| AdaColmap |  | | 93.82 117 | 93.06 124 | 96.10 109 | 99.88 1 | 89.07 164 | 98.33 194 | 97.55 118 | 86.81 233 | 90.39 185 | 98.65 98 | 75.09 232 | 99.98 9 | 93.32 141 | 97.53 124 | 99.26 99 |
|
| DP-MVS Recon | | | 95.85 61 | 95.15 76 | 97.95 30 | 99.87 2 | 94.38 52 | 99.60 38 | 97.48 134 | 86.58 237 | 94.42 124 | 99.13 44 | 87.36 86 | 99.98 9 | 93.64 135 | 98.33 107 | 99.48 79 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 26 | 97.98 53 | 97.18 3 | 95.96 94 | 99.33 19 | 92.62 26 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 15 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| MG-MVS | | | 97.24 19 | 96.83 30 | 98.47 15 | 99.79 5 | 95.71 18 | 99.07 109 | 99.06 10 | 94.45 40 | 96.42 88 | 98.70 95 | 88.81 61 | 99.74 88 | 95.35 101 | 99.86 12 | 99.97 7 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 24 | 99.76 6 | 94.46 48 | 99.81 11 | 97.88 57 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 27 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| region2R | | | 96.30 45 | 96.17 47 | 96.70 81 | 99.70 7 | 90.31 131 | 99.46 59 | 97.66 92 | 90.55 124 | 97.07 71 | 99.07 51 | 86.85 98 | 99.97 21 | 95.43 99 | 99.74 29 | 99.81 33 |
|
| HFP-MVS | | | 96.42 41 | 96.26 41 | 96.90 69 | 99.69 8 | 90.96 118 | 99.47 55 | 97.81 66 | 90.54 125 | 96.88 73 | 99.05 54 | 87.57 78 | 99.96 28 | 95.65 92 | 99.72 31 | 99.78 38 |
|
| ACMMPR | | | 96.28 46 | 96.14 51 | 96.73 78 | 99.68 9 | 90.47 129 | 99.47 55 | 97.80 68 | 90.54 125 | 96.83 78 | 99.03 56 | 86.51 109 | 99.95 31 | 95.65 92 | 99.72 31 | 99.75 46 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 71 | | 97.61 105 | 87.78 209 | 97.41 60 | 99.16 36 | 90.15 49 | 99.56 105 | 98.35 41 | 99.70 35 | |
|
| CP-MVS | | | 96.22 47 | 96.15 50 | 96.42 97 | 99.67 10 | 89.62 155 | 99.70 26 | 97.61 105 | 90.07 140 | 96.00 93 | 99.16 36 | 87.43 81 | 99.92 40 | 96.03 88 | 99.72 31 | 99.70 52 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 30 | 99.72 23 | 97.47 136 | 93.95 48 | 99.07 15 | 99.46 10 | 93.18 22 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 23 | 97.68 88 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| test0726 | | | | | | 99.66 12 | 95.20 30 | 99.77 17 | 97.70 84 | 93.95 48 | 99.35 7 | 99.54 3 | 93.18 22 | | | | |
|
| CPTT-MVS | | | 94.60 97 | 94.43 87 | 95.09 147 | 99.66 12 | 86.85 220 | 99.44 62 | 97.47 136 | 83.22 293 | 94.34 126 | 98.96 66 | 82.50 175 | 99.55 106 | 94.81 113 | 99.50 53 | 98.88 133 |
|
| MSLP-MVS++ | | | 97.50 16 | 97.45 17 | 97.63 38 | 99.65 16 | 93.21 72 | 99.70 26 | 98.13 42 | 94.61 35 | 97.78 55 | 99.46 10 | 89.85 51 | 99.81 79 | 97.97 50 | 99.91 6 | 99.88 26 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 17 | | | | 99.19 30 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 25 | 99.77 17 | 97.72 79 | 94.17 43 | 99.30 8 | 99.54 3 | 93.32 19 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 22 | | 97.73 78 | 95.54 26 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 25 | | 97.72 79 | 94.16 45 | 99.30 8 | 99.49 9 | 93.32 19 | 99.98 9 | | | |
|
| PAPR | | | 96.35 42 | 95.82 57 | 97.94 31 | 99.63 18 | 94.19 56 | 99.42 67 | 97.55 118 | 92.43 82 | 93.82 136 | 99.12 46 | 87.30 88 | 99.91 45 | 94.02 126 | 99.06 75 | 99.74 47 |
|
| XVS | | | 96.47 40 | 96.37 39 | 96.77 74 | 99.62 22 | 90.66 126 | 99.43 65 | 97.58 113 | 92.41 85 | 96.86 74 | 98.96 66 | 87.37 83 | 99.87 58 | 95.65 92 | 99.43 59 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 189 | 88.66 212 | 96.77 74 | 99.62 22 | 90.66 126 | 99.43 65 | 97.58 113 | 92.41 85 | 96.86 74 | 29.59 402 | 87.37 83 | 99.87 58 | 95.65 92 | 99.43 59 | 99.78 38 |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 22 | 99.55 44 | 97.68 88 | 93.01 70 | 99.23 10 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 86 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 86 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 23 | 96.84 28 | 98.13 24 | 99.61 24 | 94.45 49 | 98.85 131 | 97.64 98 | 96.51 16 | 95.88 97 | 99.39 18 | 87.35 87 | 99.99 5 | 96.61 77 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_one_0601 | | | | | | 99.59 28 | 94.89 34 | | 97.64 98 | 93.14 69 | 98.93 21 | 99.45 14 | 93.45 18 | | | | |
|
| CDPH-MVS | | | 96.56 38 | 96.18 44 | 97.70 36 | 99.59 28 | 93.92 60 | 99.13 104 | 97.44 142 | 89.02 167 | 97.90 53 | 99.22 27 | 88.90 60 | 99.49 112 | 94.63 119 | 99.79 27 | 99.68 56 |
|
| test_prior | | | | | 97.01 60 | 99.58 30 | 91.77 96 | | 97.57 116 | | | | | 99.49 112 | | | 99.79 36 |
|
| APDe-MVS |  | | 97.53 13 | 97.47 15 | 97.70 36 | 99.58 30 | 93.63 64 | 99.56 43 | 97.52 126 | 93.59 63 | 98.01 50 | 99.12 46 | 90.80 40 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| mPP-MVS | | | 95.90 60 | 95.75 62 | 96.38 100 | 99.58 30 | 89.41 159 | 99.26 84 | 97.41 146 | 90.66 119 | 94.82 117 | 98.95 69 | 86.15 117 | 99.98 9 | 95.24 104 | 99.64 40 | 99.74 47 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 73 | 99.38 71 | 97.66 92 | 89.57 152 | 98.39 35 | 99.18 33 | 90.88 38 | 99.66 94 | | | |
|
| train_agg | | | 97.20 22 | 97.08 22 | 97.57 42 | 99.57 33 | 93.17 73 | 99.38 71 | 97.66 92 | 90.18 134 | 98.39 35 | 99.18 33 | 90.94 35 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 74 | 97.64 98 | 90.18 134 | 98.36 37 | 99.19 30 | 90.94 35 | 99.64 100 | | | |
|
| test_part2 | | | | | | 99.54 36 | 95.42 20 | | | | 98.13 42 | | | | | | |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 92 | 99.54 36 | 90.14 137 | 99.41 68 | 97.70 84 | 95.46 28 | 98.60 29 | 99.19 30 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| agg_prior | | | | | | 99.54 36 | 92.66 85 | | 97.64 98 | | 97.98 51 | | | 99.61 102 | | | |
|
| CSCG | | | 94.87 86 | 94.71 83 | 95.36 136 | 99.54 36 | 86.49 225 | 99.34 77 | 98.15 40 | 82.71 304 | 90.15 188 | 99.25 23 | 89.48 54 | 99.86 63 | 94.97 111 | 98.82 90 | 99.72 50 |
|
| HPM-MVS++ |  | | 97.72 10 | 97.59 13 | 98.14 23 | 99.53 40 | 94.76 42 | 99.19 87 | 97.75 74 | 95.66 24 | 98.21 40 | 99.29 20 | 91.10 33 | 99.99 5 | 97.68 55 | 99.87 9 | 99.68 56 |
|
| APD-MVS |  | | 96.95 28 | 96.72 31 | 97.63 38 | 99.51 41 | 93.58 65 | 99.16 93 | 97.44 142 | 90.08 139 | 98.59 30 | 99.07 51 | 89.06 57 | 99.42 123 | 97.92 51 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| FOURS1 | | | | | | 99.50 42 | 88.94 171 | 99.55 44 | 97.47 136 | 91.32 108 | 98.12 44 | | | | | | |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 21 | 99.29 81 | 97.72 79 | 94.50 37 | 98.64 28 | 99.54 3 | 93.32 19 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PGM-MVS | | | 95.85 61 | 95.65 67 | 96.45 95 | 99.50 42 | 89.77 152 | 98.22 202 | 98.90 13 | 89.19 162 | 96.74 81 | 98.95 69 | 85.91 121 | 99.92 40 | 93.94 128 | 99.46 55 | 99.66 60 |
|
| GST-MVS | | | 95.97 55 | 95.66 65 | 96.90 69 | 99.49 45 | 91.22 105 | 99.45 61 | 97.48 134 | 89.69 146 | 95.89 96 | 98.72 91 | 86.37 112 | 99.95 31 | 94.62 120 | 99.22 70 | 99.52 75 |
|
| MP-MVS |  | | 96.00 52 | 95.82 57 | 96.54 91 | 99.47 46 | 90.13 139 | 99.36 75 | 97.41 146 | 90.64 122 | 95.49 107 | 98.95 69 | 85.51 126 | 99.98 9 | 96.00 89 | 99.59 49 | 99.52 75 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ZNCC-MVS | | | 96.09 50 | 95.81 59 | 96.95 68 | 99.42 47 | 91.19 107 | 99.55 44 | 97.53 122 | 89.72 145 | 95.86 99 | 98.94 72 | 86.59 105 | 99.97 21 | 95.13 105 | 99.56 50 | 99.68 56 |
|
| SR-MVS | | | 96.13 49 | 96.16 49 | 96.07 110 | 99.42 47 | 89.04 165 | 98.59 163 | 97.33 153 | 90.44 128 | 96.84 76 | 99.12 46 | 86.75 100 | 99.41 126 | 97.47 58 | 99.44 58 | 99.76 45 |
|
| PAPM_NR | | | 95.43 73 | 95.05 80 | 96.57 90 | 99.42 47 | 90.14 137 | 98.58 165 | 97.51 128 | 90.65 121 | 92.44 151 | 98.90 76 | 87.77 77 | 99.90 50 | 90.88 166 | 99.32 64 | 99.68 56 |
|
| 9.14 | | | | 96.87 26 | | 99.34 50 | | 99.50 51 | 97.49 133 | 89.41 157 | 98.59 30 | 99.43 16 | 89.78 52 | 99.69 91 | 98.69 30 | 99.62 44 | |
|
| save fliter | | | | | | 99.34 50 | 93.85 62 | 99.65 35 | 97.63 102 | 95.69 22 | | | | | | | |
|
| PHI-MVS | | | 96.65 36 | 96.46 37 | 97.21 54 | 99.34 50 | 91.77 96 | 99.70 26 | 98.05 46 | 86.48 242 | 98.05 47 | 99.20 29 | 89.33 55 | 99.96 28 | 98.38 39 | 99.62 44 | 99.90 22 |
|
| test12 | | | | | 97.83 33 | 99.33 53 | 94.45 49 | | 97.55 118 | | 97.56 56 | | 88.60 63 | 99.50 111 | | 99.71 34 | 99.55 72 |
|
| SMA-MVS |  | | 97.24 19 | 96.99 23 | 98.00 29 | 99.30 54 | 94.20 55 | 99.16 93 | 97.65 97 | 89.55 154 | 99.22 12 | 99.52 8 | 90.34 48 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 96.09 50 | 95.80 60 | 96.96 67 | 99.29 55 | 91.19 107 | 97.23 262 | 97.45 139 | 92.58 79 | 94.39 125 | 99.24 25 | 86.43 111 | 99.99 5 | 96.22 83 | 99.40 62 | 99.71 51 |
|
| HPM-MVS |  | | 95.41 75 | 95.22 74 | 95.99 115 | 99.29 55 | 89.14 162 | 99.17 92 | 97.09 178 | 87.28 222 | 95.40 108 | 98.48 112 | 84.93 136 | 99.38 128 | 95.64 96 | 99.65 38 | 99.47 80 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 94.67 95 | 94.30 88 | 95.79 122 | 99.25 57 | 88.13 189 | 98.41 183 | 98.67 22 | 90.38 130 | 91.43 166 | 98.72 91 | 82.22 184 | 99.95 31 | 93.83 132 | 95.76 157 | 99.29 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| APD-MVS_3200maxsize | | | 95.64 70 | 95.65 67 | 95.62 129 | 99.24 58 | 87.80 195 | 98.42 181 | 97.22 161 | 88.93 172 | 96.64 86 | 98.98 61 | 85.49 127 | 99.36 130 | 96.68 74 | 99.27 68 | 99.70 52 |
|
| SR-MVS-dyc-post | | | 95.75 67 | 95.86 56 | 95.41 135 | 99.22 59 | 87.26 215 | 98.40 186 | 97.21 162 | 89.63 148 | 96.67 84 | 98.97 62 | 86.73 102 | 99.36 130 | 96.62 75 | 99.31 65 | 99.60 67 |
|
| RE-MVS-def | | | | 95.70 63 | | 99.22 59 | 87.26 215 | 98.40 186 | 97.21 162 | 89.63 148 | 96.67 84 | 98.97 62 | 85.24 133 | | 96.62 75 | 99.31 65 | 99.60 67 |
|
| patch_mono-2 | | | 97.10 25 | 97.97 8 | 94.49 169 | 99.21 61 | 83.73 286 | 99.62 37 | 98.25 32 | 95.28 30 | 99.38 6 | 98.91 75 | 92.28 28 | 99.94 34 | 99.61 9 | 99.22 70 | 99.78 38 |
|
| API-MVS | | | 94.78 89 | 94.18 94 | 96.59 87 | 99.21 61 | 90.06 144 | 98.80 137 | 97.78 71 | 83.59 288 | 93.85 134 | 99.21 28 | 83.79 149 | 99.97 21 | 92.37 153 | 99.00 79 | 99.74 47 |
|
| PLC |  | 91.07 3 | 94.23 105 | 94.01 98 | 94.87 155 | 99.17 63 | 87.49 204 | 99.25 85 | 96.55 208 | 88.43 187 | 91.26 170 | 98.21 124 | 85.92 119 | 99.86 63 | 89.77 181 | 97.57 121 | 97.24 200 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EI-MVSNet-Vis-set | | | 95.76 66 | 95.63 69 | 96.17 107 | 99.14 64 | 90.33 130 | 98.49 174 | 97.82 63 | 91.92 95 | 94.75 119 | 98.88 80 | 87.06 93 | 99.48 116 | 95.40 100 | 97.17 134 | 98.70 150 |
|
| TSAR-MVS + MP. | | | 97.44 17 | 97.46 16 | 97.39 48 | 99.12 65 | 93.49 69 | 98.52 168 | 97.50 131 | 94.46 38 | 98.99 17 | 98.64 99 | 91.58 30 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SF-MVS | | | 97.22 21 | 96.92 24 | 98.12 26 | 99.11 66 | 94.88 35 | 99.44 62 | 97.45 139 | 89.60 150 | 98.70 26 | 99.42 17 | 90.42 45 | 99.72 89 | 98.47 38 | 99.65 38 | 99.77 43 |
|
| HPM-MVS_fast | | | 94.89 85 | 94.62 84 | 95.70 125 | 99.11 66 | 88.44 185 | 99.14 101 | 97.11 174 | 85.82 250 | 95.69 103 | 98.47 113 | 83.46 154 | 99.32 135 | 93.16 143 | 99.63 43 | 99.35 90 |
|
| MAR-MVS | | | 94.43 102 | 94.09 96 | 95.45 133 | 99.10 68 | 87.47 205 | 98.39 190 | 97.79 70 | 88.37 189 | 94.02 131 | 99.17 35 | 78.64 217 | 99.91 45 | 92.48 152 | 98.85 89 | 98.96 123 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 114514_t | | | 94.06 107 | 93.05 125 | 97.06 58 | 99.08 69 | 92.26 92 | 98.97 123 | 97.01 186 | 82.58 306 | 92.57 149 | 98.22 122 | 80.68 200 | 99.30 136 | 89.34 187 | 99.02 78 | 99.63 64 |
|
| EI-MVSNet-UG-set | | | 95.43 73 | 95.29 72 | 95.86 120 | 99.07 70 | 89.87 149 | 98.43 180 | 97.80 68 | 91.78 97 | 94.11 129 | 98.77 85 | 86.25 115 | 99.48 116 | 94.95 112 | 96.45 143 | 98.22 175 |
|
| 原ACMM1 | | | | | 96.18 105 | 99.03 71 | 90.08 140 | | 97.63 102 | 88.98 168 | 97.00 72 | 98.97 62 | 88.14 71 | 99.71 90 | 88.23 198 | 99.62 44 | 98.76 147 |
|
| SD-MVS | | | 97.51 15 | 97.40 18 | 97.81 34 | 99.01 72 | 93.79 63 | 99.33 78 | 97.38 149 | 93.73 59 | 98.83 25 | 99.02 58 | 90.87 39 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| 旧先验1 | | | | | | 98.97 73 | 92.90 83 | | 97.74 75 | | | 99.15 39 | 91.05 34 | | | 99.33 63 | 99.60 67 |
|
| LS3D | | | 90.19 198 | 88.72 210 | 94.59 168 | 98.97 73 | 86.33 233 | 96.90 274 | 96.60 202 | 74.96 356 | 84.06 245 | 98.74 88 | 75.78 229 | 99.83 73 | 74.93 319 | 97.57 121 | 97.62 191 |
|
| CNLPA | | | 93.64 124 | 92.74 133 | 96.36 101 | 98.96 75 | 90.01 147 | 99.19 87 | 95.89 262 | 86.22 245 | 89.40 196 | 98.85 81 | 80.66 201 | 99.84 69 | 88.57 194 | 96.92 137 | 99.24 100 |
|
| MP-MVS-pluss | | | 95.80 63 | 95.30 71 | 97.29 50 | 98.95 76 | 92.66 85 | 98.59 163 | 97.14 170 | 88.95 170 | 93.12 143 | 99.25 23 | 85.62 123 | 99.94 34 | 96.56 79 | 99.48 54 | 99.28 97 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| 新几何1 | | | | | 97.40 47 | 98.92 77 | 92.51 90 | | 97.77 73 | 85.52 255 | 96.69 83 | 99.06 53 | 88.08 72 | 99.89 53 | 84.88 236 | 99.62 44 | 99.79 36 |
|
| DP-MVS | | | 88.75 228 | 86.56 248 | 95.34 137 | 98.92 77 | 87.45 206 | 97.64 246 | 93.52 343 | 70.55 368 | 81.49 287 | 97.25 161 | 74.43 238 | 99.88 54 | 71.14 342 | 94.09 173 | 98.67 152 |
|
| TSAR-MVS + GP. | | | 96.95 28 | 96.91 25 | 97.07 57 | 98.88 79 | 91.62 99 | 99.58 41 | 96.54 209 | 95.09 32 | 96.84 76 | 98.63 101 | 91.16 31 | 99.77 85 | 99.04 24 | 96.42 144 | 99.81 33 |
|
| CANet | | | 97.00 27 | 96.49 35 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 9 | 97.52 126 | 95.90 19 | 97.21 66 | 98.90 76 | 82.66 174 | 99.93 38 | 98.71 29 | 98.80 91 | 99.63 64 |
|
| dcpmvs_2 | | | 95.67 69 | 96.18 44 | 94.12 186 | 98.82 81 | 84.22 279 | 97.37 254 | 95.45 288 | 90.70 118 | 95.77 101 | 98.63 101 | 90.47 43 | 98.68 164 | 99.20 20 | 99.22 70 | 99.45 81 |
|
| ACMMP_NAP | | | 96.59 37 | 96.18 44 | 97.81 34 | 98.82 81 | 93.55 66 | 98.88 130 | 97.59 111 | 90.66 119 | 97.98 51 | 99.14 42 | 86.59 105 | 100.00 1 | 96.47 81 | 99.46 55 | 99.89 25 |
|
| PVSNet_BlendedMVS | | | 93.36 132 | 93.20 121 | 93.84 197 | 98.77 83 | 91.61 100 | 99.47 55 | 98.04 48 | 91.44 104 | 94.21 127 | 92.63 273 | 83.50 152 | 99.87 58 | 97.41 59 | 83.37 269 | 90.05 332 |
|
| PVSNet_Blended | | | 95.94 58 | 95.66 65 | 96.75 76 | 98.77 83 | 91.61 100 | 99.88 3 | 98.04 48 | 93.64 62 | 94.21 127 | 97.76 135 | 83.50 152 | 99.87 58 | 97.41 59 | 97.75 119 | 98.79 143 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 39 | 97.84 10 | 92.68 221 | 98.71 85 | 78.11 343 | 99.70 26 | 97.71 83 | 98.18 1 | 97.36 62 | 99.76 1 | 90.37 47 | 99.94 34 | 99.27 16 | 99.54 52 | 99.99 1 |
|
| EPNet | | | 96.82 31 | 96.68 33 | 97.25 53 | 98.65 86 | 93.10 75 | 99.48 53 | 98.76 15 | 96.54 13 | 97.84 54 | 98.22 122 | 87.49 80 | 99.66 94 | 95.35 101 | 97.78 118 | 99.00 119 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OMC-MVS | | | 93.90 114 | 93.62 111 | 94.73 162 | 98.63 87 | 87.00 218 | 98.04 221 | 96.56 207 | 92.19 90 | 92.46 150 | 98.73 89 | 79.49 209 | 99.14 145 | 92.16 155 | 94.34 172 | 98.03 180 |
|
| MVS_111021_HR | | | 96.69 34 | 96.69 32 | 96.72 80 | 98.58 88 | 91.00 117 | 99.14 101 | 99.45 1 | 93.86 54 | 95.15 113 | 98.73 89 | 88.48 64 | 99.76 86 | 97.23 63 | 99.56 50 | 99.40 85 |
|
| test_yl | | | 95.27 78 | 94.60 85 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 112 | 98.70 19 | 86.76 234 | 94.65 122 | 97.74 137 | 87.78 75 | 99.44 119 | 95.57 97 | 92.61 187 | 99.44 82 |
|
| DCV-MVSNet | | | 95.27 78 | 94.60 85 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 112 | 98.70 19 | 86.76 234 | 94.65 122 | 97.74 137 | 87.78 75 | 99.44 119 | 95.57 97 | 92.61 187 | 99.44 82 |
|
| TAPA-MVS | | 87.50 9 | 90.35 193 | 89.05 203 | 94.25 181 | 98.48 91 | 85.17 266 | 98.42 181 | 96.58 206 | 82.44 311 | 87.24 214 | 98.53 105 | 82.77 169 | 98.84 155 | 59.09 377 | 97.88 114 | 98.72 148 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test222 | | | | | | 98.32 92 | 91.21 106 | 98.08 218 | 97.58 113 | 83.74 284 | 95.87 98 | 99.02 58 | 86.74 101 | | | 99.64 40 | 99.81 33 |
|
| DPM-MVS | | | 97.86 8 | 97.25 20 | 99.68 1 | 98.25 93 | 99.10 1 | 99.76 20 | 97.78 71 | 96.61 12 | 98.15 41 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 158 | 99.80 26 | 99.94 18 |
|
| LFMVS | | | 92.23 160 | 90.84 173 | 96.42 97 | 98.24 94 | 91.08 114 | 98.24 201 | 96.22 228 | 83.39 291 | 94.74 120 | 98.31 118 | 61.12 332 | 98.85 154 | 94.45 122 | 92.82 183 | 99.32 93 |
|
| testdata | | | | | 95.26 142 | 98.20 95 | 87.28 212 | | 97.60 107 | 85.21 259 | 98.48 33 | 99.15 39 | 88.15 70 | 98.72 162 | 90.29 174 | 99.45 57 | 99.78 38 |
|
| PatchMatch-RL | | | 91.47 171 | 90.54 180 | 94.26 180 | 98.20 95 | 86.36 231 | 96.94 272 | 97.14 170 | 87.75 211 | 88.98 199 | 95.75 213 | 71.80 265 | 99.40 127 | 80.92 278 | 97.39 128 | 97.02 208 |
|
| MVS_111021_LR | | | 95.78 64 | 95.94 53 | 95.28 141 | 98.19 97 | 87.69 196 | 98.80 137 | 99.26 7 | 93.39 65 | 95.04 115 | 98.69 96 | 84.09 146 | 99.76 86 | 96.96 69 | 99.06 75 | 98.38 165 |
|
| F-COLMAP | | | 92.07 164 | 91.75 155 | 93.02 211 | 98.16 98 | 82.89 297 | 98.79 141 | 95.97 245 | 86.54 239 | 87.92 206 | 97.80 132 | 78.69 216 | 99.65 98 | 85.97 222 | 95.93 156 | 96.53 222 |
|
| Anonymous202405211 | | | 88.84 222 | 87.03 241 | 94.27 179 | 98.14 99 | 84.18 280 | 98.44 179 | 95.58 281 | 76.79 350 | 89.34 197 | 96.88 181 | 53.42 359 | 99.54 108 | 87.53 207 | 87.12 235 | 99.09 114 |
|
| VNet | | | 95.08 83 | 94.26 89 | 97.55 43 | 98.07 100 | 93.88 61 | 98.68 149 | 98.73 18 | 90.33 131 | 97.16 70 | 97.43 153 | 79.19 211 | 99.53 109 | 96.91 71 | 91.85 201 | 99.24 100 |
|
| CS-MVS-test | | | 95.98 54 | 96.34 40 | 94.90 154 | 98.06 101 | 87.66 199 | 99.69 33 | 96.10 237 | 93.66 60 | 98.35 38 | 99.05 54 | 86.28 113 | 97.66 215 | 96.96 69 | 98.90 87 | 99.37 88 |
|
| DELS-MVS | | | 97.12 24 | 96.60 34 | 98.68 10 | 98.03 102 | 96.57 11 | 99.84 8 | 97.84 60 | 96.36 18 | 95.20 112 | 98.24 121 | 88.17 68 | 99.83 73 | 96.11 86 | 99.60 48 | 99.64 62 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PVSNet | | 87.13 12 | 93.69 120 | 92.83 132 | 96.28 103 | 97.99 103 | 90.22 135 | 99.38 71 | 98.93 12 | 91.42 106 | 93.66 137 | 97.68 140 | 71.29 270 | 99.64 100 | 87.94 203 | 97.20 131 | 98.98 121 |
|
| test_fmvsm_n_1920 | | | 97.08 26 | 97.55 14 | 95.67 127 | 97.94 104 | 89.61 156 | 99.93 1 | 98.48 24 | 97.08 5 | 99.08 14 | 99.13 44 | 88.17 68 | 99.93 38 | 99.11 23 | 99.06 75 | 97.47 194 |
|
| cl22 | | | 89.57 210 | 88.79 209 | 91.91 234 | 97.94 104 | 87.62 200 | 97.98 224 | 96.51 210 | 85.03 264 | 82.37 270 | 91.79 285 | 83.65 150 | 96.50 269 | 85.96 223 | 77.89 297 | 91.61 285 |
|
| CS-MVS | | | 95.75 67 | 96.19 42 | 94.40 173 | 97.88 106 | 86.22 236 | 99.66 34 | 96.12 236 | 92.69 78 | 98.07 46 | 98.89 78 | 87.09 91 | 97.59 221 | 96.71 72 | 98.62 99 | 99.39 87 |
|
| CHOSEN 280x420 | | | 96.80 32 | 96.85 27 | 96.66 84 | 97.85 107 | 94.42 51 | 94.76 323 | 98.36 29 | 92.50 81 | 95.62 105 | 97.52 148 | 97.92 1 | 97.38 233 | 98.31 44 | 98.80 91 | 98.20 177 |
|
| thres200 | | | 93.69 120 | 92.59 137 | 96.97 66 | 97.76 108 | 94.74 43 | 99.35 76 | 99.36 2 | 89.23 160 | 91.21 172 | 96.97 175 | 83.42 155 | 98.77 157 | 85.08 232 | 90.96 216 | 97.39 196 |
|
| HY-MVS | | 88.56 7 | 95.29 77 | 94.23 90 | 98.48 14 | 97.72 109 | 96.41 13 | 94.03 331 | 98.74 16 | 92.42 84 | 95.65 104 | 94.76 232 | 86.52 108 | 99.49 112 | 95.29 103 | 92.97 182 | 99.53 74 |
|
| Anonymous20231211 | | | 84.72 291 | 82.65 302 | 90.91 257 | 97.71 110 | 84.55 275 | 97.28 258 | 96.67 197 | 66.88 381 | 79.18 313 | 90.87 303 | 58.47 340 | 96.60 259 | 82.61 265 | 74.20 324 | 91.59 287 |
|
| tfpn200view9 | | | 93.43 129 | 92.27 142 | 96.90 69 | 97.68 111 | 94.84 38 | 99.18 89 | 99.36 2 | 88.45 184 | 90.79 175 | 96.90 179 | 83.31 156 | 98.75 159 | 84.11 248 | 90.69 218 | 97.12 202 |
|
| thres400 | | | 93.39 131 | 92.27 142 | 96.73 78 | 97.68 111 | 94.84 38 | 99.18 89 | 99.36 2 | 88.45 184 | 90.79 175 | 96.90 179 | 83.31 156 | 98.75 159 | 84.11 248 | 90.69 218 | 96.61 217 |
|
| thres100view900 | | | 93.34 133 | 92.15 145 | 96.90 69 | 97.62 113 | 94.84 38 | 99.06 111 | 99.36 2 | 87.96 204 | 90.47 183 | 96.78 186 | 83.29 158 | 98.75 159 | 84.11 248 | 90.69 218 | 97.12 202 |
|
| thres600view7 | | | 93.18 139 | 92.00 148 | 96.75 76 | 97.62 113 | 94.92 33 | 99.07 109 | 99.36 2 | 87.96 204 | 90.47 183 | 96.78 186 | 83.29 158 | 98.71 163 | 82.93 262 | 90.47 222 | 96.61 217 |
|
| WTY-MVS | | | 95.97 55 | 95.11 78 | 98.54 13 | 97.62 113 | 96.65 9 | 99.44 62 | 98.74 16 | 92.25 89 | 95.21 111 | 98.46 115 | 86.56 107 | 99.46 118 | 95.00 110 | 92.69 186 | 99.50 78 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 11 | 97.80 11 | 97.42 45 | 97.59 116 | 92.91 82 | 99.86 4 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 37 | 99.94 34 | 99.57 11 | 98.66 98 | 99.40 85 |
|
| Anonymous20240529 | | | 87.66 249 | 85.58 262 | 93.92 194 | 97.59 116 | 85.01 269 | 98.13 210 | 97.13 172 | 66.69 382 | 88.47 203 | 96.01 209 | 55.09 353 | 99.51 110 | 87.00 210 | 84.12 260 | 97.23 201 |
|
| HyFIR lowres test | | | 93.68 122 | 93.29 119 | 94.87 155 | 97.57 118 | 88.04 191 | 98.18 206 | 98.47 25 | 87.57 217 | 91.24 171 | 95.05 226 | 85.49 127 | 97.46 228 | 93.22 142 | 92.82 183 | 99.10 113 |
|
| canonicalmvs | | | 95.02 84 | 93.96 103 | 98.20 21 | 97.53 119 | 95.92 17 | 98.71 145 | 96.19 231 | 91.78 97 | 95.86 99 | 98.49 110 | 79.53 208 | 99.03 149 | 96.12 85 | 91.42 213 | 99.66 60 |
|
| fmvsm_l_conf0.5_n | | | 97.65 12 | 97.72 12 | 97.41 46 | 97.51 120 | 92.78 84 | 99.85 7 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 45 | 99.92 40 | 99.55 12 | 98.50 103 | 99.55 72 |
|
| CHOSEN 1792x2688 | | | 94.35 103 | 93.82 107 | 95.95 117 | 97.40 121 | 88.74 179 | 98.41 183 | 98.27 31 | 92.18 91 | 91.43 166 | 96.40 197 | 78.88 212 | 99.81 79 | 93.59 136 | 97.81 115 | 99.30 95 |
|
| SteuartSystems-ACMMP | | | 97.25 18 | 97.34 19 | 97.01 60 | 97.38 122 | 91.46 103 | 99.75 21 | 97.66 92 | 94.14 47 | 98.13 42 | 99.26 21 | 92.16 29 | 99.66 94 | 97.91 52 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| fmvsm_s_conf0.5_n | | | 96.19 48 | 96.49 35 | 95.30 140 | 97.37 123 | 89.16 161 | 99.86 4 | 98.47 25 | 95.68 23 | 98.87 22 | 99.15 39 | 82.44 181 | 99.92 40 | 99.14 21 | 97.43 127 | 96.83 213 |
|
| alignmvs | | | 95.77 65 | 95.00 81 | 98.06 28 | 97.35 124 | 95.68 19 | 99.71 25 | 97.50 131 | 91.50 102 | 96.16 92 | 98.61 103 | 86.28 113 | 99.00 150 | 96.19 84 | 91.74 203 | 99.51 77 |
|
| PS-MVSNAJ | | | 96.87 30 | 96.40 38 | 98.29 19 | 97.35 124 | 97.29 5 | 99.03 115 | 97.11 174 | 95.83 20 | 98.97 19 | 99.14 42 | 82.48 177 | 99.60 103 | 98.60 33 | 99.08 73 | 98.00 181 |
|
| testing222 | | | 94.48 101 | 94.00 99 | 95.95 117 | 97.30 126 | 92.27 91 | 98.82 134 | 97.92 55 | 89.20 161 | 94.82 117 | 97.26 159 | 87.13 90 | 97.32 236 | 91.95 156 | 91.56 207 | 98.25 172 |
|
| MVS_0304 | | | 97.53 13 | 97.15 21 | 98.67 11 | 97.30 126 | 96.52 12 | 99.60 38 | 98.88 14 | 97.14 4 | 97.21 66 | 98.94 72 | 86.89 97 | 99.91 45 | 99.43 15 | 98.91 86 | 99.59 71 |
|
| EPNet_dtu | | | 92.28 158 | 92.15 145 | 92.70 220 | 97.29 128 | 84.84 271 | 98.64 155 | 97.82 63 | 92.91 75 | 93.02 145 | 97.02 173 | 85.48 129 | 95.70 315 | 72.25 339 | 94.89 167 | 97.55 193 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVSTER | | | 92.71 146 | 92.32 140 | 93.86 196 | 97.29 128 | 92.95 81 | 99.01 118 | 96.59 203 | 90.09 138 | 85.51 231 | 94.00 243 | 94.61 16 | 96.56 264 | 90.77 170 | 83.03 272 | 92.08 272 |
|
| EPMVS | | | 92.59 151 | 91.59 157 | 95.59 131 | 97.22 130 | 90.03 145 | 91.78 351 | 98.04 48 | 90.42 129 | 91.66 160 | 90.65 311 | 86.49 110 | 97.46 228 | 81.78 273 | 96.31 147 | 99.28 97 |
|
| test_fmvs1 | | | 92.35 155 | 92.94 130 | 90.57 267 | 97.19 131 | 75.43 352 | 99.55 44 | 94.97 308 | 95.20 31 | 96.82 79 | 97.57 147 | 59.59 337 | 99.84 69 | 97.30 61 | 98.29 110 | 96.46 224 |
|
| tpmvs | | | 89.16 214 | 87.76 228 | 93.35 205 | 97.19 131 | 84.75 273 | 90.58 366 | 97.36 151 | 81.99 316 | 84.56 238 | 89.31 339 | 83.98 148 | 98.17 180 | 74.85 321 | 90.00 225 | 97.12 202 |
|
| DeepC-MVS | | 91.02 4 | 94.56 100 | 93.92 105 | 96.46 94 | 97.16 133 | 90.76 122 | 98.39 190 | 97.11 174 | 93.92 50 | 88.66 201 | 98.33 117 | 78.14 219 | 99.85 67 | 95.02 108 | 98.57 101 | 98.78 145 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| iter_conf05 | | | 93.48 126 | 93.18 122 | 94.39 176 | 97.15 134 | 94.17 57 | 99.30 80 | 92.97 348 | 92.38 88 | 86.70 223 | 95.42 219 | 95.67 5 | 96.59 260 | 94.67 118 | 84.32 258 | 92.39 255 |
|
| PVSNet_Blended_VisFu | | | 94.67 95 | 94.11 95 | 96.34 102 | 97.14 135 | 91.10 112 | 99.32 79 | 97.43 144 | 92.10 94 | 91.53 165 | 96.38 200 | 83.29 158 | 99.68 92 | 93.42 140 | 96.37 145 | 98.25 172 |
|
| h-mvs33 | | | 92.47 154 | 91.95 150 | 94.05 190 | 97.13 136 | 85.01 269 | 98.36 192 | 98.08 44 | 93.85 55 | 96.27 90 | 96.73 188 | 83.19 161 | 99.43 122 | 95.81 90 | 68.09 356 | 97.70 187 |
|
| miper_enhance_ethall | | | 90.33 194 | 89.70 189 | 92.22 226 | 97.12 137 | 88.93 173 | 98.35 193 | 95.96 247 | 88.60 179 | 83.14 255 | 92.33 275 | 87.38 82 | 96.18 292 | 86.49 218 | 77.89 297 | 91.55 288 |
|
| xiu_mvs_v2_base | | | 96.66 35 | 96.17 47 | 98.11 27 | 97.11 138 | 96.96 6 | 99.01 118 | 97.04 181 | 95.51 27 | 98.86 23 | 99.11 50 | 82.19 185 | 99.36 130 | 98.59 35 | 98.14 111 | 98.00 181 |
|
| VDD-MVS | | | 91.24 178 | 90.18 184 | 94.45 172 | 97.08 139 | 85.84 252 | 98.40 186 | 96.10 237 | 86.99 225 | 93.36 140 | 98.16 125 | 54.27 356 | 99.20 138 | 96.59 78 | 90.63 221 | 98.31 171 |
|
| UGNet | | | 91.91 166 | 90.85 172 | 95.10 146 | 97.06 140 | 88.69 180 | 98.01 222 | 98.24 34 | 92.41 85 | 92.39 152 | 93.61 254 | 60.52 334 | 99.68 92 | 88.14 199 | 97.25 130 | 96.92 211 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| baseline1 | | | 92.61 150 | 91.28 163 | 96.58 88 | 97.05 141 | 94.63 46 | 97.72 240 | 96.20 229 | 89.82 143 | 88.56 202 | 96.85 182 | 86.85 98 | 97.82 201 | 88.42 195 | 80.10 288 | 97.30 198 |
|
| iter_conf_final | | | 93.22 138 | 93.04 126 | 93.76 199 | 97.03 142 | 92.22 93 | 99.05 112 | 93.31 345 | 92.11 93 | 86.93 218 | 95.42 219 | 95.01 10 | 96.59 260 | 93.98 127 | 84.48 255 | 92.46 254 |
|
| CANet_DTU | | | 94.31 104 | 93.35 116 | 97.20 55 | 97.03 142 | 94.71 44 | 98.62 157 | 95.54 283 | 95.61 25 | 97.21 66 | 98.47 113 | 71.88 263 | 99.84 69 | 88.38 196 | 97.46 126 | 97.04 207 |
|
| MSDG | | | 88.29 237 | 86.37 250 | 94.04 191 | 96.90 144 | 86.15 240 | 96.52 287 | 94.36 329 | 77.89 346 | 79.22 312 | 96.95 176 | 69.72 277 | 99.59 104 | 73.20 334 | 92.58 189 | 96.37 227 |
|
| BH-w/o | | | 92.32 156 | 91.79 153 | 93.91 195 | 96.85 145 | 86.18 238 | 99.11 106 | 95.74 271 | 88.13 198 | 84.81 235 | 97.00 174 | 77.26 224 | 97.91 194 | 89.16 192 | 98.03 112 | 97.64 188 |
|
| AllTest | | | 84.97 289 | 83.12 294 | 90.52 270 | 96.82 146 | 78.84 335 | 95.89 307 | 92.17 359 | 77.96 344 | 75.94 331 | 95.50 216 | 55.48 349 | 99.18 139 | 71.15 340 | 87.14 233 | 93.55 244 |
|
| TestCases | | | | | 90.52 270 | 96.82 146 | 78.84 335 | | 92.17 359 | 77.96 344 | 75.94 331 | 95.50 216 | 55.48 349 | 99.18 139 | 71.15 340 | 87.14 233 | 93.55 244 |
|
| SDMVSNet | | | 91.09 179 | 89.91 187 | 94.65 164 | 96.80 148 | 90.54 128 | 97.78 234 | 97.81 66 | 88.34 191 | 85.73 227 | 95.26 223 | 66.44 305 | 98.26 177 | 94.25 125 | 86.75 236 | 95.14 235 |
|
| sd_testset | | | 89.23 213 | 88.05 227 | 92.74 219 | 96.80 148 | 85.33 262 | 95.85 312 | 97.03 183 | 88.34 191 | 85.73 227 | 95.26 223 | 61.12 332 | 97.76 210 | 85.61 228 | 86.75 236 | 95.14 235 |
|
| PMMVS | | | 93.62 125 | 93.90 106 | 92.79 216 | 96.79 150 | 81.40 314 | 98.85 131 | 96.81 193 | 91.25 109 | 96.82 79 | 98.15 126 | 77.02 225 | 98.13 182 | 93.15 144 | 96.30 148 | 98.83 139 |
|
| BH-RMVSNet | | | 91.25 177 | 89.99 186 | 95.03 151 | 96.75 151 | 88.55 182 | 98.65 153 | 94.95 309 | 87.74 212 | 87.74 208 | 97.80 132 | 68.27 287 | 98.14 181 | 80.53 283 | 97.49 125 | 98.41 162 |
|
| MVS_Test | | | 93.67 123 | 92.67 135 | 96.69 82 | 96.72 152 | 92.66 85 | 97.22 263 | 96.03 242 | 87.69 215 | 95.12 114 | 94.03 241 | 81.55 191 | 98.28 176 | 89.17 191 | 96.46 142 | 99.14 108 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 295 | 82.82 296 | 89.70 294 | 96.72 152 | 78.85 334 | 95.89 307 | 92.83 351 | 71.55 365 | 77.54 326 | 95.89 211 | 59.40 338 | 99.14 145 | 67.26 356 | 88.26 229 | 91.11 305 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| mvs_anonymous | | | 92.50 153 | 91.65 156 | 95.06 148 | 96.60 154 | 89.64 154 | 97.06 268 | 96.44 215 | 86.64 236 | 84.14 243 | 93.93 245 | 82.49 176 | 96.17 294 | 91.47 159 | 96.08 153 | 99.35 90 |
|
| ETV-MVS | | | 96.00 52 | 96.00 52 | 96.00 114 | 96.56 155 | 91.05 115 | 99.63 36 | 96.61 201 | 93.26 68 | 97.39 61 | 98.30 119 | 86.62 104 | 98.13 182 | 98.07 49 | 97.57 121 | 98.82 140 |
|
| GG-mvs-BLEND | | | | | 96.98 65 | 96.53 156 | 94.81 41 | 87.20 371 | 97.74 75 | | 93.91 133 | 96.40 197 | 96.56 2 | 96.94 248 | 95.08 106 | 98.95 84 | 99.20 104 |
|
| FMVSNet3 | | | 88.81 226 | 87.08 240 | 93.99 193 | 96.52 157 | 94.59 47 | 98.08 218 | 96.20 229 | 85.85 249 | 82.12 274 | 91.60 289 | 74.05 243 | 95.40 324 | 79.04 290 | 80.24 285 | 91.99 275 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 55 | 96.19 42 | 95.31 139 | 96.51 158 | 89.01 167 | 99.81 11 | 98.39 27 | 95.46 28 | 99.19 13 | 99.16 36 | 81.44 195 | 99.91 45 | 98.83 28 | 96.97 136 | 97.01 209 |
|
| BH-untuned | | | 91.46 172 | 90.84 173 | 93.33 206 | 96.51 158 | 84.83 272 | 98.84 133 | 95.50 285 | 86.44 244 | 83.50 247 | 96.70 189 | 75.49 231 | 97.77 205 | 86.78 216 | 97.81 115 | 97.40 195 |
|
| FE-MVS | | | 91.38 174 | 90.16 185 | 95.05 150 | 96.46 160 | 87.53 203 | 89.69 368 | 97.84 60 | 82.97 298 | 92.18 154 | 92.00 282 | 84.07 147 | 98.93 153 | 80.71 280 | 95.52 161 | 98.68 151 |
|
| sss | | | 94.85 87 | 93.94 104 | 97.58 40 | 96.43 161 | 94.09 59 | 98.93 125 | 99.16 8 | 89.50 155 | 95.27 110 | 97.85 129 | 81.50 192 | 99.65 98 | 92.79 150 | 94.02 174 | 98.99 120 |
|
| test2506 | | | 94.80 88 | 94.21 91 | 96.58 88 | 96.41 162 | 92.18 94 | 98.01 222 | 98.96 11 | 90.82 116 | 93.46 139 | 97.28 157 | 85.92 119 | 98.45 169 | 89.82 179 | 97.19 132 | 99.12 111 |
|
| ECVR-MVS |  | | 92.29 157 | 91.33 162 | 95.15 145 | 96.41 162 | 87.84 194 | 98.10 215 | 94.84 312 | 90.82 116 | 91.42 168 | 97.28 157 | 65.61 311 | 98.49 168 | 90.33 173 | 97.19 132 | 99.12 111 |
|
| ET-MVSNet_ETH3D | | | 92.56 152 | 91.45 160 | 95.88 119 | 96.39 164 | 94.13 58 | 99.46 59 | 96.97 189 | 92.18 91 | 66.94 371 | 98.29 120 | 94.65 15 | 94.28 344 | 94.34 123 | 83.82 265 | 99.24 100 |
|
| dp | | | 90.16 200 | 88.83 208 | 94.14 185 | 96.38 165 | 86.42 227 | 91.57 355 | 97.06 180 | 84.76 270 | 88.81 200 | 90.19 329 | 84.29 144 | 97.43 231 | 75.05 318 | 91.35 215 | 98.56 156 |
|
| EIA-MVS | | | 95.11 81 | 95.27 73 | 94.64 166 | 96.34 166 | 86.51 224 | 99.59 40 | 96.62 200 | 92.51 80 | 94.08 130 | 98.64 99 | 86.05 118 | 98.24 179 | 95.07 107 | 98.50 103 | 99.18 105 |
|
| test_vis1_n_1920 | | | 93.08 142 | 93.42 115 | 92.04 233 | 96.31 167 | 79.36 331 | 99.83 9 | 96.06 241 | 96.72 9 | 98.53 32 | 98.10 127 | 58.57 339 | 99.91 45 | 97.86 53 | 98.79 94 | 96.85 212 |
|
| TR-MVS | | | 90.77 186 | 89.44 194 | 94.76 159 | 96.31 167 | 88.02 192 | 97.92 226 | 95.96 247 | 85.52 255 | 88.22 205 | 97.23 162 | 66.80 301 | 98.09 185 | 84.58 240 | 92.38 191 | 98.17 178 |
|
| UA-Net | | | 93.30 134 | 92.62 136 | 95.34 137 | 96.27 169 | 88.53 184 | 95.88 309 | 96.97 189 | 90.90 114 | 95.37 109 | 97.07 171 | 82.38 182 | 99.10 147 | 83.91 252 | 94.86 168 | 98.38 165 |
|
| tpmrst | | | 92.78 145 | 92.16 144 | 94.65 164 | 96.27 169 | 87.45 206 | 91.83 350 | 97.10 177 | 89.10 166 | 94.68 121 | 90.69 308 | 88.22 67 | 97.73 213 | 89.78 180 | 91.80 202 | 98.77 146 |
|
| hse-mvs2 | | | 91.67 169 | 91.51 159 | 92.15 230 | 96.22 171 | 82.61 303 | 97.74 239 | 97.53 122 | 93.85 55 | 96.27 90 | 96.15 203 | 83.19 161 | 97.44 230 | 95.81 90 | 66.86 363 | 96.40 226 |
|
| AUN-MVS | | | 90.17 199 | 89.50 192 | 92.19 228 | 96.21 172 | 82.67 301 | 97.76 238 | 97.53 122 | 88.05 200 | 91.67 159 | 96.15 203 | 83.10 163 | 97.47 227 | 88.11 200 | 66.91 362 | 96.43 225 |
|
| ADS-MVSNet2 | | | 87.62 250 | 86.88 243 | 89.86 288 | 96.21 172 | 79.14 333 | 87.15 372 | 92.99 347 | 83.01 296 | 89.91 191 | 87.27 352 | 78.87 213 | 92.80 357 | 74.20 326 | 92.27 194 | 97.64 188 |
|
| ADS-MVSNet | | | 88.99 216 | 87.30 236 | 94.07 188 | 96.21 172 | 87.56 202 | 87.15 372 | 96.78 195 | 83.01 296 | 89.91 191 | 87.27 352 | 78.87 213 | 97.01 245 | 74.20 326 | 92.27 194 | 97.64 188 |
|
| PatchmatchNet |  | | 92.05 165 | 91.04 168 | 95.06 148 | 96.17 175 | 89.04 165 | 91.26 359 | 97.26 155 | 89.56 153 | 90.64 179 | 90.56 317 | 88.35 66 | 97.11 240 | 79.53 286 | 96.07 154 | 99.03 118 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test1111 | | | 92.12 162 | 91.19 165 | 94.94 153 | 96.15 176 | 87.36 209 | 98.12 212 | 94.84 312 | 90.85 115 | 90.97 173 | 97.26 159 | 65.60 312 | 98.37 171 | 89.74 182 | 97.14 135 | 99.07 117 |
|
| gg-mvs-nofinetune | | | 90.00 203 | 87.71 230 | 96.89 73 | 96.15 176 | 94.69 45 | 85.15 377 | 97.74 75 | 68.32 377 | 92.97 146 | 60.16 390 | 96.10 3 | 96.84 251 | 93.89 129 | 98.87 88 | 99.14 108 |
|
| MDTV_nov1_ep13 | | | | 90.47 182 | | 96.14 178 | 88.55 182 | 91.34 358 | 97.51 128 | 89.58 151 | 92.24 153 | 90.50 321 | 86.99 96 | 97.61 220 | 77.64 301 | 92.34 192 | |
|
| IS-MVSNet | | | 93.00 143 | 92.51 138 | 94.49 169 | 96.14 178 | 87.36 209 | 98.31 197 | 95.70 273 | 88.58 180 | 90.17 187 | 97.50 149 | 83.02 165 | 97.22 237 | 87.06 208 | 96.07 154 | 98.90 132 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 137 | 93.00 129 | 94.06 189 | 96.14 178 | 86.71 223 | 98.68 149 | 96.70 196 | 88.30 193 | 89.71 195 | 97.64 143 | 85.43 130 | 96.39 276 | 88.06 201 | 96.32 146 | 99.08 115 |
|
| thisisatest0515 | | | 94.75 90 | 94.19 92 | 96.43 96 | 96.13 181 | 92.64 88 | 99.47 55 | 97.60 107 | 87.55 218 | 93.17 142 | 97.59 145 | 94.71 13 | 98.42 170 | 88.28 197 | 93.20 179 | 98.24 174 |
|
| FA-MVS(test-final) | | | 92.22 161 | 91.08 167 | 95.64 128 | 96.05 182 | 88.98 168 | 91.60 354 | 97.25 156 | 86.99 225 | 91.84 156 | 92.12 276 | 83.03 164 | 99.00 150 | 86.91 213 | 93.91 175 | 98.93 129 |
|
| test_fmvsmconf_n | | | 96.78 33 | 96.84 28 | 96.61 85 | 95.99 183 | 90.25 132 | 99.90 2 | 98.13 42 | 96.68 11 | 98.42 34 | 98.92 74 | 85.34 132 | 99.88 54 | 99.12 22 | 99.08 73 | 99.70 52 |
|
| ab-mvs | | | 91.05 182 | 89.17 200 | 96.69 82 | 95.96 184 | 91.72 98 | 92.62 345 | 97.23 160 | 85.61 254 | 89.74 193 | 93.89 247 | 68.55 284 | 99.42 123 | 91.09 162 | 87.84 231 | 98.92 131 |
|
| Fast-Effi-MVS+ | | | 91.72 168 | 90.79 176 | 94.49 169 | 95.89 185 | 87.40 208 | 99.54 49 | 95.70 273 | 85.01 266 | 89.28 198 | 95.68 214 | 77.75 221 | 97.57 225 | 83.22 257 | 95.06 166 | 98.51 158 |
|
| EPP-MVSNet | | | 93.75 119 | 93.67 110 | 94.01 192 | 95.86 186 | 85.70 254 | 98.67 151 | 97.66 92 | 84.46 273 | 91.36 169 | 97.18 166 | 91.16 31 | 97.79 203 | 92.93 146 | 93.75 176 | 98.53 157 |
|
| mvsany_test1 | | | 94.57 99 | 95.09 79 | 92.98 212 | 95.84 187 | 82.07 307 | 98.76 143 | 95.24 301 | 92.87 77 | 96.45 87 | 98.71 94 | 84.81 139 | 99.15 141 | 97.68 55 | 95.49 162 | 97.73 186 |
|
| Effi-MVS+ | | | 93.87 115 | 93.15 123 | 96.02 113 | 95.79 188 | 90.76 122 | 96.70 284 | 95.78 268 | 86.98 228 | 95.71 102 | 97.17 167 | 79.58 206 | 98.01 192 | 94.57 121 | 96.09 152 | 99.31 94 |
|
| tpm cat1 | | | 88.89 220 | 87.27 237 | 93.76 199 | 95.79 188 | 85.32 263 | 90.76 364 | 97.09 178 | 76.14 352 | 85.72 229 | 88.59 342 | 82.92 166 | 98.04 190 | 76.96 305 | 91.43 212 | 97.90 184 |
|
| thisisatest0530 | | | 94.00 109 | 93.52 112 | 95.43 134 | 95.76 190 | 90.02 146 | 98.99 120 | 97.60 107 | 86.58 237 | 91.74 158 | 97.36 156 | 94.78 12 | 98.34 172 | 86.37 219 | 92.48 190 | 97.94 183 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 129 | 91.84 152 | 98.17 22 | 95.73 191 | 95.08 32 | 98.92 127 | 97.04 181 | 91.42 106 | 81.48 288 | 97.60 144 | 74.60 235 | 99.79 82 | 90.84 167 | 98.97 81 | 99.64 62 |
|
| MVS | | | 93.92 112 | 92.28 141 | 98.83 7 | 95.69 192 | 96.82 8 | 96.22 299 | 98.17 37 | 84.89 268 | 84.34 242 | 98.61 103 | 79.32 210 | 99.83 73 | 93.88 130 | 99.43 59 | 99.86 29 |
|
| cascas | | | 90.93 184 | 89.33 198 | 95.76 123 | 95.69 192 | 93.03 78 | 98.99 120 | 96.59 203 | 80.49 331 | 86.79 222 | 94.45 236 | 65.23 315 | 98.60 167 | 93.52 137 | 92.18 196 | 95.66 234 |
|
| QAPM | | | 91.41 173 | 89.49 193 | 97.17 56 | 95.66 194 | 93.42 70 | 98.60 161 | 97.51 128 | 80.92 329 | 81.39 289 | 97.41 154 | 72.89 255 | 99.87 58 | 82.33 267 | 98.68 96 | 98.21 176 |
|
| tttt0517 | | | 93.30 134 | 93.01 128 | 94.17 184 | 95.57 195 | 86.47 226 | 98.51 171 | 97.60 107 | 85.99 248 | 90.55 180 | 97.19 165 | 94.80 11 | 98.31 173 | 85.06 233 | 91.86 200 | 97.74 185 |
|
| 1112_ss | | | 92.71 146 | 91.55 158 | 96.20 104 | 95.56 196 | 91.12 110 | 98.48 176 | 94.69 319 | 88.29 194 | 86.89 220 | 98.50 108 | 87.02 94 | 98.66 165 | 84.75 237 | 89.77 226 | 98.81 141 |
|
| diffmvs |  | | 94.59 98 | 94.19 92 | 95.81 121 | 95.54 197 | 90.69 124 | 98.70 147 | 95.68 275 | 91.61 99 | 95.96 94 | 97.81 131 | 80.11 202 | 98.06 187 | 96.52 80 | 95.76 157 | 98.67 152 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LCM-MVSNet-Re | | | 88.59 233 | 88.61 213 | 88.51 314 | 95.53 198 | 72.68 364 | 96.85 276 | 88.43 383 | 88.45 184 | 73.14 348 | 90.63 312 | 75.82 228 | 94.38 343 | 92.95 145 | 95.71 159 | 98.48 160 |
|
| Test_1112_low_res | | | 92.27 159 | 90.97 169 | 96.18 105 | 95.53 198 | 91.10 112 | 98.47 178 | 94.66 320 | 88.28 195 | 86.83 221 | 93.50 258 | 87.00 95 | 98.65 166 | 84.69 238 | 89.74 227 | 98.80 142 |
|
| PCF-MVS | | 89.78 5 | 91.26 175 | 89.63 190 | 96.16 108 | 95.44 200 | 91.58 102 | 95.29 319 | 96.10 237 | 85.07 263 | 82.75 257 | 97.45 152 | 78.28 218 | 99.78 84 | 80.60 282 | 95.65 160 | 97.12 202 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EC-MVSNet | | | 95.09 82 | 95.17 75 | 94.84 157 | 95.42 201 | 88.17 187 | 99.48 53 | 95.92 254 | 91.47 103 | 97.34 63 | 98.36 116 | 82.77 169 | 97.41 232 | 97.24 62 | 98.58 100 | 98.94 128 |
|
| 3Dnovator | | 87.35 11 | 93.17 140 | 91.77 154 | 97.37 49 | 95.41 202 | 93.07 76 | 98.82 134 | 97.85 59 | 91.53 101 | 82.56 263 | 97.58 146 | 71.97 262 | 99.82 76 | 91.01 164 | 99.23 69 | 99.22 103 |
|
| IB-MVS | | 89.43 6 | 92.12 162 | 90.83 175 | 95.98 116 | 95.40 203 | 90.78 121 | 99.81 11 | 98.06 45 | 91.23 110 | 85.63 230 | 93.66 253 | 90.63 41 | 98.78 156 | 91.22 161 | 71.85 346 | 98.36 168 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_cas_vis1_n_1920 | | | 93.86 116 | 93.74 109 | 94.22 182 | 95.39 204 | 86.08 242 | 99.73 22 | 96.07 240 | 96.38 17 | 97.19 69 | 97.78 134 | 65.46 314 | 99.86 63 | 96.71 72 | 98.92 85 | 96.73 214 |
|
| miper_ehance_all_eth | | | 88.94 218 | 88.12 225 | 91.40 246 | 95.32 205 | 86.93 219 | 97.85 231 | 95.55 282 | 84.19 276 | 81.97 279 | 91.50 291 | 84.16 145 | 95.91 308 | 84.69 238 | 77.89 297 | 91.36 296 |
|
| 1314 | | | 93.44 128 | 91.98 149 | 97.84 32 | 95.24 206 | 94.38 52 | 96.22 299 | 97.92 55 | 90.18 134 | 82.28 271 | 97.71 139 | 77.63 222 | 99.80 81 | 91.94 157 | 98.67 97 | 99.34 92 |
|
| XVG-OURS | | | 90.83 185 | 90.49 181 | 91.86 235 | 95.23 207 | 81.25 318 | 95.79 314 | 95.92 254 | 88.96 169 | 90.02 190 | 98.03 128 | 71.60 267 | 99.35 133 | 91.06 163 | 87.78 232 | 94.98 238 |
|
| casdiffmvs_mvg |  | | 94.00 109 | 93.33 117 | 96.03 112 | 95.22 208 | 90.90 120 | 99.09 107 | 95.99 243 | 90.58 123 | 91.55 164 | 97.37 155 | 79.91 204 | 98.06 187 | 95.01 109 | 95.22 164 | 99.13 110 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TESTMET0.1,1 | | | 93.82 117 | 93.26 120 | 95.49 132 | 95.21 209 | 90.25 132 | 99.15 98 | 97.54 121 | 89.18 163 | 91.79 157 | 94.87 229 | 89.13 56 | 97.63 218 | 86.21 220 | 96.29 149 | 98.60 155 |
|
| xiu_mvs_v1_base_debu | | | 94.73 91 | 93.98 100 | 96.99 62 | 95.19 210 | 95.24 25 | 98.62 157 | 96.50 211 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 258 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 219 |
|
| xiu_mvs_v1_base | | | 94.73 91 | 93.98 100 | 96.99 62 | 95.19 210 | 95.24 25 | 98.62 157 | 96.50 211 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 258 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 219 |
|
| xiu_mvs_v1_base_debi | | | 94.73 91 | 93.98 100 | 96.99 62 | 95.19 210 | 95.24 25 | 98.62 157 | 96.50 211 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 258 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 219 |
|
| XVG-OURS-SEG-HR | | | 90.95 183 | 90.66 179 | 91.83 236 | 95.18 213 | 81.14 321 | 95.92 306 | 95.92 254 | 88.40 188 | 90.33 186 | 97.85 129 | 70.66 273 | 99.38 128 | 92.83 148 | 88.83 228 | 94.98 238 |
|
| Effi-MVS+-dtu | | | 89.97 205 | 90.68 178 | 87.81 319 | 95.15 214 | 71.98 366 | 97.87 230 | 95.40 292 | 91.92 95 | 87.57 209 | 91.44 292 | 74.27 241 | 96.84 251 | 89.45 184 | 93.10 181 | 94.60 240 |
|
| Syy-MVS | | | 84.10 303 | 84.53 282 | 82.83 350 | 95.14 215 | 65.71 378 | 97.68 243 | 96.66 198 | 86.52 240 | 82.63 260 | 96.84 183 | 68.15 288 | 89.89 374 | 45.62 388 | 91.54 209 | 92.87 247 |
|
| myMVS_eth3d | | | 88.68 232 | 89.07 202 | 87.50 322 | 95.14 215 | 79.74 329 | 97.68 243 | 96.66 198 | 86.52 240 | 82.63 260 | 96.84 183 | 85.22 134 | 89.89 374 | 69.43 348 | 91.54 209 | 92.87 247 |
|
| Vis-MVSNet |  | | 92.64 148 | 91.85 151 | 95.03 151 | 95.12 217 | 88.23 186 | 98.48 176 | 96.81 193 | 91.61 99 | 92.16 155 | 97.22 163 | 71.58 268 | 98.00 193 | 85.85 227 | 97.81 115 | 98.88 133 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| GBi-Net | | | 86.67 262 | 84.96 270 | 91.80 238 | 95.11 218 | 88.81 176 | 96.77 278 | 95.25 298 | 82.94 299 | 82.12 274 | 90.25 324 | 62.89 324 | 94.97 331 | 79.04 290 | 80.24 285 | 91.62 282 |
|
| test1 | | | 86.67 262 | 84.96 270 | 91.80 238 | 95.11 218 | 88.81 176 | 96.77 278 | 95.25 298 | 82.94 299 | 82.12 274 | 90.25 324 | 62.89 324 | 94.97 331 | 79.04 290 | 80.24 285 | 91.62 282 |
|
| FMVSNet2 | | | 86.90 257 | 84.79 276 | 93.24 207 | 95.11 218 | 92.54 89 | 97.67 245 | 95.86 266 | 82.94 299 | 80.55 295 | 91.17 298 | 62.89 324 | 95.29 326 | 77.23 302 | 79.71 291 | 91.90 276 |
|
| GeoE | | | 90.60 191 | 89.56 191 | 93.72 202 | 95.10 221 | 85.43 259 | 99.41 68 | 94.94 310 | 83.96 281 | 87.21 215 | 96.83 185 | 74.37 239 | 97.05 244 | 80.50 284 | 93.73 177 | 98.67 152 |
|
| baseline | | | 93.91 113 | 93.30 118 | 95.72 124 | 95.10 221 | 90.07 141 | 97.48 250 | 95.91 259 | 91.03 111 | 93.54 138 | 97.68 140 | 79.58 206 | 98.02 191 | 94.27 124 | 95.14 165 | 99.08 115 |
|
| casdiffmvs |  | | 93.98 111 | 93.43 114 | 95.61 130 | 95.07 223 | 89.86 150 | 98.80 137 | 95.84 267 | 90.98 113 | 92.74 148 | 97.66 142 | 79.71 205 | 98.10 184 | 94.72 116 | 95.37 163 | 98.87 135 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 94.71 94 | 94.08 97 | 96.61 85 | 95.05 224 | 94.87 36 | 97.77 236 | 96.17 233 | 86.84 231 | 98.04 48 | 98.52 106 | 85.52 124 | 95.99 301 | 89.83 177 | 98.97 81 | 98.96 123 |
|
| lupinMVS | | | 96.32 44 | 95.94 53 | 97.44 44 | 95.05 224 | 94.87 36 | 99.86 4 | 96.50 211 | 93.82 57 | 98.04 48 | 98.77 85 | 85.52 124 | 98.09 185 | 96.98 68 | 98.97 81 | 99.37 88 |
|
| CostFormer | | | 92.89 144 | 92.48 139 | 94.12 186 | 94.99 226 | 85.89 249 | 92.89 341 | 97.00 187 | 86.98 228 | 95.00 116 | 90.78 304 | 90.05 50 | 97.51 226 | 92.92 147 | 91.73 204 | 98.96 123 |
|
| c3_l | | | 88.19 239 | 87.23 238 | 91.06 253 | 94.97 227 | 86.17 239 | 97.72 240 | 95.38 293 | 83.43 290 | 81.68 286 | 91.37 293 | 82.81 168 | 95.72 314 | 84.04 251 | 73.70 328 | 91.29 300 |
|
| SCA | | | 90.64 190 | 89.25 199 | 94.83 158 | 94.95 228 | 88.83 175 | 96.26 296 | 97.21 162 | 90.06 141 | 90.03 189 | 90.62 313 | 66.61 302 | 96.81 253 | 83.16 258 | 94.36 171 | 98.84 136 |
|
| test-LLR | | | 93.11 141 | 92.68 134 | 94.40 173 | 94.94 229 | 87.27 213 | 99.15 98 | 97.25 156 | 90.21 132 | 91.57 161 | 94.04 239 | 84.89 137 | 97.58 222 | 85.94 224 | 96.13 150 | 98.36 168 |
|
| test-mter | | | 93.27 136 | 92.89 131 | 94.40 173 | 94.94 229 | 87.27 213 | 99.15 98 | 97.25 156 | 88.95 170 | 91.57 161 | 94.04 239 | 88.03 73 | 97.58 222 | 85.94 224 | 96.13 150 | 98.36 168 |
|
| cl____ | | | 87.82 241 | 86.79 245 | 90.89 259 | 94.88 231 | 85.43 259 | 97.81 232 | 95.24 301 | 82.91 303 | 80.71 294 | 91.22 296 | 81.97 188 | 95.84 310 | 81.34 275 | 75.06 312 | 91.40 295 |
|
| DIV-MVS_self_test | | | 87.82 241 | 86.81 244 | 90.87 260 | 94.87 232 | 85.39 261 | 97.81 232 | 95.22 306 | 82.92 302 | 80.76 293 | 91.31 295 | 81.99 186 | 95.81 312 | 81.36 274 | 75.04 313 | 91.42 294 |
|
| tpm2 | | | 91.77 167 | 91.09 166 | 93.82 198 | 94.83 233 | 85.56 258 | 92.51 346 | 97.16 169 | 84.00 279 | 93.83 135 | 90.66 310 | 87.54 79 | 97.17 238 | 87.73 205 | 91.55 208 | 98.72 148 |
|
| PVSNet_0 | | 83.28 16 | 87.31 253 | 85.16 268 | 93.74 201 | 94.78 234 | 84.59 274 | 98.91 128 | 98.69 21 | 89.81 144 | 78.59 319 | 93.23 263 | 61.95 328 | 99.34 134 | 94.75 114 | 55.72 383 | 97.30 198 |
|
| CDS-MVSNet | | | 93.47 127 | 93.04 126 | 94.76 159 | 94.75 235 | 89.45 158 | 98.82 134 | 97.03 183 | 87.91 206 | 90.97 173 | 96.48 195 | 89.06 57 | 96.36 278 | 89.50 183 | 92.81 185 | 98.49 159 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gm-plane-assit | | | | | | 94.69 236 | 88.14 188 | | | 88.22 196 | | 97.20 164 | | 98.29 175 | 90.79 169 | | |
|
| eth_miper_zixun_eth | | | 87.76 244 | 87.00 242 | 90.06 281 | 94.67 237 | 82.65 302 | 97.02 271 | 95.37 294 | 84.19 276 | 81.86 284 | 91.58 290 | 81.47 193 | 95.90 309 | 83.24 256 | 73.61 329 | 91.61 285 |
|
| testing3 | | | 87.75 245 | 88.22 223 | 86.36 330 | 94.66 238 | 77.41 346 | 99.52 50 | 97.95 54 | 86.05 247 | 81.12 290 | 96.69 190 | 86.18 116 | 89.31 378 | 61.65 372 | 90.12 224 | 92.35 260 |
|
| RPSCF | | | 85.33 285 | 85.55 263 | 84.67 342 | 94.63 239 | 62.28 381 | 93.73 333 | 93.76 337 | 74.38 359 | 85.23 234 | 97.06 172 | 64.09 318 | 98.31 173 | 80.98 276 | 86.08 244 | 93.41 246 |
|
| miper_lstm_enhance | | | 86.90 257 | 86.20 253 | 89.00 309 | 94.53 240 | 81.19 319 | 96.74 282 | 95.24 301 | 82.33 312 | 80.15 300 | 90.51 320 | 81.99 186 | 94.68 340 | 80.71 280 | 73.58 330 | 91.12 304 |
|
| Patchmatch-test | | | 86.25 271 | 84.06 288 | 92.82 215 | 94.42 241 | 82.88 298 | 82.88 386 | 94.23 331 | 71.58 364 | 79.39 310 | 90.62 313 | 89.00 59 | 96.42 275 | 63.03 368 | 91.37 214 | 99.16 106 |
|
| VDDNet | | | 90.08 202 | 88.54 218 | 94.69 163 | 94.41 242 | 87.68 197 | 98.21 204 | 96.40 216 | 76.21 351 | 93.33 141 | 97.75 136 | 54.93 354 | 98.77 157 | 94.71 117 | 90.96 216 | 97.61 192 |
|
| fmvsm_s_conf0.1_n | | | 95.56 71 | 95.68 64 | 95.20 143 | 94.35 243 | 89.10 163 | 99.50 51 | 97.67 91 | 94.76 34 | 98.68 27 | 99.03 56 | 81.13 198 | 99.86 63 | 98.63 32 | 97.36 129 | 96.63 216 |
|
| test_fmvsmvis_n_1920 | | | 95.47 72 | 95.40 70 | 95.70 125 | 94.33 244 | 90.22 135 | 99.70 26 | 96.98 188 | 96.80 7 | 92.75 147 | 98.89 78 | 82.46 180 | 99.92 40 | 98.36 40 | 98.33 107 | 96.97 210 |
|
| KD-MVS_2432*1600 | | | 82.98 308 | 80.52 316 | 90.38 274 | 94.32 245 | 88.98 168 | 92.87 342 | 95.87 264 | 80.46 332 | 73.79 343 | 87.49 349 | 82.76 171 | 93.29 351 | 70.56 344 | 46.53 392 | 88.87 349 |
|
| miper_refine_blended | | | 82.98 308 | 80.52 316 | 90.38 274 | 94.32 245 | 88.98 168 | 92.87 342 | 95.87 264 | 80.46 332 | 73.79 343 | 87.49 349 | 82.76 171 | 93.29 351 | 70.56 344 | 46.53 392 | 88.87 349 |
|
| EI-MVSNet | | | 89.87 206 | 89.38 197 | 91.36 248 | 94.32 245 | 85.87 250 | 97.61 247 | 96.59 203 | 85.10 261 | 85.51 231 | 97.10 169 | 81.30 197 | 96.56 264 | 83.85 254 | 83.03 272 | 91.64 280 |
|
| CVMVSNet | | | 90.30 195 | 90.91 171 | 88.46 315 | 94.32 245 | 73.58 360 | 97.61 247 | 97.59 111 | 90.16 137 | 88.43 204 | 97.10 169 | 76.83 226 | 92.86 354 | 82.64 264 | 93.54 178 | 98.93 129 |
|
| WB-MVSnew | | | 88.69 230 | 88.34 220 | 89.77 292 | 94.30 249 | 85.99 247 | 98.14 209 | 97.31 154 | 87.15 224 | 87.85 207 | 96.07 207 | 69.91 274 | 95.52 319 | 72.83 337 | 91.47 211 | 87.80 356 |
|
| test_fmvs1_n | | | 91.07 180 | 91.41 161 | 90.06 281 | 94.10 250 | 74.31 356 | 99.18 89 | 94.84 312 | 94.81 33 | 96.37 89 | 97.46 151 | 50.86 367 | 99.82 76 | 97.14 64 | 97.90 113 | 96.04 231 |
|
| IterMVS-LS | | | 88.34 235 | 87.44 233 | 91.04 254 | 94.10 250 | 85.85 251 | 98.10 215 | 95.48 286 | 85.12 260 | 82.03 278 | 91.21 297 | 81.35 196 | 95.63 317 | 83.86 253 | 75.73 309 | 91.63 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TAMVS | | | 92.62 149 | 92.09 147 | 94.20 183 | 94.10 250 | 87.68 197 | 98.41 183 | 96.97 189 | 87.53 219 | 89.74 193 | 96.04 208 | 84.77 141 | 96.49 271 | 88.97 193 | 92.31 193 | 98.42 161 |
|
| PAPM | | | 96.35 42 | 95.94 53 | 97.58 40 | 94.10 250 | 95.25 24 | 98.93 125 | 98.17 37 | 94.26 42 | 93.94 132 | 98.72 91 | 89.68 53 | 97.88 197 | 96.36 82 | 99.29 67 | 99.62 66 |
|
| CLD-MVS | | | 91.06 181 | 90.71 177 | 92.10 231 | 94.05 254 | 86.10 241 | 99.55 44 | 96.29 225 | 94.16 45 | 84.70 237 | 97.17 167 | 69.62 279 | 97.82 201 | 94.74 115 | 86.08 244 | 92.39 255 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP-NCC | | | | | | 93.95 255 | | 99.16 93 | | 93.92 50 | 87.57 209 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 255 | | 99.16 93 | | 93.92 50 | 87.57 209 | | | | | | |
|
| HQP-MVS | | | 91.50 170 | 91.23 164 | 92.29 225 | 93.95 255 | 86.39 229 | 99.16 93 | 96.37 218 | 93.92 50 | 87.57 209 | 96.67 191 | 73.34 247 | 97.77 205 | 93.82 133 | 86.29 239 | 92.72 249 |
|
| NP-MVS | | | | | | 93.94 258 | 86.22 236 | | | | | 96.67 191 | | | | | |
|
| plane_prior6 | | | | | | 93.92 259 | 86.02 246 | | | | | | 72.92 253 | | | | |
|
| ACMP | | 87.39 10 | 88.71 229 | 88.24 222 | 90.12 280 | 93.91 260 | 81.06 322 | 98.50 172 | 95.67 276 | 89.43 156 | 80.37 297 | 95.55 215 | 65.67 309 | 97.83 200 | 90.55 171 | 84.51 253 | 91.47 290 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| plane_prior1 | | | | | | 93.90 261 | | | | | | | | | | | |
|
| HQP_MVS | | | 91.26 175 | 90.95 170 | 92.16 229 | 93.84 262 | 86.07 244 | 99.02 116 | 96.30 222 | 93.38 66 | 86.99 216 | 96.52 193 | 72.92 253 | 97.75 211 | 93.46 138 | 86.17 242 | 92.67 251 |
|
| plane_prior7 | | | | | | 93.84 262 | 85.73 253 | | | | | | | | | | |
|
| dmvs_re | | | 88.69 230 | 88.06 226 | 90.59 266 | 93.83 264 | 78.68 337 | 95.75 315 | 96.18 232 | 87.99 203 | 84.48 241 | 96.32 201 | 67.52 295 | 96.94 248 | 84.98 235 | 85.49 248 | 96.14 229 |
|
| MVS-HIRNet | | | 79.01 327 | 75.13 339 | 90.66 265 | 93.82 265 | 81.69 310 | 85.16 376 | 93.75 338 | 54.54 386 | 74.17 341 | 59.15 392 | 57.46 343 | 96.58 263 | 63.74 365 | 94.38 170 | 93.72 243 |
|
| FMVSNet5 | | | 82.29 311 | 80.54 315 | 87.52 321 | 93.79 266 | 84.01 282 | 93.73 333 | 92.47 355 | 76.92 349 | 74.27 340 | 86.15 360 | 63.69 322 | 89.24 379 | 69.07 349 | 74.79 316 | 89.29 344 |
|
| ACMH+ | | 83.78 15 | 84.21 299 | 82.56 304 | 89.15 306 | 93.73 267 | 79.16 332 | 96.43 289 | 94.28 330 | 81.09 326 | 74.00 342 | 94.03 241 | 54.58 355 | 97.67 214 | 76.10 312 | 78.81 293 | 90.63 320 |
|
| ACMM | | 86.95 13 | 88.77 227 | 88.22 223 | 90.43 272 | 93.61 268 | 81.34 316 | 98.50 172 | 95.92 254 | 87.88 207 | 83.85 246 | 95.20 225 | 67.20 298 | 97.89 196 | 86.90 214 | 84.90 251 | 92.06 273 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS |  | 85.28 14 | 90.75 187 | 88.84 207 | 96.48 93 | 93.58 269 | 93.51 68 | 98.80 137 | 97.41 146 | 82.59 305 | 78.62 317 | 97.49 150 | 68.00 291 | 99.82 76 | 84.52 242 | 98.55 102 | 96.11 230 |
|
| IterMVS | | | 85.81 278 | 84.67 279 | 89.22 304 | 93.51 270 | 83.67 287 | 96.32 293 | 94.80 315 | 85.09 262 | 78.69 315 | 90.17 330 | 66.57 304 | 93.17 353 | 79.48 288 | 77.42 303 | 90.81 311 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CR-MVSNet | | | 88.83 224 | 87.38 235 | 93.16 209 | 93.47 271 | 86.24 234 | 84.97 379 | 94.20 332 | 88.92 173 | 90.76 177 | 86.88 356 | 84.43 142 | 94.82 336 | 70.64 343 | 92.17 197 | 98.41 162 |
|
| RPMNet | | | 85.07 288 | 81.88 305 | 94.64 166 | 93.47 271 | 86.24 234 | 84.97 379 | 97.21 162 | 64.85 384 | 90.76 177 | 78.80 381 | 80.95 199 | 99.27 137 | 53.76 383 | 92.17 197 | 98.41 162 |
|
| IterMVS-SCA-FT | | | 85.73 281 | 84.64 280 | 89.00 309 | 93.46 273 | 82.90 296 | 96.27 294 | 94.70 318 | 85.02 265 | 78.62 317 | 90.35 322 | 66.61 302 | 93.33 350 | 79.38 289 | 77.36 304 | 90.76 315 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 222 | 88.59 215 | 89.58 297 | 93.44 274 | 78.18 341 | 98.65 153 | 94.62 321 | 88.46 183 | 84.12 244 | 95.37 222 | 68.91 281 | 96.52 267 | 82.06 270 | 91.70 205 | 94.06 241 |
|
| Patchmtry | | | 83.61 307 | 81.64 307 | 89.50 299 | 93.36 275 | 82.84 299 | 84.10 382 | 94.20 332 | 69.47 374 | 79.57 308 | 86.88 356 | 84.43 142 | 94.78 337 | 68.48 352 | 74.30 322 | 90.88 310 |
|
| LPG-MVS_test | | | 88.86 221 | 88.47 219 | 90.06 281 | 93.35 276 | 80.95 323 | 98.22 202 | 95.94 250 | 87.73 213 | 83.17 253 | 96.11 205 | 66.28 306 | 97.77 205 | 90.19 175 | 85.19 249 | 91.46 291 |
|
| LGP-MVS_train | | | | | 90.06 281 | 93.35 276 | 80.95 323 | | 95.94 250 | 87.73 213 | 83.17 253 | 96.11 205 | 66.28 306 | 97.77 205 | 90.19 175 | 85.19 249 | 91.46 291 |
|
| JIA-IIPM | | | 85.97 274 | 84.85 274 | 89.33 303 | 93.23 278 | 73.68 359 | 85.05 378 | 97.13 172 | 69.62 373 | 91.56 163 | 68.03 388 | 88.03 73 | 96.96 246 | 77.89 300 | 93.12 180 | 97.34 197 |
|
| ACMH | | 83.09 17 | 84.60 293 | 82.61 303 | 90.57 267 | 93.18 279 | 82.94 294 | 96.27 294 | 94.92 311 | 81.01 327 | 72.61 354 | 93.61 254 | 56.54 345 | 97.79 203 | 74.31 324 | 81.07 283 | 90.99 307 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PatchT | | | 85.44 284 | 83.19 293 | 92.22 226 | 93.13 280 | 83.00 293 | 83.80 385 | 96.37 218 | 70.62 367 | 90.55 180 | 79.63 380 | 84.81 139 | 94.87 334 | 58.18 379 | 91.59 206 | 98.79 143 |
|
| baseline2 | | | 94.04 108 | 93.80 108 | 94.74 161 | 93.07 281 | 90.25 132 | 98.12 212 | 98.16 39 | 89.86 142 | 86.53 224 | 96.95 176 | 95.56 6 | 98.05 189 | 91.44 160 | 94.53 169 | 95.93 232 |
|
| jason | | | 95.40 76 | 94.86 82 | 97.03 59 | 92.91 282 | 94.23 54 | 99.70 26 | 96.30 222 | 93.56 64 | 96.73 82 | 98.52 106 | 81.46 194 | 97.91 194 | 96.08 87 | 98.47 105 | 98.96 123 |
| jason: jason. |
| LTVRE_ROB | | 81.71 19 | 84.59 294 | 82.72 301 | 90.18 278 | 92.89 283 | 83.18 292 | 93.15 338 | 94.74 316 | 78.99 337 | 75.14 338 | 92.69 271 | 65.64 310 | 97.63 218 | 69.46 347 | 81.82 281 | 89.74 337 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| VPA-MVSNet | | | 89.10 215 | 87.66 231 | 93.45 204 | 92.56 284 | 91.02 116 | 97.97 225 | 98.32 30 | 86.92 230 | 86.03 226 | 92.01 280 | 68.84 283 | 97.10 242 | 90.92 165 | 75.34 310 | 92.23 263 |
|
| tpm | | | 89.67 208 | 88.95 205 | 91.82 237 | 92.54 285 | 81.43 313 | 92.95 340 | 95.92 254 | 87.81 208 | 90.50 182 | 89.44 336 | 84.99 135 | 95.65 316 | 83.67 255 | 82.71 275 | 98.38 165 |
|
| GA-MVS | | | 90.10 201 | 88.69 211 | 94.33 177 | 92.44 286 | 87.97 193 | 99.08 108 | 96.26 226 | 89.65 147 | 86.92 219 | 93.11 266 | 68.09 289 | 96.96 246 | 82.54 266 | 90.15 223 | 98.05 179 |
|
| test_fmvsmconf0.1_n | | | 95.94 58 | 95.79 61 | 96.40 99 | 92.42 287 | 89.92 148 | 99.79 16 | 96.85 192 | 96.53 15 | 97.22 65 | 98.67 97 | 82.71 173 | 99.84 69 | 98.92 27 | 98.98 80 | 99.43 84 |
|
| FIs | | | 90.70 188 | 89.87 188 | 93.18 208 | 92.29 288 | 91.12 110 | 98.17 208 | 98.25 32 | 89.11 165 | 83.44 248 | 94.82 231 | 82.26 183 | 96.17 294 | 87.76 204 | 82.76 274 | 92.25 261 |
|
| ITE_SJBPF | | | | | 87.93 317 | 92.26 289 | 76.44 349 | | 93.47 344 | 87.67 216 | 79.95 303 | 95.49 218 | 56.50 346 | 97.38 233 | 75.24 317 | 82.33 278 | 89.98 334 |
|
| UniMVSNet (Re) | | | 89.50 212 | 88.32 221 | 93.03 210 | 92.21 290 | 90.96 118 | 98.90 129 | 98.39 27 | 89.13 164 | 83.22 250 | 92.03 278 | 81.69 190 | 96.34 284 | 86.79 215 | 72.53 339 | 91.81 277 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 209 | 88.55 217 | 92.75 218 | 92.17 291 | 90.07 141 | 98.74 144 | 98.15 40 | 88.37 189 | 83.21 251 | 93.98 244 | 82.86 167 | 95.93 305 | 86.95 211 | 72.47 340 | 92.25 261 |
|
| TinyColmap | | | 80.42 321 | 77.94 326 | 87.85 318 | 92.09 292 | 78.58 338 | 93.74 332 | 89.94 376 | 74.99 355 | 69.77 359 | 91.78 286 | 46.09 374 | 97.58 222 | 65.17 364 | 77.89 297 | 87.38 358 |
|
| fmvsm_s_conf0.1_n_a | | | 95.16 80 | 95.15 76 | 95.18 144 | 92.06 293 | 88.94 171 | 99.29 81 | 97.53 122 | 94.46 38 | 98.98 18 | 98.99 60 | 79.99 203 | 99.85 67 | 98.24 47 | 96.86 138 | 96.73 214 |
|
| tt0805 | | | 86.50 267 | 84.79 276 | 91.63 244 | 91.97 294 | 81.49 312 | 96.49 288 | 97.38 149 | 82.24 313 | 82.44 265 | 95.82 212 | 51.22 364 | 98.25 178 | 84.55 241 | 80.96 284 | 95.13 237 |
|
| MS-PatchMatch | | | 86.75 260 | 85.92 257 | 89.22 304 | 91.97 294 | 82.47 304 | 96.91 273 | 96.14 235 | 83.74 284 | 77.73 324 | 93.53 257 | 58.19 341 | 97.37 235 | 76.75 308 | 98.35 106 | 87.84 354 |
|
| VPNet | | | 88.30 236 | 86.57 247 | 93.49 203 | 91.95 296 | 91.35 104 | 98.18 206 | 97.20 166 | 88.61 178 | 84.52 240 | 94.89 228 | 62.21 327 | 96.76 256 | 89.34 187 | 72.26 343 | 92.36 257 |
|
| FMVSNet1 | | | 83.94 304 | 81.32 312 | 91.80 238 | 91.94 297 | 88.81 176 | 96.77 278 | 95.25 298 | 77.98 342 | 78.25 322 | 90.25 324 | 50.37 368 | 94.97 331 | 73.27 333 | 77.81 301 | 91.62 282 |
|
| WR-MVS | | | 88.54 234 | 87.22 239 | 92.52 223 | 91.93 298 | 89.50 157 | 98.56 166 | 97.84 60 | 86.99 225 | 81.87 282 | 93.81 248 | 74.25 242 | 95.92 307 | 85.29 230 | 74.43 320 | 92.12 270 |
|
| D2MVS | | | 87.96 240 | 87.39 234 | 89.70 294 | 91.84 299 | 83.40 289 | 98.31 197 | 98.49 23 | 88.04 201 | 78.23 323 | 90.26 323 | 73.57 245 | 96.79 255 | 84.21 245 | 83.53 267 | 88.90 348 |
|
| FC-MVSNet-test | | | 90.22 197 | 89.40 196 | 92.67 222 | 91.78 300 | 89.86 150 | 97.89 227 | 98.22 35 | 88.81 175 | 82.96 256 | 94.66 233 | 81.90 189 | 95.96 303 | 85.89 226 | 82.52 277 | 92.20 267 |
|
| MIMVSNet | | | 84.48 296 | 81.83 306 | 92.42 224 | 91.73 301 | 87.36 209 | 85.52 375 | 94.42 327 | 81.40 322 | 81.91 280 | 87.58 346 | 51.92 362 | 92.81 356 | 73.84 329 | 88.15 230 | 97.08 206 |
|
| USDC | | | 84.74 290 | 82.93 295 | 90.16 279 | 91.73 301 | 83.54 288 | 95.00 321 | 93.30 346 | 88.77 176 | 73.19 347 | 93.30 261 | 53.62 358 | 97.65 217 | 75.88 314 | 81.54 282 | 89.30 343 |
|
| test_vis1_n | | | 90.40 192 | 90.27 183 | 90.79 262 | 91.55 303 | 76.48 348 | 99.12 105 | 94.44 324 | 94.31 41 | 97.34 63 | 96.95 176 | 43.60 378 | 99.42 123 | 97.57 57 | 97.60 120 | 96.47 223 |
|
| nrg030 | | | 90.23 196 | 88.87 206 | 94.32 178 | 91.53 304 | 93.54 67 | 98.79 141 | 95.89 262 | 88.12 199 | 84.55 239 | 94.61 234 | 78.80 215 | 96.88 250 | 92.35 154 | 75.21 311 | 92.53 253 |
|
| DU-MVS | | | 88.83 224 | 87.51 232 | 92.79 216 | 91.46 305 | 90.07 141 | 98.71 145 | 97.62 104 | 88.87 174 | 83.21 251 | 93.68 251 | 74.63 233 | 95.93 305 | 86.95 211 | 72.47 340 | 92.36 257 |
|
| NR-MVSNet | | | 87.74 248 | 86.00 256 | 92.96 213 | 91.46 305 | 90.68 125 | 96.65 285 | 97.42 145 | 88.02 202 | 73.42 345 | 93.68 251 | 77.31 223 | 95.83 311 | 84.26 244 | 71.82 347 | 92.36 257 |
|
| tfpnnormal | | | 83.65 305 | 81.35 311 | 90.56 269 | 91.37 307 | 88.06 190 | 97.29 257 | 97.87 58 | 78.51 341 | 76.20 328 | 90.91 301 | 64.78 316 | 96.47 272 | 61.71 371 | 73.50 331 | 87.13 363 |
|
| test_vis1_rt | | | 81.31 317 | 80.05 320 | 85.11 337 | 91.29 308 | 70.66 370 | 98.98 122 | 77.39 398 | 85.76 252 | 68.80 362 | 82.40 369 | 36.56 385 | 99.44 119 | 92.67 151 | 86.55 238 | 85.24 373 |
|
| test_0402 | | | 78.81 329 | 76.33 334 | 86.26 331 | 91.18 309 | 78.44 340 | 95.88 309 | 91.34 370 | 68.55 375 | 70.51 358 | 89.91 331 | 52.65 361 | 94.99 330 | 47.14 387 | 79.78 290 | 85.34 372 |
|
| test0.0.03 1 | | | 88.96 217 | 88.61 213 | 90.03 285 | 91.09 310 | 84.43 276 | 98.97 123 | 97.02 185 | 90.21 132 | 80.29 298 | 96.31 202 | 84.89 137 | 91.93 368 | 72.98 335 | 85.70 247 | 93.73 242 |
|
| WR-MVS_H | | | 86.53 266 | 85.49 264 | 89.66 296 | 91.04 311 | 83.31 291 | 97.53 249 | 98.20 36 | 84.95 267 | 79.64 306 | 90.90 302 | 78.01 220 | 95.33 325 | 76.29 311 | 72.81 336 | 90.35 324 |
|
| CP-MVSNet | | | 86.54 265 | 85.45 265 | 89.79 291 | 91.02 312 | 82.78 300 | 97.38 253 | 97.56 117 | 85.37 257 | 79.53 309 | 93.03 267 | 71.86 264 | 95.25 327 | 79.92 285 | 73.43 334 | 91.34 297 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 245 | 86.31 251 | 92.07 232 | 90.81 313 | 88.56 181 | 98.33 194 | 97.18 167 | 87.76 210 | 81.87 282 | 93.90 246 | 72.45 257 | 95.43 322 | 83.13 260 | 71.30 350 | 92.23 263 |
|
| PS-CasMVS | | | 85.81 278 | 84.58 281 | 89.49 301 | 90.77 314 | 82.11 306 | 97.20 264 | 97.36 151 | 84.83 269 | 79.12 314 | 92.84 270 | 67.42 297 | 95.16 329 | 78.39 298 | 73.25 335 | 91.21 302 |
|
| DeepMVS_CX |  | | | | 76.08 361 | 90.74 315 | 51.65 394 | | 90.84 372 | 86.47 243 | 57.89 382 | 87.98 343 | 35.88 386 | 92.60 358 | 65.77 362 | 65.06 367 | 83.97 377 |
|
| mvsmamba | | | 89.99 204 | 89.42 195 | 91.69 243 | 90.64 316 | 86.34 232 | 98.40 186 | 92.27 357 | 91.01 112 | 84.80 236 | 94.93 227 | 76.12 227 | 96.51 268 | 92.81 149 | 83.84 262 | 92.21 265 |
|
| OPM-MVS | | | 89.76 207 | 89.15 201 | 91.57 245 | 90.53 317 | 85.58 257 | 98.11 214 | 95.93 253 | 92.88 76 | 86.05 225 | 96.47 196 | 67.06 300 | 97.87 198 | 89.29 190 | 86.08 244 | 91.26 301 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XXY-MVS | | | 87.75 245 | 86.02 255 | 92.95 214 | 90.46 318 | 89.70 153 | 97.71 242 | 95.90 260 | 84.02 278 | 80.95 291 | 94.05 238 | 67.51 296 | 97.10 242 | 85.16 231 | 78.41 294 | 92.04 274 |
|
| UniMVSNet_ETH3D | | | 85.65 283 | 83.79 291 | 91.21 249 | 90.41 319 | 80.75 325 | 95.36 318 | 95.78 268 | 78.76 340 | 81.83 285 | 94.33 237 | 49.86 369 | 96.66 257 | 84.30 243 | 83.52 268 | 96.22 228 |
|
| RRT_MVS | | | 88.91 219 | 88.56 216 | 89.93 286 | 90.31 320 | 81.61 311 | 98.08 218 | 96.38 217 | 89.30 158 | 82.41 268 | 94.84 230 | 73.15 251 | 96.04 300 | 90.38 172 | 82.23 279 | 92.15 268 |
|
| v10 | | | 85.73 281 | 84.01 289 | 90.87 260 | 90.03 321 | 86.73 222 | 97.20 264 | 95.22 306 | 81.25 324 | 79.85 305 | 89.75 333 | 73.30 249 | 96.28 290 | 76.87 306 | 72.64 338 | 89.61 340 |
|
| v8 | | | 86.11 272 | 84.45 283 | 91.10 252 | 89.99 322 | 86.85 220 | 97.24 261 | 95.36 295 | 81.99 316 | 79.89 304 | 89.86 332 | 74.53 237 | 96.39 276 | 78.83 294 | 72.32 342 | 90.05 332 |
|
| V42 | | | 87.00 256 | 85.68 261 | 90.98 256 | 89.91 323 | 86.08 242 | 98.32 196 | 95.61 279 | 83.67 287 | 82.72 258 | 90.67 309 | 74.00 244 | 96.53 266 | 81.94 272 | 74.28 323 | 90.32 325 |
|
| XVG-ACMP-BASELINE | | | 85.86 276 | 84.95 272 | 88.57 313 | 89.90 324 | 77.12 347 | 94.30 327 | 95.60 280 | 87.40 221 | 82.12 274 | 92.99 269 | 53.42 359 | 97.66 215 | 85.02 234 | 83.83 263 | 90.92 309 |
|
| PEN-MVS | | | 85.21 286 | 83.93 290 | 89.07 308 | 89.89 325 | 81.31 317 | 97.09 267 | 97.24 159 | 84.45 274 | 78.66 316 | 92.68 272 | 68.44 286 | 94.87 334 | 75.98 313 | 70.92 351 | 91.04 306 |
|
| test_fmvs2 | | | 85.10 287 | 85.45 265 | 84.02 345 | 89.85 326 | 65.63 379 | 98.49 174 | 92.59 353 | 90.45 127 | 85.43 233 | 93.32 259 | 43.94 376 | 96.59 260 | 90.81 168 | 84.19 259 | 89.85 336 |
|
| v1144 | | | 86.83 259 | 85.31 267 | 91.40 246 | 89.75 327 | 87.21 217 | 98.31 197 | 95.45 288 | 83.22 293 | 82.70 259 | 90.78 304 | 73.36 246 | 96.36 278 | 79.49 287 | 74.69 317 | 90.63 320 |
|
| TransMVSNet (Re) | | | 81.97 313 | 79.61 322 | 89.08 307 | 89.70 328 | 84.01 282 | 97.26 259 | 91.85 365 | 78.84 338 | 73.07 351 | 91.62 288 | 67.17 299 | 95.21 328 | 67.50 355 | 59.46 377 | 88.02 353 |
|
| v2v482 | | | 87.27 254 | 85.76 259 | 91.78 242 | 89.59 329 | 87.58 201 | 98.56 166 | 95.54 283 | 84.53 272 | 82.51 264 | 91.78 286 | 73.11 252 | 96.47 272 | 82.07 269 | 74.14 326 | 91.30 299 |
|
| pm-mvs1 | | | 84.68 292 | 82.78 299 | 90.40 273 | 89.58 330 | 85.18 265 | 97.31 256 | 94.73 317 | 81.93 318 | 76.05 330 | 92.01 280 | 65.48 313 | 96.11 297 | 78.75 295 | 69.14 353 | 89.91 335 |
|
| pmmvs4 | | | 87.58 251 | 86.17 254 | 91.80 238 | 89.58 330 | 88.92 174 | 97.25 260 | 95.28 297 | 82.54 307 | 80.49 296 | 93.17 265 | 75.62 230 | 96.05 299 | 82.75 263 | 78.90 292 | 90.42 323 |
|
| bld_raw_dy_0_64 | | | 87.82 241 | 86.71 246 | 91.15 251 | 89.54 332 | 85.61 255 | 97.37 254 | 89.16 381 | 89.26 159 | 83.42 249 | 94.50 235 | 65.79 308 | 96.18 292 | 88.00 202 | 83.37 269 | 91.67 279 |
|
| v1192 | | | 86.32 270 | 84.71 278 | 91.17 250 | 89.53 333 | 86.40 228 | 98.13 210 | 95.44 290 | 82.52 308 | 82.42 267 | 90.62 313 | 71.58 268 | 96.33 285 | 77.23 302 | 74.88 314 | 90.79 313 |
|
| v144192 | | | 86.40 268 | 84.89 273 | 90.91 257 | 89.48 334 | 85.59 256 | 98.21 204 | 95.43 291 | 82.45 310 | 82.62 262 | 90.58 316 | 72.79 256 | 96.36 278 | 78.45 297 | 74.04 327 | 90.79 313 |
|
| v148 | | | 86.38 269 | 85.06 269 | 90.37 276 | 89.47 335 | 84.10 281 | 98.52 168 | 95.48 286 | 83.80 283 | 80.93 292 | 90.22 327 | 74.60 235 | 96.31 286 | 80.92 278 | 71.55 348 | 90.69 318 |
|
| v1921920 | | | 86.02 273 | 84.44 284 | 90.77 263 | 89.32 336 | 85.20 264 | 98.10 215 | 95.35 296 | 82.19 314 | 82.25 272 | 90.71 306 | 70.73 271 | 96.30 289 | 76.85 307 | 74.49 319 | 90.80 312 |
|
| v1240 | | | 85.77 280 | 84.11 287 | 90.73 264 | 89.26 337 | 85.15 267 | 97.88 229 | 95.23 305 | 81.89 319 | 82.16 273 | 90.55 318 | 69.60 280 | 96.31 286 | 75.59 316 | 74.87 315 | 90.72 317 |
|
| our_test_3 | | | 84.47 297 | 82.80 297 | 89.50 299 | 89.01 338 | 83.90 284 | 97.03 269 | 94.56 322 | 81.33 323 | 75.36 337 | 90.52 319 | 71.69 266 | 94.54 342 | 68.81 350 | 76.84 305 | 90.07 330 |
|
| ppachtmachnet_test | | | 83.63 306 | 81.57 309 | 89.80 290 | 89.01 338 | 85.09 268 | 97.13 266 | 94.50 323 | 78.84 338 | 76.14 329 | 91.00 300 | 69.78 276 | 94.61 341 | 63.40 366 | 74.36 321 | 89.71 339 |
|
| DTE-MVSNet | | | 84.14 301 | 82.80 297 | 88.14 316 | 88.95 340 | 79.87 328 | 96.81 277 | 96.24 227 | 83.50 289 | 77.60 325 | 92.52 274 | 67.89 293 | 94.24 345 | 72.64 338 | 69.05 354 | 90.32 325 |
|
| PS-MVSNAJss | | | 89.54 211 | 89.05 203 | 91.00 255 | 88.77 341 | 84.36 277 | 97.39 251 | 95.97 245 | 88.47 181 | 81.88 281 | 93.80 249 | 82.48 177 | 96.50 269 | 89.34 187 | 83.34 271 | 92.15 268 |
|
| Baseline_NR-MVSNet | | | 85.83 277 | 84.82 275 | 88.87 312 | 88.73 342 | 83.34 290 | 98.63 156 | 91.66 366 | 80.41 334 | 82.44 265 | 91.35 294 | 74.63 233 | 95.42 323 | 84.13 247 | 71.39 349 | 87.84 354 |
|
| MVP-Stereo | | | 86.61 264 | 85.83 258 | 88.93 311 | 88.70 343 | 83.85 285 | 96.07 303 | 94.41 328 | 82.15 315 | 75.64 335 | 91.96 283 | 67.65 294 | 96.45 274 | 77.20 304 | 98.72 95 | 86.51 366 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EU-MVSNet | | | 84.19 300 | 84.42 285 | 83.52 348 | 88.64 344 | 67.37 377 | 96.04 304 | 95.76 270 | 85.29 258 | 78.44 320 | 93.18 264 | 70.67 272 | 91.48 370 | 75.79 315 | 75.98 307 | 91.70 278 |
|
| pmmvs5 | | | 85.87 275 | 84.40 286 | 90.30 277 | 88.53 345 | 84.23 278 | 98.60 161 | 93.71 339 | 81.53 321 | 80.29 298 | 92.02 279 | 64.51 317 | 95.52 319 | 82.04 271 | 78.34 295 | 91.15 303 |
|
| MDA-MVSNet-bldmvs | | | 77.82 335 | 74.75 341 | 87.03 326 | 88.33 346 | 78.52 339 | 96.34 292 | 92.85 350 | 75.57 353 | 48.87 388 | 87.89 344 | 57.32 344 | 92.49 362 | 60.79 373 | 64.80 368 | 90.08 329 |
|
| N_pmnet | | | 70.19 347 | 69.87 349 | 71.12 368 | 88.24 347 | 30.63 407 | 95.85 312 | 28.70 406 | 70.18 370 | 68.73 363 | 86.55 358 | 64.04 319 | 93.81 346 | 53.12 384 | 73.46 332 | 88.94 347 |
|
| v7n | | | 84.42 298 | 82.75 300 | 89.43 302 | 88.15 348 | 81.86 308 | 96.75 281 | 95.67 276 | 80.53 330 | 78.38 321 | 89.43 337 | 69.89 275 | 96.35 283 | 73.83 330 | 72.13 344 | 90.07 330 |
|
| SixPastTwentyTwo | | | 82.63 310 | 81.58 308 | 85.79 334 | 88.12 349 | 71.01 369 | 95.17 320 | 92.54 354 | 84.33 275 | 72.93 352 | 92.08 277 | 60.41 335 | 95.61 318 | 74.47 323 | 74.15 325 | 90.75 316 |
|
| test_djsdf | | | 88.26 238 | 87.73 229 | 89.84 289 | 88.05 350 | 82.21 305 | 97.77 236 | 96.17 233 | 86.84 231 | 82.41 268 | 91.95 284 | 72.07 261 | 95.99 301 | 89.83 177 | 84.50 254 | 91.32 298 |
|
| mvs_tets | | | 87.09 255 | 86.22 252 | 89.71 293 | 87.87 351 | 81.39 315 | 96.73 283 | 95.90 260 | 88.19 197 | 79.99 302 | 93.61 254 | 59.96 336 | 96.31 286 | 89.40 186 | 84.34 257 | 91.43 293 |
|
| OurMVSNet-221017-0 | | | 84.13 302 | 83.59 292 | 85.77 335 | 87.81 352 | 70.24 371 | 94.89 322 | 93.65 341 | 86.08 246 | 76.53 327 | 93.28 262 | 61.41 330 | 96.14 296 | 80.95 277 | 77.69 302 | 90.93 308 |
|
| YYNet1 | | | 79.64 326 | 77.04 331 | 87.43 324 | 87.80 353 | 79.98 327 | 96.23 298 | 94.44 324 | 73.83 361 | 51.83 385 | 87.53 347 | 67.96 292 | 92.07 367 | 66.00 361 | 67.75 360 | 90.23 327 |
|
| MDA-MVSNet_test_wron | | | 79.65 325 | 77.05 330 | 87.45 323 | 87.79 354 | 80.13 326 | 96.25 297 | 94.44 324 | 73.87 360 | 51.80 386 | 87.47 351 | 68.04 290 | 92.12 366 | 66.02 360 | 67.79 359 | 90.09 328 |
|
| jajsoiax | | | 87.35 252 | 86.51 249 | 89.87 287 | 87.75 355 | 81.74 309 | 97.03 269 | 95.98 244 | 88.47 181 | 80.15 300 | 93.80 249 | 61.47 329 | 96.36 278 | 89.44 185 | 84.47 256 | 91.50 289 |
|
| K. test v3 | | | 81.04 318 | 79.77 321 | 84.83 340 | 87.41 356 | 70.23 372 | 95.60 317 | 93.93 336 | 83.70 286 | 67.51 369 | 89.35 338 | 55.76 347 | 93.58 349 | 76.67 309 | 68.03 357 | 90.67 319 |
|
| dmvs_testset | | | 77.17 337 | 78.99 324 | 71.71 366 | 87.25 357 | 38.55 403 | 91.44 356 | 81.76 394 | 85.77 251 | 69.49 360 | 95.94 210 | 69.71 278 | 84.37 386 | 52.71 385 | 76.82 306 | 92.21 265 |
|
| testgi | | | 82.29 311 | 81.00 314 | 86.17 332 | 87.24 358 | 74.84 355 | 97.39 251 | 91.62 367 | 88.63 177 | 75.85 334 | 95.42 219 | 46.07 375 | 91.55 369 | 66.87 359 | 79.94 289 | 92.12 270 |
|
| LF4IMVS | | | 81.94 314 | 81.17 313 | 84.25 344 | 87.23 359 | 68.87 376 | 93.35 337 | 91.93 364 | 83.35 292 | 75.40 336 | 93.00 268 | 49.25 372 | 96.65 258 | 78.88 293 | 78.11 296 | 87.22 362 |
|
| EG-PatchMatch MVS | | | 79.92 322 | 77.59 327 | 86.90 327 | 87.06 360 | 77.90 345 | 96.20 301 | 94.06 334 | 74.61 357 | 66.53 373 | 88.76 341 | 40.40 383 | 96.20 291 | 67.02 357 | 83.66 266 | 86.61 364 |
|
| test_fmvsmconf0.01_n | | | 94.14 106 | 93.51 113 | 96.04 111 | 86.79 361 | 89.19 160 | 99.28 83 | 95.94 250 | 95.70 21 | 95.50 106 | 98.49 110 | 73.27 250 | 99.79 82 | 98.28 45 | 98.32 109 | 99.15 107 |
|
| Gipuma |  | | 54.77 359 | 52.22 363 | 62.40 377 | 86.50 362 | 59.37 385 | 50.20 395 | 90.35 375 | 36.52 393 | 41.20 394 | 49.49 395 | 18.33 396 | 81.29 388 | 32.10 394 | 65.34 366 | 46.54 395 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| anonymousdsp | | | 86.69 261 | 85.75 260 | 89.53 298 | 86.46 363 | 82.94 294 | 96.39 290 | 95.71 272 | 83.97 280 | 79.63 307 | 90.70 307 | 68.85 282 | 95.94 304 | 86.01 221 | 84.02 261 | 89.72 338 |
|
| EGC-MVSNET | | | 60.70 354 | 55.37 358 | 76.72 360 | 86.35 364 | 71.08 367 | 89.96 367 | 84.44 391 | 0.38 403 | 1.50 404 | 84.09 365 | 37.30 384 | 88.10 382 | 40.85 392 | 73.44 333 | 70.97 388 |
|
| test_method | | | 70.10 348 | 68.66 351 | 74.41 365 | 86.30 365 | 55.84 387 | 94.47 324 | 89.82 377 | 35.18 394 | 66.15 374 | 84.75 364 | 30.54 388 | 77.96 395 | 70.40 346 | 60.33 375 | 89.44 342 |
|
| lessismore_v0 | | | | | 85.08 338 | 85.59 366 | 69.28 374 | | 90.56 374 | | 67.68 368 | 90.21 328 | 54.21 357 | 95.46 321 | 73.88 328 | 62.64 371 | 90.50 322 |
|
| CMPMVS |  | 58.40 21 | 80.48 320 | 80.11 319 | 81.59 356 | 85.10 367 | 59.56 384 | 94.14 330 | 95.95 249 | 68.54 376 | 60.71 380 | 93.31 260 | 55.35 352 | 97.87 198 | 83.06 261 | 84.85 252 | 87.33 360 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| Anonymous20231206 | | | 80.76 319 | 79.42 323 | 84.79 341 | 84.78 368 | 72.98 361 | 96.53 286 | 92.97 348 | 79.56 335 | 74.33 339 | 88.83 340 | 61.27 331 | 92.15 365 | 60.59 374 | 75.92 308 | 89.24 345 |
|
| DSMNet-mixed | | | 81.60 316 | 81.43 310 | 82.10 353 | 84.36 369 | 60.79 382 | 93.63 335 | 86.74 386 | 79.00 336 | 79.32 311 | 87.15 354 | 63.87 320 | 89.78 376 | 66.89 358 | 91.92 199 | 95.73 233 |
|
| pmmvs6 | | | 79.90 323 | 77.31 329 | 87.67 320 | 84.17 370 | 78.13 342 | 95.86 311 | 93.68 340 | 67.94 378 | 72.67 353 | 89.62 335 | 50.98 366 | 95.75 313 | 74.80 322 | 66.04 364 | 89.14 346 |
|
| new_pmnet | | | 76.02 338 | 73.71 343 | 82.95 349 | 83.88 371 | 72.85 363 | 91.26 359 | 92.26 358 | 70.44 369 | 62.60 378 | 81.37 373 | 47.64 373 | 92.32 363 | 61.85 370 | 72.10 345 | 83.68 378 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 334 | 75.06 340 | 86.77 328 | 83.81 372 | 77.94 344 | 96.38 291 | 91.53 369 | 67.54 379 | 68.38 364 | 87.13 355 | 43.94 376 | 96.08 298 | 55.03 382 | 81.83 280 | 86.29 367 |
|
| test20.03 | | | 78.51 332 | 77.48 328 | 81.62 355 | 83.07 373 | 71.03 368 | 96.11 302 | 92.83 351 | 81.66 320 | 69.31 361 | 89.68 334 | 57.53 342 | 87.29 384 | 58.65 378 | 68.47 355 | 86.53 365 |
|
| Anonymous20240521 | | | 78.63 331 | 76.90 332 | 83.82 346 | 82.82 374 | 72.86 362 | 95.72 316 | 93.57 342 | 73.55 362 | 72.17 355 | 84.79 363 | 49.69 370 | 92.51 361 | 65.29 363 | 74.50 318 | 86.09 368 |
|
| UnsupCasMVSNet_eth | | | 78.90 328 | 76.67 333 | 85.58 336 | 82.81 375 | 74.94 354 | 91.98 349 | 96.31 221 | 84.64 271 | 65.84 375 | 87.71 345 | 51.33 363 | 92.23 364 | 72.89 336 | 56.50 382 | 89.56 341 |
|
| KD-MVS_self_test | | | 77.47 336 | 75.88 336 | 82.24 351 | 81.59 376 | 68.93 375 | 92.83 344 | 94.02 335 | 77.03 348 | 73.14 348 | 83.39 366 | 55.44 351 | 90.42 371 | 67.95 353 | 57.53 380 | 87.38 358 |
|
| CL-MVSNet_self_test | | | 79.89 324 | 78.34 325 | 84.54 343 | 81.56 377 | 75.01 353 | 96.88 275 | 95.62 278 | 81.10 325 | 75.86 333 | 85.81 361 | 68.49 285 | 90.26 372 | 63.21 367 | 56.51 381 | 88.35 351 |
|
| MIMVSNet1 | | | 75.92 339 | 73.30 344 | 83.81 347 | 81.29 378 | 75.57 351 | 92.26 347 | 92.05 362 | 73.09 363 | 67.48 370 | 86.18 359 | 40.87 382 | 87.64 383 | 55.78 381 | 70.68 352 | 88.21 352 |
|
| Patchmatch-RL test | | | 81.90 315 | 80.13 318 | 87.23 325 | 80.71 379 | 70.12 373 | 84.07 383 | 88.19 384 | 83.16 295 | 70.57 356 | 82.18 371 | 87.18 89 | 92.59 359 | 82.28 268 | 62.78 370 | 98.98 121 |
|
| APD_test1 | | | 68.93 349 | 66.98 352 | 74.77 364 | 80.62 380 | 53.15 391 | 87.97 370 | 85.01 389 | 53.76 387 | 59.26 381 | 87.52 348 | 25.19 390 | 89.95 373 | 56.20 380 | 67.33 361 | 81.19 382 |
|
| pmmvs-eth3d | | | 78.71 330 | 76.16 335 | 86.38 329 | 80.25 381 | 81.19 319 | 94.17 329 | 92.13 361 | 77.97 343 | 66.90 372 | 82.31 370 | 55.76 347 | 92.56 360 | 73.63 332 | 62.31 373 | 85.38 370 |
|
| UnsupCasMVSNet_bld | | | 73.85 344 | 70.14 348 | 84.99 339 | 79.44 382 | 75.73 350 | 88.53 369 | 95.24 301 | 70.12 371 | 61.94 379 | 74.81 385 | 41.41 381 | 93.62 348 | 68.65 351 | 51.13 389 | 85.62 369 |
|
| PM-MVS | | | 74.88 342 | 72.85 345 | 80.98 357 | 78.98 383 | 64.75 380 | 90.81 363 | 85.77 387 | 80.95 328 | 68.23 366 | 82.81 367 | 29.08 389 | 92.84 355 | 76.54 310 | 62.46 372 | 85.36 371 |
|
| new-patchmatchnet | | | 74.80 343 | 72.40 346 | 81.99 354 | 78.36 384 | 72.20 365 | 94.44 325 | 92.36 356 | 77.06 347 | 63.47 377 | 79.98 379 | 51.04 365 | 88.85 380 | 60.53 375 | 54.35 384 | 84.92 375 |
|
| test_fmvs3 | | | 75.09 341 | 75.19 338 | 74.81 363 | 77.45 385 | 54.08 389 | 95.93 305 | 90.64 373 | 82.51 309 | 73.29 346 | 81.19 374 | 22.29 392 | 86.29 385 | 85.50 229 | 67.89 358 | 84.06 376 |
|
| WB-MVS | | | 66.44 350 | 66.29 353 | 66.89 371 | 74.84 386 | 44.93 398 | 93.00 339 | 84.09 392 | 71.15 366 | 55.82 383 | 81.63 372 | 63.79 321 | 80.31 393 | 21.85 397 | 50.47 390 | 75.43 384 |
|
| SSC-MVS | | | 65.42 351 | 65.20 354 | 66.06 372 | 73.96 387 | 43.83 399 | 92.08 348 | 83.54 393 | 69.77 372 | 54.73 384 | 80.92 376 | 63.30 323 | 79.92 394 | 20.48 398 | 48.02 391 | 74.44 385 |
|
| pmmvs3 | | | 72.86 345 | 69.76 350 | 82.17 352 | 73.86 388 | 74.19 357 | 94.20 328 | 89.01 382 | 64.23 385 | 67.72 367 | 80.91 377 | 41.48 380 | 88.65 381 | 62.40 369 | 54.02 385 | 83.68 378 |
|
| mvsany_test3 | | | 75.85 340 | 74.52 342 | 79.83 358 | 73.53 389 | 60.64 383 | 91.73 352 | 87.87 385 | 83.91 282 | 70.55 357 | 82.52 368 | 31.12 387 | 93.66 347 | 86.66 217 | 62.83 369 | 85.19 374 |
|
| test_f | | | 71.94 346 | 70.82 347 | 75.30 362 | 72.77 390 | 53.28 390 | 91.62 353 | 89.66 379 | 75.44 354 | 64.47 376 | 78.31 382 | 20.48 393 | 89.56 377 | 78.63 296 | 66.02 365 | 83.05 381 |
|
| ambc | | | | | 79.60 359 | 72.76 391 | 56.61 386 | 76.20 390 | 92.01 363 | | 68.25 365 | 80.23 378 | 23.34 391 | 94.73 338 | 73.78 331 | 60.81 374 | 87.48 357 |
|
| TDRefinement | | | 78.01 333 | 75.31 337 | 86.10 333 | 70.06 392 | 73.84 358 | 93.59 336 | 91.58 368 | 74.51 358 | 73.08 350 | 91.04 299 | 49.63 371 | 97.12 239 | 74.88 320 | 59.47 376 | 87.33 360 |
|
| test_vis3_rt | | | 61.29 353 | 58.75 356 | 68.92 370 | 67.41 393 | 52.84 392 | 91.18 361 | 59.23 405 | 66.96 380 | 41.96 393 | 58.44 393 | 11.37 401 | 94.72 339 | 74.25 325 | 57.97 379 | 59.20 392 |
|
| testf1 | | | 56.38 357 | 53.73 360 | 64.31 375 | 64.84 394 | 45.11 396 | 80.50 388 | 75.94 400 | 38.87 390 | 42.74 390 | 75.07 383 | 11.26 402 | 81.19 389 | 41.11 390 | 53.27 386 | 66.63 389 |
|
| APD_test2 | | | 56.38 357 | 53.73 360 | 64.31 375 | 64.84 394 | 45.11 396 | 80.50 388 | 75.94 400 | 38.87 390 | 42.74 390 | 75.07 383 | 11.26 402 | 81.19 389 | 41.11 390 | 53.27 386 | 66.63 389 |
|
| PMMVS2 | | | 58.97 356 | 55.07 359 | 70.69 369 | 62.72 396 | 55.37 388 | 85.97 374 | 80.52 395 | 49.48 388 | 45.94 389 | 68.31 387 | 15.73 398 | 80.78 391 | 49.79 386 | 37.12 394 | 75.91 383 |
|
| E-PMN | | | 41.02 364 | 40.93 366 | 41.29 381 | 61.97 397 | 33.83 404 | 84.00 384 | 65.17 403 | 27.17 396 | 27.56 396 | 46.72 397 | 17.63 397 | 60.41 400 | 19.32 399 | 18.82 396 | 29.61 396 |
|
| wuyk23d | | | 16.71 368 | 16.73 372 | 16.65 383 | 60.15 398 | 25.22 408 | 41.24 396 | 5.17 407 | 6.56 400 | 5.48 403 | 3.61 403 | 3.64 405 | 22.72 402 | 15.20 401 | 9.52 400 | 1.99 400 |
|
| FPMVS | | | 61.57 352 | 60.32 355 | 65.34 373 | 60.14 399 | 42.44 401 | 91.02 362 | 89.72 378 | 44.15 389 | 42.63 392 | 80.93 375 | 19.02 394 | 80.59 392 | 42.50 389 | 72.76 337 | 73.00 386 |
|
| EMVS | | | 39.96 365 | 39.88 367 | 40.18 382 | 59.57 400 | 32.12 406 | 84.79 381 | 64.57 404 | 26.27 397 | 26.14 398 | 44.18 400 | 18.73 395 | 59.29 401 | 17.03 400 | 17.67 398 | 29.12 397 |
|
| LCM-MVSNet | | | 60.07 355 | 56.37 357 | 71.18 367 | 54.81 401 | 48.67 395 | 82.17 387 | 89.48 380 | 37.95 392 | 49.13 387 | 69.12 386 | 13.75 400 | 81.76 387 | 59.28 376 | 51.63 388 | 83.10 380 |
|
| MVE |  | 44.00 22 | 41.70 363 | 37.64 368 | 53.90 380 | 49.46 402 | 43.37 400 | 65.09 394 | 66.66 402 | 26.19 398 | 25.77 399 | 48.53 396 | 3.58 406 | 63.35 399 | 26.15 396 | 27.28 395 | 54.97 394 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 50.71 361 | 46.17 364 | 64.33 374 | 44.27 403 | 52.30 393 | 76.13 391 | 78.73 396 | 64.95 383 | 27.37 397 | 55.23 394 | 14.61 399 | 67.74 397 | 36.01 393 | 18.23 397 | 72.95 387 |
|
| PMVS |  | 41.42 23 | 45.67 362 | 42.50 365 | 55.17 379 | 34.28 404 | 32.37 405 | 66.24 393 | 78.71 397 | 30.72 395 | 22.04 400 | 59.59 391 | 4.59 404 | 77.85 396 | 27.49 395 | 58.84 378 | 55.29 393 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 53.66 360 | 52.86 362 | 56.05 378 | 32.75 405 | 41.97 402 | 73.42 392 | 76.12 399 | 21.91 399 | 39.68 395 | 96.39 199 | 42.59 379 | 65.10 398 | 78.00 299 | 14.92 399 | 61.08 391 |
|
| testmvs | | | 18.81 367 | 23.05 370 | 6.10 385 | 4.48 406 | 2.29 410 | 97.78 234 | 3.00 408 | 3.27 401 | 18.60 401 | 62.71 389 | 1.53 408 | 2.49 404 | 14.26 402 | 1.80 401 | 13.50 399 |
|
| test123 | | | 16.58 369 | 19.47 371 | 7.91 384 | 3.59 407 | 5.37 409 | 94.32 326 | 1.39 409 | 2.49 402 | 13.98 402 | 44.60 399 | 2.91 407 | 2.65 403 | 11.35 403 | 0.57 402 | 15.70 398 |
|
| test_blank | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| eth-test2 | | | | | | 0.00 408 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 408 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| DCPMVS | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| cdsmvs_eth3d_5k | | | 22.52 366 | 30.03 369 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 97.17 168 | 0.00 404 | 0.00 405 | 98.77 85 | 74.35 240 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| pcd_1.5k_mvsjas | | | 6.87 371 | 9.16 374 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 82.48 177 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet-low-res | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| sosnet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uncertanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| Regformer | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| ab-mvs-re | | | 8.21 370 | 10.94 373 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 98.50 108 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| uanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 403 | 0.00 401 |
|
| MM | | | | | 98.86 5 | | 96.83 7 | 99.81 11 | 99.13 9 | 97.66 2 | 98.29 39 | 98.96 66 | 85.84 122 | 99.90 50 | 99.72 3 | 98.80 91 | 99.85 30 |
|
| WAC-MVS | | | | | | | 79.74 329 | | | | | | | | 67.75 354 | | |
|
| PC_three_1452 | | | | | | | | | | 94.60 36 | 99.41 4 | 99.12 46 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| test_241102_TWO | | | | | | | | | 97.72 79 | 94.17 43 | 99.23 10 | 99.54 3 | 93.14 24 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| test_0728_THIRD | | | | | | | | | | 93.01 70 | 99.07 15 | 99.46 10 | 94.66 14 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 136 |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 65 | | | | 98.84 136 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 92 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 139 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 365 | | | | 41.37 401 | 85.38 131 | 96.36 278 | 83.16 258 | | |
|
| test_post | | | | | | | | | | | | 46.00 398 | 87.37 83 | 97.11 240 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 362 | 88.73 62 | 96.81 253 | | | |
|
| MTMP | | | | | | | | 99.21 86 | 91.09 371 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 54 | 99.87 9 | 99.91 21 |
|
| test_prior4 | | | | | | | 92.00 95 | 99.41 68 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 105 | 98.12 44 | 98.97 62 | 90.43 44 | | 98.33 42 | 99.81 23 | |
|
| 旧先验2 | | | | | | | | 98.67 151 | | 85.75 253 | 98.96 20 | | | 98.97 152 | 93.84 131 | | |
|
| 新几何2 | | | | | | | | 98.26 200 | | | | | | | | | |
|
| 无先验 | | | | | | | | 98.52 168 | 97.82 63 | 87.20 223 | | | | 99.90 50 | 87.64 206 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 148 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 246 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
| testdata1 | | | | | | | | 97.89 227 | | 92.43 82 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 222 | | | | | 97.75 211 | 93.46 138 | 86.17 242 | 92.67 251 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 193 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 248 | | | 93.65 61 | 86.99 216 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 116 | | 93.38 66 | | | | | | | |
|
| plane_prior | | | | | | | 86.07 244 | 99.14 101 | | 93.81 58 | | | | | | 86.26 241 | |
|
| n2 | | | | | | | | | 0.00 410 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 410 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 390 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 88 | | | | | | | | |
|
| door | | | | | | | | | 85.30 388 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 229 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 133 | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 209 | | | 97.77 205 | | | 92.72 249 |
|
| HQP3-MVS | | | | | | | | | 96.37 218 | | | | | | | 86.29 239 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 247 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 109 | 91.38 357 | | 87.45 220 | 93.08 144 | | 86.67 103 | | 87.02 209 | | 98.95 127 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 276 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 263 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 151 | | | | |
|