This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
AdaColmapbinary93.82 11793.06 12496.10 10999.88 189.07 16498.33 19497.55 11886.81 23390.39 18598.65 9875.09 23299.98 993.32 14197.53 12499.26 99
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13486.58 23794.42 12499.13 4487.36 8699.98 993.64 13598.33 10799.48 79
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5796.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
region2R96.30 4596.17 4796.70 8199.70 790.31 13199.46 5997.66 9290.55 12497.07 7199.07 5186.85 9899.97 2195.43 9999.74 2999.81 33
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11899.47 5597.81 6690.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12999.47 5597.80 6890.54 12596.83 7899.03 5686.51 10999.95 3195.65 9299.72 3199.75 46
ZD-MVS99.67 1093.28 7197.61 10587.78 20997.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15599.70 2697.61 10590.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13693.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8899.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3099.77 1797.70 8493.95 4899.35 799.54 393.18 22
CPTT-MVS94.60 9794.43 8795.09 14799.66 1286.85 22099.44 6297.47 13683.22 29394.34 12698.96 6682.50 17599.55 10694.81 11399.50 5398.88 133
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7994.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
IU-MVS99.63 1895.38 2297.73 7895.54 2699.54 399.69 699.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 7994.16 4599.30 899.49 993.32 1999.98 9
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11892.43 8293.82 13699.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
XVS96.47 4096.37 3996.77 7499.62 2290.66 12699.43 6597.58 11392.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 18988.66 21296.77 7499.62 2290.66 12699.43 6597.58 11392.41 8596.86 7429.59 40287.37 8399.87 5895.65 9299.43 5999.78 38
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8893.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8699.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8699.98 999.55 1299.83 1599.96 10
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9896.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.59 2894.89 3497.64 9893.14 6998.93 2199.45 1493.45 18
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14289.02 16797.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
test_prior97.01 6099.58 3091.77 9697.57 11699.49 11299.79 36
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12693.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15999.26 8497.41 14690.66 11994.82 11798.95 6986.15 11799.98 995.24 10499.64 4099.74 47
TEST999.57 3393.17 7399.38 7197.66 9289.57 15298.39 3599.18 3390.88 3899.66 94
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9290.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7699.37 7497.64 9890.18 13498.36 3799.19 3090.94 3599.64 100
test_part299.54 3695.42 2098.13 42
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13799.41 6897.70 8495.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior99.54 3692.66 8597.64 9897.98 5199.61 102
CSCG94.87 8694.71 8395.36 13699.54 3686.49 22599.34 7798.15 4082.71 30490.15 18899.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7495.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14290.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FOURS199.50 4288.94 17199.55 4497.47 13691.32 10898.12 44
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7994.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15298.22 20298.90 1389.19 16296.74 8198.95 6985.91 12199.92 4093.94 12899.46 5599.66 60
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10599.45 6197.48 13489.69 14695.89 9698.72 9186.37 11299.95 3194.62 12099.22 7099.52 75
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13999.36 7597.41 14690.64 12295.49 10798.95 6985.51 12699.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10799.55 4497.53 12289.72 14595.86 9998.94 7286.59 10599.97 2195.13 10599.56 5099.68 56
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16598.59 16397.33 15390.44 12896.84 7699.12 4686.75 10099.41 12697.47 5899.44 5899.76 45
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13798.58 16597.51 12890.65 12192.44 15198.90 7687.77 7799.90 5090.88 16699.32 6499.68 56
9.1496.87 2699.34 5099.50 5197.49 13389.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
save fliter99.34 5093.85 6299.65 3597.63 10295.69 22
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9699.70 2698.05 4686.48 24298.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
test1297.83 3399.33 5394.45 4997.55 11897.56 5688.60 6399.50 11199.71 3499.55 72
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9789.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10797.23 26297.45 13992.58 7994.39 12599.24 2586.43 11199.99 596.22 8399.40 6299.71 51
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16299.17 9297.09 17887.28 22295.40 10898.48 11284.93 13699.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft94.67 9594.30 8895.79 12299.25 5788.13 18998.41 18398.67 2290.38 13091.43 16698.72 9182.22 18499.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize95.64 7095.65 6795.62 12999.24 5887.80 19598.42 18197.22 16188.93 17296.64 8698.98 6185.49 12799.36 13096.68 7499.27 6899.70 52
SR-MVS-dyc-post95.75 6795.86 5695.41 13599.22 5987.26 21598.40 18697.21 16289.63 14896.67 8498.97 6286.73 10299.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6399.22 5987.26 21598.40 18697.21 16289.63 14896.67 8498.97 6285.24 13396.62 7599.31 6599.60 67
patch_mono-297.10 2597.97 894.49 16999.21 6183.73 28699.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14498.80 13797.78 7183.59 28893.85 13499.21 2883.79 14999.97 2192.37 15399.00 7999.74 47
PLCcopyleft91.07 394.23 10594.01 9894.87 15599.17 6387.49 20499.25 8596.55 20888.43 18791.26 17098.21 12485.92 11999.86 6389.77 18197.57 12197.24 200
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 13098.49 17497.82 6391.92 9594.75 11998.88 8087.06 9399.48 11695.40 10097.17 13498.70 150
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16897.50 13194.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13989.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
HPM-MVS_fast94.89 8594.62 8495.70 12599.11 6688.44 18599.14 10197.11 17485.82 25095.69 10398.47 11383.46 15499.32 13593.16 14399.63 4399.35 90
MAR-MVS94.43 10294.09 9695.45 13399.10 6887.47 20598.39 19097.79 7088.37 18994.02 13199.17 3578.64 21799.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t94.06 10793.05 12597.06 5899.08 6992.26 9298.97 12397.01 18682.58 30692.57 14998.22 12280.68 20099.30 13689.34 18799.02 7899.63 64
EI-MVSNet-UG-set95.43 7395.29 7295.86 12099.07 7089.87 14998.43 18097.80 6891.78 9794.11 12998.77 8586.25 11599.48 11694.95 11296.45 14398.22 175
原ACMM196.18 10599.03 7190.08 14097.63 10288.98 16897.00 7298.97 6288.14 7199.71 9088.23 19899.62 4498.76 147
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14993.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验198.97 7392.90 8397.74 7599.15 3991.05 3499.33 6399.60 67
LS3D90.19 19888.72 21094.59 16898.97 7386.33 23396.90 27496.60 20274.96 35684.06 24598.74 8875.78 22999.83 7374.93 31997.57 12197.62 191
CNLPA93.64 12492.74 13396.36 10198.96 7590.01 14799.19 8795.89 26286.22 24589.40 19698.85 8180.66 20199.84 6988.57 19496.92 13799.24 100
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16397.14 17088.95 17093.12 14399.25 2385.62 12399.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何197.40 4798.92 7792.51 9097.77 7385.52 25596.69 8399.06 5388.08 7299.89 5384.88 23699.62 4499.79 36
DP-MVS88.75 22886.56 24895.34 13798.92 7787.45 20697.64 24693.52 34370.55 36881.49 28797.25 16174.43 23899.88 5471.14 34294.09 17398.67 152
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9999.58 4196.54 20995.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12695.90 1997.21 6698.90 7682.66 17499.93 3898.71 2998.80 9199.63 64
dcpmvs_295.67 6996.18 4494.12 18698.82 8184.22 27997.37 25495.45 28890.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11190.66 11997.98 5199.14 4286.59 105100.00 196.47 8199.46 5599.89 25
PVSNet_BlendedMVS93.36 13293.20 12193.84 19798.77 8391.61 10099.47 5598.04 4891.44 10494.21 12792.63 27383.50 15299.87 5897.41 5983.37 26990.05 332
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 10099.88 398.04 4893.64 6294.21 12797.76 13583.50 15299.87 5897.41 5997.75 11998.79 143
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22198.71 8578.11 34399.70 2697.71 8398.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS93.90 11493.62 11194.73 16298.63 8787.00 21898.04 22196.56 20792.19 9092.46 15098.73 8979.49 20999.14 14592.16 15594.34 17298.03 180
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11799.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23494.65 12297.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23494.65 12297.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
TAPA-MVS87.50 990.35 19389.05 20394.25 18198.48 9185.17 26698.42 18196.58 20682.44 31187.24 21498.53 10582.77 16998.84 15559.09 37797.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.32 9291.21 10698.08 21897.58 11383.74 28495.87 9899.02 5886.74 10199.64 4099.81 33
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7196.61 1298.15 4199.53 793.62 17100.00 191.79 15899.80 2699.94 18
LFMVS92.23 16090.84 17396.42 9798.24 9491.08 11498.24 20196.22 22883.39 29194.74 12098.31 11861.12 33298.85 15494.45 12292.82 18399.32 93
testdata95.26 14298.20 9587.28 21297.60 10785.21 25998.48 3399.15 3988.15 7098.72 16290.29 17499.45 5799.78 38
PatchMatch-RL91.47 17190.54 18094.26 18098.20 9586.36 23196.94 27297.14 17087.75 21188.98 19995.75 21371.80 26599.40 12780.92 27897.39 12897.02 208
MVS_111021_LR95.78 6495.94 5395.28 14198.19 9787.69 19698.80 13799.26 793.39 6595.04 11598.69 9684.09 14699.76 8696.96 6999.06 7598.38 165
F-COLMAP92.07 16491.75 15593.02 21198.16 9882.89 29798.79 14195.97 24586.54 23987.92 20697.80 13278.69 21699.65 9885.97 22295.93 15696.53 222
Anonymous20240521188.84 22287.03 24194.27 17998.14 9984.18 28098.44 17995.58 28176.79 35089.34 19796.88 18153.42 35999.54 10887.53 20787.12 23599.09 114
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14998.73 1890.33 13197.16 7097.43 15379.19 21199.53 10996.91 7191.85 20199.24 100
CS-MVS-test95.98 5496.34 4094.90 15498.06 10187.66 19999.69 3396.10 23793.66 6098.35 3899.05 5486.28 11397.66 21596.96 6998.90 8799.37 88
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 6096.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet87.13 1293.69 12092.83 13296.28 10397.99 10390.22 13599.38 7198.93 1291.42 10693.66 13797.68 14071.29 27099.64 10087.94 20397.20 13198.98 121
test_fmvsm_n_192097.08 2697.55 1495.67 12797.94 10489.61 15699.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 194
cl2289.57 21088.79 20991.91 23497.94 10487.62 20097.98 22496.51 21085.03 26482.37 27091.79 28583.65 15096.50 26985.96 22377.89 29791.61 285
CS-MVS95.75 6796.19 4294.40 17397.88 10686.22 23699.66 3496.12 23692.69 7898.07 4698.89 7887.09 9197.59 22196.71 7298.62 9999.39 87
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32398.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 177
thres20093.69 12092.59 13796.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17296.97 17583.42 15598.77 15785.08 23290.96 21697.39 196
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 33198.74 1692.42 8495.65 10494.76 23286.52 10899.49 11295.29 10392.97 18299.53 74
Anonymous2023121184.72 29182.65 30290.91 25797.71 11084.55 27597.28 25896.67 19766.88 38179.18 31390.87 30358.47 34096.60 25982.61 26574.20 32491.59 287
tfpn200view993.43 12992.27 14296.90 6997.68 11194.84 3899.18 8999.36 288.45 18490.79 17596.90 17983.31 15698.75 15984.11 24890.69 21897.12 202
thres40093.39 13192.27 14296.73 7897.68 11194.84 3899.18 8999.36 288.45 18490.79 17596.90 17983.31 15698.75 15984.11 24890.69 21896.61 217
thres100view90093.34 13392.15 14596.90 6997.62 11394.84 3899.06 11199.36 287.96 20490.47 18396.78 18683.29 15898.75 15984.11 24890.69 21897.12 202
thres600view793.18 13992.00 14896.75 7697.62 11394.92 3399.07 10999.36 287.96 20490.47 18396.78 18683.29 15898.71 16382.93 26290.47 22296.61 217
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10799.46 11895.00 11092.69 18699.50 78
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
Anonymous2024052987.66 24985.58 26293.92 19497.59 11685.01 26998.13 21097.13 17266.69 38288.47 20396.01 20955.09 35399.51 11087.00 21084.12 26097.23 201
HyFIR lowres test93.68 12293.29 11994.87 15597.57 11888.04 19198.18 20698.47 2587.57 21791.24 17195.05 22685.49 12797.46 22893.22 14292.82 18399.10 113
canonicalmvs95.02 8493.96 10398.20 2197.53 11995.92 1798.71 14596.19 23191.78 9795.86 9998.49 11079.53 20899.03 14996.12 8591.42 21399.66 60
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
CHOSEN 1792x268894.35 10393.82 10795.95 11797.40 12188.74 17998.41 18398.27 3192.18 9191.43 16696.40 19778.88 21299.81 7993.59 13697.81 11599.30 95
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10399.75 2197.66 9294.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 14097.37 12389.16 16199.86 498.47 2595.68 2398.87 2299.15 3982.44 18199.92 4099.14 2197.43 12796.83 213
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13191.50 10296.16 9298.61 10386.28 11399.00 15096.19 8491.74 20399.51 77
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17495.83 2098.97 1999.14 4282.48 17799.60 10398.60 3399.08 7398.00 181
testing22294.48 10194.00 9995.95 11797.30 12692.27 9198.82 13497.92 5589.20 16194.82 11797.26 15987.13 9097.32 23691.95 15691.56 20798.25 172
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9799.91 4599.43 1598.91 8699.59 71
EPNet_dtu92.28 15892.15 14592.70 22097.29 12884.84 27198.64 15597.82 6392.91 7593.02 14597.02 17385.48 12995.70 31572.25 33994.89 16797.55 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSTER92.71 14692.32 14093.86 19697.29 12892.95 8199.01 11896.59 20390.09 13885.51 23194.00 24394.61 1696.56 26490.77 17083.03 27292.08 272
EPMVS92.59 15191.59 15795.59 13197.22 13090.03 14591.78 35198.04 4890.42 12991.66 16090.65 31186.49 11097.46 22881.78 27396.31 14799.28 97
test_fmvs192.35 15592.94 13090.57 26797.19 13175.43 35299.55 4494.97 30895.20 3196.82 7997.57 14759.59 33799.84 6997.30 6198.29 11096.46 224
tpmvs89.16 21487.76 22893.35 20597.19 13184.75 27390.58 36697.36 15181.99 31684.56 23889.31 33983.98 14898.17 18074.85 32190.00 22597.12 202
DeepC-MVS91.02 494.56 10093.92 10596.46 9497.16 13390.76 12298.39 19097.11 17493.92 5088.66 20198.33 11778.14 21999.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0593.48 12693.18 12294.39 17697.15 13494.17 5799.30 8092.97 34892.38 8886.70 22395.42 21995.67 596.59 26094.67 11884.32 25892.39 255
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13591.10 11299.32 7997.43 14492.10 9491.53 16596.38 20083.29 15899.68 9293.42 14096.37 14598.25 172
h-mvs3392.47 15491.95 15094.05 19097.13 13685.01 26998.36 19298.08 4493.85 5596.27 9096.73 18883.19 16199.43 12295.81 9068.09 35697.70 187
miper_enhance_ethall90.33 19489.70 18992.22 22697.12 13788.93 17398.35 19395.96 24788.60 17983.14 25592.33 27587.38 8296.18 29286.49 21877.89 29791.55 288
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13896.96 699.01 11897.04 18195.51 2798.86 2399.11 5082.19 18599.36 13098.59 3598.14 11198.00 181
VDD-MVS91.24 17890.18 18494.45 17297.08 13985.84 25298.40 18696.10 23786.99 22593.36 14098.16 12554.27 35699.20 13896.59 7890.63 22198.31 171
UGNet91.91 16690.85 17295.10 14697.06 14088.69 18098.01 22298.24 3492.41 8592.39 15293.61 25460.52 33499.68 9288.14 19997.25 13096.92 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline192.61 15091.28 16396.58 8897.05 14194.63 4697.72 24096.20 22989.82 14388.56 20296.85 18286.85 9897.82 20188.42 19580.10 28897.30 198
iter_conf_final93.22 13893.04 12693.76 19997.03 14292.22 9399.05 11293.31 34592.11 9386.93 21895.42 21995.01 1096.59 26093.98 12784.48 25592.46 254
CANet_DTU94.31 10493.35 11697.20 5597.03 14294.71 4498.62 15795.54 28395.61 2597.21 6698.47 11371.88 26399.84 6988.38 19697.46 12697.04 207
MSDG88.29 23786.37 25094.04 19196.90 14486.15 24096.52 28794.36 32977.89 34679.22 31296.95 17669.72 27799.59 10473.20 33492.58 18996.37 227
BH-w/o92.32 15691.79 15393.91 19596.85 14586.18 23899.11 10695.74 27188.13 19884.81 23597.00 17477.26 22497.91 19489.16 19298.03 11297.64 188
AllTest84.97 28983.12 29490.52 27096.82 14678.84 33595.89 30792.17 35977.96 34475.94 33195.50 21655.48 34999.18 13971.15 34087.14 23393.55 244
TestCases90.52 27096.82 14678.84 33592.17 35977.96 34475.94 33195.50 21655.48 34999.18 13971.15 34087.14 23393.55 244
SDMVSNet91.09 17989.91 18794.65 16496.80 14890.54 12897.78 23497.81 6688.34 19185.73 22795.26 22366.44 30598.26 17794.25 12586.75 23695.14 235
sd_testset89.23 21388.05 22792.74 21996.80 14885.33 26295.85 31297.03 18388.34 19185.73 22795.26 22361.12 33297.76 21085.61 22886.75 23695.14 235
PMMVS93.62 12593.90 10692.79 21696.79 15081.40 31498.85 13196.81 19391.25 10996.82 7998.15 12677.02 22598.13 18293.15 14496.30 14898.83 139
BH-RMVSNet91.25 17789.99 18695.03 15196.75 15188.55 18298.65 15394.95 30987.74 21287.74 20897.80 13268.27 28798.14 18180.53 28397.49 12598.41 162
MVS_Test93.67 12392.67 13596.69 8296.72 15292.66 8597.22 26396.03 24287.69 21595.12 11494.03 24181.55 19198.28 17689.17 19196.46 14299.14 108
COLMAP_ROBcopyleft82.69 1884.54 29582.82 29689.70 29496.72 15278.85 33495.89 30792.83 35171.55 36577.54 32695.89 21159.40 33899.14 14567.26 35688.26 22991.11 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous92.50 15391.65 15695.06 14896.60 15489.64 15497.06 26896.44 21586.64 23684.14 24393.93 24582.49 17696.17 29491.47 15996.08 15399.35 90
ETV-MVS96.00 5296.00 5296.00 11496.56 15591.05 11599.63 3696.61 20193.26 6897.39 6198.30 11986.62 10498.13 18298.07 4997.57 12198.82 140
GG-mvs-BLEND96.98 6596.53 15694.81 4187.20 37197.74 7593.91 13396.40 19796.56 296.94 24895.08 10698.95 8499.20 104
FMVSNet388.81 22687.08 24093.99 19396.52 15794.59 4798.08 21896.20 22985.85 24982.12 27491.60 28974.05 24395.40 32479.04 29080.24 28591.99 275
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13996.51 15889.01 16799.81 1198.39 2795.46 2899.19 1399.16 3681.44 19599.91 4598.83 2896.97 13697.01 209
BH-untuned91.46 17290.84 17393.33 20696.51 15884.83 27298.84 13395.50 28586.44 24483.50 24796.70 18975.49 23197.77 20586.78 21697.81 11597.40 195
FE-MVS91.38 17490.16 18595.05 15096.46 16087.53 20389.69 36897.84 6082.97 29892.18 15492.00 28284.07 14798.93 15380.71 28095.52 16198.68 151
sss94.85 8793.94 10497.58 4096.43 16194.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19299.65 9892.79 15094.02 17498.99 120
test250694.80 8894.21 9196.58 8896.41 16292.18 9498.01 22298.96 1190.82 11693.46 13997.28 15785.92 11998.45 16989.82 17997.19 13299.12 111
ECVR-MVScopyleft92.29 15791.33 16295.15 14596.41 16287.84 19498.10 21594.84 31290.82 11691.42 16897.28 15765.61 31198.49 16890.33 17397.19 13299.12 111
ET-MVSNet_ETH3D92.56 15291.45 16095.88 11996.39 16494.13 5899.46 5996.97 18992.18 9166.94 37198.29 12094.65 1594.28 34494.34 12383.82 26599.24 100
dp90.16 20088.83 20894.14 18596.38 16586.42 22791.57 35597.06 18084.76 27088.81 20090.19 32984.29 14497.43 23175.05 31891.35 21598.56 156
EIA-MVS95.11 8195.27 7394.64 16696.34 16686.51 22499.59 4096.62 20092.51 8094.08 13098.64 9986.05 11898.24 17995.07 10798.50 10399.18 105
test_vis1_n_192093.08 14293.42 11592.04 23396.31 16779.36 33199.83 996.06 24196.72 998.53 3298.10 12758.57 33999.91 4597.86 5398.79 9496.85 212
TR-MVS90.77 18689.44 19494.76 15996.31 16788.02 19297.92 22695.96 24785.52 25588.22 20597.23 16266.80 30198.09 18584.58 24092.38 19198.17 178
UA-Net93.30 13492.62 13695.34 13796.27 16988.53 18495.88 30996.97 18990.90 11495.37 10997.07 17182.38 18299.10 14783.91 25294.86 16898.38 165
tpmrst92.78 14592.16 14494.65 16496.27 16987.45 20691.83 35097.10 17789.10 16694.68 12190.69 30888.22 6797.73 21389.78 18091.80 20298.77 146
hse-mvs291.67 16991.51 15992.15 23096.22 17182.61 30397.74 23997.53 12293.85 5596.27 9096.15 20383.19 16197.44 23095.81 9066.86 36396.40 226
AUN-MVS90.17 19989.50 19292.19 22896.21 17282.67 30197.76 23897.53 12288.05 20091.67 15996.15 20383.10 16397.47 22788.11 20066.91 36296.43 225
ADS-MVSNet287.62 25086.88 24389.86 28896.21 17279.14 33387.15 37292.99 34783.01 29689.91 19187.27 35278.87 21392.80 35774.20 32692.27 19497.64 188
ADS-MVSNet88.99 21687.30 23694.07 18896.21 17287.56 20287.15 37296.78 19583.01 29689.91 19187.27 35278.87 21397.01 24574.20 32692.27 19497.64 188
PatchmatchNetpermissive92.05 16591.04 16895.06 14896.17 17589.04 16591.26 35997.26 15589.56 15390.64 17990.56 31788.35 6697.11 24079.53 28696.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111192.12 16291.19 16594.94 15396.15 17687.36 20998.12 21294.84 31290.85 11590.97 17397.26 15965.60 31298.37 17189.74 18297.14 13599.07 117
gg-mvs-nofinetune90.00 20387.71 23096.89 7396.15 17694.69 4585.15 37797.74 7568.32 37792.97 14660.16 39096.10 396.84 25193.89 12998.87 8899.14 108
MDTV_nov1_ep1390.47 18296.14 17888.55 18291.34 35897.51 12889.58 15192.24 15390.50 32186.99 9697.61 22077.64 30192.34 192
IS-MVSNet93.00 14392.51 13894.49 16996.14 17887.36 20998.31 19795.70 27388.58 18090.17 18797.50 14983.02 16597.22 23787.06 20896.07 15498.90 132
Vis-MVSNet (Re-imp)93.26 13793.00 12994.06 18996.14 17886.71 22398.68 14996.70 19688.30 19389.71 19597.64 14385.43 13096.39 27688.06 20196.32 14699.08 115
thisisatest051594.75 9094.19 9296.43 9696.13 18192.64 8899.47 5597.60 10787.55 21893.17 14297.59 14594.71 1398.42 17088.28 19793.20 17998.24 174
FA-MVS(test-final)92.22 16191.08 16795.64 12896.05 18288.98 16891.60 35497.25 15686.99 22591.84 15692.12 27683.03 16499.00 15086.91 21393.91 17598.93 129
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18390.25 13299.90 298.13 4296.68 1198.42 3498.92 7485.34 13299.88 5499.12 2299.08 7399.70 52
ab-mvs91.05 18289.17 20096.69 8295.96 18491.72 9892.62 34597.23 16085.61 25489.74 19393.89 24768.55 28499.42 12391.09 16287.84 23198.92 131
Fast-Effi-MVS+91.72 16890.79 17694.49 16995.89 18587.40 20899.54 4995.70 27385.01 26689.28 19895.68 21477.75 22197.57 22583.22 25795.06 16698.51 158
EPP-MVSNet93.75 11993.67 11094.01 19295.86 18685.70 25498.67 15197.66 9284.46 27391.36 16997.18 16691.16 3197.79 20392.93 14693.75 17698.53 157
mvsany_test194.57 9995.09 7992.98 21295.84 18782.07 30798.76 14395.24 30192.87 7796.45 8798.71 9484.81 13999.15 14197.68 5595.49 16297.73 186
Effi-MVS+93.87 11593.15 12396.02 11395.79 18890.76 12296.70 28495.78 26886.98 22895.71 10297.17 16779.58 20698.01 19294.57 12196.09 15299.31 94
tpm cat188.89 22087.27 23793.76 19995.79 18885.32 26390.76 36497.09 17876.14 35285.72 22988.59 34282.92 16698.04 19076.96 30591.43 21297.90 184
thisisatest053094.00 10993.52 11295.43 13495.76 19090.02 14698.99 12097.60 10786.58 23791.74 15897.36 15694.78 1298.34 17286.37 21992.48 19097.94 183
3Dnovator+87.72 893.43 12991.84 15298.17 2295.73 19195.08 3298.92 12797.04 18191.42 10681.48 28897.60 14474.60 23599.79 8290.84 16798.97 8199.64 62
MVS93.92 11292.28 14198.83 795.69 19296.82 896.22 29998.17 3784.89 26884.34 24298.61 10379.32 21099.83 7393.88 13099.43 5999.86 29
cascas90.93 18489.33 19895.76 12395.69 19293.03 7898.99 12096.59 20380.49 33186.79 22294.45 23665.23 31598.60 16793.52 13792.18 19695.66 234
QAPM91.41 17389.49 19397.17 5695.66 19493.42 7098.60 16197.51 12880.92 32981.39 28997.41 15472.89 25599.87 5882.33 26798.68 9698.21 176
tttt051793.30 13493.01 12894.17 18495.57 19586.47 22698.51 17197.60 10785.99 24890.55 18097.19 16594.80 1198.31 17385.06 23391.86 20097.74 185
1112_ss92.71 14691.55 15896.20 10495.56 19691.12 11098.48 17694.69 31988.29 19486.89 22098.50 10887.02 9498.66 16584.75 23789.77 22698.81 141
diffmvspermissive94.59 9894.19 9295.81 12195.54 19790.69 12498.70 14795.68 27591.61 9995.96 9497.81 13180.11 20298.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LCM-MVSNet-Re88.59 23388.61 21388.51 31495.53 19872.68 36496.85 27688.43 38388.45 18473.14 34890.63 31275.82 22894.38 34392.95 14595.71 15998.48 160
Test_1112_low_res92.27 15990.97 16996.18 10595.53 19891.10 11298.47 17894.66 32088.28 19586.83 22193.50 25887.00 9598.65 16684.69 23889.74 22798.80 142
PCF-MVS89.78 591.26 17589.63 19096.16 10895.44 20091.58 10295.29 31996.10 23785.07 26382.75 25797.45 15278.28 21899.78 8480.60 28295.65 16097.12 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet95.09 8295.17 7594.84 15795.42 20188.17 18799.48 5395.92 25491.47 10397.34 6398.36 11682.77 16997.41 23297.24 6298.58 10098.94 128
3Dnovator87.35 1193.17 14091.77 15497.37 4995.41 20293.07 7698.82 13497.85 5991.53 10182.56 26397.58 14671.97 26299.82 7691.01 16499.23 6999.22 103
IB-MVS89.43 692.12 16290.83 17595.98 11695.40 20390.78 12199.81 1198.06 4591.23 11085.63 23093.66 25390.63 4198.78 15691.22 16171.85 34698.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_cas_vis1_n_192093.86 11693.74 10994.22 18295.39 20486.08 24299.73 2296.07 24096.38 1797.19 6997.78 13465.46 31499.86 6396.71 7298.92 8596.73 214
miper_ehance_all_eth88.94 21888.12 22591.40 24695.32 20586.93 21997.85 23195.55 28284.19 27681.97 27991.50 29184.16 14595.91 30884.69 23877.89 29791.36 296
131493.44 12891.98 14997.84 3295.24 20694.38 5296.22 29997.92 5590.18 13482.28 27197.71 13977.63 22299.80 8191.94 15798.67 9799.34 92
XVG-OURS90.83 18590.49 18191.86 23595.23 20781.25 31895.79 31495.92 25488.96 16990.02 19098.03 12871.60 26799.35 13391.06 16387.78 23294.98 238
casdiffmvs_mvgpermissive94.00 10993.33 11796.03 11295.22 20890.90 12099.09 10795.99 24390.58 12391.55 16497.37 15579.91 20498.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,193.82 11793.26 12095.49 13295.21 20990.25 13299.15 9897.54 12189.18 16391.79 15794.87 22989.13 5697.63 21886.21 22096.29 14998.60 155
xiu_mvs_v1_base_debu94.73 9193.98 10096.99 6295.19 21095.24 2598.62 15796.50 21192.99 7297.52 5798.83 8272.37 25899.15 14197.03 6596.74 13996.58 219
xiu_mvs_v1_base94.73 9193.98 10096.99 6295.19 21095.24 2598.62 15796.50 21192.99 7297.52 5798.83 8272.37 25899.15 14197.03 6596.74 13996.58 219
xiu_mvs_v1_base_debi94.73 9193.98 10096.99 6295.19 21095.24 2598.62 15796.50 21192.99 7297.52 5798.83 8272.37 25899.15 14197.03 6596.74 13996.58 219
XVG-OURS-SEG-HR90.95 18390.66 17991.83 23695.18 21381.14 32195.92 30695.92 25488.40 18890.33 18697.85 12970.66 27399.38 12892.83 14888.83 22894.98 238
Effi-MVS+-dtu89.97 20590.68 17887.81 31995.15 21471.98 36697.87 23095.40 29291.92 9587.57 20991.44 29274.27 24196.84 25189.45 18493.10 18194.60 240
Syy-MVS84.10 30384.53 28282.83 35095.14 21565.71 37897.68 24396.66 19886.52 24082.63 26096.84 18368.15 28889.89 37445.62 38891.54 20992.87 247
myMVS_eth3d88.68 23289.07 20287.50 32295.14 21579.74 32997.68 24396.66 19886.52 24082.63 26096.84 18385.22 13489.89 37469.43 34891.54 20992.87 247
Vis-MVSNetpermissive92.64 14891.85 15195.03 15195.12 21788.23 18698.48 17696.81 19391.61 9992.16 15597.22 16371.58 26898.00 19385.85 22797.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net86.67 26284.96 27091.80 23895.11 21888.81 17696.77 27895.25 29882.94 29982.12 27490.25 32462.89 32494.97 33179.04 29080.24 28591.62 282
test186.67 26284.96 27091.80 23895.11 21888.81 17696.77 27895.25 29882.94 29982.12 27490.25 32462.89 32494.97 33179.04 29080.24 28591.62 282
FMVSNet286.90 25784.79 27693.24 20795.11 21892.54 8997.67 24595.86 26682.94 29980.55 29591.17 29862.89 32495.29 32677.23 30279.71 29191.90 276
GeoE90.60 19189.56 19193.72 20295.10 22185.43 25999.41 6894.94 31083.96 28187.21 21596.83 18574.37 23997.05 24480.50 28493.73 17798.67 152
baseline93.91 11393.30 11895.72 12495.10 22190.07 14197.48 25095.91 25991.03 11193.54 13897.68 14079.58 20698.02 19194.27 12495.14 16599.08 115
casdiffmvspermissive93.98 11193.43 11495.61 13095.07 22389.86 15098.80 13795.84 26790.98 11392.74 14897.66 14279.71 20598.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer94.71 9494.08 9796.61 8595.05 22494.87 3697.77 23696.17 23386.84 23198.04 4898.52 10685.52 12495.99 30189.83 17798.97 8198.96 123
lupinMVS96.32 4495.94 5397.44 4495.05 22494.87 3699.86 496.50 21193.82 5798.04 4898.77 8585.52 12498.09 18596.98 6898.97 8199.37 88
CostFormer92.89 14492.48 13994.12 18694.99 22685.89 24992.89 34197.00 18786.98 22895.00 11690.78 30490.05 5097.51 22692.92 14791.73 20498.96 123
c3_l88.19 23987.23 23891.06 25394.97 22786.17 23997.72 24095.38 29383.43 29081.68 28691.37 29382.81 16895.72 31484.04 25173.70 32891.29 300
SCA90.64 19089.25 19994.83 15894.95 22888.83 17596.26 29697.21 16290.06 14190.03 18990.62 31366.61 30296.81 25383.16 25894.36 17198.84 136
test-LLR93.11 14192.68 13494.40 17394.94 22987.27 21399.15 9897.25 15690.21 13291.57 16194.04 23984.89 13797.58 22285.94 22496.13 15098.36 168
test-mter93.27 13692.89 13194.40 17394.94 22987.27 21399.15 9897.25 15688.95 17091.57 16194.04 23988.03 7397.58 22285.94 22496.13 15098.36 168
cl____87.82 24186.79 24590.89 25994.88 23185.43 25997.81 23295.24 30182.91 30380.71 29491.22 29681.97 18895.84 31081.34 27575.06 31291.40 295
DIV-MVS_self_test87.82 24186.81 24490.87 26094.87 23285.39 26197.81 23295.22 30682.92 30280.76 29391.31 29581.99 18695.81 31281.36 27475.04 31391.42 294
tpm291.77 16791.09 16693.82 19894.83 23385.56 25892.51 34697.16 16984.00 27993.83 13590.66 31087.54 7997.17 23887.73 20591.55 20898.72 148
PVSNet_083.28 1687.31 25385.16 26893.74 20194.78 23484.59 27498.91 12898.69 2189.81 14478.59 31993.23 26361.95 32899.34 13494.75 11455.72 38397.30 198
CDS-MVSNet93.47 12793.04 12694.76 15994.75 23589.45 15898.82 13497.03 18387.91 20690.97 17396.48 19589.06 5796.36 27889.50 18392.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit94.69 23688.14 18888.22 19697.20 16498.29 17590.79 169
eth_miper_zixun_eth87.76 24487.00 24290.06 28194.67 23782.65 30297.02 27195.37 29484.19 27681.86 28491.58 29081.47 19395.90 30983.24 25673.61 32991.61 285
testing387.75 24588.22 22386.36 33094.66 23877.41 34699.52 5097.95 5486.05 24781.12 29096.69 19086.18 11689.31 37861.65 37290.12 22492.35 260
RPSCF85.33 28585.55 26384.67 34294.63 23962.28 38193.73 33393.76 33774.38 35985.23 23497.06 17264.09 31898.31 17380.98 27686.08 24493.41 246
miper_lstm_enhance86.90 25786.20 25389.00 30994.53 24081.19 31996.74 28295.24 30182.33 31280.15 30090.51 32081.99 18694.68 34080.71 28073.58 33091.12 304
Patchmatch-test86.25 27184.06 28892.82 21594.42 24182.88 29882.88 38694.23 33171.58 36479.39 31090.62 31389.00 5996.42 27563.03 36891.37 21499.16 106
VDDNet90.08 20288.54 21894.69 16394.41 24287.68 19798.21 20496.40 21676.21 35193.33 14197.75 13654.93 35498.77 15794.71 11790.96 21697.61 192
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14394.35 24389.10 16399.50 5197.67 9194.76 3498.68 2799.03 5681.13 19899.86 6398.63 3297.36 12996.63 216
test_fmvsmvis_n_192095.47 7295.40 7095.70 12594.33 24490.22 13599.70 2696.98 18896.80 792.75 14798.89 7882.46 18099.92 4098.36 4098.33 10796.97 210
KD-MVS_2432*160082.98 30880.52 31690.38 27494.32 24588.98 16892.87 34295.87 26480.46 33273.79 34387.49 34982.76 17193.29 35170.56 34446.53 39288.87 349
miper_refine_blended82.98 30880.52 31690.38 27494.32 24588.98 16892.87 34295.87 26480.46 33273.79 34387.49 34982.76 17193.29 35170.56 34446.53 39288.87 349
EI-MVSNet89.87 20689.38 19791.36 24894.32 24585.87 25097.61 24796.59 20385.10 26185.51 23197.10 16981.30 19796.56 26483.85 25483.03 27291.64 280
CVMVSNet90.30 19590.91 17188.46 31594.32 24573.58 36097.61 24797.59 11190.16 13788.43 20497.10 16976.83 22692.86 35482.64 26493.54 17898.93 129
WB-MVSnew88.69 23088.34 22089.77 29294.30 24985.99 24798.14 20997.31 15487.15 22487.85 20796.07 20769.91 27495.52 31972.83 33791.47 21187.80 356
test_fmvs1_n91.07 18091.41 16190.06 28194.10 25074.31 35699.18 8994.84 31294.81 3396.37 8997.46 15150.86 36799.82 7697.14 6497.90 11396.04 231
IterMVS-LS88.34 23587.44 23391.04 25494.10 25085.85 25198.10 21595.48 28685.12 26082.03 27891.21 29781.35 19695.63 31783.86 25375.73 30991.63 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS92.62 14992.09 14794.20 18394.10 25087.68 19798.41 18396.97 18987.53 21989.74 19396.04 20884.77 14196.49 27188.97 19392.31 19398.42 161
PAPM96.35 4295.94 5397.58 4094.10 25095.25 2498.93 12598.17 3794.26 4293.94 13298.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
CLD-MVS91.06 18190.71 17792.10 23194.05 25486.10 24199.55 4496.29 22594.16 4584.70 23797.17 16769.62 27997.82 20194.74 11586.08 24492.39 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC93.95 25599.16 9393.92 5087.57 209
ACMP_Plane93.95 25599.16 9393.92 5087.57 209
HQP-MVS91.50 17091.23 16492.29 22593.95 25586.39 22999.16 9396.37 21893.92 5087.57 20996.67 19173.34 24797.77 20593.82 13386.29 23992.72 249
NP-MVS93.94 25886.22 23696.67 191
plane_prior693.92 25986.02 24672.92 253
ACMP87.39 1088.71 22988.24 22290.12 28093.91 26081.06 32298.50 17295.67 27689.43 15680.37 29795.55 21565.67 30997.83 20090.55 17184.51 25391.47 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior193.90 261
HQP_MVS91.26 17590.95 17092.16 22993.84 26286.07 24499.02 11696.30 22293.38 6686.99 21696.52 19372.92 25397.75 21193.46 13886.17 24292.67 251
plane_prior793.84 26285.73 253
dmvs_re88.69 23088.06 22690.59 26693.83 26478.68 33795.75 31596.18 23287.99 20384.48 24196.32 20167.52 29596.94 24884.98 23585.49 24896.14 229
MVS-HIRNet79.01 32775.13 33990.66 26593.82 26581.69 31085.16 37693.75 33854.54 38674.17 34159.15 39257.46 34396.58 26363.74 36594.38 17093.72 243
FMVSNet582.29 31180.54 31587.52 32193.79 26684.01 28293.73 33392.47 35576.92 34974.27 34086.15 36063.69 32289.24 37969.07 34974.79 31689.29 344
ACMH+83.78 1584.21 29982.56 30489.15 30693.73 26779.16 33296.43 28994.28 33081.09 32674.00 34294.03 24154.58 35597.67 21476.10 31278.81 29390.63 320
ACMM86.95 1388.77 22788.22 22390.43 27293.61 26881.34 31698.50 17295.92 25487.88 20783.85 24695.20 22567.20 29897.89 19686.90 21484.90 25192.06 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft85.28 1490.75 18788.84 20796.48 9393.58 26993.51 6898.80 13797.41 14682.59 30578.62 31797.49 15068.00 29199.82 7684.52 24298.55 10296.11 230
IterMVS85.81 27884.67 27989.22 30493.51 27083.67 28796.32 29394.80 31585.09 26278.69 31590.17 33066.57 30493.17 35379.48 28877.42 30390.81 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet88.83 22487.38 23593.16 20993.47 27186.24 23484.97 37994.20 33288.92 17390.76 17786.88 35684.43 14294.82 33670.64 34392.17 19798.41 162
RPMNet85.07 28881.88 30594.64 16693.47 27186.24 23484.97 37997.21 16264.85 38490.76 17778.80 38180.95 19999.27 13753.76 38392.17 19798.41 162
IterMVS-SCA-FT85.73 28184.64 28089.00 30993.46 27382.90 29696.27 29494.70 31885.02 26578.62 31790.35 32266.61 30293.33 35079.38 28977.36 30490.76 315
Fast-Effi-MVS+-dtu88.84 22288.59 21589.58 29793.44 27478.18 34198.65 15394.62 32188.46 18384.12 24495.37 22268.91 28196.52 26782.06 27091.70 20594.06 241
Patchmtry83.61 30781.64 30789.50 29993.36 27582.84 29984.10 38294.20 33269.47 37479.57 30886.88 35684.43 14294.78 33768.48 35274.30 32290.88 310
LPG-MVS_test88.86 22188.47 21990.06 28193.35 27680.95 32398.22 20295.94 25087.73 21383.17 25396.11 20566.28 30697.77 20590.19 17585.19 24991.46 291
LGP-MVS_train90.06 28193.35 27680.95 32395.94 25087.73 21383.17 25396.11 20566.28 30697.77 20590.19 17585.19 24991.46 291
JIA-IIPM85.97 27484.85 27489.33 30393.23 27873.68 35985.05 37897.13 17269.62 37391.56 16368.03 38888.03 7396.96 24677.89 30093.12 18097.34 197
ACMH83.09 1784.60 29382.61 30390.57 26793.18 27982.94 29496.27 29494.92 31181.01 32772.61 35493.61 25456.54 34597.79 20374.31 32481.07 28390.99 307
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchT85.44 28483.19 29392.22 22693.13 28083.00 29383.80 38596.37 21870.62 36790.55 18079.63 38084.81 13994.87 33458.18 37991.59 20698.79 143
baseline294.04 10893.80 10894.74 16193.07 28190.25 13298.12 21298.16 3989.86 14286.53 22496.95 17695.56 698.05 18991.44 16094.53 16995.93 232
jason95.40 7694.86 8297.03 5992.91 28294.23 5499.70 2696.30 22293.56 6496.73 8298.52 10681.46 19497.91 19496.08 8798.47 10598.96 123
jason: jason.
LTVRE_ROB81.71 1984.59 29482.72 30190.18 27892.89 28383.18 29293.15 33894.74 31678.99 33775.14 33892.69 27165.64 31097.63 21869.46 34781.82 28189.74 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPA-MVSNet89.10 21587.66 23193.45 20492.56 28491.02 11697.97 22598.32 3086.92 23086.03 22692.01 28068.84 28397.10 24290.92 16575.34 31092.23 263
tpm89.67 20888.95 20591.82 23792.54 28581.43 31392.95 34095.92 25487.81 20890.50 18289.44 33684.99 13595.65 31683.67 25582.71 27598.38 165
GA-MVS90.10 20188.69 21194.33 17792.44 28687.97 19399.08 10896.26 22689.65 14786.92 21993.11 26668.09 28996.96 24682.54 26690.15 22398.05 179
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28789.92 14899.79 1696.85 19296.53 1597.22 6598.67 9782.71 17399.84 6998.92 2798.98 8099.43 84
FIs90.70 18889.87 18893.18 20892.29 28891.12 11098.17 20898.25 3289.11 16583.44 24894.82 23182.26 18396.17 29487.76 20482.76 27492.25 261
ITE_SJBPF87.93 31792.26 28976.44 34993.47 34487.67 21679.95 30395.49 21856.50 34697.38 23375.24 31782.33 27889.98 334
UniMVSNet (Re)89.50 21288.32 22193.03 21092.21 29090.96 11898.90 12998.39 2789.13 16483.22 25092.03 27881.69 19096.34 28486.79 21572.53 33991.81 277
UniMVSNet_NR-MVSNet89.60 20988.55 21792.75 21892.17 29190.07 14198.74 14498.15 4088.37 18983.21 25193.98 24482.86 16795.93 30586.95 21172.47 34092.25 261
TinyColmap80.42 32177.94 32687.85 31892.09 29278.58 33893.74 33289.94 37674.99 35569.77 35991.78 28646.09 37497.58 22265.17 36477.89 29787.38 358
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14492.06 29388.94 17199.29 8197.53 12294.46 3898.98 1898.99 6079.99 20399.85 6798.24 4796.86 13896.73 214
tt080586.50 26784.79 27691.63 24491.97 29481.49 31296.49 28897.38 14982.24 31382.44 26595.82 21251.22 36498.25 17884.55 24180.96 28495.13 237
MS-PatchMatch86.75 26085.92 25789.22 30491.97 29482.47 30496.91 27396.14 23583.74 28477.73 32493.53 25758.19 34197.37 23576.75 30898.35 10687.84 354
VPNet88.30 23686.57 24793.49 20391.95 29691.35 10498.18 20697.20 16688.61 17884.52 24094.89 22862.21 32796.76 25689.34 18772.26 34392.36 257
FMVSNet183.94 30481.32 31291.80 23891.94 29788.81 17696.77 27895.25 29877.98 34278.25 32290.25 32450.37 36894.97 33173.27 33377.81 30191.62 282
WR-MVS88.54 23487.22 23992.52 22391.93 29889.50 15798.56 16697.84 6086.99 22581.87 28293.81 24874.25 24295.92 30785.29 23074.43 32092.12 270
D2MVS87.96 24087.39 23489.70 29491.84 29983.40 28998.31 19798.49 2388.04 20178.23 32390.26 32373.57 24596.79 25584.21 24583.53 26788.90 348
FC-MVSNet-test90.22 19789.40 19692.67 22291.78 30089.86 15097.89 22798.22 3588.81 17582.96 25694.66 23381.90 18995.96 30385.89 22682.52 27792.20 267
MIMVSNet84.48 29681.83 30692.42 22491.73 30187.36 20985.52 37594.42 32781.40 32281.91 28087.58 34651.92 36292.81 35673.84 32988.15 23097.08 206
USDC84.74 29082.93 29590.16 27991.73 30183.54 28895.00 32193.30 34688.77 17673.19 34793.30 26153.62 35897.65 21775.88 31481.54 28289.30 343
test_vis1_n90.40 19290.27 18390.79 26291.55 30376.48 34899.12 10594.44 32494.31 4197.34 6396.95 17643.60 37899.42 12397.57 5797.60 12096.47 223
nrg03090.23 19688.87 20694.32 17891.53 30493.54 6798.79 14195.89 26288.12 19984.55 23994.61 23478.80 21596.88 25092.35 15475.21 31192.53 253
DU-MVS88.83 22487.51 23292.79 21691.46 30590.07 14198.71 14597.62 10488.87 17483.21 25193.68 25174.63 23395.93 30586.95 21172.47 34092.36 257
NR-MVSNet87.74 24886.00 25692.96 21391.46 30590.68 12596.65 28597.42 14588.02 20273.42 34593.68 25177.31 22395.83 31184.26 24471.82 34792.36 257
tfpnnormal83.65 30581.35 31190.56 26991.37 30788.06 19097.29 25797.87 5878.51 34176.20 32890.91 30164.78 31696.47 27261.71 37173.50 33187.13 363
test_vis1_rt81.31 31780.05 32085.11 33791.29 30870.66 37098.98 12277.39 39885.76 25268.80 36282.40 36936.56 38599.44 11992.67 15186.55 23885.24 373
test_040278.81 32976.33 33486.26 33191.18 30978.44 34095.88 30991.34 37068.55 37570.51 35889.91 33152.65 36194.99 33047.14 38779.78 29085.34 372
test0.0.03 188.96 21788.61 21390.03 28591.09 31084.43 27698.97 12397.02 18590.21 13280.29 29896.31 20284.89 13791.93 36872.98 33585.70 24793.73 242
WR-MVS_H86.53 26685.49 26489.66 29691.04 31183.31 29197.53 24998.20 3684.95 26779.64 30690.90 30278.01 22095.33 32576.29 31172.81 33690.35 324
CP-MVSNet86.54 26585.45 26589.79 29191.02 31282.78 30097.38 25397.56 11785.37 25779.53 30993.03 26771.86 26495.25 32779.92 28573.43 33491.34 297
TranMVSNet+NR-MVSNet87.75 24586.31 25192.07 23290.81 31388.56 18198.33 19497.18 16787.76 21081.87 28293.90 24672.45 25795.43 32283.13 26071.30 35092.23 263
PS-CasMVS85.81 27884.58 28189.49 30190.77 31482.11 30697.20 26497.36 15184.83 26979.12 31492.84 27067.42 29795.16 32978.39 29873.25 33591.21 302
DeepMVS_CXcopyleft76.08 36190.74 31551.65 39490.84 37286.47 24357.89 38287.98 34335.88 38692.60 35865.77 36265.06 36783.97 377
mvsmamba89.99 20489.42 19591.69 24390.64 31686.34 23298.40 18692.27 35791.01 11284.80 23694.93 22776.12 22796.51 26892.81 14983.84 26292.21 265
OPM-MVS89.76 20789.15 20191.57 24590.53 31785.58 25798.11 21495.93 25392.88 7686.05 22596.47 19667.06 30097.87 19889.29 19086.08 24491.26 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS87.75 24586.02 25592.95 21490.46 31889.70 15397.71 24295.90 26084.02 27880.95 29194.05 23867.51 29697.10 24285.16 23178.41 29492.04 274
UniMVSNet_ETH3D85.65 28383.79 29191.21 24990.41 31980.75 32595.36 31895.78 26878.76 34081.83 28594.33 23749.86 36996.66 25784.30 24383.52 26896.22 228
RRT_MVS88.91 21988.56 21689.93 28690.31 32081.61 31198.08 21896.38 21789.30 15882.41 26894.84 23073.15 25196.04 30090.38 17282.23 27992.15 268
v1085.73 28184.01 28990.87 26090.03 32186.73 22297.20 26495.22 30681.25 32479.85 30589.75 33373.30 24996.28 29076.87 30672.64 33889.61 340
v886.11 27284.45 28391.10 25289.99 32286.85 22097.24 26195.36 29581.99 31679.89 30489.86 33274.53 23796.39 27678.83 29472.32 34290.05 332
V4287.00 25685.68 26190.98 25689.91 32386.08 24298.32 19695.61 27983.67 28782.72 25890.67 30974.00 24496.53 26681.94 27274.28 32390.32 325
XVG-ACMP-BASELINE85.86 27684.95 27288.57 31389.90 32477.12 34794.30 32795.60 28087.40 22182.12 27492.99 26953.42 35997.66 21585.02 23483.83 26390.92 309
PEN-MVS85.21 28683.93 29089.07 30889.89 32581.31 31797.09 26797.24 15984.45 27478.66 31692.68 27268.44 28694.87 33475.98 31370.92 35191.04 306
test_fmvs285.10 28785.45 26584.02 34589.85 32665.63 37998.49 17492.59 35390.45 12785.43 23393.32 25943.94 37696.59 26090.81 16884.19 25989.85 336
v114486.83 25985.31 26791.40 24689.75 32787.21 21798.31 19795.45 28883.22 29382.70 25990.78 30473.36 24696.36 27879.49 28774.69 31790.63 320
TransMVSNet (Re)81.97 31379.61 32289.08 30789.70 32884.01 28297.26 25991.85 36578.84 33873.07 35191.62 28867.17 29995.21 32867.50 35559.46 37788.02 353
v2v48287.27 25485.76 25991.78 24289.59 32987.58 20198.56 16695.54 28384.53 27282.51 26491.78 28673.11 25296.47 27282.07 26974.14 32691.30 299
pm-mvs184.68 29282.78 29990.40 27389.58 33085.18 26597.31 25694.73 31781.93 31876.05 33092.01 28065.48 31396.11 29778.75 29569.14 35389.91 335
pmmvs487.58 25186.17 25491.80 23889.58 33088.92 17497.25 26095.28 29782.54 30780.49 29693.17 26575.62 23096.05 29982.75 26378.90 29290.42 323
bld_raw_dy_0_6487.82 24186.71 24691.15 25189.54 33285.61 25597.37 25489.16 38189.26 15983.42 24994.50 23565.79 30896.18 29288.00 20283.37 26991.67 279
v119286.32 27084.71 27891.17 25089.53 33386.40 22898.13 21095.44 29082.52 30882.42 26790.62 31371.58 26896.33 28577.23 30274.88 31490.79 313
v14419286.40 26884.89 27390.91 25789.48 33485.59 25698.21 20495.43 29182.45 31082.62 26290.58 31672.79 25696.36 27878.45 29774.04 32790.79 313
v14886.38 26985.06 26990.37 27689.47 33584.10 28198.52 16895.48 28683.80 28380.93 29290.22 32774.60 23596.31 28680.92 27871.55 34890.69 318
v192192086.02 27384.44 28490.77 26389.32 33685.20 26498.10 21595.35 29682.19 31482.25 27290.71 30670.73 27196.30 28976.85 30774.49 31990.80 312
v124085.77 28084.11 28790.73 26489.26 33785.15 26797.88 22995.23 30581.89 31982.16 27390.55 31869.60 28096.31 28675.59 31674.87 31590.72 317
our_test_384.47 29782.80 29789.50 29989.01 33883.90 28497.03 26994.56 32281.33 32375.36 33790.52 31971.69 26694.54 34268.81 35076.84 30590.07 330
ppachtmachnet_test83.63 30681.57 30989.80 29089.01 33885.09 26897.13 26694.50 32378.84 33876.14 32991.00 30069.78 27694.61 34163.40 36674.36 32189.71 339
DTE-MVSNet84.14 30182.80 29788.14 31688.95 34079.87 32896.81 27796.24 22783.50 28977.60 32592.52 27467.89 29394.24 34572.64 33869.05 35490.32 325
PS-MVSNAJss89.54 21189.05 20391.00 25588.77 34184.36 27797.39 25195.97 24588.47 18181.88 28193.80 24982.48 17796.50 26989.34 18783.34 27192.15 268
Baseline_NR-MVSNet85.83 27784.82 27588.87 31288.73 34283.34 29098.63 15691.66 36680.41 33482.44 26591.35 29474.63 23395.42 32384.13 24771.39 34987.84 354
MVP-Stereo86.61 26485.83 25888.93 31188.70 34383.85 28596.07 30394.41 32882.15 31575.64 33591.96 28367.65 29496.45 27477.20 30498.72 9586.51 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet84.19 30084.42 28583.52 34888.64 34467.37 37796.04 30495.76 27085.29 25878.44 32093.18 26470.67 27291.48 37075.79 31575.98 30791.70 278
pmmvs585.87 27584.40 28690.30 27788.53 34584.23 27898.60 16193.71 33981.53 32180.29 29892.02 27964.51 31795.52 31982.04 27178.34 29591.15 303
MDA-MVSNet-bldmvs77.82 33574.75 34187.03 32688.33 34678.52 33996.34 29292.85 35075.57 35348.87 38887.89 34457.32 34492.49 36260.79 37364.80 36890.08 329
N_pmnet70.19 34769.87 34971.12 36888.24 34730.63 40795.85 31228.70 40670.18 37068.73 36386.55 35864.04 31993.81 34653.12 38473.46 33288.94 347
v7n84.42 29882.75 30089.43 30288.15 34881.86 30896.75 28195.67 27680.53 33078.38 32189.43 33769.89 27596.35 28373.83 33072.13 34490.07 330
SixPastTwentyTwo82.63 31081.58 30885.79 33488.12 34971.01 36995.17 32092.54 35484.33 27572.93 35292.08 27760.41 33595.61 31874.47 32374.15 32590.75 316
test_djsdf88.26 23887.73 22989.84 28988.05 35082.21 30597.77 23696.17 23386.84 23182.41 26891.95 28472.07 26195.99 30189.83 17784.50 25491.32 298
mvs_tets87.09 25586.22 25289.71 29387.87 35181.39 31596.73 28395.90 26088.19 19779.99 30293.61 25459.96 33696.31 28689.40 18684.34 25791.43 293
OurMVSNet-221017-084.13 30283.59 29285.77 33587.81 35270.24 37194.89 32293.65 34186.08 24676.53 32793.28 26261.41 33096.14 29680.95 27777.69 30290.93 308
YYNet179.64 32677.04 33187.43 32487.80 35379.98 32796.23 29894.44 32473.83 36151.83 38587.53 34767.96 29292.07 36766.00 36167.75 36090.23 327
MDA-MVSNet_test_wron79.65 32577.05 33087.45 32387.79 35480.13 32696.25 29794.44 32473.87 36051.80 38687.47 35168.04 29092.12 36666.02 36067.79 35990.09 328
jajsoiax87.35 25286.51 24989.87 28787.75 35581.74 30997.03 26995.98 24488.47 18180.15 30093.80 24961.47 32996.36 27889.44 18584.47 25691.50 289
K. test v381.04 31879.77 32184.83 34087.41 35670.23 37295.60 31793.93 33683.70 28667.51 36989.35 33855.76 34793.58 34976.67 30968.03 35790.67 319
dmvs_testset77.17 33778.99 32471.71 36687.25 35738.55 40391.44 35681.76 39485.77 25169.49 36095.94 21069.71 27884.37 38652.71 38576.82 30692.21 265
testgi82.29 31181.00 31486.17 33287.24 35874.84 35597.39 25191.62 36788.63 17775.85 33495.42 21946.07 37591.55 36966.87 35979.94 28992.12 270
LF4IMVS81.94 31481.17 31384.25 34487.23 35968.87 37693.35 33791.93 36483.35 29275.40 33693.00 26849.25 37296.65 25878.88 29378.11 29687.22 362
EG-PatchMatch MVS79.92 32277.59 32786.90 32787.06 36077.90 34596.20 30194.06 33474.61 35766.53 37388.76 34140.40 38396.20 29167.02 35783.66 26686.61 364
test_fmvsmconf0.01_n94.14 10693.51 11396.04 11186.79 36189.19 16099.28 8395.94 25095.70 2195.50 10698.49 11073.27 25099.79 8298.28 4598.32 10999.15 107
Gipumacopyleft54.77 35952.22 36362.40 37786.50 36259.37 38550.20 39590.35 37536.52 39341.20 39449.49 39518.33 39681.29 38832.10 39465.34 36646.54 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp86.69 26185.75 26089.53 29886.46 36382.94 29496.39 29095.71 27283.97 28079.63 30790.70 30768.85 28295.94 30486.01 22184.02 26189.72 338
EGC-MVSNET60.70 35455.37 35876.72 36086.35 36471.08 36789.96 36784.44 3910.38 4031.50 40484.09 36537.30 38488.10 38240.85 39273.44 33370.97 388
test_method70.10 34868.66 35174.41 36586.30 36555.84 38794.47 32489.82 37735.18 39466.15 37484.75 36430.54 38877.96 39570.40 34660.33 37589.44 342
lessismore_v085.08 33885.59 36669.28 37490.56 37467.68 36890.21 32854.21 35795.46 32173.88 32862.64 37190.50 322
CMPMVSbinary58.40 2180.48 32080.11 31981.59 35685.10 36759.56 38494.14 33095.95 24968.54 37660.71 38093.31 26055.35 35297.87 19883.06 26184.85 25287.33 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120680.76 31979.42 32384.79 34184.78 36872.98 36196.53 28692.97 34879.56 33574.33 33988.83 34061.27 33192.15 36560.59 37475.92 30889.24 345
DSMNet-mixed81.60 31681.43 31082.10 35384.36 36960.79 38293.63 33586.74 38679.00 33679.32 31187.15 35463.87 32089.78 37666.89 35891.92 19995.73 233
pmmvs679.90 32377.31 32987.67 32084.17 37078.13 34295.86 31193.68 34067.94 37872.67 35389.62 33550.98 36695.75 31374.80 32266.04 36489.14 346
new_pmnet76.02 33873.71 34382.95 34983.88 37172.85 36391.26 35992.26 35870.44 36962.60 37881.37 37347.64 37392.32 36361.85 37072.10 34583.68 378
OpenMVS_ROBcopyleft73.86 2077.99 33475.06 34086.77 32883.81 37277.94 34496.38 29191.53 36967.54 37968.38 36487.13 35543.94 37696.08 29855.03 38281.83 28086.29 367
test20.0378.51 33277.48 32881.62 35583.07 37371.03 36896.11 30292.83 35181.66 32069.31 36189.68 33457.53 34287.29 38458.65 37868.47 35586.53 365
Anonymous2024052178.63 33176.90 33283.82 34682.82 37472.86 36295.72 31693.57 34273.55 36272.17 35584.79 36349.69 37092.51 36165.29 36374.50 31886.09 368
UnsupCasMVSNet_eth78.90 32876.67 33385.58 33682.81 37574.94 35491.98 34996.31 22184.64 27165.84 37587.71 34551.33 36392.23 36472.89 33656.50 38289.56 341
KD-MVS_self_test77.47 33675.88 33682.24 35181.59 37668.93 37592.83 34494.02 33577.03 34873.14 34883.39 36655.44 35190.42 37167.95 35357.53 38087.38 358
CL-MVSNet_self_test79.89 32478.34 32584.54 34381.56 37775.01 35396.88 27595.62 27881.10 32575.86 33385.81 36168.49 28590.26 37263.21 36756.51 38188.35 351
MIMVSNet175.92 33973.30 34483.81 34781.29 37875.57 35192.26 34792.05 36273.09 36367.48 37086.18 35940.87 38287.64 38355.78 38170.68 35288.21 352
Patchmatch-RL test81.90 31580.13 31887.23 32580.71 37970.12 37384.07 38388.19 38483.16 29570.57 35682.18 37187.18 8992.59 35982.28 26862.78 37098.98 121
APD_test168.93 34966.98 35274.77 36480.62 38053.15 39187.97 37085.01 38953.76 38759.26 38187.52 34825.19 39089.95 37356.20 38067.33 36181.19 382
pmmvs-eth3d78.71 33076.16 33586.38 32980.25 38181.19 31994.17 32992.13 36177.97 34366.90 37282.31 37055.76 34792.56 36073.63 33262.31 37385.38 370
UnsupCasMVSNet_bld73.85 34470.14 34884.99 33979.44 38275.73 35088.53 36995.24 30170.12 37161.94 37974.81 38541.41 38193.62 34868.65 35151.13 38985.62 369
PM-MVS74.88 34272.85 34580.98 35778.98 38364.75 38090.81 36385.77 38780.95 32868.23 36682.81 36729.08 38992.84 35576.54 31062.46 37285.36 371
new-patchmatchnet74.80 34372.40 34681.99 35478.36 38472.20 36594.44 32592.36 35677.06 34763.47 37779.98 37951.04 36588.85 38060.53 37554.35 38484.92 375
test_fmvs375.09 34175.19 33874.81 36377.45 38554.08 38995.93 30590.64 37382.51 30973.29 34681.19 37422.29 39286.29 38585.50 22967.89 35884.06 376
WB-MVS66.44 35066.29 35366.89 37174.84 38644.93 39893.00 33984.09 39271.15 36655.82 38381.63 37263.79 32180.31 39321.85 39750.47 39075.43 384
SSC-MVS65.42 35165.20 35466.06 37273.96 38743.83 39992.08 34883.54 39369.77 37254.73 38480.92 37663.30 32379.92 39420.48 39848.02 39174.44 385
pmmvs372.86 34569.76 35082.17 35273.86 38874.19 35794.20 32889.01 38264.23 38567.72 36780.91 37741.48 38088.65 38162.40 36954.02 38583.68 378
mvsany_test375.85 34074.52 34279.83 35873.53 38960.64 38391.73 35287.87 38583.91 28270.55 35782.52 36831.12 38793.66 34786.66 21762.83 36985.19 374
test_f71.94 34670.82 34775.30 36272.77 39053.28 39091.62 35389.66 37975.44 35464.47 37678.31 38220.48 39389.56 37778.63 29666.02 36583.05 381
ambc79.60 35972.76 39156.61 38676.20 39092.01 36368.25 36580.23 37823.34 39194.73 33873.78 33160.81 37487.48 357
TDRefinement78.01 33375.31 33786.10 33370.06 39273.84 35893.59 33691.58 36874.51 35873.08 35091.04 29949.63 37197.12 23974.88 32059.47 37687.33 360
test_vis3_rt61.29 35358.75 35668.92 37067.41 39352.84 39291.18 36159.23 40566.96 38041.96 39358.44 39311.37 40194.72 33974.25 32557.97 37959.20 392
testf156.38 35753.73 36064.31 37564.84 39445.11 39680.50 38875.94 40038.87 39042.74 39075.07 38311.26 40281.19 38941.11 39053.27 38666.63 389
APD_test256.38 35753.73 36064.31 37564.84 39445.11 39680.50 38875.94 40038.87 39042.74 39075.07 38311.26 40281.19 38941.11 39053.27 38666.63 389
PMMVS258.97 35655.07 35970.69 36962.72 39655.37 38885.97 37480.52 39549.48 38845.94 38968.31 38715.73 39880.78 39149.79 38637.12 39475.91 383
E-PMN41.02 36440.93 36641.29 38161.97 39733.83 40484.00 38465.17 40327.17 39627.56 39646.72 39717.63 39760.41 40019.32 39918.82 39629.61 396
wuyk23d16.71 36816.73 37216.65 38360.15 39825.22 40841.24 3965.17 4076.56 4005.48 4033.61 4033.64 40522.72 40215.20 4019.52 4001.99 400
FPMVS61.57 35260.32 35565.34 37360.14 39942.44 40191.02 36289.72 37844.15 38942.63 39280.93 37519.02 39480.59 39242.50 38972.76 33773.00 386
EMVS39.96 36539.88 36740.18 38259.57 40032.12 40684.79 38164.57 40426.27 39726.14 39844.18 40018.73 39559.29 40117.03 40017.67 39829.12 397
LCM-MVSNet60.07 35556.37 35771.18 36754.81 40148.67 39582.17 38789.48 38037.95 39249.13 38769.12 38613.75 40081.76 38759.28 37651.63 38883.10 380
MVEpermissive44.00 2241.70 36337.64 36853.90 38049.46 40243.37 40065.09 39466.66 40226.19 39825.77 39948.53 3963.58 40663.35 39926.15 39627.28 39554.97 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high50.71 36146.17 36464.33 37444.27 40352.30 39376.13 39178.73 39664.95 38327.37 39755.23 39414.61 39967.74 39736.01 39318.23 39772.95 387
PMVScopyleft41.42 2345.67 36242.50 36555.17 37934.28 40432.37 40566.24 39378.71 39730.72 39522.04 40059.59 3914.59 40477.85 39627.49 39558.84 37855.29 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 36052.86 36256.05 37832.75 40541.97 40273.42 39276.12 39921.91 39939.68 39596.39 19942.59 37965.10 39878.00 29914.92 39961.08 391
testmvs18.81 36723.05 3706.10 3854.48 4062.29 41097.78 2343.00 4083.27 40118.60 40162.71 3891.53 4082.49 40414.26 4021.80 40113.50 399
test12316.58 36919.47 3717.91 3843.59 4075.37 40994.32 3261.39 4092.49 40213.98 40244.60 3992.91 4072.65 40311.35 4030.57 40215.70 398
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
eth-test20.00 408
eth-test0.00 408
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k22.52 36630.03 3690.00 3860.00 4080.00 4110.00 39797.17 1680.00 4040.00 40598.77 8574.35 2400.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas6.87 3719.16 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40482.48 1770.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.21 37010.94 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40598.50 1080.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12299.90 5099.72 398.80 9199.85 30
WAC-MVS79.74 32967.75 354
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
test_241102_TWO97.72 7994.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
GSMVS98.84 136
sam_mvs188.39 6598.84 136
sam_mvs87.08 92
MTGPAbinary97.45 139
test_post190.74 36541.37 40185.38 13196.36 27883.16 258
test_post46.00 39887.37 8397.11 240
patchmatchnet-post84.86 36288.73 6296.81 253
MTMP99.21 8691.09 371
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5499.87 999.91 21
test_prior492.00 9599.41 68
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
旧先验298.67 15185.75 25398.96 2098.97 15293.84 131
新几何298.26 200
无先验98.52 16897.82 6387.20 22399.90 5087.64 20699.85 30
原ACMM298.69 148
testdata299.88 5484.16 246
segment_acmp90.56 42
testdata197.89 22792.43 82
plane_prior596.30 22297.75 21193.46 13886.17 24292.67 251
plane_prior496.52 193
plane_prior385.91 24893.65 6186.99 216
plane_prior299.02 11693.38 66
plane_prior86.07 24499.14 10193.81 5886.26 241
n20.00 410
nn0.00 410
door-mid84.90 390
test1197.68 88
door85.30 388
HQP5-MVS86.39 229
BP-MVS93.82 133
HQP4-MVS87.57 20997.77 20592.72 249
HQP3-MVS96.37 21886.29 239
HQP2-MVS73.34 247
MDTV_nov1_ep13_2view91.17 10991.38 35787.45 22093.08 14486.67 10387.02 20998.95 127
ACMMP++_ref82.64 276
ACMMP++83.83 263
Test By Simon83.62 151