This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6498.51 3595.96 14380.57 23988.08 13697.63 7876.84 11699.89 785.67 15494.88 11698.13 74
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3195.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
AdaColmapbinary88.81 13787.61 14892.39 10899.33 479.95 17196.70 15995.58 16377.51 29283.05 18896.69 12161.90 26199.72 4384.29 16493.47 13797.50 123
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2994.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3894.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
ZD-MVS99.09 883.22 9796.60 8282.88 20093.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5688.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
MSC_two_6792asdad97.14 399.05 992.19 496.83 4799.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4799.81 2198.08 1498.81 2499.43 11
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9788.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 985.18 5499.11 1496.78 5088.75 6497.65 1198.91 287.69 22
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5699.84 1297.90 1798.85 2199.45 10
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6299.12 1196.78 5088.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
IU-MVS99.03 1585.34 4996.86 4692.05 2798.74 198.15 1198.97 1799.42 13
test_241102_ONE99.03 1585.03 6296.78 5088.72 6697.79 698.90 588.48 1799.82 18
test_one_060198.91 1884.56 7296.70 6688.06 7996.57 2298.77 1088.04 20
test_part298.90 1985.14 6096.07 28
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6797.20 11396.20 12487.73 8888.40 13198.12 4378.71 8799.76 3187.99 13696.28 9798.74 35
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7693.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9398.04 5796.41 10385.79 12595.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6797.77 7296.74 6186.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9697.21 11196.09 13282.41 21194.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13997.58 8696.70 6685.20 13891.75 8397.97 5778.47 8999.71 4590.95 9598.41 4198.12 75
region2R92.72 5492.70 5292.79 9198.68 2680.53 15997.53 9096.51 9185.22 13691.94 8197.98 5577.26 10899.67 5390.83 9998.37 4498.18 69
test_prior93.09 7998.68 2681.91 11996.40 10599.06 10498.29 64
ACMMPR92.69 5692.67 5392.75 9298.66 2880.57 15597.58 8696.69 6885.20 13891.57 8597.92 5877.01 11399.67 5390.95 9598.41 4198.00 84
API-MVS90.18 11088.97 12293.80 5098.66 2882.95 10197.50 9495.63 16275.16 31286.31 15197.69 7072.49 18899.90 581.26 19596.07 10298.56 47
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8197.67 8196.26 11883.00 19793.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
TEST998.64 3183.71 8597.82 6896.65 7384.29 16595.16 3598.09 4584.39 3799.36 81
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8597.82 6896.65 7384.50 15695.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
test_898.63 3383.64 8897.81 7096.63 7884.50 15695.10 3998.11 4484.33 3899.23 86
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4192.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
agg_prior98.59 3583.13 9896.56 8794.19 5399.16 96
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15497.47 9597.18 2677.06 30084.64 16997.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
XVS92.69 5692.71 5192.63 9998.52 3780.29 16297.37 10596.44 9987.04 10591.38 8797.83 6677.24 11099.59 6090.46 10598.07 5298.02 79
X-MVStestdata86.26 18684.14 20592.63 9998.52 3780.29 16297.37 10596.44 9987.04 10591.38 8720.73 40077.24 11099.59 6090.46 10598.07 5298.02 79
FOURS198.51 3978.01 22898.13 4996.21 12383.04 19594.39 51
CP-MVS92.54 6192.60 5592.34 10998.50 4079.90 17398.40 3896.40 10584.75 14790.48 10498.09 4577.40 10799.21 8891.15 9498.23 5097.92 90
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12595.03 24496.13 12984.65 15286.10 15497.65 7679.24 7899.75 3683.20 18396.88 8698.56 47
MAR-MVS90.63 10190.22 9991.86 13498.47 4278.20 22497.18 11596.61 7983.87 17788.18 13598.18 3868.71 21799.75 3683.66 17797.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
patch_mono-295.14 1296.08 792.33 11198.44 4377.84 23698.43 3697.21 2392.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
mPP-MVS91.88 7191.82 7092.07 12598.38 4478.63 20897.29 10896.09 13285.12 14088.45 13097.66 7275.53 14299.68 5189.83 11598.02 5597.88 91
SR-MVS92.16 6692.27 6191.83 13798.37 4578.41 21496.67 16095.76 15482.19 21591.97 7998.07 4976.44 12498.64 12393.71 6697.27 7898.45 54
test1294.25 3798.34 4685.55 4696.35 11292.36 7380.84 5999.22 8798.31 4797.98 86
CPTT-MVS89.72 11889.87 11189.29 20698.33 4773.30 29897.70 7895.35 18075.68 30887.40 14097.44 8870.43 21098.25 14389.56 12096.90 8496.33 172
MSP-MVS95.62 796.54 192.86 8898.31 4880.10 17097.42 10296.78 5092.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 8098.64 3196.93 4190.71 4093.08 6798.70 1579.98 7199.21 8894.12 6299.07 1198.63 44
PGM-MVS91.93 7091.80 7192.32 11398.27 5079.74 17995.28 22897.27 2183.83 17890.89 9997.78 6876.12 13199.56 6688.82 12797.93 6097.66 110
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12497.63 8296.50 9385.00 14491.05 9597.74 6978.38 9099.80 2590.48 10498.34 4698.07 77
save fliter98.24 5183.34 9498.61 3396.57 8591.32 32
114514_t88.79 13987.57 14992.45 10498.21 5381.74 12796.99 13395.45 17275.16 31282.48 19195.69 13968.59 21898.50 13080.33 20195.18 11497.10 143
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13197.40 10496.38 10884.71 15090.90 9897.40 9077.55 10599.76 3189.75 11797.74 6397.72 105
DP-MVS81.47 26578.28 28291.04 16098.14 5578.48 21095.09 24386.97 36161.14 37271.12 31492.78 20959.59 27299.38 7853.11 36386.61 19695.27 197
MP-MVScopyleft92.61 5992.67 5392.42 10798.13 5679.73 18097.33 10796.20 12485.63 12790.53 10297.66 7278.14 9599.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
9.1494.26 2998.10 5798.14 4696.52 9084.74 14894.83 4698.80 782.80 5299.37 8095.95 4098.42 40
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12698.64 3197.13 2782.60 20794.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5685.32 13397.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PLCcopyleft83.97 788.00 15987.38 15589.83 19898.02 5976.46 26297.16 11994.43 22979.26 27181.98 20296.28 12669.36 21599.27 8477.71 22792.25 15393.77 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA92.45 6292.31 6092.86 8897.90 6180.85 14892.88 29596.33 11387.92 8390.20 10798.18 3876.71 12199.76 3192.57 8398.09 5197.96 89
APD-MVS_3200maxsize91.23 8891.35 7890.89 16697.89 6276.35 26596.30 18395.52 16779.82 25891.03 9697.88 6374.70 16198.54 12892.11 8796.89 8597.77 102
HPM-MVScopyleft91.62 7891.53 7691.89 13397.88 6379.22 19296.99 13395.73 15782.07 21789.50 11897.19 9975.59 14098.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 7097.76 7496.19 12689.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
dcpmvs_293.10 4393.46 4192.02 12997.77 6579.73 18094.82 24893.86 26186.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
原ACMM191.22 15697.77 6578.10 22696.61 7981.05 22991.28 9297.42 8977.92 9998.98 10879.85 20998.51 3496.59 163
SR-MVS-dyc-post91.29 8691.45 7790.80 16897.76 6776.03 27096.20 19095.44 17380.56 24090.72 10097.84 6475.76 13798.61 12491.99 8896.79 8997.75 103
RE-MVS-def91.18 8297.76 6776.03 27096.20 19095.44 17380.56 24090.72 10097.84 6473.36 18191.99 8896.79 8997.75 103
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7995.85 20896.42 10291.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast90.38 10890.17 10291.03 16197.61 7077.35 24897.15 12195.48 16979.51 26488.79 12596.90 10971.64 19998.81 11987.01 14797.44 7296.94 148
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12897.60 7181.17 13896.61 16196.87 4488.20 7789.19 11997.55 8478.69 8899.14 9790.29 11190.94 16395.80 182
CNLPA86.96 17385.37 18291.72 14097.59 7279.34 19097.21 11191.05 32974.22 31878.90 23496.75 11967.21 22698.95 11174.68 26090.77 16496.88 153
ACMMPcopyleft90.39 10689.97 10691.64 14297.58 7378.21 22396.78 15296.72 6484.73 14984.72 16797.23 9771.22 20299.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10184.02 17095.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10794.07 1095.34 3497.80 6776.83 11899.87 897.08 3097.64 6698.89 30
PVSNet_BlendedMVS90.05 11289.96 10790.33 18297.47 7683.86 8298.02 5896.73 6287.98 8189.53 11689.61 25676.42 12599.57 6494.29 5979.59 25387.57 320
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8299.32 196.73 6291.02 3889.53 11696.21 12776.42 12599.57 6494.29 5995.81 10997.29 135
新几何193.12 7797.44 7881.60 13396.71 6574.54 31791.22 9397.57 8079.13 8099.51 7177.40 23498.46 3898.26 67
LS3D82.22 25579.94 27089.06 20997.43 7974.06 29493.20 29092.05 31261.90 36673.33 29795.21 15359.35 27599.21 8854.54 35992.48 15093.90 223
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 23089.85 10896.14 12875.61 13898.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 23089.85 10896.14 12875.61 13898.81 11990.42 10988.56 18098.74 35
EI-MVSNet-UG-set91.35 8591.22 7991.73 13997.39 8280.68 15296.47 17096.83 4787.92 8388.30 13497.36 9177.84 10099.13 9989.43 12289.45 17095.37 193
旧先验197.39 8279.58 18496.54 8898.08 4884.00 4297.42 7497.62 114
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 10098.10 5195.29 18391.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10297.56 8898.27 689.16 6189.71 11197.14 10079.77 7399.56 6693.65 6797.94 5898.02 79
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10696.44 17396.04 13784.68 15189.12 12198.37 2977.48 10699.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7498.29 4197.64 1594.57 695.36 3396.88 11179.96 7299.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7796.82 14996.65 7386.24 11594.27 5297.99 5277.94 9799.83 1693.39 6998.57 3398.39 57
LFMVS89.27 12787.64 14594.16 4397.16 8885.52 4797.18 11594.66 21379.17 27289.63 11496.57 12255.35 31198.22 14489.52 12189.54 16998.74 35
DeepPCF-MVS89.82 194.61 2196.17 589.91 19597.09 9070.21 32898.99 2296.69 6895.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21398.95 11193.39 6988.87 17698.43 55
TAPA-MVS81.61 1285.02 20683.67 20989.06 20996.79 9273.27 30195.92 20294.79 20674.81 31580.47 21896.83 11371.07 20498.19 14649.82 37292.57 14795.71 185
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521184.41 21781.93 23991.85 13696.78 9378.41 21497.44 9891.34 32470.29 34584.06 17294.26 17941.09 36398.96 10979.46 21182.65 23398.17 70
CS-MVS-test92.98 4593.67 3590.90 16596.52 9476.87 25598.68 2894.73 20890.36 4894.84 4597.89 6277.94 9797.15 20094.28 6197.80 6298.70 41
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3394.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thres20088.92 13387.65 14492.73 9496.30 9685.62 4597.85 6698.86 184.38 16084.82 16593.99 18775.12 15698.01 14970.86 29086.67 19594.56 213
CS-MVS92.73 5293.48 4090.48 17796.27 9775.93 27598.55 3494.93 19589.32 5894.54 5097.67 7178.91 8397.02 20493.80 6497.32 7798.49 51
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3593.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
tfpn200view988.48 14687.15 15992.47 10396.21 9985.30 5297.44 9898.85 283.37 18783.99 17493.82 19075.36 14997.93 15169.04 29886.24 20294.17 215
thres40088.42 14987.15 15992.23 11796.21 9985.30 5297.44 9898.85 283.37 18783.99 17493.82 19075.36 14997.93 15169.04 29886.24 20293.45 231
test22296.15 10178.41 21495.87 20696.46 9771.97 33789.66 11397.45 8576.33 12898.24 4998.30 63
HY-MVS84.06 691.63 7790.37 9795.39 1796.12 10288.25 1590.22 32297.58 1688.33 7590.50 10391.96 21979.26 7799.06 10490.29 11189.07 17398.88 31
thres100view90088.30 15286.95 16592.33 11196.10 10384.90 6697.14 12298.85 282.69 20583.41 18293.66 19475.43 14697.93 15169.04 29886.24 20294.17 215
thres600view788.06 15786.70 16992.15 12396.10 10385.17 5897.14 12298.85 282.70 20483.41 18293.66 19475.43 14697.82 15867.13 30785.88 20693.45 231
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7699.06 10489.57 11988.73 17898.73 39
MVSTER89.25 12888.92 12590.24 18495.98 10684.66 6996.79 15195.36 17887.19 10380.33 22190.61 24290.02 1295.97 24885.38 15778.64 26290.09 261
testdata90.13 18795.92 10774.17 29296.49 9673.49 32694.82 4797.99 5278.80 8697.93 15183.53 18097.52 6998.29 64
PatchMatch-RL85.00 20783.66 21089.02 21195.86 10874.55 28992.49 29993.60 27779.30 26979.29 23391.47 22558.53 28298.45 13570.22 29492.17 15594.07 220
iter_conf0590.14 11189.79 11291.17 15795.85 10986.93 2897.68 8088.67 35589.93 5281.73 20892.80 20690.37 896.03 24390.44 10780.65 24690.56 249
testing22291.09 9190.49 9392.87 8795.82 11085.04 6196.51 16897.28 2086.05 12089.13 12095.34 14980.16 7096.62 22685.82 15288.31 18396.96 147
canonicalmvs92.27 6591.22 7995.41 1695.80 11188.31 1497.09 12994.64 21688.49 7192.99 6997.31 9272.68 18698.57 12793.38 7188.58 17999.36 16
Anonymous2024052983.15 23880.60 25990.80 16895.74 11278.27 21896.81 15094.92 19660.10 37681.89 20492.54 21045.82 34798.82 11879.25 21478.32 26995.31 195
MVS_111021_LR91.60 7991.64 7591.47 14895.74 11278.79 20596.15 19296.77 5688.49 7188.64 12897.07 10572.33 19099.19 9393.13 7796.48 9696.43 167
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11492.35 298.21 4495.79 15392.42 2196.24 2698.18 3871.04 20599.17 9596.77 3397.39 7596.79 155
iter_conf_final89.51 12189.21 11890.39 17995.60 11584.44 7397.22 10989.09 34889.11 6282.07 20192.80 20687.03 2596.03 24389.10 12580.89 24290.70 247
Anonymous2023121179.72 28377.19 29187.33 25195.59 11677.16 25395.18 23794.18 24459.31 37972.57 30586.20 30847.89 34195.66 26874.53 26469.24 31989.18 279
alignmvs92.97 4692.26 6295.12 1995.54 11787.77 2098.67 2996.38 10888.04 8093.01 6897.45 8579.20 7998.60 12593.25 7488.76 17798.99 29
PVSNet82.34 989.02 13087.79 14292.71 9595.49 11881.50 13497.70 7897.29 1987.76 8785.47 15895.12 16056.90 30098.90 11580.33 20194.02 12797.71 107
tpmvs83.04 24180.77 25489.84 19795.43 11977.96 23085.59 35695.32 18275.31 31176.27 26683.70 33773.89 17397.41 18259.53 33981.93 24094.14 217
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 12081.35 13699.02 2096.59 8389.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
EPMVS87.47 16985.90 17592.18 12095.41 12082.26 11387.00 34696.28 11685.88 12484.23 17185.57 31575.07 15796.26 23671.14 28892.50 14998.03 78
BH-RMVSNet86.84 17685.28 18391.49 14795.35 12280.26 16596.95 14092.21 31082.86 20181.77 20795.46 14759.34 27697.64 16469.79 29693.81 13296.57 164
OMC-MVS88.80 13888.16 13690.72 17195.30 12377.92 23394.81 24994.51 22386.80 11084.97 16396.85 11267.53 22298.60 12585.08 15887.62 18895.63 186
test_fmvsm_n_192094.81 1895.60 1092.45 10495.29 12480.96 14599.29 297.21 2394.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 162
MVS_Test90.29 10989.18 11993.62 5995.23 12584.93 6594.41 25594.66 21384.31 16190.37 10691.02 23475.13 15597.82 15883.11 18594.42 12398.12 75
F-COLMAP84.50 21683.44 21787.67 24095.22 12672.22 30795.95 20093.78 26875.74 30776.30 26595.18 15659.50 27498.45 13572.67 27686.59 19792.35 239
baseline188.85 13687.49 15192.93 8695.21 12786.85 2995.47 22294.61 21887.29 9883.11 18794.99 16580.70 6296.89 21282.28 18973.72 28795.05 200
CHOSEN 1792x268891.07 9390.21 10093.64 5795.18 12883.53 9096.26 18596.13 12988.92 6384.90 16493.10 20372.86 18499.62 5888.86 12695.67 11097.79 101
UGNet87.73 16486.55 17091.27 15395.16 12979.11 19696.35 18096.23 12188.14 7887.83 13890.48 24350.65 32899.09 10280.13 20694.03 12695.60 187
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS88.28 15387.02 16492.06 12695.09 13080.18 16897.55 8994.45 22883.09 19389.10 12295.92 13447.97 33998.49 13193.08 7886.91 19497.52 122
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9695.09 13082.40 11097.77 7295.87 15088.26 7686.39 15093.94 18876.77 11999.27 8488.80 12894.00 12996.31 173
h-mvs3389.30 12688.95 12490.36 18195.07 13276.04 26996.96 13997.11 3090.39 4692.22 7695.10 16174.70 16198.86 11693.14 7565.89 34596.16 175
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13292.02 698.19 4595.68 15992.06 2596.01 3098.14 4270.83 20898.96 10996.74 3596.57 9496.76 158
cl2285.11 20584.17 20387.92 23595.06 13478.82 20295.51 22094.22 24179.74 26076.77 25587.92 27875.96 13395.68 26779.93 20872.42 29489.27 277
BH-w/o88.24 15487.47 15390.54 17695.03 13578.54 20997.41 10393.82 26384.08 16878.23 24194.51 17569.34 21697.21 19480.21 20594.58 12195.87 181
CHOSEN 280x42091.71 7691.85 6991.29 15294.94 13682.69 10387.89 33996.17 12785.94 12287.27 14394.31 17790.27 995.65 27094.04 6395.86 10795.53 189
GG-mvs-BLEND93.49 6694.94 13686.26 3381.62 36997.00 3488.32 13394.30 17891.23 596.21 23988.49 13197.43 7398.00 84
HyFIR lowres test89.36 12488.60 12891.63 14494.91 13880.76 15195.60 21895.53 16582.56 20884.03 17391.24 23178.03 9696.81 21887.07 14688.41 18297.32 132
MVS_030495.36 995.20 1695.85 1194.89 13989.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
miper_enhance_ethall85.95 19185.20 18488.19 23194.85 14079.76 17696.00 19794.06 25182.98 19877.74 24588.76 26479.42 7495.46 28080.58 19972.42 29489.36 275
mvs_anonymous88.68 14087.62 14791.86 13494.80 14181.69 13093.53 28094.92 19682.03 21878.87 23690.43 24575.77 13695.34 28485.04 15993.16 14298.55 49
CANet_DTU90.98 9490.04 10493.83 4994.76 14286.23 3496.32 18293.12 29893.11 1693.71 5896.82 11563.08 25199.48 7384.29 16495.12 11595.77 183
PMMVS89.46 12389.92 10988.06 23294.64 14369.57 33496.22 18794.95 19487.27 9991.37 8996.54 12365.88 23397.39 18488.54 12993.89 13097.23 136
TR-MVS86.30 18584.93 19290.42 17894.63 14477.58 24396.57 16393.82 26380.30 24882.42 19395.16 15758.74 28097.55 17174.88 25887.82 18796.13 177
EPNet_dtu87.65 16687.89 13986.93 26194.57 14571.37 32296.72 15596.50 9388.56 7087.12 14695.02 16375.91 13594.01 32366.62 31090.00 16695.42 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10994.56 14682.01 11499.07 1597.13 2792.09 2396.25 2598.53 2276.47 12399.80 2598.39 894.71 11995.22 198
FMVSNet384.71 21082.71 22890.70 17294.55 14787.71 2195.92 20294.67 21281.73 22275.82 27588.08 27666.99 22794.47 31571.23 28575.38 28089.91 265
ETV-MVS92.72 5492.87 4992.28 11594.54 14881.89 12097.98 5995.21 18689.77 5593.11 6696.83 11377.23 11297.50 17795.74 4395.38 11397.44 126
EIA-MVS91.73 7392.05 6890.78 17094.52 14976.40 26498.06 5595.34 18189.19 6088.90 12497.28 9677.56 10497.73 16190.77 10096.86 8898.20 68
BH-untuned86.95 17485.94 17489.99 19094.52 14977.46 24596.78 15293.37 28881.80 22076.62 25893.81 19266.64 23097.02 20476.06 24793.88 13195.48 191
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14981.89 12095.95 20095.98 14190.76 3983.76 18096.76 11773.24 18299.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
gg-mvs-nofinetune85.48 20082.90 22493.24 7394.51 15285.82 4179.22 37396.97 3761.19 37187.33 14253.01 38990.58 696.07 24286.07 15197.23 7997.81 100
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15384.30 7699.14 996.00 13991.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
3Dnovator+82.88 889.63 12087.85 14094.99 2194.49 15486.76 3197.84 6795.74 15686.10 11875.47 28096.02 13165.00 24199.51 7182.91 18797.07 8298.72 40
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15584.61 7099.13 1096.15 12892.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
ET-MVSNet_ETH3D90.01 11389.03 12092.95 8494.38 15686.77 3098.14 4696.31 11589.30 5963.33 35196.72 12090.09 1193.63 33090.70 10282.29 23798.46 53
tpmrst88.36 15087.38 15591.31 15094.36 15779.92 17287.32 34395.26 18585.32 13388.34 13286.13 30980.60 6396.70 22283.78 17185.34 21397.30 134
FE-MVS86.06 18984.15 20491.78 13894.33 15879.81 17484.58 36196.61 7976.69 30285.00 16287.38 28470.71 20998.37 13970.39 29391.70 15997.17 141
MVS90.60 10288.64 12796.50 594.25 15990.53 893.33 28497.21 2377.59 29178.88 23597.31 9271.52 20099.69 4989.60 11898.03 5499.27 20
dp84.30 21982.31 23390.28 18394.24 16077.97 22986.57 34995.53 16579.94 25780.75 21585.16 32371.49 20196.39 23263.73 32583.36 22396.48 166
FA-MVS(test-final)87.71 16586.23 17292.17 12194.19 16180.55 15687.16 34596.07 13582.12 21685.98 15588.35 27172.04 19598.49 13180.26 20389.87 16797.48 125
sss90.87 9889.96 10793.60 6094.15 16283.84 8497.14 12298.13 785.93 12389.68 11296.09 13071.67 19799.30 8387.69 13989.16 17297.66 110
SDMVSNet87.02 17285.61 17791.24 15494.14 16383.30 9593.88 27295.98 14184.30 16379.63 22992.01 21558.23 28497.68 16290.28 11382.02 23892.75 234
sd_testset84.62 21283.11 22189.17 20794.14 16377.78 23891.54 31394.38 23284.30 16379.63 22992.01 21552.28 32396.98 20677.67 22882.02 23892.75 234
PatchmatchNetpermissive86.83 17785.12 18891.95 13194.12 16582.27 11286.55 35095.64 16184.59 15482.98 18984.99 32777.26 10895.96 25168.61 30191.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.69 20894.09 16681.01 14286.78 34896.09 13283.81 17984.75 16684.32 33274.44 16796.54 22763.88 32485.07 214
UA-Net88.92 13388.48 13190.24 18494.06 16777.18 25293.04 29294.66 21387.39 9691.09 9493.89 18974.92 15898.18 14775.83 25091.43 16095.35 194
Fast-Effi-MVS+87.93 16186.94 16690.92 16494.04 16879.16 19498.26 4293.72 27281.29 22683.94 17792.90 20469.83 21496.68 22376.70 24091.74 15896.93 149
QAPM86.88 17584.51 19693.98 4494.04 16885.89 4097.19 11496.05 13673.62 32375.12 28395.62 14262.02 25899.74 3870.88 28996.06 10396.30 174
thisisatest051590.95 9690.26 9893.01 8294.03 17084.27 7897.91 6396.67 7083.18 19086.87 14895.51 14688.66 1697.85 15780.46 20089.01 17496.92 151
Vis-MVSNet (Re-imp)88.88 13588.87 12688.91 21393.89 17174.43 29096.93 14294.19 24384.39 15983.22 18595.67 14078.24 9294.70 30878.88 21894.40 12497.61 115
ADS-MVSNet279.57 28577.53 28885.71 28193.78 17272.13 30979.48 37186.11 36773.09 32980.14 22379.99 35662.15 25690.14 36459.49 34083.52 22094.85 205
ADS-MVSNet81.26 26878.36 28189.96 19393.78 17279.78 17579.48 37193.60 27773.09 32980.14 22379.99 35662.15 25695.24 29059.49 34083.52 22094.85 205
EPP-MVSNet89.76 11789.72 11389.87 19693.78 17276.02 27297.22 10996.51 9179.35 26685.11 16095.01 16484.82 3497.10 20287.46 14288.21 18596.50 165
3Dnovator82.32 1089.33 12587.64 14594.42 3393.73 17585.70 4397.73 7696.75 6086.73 11376.21 26895.93 13262.17 25599.68 5181.67 19397.81 6197.88 91
Effi-MVS+90.70 10089.90 11093.09 7993.61 17683.48 9195.20 23492.79 30383.22 18991.82 8295.70 13871.82 19697.48 17991.25 9393.67 13498.32 60
IS-MVSNet88.67 14188.16 13690.20 18693.61 17676.86 25696.77 15493.07 29984.02 17083.62 18195.60 14374.69 16496.24 23878.43 22293.66 13597.49 124
AUN-MVS86.25 18785.57 17888.26 22793.57 17873.38 29695.45 22395.88 14883.94 17485.47 15894.21 18173.70 17896.67 22483.54 17964.41 34994.73 211
test250690.96 9590.39 9592.65 9793.54 17982.46 10996.37 17897.35 1886.78 11187.55 13995.25 15077.83 10197.50 17784.07 16694.80 11797.98 86
ECVR-MVScopyleft88.35 15187.25 15791.65 14193.54 17979.40 18796.56 16590.78 33486.78 11185.57 15795.25 15057.25 29897.56 16984.73 16294.80 11797.98 86
hse-mvs288.22 15588.21 13488.25 22893.54 17973.41 29595.41 22595.89 14790.39 4692.22 7694.22 18074.70 16196.66 22593.14 7564.37 35094.69 212
LCM-MVSNet-Re83.75 22883.54 21484.39 30793.54 17964.14 35592.51 29884.03 37483.90 17666.14 34086.59 29867.36 22492.68 33784.89 16192.87 14496.35 169
EC-MVSNet91.73 7392.11 6690.58 17493.54 17977.77 23998.07 5494.40 23187.44 9492.99 6997.11 10374.59 16596.87 21493.75 6597.08 8197.11 142
tpm cat183.63 23081.38 24790.39 17993.53 18478.19 22585.56 35795.09 18970.78 34378.51 23883.28 34074.80 16097.03 20366.77 30884.05 21895.95 178
thisisatest053089.65 11989.02 12191.53 14693.46 18580.78 15096.52 16696.67 7081.69 22383.79 17994.90 16788.85 1597.68 16277.80 22387.49 19196.14 176
MSDG80.62 27777.77 28789.14 20893.43 18677.24 24991.89 30690.18 33869.86 34868.02 32891.94 22152.21 32498.84 11759.32 34283.12 22491.35 241
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11893.38 18781.71 12998.86 2496.98 3591.64 2996.85 1598.55 1975.58 14199.77 2997.88 1993.68 13395.18 199
ab-mvs87.08 17184.94 19193.48 6793.34 18883.67 8788.82 33095.70 15881.18 22784.55 17090.14 25162.72 25298.94 11385.49 15682.54 23497.85 95
131488.94 13287.20 15894.17 4193.21 18985.73 4293.33 28496.64 7682.89 19975.98 27196.36 12466.83 22999.39 7783.52 18196.02 10597.39 130
1112_ss88.60 14487.47 15392.00 13093.21 18980.97 14496.47 17092.46 30683.64 18480.86 21497.30 9480.24 6797.62 16577.60 22985.49 21097.40 129
GeoE86.36 18385.20 18489.83 19893.17 19176.13 26797.53 9092.11 31179.58 26380.99 21294.01 18666.60 23196.17 24173.48 27289.30 17197.20 140
test111188.11 15687.04 16391.35 14993.15 19278.79 20596.57 16390.78 33486.88 10985.04 16195.20 15457.23 29997.39 18483.88 16994.59 12097.87 93
Test_1112_low_res88.03 15886.73 16791.94 13293.15 19280.88 14796.44 17392.41 30883.59 18680.74 21691.16 23280.18 6897.59 16777.48 23285.40 21197.36 131
CostFormer89.08 12988.39 13291.15 15893.13 19479.15 19588.61 33396.11 13183.14 19189.58 11586.93 29383.83 4596.87 21488.22 13585.92 20597.42 127
IB-MVS85.34 488.67 14187.14 16193.26 7293.12 19584.32 7598.76 2697.27 2187.19 10379.36 23290.45 24483.92 4498.53 12984.41 16369.79 31396.93 149
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive91.17 8990.74 8792.44 10693.11 19682.50 10896.25 18693.62 27687.79 8690.40 10595.93 13273.44 18097.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051788.57 14588.19 13589.71 20293.00 19775.99 27395.67 21396.67 7080.78 23481.82 20594.40 17688.97 1497.58 16876.05 24886.31 19995.57 188
MVSFormer91.36 8490.57 9093.73 5493.00 19788.08 1794.80 25094.48 22480.74 23594.90 4397.13 10178.84 8495.10 29883.77 17297.46 7098.02 79
lupinMVS93.87 3493.58 3894.75 2793.00 19788.08 1799.15 795.50 16891.03 3794.90 4397.66 7278.84 8497.56 16994.64 5797.46 7098.62 45
casdiffmvs_mvgpermissive91.13 9090.45 9493.17 7692.99 20083.58 8997.46 9794.56 22187.69 8987.19 14594.98 16674.50 16697.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.79 16388.52 13085.62 28592.98 20164.31 35397.88 6592.42 30787.95 8292.24 7595.82 13547.94 34098.44 13795.31 5094.09 12594.09 219
tpm287.35 17086.26 17190.62 17392.93 20278.67 20788.06 33895.99 14079.33 26787.40 14086.43 30480.28 6696.40 23180.23 20485.73 20996.79 155
baseline90.76 9990.10 10392.74 9392.90 20382.56 10594.60 25294.56 22187.69 8989.06 12395.67 14073.76 17597.51 17690.43 10892.23 15498.16 71
test_fmvsmconf_n93.99 3294.36 2792.86 8892.82 20481.12 13999.26 396.37 11193.47 1395.16 3598.21 3679.00 8199.64 5598.21 1096.73 9297.83 97
casdiffmvspermissive90.95 9690.39 9592.63 9992.82 20482.53 10696.83 14794.47 22687.69 8988.47 12995.56 14574.04 17297.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive88.67 14187.82 14191.24 15492.68 20678.82 20296.95 14093.85 26287.55 9287.07 14795.13 15963.43 24997.21 19477.58 23096.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net82.42 25180.43 26288.39 22392.66 20781.95 11594.30 26193.38 28579.06 27575.82 27585.66 31156.38 30693.84 32571.23 28575.38 28089.38 272
test182.42 25180.43 26288.39 22392.66 20781.95 11594.30 26193.38 28579.06 27575.82 27585.66 31156.38 30693.84 32571.23 28575.38 28089.38 272
FMVSNet282.79 24580.44 26189.83 19892.66 20785.43 4895.42 22494.35 23379.06 27574.46 28787.28 28556.38 30694.31 31869.72 29774.68 28489.76 267
miper_ehance_all_eth84.57 21483.60 21387.50 24892.64 21078.25 21995.40 22693.47 28179.28 27076.41 26287.64 28176.53 12295.24 29078.58 22072.42 29489.01 288
cascas86.50 18184.48 19892.55 10292.64 21085.95 3797.04 13295.07 19175.32 31080.50 21791.02 23454.33 31897.98 15086.79 14987.62 18893.71 226
TESTMET0.1,189.83 11689.34 11791.31 15092.54 21280.19 16797.11 12596.57 8586.15 11686.85 14991.83 22379.32 7596.95 20881.30 19492.35 15296.77 157
COLMAP_ROBcopyleft73.24 1975.74 31473.00 32183.94 30992.38 21369.08 33691.85 30786.93 36261.48 36965.32 34390.27 24742.27 35896.93 21150.91 36875.63 27985.80 348
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_n_192089.95 11490.59 8988.03 23492.36 21468.98 33799.12 1194.34 23493.86 1193.64 6097.01 10751.54 32599.59 6096.76 3496.71 9395.53 189
xiu_mvs_v1_base_debu90.54 10389.54 11493.55 6292.31 21587.58 2396.99 13394.87 19987.23 10093.27 6297.56 8157.43 29498.32 14092.72 8093.46 13894.74 208
xiu_mvs_v1_base90.54 10389.54 11493.55 6292.31 21587.58 2396.99 13394.87 19987.23 10093.27 6297.56 8157.43 29498.32 14092.72 8093.46 13894.74 208
xiu_mvs_v1_base_debi90.54 10389.54 11493.55 6292.31 21587.58 2396.99 13394.87 19987.23 10093.27 6297.56 8157.43 29498.32 14092.72 8093.46 13894.74 208
SCA85.63 19683.64 21191.60 14592.30 21881.86 12292.88 29595.56 16484.85 14582.52 19085.12 32558.04 28795.39 28173.89 26887.58 19097.54 117
gm-plane-assit92.27 21979.64 18384.47 15895.15 15897.93 15185.81 153
test-LLR88.48 14687.98 13889.98 19192.26 22077.23 25097.11 12595.96 14383.76 18186.30 15291.38 22772.30 19196.78 22080.82 19791.92 15695.94 179
test-mter88.95 13188.60 12889.98 19192.26 22077.23 25097.11 12595.96 14385.32 13386.30 15291.38 22776.37 12796.78 22080.82 19791.92 15695.94 179
PAPM92.87 4992.40 5894.30 3592.25 22287.85 1996.40 17796.38 10891.07 3688.72 12796.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
cl____83.27 23582.12 23586.74 26292.20 22375.95 27495.11 24093.27 29178.44 28474.82 28587.02 29274.19 16995.19 29274.67 26169.32 31789.09 283
DIV-MVS_self_test83.27 23582.12 23586.74 26292.19 22475.92 27695.11 24093.26 29278.44 28474.81 28687.08 29174.19 16995.19 29274.66 26269.30 31889.11 282
AllTest75.92 31273.06 32084.47 30392.18 22567.29 34291.07 31684.43 37267.63 35263.48 34890.18 24838.20 36897.16 19757.04 35073.37 28988.97 291
TestCases84.47 30392.18 22567.29 34284.43 37267.63 35263.48 34890.18 24838.20 36897.16 19757.04 35073.37 28988.97 291
CLD-MVS87.97 16087.48 15289.44 20492.16 22780.54 15898.14 4694.92 19691.41 3179.43 23195.40 14862.34 25497.27 19290.60 10382.90 22990.50 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS77.97 29878.05 28477.74 34892.13 22856.85 37593.97 26994.23 23982.43 20973.39 29393.57 19657.95 29087.86 37032.40 38882.34 23588.51 298
myMVS_eth3d81.93 25982.18 23481.18 33292.13 22867.18 34493.97 26994.23 23982.43 20973.39 29393.57 19676.98 11487.86 37050.53 37082.34 23588.51 298
c3_l83.80 22782.65 22987.25 25592.10 23077.74 24195.25 23193.04 30078.58 28176.01 27087.21 28975.25 15495.11 29777.54 23168.89 32188.91 294
HQP-NCC92.08 23197.63 8290.52 4382.30 194
ACMP_Plane92.08 23197.63 8290.52 4382.30 194
HQP-MVS87.91 16287.55 15088.98 21292.08 23178.48 21097.63 8294.80 20490.52 4382.30 19494.56 17365.40 23797.32 18787.67 14083.01 22691.13 242
PCF-MVS84.09 586.77 17985.00 19092.08 12492.06 23483.07 9992.14 30394.47 22679.63 26276.90 25494.78 16971.15 20399.20 9272.87 27491.05 16293.98 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS92.04 23578.22 22094.56 173
plane_prior691.98 23677.92 23364.77 243
Effi-MVS+-dtu84.61 21384.90 19383.72 31491.96 23763.14 36194.95 24593.34 28985.57 12879.79 22787.12 29061.99 25995.61 27483.55 17885.83 20792.41 238
plane_prior191.95 238
CDS-MVSNet89.50 12288.96 12391.14 15991.94 23980.93 14697.09 12995.81 15284.26 16684.72 16794.20 18280.31 6595.64 27183.37 18288.96 17596.85 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP_MVS87.50 16887.09 16288.74 21791.86 24077.96 23097.18 11594.69 20989.89 5381.33 20994.15 18364.77 24397.30 18987.08 14482.82 23090.96 244
plane_prior791.86 24077.55 244
eth_miper_zixun_eth83.12 23982.01 23786.47 26791.85 24274.80 28594.33 25993.18 29579.11 27375.74 27887.25 28872.71 18595.32 28676.78 23967.13 33989.27 277
VDDNet86.44 18284.51 19692.22 11891.56 24381.83 12397.10 12894.64 21669.50 34987.84 13795.19 15548.01 33897.92 15689.82 11686.92 19396.89 152
EI-MVSNet85.80 19385.20 18487.59 24491.55 24477.41 24695.13 23895.36 17880.43 24580.33 22194.71 17073.72 17695.97 24876.96 23878.64 26289.39 270
CVMVSNet84.83 20985.57 17882.63 32491.55 24460.38 36995.13 23895.03 19280.60 23882.10 20094.71 17066.40 23290.19 36374.30 26590.32 16597.31 133
ACMP81.66 1184.00 22383.22 22086.33 26891.53 24672.95 30595.91 20493.79 26783.70 18373.79 29092.22 21354.31 31996.89 21283.98 16779.74 25189.16 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IterMVS-LS83.93 22482.80 22787.31 25391.46 24777.39 24795.66 21493.43 28380.44 24375.51 27987.26 28773.72 17695.16 29476.99 23670.72 30489.39 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re84.10 22182.90 22487.70 23991.41 24873.28 29990.59 32093.19 29385.02 14277.96 24493.68 19357.92 29296.18 24075.50 25380.87 24393.63 227
WB-MVSnew84.08 22283.51 21585.80 27891.34 24976.69 26095.62 21796.27 11781.77 22181.81 20692.81 20558.23 28494.70 30866.66 30987.06 19285.99 344
Patchmatch-test78.25 29474.72 30888.83 21591.20 25074.10 29373.91 38688.70 35459.89 37766.82 33585.12 32578.38 9094.54 31348.84 37579.58 25497.86 94
miper_lstm_enhance81.66 26480.66 25884.67 29991.19 25171.97 31491.94 30593.19 29377.86 28872.27 30785.26 31973.46 17993.42 33373.71 27167.05 34088.61 296
ACMM80.70 1383.72 22982.85 22686.31 27191.19 25172.12 31095.88 20594.29 23780.44 24377.02 25291.96 21955.24 31297.14 20179.30 21380.38 24789.67 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing380.74 27581.17 25079.44 34191.15 25363.48 35997.16 11995.76 15480.83 23271.36 31193.15 20278.22 9387.30 37543.19 38279.67 25287.55 323
TAMVS88.48 14687.79 14290.56 17591.09 25479.18 19396.45 17295.88 14883.64 18483.12 18693.33 19875.94 13495.74 26682.40 18888.27 18496.75 159
ACMH+76.62 1677.47 30374.94 30585.05 29391.07 25571.58 32093.26 28890.01 33971.80 33864.76 34588.55 26741.62 36096.48 22962.35 33171.00 30187.09 329
OpenMVScopyleft79.58 1486.09 18883.62 21293.50 6590.95 25686.71 3297.44 9895.83 15175.35 30972.64 30495.72 13757.42 29799.64 5571.41 28395.85 10894.13 218
LPG-MVS_test84.20 22083.49 21686.33 26890.88 25773.06 30295.28 22894.13 24682.20 21376.31 26393.20 19954.83 31696.95 20883.72 17480.83 24488.98 289
LGP-MVS_train86.33 26890.88 25773.06 30294.13 24682.20 21376.31 26393.20 19954.83 31696.95 20883.72 17480.83 24488.98 289
test_fmvsmvis_n_192092.12 6792.10 6792.17 12190.87 25981.04 14198.34 4093.90 25892.71 1887.24 14497.90 6174.83 15999.72 4396.96 3196.20 9895.76 184
KD-MVS_2432*160077.63 30174.92 30685.77 27990.86 26079.44 18588.08 33693.92 25676.26 30467.05 33382.78 34272.15 19391.92 34661.53 33241.62 38985.94 345
miper_refine_blended77.63 30174.92 30685.77 27990.86 26079.44 18588.08 33693.92 25676.26 30467.05 33382.78 34272.15 19391.92 34661.53 33241.62 38985.94 345
baseline290.39 10690.21 10090.93 16390.86 26080.99 14395.20 23497.41 1786.03 12180.07 22694.61 17290.58 697.47 18087.29 14389.86 16894.35 214
PVSNet_077.72 1581.70 26278.95 27989.94 19490.77 26376.72 25995.96 19996.95 3985.01 14370.24 32188.53 26952.32 32298.20 14586.68 15044.08 38694.89 203
ACMH75.40 1777.99 29674.96 30487.10 25890.67 26476.41 26393.19 29191.64 31972.47 33563.44 35087.61 28243.34 35397.16 19758.34 34473.94 28687.72 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS-HIRNet71.36 33567.00 34084.46 30590.58 26569.74 33279.15 37487.74 36046.09 38661.96 35950.50 39045.14 34895.64 27153.74 36188.11 18688.00 312
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11690.52 26681.92 11898.42 3796.24 12091.17 3496.02 2998.35 3175.34 15299.74 3897.84 2094.58 12195.05 200
jason92.73 5292.23 6394.21 4090.50 26787.30 2698.65 3095.09 18990.61 4292.76 7197.13 10175.28 15397.30 18993.32 7296.75 9198.02 79
jason: jason.
LTVRE_ROB73.68 1877.99 29675.74 30184.74 29690.45 26872.02 31286.41 35191.12 32672.57 33466.63 33787.27 28654.95 31596.98 20656.29 35475.98 27585.21 351
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS85.18 20384.38 20087.59 24490.42 26971.73 31891.06 31794.07 25082.00 21983.29 18495.08 16256.42 30597.55 17183.70 17683.42 22293.49 230
VPA-MVSNet85.32 20183.83 20789.77 20190.25 27082.63 10496.36 17997.07 3283.03 19681.21 21189.02 26161.58 26296.31 23585.02 16070.95 30290.36 252
XVG-OURS-SEG-HR85.74 19585.16 18787.49 24990.22 27171.45 32191.29 31494.09 24981.37 22583.90 17895.22 15260.30 26997.53 17585.58 15584.42 21793.50 229
tpm85.55 19884.47 19988.80 21690.19 27275.39 28088.79 33194.69 20984.83 14683.96 17685.21 32178.22 9394.68 31076.32 24678.02 27196.34 170
CR-MVSNet83.53 23181.36 24890.06 18890.16 27379.75 17779.02 37591.12 32684.24 16782.27 19880.35 35475.45 14493.67 32963.37 32886.25 20096.75 159
RPMNet79.85 28175.92 30091.64 14290.16 27379.75 17779.02 37595.44 17358.43 38182.27 19872.55 37873.03 18398.41 13846.10 37986.25 20096.75 159
test_cas_vis1_n_192089.90 11590.02 10589.54 20390.14 27574.63 28798.71 2794.43 22993.04 1792.40 7296.35 12553.41 32199.08 10395.59 4696.16 9994.90 202
FIs86.73 18086.10 17388.61 21990.05 27680.21 16696.14 19396.95 3985.56 13078.37 24092.30 21276.73 12095.28 28879.51 21079.27 25690.35 253
FMVSNet576.46 31074.16 31483.35 31990.05 27676.17 26689.58 32589.85 34071.39 34165.29 34480.42 35350.61 32987.70 37361.05 33769.24 31986.18 340
IterMVS80.67 27679.16 27685.20 29189.79 27876.08 26892.97 29491.86 31480.28 24971.20 31385.14 32457.93 29191.34 35372.52 27770.74 30388.18 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsany_test187.58 16788.22 13385.67 28389.78 27967.18 34495.25 23187.93 35783.96 17388.79 12597.06 10672.52 18794.53 31492.21 8586.45 19895.30 196
UniMVSNet (Re)85.31 20284.23 20288.55 22089.75 28080.55 15696.72 15596.89 4385.42 13178.40 23988.93 26275.38 14895.52 27878.58 22068.02 33089.57 269
Patchmtry77.36 30474.59 30985.67 28389.75 28075.75 27877.85 37891.12 32660.28 37471.23 31280.35 35475.45 14493.56 33157.94 34567.34 33887.68 317
JIA-IIPM79.00 29177.20 29084.40 30689.74 28264.06 35675.30 38395.44 17362.15 36581.90 20359.08 38778.92 8295.59 27566.51 31385.78 20893.54 228
MS-PatchMatch83.05 24081.82 24186.72 26689.64 28379.10 19794.88 24794.59 22079.70 26170.67 31789.65 25550.43 33096.82 21770.82 29295.99 10684.25 357
IterMVS-SCA-FT80.51 27879.10 27784.73 29789.63 28474.66 28692.98 29391.81 31680.05 25471.06 31585.18 32258.04 28791.40 35272.48 27870.70 30588.12 310
Fast-Effi-MVS+-dtu83.33 23482.60 23085.50 28789.55 28569.38 33596.09 19691.38 32182.30 21275.96 27291.41 22656.71 30195.58 27675.13 25784.90 21591.54 240
PatchT79.75 28276.85 29488.42 22189.55 28575.49 27977.37 37994.61 21863.07 36282.46 19273.32 37575.52 14393.41 33451.36 36684.43 21696.36 168
GA-MVS85.79 19484.04 20691.02 16289.47 28780.27 16496.90 14494.84 20285.57 12880.88 21389.08 25956.56 30496.47 23077.72 22685.35 21296.34 170
UniMVSNet_NR-MVSNet85.49 19984.59 19488.21 23089.44 28879.36 18896.71 15796.41 10385.22 13678.11 24290.98 23676.97 11595.14 29579.14 21568.30 32790.12 258
FC-MVSNet-test85.96 19085.39 18187.66 24189.38 28978.02 22795.65 21596.87 4485.12 14077.34 24791.94 22176.28 12994.74 30777.09 23578.82 26090.21 256
WR-MVS84.32 21882.96 22288.41 22289.38 28980.32 16196.59 16296.25 11983.97 17276.63 25790.36 24667.53 22294.86 30575.82 25170.09 31190.06 263
VPNet84.69 21182.92 22390.01 18989.01 29183.45 9296.71 15795.46 17185.71 12679.65 22892.18 21456.66 30396.01 24783.05 18667.84 33390.56 249
nrg03086.79 17885.43 18090.87 16788.76 29285.34 4997.06 13194.33 23584.31 16180.45 21991.98 21872.36 18996.36 23388.48 13271.13 30090.93 246
DU-MVS84.57 21483.33 21888.28 22688.76 29279.36 18896.43 17595.41 17785.42 13178.11 24290.82 23867.61 21995.14 29579.14 21568.30 32790.33 254
NR-MVSNet83.35 23381.52 24688.84 21488.76 29281.31 13794.45 25495.16 18784.65 15267.81 32990.82 23870.36 21194.87 30474.75 25966.89 34290.33 254
test_040272.68 32869.54 33582.09 32888.67 29571.81 31792.72 29786.77 36461.52 36862.21 35783.91 33543.22 35493.76 32834.60 38772.23 29780.72 375
RPSCF77.73 30076.63 29581.06 33388.66 29655.76 38087.77 34087.88 35864.82 36174.14 28992.79 20849.22 33596.81 21867.47 30576.88 27390.62 248
FMVSNet179.50 28676.54 29688.39 22388.47 29781.95 11594.30 26193.38 28573.14 32872.04 30985.66 31143.86 35093.84 32565.48 31772.53 29389.38 272
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9788.45 29880.81 14999.00 2195.11 18893.21 1594.00 5697.91 6076.84 11699.59 6097.91 1696.55 9597.54 117
OPM-MVS85.84 19285.10 18988.06 23288.34 29977.83 23795.72 21194.20 24287.89 8580.45 21994.05 18558.57 28197.26 19383.88 16982.76 23289.09 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal78.14 29575.42 30286.31 27188.33 30079.24 19194.41 25596.22 12273.51 32469.81 32385.52 31755.43 31095.75 26347.65 37767.86 33283.95 360
TinyColmap72.41 32968.99 33882.68 32388.11 30169.59 33388.41 33485.20 36965.55 35857.91 37184.82 32930.80 38295.94 25251.38 36568.70 32282.49 368
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12688.08 30281.62 13297.97 6196.01 13890.62 4196.58 2198.33 3274.09 17199.71 4597.23 2793.46 13894.86 204
WR-MVS_H81.02 27180.09 26583.79 31188.08 30271.26 32394.46 25396.54 8880.08 25372.81 30386.82 29470.36 21192.65 33864.18 32267.50 33687.46 325
mvsmamba85.17 20484.54 19587.05 25987.94 30475.11 28396.22 18787.79 35986.91 10778.55 23791.77 22464.93 24295.91 25486.94 14879.80 24890.12 258
CP-MVSNet81.01 27280.08 26683.79 31187.91 30570.51 32594.29 26495.65 16080.83 23272.54 30688.84 26363.71 24792.32 34168.58 30268.36 32688.55 297
D2MVS82.67 24781.55 24486.04 27687.77 30676.47 26195.21 23396.58 8482.66 20670.26 32085.46 31860.39 26895.80 26076.40 24479.18 25785.83 347
TranMVSNet+NR-MVSNet83.24 23781.71 24287.83 23687.71 30778.81 20496.13 19594.82 20384.52 15576.18 26990.78 24064.07 24694.60 31174.60 26366.59 34490.09 261
USDC78.65 29276.25 29785.85 27787.58 30874.60 28889.58 32590.58 33784.05 16963.13 35288.23 27340.69 36696.86 21666.57 31275.81 27886.09 342
PS-CasMVS80.27 27979.18 27583.52 31787.56 30969.88 33094.08 26795.29 18380.27 25072.08 30888.51 27059.22 27892.23 34367.49 30468.15 32988.45 303
test_fmvs1_n86.34 18486.72 16885.17 29287.54 31063.64 35896.91 14392.37 30987.49 9391.33 9095.58 14440.81 36598.46 13495.00 5293.49 13693.41 233
RRT_MVS83.88 22583.27 21985.71 28187.53 31172.12 31095.35 22794.33 23583.81 17975.86 27491.28 23060.55 26795.09 30083.93 16876.76 27489.90 266
MIMVSNet79.18 29075.99 29988.72 21887.37 31280.66 15379.96 37091.82 31577.38 29474.33 28881.87 34641.78 35990.74 35966.36 31583.10 22594.76 207
XXY-MVS83.84 22682.00 23889.35 20587.13 31381.38 13595.72 21194.26 23880.15 25275.92 27390.63 24161.96 26096.52 22878.98 21773.28 29290.14 257
ITE_SJBPF82.38 32587.00 31465.59 35089.55 34279.99 25669.37 32591.30 22941.60 36195.33 28562.86 33074.63 28586.24 339
test0.0.03 182.79 24582.48 23183.74 31386.81 31572.22 30796.52 16695.03 19283.76 18173.00 30093.20 19972.30 19188.88 36664.15 32377.52 27290.12 258
v881.88 26080.06 26887.32 25286.63 31679.04 20094.41 25593.65 27578.77 27973.19 29985.57 31566.87 22895.81 25973.84 27067.61 33587.11 328
tt080581.20 27079.06 27887.61 24286.50 31772.97 30493.66 27595.48 16974.11 31976.23 26791.99 21741.36 36297.40 18377.44 23374.78 28392.45 237
v1081.43 26679.53 27487.11 25786.38 31878.87 20194.31 26093.43 28377.88 28773.24 29885.26 31965.44 23695.75 26372.14 27967.71 33486.72 332
PEN-MVS79.47 28778.26 28383.08 32086.36 31968.58 33893.85 27394.77 20779.76 25971.37 31088.55 26759.79 27092.46 33964.50 32165.40 34688.19 308
UniMVSNet_ETH3D80.86 27478.75 28087.22 25686.31 32072.02 31291.95 30493.76 27173.51 32475.06 28490.16 25043.04 35695.66 26876.37 24578.55 26693.98 221
v114482.90 24481.27 24987.78 23886.29 32179.07 19996.14 19393.93 25480.05 25477.38 24686.80 29565.50 23595.93 25375.21 25670.13 30888.33 306
V4283.04 24181.53 24587.57 24686.27 32279.09 19895.87 20694.11 24880.35 24777.22 25086.79 29665.32 23996.02 24677.74 22570.14 30787.61 319
v2v48283.46 23281.86 24088.25 22886.19 32379.65 18296.34 18194.02 25281.56 22477.32 24888.23 27365.62 23496.03 24377.77 22469.72 31589.09 283
v14882.41 25380.89 25286.99 26086.18 32476.81 25796.27 18493.82 26380.49 24275.28 28286.11 31067.32 22595.75 26375.48 25467.03 34188.42 304
pmmvs482.54 24980.79 25387.79 23786.11 32580.49 16093.55 27993.18 29577.29 29573.35 29689.40 25865.26 24095.05 30275.32 25573.61 28887.83 314
MVP-Stereo82.65 24881.67 24385.59 28686.10 32678.29 21793.33 28492.82 30277.75 28969.17 32787.98 27759.28 27795.76 26271.77 28096.88 8682.73 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119282.31 25480.55 26087.60 24385.94 32778.47 21395.85 20893.80 26679.33 26776.97 25386.51 29963.33 25095.87 25673.11 27370.13 30888.46 302
TransMVSNet (Re)76.94 30774.38 31184.62 30185.92 32875.25 28195.28 22889.18 34773.88 32267.22 33086.46 30159.64 27194.10 32159.24 34352.57 37584.50 355
PS-MVSNAJss84.91 20884.30 20186.74 26285.89 32974.40 29194.95 24594.16 24583.93 17576.45 26190.11 25271.04 20595.77 26183.16 18479.02 25990.06 263
v14419282.43 25080.73 25687.54 24785.81 33078.22 22095.98 19893.78 26879.09 27477.11 25186.49 30064.66 24595.91 25474.20 26669.42 31688.49 300
bld_raw_dy_0_6482.13 25680.76 25586.24 27385.78 33175.03 28494.40 25882.62 37983.12 19276.46 26090.96 23753.83 32094.55 31281.04 19678.60 26589.14 281
v192192082.02 25880.23 26487.41 25085.62 33277.92 23395.79 21093.69 27378.86 27876.67 25686.44 30262.50 25395.83 25872.69 27569.77 31488.47 301
v124081.70 26279.83 27287.30 25485.50 33377.70 24295.48 22193.44 28278.46 28376.53 25986.44 30260.85 26695.84 25771.59 28270.17 30688.35 305
pm-mvs180.05 28078.02 28586.15 27485.42 33475.81 27795.11 24092.69 30577.13 29770.36 31987.43 28358.44 28395.27 28971.36 28464.25 35187.36 326
our_test_377.90 29975.37 30385.48 28885.39 33576.74 25893.63 27691.67 31773.39 32765.72 34284.65 33058.20 28693.13 33657.82 34667.87 33186.57 335
ppachtmachnet_test77.19 30574.22 31386.13 27585.39 33578.22 22093.98 26891.36 32371.74 33967.11 33284.87 32856.67 30293.37 33552.21 36464.59 34886.80 331
MDA-MVSNet-bldmvs71.45 33467.94 33981.98 32985.33 33768.50 33992.35 30288.76 35270.40 34442.99 38581.96 34546.57 34591.31 35448.75 37654.39 36986.11 341
Baseline_NR-MVSNet81.22 26980.07 26784.68 29885.32 33875.12 28296.48 16988.80 35176.24 30677.28 24986.40 30567.61 21994.39 31775.73 25266.73 34384.54 354
DTE-MVSNet78.37 29377.06 29282.32 32785.22 33967.17 34793.40 28193.66 27478.71 28070.53 31888.29 27259.06 27992.23 34361.38 33563.28 35587.56 321
pmmvs581.34 26779.54 27386.73 26585.02 34076.91 25496.22 18791.65 31877.65 29073.55 29188.61 26655.70 30994.43 31674.12 26773.35 29188.86 295
XVG-ACMP-BASELINE79.38 28877.90 28683.81 31084.98 34167.14 34889.03 32993.18 29580.26 25172.87 30288.15 27538.55 36796.26 23676.05 24878.05 27088.02 311
test_vis1_n85.60 19785.70 17685.33 28984.79 34264.98 35196.83 14791.61 32087.36 9791.00 9794.84 16836.14 37197.18 19695.66 4493.03 14393.82 224
MDA-MVSNet_test_wron73.54 32370.43 33182.86 32184.55 34371.85 31591.74 30991.32 32567.63 35246.73 38281.09 35155.11 31390.42 36255.91 35659.76 36186.31 338
SixPastTwentyTwo76.04 31174.32 31281.22 33184.54 34461.43 36791.16 31589.30 34677.89 28664.04 34786.31 30648.23 33694.29 31963.54 32763.84 35387.93 313
YYNet173.53 32470.43 33182.85 32284.52 34571.73 31891.69 31091.37 32267.63 35246.79 38181.21 35055.04 31490.43 36155.93 35559.70 36286.38 337
N_pmnet61.30 34760.20 35064.60 36784.32 34617.00 40891.67 31110.98 40661.77 36758.45 37078.55 36049.89 33391.83 34942.27 38363.94 35284.97 352
mvs_tets81.74 26180.71 25784.84 29584.22 34770.29 32793.91 27193.78 26882.77 20373.37 29589.46 25747.36 34495.31 28781.99 19179.55 25588.92 293
jajsoiax82.12 25781.15 25185.03 29484.19 34870.70 32494.22 26593.95 25383.07 19473.48 29289.75 25449.66 33495.37 28382.24 19079.76 24989.02 287
EU-MVSNet76.92 30876.95 29376.83 35184.10 34954.73 38291.77 30892.71 30472.74 33269.57 32488.69 26558.03 28987.43 37464.91 32070.00 31288.33 306
test_djsdf83.00 24382.45 23284.64 30084.07 35069.78 33194.80 25094.48 22480.74 23575.41 28187.70 28061.32 26595.10 29883.77 17279.76 24989.04 286
v7n79.32 28977.34 28985.28 29084.05 35172.89 30693.38 28293.87 26075.02 31470.68 31684.37 33159.58 27395.62 27367.60 30367.50 33687.32 327
test_vis1_rt73.96 32072.40 32378.64 34583.91 35261.16 36895.63 21668.18 39576.32 30360.09 36674.77 36929.01 38497.54 17387.74 13875.94 27677.22 379
dmvs_testset72.00 33373.36 31967.91 36283.83 35331.90 40285.30 35877.12 38782.80 20263.05 35492.46 21161.54 26382.55 38542.22 38471.89 29889.29 276
OurMVSNet-221017-077.18 30676.06 29880.55 33683.78 35460.00 37190.35 32191.05 32977.01 30166.62 33887.92 27847.73 34294.03 32271.63 28168.44 32587.62 318
EG-PatchMatch MVS74.92 31772.02 32483.62 31583.76 35573.28 29993.62 27792.04 31368.57 35158.88 36883.80 33631.87 38095.57 27756.97 35278.67 26182.00 371
K. test v373.62 32171.59 32679.69 33982.98 35659.85 37290.85 31988.83 35077.13 29758.90 36782.11 34443.62 35191.72 35065.83 31654.10 37087.50 324
test_fmvs279.59 28479.90 27178.67 34482.86 35755.82 37995.20 23489.55 34281.09 22880.12 22589.80 25334.31 37693.51 33287.82 13778.36 26886.69 333
test_fmvsmconf0.01_n91.08 9290.68 8892.29 11482.43 35880.12 16997.94 6293.93 25492.07 2491.97 7997.60 7967.56 22199.53 6897.09 2995.56 11297.21 139
EGC-MVSNET52.46 35547.56 35867.15 36381.98 35960.11 37082.54 36872.44 3910.11 4030.70 40474.59 37025.11 38583.26 38229.04 39061.51 35958.09 388
anonymousdsp80.98 27379.97 26984.01 30881.73 36070.44 32692.49 29993.58 27977.10 29972.98 30186.31 30657.58 29394.90 30379.32 21278.63 26486.69 333
Anonymous2023120675.29 31673.64 31780.22 33780.75 36163.38 36093.36 28390.71 33673.09 32967.12 33183.70 33750.33 33190.85 35853.63 36270.10 31086.44 336
Gipumacopyleft45.11 36042.05 36254.30 37780.69 36251.30 38435.80 39583.81 37528.13 39127.94 39534.53 39511.41 39876.70 39121.45 39454.65 36734.90 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
lessismore_v079.98 33880.59 36358.34 37480.87 38158.49 36983.46 33943.10 35593.89 32463.11 32948.68 37987.72 315
OpenMVS_ROBcopyleft68.52 2073.02 32769.57 33483.37 31880.54 36471.82 31693.60 27888.22 35662.37 36461.98 35883.15 34135.31 37595.47 27945.08 38075.88 27782.82 363
testgi74.88 31873.40 31879.32 34280.13 36561.75 36493.21 28986.64 36579.49 26566.56 33991.06 23335.51 37488.67 36756.79 35371.25 29987.56 321
CMPMVSbinary54.94 2175.71 31574.56 31079.17 34379.69 36655.98 37789.59 32493.30 29060.28 37453.85 37889.07 26047.68 34396.33 23476.55 24181.02 24185.22 350
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LF4IMVS72.36 33070.82 32876.95 35079.18 36756.33 37686.12 35386.11 36769.30 35063.06 35386.66 29733.03 37892.25 34265.33 31868.64 32382.28 369
pmmvs674.65 31971.67 32583.60 31679.13 36869.94 32993.31 28790.88 33361.05 37365.83 34184.15 33443.43 35294.83 30666.62 31060.63 36086.02 343
DeepMVS_CXcopyleft64.06 36878.53 36943.26 39368.11 39769.94 34738.55 38776.14 36718.53 38979.34 38643.72 38141.62 38969.57 383
CL-MVSNet_self_test75.81 31374.14 31580.83 33578.33 37067.79 34194.22 26593.52 28077.28 29669.82 32281.54 34861.47 26489.22 36557.59 34853.51 37185.48 349
test20.0372.36 33071.15 32775.98 35577.79 37159.16 37392.40 30189.35 34574.09 32061.50 36084.32 33248.09 33785.54 38050.63 36962.15 35883.24 361
UnsupCasMVSNet_eth73.25 32570.57 33081.30 33077.53 37266.33 34987.24 34493.89 25980.38 24657.90 37281.59 34742.91 35790.56 36065.18 31948.51 38087.01 330
DSMNet-mixed73.13 32672.45 32275.19 35777.51 37346.82 38785.09 35982.01 38067.61 35669.27 32681.33 34950.89 32786.28 37754.54 35983.80 21992.46 236
Patchmatch-RL test76.65 30974.01 31684.55 30277.37 37464.23 35478.49 37782.84 37878.48 28264.63 34673.40 37476.05 13291.70 35176.99 23657.84 36497.72 105
Anonymous2024052172.06 33269.91 33378.50 34677.11 37561.67 36691.62 31290.97 33165.52 35962.37 35679.05 35936.32 37090.96 35757.75 34768.52 32482.87 362
test_method56.77 34954.53 35363.49 36976.49 37640.70 39575.68 38274.24 38919.47 39748.73 38071.89 38019.31 38865.80 39757.46 34947.51 38383.97 359
MIMVSNet169.44 33866.65 34277.84 34776.48 37762.84 36287.42 34288.97 34966.96 35757.75 37379.72 35832.77 37985.83 37946.32 37863.42 35484.85 353
pmmvs-eth3d73.59 32270.66 32982.38 32576.40 37873.38 29689.39 32889.43 34472.69 33360.34 36577.79 36246.43 34691.26 35566.42 31457.06 36582.51 366
new_pmnet66.18 34463.18 34775.18 35876.27 37961.74 36583.79 36484.66 37156.64 38351.57 37971.85 38131.29 38187.93 36949.98 37162.55 35675.86 380
KD-MVS_self_test70.97 33669.31 33675.95 35676.24 38055.39 38187.45 34190.94 33270.20 34662.96 35577.48 36344.01 34988.09 36861.25 33653.26 37284.37 356
UnsupCasMVSNet_bld68.60 34264.50 34680.92 33474.63 38167.80 34083.97 36392.94 30165.12 36054.63 37768.23 38335.97 37292.17 34560.13 33844.83 38482.78 364
PM-MVS69.32 33966.93 34176.49 35273.60 38255.84 37885.91 35479.32 38574.72 31661.09 36278.18 36121.76 38791.10 35670.86 29056.90 36682.51 366
new-patchmatchnet68.85 34165.93 34377.61 34973.57 38363.94 35790.11 32388.73 35371.62 34055.08 37673.60 37340.84 36487.22 37651.35 36748.49 38181.67 374
WB-MVS57.26 34856.22 35160.39 37369.29 38435.91 40086.39 35270.06 39359.84 37846.46 38372.71 37651.18 32678.11 38715.19 39734.89 39267.14 386
test_fmvs369.56 33769.19 33770.67 36069.01 38547.05 38690.87 31886.81 36371.31 34266.79 33677.15 36416.40 39183.17 38381.84 19262.51 35781.79 373
SSC-MVS56.01 35154.96 35259.17 37468.42 38634.13 40184.98 36069.23 39458.08 38245.36 38471.67 38250.30 33277.46 38814.28 39832.33 39365.91 387
ambc76.02 35468.11 38751.43 38364.97 39189.59 34160.49 36474.49 37117.17 39092.46 33961.50 33452.85 37484.17 358
APD_test156.56 35053.58 35465.50 36467.93 38846.51 38977.24 38172.95 39038.09 38842.75 38675.17 36813.38 39482.78 38440.19 38554.53 36867.23 385
pmmvs365.75 34562.18 34876.45 35367.12 38964.54 35288.68 33285.05 37054.77 38557.54 37473.79 37229.40 38386.21 37855.49 35847.77 38278.62 377
TDRefinement69.20 34065.78 34479.48 34066.04 39062.21 36388.21 33586.12 36662.92 36361.03 36385.61 31433.23 37794.16 32055.82 35753.02 37382.08 370
mvsany_test367.19 34365.34 34572.72 35963.08 39148.57 38583.12 36678.09 38672.07 33661.21 36177.11 36522.94 38687.78 37278.59 21951.88 37681.80 372
test_f64.01 34662.13 34969.65 36163.00 39245.30 39283.66 36580.68 38261.30 37055.70 37572.62 37714.23 39384.64 38169.84 29558.11 36379.00 376
test_vis3_rt54.10 35351.04 35663.27 37058.16 39346.08 39184.17 36249.32 40556.48 38436.56 38949.48 3928.03 40191.91 34867.29 30649.87 37751.82 391
FPMVS55.09 35252.93 35561.57 37155.98 39440.51 39683.11 36783.41 37737.61 38934.95 39071.95 37914.40 39276.95 38929.81 38965.16 34767.25 384
PMMVS250.90 35646.31 35964.67 36655.53 39546.67 38877.30 38071.02 39240.89 38734.16 39159.32 3869.83 39976.14 39240.09 38628.63 39471.21 381
wuyk23d14.10 36713.89 37014.72 38355.23 39622.91 40733.83 3963.56 4074.94 4004.11 4012.28 4032.06 40619.66 40210.23 4018.74 4001.59 400
E-PMN32.70 36432.39 36633.65 38153.35 39725.70 40574.07 38553.33 40321.08 39517.17 39933.63 39711.85 39754.84 39912.98 39914.04 39620.42 396
testf145.70 35842.41 36055.58 37553.29 39840.02 39768.96 38962.67 39927.45 39229.85 39261.58 3845.98 40273.83 39428.49 39243.46 38752.90 389
APD_test245.70 35842.41 36055.58 37553.29 39840.02 39768.96 38962.67 39927.45 39229.85 39261.58 3845.98 40273.83 39428.49 39243.46 38752.90 389
EMVS31.70 36531.45 36732.48 38250.72 40023.95 40674.78 38452.30 40420.36 39616.08 40031.48 39812.80 39553.60 40011.39 40013.10 39919.88 397
LCM-MVSNet52.52 35448.24 35765.35 36547.63 40141.45 39472.55 38783.62 37631.75 39037.66 38857.92 3889.19 40076.76 39049.26 37344.60 38577.84 378
MVEpermissive35.65 2233.85 36329.49 36846.92 37941.86 40236.28 39950.45 39456.52 40218.75 39818.28 39737.84 3942.41 40558.41 39818.71 39520.62 39546.06 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high46.22 35741.28 36461.04 37239.91 40346.25 39070.59 38876.18 38858.87 38023.09 39648.00 39312.58 39666.54 39628.65 39113.62 39770.35 382
PMVScopyleft34.80 2339.19 36235.53 36550.18 37829.72 40430.30 40359.60 39366.20 39826.06 39417.91 39849.53 3913.12 40474.09 39318.19 39649.40 37846.14 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 36141.93 36340.38 38020.10 40526.84 40461.93 39259.09 40114.81 39928.51 39480.58 35235.53 37348.33 40163.70 32613.11 39845.96 394
testmvs9.92 36812.94 3710.84 3850.65 4060.29 41093.78 2740.39 4080.42 4012.85 40215.84 4010.17 4080.30 4042.18 4020.21 4011.91 399
test1239.07 36911.73 3721.11 3840.50 4070.77 40989.44 3270.20 4090.34 4022.15 40310.72 4020.34 4070.32 4031.79 4030.08 4022.23 398
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
eth-test20.00 408
eth-test0.00 408
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k21.43 36628.57 3690.00 3860.00 4080.00 4110.00 39795.93 1460.00 4040.00 40597.66 7263.57 2480.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas5.92 3717.89 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40471.04 2050.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.11 37010.81 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40597.30 940.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
WAC-MVS67.18 34449.00 374
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
test_241102_TWO96.78 5088.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
GSMVS97.54 117
sam_mvs177.59 10397.54 117
sam_mvs75.35 151
MTGPAbinary96.33 113
test_post185.88 35530.24 39973.77 17495.07 30173.89 268
test_post33.80 39676.17 13095.97 248
patchmatchnet-post77.09 36677.78 10295.39 281
MTMP97.53 9068.16 396
test9_res96.00 3999.03 1398.31 62
agg_prior294.30 5899.00 1598.57 46
test_prior482.34 11197.75 75
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
旧先验296.97 13874.06 32196.10 2797.76 16088.38 133
新几何296.42 176
无先验96.87 14596.78 5077.39 29399.52 6979.95 20798.43 55
原ACMM296.84 146
testdata299.48 7376.45 243
segment_acmp82.69 53
testdata195.57 21987.44 94
plane_prior594.69 20997.30 18987.08 14482.82 23090.96 244
plane_prior494.15 183
plane_prior377.75 24090.17 5081.33 209
plane_prior297.18 11589.89 53
plane_prior77.96 23097.52 9390.36 4882.96 228
n20.00 410
nn0.00 410
door-mid79.75 384
test1196.50 93
door80.13 383
HQP5-MVS78.48 210
BP-MVS87.67 140
HQP4-MVS82.30 19497.32 18791.13 242
HQP3-MVS94.80 20483.01 226
HQP2-MVS65.40 237
MDTV_nov1_ep13_2view81.74 12786.80 34780.65 23785.65 15674.26 16876.52 24296.98 146
ACMMP++_ref78.45 267
ACMMP++79.05 258
Test By Simon71.65 198