 199 | 98.81 119 | 87.01 147 | 97.44 72 | 96.94 148 |
|
| EI-MVSNet-Vis-set | | | 91.84 72 | 91.77 72 | 92.04 128 | 97.60 71 | 81.17 138 | 96.61 161 | 96.87 44 | 88.20 77 | 89.19 119 | 97.55 84 | 78.69 88 | 99.14 97 | 90.29 111 | 90.94 163 | 95.80 182 |
|
| CNLPA | | | 86.96 173 | 85.37 182 | 91.72 140 | 97.59 72 | 79.34 190 | 97.21 111 | 91.05 329 | 74.22 318 | 78.90 234 | 96.75 119 | 67.21 226 | 98.95 111 | 74.68 260 | 90.77 164 | 96.88 153 |
|
| ACMMP |  | | 90.39 106 | 89.97 106 | 91.64 142 | 97.58 73 | 78.21 223 | 96.78 152 | 96.72 64 | 84.73 149 | 84.72 167 | 97.23 97 | 71.22 202 | 99.63 57 | 88.37 134 | 92.41 151 | 97.08 144 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SF-MVS | | | 94.17 28 | 94.05 32 | 94.55 31 | 97.56 74 | 85.95 37 | 97.73 76 | 96.43 101 | 84.02 170 | 95.07 41 | 98.74 14 | 82.93 50 | 99.38 78 | 95.42 49 | 98.51 34 | 98.32 60 |
|
| CANet | | | 94.89 15 | 94.64 21 | 95.63 13 | 97.55 75 | 88.12 16 | 99.06 16 | 96.39 107 | 94.07 10 | 95.34 34 | 97.80 67 | 76.83 118 | 99.87 8 | 97.08 30 | 97.64 66 | 98.89 30 |
|
| PVSNet_BlendedMVS | | | 90.05 112 | 89.96 107 | 90.33 182 | 97.47 76 | 83.86 82 | 98.02 58 | 96.73 62 | 87.98 81 | 89.53 116 | 89.61 256 | 76.42 125 | 99.57 64 | 94.29 59 | 79.59 253 | 87.57 320 |
|
| PVSNet_Blended | | | 93.13 41 | 92.98 47 | 93.57 61 | 97.47 76 | 83.86 82 | 99.32 1 | 96.73 62 | 91.02 38 | 89.53 116 | 96.21 127 | 76.42 125 | 99.57 64 | 94.29 59 | 95.81 109 | 97.29 135 |
|
| 新几何1 | | | | | 93.12 77 | 97.44 78 | 81.60 133 | | 96.71 65 | 74.54 317 | 91.22 93 | 97.57 80 | 79.13 80 | 99.51 71 | 77.40 234 | 98.46 38 | 98.26 67 |
|
| LS3D | | | 82.22 255 | 79.94 270 | 89.06 209 | 97.43 79 | 74.06 294 | 93.20 290 | 92.05 312 | 61.90 366 | 73.33 297 | 95.21 153 | 59.35 275 | 99.21 88 | 54.54 359 | 92.48 150 | 93.90 223 |
|
| test_yl | | | 91.46 81 | 90.53 91 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 52 | 97.72 12 | 80.94 230 | 89.85 108 | 96.14 128 | 75.61 138 | 98.81 119 | 90.42 109 | 88.56 180 | 98.74 35 |
|
| DCV-MVSNet | | | 91.46 81 | 90.53 91 | 94.24 38 | 97.41 80 | 85.18 54 | 98.08 52 | 97.72 12 | 80.94 230 | 89.85 108 | 96.14 128 | 75.61 138 | 98.81 119 | 90.42 109 | 88.56 180 | 98.74 35 |
|
| EI-MVSNet-UG-set | | | 91.35 85 | 91.22 79 | 91.73 139 | 97.39 82 | 80.68 152 | 96.47 170 | 96.83 47 | 87.92 83 | 88.30 134 | 97.36 91 | 77.84 100 | 99.13 99 | 89.43 122 | 89.45 170 | 95.37 193 |
|
| 旧先验1 | | | | | | 97.39 82 | 79.58 184 | | 96.54 88 | | | 98.08 48 | 84.00 42 | | | 97.42 74 | 97.62 114 |
|
| TSAR-MVS + GP. | | | 94.35 24 | 94.50 22 | 93.89 47 | 97.38 84 | 83.04 100 | 98.10 51 | 95.29 183 | 91.57 30 | 93.81 57 | 97.45 85 | 86.64 27 | 99.43 76 | 96.28 36 | 94.01 128 | 99.20 22 |
|
| MVS_111021_HR | | | 93.41 39 | 93.39 42 | 93.47 69 | 97.34 85 | 82.83 102 | 97.56 88 | 98.27 6 | 89.16 61 | 89.71 111 | 97.14 100 | 79.77 73 | 99.56 66 | 93.65 67 | 97.94 58 | 98.02 79 |
|
| MP-MVS-pluss | | | 92.58 60 | 92.35 59 | 93.29 71 | 97.30 86 | 82.53 106 | 96.44 173 | 96.04 137 | 84.68 151 | 89.12 121 | 98.37 29 | 77.48 106 | 99.74 38 | 93.31 73 | 98.38 43 | 97.59 116 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| EPNet | | | 94.06 31 | 94.15 30 | 93.76 51 | 97.27 87 | 84.35 74 | 98.29 41 | 97.64 15 | 94.57 6 | 95.36 33 | 96.88 111 | 79.96 72 | 99.12 100 | 91.30 92 | 96.11 101 | 97.82 99 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ACMMP_NAP | | | 93.46 38 | 93.23 44 | 94.17 41 | 97.16 88 | 84.28 77 | 96.82 149 | 96.65 73 | 86.24 115 | 94.27 52 | 97.99 52 | 77.94 97 | 99.83 16 | 93.39 69 | 98.57 33 | 98.39 57 |
|
| LFMVS | | | 89.27 127 | 87.64 145 | 94.16 43 | 97.16 88 | 85.52 47 | 97.18 115 | 94.66 213 | 79.17 272 | 89.63 114 | 96.57 122 | 55.35 311 | 98.22 144 | 89.52 121 | 89.54 169 | 98.74 35 |
|
| DeepPCF-MVS | | 89.82 1 | 94.61 21 | 96.17 5 | 89.91 195 | 97.09 90 | 70.21 328 | 98.99 22 | 96.69 68 | 95.57 2 | 95.08 40 | 99.23 1 | 86.40 30 | 99.87 8 | 97.84 20 | 98.66 31 | 99.65 6 |
|
| VNet | | | 92.11 68 | 91.22 79 | 94.79 25 | 96.91 91 | 86.98 27 | 97.91 63 | 97.96 10 | 86.38 114 | 93.65 59 | 95.74 136 | 70.16 213 | 98.95 111 | 93.39 69 | 88.87 176 | 98.43 55 |
|
| TAPA-MVS | | 81.61 12 | 85.02 206 | 83.67 209 | 89.06 209 | 96.79 92 | 73.27 301 | 95.92 202 | 94.79 206 | 74.81 315 | 80.47 218 | 96.83 113 | 71.07 204 | 98.19 146 | 49.82 372 | 92.57 147 | 95.71 185 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| Anonymous202405211 | | | 84.41 217 | 81.93 239 | 91.85 136 | 96.78 93 | 78.41 214 | 97.44 98 | 91.34 324 | 70.29 345 | 84.06 172 | 94.26 179 | 41.09 363 | 98.96 109 | 79.46 211 | 82.65 233 | 98.17 70 |
|
| CS-MVS-test | | | 92.98 45 | 93.67 35 | 90.90 165 | 96.52 94 | 76.87 255 | 98.68 28 | 94.73 208 | 90.36 48 | 94.84 45 | 97.89 62 | 77.94 97 | 97.15 200 | 94.28 61 | 97.80 62 | 98.70 41 |
|
| DELS-MVS | | | 94.98 13 | 94.49 23 | 96.44 6 | 96.42 95 | 90.59 7 | 99.21 4 | 97.02 33 | 94.40 8 | 91.46 86 | 97.08 104 | 83.32 47 | 99.69 49 | 92.83 79 | 98.70 30 | 99.04 25 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| thres200 | | | 88.92 133 | 87.65 144 | 92.73 94 | 96.30 96 | 85.62 45 | 97.85 66 | 98.86 1 | 84.38 160 | 84.82 165 | 93.99 187 | 75.12 156 | 98.01 149 | 70.86 290 | 86.67 195 | 94.56 213 |
|
| CS-MVS | | | 92.73 52 | 93.48 40 | 90.48 177 | 96.27 97 | 75.93 275 | 98.55 34 | 94.93 195 | 89.32 58 | 94.54 50 | 97.67 71 | 78.91 83 | 97.02 204 | 93.80 64 | 97.32 77 | 98.49 51 |
|
| DPM-MVS | | | 96.21 2 | 95.53 12 | 98.26 1 | 96.26 98 | 95.09 1 | 99.15 7 | 96.98 35 | 93.39 14 | 96.45 24 | 98.79 8 | 90.17 10 | 99.99 1 | 89.33 123 | 99.25 6 | 99.70 3 |
|
| tfpn200view9 | | | 88.48 146 | 87.15 159 | 92.47 103 | 96.21 99 | 85.30 52 | 97.44 98 | 98.85 2 | 83.37 187 | 83.99 174 | 93.82 190 | 75.36 149 | 97.93 151 | 69.04 298 | 86.24 202 | 94.17 215 |
|
| thres400 | | | 88.42 149 | 87.15 159 | 92.23 117 | 96.21 99 | 85.30 52 | 97.44 98 | 98.85 2 | 83.37 187 | 83.99 174 | 93.82 190 | 75.36 149 | 97.93 151 | 69.04 298 | 86.24 202 | 93.45 231 |
|
| test222 | | | | | | 96.15 101 | 78.41 214 | 95.87 206 | 96.46 97 | 71.97 337 | 89.66 113 | 97.45 85 | 76.33 128 | | | 98.24 49 | 98.30 63 |
|
| HY-MVS | | 84.06 6 | 91.63 77 | 90.37 97 | 95.39 17 | 96.12 102 | 88.25 15 | 90.22 322 | 97.58 16 | 88.33 75 | 90.50 103 | 91.96 219 | 79.26 77 | 99.06 104 | 90.29 111 | 89.07 173 | 98.88 31 |
|
| thres100view900 | | | 88.30 152 | 86.95 165 | 92.33 111 | 96.10 103 | 84.90 66 | 97.14 122 | 98.85 2 | 82.69 205 | 83.41 182 | 93.66 194 | 75.43 146 | 97.93 151 | 69.04 298 | 86.24 202 | 94.17 215 |
|
| thres600view7 | | | 88.06 157 | 86.70 169 | 92.15 123 | 96.10 103 | 85.17 58 | 97.14 122 | 98.85 2 | 82.70 204 | 83.41 182 | 93.66 194 | 75.43 146 | 97.82 158 | 67.13 307 | 85.88 206 | 93.45 231 |
|
| WTY-MVS | | | 92.65 58 | 91.68 73 | 95.56 14 | 96.00 105 | 88.90 13 | 98.23 43 | 97.65 14 | 88.57 69 | 89.82 110 | 97.22 98 | 79.29 76 | 99.06 104 | 89.57 119 | 88.73 178 | 98.73 39 |
|
| MVSTER | | | 89.25 128 | 88.92 125 | 90.24 184 | 95.98 106 | 84.66 69 | 96.79 151 | 95.36 178 | 87.19 103 | 80.33 221 | 90.61 242 | 90.02 12 | 95.97 248 | 85.38 157 | 78.64 262 | 90.09 261 |
|
| testdata | | | | | 90.13 187 | 95.92 107 | 74.17 292 | | 96.49 96 | 73.49 326 | 94.82 47 | 97.99 52 | 78.80 86 | 97.93 151 | 83.53 180 | 97.52 69 | 98.29 64 |
|
| PatchMatch-RL | | | 85.00 207 | 83.66 210 | 89.02 211 | 95.86 108 | 74.55 289 | 92.49 299 | 93.60 277 | 79.30 269 | 79.29 233 | 91.47 225 | 58.53 282 | 98.45 135 | 70.22 294 | 92.17 155 | 94.07 220 |
|
| iter_conf05 | | | 90.14 111 | 89.79 112 | 91.17 157 | 95.85 109 | 86.93 28 | 97.68 80 | 88.67 355 | 89.93 52 | 81.73 208 | 92.80 206 | 90.37 8 | 96.03 243 | 90.44 107 | 80.65 246 | 90.56 249 |
|
| testing222 | | | 91.09 91 | 90.49 93 | 92.87 87 | 95.82 110 | 85.04 61 | 96.51 168 | 97.28 20 | 86.05 120 | 89.13 120 | 95.34 149 | 80.16 70 | 96.62 226 | 85.82 152 | 88.31 183 | 96.96 147 |
|
| canonicalmvs | | | 92.27 65 | 91.22 79 | 95.41 16 | 95.80 111 | 88.31 14 | 97.09 129 | 94.64 216 | 88.49 71 | 92.99 69 | 97.31 92 | 72.68 186 | 98.57 127 | 93.38 71 | 88.58 179 | 99.36 16 |
|
| Anonymous20240529 | | | 83.15 238 | 80.60 259 | 90.80 168 | 95.74 112 | 78.27 218 | 96.81 150 | 94.92 196 | 60.10 376 | 81.89 204 | 92.54 210 | 45.82 347 | 98.82 118 | 79.25 214 | 78.32 269 | 95.31 195 |
|
| MVS_111021_LR | | | 91.60 79 | 91.64 75 | 91.47 148 | 95.74 112 | 78.79 205 | 96.15 192 | 96.77 56 | 88.49 71 | 88.64 128 | 97.07 105 | 72.33 190 | 99.19 93 | 93.13 77 | 96.48 96 | 96.43 167 |
|
| PS-MVSNAJ | | | 94.17 28 | 93.52 39 | 96.10 9 | 95.65 114 | 92.35 2 | 98.21 44 | 95.79 153 | 92.42 21 | 96.24 26 | 98.18 38 | 71.04 205 | 99.17 95 | 96.77 33 | 97.39 75 | 96.79 155 |
|
| iter_conf_final | | | 89.51 121 | 89.21 118 | 90.39 179 | 95.60 115 | 84.44 73 | 97.22 109 | 89.09 348 | 89.11 62 | 82.07 201 | 92.80 206 | 87.03 25 | 96.03 243 | 89.10 125 | 80.89 242 | 90.70 247 |
|
| Anonymous20231211 | | | 79.72 283 | 77.19 291 | 87.33 251 | 95.59 116 | 77.16 253 | 95.18 237 | 94.18 244 | 59.31 379 | 72.57 305 | 86.20 308 | 47.89 341 | 95.66 268 | 74.53 264 | 69.24 319 | 89.18 279 |
|
| alignmvs | | | 92.97 46 | 92.26 62 | 95.12 19 | 95.54 117 | 87.77 20 | 98.67 29 | 96.38 108 | 88.04 80 | 93.01 68 | 97.45 85 | 79.20 79 | 98.60 125 | 93.25 74 | 88.76 177 | 98.99 29 |
|
| PVSNet | | 82.34 9 | 89.02 130 | 87.79 142 | 92.71 95 | 95.49 118 | 81.50 134 | 97.70 78 | 97.29 19 | 87.76 87 | 85.47 158 | 95.12 160 | 56.90 300 | 98.90 115 | 80.33 201 | 94.02 127 | 97.71 107 |
|
| tpmvs | | | 83.04 241 | 80.77 254 | 89.84 197 | 95.43 119 | 77.96 230 | 85.59 356 | 95.32 182 | 75.31 311 | 76.27 266 | 83.70 337 | 73.89 173 | 97.41 182 | 59.53 339 | 81.93 240 | 94.14 217 |
|
| SteuartSystems-ACMMP | | | 94.13 30 | 94.44 25 | 93.20 75 | 95.41 120 | 81.35 136 | 99.02 20 | 96.59 83 | 89.50 57 | 94.18 54 | 98.36 30 | 83.68 46 | 99.45 75 | 94.77 53 | 98.45 39 | 98.81 33 |
| Skip Steuart: Steuart Systems R&D Blog. |
| EPMVS | | | 87.47 169 | 85.90 175 | 92.18 120 | 95.41 120 | 82.26 113 | 87.00 346 | 96.28 116 | 85.88 124 | 84.23 171 | 85.57 315 | 75.07 157 | 96.26 236 | 71.14 288 | 92.50 149 | 98.03 78 |
|
| BH-RMVSNet | | | 86.84 176 | 85.28 183 | 91.49 147 | 95.35 122 | 80.26 165 | 96.95 140 | 92.21 310 | 82.86 201 | 81.77 207 | 95.46 147 | 59.34 276 | 97.64 164 | 69.79 296 | 93.81 132 | 96.57 164 |
|
| OMC-MVS | | | 88.80 138 | 88.16 136 | 90.72 171 | 95.30 123 | 77.92 233 | 94.81 249 | 94.51 223 | 86.80 110 | 84.97 163 | 96.85 112 | 67.53 222 | 98.60 125 | 85.08 158 | 87.62 188 | 95.63 186 |
|
| test_fmvsm_n_1920 | | | 94.81 18 | 95.60 10 | 92.45 104 | 95.29 124 | 80.96 145 | 99.29 2 | 97.21 23 | 94.50 7 | 97.29 13 | 98.44 27 | 82.15 54 | 99.78 28 | 98.56 7 | 97.68 65 | 96.61 162 |
|
| MVS_Test | | | 90.29 109 | 89.18 119 | 93.62 59 | 95.23 125 | 84.93 65 | 94.41 255 | 94.66 213 | 84.31 161 | 90.37 106 | 91.02 234 | 75.13 155 | 97.82 158 | 83.11 185 | 94.42 123 | 98.12 75 |
|
| F-COLMAP | | | 84.50 216 | 83.44 217 | 87.67 240 | 95.22 126 | 72.22 307 | 95.95 200 | 93.78 268 | 75.74 307 | 76.30 265 | 95.18 156 | 59.50 274 | 98.45 135 | 72.67 276 | 86.59 197 | 92.35 239 |
|
| baseline1 | | | 88.85 136 | 87.49 151 | 92.93 86 | 95.21 127 | 86.85 29 | 95.47 222 | 94.61 218 | 87.29 98 | 83.11 187 | 94.99 165 | 80.70 62 | 96.89 212 | 82.28 189 | 73.72 287 | 95.05 200 |
|
| CHOSEN 1792x2688 | | | 91.07 93 | 90.21 100 | 93.64 57 | 95.18 128 | 83.53 90 | 96.26 185 | 96.13 129 | 88.92 63 | 84.90 164 | 93.10 203 | 72.86 184 | 99.62 58 | 88.86 126 | 95.67 110 | 97.79 101 |
|
| UGNet | | | 87.73 164 | 86.55 170 | 91.27 153 | 95.16 129 | 79.11 196 | 96.35 180 | 96.23 121 | 88.14 78 | 87.83 138 | 90.48 243 | 50.65 328 | 99.09 102 | 80.13 206 | 94.03 126 | 95.60 187 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDD-MVS | | | 88.28 153 | 87.02 164 | 92.06 126 | 95.09 130 | 80.18 168 | 97.55 89 | 94.45 228 | 83.09 193 | 89.10 122 | 95.92 134 | 47.97 339 | 98.49 131 | 93.08 78 | 86.91 194 | 97.52 122 |
|
| PVSNet_Blended_VisFu | | | 91.24 87 | 90.77 86 | 92.66 96 | 95.09 130 | 82.40 110 | 97.77 72 | 95.87 150 | 88.26 76 | 86.39 150 | 93.94 188 | 76.77 119 | 99.27 84 | 88.80 128 | 94.00 129 | 96.31 173 |
|
| h-mvs33 | | | 89.30 126 | 88.95 124 | 90.36 181 | 95.07 132 | 76.04 269 | 96.96 139 | 97.11 30 | 90.39 46 | 92.22 76 | 95.10 161 | 74.70 161 | 98.86 116 | 93.14 75 | 65.89 345 | 96.16 175 |
|
| xiu_mvs_v2_base | | | 93.92 33 | 93.26 43 | 95.91 10 | 95.07 132 | 92.02 6 | 98.19 45 | 95.68 159 | 92.06 25 | 96.01 30 | 98.14 42 | 70.83 208 | 98.96 109 | 96.74 35 | 96.57 94 | 96.76 158 |
|
| cl22 | | | 85.11 205 | 84.17 203 | 87.92 235 | 95.06 134 | 78.82 202 | 95.51 220 | 94.22 241 | 79.74 260 | 76.77 255 | 87.92 278 | 75.96 133 | 95.68 267 | 79.93 208 | 72.42 294 | 89.27 277 |
|
| BH-w/o | | | 88.24 154 | 87.47 153 | 90.54 176 | 95.03 135 | 78.54 209 | 97.41 103 | 93.82 263 | 84.08 168 | 78.23 241 | 94.51 175 | 69.34 216 | 97.21 194 | 80.21 205 | 94.58 121 | 95.87 181 |
|
| CHOSEN 280x420 | | | 91.71 76 | 91.85 69 | 91.29 152 | 94.94 136 | 82.69 103 | 87.89 339 | 96.17 127 | 85.94 122 | 87.27 143 | 94.31 177 | 90.27 9 | 95.65 270 | 94.04 63 | 95.86 107 | 95.53 189 |
|
| GG-mvs-BLEND | | | | | 93.49 66 | 94.94 136 | 86.26 33 | 81.62 369 | 97.00 34 | | 88.32 133 | 94.30 178 | 91.23 5 | 96.21 239 | 88.49 131 | 97.43 73 | 98.00 84 |
|
| HyFIR lowres test | | | 89.36 124 | 88.60 128 | 91.63 144 | 94.91 138 | 80.76 151 | 95.60 218 | 95.53 165 | 82.56 208 | 84.03 173 | 91.24 231 | 78.03 96 | 96.81 218 | 87.07 146 | 88.41 182 | 97.32 132 |
|
| MVS_0304 | | | 95.36 9 | 95.20 16 | 95.85 11 | 94.89 139 | 89.22 12 | 98.83 25 | 97.88 11 | 94.68 4 | 95.14 38 | 97.99 52 | 80.80 60 | 99.81 21 | 98.60 6 | 97.95 57 | 98.50 50 |
|
| miper_enhance_ethall | | | 85.95 191 | 85.20 184 | 88.19 231 | 94.85 140 | 79.76 176 | 96.00 197 | 94.06 251 | 82.98 198 | 77.74 245 | 88.76 264 | 79.42 74 | 95.46 280 | 80.58 199 | 72.42 294 | 89.36 275 |
|
| mvs_anonymous | | | 88.68 140 | 87.62 147 | 91.86 134 | 94.80 141 | 81.69 130 | 93.53 280 | 94.92 196 | 82.03 218 | 78.87 236 | 90.43 245 | 75.77 136 | 95.34 284 | 85.04 159 | 93.16 142 | 98.55 49 |
|
| CANet_DTU | | | 90.98 94 | 90.04 104 | 93.83 49 | 94.76 142 | 86.23 34 | 96.32 182 | 93.12 298 | 93.11 16 | 93.71 58 | 96.82 115 | 63.08 251 | 99.48 73 | 84.29 164 | 95.12 115 | 95.77 183 |
|
| PMMVS | | | 89.46 123 | 89.92 109 | 88.06 232 | 94.64 143 | 69.57 334 | 96.22 187 | 94.95 194 | 87.27 99 | 91.37 89 | 96.54 123 | 65.88 233 | 97.39 184 | 88.54 129 | 93.89 130 | 97.23 136 |
|
| TR-MVS | | | 86.30 185 | 84.93 192 | 90.42 178 | 94.63 144 | 77.58 243 | 96.57 163 | 93.82 263 | 80.30 248 | 82.42 193 | 95.16 157 | 58.74 280 | 97.55 171 | 74.88 258 | 87.82 187 | 96.13 177 |
|
| EPNet_dtu | | | 87.65 166 | 87.89 139 | 86.93 261 | 94.57 145 | 71.37 322 | 96.72 155 | 96.50 93 | 88.56 70 | 87.12 146 | 95.02 163 | 75.91 135 | 94.01 323 | 66.62 310 | 90.00 166 | 95.42 192 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_s_conf0.5_n | | | 93.69 35 | 94.13 31 | 92.34 109 | 94.56 146 | 82.01 114 | 99.07 15 | 97.13 27 | 92.09 23 | 96.25 25 | 98.53 22 | 76.47 123 | 99.80 25 | 98.39 8 | 94.71 119 | 95.22 198 |
|
| FMVSNet3 | | | 84.71 210 | 82.71 228 | 90.70 172 | 94.55 147 | 87.71 21 | 95.92 202 | 94.67 212 | 81.73 222 | 75.82 275 | 88.08 276 | 66.99 227 | 94.47 315 | 71.23 285 | 75.38 280 | 89.91 265 |
|
| ETV-MVS | | | 92.72 54 | 92.87 49 | 92.28 115 | 94.54 148 | 81.89 120 | 97.98 59 | 95.21 186 | 89.77 55 | 93.11 66 | 96.83 113 | 77.23 112 | 97.50 177 | 95.74 43 | 95.38 113 | 97.44 126 |
|
| EIA-MVS | | | 91.73 73 | 92.05 68 | 90.78 170 | 94.52 149 | 76.40 264 | 98.06 55 | 95.34 181 | 89.19 60 | 88.90 124 | 97.28 96 | 77.56 104 | 97.73 161 | 90.77 100 | 96.86 88 | 98.20 68 |
|
| BH-untuned | | | 86.95 174 | 85.94 174 | 89.99 190 | 94.52 149 | 77.46 245 | 96.78 152 | 93.37 288 | 81.80 220 | 76.62 258 | 93.81 192 | 66.64 230 | 97.02 204 | 76.06 247 | 93.88 131 | 95.48 191 |
|
| DeepC-MVS | | 86.58 3 | 91.53 80 | 91.06 83 | 92.94 85 | 94.52 149 | 81.89 120 | 95.95 200 | 95.98 141 | 90.76 39 | 83.76 180 | 96.76 117 | 73.24 182 | 99.71 45 | 91.67 91 | 96.96 83 | 97.22 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| gg-mvs-nofinetune | | | 85.48 200 | 82.90 224 | 93.24 73 | 94.51 152 | 85.82 41 | 79.22 373 | 96.97 37 | 61.19 371 | 87.33 142 | 53.01 389 | 90.58 6 | 96.07 242 | 86.07 151 | 97.23 79 | 97.81 100 |
|
| fmvsm_l_conf0.5_n_a | | | 94.91 14 | 95.30 14 | 93.72 55 | 94.50 153 | 84.30 76 | 99.14 9 | 96.00 139 | 91.94 28 | 97.91 5 | 98.60 18 | 84.78 35 | 99.77 29 | 98.84 4 | 96.03 104 | 97.08 144 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 120 | 87.85 140 | 94.99 21 | 94.49 154 | 86.76 31 | 97.84 67 | 95.74 156 | 86.10 118 | 75.47 280 | 96.02 131 | 65.00 241 | 99.51 71 | 82.91 187 | 97.07 82 | 98.72 40 |
|
| fmvsm_l_conf0.5_n | | | 94.89 15 | 95.24 15 | 93.86 48 | 94.42 155 | 84.61 70 | 99.13 10 | 96.15 128 | 92.06 25 | 97.92 3 | 98.52 23 | 84.52 36 | 99.74 38 | 98.76 5 | 95.67 110 | 97.22 137 |
|
| ET-MVSNet_ETH3D | | | 90.01 113 | 89.03 120 | 92.95 84 | 94.38 156 | 86.77 30 | 98.14 46 | 96.31 115 | 89.30 59 | 63.33 351 | 96.72 120 | 90.09 11 | 93.63 330 | 90.70 102 | 82.29 237 | 98.46 53 |
|
| tpmrst | | | 88.36 150 | 87.38 155 | 91.31 150 | 94.36 157 | 79.92 172 | 87.32 343 | 95.26 185 | 85.32 133 | 88.34 132 | 86.13 309 | 80.60 63 | 96.70 222 | 83.78 171 | 85.34 213 | 97.30 134 |
|
| FE-MVS | | | 86.06 189 | 84.15 204 | 91.78 138 | 94.33 158 | 79.81 174 | 84.58 361 | 96.61 79 | 76.69 302 | 85.00 162 | 87.38 284 | 70.71 209 | 98.37 139 | 70.39 293 | 91.70 159 | 97.17 141 |
|
| MVS | | | 90.60 102 | 88.64 127 | 96.50 5 | 94.25 159 | 90.53 8 | 93.33 284 | 97.21 23 | 77.59 291 | 78.88 235 | 97.31 92 | 71.52 200 | 99.69 49 | 89.60 118 | 98.03 54 | 99.27 20 |
|
| dp | | | 84.30 219 | 82.31 233 | 90.28 183 | 94.24 160 | 77.97 229 | 86.57 349 | 95.53 165 | 79.94 257 | 80.75 215 | 85.16 323 | 71.49 201 | 96.39 232 | 63.73 325 | 83.36 223 | 96.48 166 |
|
| FA-MVS(test-final) | | | 87.71 165 | 86.23 172 | 92.17 121 | 94.19 161 | 80.55 156 | 87.16 345 | 96.07 135 | 82.12 216 | 85.98 155 | 88.35 271 | 72.04 195 | 98.49 131 | 80.26 203 | 89.87 167 | 97.48 125 |
|
| sss | | | 90.87 98 | 89.96 107 | 93.60 60 | 94.15 162 | 83.84 84 | 97.14 122 | 98.13 7 | 85.93 123 | 89.68 112 | 96.09 130 | 71.67 197 | 99.30 83 | 87.69 139 | 89.16 172 | 97.66 110 |
|
| SDMVSNet | | | 87.02 172 | 85.61 177 | 91.24 154 | 94.14 163 | 83.30 95 | 93.88 272 | 95.98 141 | 84.30 163 | 79.63 229 | 92.01 215 | 58.23 284 | 97.68 162 | 90.28 113 | 82.02 238 | 92.75 234 |
|
| sd_testset | | | 84.62 212 | 83.11 221 | 89.17 207 | 94.14 163 | 77.78 238 | 91.54 313 | 94.38 232 | 84.30 163 | 79.63 229 | 92.01 215 | 52.28 323 | 96.98 206 | 77.67 228 | 82.02 238 | 92.75 234 |
|
| PatchmatchNet |  | | 86.83 177 | 85.12 188 | 91.95 131 | 94.12 165 | 82.27 112 | 86.55 350 | 95.64 161 | 84.59 154 | 82.98 189 | 84.99 327 | 77.26 108 | 95.96 251 | 68.61 301 | 91.34 161 | 97.64 112 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | | 83.69 208 | | 94.09 166 | 81.01 142 | 86.78 348 | 96.09 132 | 83.81 179 | 84.75 166 | 84.32 332 | 74.44 167 | 96.54 227 | 63.88 324 | 85.07 214 | |
|
| UA-Net | | | 88.92 133 | 88.48 131 | 90.24 184 | 94.06 167 | 77.18 252 | 93.04 292 | 94.66 213 | 87.39 96 | 91.09 94 | 93.89 189 | 74.92 158 | 98.18 147 | 75.83 250 | 91.43 160 | 95.35 194 |
|
| Fast-Effi-MVS+ | | | 87.93 161 | 86.94 166 | 90.92 164 | 94.04 168 | 79.16 194 | 98.26 42 | 93.72 272 | 81.29 226 | 83.94 177 | 92.90 204 | 69.83 214 | 96.68 223 | 76.70 240 | 91.74 158 | 96.93 149 |
|
| QAPM | | | 86.88 175 | 84.51 196 | 93.98 44 | 94.04 168 | 85.89 40 | 97.19 114 | 96.05 136 | 73.62 323 | 75.12 283 | 95.62 142 | 62.02 258 | 99.74 38 | 70.88 289 | 96.06 103 | 96.30 174 |
|
| thisisatest0515 | | | 90.95 96 | 90.26 98 | 93.01 82 | 94.03 170 | 84.27 78 | 97.91 63 | 96.67 70 | 83.18 190 | 86.87 148 | 95.51 146 | 88.66 16 | 97.85 157 | 80.46 200 | 89.01 174 | 96.92 151 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 135 | 88.87 126 | 88.91 213 | 93.89 171 | 74.43 290 | 96.93 142 | 94.19 243 | 84.39 159 | 83.22 185 | 95.67 140 | 78.24 92 | 94.70 308 | 78.88 218 | 94.40 124 | 97.61 115 |
|
| ADS-MVSNet2 | | | 79.57 285 | 77.53 288 | 85.71 281 | 93.78 172 | 72.13 309 | 79.48 371 | 86.11 367 | 73.09 329 | 80.14 223 | 79.99 356 | 62.15 256 | 90.14 364 | 59.49 340 | 83.52 220 | 94.85 205 |
|
| ADS-MVSNet | | | 81.26 268 | 78.36 281 | 89.96 193 | 93.78 172 | 79.78 175 | 79.48 371 | 93.60 277 | 73.09 329 | 80.14 223 | 79.99 356 | 62.15 256 | 95.24 290 | 59.49 340 | 83.52 220 | 94.85 205 |
|
| EPP-MVSNet | | | 89.76 117 | 89.72 113 | 89.87 196 | 93.78 172 | 76.02 272 | 97.22 109 | 96.51 91 | 79.35 266 | 85.11 160 | 95.01 164 | 84.82 34 | 97.10 202 | 87.46 142 | 88.21 185 | 96.50 165 |
|
| 3Dnovator | | 82.32 10 | 89.33 125 | 87.64 145 | 94.42 33 | 93.73 175 | 85.70 43 | 97.73 76 | 96.75 60 | 86.73 113 | 76.21 268 | 95.93 132 | 62.17 255 | 99.68 51 | 81.67 193 | 97.81 61 | 97.88 91 |
|
| Effi-MVS+ | | | 90.70 100 | 89.90 110 | 93.09 79 | 93.61 176 | 83.48 91 | 95.20 234 | 92.79 303 | 83.22 189 | 91.82 82 | 95.70 138 | 71.82 196 | 97.48 179 | 91.25 93 | 93.67 134 | 98.32 60 |
|
| IS-MVSNet | | | 88.67 141 | 88.16 136 | 90.20 186 | 93.61 176 | 76.86 256 | 96.77 154 | 93.07 299 | 84.02 170 | 83.62 181 | 95.60 143 | 74.69 164 | 96.24 238 | 78.43 222 | 93.66 135 | 97.49 124 |
|
| AUN-MVS | | | 86.25 187 | 85.57 178 | 88.26 227 | 93.57 178 | 73.38 296 | 95.45 223 | 95.88 148 | 83.94 174 | 85.47 158 | 94.21 181 | 73.70 178 | 96.67 224 | 83.54 179 | 64.41 349 | 94.73 211 |
|
| test2506 | | | 90.96 95 | 90.39 95 | 92.65 97 | 93.54 179 | 82.46 109 | 96.37 178 | 97.35 18 | 86.78 111 | 87.55 139 | 95.25 150 | 77.83 101 | 97.50 177 | 84.07 166 | 94.80 117 | 97.98 86 |
|
| ECVR-MVS |  | | 88.35 151 | 87.25 157 | 91.65 141 | 93.54 179 | 79.40 187 | 96.56 165 | 90.78 334 | 86.78 111 | 85.57 157 | 95.25 150 | 57.25 298 | 97.56 169 | 84.73 162 | 94.80 117 | 97.98 86 |
|
| hse-mvs2 | | | 88.22 155 | 88.21 134 | 88.25 228 | 93.54 179 | 73.41 295 | 95.41 225 | 95.89 147 | 90.39 46 | 92.22 76 | 94.22 180 | 74.70 161 | 96.66 225 | 93.14 75 | 64.37 350 | 94.69 212 |
|
| LCM-MVSNet-Re | | | 83.75 228 | 83.54 214 | 84.39 307 | 93.54 179 | 64.14 355 | 92.51 298 | 84.03 374 | 83.90 176 | 66.14 340 | 86.59 298 | 67.36 224 | 92.68 337 | 84.89 161 | 92.87 144 | 96.35 169 |
|
| EC-MVSNet | | | 91.73 73 | 92.11 66 | 90.58 174 | 93.54 179 | 77.77 239 | 98.07 54 | 94.40 231 | 87.44 94 | 92.99 69 | 97.11 103 | 74.59 165 | 96.87 214 | 93.75 65 | 97.08 81 | 97.11 142 |
|
| tpm cat1 | | | 83.63 230 | 81.38 247 | 90.39 179 | 93.53 184 | 78.19 225 | 85.56 357 | 95.09 189 | 70.78 343 | 78.51 238 | 83.28 340 | 74.80 160 | 97.03 203 | 66.77 308 | 84.05 218 | 95.95 178 |
|
| thisisatest0530 | | | 89.65 119 | 89.02 121 | 91.53 146 | 93.46 185 | 80.78 150 | 96.52 166 | 96.67 70 | 81.69 223 | 83.79 179 | 94.90 167 | 88.85 15 | 97.68 162 | 77.80 223 | 87.49 191 | 96.14 176 |
|
| MSDG | | | 80.62 277 | 77.77 287 | 89.14 208 | 93.43 186 | 77.24 249 | 91.89 306 | 90.18 338 | 69.86 348 | 68.02 328 | 91.94 221 | 52.21 324 | 98.84 117 | 59.32 342 | 83.12 224 | 91.35 241 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 40 | 93.71 34 | 92.22 118 | 93.38 187 | 81.71 129 | 98.86 24 | 96.98 35 | 91.64 29 | 96.85 15 | 98.55 19 | 75.58 141 | 99.77 29 | 97.88 19 | 93.68 133 | 95.18 199 |
|
| ab-mvs | | | 87.08 171 | 84.94 191 | 93.48 67 | 93.34 188 | 83.67 87 | 88.82 330 | 95.70 158 | 81.18 227 | 84.55 170 | 90.14 251 | 62.72 252 | 98.94 113 | 85.49 156 | 82.54 234 | 97.85 95 |
|
| 1314 | | | 88.94 132 | 87.20 158 | 94.17 41 | 93.21 189 | 85.73 42 | 93.33 284 | 96.64 76 | 82.89 199 | 75.98 271 | 96.36 124 | 66.83 229 | 99.39 77 | 83.52 181 | 96.02 105 | 97.39 130 |
|
| 1112_ss | | | 88.60 144 | 87.47 153 | 92.00 130 | 93.21 189 | 80.97 144 | 96.47 170 | 92.46 306 | 83.64 184 | 80.86 214 | 97.30 94 | 80.24 67 | 97.62 165 | 77.60 229 | 85.49 210 | 97.40 129 |
|
| GeoE | | | 86.36 183 | 85.20 184 | 89.83 198 | 93.17 191 | 76.13 267 | 97.53 90 | 92.11 311 | 79.58 263 | 80.99 212 | 94.01 186 | 66.60 231 | 96.17 241 | 73.48 272 | 89.30 171 | 97.20 140 |
|
| test1111 | | | 88.11 156 | 87.04 163 | 91.35 149 | 93.15 192 | 78.79 205 | 96.57 163 | 90.78 334 | 86.88 109 | 85.04 161 | 95.20 154 | 57.23 299 | 97.39 184 | 83.88 169 | 94.59 120 | 97.87 93 |
|
| Test_1112_low_res | | | 88.03 158 | 86.73 167 | 91.94 132 | 93.15 192 | 80.88 147 | 96.44 173 | 92.41 308 | 83.59 186 | 80.74 216 | 91.16 232 | 80.18 68 | 97.59 167 | 77.48 232 | 85.40 211 | 97.36 131 |
|
| CostFormer | | | 89.08 129 | 88.39 132 | 91.15 158 | 93.13 194 | 79.15 195 | 88.61 333 | 96.11 131 | 83.14 191 | 89.58 115 | 86.93 293 | 83.83 45 | 96.87 214 | 88.22 135 | 85.92 205 | 97.42 127 |
|
| IB-MVS | | 85.34 4 | 88.67 141 | 87.14 161 | 93.26 72 | 93.12 195 | 84.32 75 | 98.76 26 | 97.27 21 | 87.19 103 | 79.36 232 | 90.45 244 | 83.92 44 | 98.53 129 | 84.41 163 | 69.79 313 | 96.93 149 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| diffmvs |  | | 91.17 89 | 90.74 87 | 92.44 106 | 93.11 196 | 82.50 108 | 96.25 186 | 93.62 276 | 87.79 86 | 90.40 105 | 95.93 132 | 73.44 180 | 97.42 181 | 93.62 68 | 92.55 148 | 97.41 128 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 88.57 145 | 88.19 135 | 89.71 202 | 93.00 197 | 75.99 273 | 95.67 213 | 96.67 70 | 80.78 234 | 81.82 205 | 94.40 176 | 88.97 14 | 97.58 168 | 76.05 248 | 86.31 199 | 95.57 188 |
|
| MVSFormer | | | 91.36 84 | 90.57 90 | 93.73 54 | 93.00 197 | 88.08 17 | 94.80 250 | 94.48 224 | 80.74 235 | 94.90 43 | 97.13 101 | 78.84 84 | 95.10 298 | 83.77 172 | 97.46 70 | 98.02 79 |
|
| lupinMVS | | | 93.87 34 | 93.58 38 | 94.75 27 | 93.00 197 | 88.08 17 | 99.15 7 | 95.50 168 | 91.03 37 | 94.90 43 | 97.66 72 | 78.84 84 | 97.56 169 | 94.64 57 | 97.46 70 | 98.62 45 |
|
| casdiffmvs_mvg |  | | 91.13 90 | 90.45 94 | 93.17 76 | 92.99 200 | 83.58 89 | 97.46 97 | 94.56 221 | 87.69 89 | 87.19 145 | 94.98 166 | 74.50 166 | 97.60 166 | 91.88 90 | 92.79 145 | 98.34 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvs1 | | | 87.79 163 | 88.52 130 | 85.62 285 | 92.98 201 | 64.31 353 | 97.88 65 | 92.42 307 | 87.95 82 | 92.24 75 | 95.82 135 | 47.94 340 | 98.44 137 | 95.31 50 | 94.09 125 | 94.09 219 |
|
| tpm2 | | | 87.35 170 | 86.26 171 | 90.62 173 | 92.93 202 | 78.67 207 | 88.06 338 | 95.99 140 | 79.33 267 | 87.40 140 | 86.43 304 | 80.28 66 | 96.40 231 | 80.23 204 | 85.73 209 | 96.79 155 |
|
| baseline | | | 90.76 99 | 90.10 103 | 92.74 93 | 92.90 203 | 82.56 105 | 94.60 252 | 94.56 221 | 87.69 89 | 89.06 123 | 95.67 140 | 73.76 175 | 97.51 176 | 90.43 108 | 92.23 154 | 98.16 71 |
|
| test_fmvsmconf_n | | | 93.99 32 | 94.36 27 | 92.86 88 | 92.82 204 | 81.12 139 | 99.26 3 | 96.37 111 | 93.47 13 | 95.16 35 | 98.21 36 | 79.00 81 | 99.64 55 | 98.21 10 | 96.73 92 | 97.83 97 |
|
| casdiffmvs |  | | 90.95 96 | 90.39 95 | 92.63 99 | 92.82 204 | 82.53 106 | 96.83 147 | 94.47 226 | 87.69 89 | 88.47 129 | 95.56 145 | 74.04 172 | 97.54 173 | 90.90 98 | 92.74 146 | 97.83 97 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Vis-MVSNet |  | | 88.67 141 | 87.82 141 | 91.24 154 | 92.68 206 | 78.82 202 | 96.95 140 | 93.85 262 | 87.55 92 | 87.07 147 | 95.13 159 | 63.43 249 | 97.21 194 | 77.58 230 | 96.15 100 | 97.70 108 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GBi-Net | | | 82.42 251 | 80.43 262 | 88.39 223 | 92.66 207 | 81.95 115 | 94.30 261 | 93.38 285 | 79.06 275 | 75.82 275 | 85.66 311 | 56.38 306 | 93.84 325 | 71.23 285 | 75.38 280 | 89.38 272 |
|
| test1 | | | 82.42 251 | 80.43 262 | 88.39 223 | 92.66 207 | 81.95 115 | 94.30 261 | 93.38 285 | 79.06 275 | 75.82 275 | 85.66 311 | 56.38 306 | 93.84 325 | 71.23 285 | 75.38 280 | 89.38 272 |
|
| FMVSNet2 | | | 82.79 245 | 80.44 261 | 89.83 198 | 92.66 207 | 85.43 48 | 95.42 224 | 94.35 233 | 79.06 275 | 74.46 287 | 87.28 285 | 56.38 306 | 94.31 318 | 69.72 297 | 74.68 284 | 89.76 267 |
|
| miper_ehance_all_eth | | | 84.57 214 | 83.60 213 | 87.50 248 | 92.64 210 | 78.25 219 | 95.40 226 | 93.47 281 | 79.28 270 | 76.41 262 | 87.64 281 | 76.53 122 | 95.24 290 | 78.58 220 | 72.42 294 | 89.01 288 |
|
| cascas | | | 86.50 181 | 84.48 198 | 92.55 102 | 92.64 210 | 85.95 37 | 97.04 132 | 95.07 191 | 75.32 310 | 80.50 217 | 91.02 234 | 54.33 318 | 97.98 150 | 86.79 149 | 87.62 188 | 93.71 226 |
|
| TESTMET0.1,1 | | | 89.83 116 | 89.34 117 | 91.31 150 | 92.54 212 | 80.19 167 | 97.11 125 | 96.57 85 | 86.15 116 | 86.85 149 | 91.83 223 | 79.32 75 | 96.95 208 | 81.30 194 | 92.35 152 | 96.77 157 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 314 | 73.00 321 | 83.94 309 | 92.38 213 | 69.08 336 | 91.85 307 | 86.93 362 | 61.48 369 | 65.32 343 | 90.27 247 | 42.27 358 | 96.93 211 | 50.91 368 | 75.63 279 | 85.80 348 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_vis1_n_1920 | | | 89.95 114 | 90.59 89 | 88.03 234 | 92.36 214 | 68.98 337 | 99.12 11 | 94.34 234 | 93.86 11 | 93.64 60 | 97.01 107 | 51.54 325 | 99.59 60 | 96.76 34 | 96.71 93 | 95.53 189 |
|
| xiu_mvs_v1_base_debu | | | 90.54 103 | 89.54 114 | 93.55 62 | 92.31 215 | 87.58 23 | 96.99 133 | 94.87 199 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 294 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 208 |
|
| xiu_mvs_v1_base | | | 90.54 103 | 89.54 114 | 93.55 62 | 92.31 215 | 87.58 23 | 96.99 133 | 94.87 199 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 294 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 208 |
|
| xiu_mvs_v1_base_debi | | | 90.54 103 | 89.54 114 | 93.55 62 | 92.31 215 | 87.58 23 | 96.99 133 | 94.87 199 | 87.23 100 | 93.27 62 | 97.56 81 | 57.43 294 | 98.32 140 | 92.72 80 | 93.46 138 | 94.74 208 |
|
| SCA | | | 85.63 196 | 83.64 211 | 91.60 145 | 92.30 218 | 81.86 122 | 92.88 295 | 95.56 164 | 84.85 145 | 82.52 190 | 85.12 325 | 58.04 287 | 95.39 281 | 73.89 268 | 87.58 190 | 97.54 117 |
|
| gm-plane-assit | | | | | | 92.27 219 | 79.64 183 | | | 84.47 158 | | 95.15 158 | | 97.93 151 | 85.81 153 | | |
|
| test-LLR | | | 88.48 146 | 87.98 138 | 89.98 191 | 92.26 220 | 77.23 250 | 97.11 125 | 95.96 143 | 83.76 181 | 86.30 152 | 91.38 227 | 72.30 191 | 96.78 220 | 80.82 197 | 91.92 156 | 95.94 179 |
|
| test-mter | | | 88.95 131 | 88.60 128 | 89.98 191 | 92.26 220 | 77.23 250 | 97.11 125 | 95.96 143 | 85.32 133 | 86.30 152 | 91.38 227 | 76.37 127 | 96.78 220 | 80.82 197 | 91.92 156 | 95.94 179 |
|
| PAPM | | | 92.87 49 | 92.40 58 | 94.30 35 | 92.25 222 | 87.85 19 | 96.40 177 | 96.38 108 | 91.07 36 | 88.72 127 | 96.90 109 | 82.11 55 | 97.37 186 | 90.05 114 | 97.70 64 | 97.67 109 |
|
| cl____ | | | 83.27 235 | 82.12 235 | 86.74 262 | 92.20 223 | 75.95 274 | 95.11 240 | 93.27 291 | 78.44 284 | 74.82 285 | 87.02 292 | 74.19 169 | 95.19 292 | 74.67 261 | 69.32 317 | 89.09 283 |
|
| DIV-MVS_self_test | | | 83.27 235 | 82.12 235 | 86.74 262 | 92.19 224 | 75.92 276 | 95.11 240 | 93.26 292 | 78.44 284 | 74.81 286 | 87.08 291 | 74.19 169 | 95.19 292 | 74.66 262 | 69.30 318 | 89.11 282 |
|
| AllTest | | | 75.92 312 | 73.06 320 | 84.47 303 | 92.18 225 | 67.29 342 | 91.07 316 | 84.43 372 | 67.63 352 | 63.48 348 | 90.18 248 | 38.20 368 | 97.16 197 | 57.04 350 | 73.37 289 | 88.97 291 |
|
| TestCases | | | | | 84.47 303 | 92.18 225 | 67.29 342 | | 84.43 372 | 67.63 352 | 63.48 348 | 90.18 248 | 38.20 368 | 97.16 197 | 57.04 350 | 73.37 289 | 88.97 291 |
|
| CLD-MVS | | | 87.97 160 | 87.48 152 | 89.44 204 | 92.16 227 | 80.54 158 | 98.14 46 | 94.92 196 | 91.41 31 | 79.43 231 | 95.40 148 | 62.34 254 | 97.27 192 | 90.60 103 | 82.90 229 | 90.50 251 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Syy-MVS | | | 77.97 298 | 78.05 284 | 77.74 348 | 92.13 228 | 56.85 375 | 93.97 269 | 94.23 239 | 82.43 209 | 73.39 293 | 93.57 196 | 57.95 290 | 87.86 370 | 32.40 388 | 82.34 235 | 88.51 298 |
|
| myMVS_eth3d | | | 81.93 259 | 82.18 234 | 81.18 332 | 92.13 228 | 67.18 344 | 93.97 269 | 94.23 239 | 82.43 209 | 73.39 293 | 93.57 196 | 76.98 114 | 87.86 370 | 50.53 370 | 82.34 235 | 88.51 298 |
|
| c3_l | | | 83.80 227 | 82.65 229 | 87.25 255 | 92.10 230 | 77.74 241 | 95.25 231 | 93.04 300 | 78.58 281 | 76.01 270 | 87.21 289 | 75.25 154 | 95.11 297 | 77.54 231 | 68.89 321 | 88.91 294 |
|
| HQP-NCC | | | | | | 92.08 231 | | 97.63 82 | | 90.52 43 | 82.30 194 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 231 | | 97.63 82 | | 90.52 43 | 82.30 194 | | | | | | |
|
| HQP-MVS | | | 87.91 162 | 87.55 150 | 88.98 212 | 92.08 231 | 78.48 210 | 97.63 82 | 94.80 204 | 90.52 43 | 82.30 194 | 94.56 173 | 65.40 237 | 97.32 187 | 87.67 140 | 83.01 226 | 91.13 242 |
|
| PCF-MVS | | 84.09 5 | 86.77 179 | 85.00 190 | 92.08 124 | 92.06 234 | 83.07 99 | 92.14 303 | 94.47 226 | 79.63 262 | 76.90 254 | 94.78 169 | 71.15 203 | 99.20 92 | 72.87 274 | 91.05 162 | 93.98 221 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| NP-MVS | | | | | | 92.04 235 | 78.22 220 | | | | | 94.56 173 | | | | | |
|
| plane_prior6 | | | | | | 91.98 236 | 77.92 233 | | | | | | 64.77 243 | | | | |
|
| Effi-MVS+-dtu | | | 84.61 213 | 84.90 193 | 83.72 314 | 91.96 237 | 63.14 361 | 94.95 245 | 93.34 289 | 85.57 128 | 79.79 227 | 87.12 290 | 61.99 259 | 95.61 274 | 83.55 178 | 85.83 207 | 92.41 238 |
|
| plane_prior1 | | | | | | 91.95 238 | | | | | | | | | | | |
|
| CDS-MVSNet | | | 89.50 122 | 88.96 123 | 91.14 159 | 91.94 239 | 80.93 146 | 97.09 129 | 95.81 152 | 84.26 166 | 84.72 167 | 94.20 182 | 80.31 65 | 95.64 271 | 83.37 182 | 88.96 175 | 96.85 154 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| HQP_MVS | | | 87.50 168 | 87.09 162 | 88.74 217 | 91.86 240 | 77.96 230 | 97.18 115 | 94.69 209 | 89.89 53 | 81.33 209 | 94.15 183 | 64.77 243 | 97.30 189 | 87.08 144 | 82.82 230 | 90.96 244 |
|
| plane_prior7 | | | | | | 91.86 240 | 77.55 244 | | | | | | | | | | |
|
| eth_miper_zixun_eth | | | 83.12 239 | 82.01 237 | 86.47 267 | 91.85 242 | 74.80 285 | 94.33 259 | 93.18 295 | 79.11 273 | 75.74 278 | 87.25 288 | 72.71 185 | 95.32 286 | 76.78 239 | 67.13 339 | 89.27 277 |
|
| VDDNet | | | 86.44 182 | 84.51 196 | 92.22 118 | 91.56 243 | 81.83 123 | 97.10 128 | 94.64 216 | 69.50 349 | 87.84 137 | 95.19 155 | 48.01 338 | 97.92 156 | 89.82 116 | 86.92 193 | 96.89 152 |
|
| EI-MVSNet | | | 85.80 193 | 85.20 184 | 87.59 244 | 91.55 244 | 77.41 246 | 95.13 238 | 95.36 178 | 80.43 245 | 80.33 221 | 94.71 170 | 73.72 176 | 95.97 248 | 76.96 238 | 78.64 262 | 89.39 270 |
|
| CVMVSNet | | | 84.83 209 | 85.57 178 | 82.63 324 | 91.55 244 | 60.38 369 | 95.13 238 | 95.03 192 | 80.60 238 | 82.10 200 | 94.71 170 | 66.40 232 | 90.19 363 | 74.30 265 | 90.32 165 | 97.31 133 |
|
| ACMP | | 81.66 11 | 84.00 223 | 83.22 220 | 86.33 268 | 91.53 246 | 72.95 305 | 95.91 204 | 93.79 267 | 83.70 183 | 73.79 290 | 92.22 213 | 54.31 319 | 96.89 212 | 83.98 167 | 79.74 251 | 89.16 280 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| IterMVS-LS | | | 83.93 224 | 82.80 227 | 87.31 253 | 91.46 247 | 77.39 247 | 95.66 214 | 93.43 283 | 80.44 243 | 75.51 279 | 87.26 287 | 73.72 176 | 95.16 294 | 76.99 236 | 70.72 304 | 89.39 270 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 84.10 221 | 82.90 224 | 87.70 239 | 91.41 248 | 73.28 299 | 90.59 320 | 93.19 293 | 85.02 142 | 77.96 244 | 93.68 193 | 57.92 292 | 96.18 240 | 75.50 253 | 80.87 243 | 93.63 227 |
|
| WB-MVSnew | | | 84.08 222 | 83.51 215 | 85.80 278 | 91.34 249 | 76.69 260 | 95.62 217 | 96.27 117 | 81.77 221 | 81.81 206 | 92.81 205 | 58.23 284 | 94.70 308 | 66.66 309 | 87.06 192 | 85.99 344 |
|
| Patchmatch-test | | | 78.25 294 | 74.72 308 | 88.83 215 | 91.20 250 | 74.10 293 | 73.91 386 | 88.70 354 | 59.89 377 | 66.82 335 | 85.12 325 | 78.38 90 | 94.54 313 | 48.84 375 | 79.58 254 | 97.86 94 |
|
| miper_lstm_enhance | | | 81.66 264 | 80.66 258 | 84.67 299 | 91.19 251 | 71.97 314 | 91.94 305 | 93.19 293 | 77.86 288 | 72.27 307 | 85.26 319 | 73.46 179 | 93.42 333 | 73.71 271 | 67.05 340 | 88.61 296 |
|
| ACMM | | 80.70 13 | 83.72 229 | 82.85 226 | 86.31 271 | 91.19 251 | 72.12 310 | 95.88 205 | 94.29 237 | 80.44 243 | 77.02 252 | 91.96 219 | 55.24 312 | 97.14 201 | 79.30 213 | 80.38 247 | 89.67 268 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| testing3 | | | 80.74 275 | 81.17 250 | 79.44 341 | 91.15 253 | 63.48 359 | 97.16 119 | 95.76 154 | 80.83 232 | 71.36 311 | 93.15 202 | 78.22 93 | 87.30 375 | 43.19 382 | 79.67 252 | 87.55 323 |
|
| TAMVS | | | 88.48 146 | 87.79 142 | 90.56 175 | 91.09 254 | 79.18 193 | 96.45 172 | 95.88 148 | 83.64 184 | 83.12 186 | 93.33 198 | 75.94 134 | 95.74 266 | 82.40 188 | 88.27 184 | 96.75 159 |
|
| ACMH+ | | 76.62 16 | 77.47 303 | 74.94 305 | 85.05 293 | 91.07 255 | 71.58 320 | 93.26 288 | 90.01 339 | 71.80 338 | 64.76 345 | 88.55 267 | 41.62 360 | 96.48 229 | 62.35 331 | 71.00 301 | 87.09 329 |
|
| OpenMVS |  | 79.58 14 | 86.09 188 | 83.62 212 | 93.50 65 | 90.95 256 | 86.71 32 | 97.44 98 | 95.83 151 | 75.35 309 | 72.64 304 | 95.72 137 | 57.42 297 | 99.64 55 | 71.41 283 | 95.85 108 | 94.13 218 |
|
| LPG-MVS_test | | | 84.20 220 | 83.49 216 | 86.33 268 | 90.88 257 | 73.06 302 | 95.28 228 | 94.13 246 | 82.20 213 | 76.31 263 | 93.20 199 | 54.83 316 | 96.95 208 | 83.72 174 | 80.83 244 | 88.98 289 |
|
| LGP-MVS_train | | | | | 86.33 268 | 90.88 257 | 73.06 302 | | 94.13 246 | 82.20 213 | 76.31 263 | 93.20 199 | 54.83 316 | 96.95 208 | 83.72 174 | 80.83 244 | 88.98 289 |
|
| test_fmvsmvis_n_1920 | | | 92.12 67 | 92.10 67 | 92.17 121 | 90.87 259 | 81.04 141 | 98.34 40 | 93.90 258 | 92.71 18 | 87.24 144 | 97.90 61 | 74.83 159 | 99.72 43 | 96.96 31 | 96.20 98 | 95.76 184 |
|
| KD-MVS_2432*1600 | | | 77.63 301 | 74.92 306 | 85.77 279 | 90.86 260 | 79.44 185 | 88.08 336 | 93.92 256 | 76.26 304 | 67.05 333 | 82.78 342 | 72.15 193 | 91.92 346 | 61.53 332 | 41.62 389 | 85.94 345 |
|
| miper_refine_blended | | | 77.63 301 | 74.92 306 | 85.77 279 | 90.86 260 | 79.44 185 | 88.08 336 | 93.92 256 | 76.26 304 | 67.05 333 | 82.78 342 | 72.15 193 | 91.92 346 | 61.53 332 | 41.62 389 | 85.94 345 |
|
| baseline2 | | | 90.39 106 | 90.21 100 | 90.93 163 | 90.86 260 | 80.99 143 | 95.20 234 | 97.41 17 | 86.03 121 | 80.07 226 | 94.61 172 | 90.58 6 | 97.47 180 | 87.29 143 | 89.86 168 | 94.35 214 |
|
| PVSNet_0 | | 77.72 15 | 81.70 262 | 78.95 279 | 89.94 194 | 90.77 263 | 76.72 259 | 95.96 199 | 96.95 39 | 85.01 143 | 70.24 321 | 88.53 269 | 52.32 322 | 98.20 145 | 86.68 150 | 44.08 386 | 94.89 203 |
|
| ACMH | | 75.40 17 | 77.99 296 | 74.96 304 | 87.10 258 | 90.67 264 | 76.41 263 | 93.19 291 | 91.64 319 | 72.47 335 | 63.44 350 | 87.61 282 | 43.34 353 | 97.16 197 | 58.34 344 | 73.94 286 | 87.72 315 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MVS-HIRNet | | | 71.36 335 | 67.00 340 | 84.46 305 | 90.58 265 | 69.74 332 | 79.15 374 | 87.74 360 | 46.09 386 | 61.96 359 | 50.50 390 | 45.14 348 | 95.64 271 | 53.74 361 | 88.11 186 | 88.00 312 |
|
| fmvsm_s_conf0.1_n | | | 92.93 47 | 93.16 46 | 92.24 116 | 90.52 266 | 81.92 118 | 98.42 37 | 96.24 120 | 91.17 34 | 96.02 29 | 98.35 31 | 75.34 152 | 99.74 38 | 97.84 20 | 94.58 121 | 95.05 200 |
|
| jason | | | 92.73 52 | 92.23 63 | 94.21 40 | 90.50 267 | 87.30 26 | 98.65 30 | 95.09 189 | 90.61 42 | 92.76 71 | 97.13 101 | 75.28 153 | 97.30 189 | 93.32 72 | 96.75 91 | 98.02 79 |
| jason: jason. |
| LTVRE_ROB | | 73.68 18 | 77.99 296 | 75.74 301 | 84.74 296 | 90.45 268 | 72.02 312 | 86.41 351 | 91.12 326 | 72.57 334 | 66.63 337 | 87.27 286 | 54.95 315 | 96.98 206 | 56.29 354 | 75.98 275 | 85.21 351 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| XVG-OURS | | | 85.18 203 | 84.38 200 | 87.59 244 | 90.42 269 | 71.73 318 | 91.06 317 | 94.07 250 | 82.00 219 | 83.29 184 | 95.08 162 | 56.42 305 | 97.55 171 | 83.70 176 | 83.42 222 | 93.49 230 |
|
| VPA-MVSNet | | | 85.32 201 | 83.83 207 | 89.77 201 | 90.25 270 | 82.63 104 | 96.36 179 | 97.07 32 | 83.03 196 | 81.21 211 | 89.02 261 | 61.58 262 | 96.31 235 | 85.02 160 | 70.95 302 | 90.36 252 |
|
| XVG-OURS-SEG-HR | | | 85.74 195 | 85.16 187 | 87.49 249 | 90.22 271 | 71.45 321 | 91.29 314 | 94.09 249 | 81.37 225 | 83.90 178 | 95.22 152 | 60.30 269 | 97.53 175 | 85.58 155 | 84.42 217 | 93.50 229 |
|
| tpm | | | 85.55 198 | 84.47 199 | 88.80 216 | 90.19 272 | 75.39 280 | 88.79 331 | 94.69 209 | 84.83 146 | 83.96 176 | 85.21 321 | 78.22 93 | 94.68 310 | 76.32 246 | 78.02 271 | 96.34 170 |
|
| CR-MVSNet | | | 83.53 231 | 81.36 248 | 90.06 188 | 90.16 273 | 79.75 177 | 79.02 375 | 91.12 326 | 84.24 167 | 82.27 198 | 80.35 354 | 75.45 144 | 93.67 329 | 63.37 328 | 86.25 200 | 96.75 159 |
|
| RPMNet | | | 79.85 281 | 75.92 300 | 91.64 142 | 90.16 273 | 79.75 177 | 79.02 375 | 95.44 173 | 58.43 381 | 82.27 198 | 72.55 378 | 73.03 183 | 98.41 138 | 46.10 379 | 86.25 200 | 96.75 159 |
|
| test_cas_vis1_n_1920 | | | 89.90 115 | 90.02 105 | 89.54 203 | 90.14 275 | 74.63 287 | 98.71 27 | 94.43 229 | 93.04 17 | 92.40 72 | 96.35 125 | 53.41 321 | 99.08 103 | 95.59 46 | 96.16 99 | 94.90 202 |
|
| FIs | | | 86.73 180 | 86.10 173 | 88.61 219 | 90.05 276 | 80.21 166 | 96.14 193 | 96.95 39 | 85.56 130 | 78.37 240 | 92.30 212 | 76.73 120 | 95.28 288 | 79.51 210 | 79.27 256 | 90.35 253 |
|
| FMVSNet5 | | | 76.46 310 | 74.16 314 | 83.35 319 | 90.05 276 | 76.17 266 | 89.58 325 | 89.85 340 | 71.39 341 | 65.29 344 | 80.42 353 | 50.61 329 | 87.70 373 | 61.05 337 | 69.24 319 | 86.18 340 |
|
| IterMVS | | | 80.67 276 | 79.16 276 | 85.20 291 | 89.79 278 | 76.08 268 | 92.97 294 | 91.86 314 | 80.28 249 | 71.20 313 | 85.14 324 | 57.93 291 | 91.34 353 | 72.52 277 | 70.74 303 | 88.18 309 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| mvsany_test1 | | | 87.58 167 | 88.22 133 | 85.67 283 | 89.78 279 | 67.18 344 | 95.25 231 | 87.93 357 | 83.96 173 | 88.79 125 | 97.06 106 | 72.52 187 | 94.53 314 | 92.21 85 | 86.45 198 | 95.30 196 |
|
| UniMVSNet (Re) | | | 85.31 202 | 84.23 202 | 88.55 220 | 89.75 280 | 80.55 156 | 96.72 155 | 96.89 43 | 85.42 131 | 78.40 239 | 88.93 262 | 75.38 148 | 95.52 278 | 78.58 220 | 68.02 330 | 89.57 269 |
|
| Patchmtry | | | 77.36 304 | 74.59 309 | 85.67 283 | 89.75 280 | 75.75 278 | 77.85 378 | 91.12 326 | 60.28 374 | 71.23 312 | 80.35 354 | 75.45 144 | 93.56 331 | 57.94 345 | 67.34 338 | 87.68 317 |
|
| JIA-IIPM | | | 79.00 291 | 77.20 290 | 84.40 306 | 89.74 282 | 64.06 356 | 75.30 383 | 95.44 173 | 62.15 365 | 81.90 203 | 59.08 387 | 78.92 82 | 95.59 275 | 66.51 313 | 85.78 208 | 93.54 228 |
|
| MS-PatchMatch | | | 83.05 240 | 81.82 241 | 86.72 266 | 89.64 283 | 79.10 197 | 94.88 247 | 94.59 220 | 79.70 261 | 70.67 317 | 89.65 255 | 50.43 330 | 96.82 217 | 70.82 292 | 95.99 106 | 84.25 357 |
|
| IterMVS-SCA-FT | | | 80.51 278 | 79.10 277 | 84.73 297 | 89.63 284 | 74.66 286 | 92.98 293 | 91.81 316 | 80.05 254 | 71.06 315 | 85.18 322 | 58.04 287 | 91.40 352 | 72.48 278 | 70.70 305 | 88.12 310 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 234 | 82.60 230 | 85.50 287 | 89.55 285 | 69.38 335 | 96.09 196 | 91.38 321 | 82.30 212 | 75.96 272 | 91.41 226 | 56.71 301 | 95.58 276 | 75.13 257 | 84.90 215 | 91.54 240 |
|
| PatchT | | | 79.75 282 | 76.85 294 | 88.42 221 | 89.55 285 | 75.49 279 | 77.37 379 | 94.61 218 | 63.07 362 | 82.46 192 | 73.32 375 | 75.52 143 | 93.41 334 | 51.36 366 | 84.43 216 | 96.36 168 |
|
| GA-MVS | | | 85.79 194 | 84.04 206 | 91.02 162 | 89.47 287 | 80.27 164 | 96.90 144 | 94.84 202 | 85.57 128 | 80.88 213 | 89.08 259 | 56.56 304 | 96.47 230 | 77.72 226 | 85.35 212 | 96.34 170 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 199 | 84.59 194 | 88.21 230 | 89.44 288 | 79.36 188 | 96.71 157 | 96.41 103 | 85.22 136 | 78.11 242 | 90.98 236 | 76.97 115 | 95.14 295 | 79.14 215 | 68.30 327 | 90.12 258 |
|
| FC-MVSNet-test | | | 85.96 190 | 85.39 181 | 87.66 241 | 89.38 289 | 78.02 227 | 95.65 215 | 96.87 44 | 85.12 140 | 77.34 247 | 91.94 221 | 76.28 129 | 94.74 307 | 77.09 235 | 78.82 260 | 90.21 256 |
|
| WR-MVS | | | 84.32 218 | 82.96 222 | 88.41 222 | 89.38 289 | 80.32 161 | 96.59 162 | 96.25 119 | 83.97 172 | 76.63 257 | 90.36 246 | 67.53 222 | 94.86 305 | 75.82 251 | 70.09 311 | 90.06 263 |
|
| VPNet | | | 84.69 211 | 82.92 223 | 90.01 189 | 89.01 291 | 83.45 92 | 96.71 157 | 95.46 171 | 85.71 126 | 79.65 228 | 92.18 214 | 56.66 303 | 96.01 247 | 83.05 186 | 67.84 333 | 90.56 249 |
|
| nrg030 | | | 86.79 178 | 85.43 180 | 90.87 167 | 88.76 292 | 85.34 49 | 97.06 131 | 94.33 235 | 84.31 161 | 80.45 219 | 91.98 218 | 72.36 189 | 96.36 233 | 88.48 132 | 71.13 300 | 90.93 246 |
|
| DU-MVS | | | 84.57 214 | 83.33 218 | 88.28 226 | 88.76 292 | 79.36 188 | 96.43 175 | 95.41 177 | 85.42 131 | 78.11 242 | 90.82 238 | 67.61 219 | 95.14 295 | 79.14 215 | 68.30 327 | 90.33 254 |
|
| NR-MVSNet | | | 83.35 233 | 81.52 246 | 88.84 214 | 88.76 292 | 81.31 137 | 94.45 254 | 95.16 187 | 84.65 152 | 67.81 329 | 90.82 238 | 70.36 211 | 94.87 304 | 74.75 259 | 66.89 342 | 90.33 254 |
|
| test_0402 | | | 72.68 328 | 69.54 335 | 82.09 328 | 88.67 295 | 71.81 317 | 92.72 297 | 86.77 364 | 61.52 368 | 62.21 357 | 83.91 335 | 43.22 354 | 93.76 328 | 34.60 387 | 72.23 297 | 80.72 375 |
|
| RPSCF | | | 77.73 300 | 76.63 295 | 81.06 333 | 88.66 296 | 55.76 380 | 87.77 340 | 87.88 358 | 64.82 361 | 74.14 289 | 92.79 208 | 49.22 335 | 96.81 218 | 67.47 305 | 76.88 273 | 90.62 248 |
|
| FMVSNet1 | | | 79.50 286 | 76.54 296 | 88.39 223 | 88.47 297 | 81.95 115 | 94.30 261 | 93.38 285 | 73.14 328 | 72.04 309 | 85.66 311 | 43.86 350 | 93.84 325 | 65.48 317 | 72.53 293 | 89.38 272 |
|
| test_fmvsmconf0.1_n | | | 93.08 44 | 93.22 45 | 92.65 97 | 88.45 298 | 80.81 149 | 99.00 21 | 95.11 188 | 93.21 15 | 94.00 56 | 97.91 60 | 76.84 116 | 99.59 60 | 97.91 16 | 96.55 95 | 97.54 117 |
|
| OPM-MVS | | | 85.84 192 | 85.10 189 | 88.06 232 | 88.34 299 | 77.83 237 | 95.72 211 | 94.20 242 | 87.89 85 | 80.45 219 | 94.05 185 | 58.57 281 | 97.26 193 | 83.88 169 | 82.76 232 | 89.09 283 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tfpnnormal | | | 78.14 295 | 75.42 302 | 86.31 271 | 88.33 300 | 79.24 191 | 94.41 255 | 96.22 122 | 73.51 324 | 69.81 323 | 85.52 317 | 55.43 310 | 95.75 263 | 47.65 377 | 67.86 332 | 83.95 360 |
|
| TinyColmap | | | 72.41 329 | 68.99 338 | 82.68 323 | 88.11 301 | 69.59 333 | 88.41 334 | 85.20 369 | 65.55 358 | 57.91 371 | 84.82 329 | 30.80 382 | 95.94 252 | 51.38 365 | 68.70 322 | 82.49 368 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 64 | 92.49 57 | 92.06 126 | 88.08 302 | 81.62 132 | 97.97 61 | 96.01 138 | 90.62 41 | 96.58 21 | 98.33 32 | 74.09 171 | 99.71 45 | 97.23 27 | 93.46 138 | 94.86 204 |
|
| WR-MVS_H | | | 81.02 271 | 80.09 265 | 83.79 311 | 88.08 302 | 71.26 323 | 94.46 253 | 96.54 88 | 80.08 253 | 72.81 303 | 86.82 294 | 70.36 211 | 92.65 338 | 64.18 322 | 67.50 336 | 87.46 325 |
|
| mvsmamba | | | 85.17 204 | 84.54 195 | 87.05 259 | 87.94 304 | 75.11 283 | 96.22 187 | 87.79 359 | 86.91 107 | 78.55 237 | 91.77 224 | 64.93 242 | 95.91 254 | 86.94 148 | 79.80 248 | 90.12 258 |
|
| CP-MVSNet | | | 81.01 272 | 80.08 266 | 83.79 311 | 87.91 305 | 70.51 325 | 94.29 264 | 95.65 160 | 80.83 232 | 72.54 306 | 88.84 263 | 63.71 247 | 92.32 341 | 68.58 302 | 68.36 326 | 88.55 297 |
|
| D2MVS | | | 82.67 247 | 81.55 244 | 86.04 276 | 87.77 306 | 76.47 261 | 95.21 233 | 96.58 84 | 82.66 206 | 70.26 320 | 85.46 318 | 60.39 268 | 95.80 260 | 76.40 244 | 79.18 257 | 85.83 347 |
|
| TranMVSNet+NR-MVSNet | | | 83.24 237 | 81.71 242 | 87.83 236 | 87.71 307 | 78.81 204 | 96.13 195 | 94.82 203 | 84.52 155 | 76.18 269 | 90.78 240 | 64.07 246 | 94.60 311 | 74.60 263 | 66.59 344 | 90.09 261 |
|
| USDC | | | 78.65 292 | 76.25 297 | 85.85 277 | 87.58 308 | 74.60 288 | 89.58 325 | 90.58 337 | 84.05 169 | 63.13 352 | 88.23 273 | 40.69 366 | 96.86 216 | 66.57 312 | 75.81 278 | 86.09 342 |
|
| PS-CasMVS | | | 80.27 279 | 79.18 275 | 83.52 317 | 87.56 309 | 69.88 330 | 94.08 267 | 95.29 183 | 80.27 250 | 72.08 308 | 88.51 270 | 59.22 278 | 92.23 343 | 67.49 304 | 68.15 329 | 88.45 303 |
|
| test_fmvs1_n | | | 86.34 184 | 86.72 168 | 85.17 292 | 87.54 310 | 63.64 358 | 96.91 143 | 92.37 309 | 87.49 93 | 91.33 90 | 95.58 144 | 40.81 365 | 98.46 134 | 95.00 52 | 93.49 136 | 93.41 233 |
|
| RRT_MVS | | | 83.88 225 | 83.27 219 | 85.71 281 | 87.53 311 | 72.12 310 | 95.35 227 | 94.33 235 | 83.81 179 | 75.86 274 | 91.28 230 | 60.55 267 | 95.09 300 | 83.93 168 | 76.76 274 | 89.90 266 |
|
| MIMVSNet | | | 79.18 290 | 75.99 299 | 88.72 218 | 87.37 312 | 80.66 153 | 79.96 370 | 91.82 315 | 77.38 294 | 74.33 288 | 81.87 346 | 41.78 359 | 90.74 359 | 66.36 315 | 83.10 225 | 94.76 207 |
|
| XXY-MVS | | | 83.84 226 | 82.00 238 | 89.35 205 | 87.13 313 | 81.38 135 | 95.72 211 | 94.26 238 | 80.15 252 | 75.92 273 | 90.63 241 | 61.96 260 | 96.52 228 | 78.98 217 | 73.28 292 | 90.14 257 |
|
| ITE_SJBPF | | | | | 82.38 325 | 87.00 314 | 65.59 350 | | 89.55 342 | 79.99 256 | 69.37 325 | 91.30 229 | 41.60 361 | 95.33 285 | 62.86 330 | 74.63 285 | 86.24 339 |
|
| test0.0.03 1 | | | 82.79 245 | 82.48 231 | 83.74 313 | 86.81 315 | 72.22 307 | 96.52 166 | 95.03 192 | 83.76 181 | 73.00 300 | 93.20 199 | 72.30 191 | 88.88 366 | 64.15 323 | 77.52 272 | 90.12 258 |
|
| v8 | | | 81.88 260 | 80.06 268 | 87.32 252 | 86.63 316 | 79.04 200 | 94.41 255 | 93.65 275 | 78.77 279 | 73.19 299 | 85.57 315 | 66.87 228 | 95.81 259 | 73.84 270 | 67.61 335 | 87.11 328 |
|
| tt0805 | | | 81.20 270 | 79.06 278 | 87.61 242 | 86.50 317 | 72.97 304 | 93.66 275 | 95.48 169 | 74.11 319 | 76.23 267 | 91.99 217 | 41.36 362 | 97.40 183 | 77.44 233 | 74.78 283 | 92.45 237 |
|
| v10 | | | 81.43 266 | 79.53 274 | 87.11 257 | 86.38 318 | 78.87 201 | 94.31 260 | 93.43 283 | 77.88 287 | 73.24 298 | 85.26 319 | 65.44 236 | 95.75 263 | 72.14 279 | 67.71 334 | 86.72 332 |
|
| PEN-MVS | | | 79.47 287 | 78.26 283 | 83.08 320 | 86.36 319 | 68.58 338 | 93.85 273 | 94.77 207 | 79.76 259 | 71.37 310 | 88.55 267 | 59.79 270 | 92.46 339 | 64.50 321 | 65.40 346 | 88.19 308 |
|
| UniMVSNet_ETH3D | | | 80.86 274 | 78.75 280 | 87.22 256 | 86.31 320 | 72.02 312 | 91.95 304 | 93.76 271 | 73.51 324 | 75.06 284 | 90.16 250 | 43.04 356 | 95.66 268 | 76.37 245 | 78.55 266 | 93.98 221 |
|
| v1144 | | | 82.90 244 | 81.27 249 | 87.78 238 | 86.29 321 | 79.07 199 | 96.14 193 | 93.93 254 | 80.05 254 | 77.38 246 | 86.80 295 | 65.50 235 | 95.93 253 | 75.21 256 | 70.13 308 | 88.33 306 |
|
| V42 | | | 83.04 241 | 81.53 245 | 87.57 246 | 86.27 322 | 79.09 198 | 95.87 206 | 94.11 248 | 80.35 247 | 77.22 250 | 86.79 296 | 65.32 239 | 96.02 246 | 77.74 225 | 70.14 307 | 87.61 319 |
|
| v2v482 | | | 83.46 232 | 81.86 240 | 88.25 228 | 86.19 323 | 79.65 182 | 96.34 181 | 94.02 252 | 81.56 224 | 77.32 248 | 88.23 273 | 65.62 234 | 96.03 243 | 77.77 224 | 69.72 315 | 89.09 283 |
|
| v148 | | | 82.41 253 | 80.89 252 | 86.99 260 | 86.18 324 | 76.81 257 | 96.27 184 | 93.82 263 | 80.49 242 | 75.28 282 | 86.11 310 | 67.32 225 | 95.75 263 | 75.48 254 | 67.03 341 | 88.42 304 |
|
| pmmvs4 | | | 82.54 249 | 80.79 253 | 87.79 237 | 86.11 325 | 80.49 160 | 93.55 279 | 93.18 295 | 77.29 295 | 73.35 296 | 89.40 258 | 65.26 240 | 95.05 302 | 75.32 255 | 73.61 288 | 87.83 314 |
|
| MVP-Stereo | | | 82.65 248 | 81.67 243 | 85.59 286 | 86.10 326 | 78.29 217 | 93.33 284 | 92.82 302 | 77.75 289 | 69.17 327 | 87.98 277 | 59.28 277 | 95.76 262 | 71.77 280 | 96.88 86 | 82.73 365 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| v1192 | | | 82.31 254 | 80.55 260 | 87.60 243 | 85.94 327 | 78.47 213 | 95.85 208 | 93.80 266 | 79.33 267 | 76.97 253 | 86.51 299 | 63.33 250 | 95.87 256 | 73.11 273 | 70.13 308 | 88.46 302 |
|
| TransMVSNet (Re) | | | 76.94 307 | 74.38 311 | 84.62 301 | 85.92 328 | 75.25 281 | 95.28 228 | 89.18 347 | 73.88 322 | 67.22 330 | 86.46 301 | 59.64 271 | 94.10 321 | 59.24 343 | 52.57 375 | 84.50 355 |
|
| PS-MVSNAJss | | | 84.91 208 | 84.30 201 | 86.74 262 | 85.89 329 | 74.40 291 | 94.95 245 | 94.16 245 | 83.93 175 | 76.45 261 | 90.11 252 | 71.04 205 | 95.77 261 | 83.16 184 | 79.02 259 | 90.06 263 |
|
| v144192 | | | 82.43 250 | 80.73 256 | 87.54 247 | 85.81 330 | 78.22 220 | 95.98 198 | 93.78 268 | 79.09 274 | 77.11 251 | 86.49 300 | 64.66 245 | 95.91 254 | 74.20 266 | 69.42 316 | 88.49 300 |
|
| bld_raw_dy_0_64 | | | 82.13 256 | 80.76 255 | 86.24 273 | 85.78 331 | 75.03 284 | 94.40 258 | 82.62 379 | 83.12 192 | 76.46 260 | 90.96 237 | 53.83 320 | 94.55 312 | 81.04 196 | 78.60 265 | 89.14 281 |
|
| v1921920 | | | 82.02 258 | 80.23 264 | 87.41 250 | 85.62 332 | 77.92 233 | 95.79 210 | 93.69 273 | 78.86 278 | 76.67 256 | 86.44 302 | 62.50 253 | 95.83 258 | 72.69 275 | 69.77 314 | 88.47 301 |
|
| v1240 | | | 81.70 262 | 79.83 272 | 87.30 254 | 85.50 333 | 77.70 242 | 95.48 221 | 93.44 282 | 78.46 283 | 76.53 259 | 86.44 302 | 60.85 266 | 95.84 257 | 71.59 282 | 70.17 306 | 88.35 305 |
|
| pm-mvs1 | | | 80.05 280 | 78.02 285 | 86.15 274 | 85.42 334 | 75.81 277 | 95.11 240 | 92.69 305 | 77.13 297 | 70.36 319 | 87.43 283 | 58.44 283 | 95.27 289 | 71.36 284 | 64.25 351 | 87.36 326 |
|
| our_test_3 | | | 77.90 299 | 75.37 303 | 85.48 288 | 85.39 335 | 76.74 258 | 93.63 276 | 91.67 317 | 73.39 327 | 65.72 342 | 84.65 330 | 58.20 286 | 93.13 336 | 57.82 346 | 67.87 331 | 86.57 335 |
|
| ppachtmachnet_test | | | 77.19 305 | 74.22 313 | 86.13 275 | 85.39 335 | 78.22 220 | 93.98 268 | 91.36 323 | 71.74 339 | 67.11 332 | 84.87 328 | 56.67 302 | 93.37 335 | 52.21 364 | 64.59 348 | 86.80 331 |
|
| MDA-MVSNet-bldmvs | | | 71.45 334 | 67.94 339 | 81.98 329 | 85.33 337 | 68.50 339 | 92.35 302 | 88.76 352 | 70.40 344 | 42.99 385 | 81.96 345 | 46.57 345 | 91.31 354 | 48.75 376 | 54.39 369 | 86.11 341 |
|
| Baseline_NR-MVSNet | | | 81.22 269 | 80.07 267 | 84.68 298 | 85.32 338 | 75.12 282 | 96.48 169 | 88.80 351 | 76.24 306 | 77.28 249 | 86.40 305 | 67.61 219 | 94.39 317 | 75.73 252 | 66.73 343 | 84.54 354 |
|
| DTE-MVSNet | | | 78.37 293 | 77.06 292 | 82.32 327 | 85.22 339 | 67.17 347 | 93.40 281 | 93.66 274 | 78.71 280 | 70.53 318 | 88.29 272 | 59.06 279 | 92.23 343 | 61.38 335 | 63.28 355 | 87.56 321 |
|
| pmmvs5 | | | 81.34 267 | 79.54 273 | 86.73 265 | 85.02 340 | 76.91 254 | 96.22 187 | 91.65 318 | 77.65 290 | 73.55 291 | 88.61 266 | 55.70 309 | 94.43 316 | 74.12 267 | 73.35 291 | 88.86 295 |
|
| XVG-ACMP-BASELINE | | | 79.38 288 | 77.90 286 | 83.81 310 | 84.98 341 | 67.14 348 | 89.03 329 | 93.18 295 | 80.26 251 | 72.87 302 | 88.15 275 | 38.55 367 | 96.26 236 | 76.05 248 | 78.05 270 | 88.02 311 |
|
| test_vis1_n | | | 85.60 197 | 85.70 176 | 85.33 289 | 84.79 342 | 64.98 351 | 96.83 147 | 91.61 320 | 87.36 97 | 91.00 97 | 94.84 168 | 36.14 371 | 97.18 196 | 95.66 44 | 93.03 143 | 93.82 224 |
|
| MDA-MVSNet_test_wron | | | 73.54 323 | 70.43 331 | 82.86 321 | 84.55 343 | 71.85 315 | 91.74 309 | 91.32 325 | 67.63 352 | 46.73 382 | 81.09 351 | 55.11 313 | 90.42 362 | 55.91 356 | 59.76 361 | 86.31 338 |
|
| SixPastTwentyTwo | | | 76.04 311 | 74.32 312 | 81.22 331 | 84.54 344 | 61.43 367 | 91.16 315 | 89.30 346 | 77.89 286 | 64.04 347 | 86.31 306 | 48.23 336 | 94.29 319 | 63.54 327 | 63.84 353 | 87.93 313 |
|
| YYNet1 | | | 73.53 324 | 70.43 331 | 82.85 322 | 84.52 345 | 71.73 318 | 91.69 310 | 91.37 322 | 67.63 352 | 46.79 381 | 81.21 350 | 55.04 314 | 90.43 361 | 55.93 355 | 59.70 362 | 86.38 337 |
|
| N_pmnet | | | 61.30 347 | 60.20 350 | 64.60 367 | 84.32 346 | 17.00 408 | 91.67 311 | 10.98 406 | 61.77 367 | 58.45 370 | 78.55 360 | 49.89 333 | 91.83 349 | 42.27 383 | 63.94 352 | 84.97 352 |
|
| mvs_tets | | | 81.74 261 | 80.71 257 | 84.84 295 | 84.22 347 | 70.29 327 | 93.91 271 | 93.78 268 | 82.77 203 | 73.37 295 | 89.46 257 | 47.36 344 | 95.31 287 | 81.99 191 | 79.55 255 | 88.92 293 |
|
| jajsoiax | | | 82.12 257 | 81.15 251 | 85.03 294 | 84.19 348 | 70.70 324 | 94.22 265 | 93.95 253 | 83.07 194 | 73.48 292 | 89.75 254 | 49.66 334 | 95.37 283 | 82.24 190 | 79.76 249 | 89.02 287 |
|
| EU-MVSNet | | | 76.92 308 | 76.95 293 | 76.83 351 | 84.10 349 | 54.73 382 | 91.77 308 | 92.71 304 | 72.74 332 | 69.57 324 | 88.69 265 | 58.03 289 | 87.43 374 | 64.91 320 | 70.00 312 | 88.33 306 |
|
| test_djsdf | | | 83.00 243 | 82.45 232 | 84.64 300 | 84.07 350 | 69.78 331 | 94.80 250 | 94.48 224 | 80.74 235 | 75.41 281 | 87.70 280 | 61.32 265 | 95.10 298 | 83.77 172 | 79.76 249 | 89.04 286 |
|
| v7n | | | 79.32 289 | 77.34 289 | 85.28 290 | 84.05 351 | 72.89 306 | 93.38 282 | 93.87 260 | 75.02 314 | 70.68 316 | 84.37 331 | 59.58 273 | 95.62 273 | 67.60 303 | 67.50 336 | 87.32 327 |
|
| test_vis1_rt | | | 73.96 320 | 72.40 323 | 78.64 345 | 83.91 352 | 61.16 368 | 95.63 216 | 68.18 395 | 76.32 303 | 60.09 366 | 74.77 369 | 29.01 384 | 97.54 173 | 87.74 138 | 75.94 276 | 77.22 379 |
|
| dmvs_testset | | | 72.00 333 | 73.36 319 | 67.91 362 | 83.83 353 | 31.90 402 | 85.30 358 | 77.12 387 | 82.80 202 | 63.05 354 | 92.46 211 | 61.54 263 | 82.55 385 | 42.22 384 | 71.89 298 | 89.29 276 |
|
| OurMVSNet-221017-0 | | | 77.18 306 | 76.06 298 | 80.55 336 | 83.78 354 | 60.00 371 | 90.35 321 | 91.05 329 | 77.01 301 | 66.62 338 | 87.92 278 | 47.73 342 | 94.03 322 | 71.63 281 | 68.44 325 | 87.62 318 |
|
| EG-PatchMatch MVS | | | 74.92 317 | 72.02 324 | 83.62 315 | 83.76 355 | 73.28 299 | 93.62 277 | 92.04 313 | 68.57 351 | 58.88 368 | 83.80 336 | 31.87 380 | 95.57 277 | 56.97 352 | 78.67 261 | 82.00 371 |
|
| K. test v3 | | | 73.62 321 | 71.59 326 | 79.69 339 | 82.98 356 | 59.85 372 | 90.85 319 | 88.83 350 | 77.13 297 | 58.90 367 | 82.11 344 | 43.62 351 | 91.72 350 | 65.83 316 | 54.10 370 | 87.50 324 |
|
| test_fmvs2 | | | 79.59 284 | 79.90 271 | 78.67 344 | 82.86 357 | 55.82 379 | 95.20 234 | 89.55 342 | 81.09 228 | 80.12 225 | 89.80 253 | 34.31 376 | 93.51 332 | 87.82 137 | 78.36 268 | 86.69 333 |
|
| test_fmvsmconf0.01_n | | | 91.08 92 | 90.68 88 | 92.29 114 | 82.43 358 | 80.12 169 | 97.94 62 | 93.93 254 | 92.07 24 | 91.97 79 | 97.60 79 | 67.56 221 | 99.53 68 | 97.09 29 | 95.56 112 | 97.21 139 |
|
| EGC-MVSNET | | | 52.46 355 | 47.56 358 | 67.15 363 | 81.98 359 | 60.11 370 | 82.54 368 | 72.44 391 | 0.11 403 | 0.70 404 | 74.59 370 | 25.11 385 | 83.26 382 | 29.04 390 | 61.51 359 | 58.09 388 |
|
| anonymousdsp | | | 80.98 273 | 79.97 269 | 84.01 308 | 81.73 360 | 70.44 326 | 92.49 299 | 93.58 279 | 77.10 299 | 72.98 301 | 86.31 306 | 57.58 293 | 94.90 303 | 79.32 212 | 78.63 264 | 86.69 333 |
|
| Anonymous20231206 | | | 75.29 316 | 73.64 317 | 80.22 337 | 80.75 361 | 63.38 360 | 93.36 283 | 90.71 336 | 73.09 329 | 67.12 331 | 83.70 337 | 50.33 331 | 90.85 358 | 53.63 362 | 70.10 310 | 86.44 336 |
|
| Gipuma |  | | 45.11 360 | 42.05 362 | 54.30 377 | 80.69 362 | 51.30 384 | 35.80 395 | 83.81 375 | 28.13 391 | 27.94 395 | 34.53 395 | 11.41 398 | 76.70 391 | 21.45 394 | 54.65 367 | 34.90 395 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| lessismore_v0 | | | | | 79.98 338 | 80.59 363 | 58.34 374 | | 80.87 381 | | 58.49 369 | 83.46 339 | 43.10 355 | 93.89 324 | 63.11 329 | 48.68 379 | 87.72 315 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 327 | 69.57 334 | 83.37 318 | 80.54 364 | 71.82 316 | 93.60 278 | 88.22 356 | 62.37 364 | 61.98 358 | 83.15 341 | 35.31 375 | 95.47 279 | 45.08 380 | 75.88 277 | 82.82 363 |
|
| testgi | | | 74.88 318 | 73.40 318 | 79.32 342 | 80.13 365 | 61.75 364 | 93.21 289 | 86.64 365 | 79.49 265 | 66.56 339 | 91.06 233 | 35.51 374 | 88.67 367 | 56.79 353 | 71.25 299 | 87.56 321 |
|
| CMPMVS |  | 54.94 21 | 75.71 315 | 74.56 310 | 79.17 343 | 79.69 366 | 55.98 377 | 89.59 324 | 93.30 290 | 60.28 374 | 53.85 378 | 89.07 260 | 47.68 343 | 96.33 234 | 76.55 241 | 81.02 241 | 85.22 350 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LF4IMVS | | | 72.36 330 | 70.82 328 | 76.95 350 | 79.18 367 | 56.33 376 | 86.12 353 | 86.11 367 | 69.30 350 | 63.06 353 | 86.66 297 | 33.03 378 | 92.25 342 | 65.33 318 | 68.64 323 | 82.28 369 |
|
| pmmvs6 | | | 74.65 319 | 71.67 325 | 83.60 316 | 79.13 368 | 69.94 329 | 93.31 287 | 90.88 333 | 61.05 373 | 65.83 341 | 84.15 334 | 43.43 352 | 94.83 306 | 66.62 310 | 60.63 360 | 86.02 343 |
|
| DeepMVS_CX |  | | | | 64.06 368 | 78.53 369 | 43.26 393 | | 68.11 397 | 69.94 347 | 38.55 387 | 76.14 367 | 18.53 389 | 79.34 386 | 43.72 381 | 41.62 389 | 69.57 383 |
|
| CL-MVSNet_self_test | | | 75.81 313 | 74.14 315 | 80.83 335 | 78.33 370 | 67.79 341 | 94.22 265 | 93.52 280 | 77.28 296 | 69.82 322 | 81.54 348 | 61.47 264 | 89.22 365 | 57.59 348 | 53.51 371 | 85.48 349 |
|
| test20.03 | | | 72.36 330 | 71.15 327 | 75.98 355 | 77.79 371 | 59.16 373 | 92.40 301 | 89.35 345 | 74.09 320 | 61.50 360 | 84.32 332 | 48.09 337 | 85.54 380 | 50.63 369 | 62.15 358 | 83.24 361 |
|
| UnsupCasMVSNet_eth | | | 73.25 325 | 70.57 330 | 81.30 330 | 77.53 372 | 66.33 349 | 87.24 344 | 93.89 259 | 80.38 246 | 57.90 372 | 81.59 347 | 42.91 357 | 90.56 360 | 65.18 319 | 48.51 380 | 87.01 330 |
|
| DSMNet-mixed | | | 73.13 326 | 72.45 322 | 75.19 357 | 77.51 373 | 46.82 387 | 85.09 359 | 82.01 380 | 67.61 356 | 69.27 326 | 81.33 349 | 50.89 327 | 86.28 377 | 54.54 359 | 83.80 219 | 92.46 236 |
|
| Patchmatch-RL test | | | 76.65 309 | 74.01 316 | 84.55 302 | 77.37 374 | 64.23 354 | 78.49 377 | 82.84 378 | 78.48 282 | 64.63 346 | 73.40 374 | 76.05 132 | 91.70 351 | 76.99 236 | 57.84 364 | 97.72 105 |
|
| Anonymous20240521 | | | 72.06 332 | 69.91 333 | 78.50 346 | 77.11 375 | 61.67 366 | 91.62 312 | 90.97 331 | 65.52 359 | 62.37 356 | 79.05 359 | 36.32 370 | 90.96 357 | 57.75 347 | 68.52 324 | 82.87 362 |
|
| test_method | | | 56.77 349 | 54.53 353 | 63.49 369 | 76.49 376 | 40.70 395 | 75.68 382 | 74.24 389 | 19.47 397 | 48.73 380 | 71.89 380 | 19.31 388 | 65.80 397 | 57.46 349 | 47.51 383 | 83.97 359 |
|
| MIMVSNet1 | | | 69.44 338 | 66.65 342 | 77.84 347 | 76.48 377 | 62.84 362 | 87.42 342 | 88.97 349 | 66.96 357 | 57.75 373 | 79.72 358 | 32.77 379 | 85.83 379 | 46.32 378 | 63.42 354 | 84.85 353 |
|
| pmmvs-eth3d | | | 73.59 322 | 70.66 329 | 82.38 325 | 76.40 378 | 73.38 296 | 89.39 328 | 89.43 344 | 72.69 333 | 60.34 365 | 77.79 362 | 46.43 346 | 91.26 355 | 66.42 314 | 57.06 365 | 82.51 366 |
|
| new_pmnet | | | 66.18 344 | 63.18 347 | 75.18 358 | 76.27 379 | 61.74 365 | 83.79 364 | 84.66 371 | 56.64 383 | 51.57 379 | 71.85 381 | 31.29 381 | 87.93 369 | 49.98 371 | 62.55 356 | 75.86 380 |
|
| KD-MVS_self_test | | | 70.97 336 | 69.31 336 | 75.95 356 | 76.24 380 | 55.39 381 | 87.45 341 | 90.94 332 | 70.20 346 | 62.96 355 | 77.48 363 | 44.01 349 | 88.09 368 | 61.25 336 | 53.26 372 | 84.37 356 |
|
| UnsupCasMVSNet_bld | | | 68.60 342 | 64.50 346 | 80.92 334 | 74.63 381 | 67.80 340 | 83.97 363 | 92.94 301 | 65.12 360 | 54.63 377 | 68.23 383 | 35.97 372 | 92.17 345 | 60.13 338 | 44.83 384 | 82.78 364 |
|
| PM-MVS | | | 69.32 339 | 66.93 341 | 76.49 352 | 73.60 382 | 55.84 378 | 85.91 354 | 79.32 385 | 74.72 316 | 61.09 362 | 78.18 361 | 21.76 387 | 91.10 356 | 70.86 290 | 56.90 366 | 82.51 366 |
|
| new-patchmatchnet | | | 68.85 341 | 65.93 343 | 77.61 349 | 73.57 383 | 63.94 357 | 90.11 323 | 88.73 353 | 71.62 340 | 55.08 376 | 73.60 373 | 40.84 364 | 87.22 376 | 51.35 367 | 48.49 381 | 81.67 374 |
|
| WB-MVS | | | 57.26 348 | 56.22 351 | 60.39 373 | 69.29 384 | 35.91 400 | 86.39 352 | 70.06 393 | 59.84 378 | 46.46 383 | 72.71 376 | 51.18 326 | 78.11 387 | 15.19 397 | 34.89 392 | 67.14 386 |
|
| test_fmvs3 | | | 69.56 337 | 69.19 337 | 70.67 360 | 69.01 385 | 47.05 386 | 90.87 318 | 86.81 363 | 71.31 342 | 66.79 336 | 77.15 364 | 16.40 391 | 83.17 383 | 81.84 192 | 62.51 357 | 81.79 373 |
|
| SSC-MVS | | | 56.01 351 | 54.96 352 | 59.17 374 | 68.42 386 | 34.13 401 | 84.98 360 | 69.23 394 | 58.08 382 | 45.36 384 | 71.67 382 | 50.30 332 | 77.46 388 | 14.28 398 | 32.33 393 | 65.91 387 |
|
| ambc | | | | | 76.02 354 | 68.11 387 | 51.43 383 | 64.97 391 | 89.59 341 | | 60.49 364 | 74.49 371 | 17.17 390 | 92.46 339 | 61.50 334 | 52.85 374 | 84.17 358 |
|
| APD_test1 | | | 56.56 350 | 53.58 354 | 65.50 364 | 67.93 388 | 46.51 389 | 77.24 381 | 72.95 390 | 38.09 388 | 42.75 386 | 75.17 368 | 13.38 394 | 82.78 384 | 40.19 385 | 54.53 368 | 67.23 385 |
|
| pmmvs3 | | | 65.75 345 | 62.18 348 | 76.45 353 | 67.12 389 | 64.54 352 | 88.68 332 | 85.05 370 | 54.77 385 | 57.54 374 | 73.79 372 | 29.40 383 | 86.21 378 | 55.49 358 | 47.77 382 | 78.62 377 |
|
| TDRefinement | | | 69.20 340 | 65.78 344 | 79.48 340 | 66.04 390 | 62.21 363 | 88.21 335 | 86.12 366 | 62.92 363 | 61.03 363 | 85.61 314 | 33.23 377 | 94.16 320 | 55.82 357 | 53.02 373 | 82.08 370 |
|
| mvsany_test3 | | | 67.19 343 | 65.34 345 | 72.72 359 | 63.08 391 | 48.57 385 | 83.12 366 | 78.09 386 | 72.07 336 | 61.21 361 | 77.11 365 | 22.94 386 | 87.78 372 | 78.59 219 | 51.88 376 | 81.80 372 |
|
| test_f | | | 64.01 346 | 62.13 349 | 69.65 361 | 63.00 392 | 45.30 392 | 83.66 365 | 80.68 382 | 61.30 370 | 55.70 375 | 72.62 377 | 14.23 393 | 84.64 381 | 69.84 295 | 58.11 363 | 79.00 376 |
|
| test_vis3_rt | | | 54.10 353 | 51.04 356 | 63.27 370 | 58.16 393 | 46.08 391 | 84.17 362 | 49.32 405 | 56.48 384 | 36.56 389 | 49.48 392 | 8.03 401 | 91.91 348 | 67.29 306 | 49.87 377 | 51.82 391 |
|
| FPMVS | | | 55.09 352 | 52.93 355 | 61.57 371 | 55.98 394 | 40.51 396 | 83.11 367 | 83.41 377 | 37.61 389 | 34.95 390 | 71.95 379 | 14.40 392 | 76.95 389 | 29.81 389 | 65.16 347 | 67.25 384 |
|
| PMMVS2 | | | 50.90 356 | 46.31 359 | 64.67 366 | 55.53 395 | 46.67 388 | 77.30 380 | 71.02 392 | 40.89 387 | 34.16 391 | 59.32 386 | 9.83 399 | 76.14 392 | 40.09 386 | 28.63 394 | 71.21 381 |
|
| wuyk23d | | | 14.10 367 | 13.89 370 | 14.72 383 | 55.23 396 | 22.91 407 | 33.83 396 | 3.56 407 | 4.94 400 | 4.11 401 | 2.28 403 | 2.06 406 | 19.66 402 | 10.23 401 | 8.74 400 | 1.59 400 |
|
| E-PMN | | | 32.70 364 | 32.39 366 | 33.65 381 | 53.35 397 | 25.70 405 | 74.07 385 | 53.33 403 | 21.08 395 | 17.17 399 | 33.63 397 | 11.85 397 | 54.84 399 | 12.98 399 | 14.04 396 | 20.42 396 |
|
| testf1 | | | 45.70 358 | 42.41 360 | 55.58 375 | 53.29 398 | 40.02 397 | 68.96 389 | 62.67 399 | 27.45 392 | 29.85 392 | 61.58 384 | 5.98 402 | 73.83 394 | 28.49 392 | 43.46 387 | 52.90 389 |
|
| APD_test2 | | | 45.70 358 | 42.41 360 | 55.58 375 | 53.29 398 | 40.02 397 | 68.96 389 | 62.67 399 | 27.45 392 | 29.85 392 | 61.58 384 | 5.98 402 | 73.83 394 | 28.49 392 | 43.46 387 | 52.90 389 |
|
| EMVS | | | 31.70 365 | 31.45 367 | 32.48 382 | 50.72 400 | 23.95 406 | 74.78 384 | 52.30 404 | 20.36 396 | 16.08 400 | 31.48 398 | 12.80 395 | 53.60 400 | 11.39 400 | 13.10 399 | 19.88 397 |
|
| LCM-MVSNet | | | 52.52 354 | 48.24 357 | 65.35 365 | 47.63 401 | 41.45 394 | 72.55 387 | 83.62 376 | 31.75 390 | 37.66 388 | 57.92 388 | 9.19 400 | 76.76 390 | 49.26 373 | 44.60 385 | 77.84 378 |
|
| MVE |  | 35.65 22 | 33.85 363 | 29.49 368 | 46.92 379 | 41.86 402 | 36.28 399 | 50.45 394 | 56.52 402 | 18.75 398 | 18.28 397 | 37.84 394 | 2.41 405 | 58.41 398 | 18.71 395 | 20.62 395 | 46.06 393 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 46.22 357 | 41.28 364 | 61.04 372 | 39.91 403 | 46.25 390 | 70.59 388 | 76.18 388 | 58.87 380 | 23.09 396 | 48.00 393 | 12.58 396 | 66.54 396 | 28.65 391 | 13.62 397 | 70.35 382 |
|
| PMVS |  | 34.80 23 | 39.19 362 | 35.53 365 | 50.18 378 | 29.72 404 | 30.30 403 | 59.60 393 | 66.20 398 | 26.06 394 | 17.91 398 | 49.53 391 | 3.12 404 | 74.09 393 | 18.19 396 | 49.40 378 | 46.14 392 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 41.54 361 | 41.93 363 | 40.38 380 | 20.10 405 | 26.84 404 | 61.93 392 | 59.09 401 | 14.81 399 | 28.51 394 | 80.58 352 | 35.53 373 | 48.33 401 | 63.70 326 | 13.11 398 | 45.96 394 |
|
| testmvs | | | 9.92 368 | 12.94 371 | 0.84 385 | 0.65 406 | 0.29 410 | 93.78 274 | 0.39 408 | 0.42 401 | 2.85 402 | 15.84 401 | 0.17 408 | 0.30 404 | 2.18 402 | 0.21 401 | 1.91 399 |
|
| test123 | | | 9.07 369 | 11.73 372 | 1.11 384 | 0.50 407 | 0.77 409 | 89.44 327 | 0.20 409 | 0.34 402 | 2.15 403 | 10.72 402 | 0.34 407 | 0.32 403 | 1.79 403 | 0.08 402 | 2.23 398 |
|
| test_blank | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| eth-test2 | | | | | | 0.00 408 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 408 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| DCPMVS | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| cdsmvs_eth3d_5k | | | 21.43 366 | 28.57 369 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 95.93 146 | 0.00 404 | 0.00 405 | 97.66 72 | 63.57 248 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| pcd_1.5k_mvsjas | | | 5.92 371 | 7.89 374 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 71.04 205 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet-low-res | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uncertanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| Regformer | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| ab-mvs-re | | | 8.11 370 | 10.81 373 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 97.30 94 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| MM | | | | | 96.15 8 | | 89.50 9 | 99.18 5 | 98.10 8 | 95.68 1 | 96.64 20 | 97.92 58 | 80.72 61 | 99.80 25 | 99.16 1 | 97.96 56 | 99.15 24 |
|
| WAC-MVS | | | | | | | 67.18 344 | | | | | | | | 49.00 374 | | |
|
| PC_three_1452 | | | | | | | | | | 91.12 35 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 21 | 98.96 3 | 99.37 1 | 99.70 3 |
|
| test_241102_TWO | | | | | | | | | 96.78 50 | 88.72 66 | 97.70 8 | 98.91 2 | 87.86 21 | 99.82 18 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| test_0728_THIRD | | | | | | | | | | 88.38 73 | 96.69 17 | 98.76 12 | 89.64 13 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 117 |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 103 | | | | 97.54 117 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 151 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 113 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 355 | | | | 30.24 399 | 73.77 174 | 95.07 301 | 73.89 268 | | |
|
| test_post | | | | | | | | | | | | 33.80 396 | 76.17 130 | 95.97 248 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 366 | 77.78 102 | 95.39 281 | | | |
|
| MTMP | | | | | | | | 97.53 90 | 68.16 396 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 39 | 99.03 13 | 98.31 62 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 58 | 99.00 15 | 98.57 46 |
|
| test_prior4 | | | | | | | 82.34 111 | 97.75 75 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 98.37 39 | | 86.08 119 | 94.57 49 | 98.02 51 | 83.14 48 | | 95.05 51 | 98.79 26 | |
|
| 旧先验2 | | | | | | | | 96.97 138 | | 74.06 321 | 96.10 27 | | | 97.76 160 | 88.38 133 | | |
|
| 新几何2 | | | | | | | | 96.42 176 | | | | | | | | | |
|
| 无先验 | | | | | | | | 96.87 145 | 96.78 50 | 77.39 293 | | | | 99.52 69 | 79.95 207 | | 98.43 55 |
|
| 原ACMM2 | | | | | | | | 96.84 146 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 243 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
| testdata1 | | | | | | | | 95.57 219 | | 87.44 94 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 209 | | | | | 97.30 189 | 87.08 144 | 82.82 230 | 90.96 244 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 183 | | | | | |
|
| plane_prior3 | | | | | | | 77.75 240 | | | 90.17 50 | 81.33 209 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 115 | | 89.89 53 | | | | | | | |
|
| plane_prior | | | | | | | 77.96 230 | 97.52 93 | | 90.36 48 | | | | | | 82.96 228 | |
|
| n2 | | | | | | | | | 0.00 410 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 410 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 384 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 93 | | | | | | | | |
|
| door | | | | | | | | | 80.13 383 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 78.48 210 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 140 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 194 | | | 97.32 187 | | | 91.13 242 |
|
| HQP3-MVS | | | | | | | | | 94.80 204 | | | | | | | 83.01 226 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 237 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 127 | 86.80 347 | | 80.65 237 | 85.65 156 | | 74.26 168 | | 76.52 242 | | 96.98 146 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 267 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 258 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 198 | | | | |
|