This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12588.63 3666.08 6486.77 392.75 3272.05 191.46 6383.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3693.09 2754.15 2895.57 1285.80 1085.87 3693.31 11
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12888.88 2658.00 20683.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 8193.25 294.80 1
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2493.64 1152.40 3693.27 3088.85 486.56 3092.61 26
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3593.87 752.58 3593.91 2684.17 1487.92 1592.39 30
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 22084.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2791.09 6255.43 1990.09 10385.01 1280.40 8091.99 43
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2395.30 156.18 1790.97 7882.57 2486.22 3493.28 13
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2593.10 2549.88 5892.98 3284.09 1684.75 4893.08 17
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21481.91 1393.64 1155.17 2096.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2693.00 3053.10 3291.76 5780.40 3689.56 892.68 25
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18271.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 25081.21 1893.69 1056.51 1694.27 2278.36 5085.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 2093.22 2437.77 18992.50 4282.75 2286.25 3391.57 53
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1993.07 2937.63 19492.28 4782.73 2385.71 3791.57 53
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5492.75 3246.88 7993.28 2978.79 4684.07 5391.50 57
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13583.68 14267.85 3869.36 9790.24 8260.20 792.10 5284.14 1580.40 8092.82 21
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 14080.26 2293.10 2546.53 8492.41 4479.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3791.72 5249.32 6290.17 10273.46 8582.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22786.41 7469.61 2481.72 1588.16 12655.09 2288.04 17074.12 8086.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24578.56 3092.49 3748.20 6592.65 4079.49 3883.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
9.1478.19 2485.67 5388.32 5088.84 2959.89 16574.58 4892.62 3546.80 8092.66 3981.40 3485.62 39
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3892.02 4544.82 11090.23 10080.83 3580.09 8492.08 38
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 4091.99 4754.07 2989.05 12877.34 5877.00 11092.89 20
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4290.15 8846.77 8191.00 7573.52 8478.46 10193.44 9
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3492.11 4450.90 4789.95 10678.18 5377.54 10793.20 15
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8692.75 3245.52 9790.37 9371.15 9485.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23974.26 5191.60 5754.26 2692.16 4975.87 6479.91 8893.05 18
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 27088.46 4990.32 1171.40 1372.32 7591.72 5253.44 3092.37 4566.28 12175.42 12693.28 13
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19474.63 4692.38 3847.75 7091.35 6578.18 5386.85 2591.15 66
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8588.35 12151.58 4091.22 6879.02 4279.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6691.98 4945.10 10291.27 6675.02 7384.56 4990.84 72
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 11074.63 4690.83 7141.38 15694.40 2075.42 7079.90 8994.72 2
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20373.60 5593.31 2143.14 13393.79 2773.81 8288.53 1292.37 31
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5788.09 12748.07 6692.19 4862.24 14984.53 5091.53 55
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8288.63 11950.89 4990.35 9476.00 6379.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6290.52 7645.23 10190.66 8679.37 3980.95 7290.22 86
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7391.62 5645.53 9690.99 7774.48 7682.51 6091.23 64
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9989.33 10546.70 8288.13 16675.43 6881.48 7189.55 104
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5290.91 6842.14 14489.99 10579.30 4079.12 9591.36 61
jason: jason.
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 21172.99 6390.98 6544.99 10488.58 14778.19 5185.32 4291.34 63
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11571.65 8091.56 5842.33 14092.56 4177.14 5983.69 5590.15 90
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10689.97 9248.03 6791.41 6475.60 6784.14 5289.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16284.88 11471.38 1471.51 8389.15 10850.51 5090.55 9075.71 6578.65 9991.39 59
fmvsm_l_conf0.5_n75.95 5676.16 4775.31 14176.01 25148.44 22584.98 12871.08 32263.50 10481.70 1693.52 1550.00 5487.18 19887.80 576.87 11290.32 83
fmvsm_l_conf0.5_n_a75.88 5876.07 4875.31 14176.08 24748.34 22885.24 11670.62 32663.13 11281.45 1793.62 1449.98 5687.40 19487.76 676.77 11390.20 88
PAPM76.76 4676.07 4878.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9688.84 11351.57 4187.16 19965.48 12786.68 2890.15 90
APD-MVScopyleft76.15 5375.68 5077.54 8188.52 2753.44 10587.26 7385.03 11053.79 26774.91 4491.68 5443.80 12090.31 9674.36 7781.82 6788.87 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP76.43 4975.66 5178.73 5281.92 13354.67 7984.06 15885.35 9561.10 14572.99 6391.50 5940.25 16591.00 7576.84 6086.98 2390.51 79
MAR-MVS76.76 4675.60 5280.21 2690.87 754.68 7889.14 4189.11 2062.95 11470.54 9492.33 3941.05 15794.95 1757.90 19386.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvsm_n_192075.56 6475.54 5375.61 12974.60 27049.51 19681.82 21974.08 29766.52 5580.40 2193.46 1746.95 7889.72 11286.69 775.30 12787.61 149
MVS76.91 4175.48 5481.23 1884.56 7355.21 6080.23 25391.64 258.65 19665.37 13291.48 6045.72 9495.05 1672.11 9289.52 993.44 9
CLD-MVS75.60 6375.39 5576.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13788.93 11042.05 14690.58 8976.57 6173.96 13885.73 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR76.39 5075.38 5679.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12489.88 9343.79 12192.16 4975.03 7280.03 8789.64 102
EC-MVSNet75.30 6675.20 5775.62 12880.98 16049.00 20687.43 6584.68 12163.49 10570.97 9090.15 8842.86 13791.14 7274.33 7881.90 6686.71 168
CDPH-MVS76.05 5575.19 5878.62 5786.51 4454.98 6987.32 6884.59 12358.62 19770.75 9190.85 7043.10 13590.63 8870.50 9884.51 5190.24 85
EIA-MVS75.92 5775.18 5978.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10290.53 7545.79 9391.58 6067.21 11482.18 6491.20 65
MP-MVS-pluss75.54 6575.03 6077.04 9481.37 15552.65 12884.34 14984.46 12561.16 14369.14 9891.76 5139.98 17288.99 13378.19 5184.89 4789.48 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS75.82 6275.02 6178.23 6883.88 8753.80 9486.91 8186.05 8159.71 16867.85 10790.55 7442.23 14291.02 7472.66 9085.29 4389.87 99
VDD-MVS76.08 5474.97 6279.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7489.34 10332.52 25892.76 3877.90 5575.96 12092.22 36
MVS_Test75.85 5974.93 6378.62 5784.08 8155.20 6183.99 16085.17 10568.07 3573.38 5982.76 19850.44 5189.00 13165.90 12380.61 7691.64 49
SD-MVS76.18 5274.85 6480.18 2885.39 5956.90 2485.75 10282.45 16656.79 23474.48 4991.81 5043.72 12490.75 8474.61 7578.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_yl75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
DCV-MVSNet75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
diffmvspermissive75.11 7174.65 6776.46 10978.52 21053.35 10983.28 18479.94 20870.51 1871.64 8188.72 11446.02 9086.08 23377.52 5675.75 12489.96 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.15 7074.54 6876.98 9981.67 14351.74 14683.84 16491.94 169.97 2158.98 21386.02 15659.73 891.73 5868.37 10770.40 17187.48 151
MP-MVScopyleft74.99 7274.33 6976.95 10082.89 11553.05 12085.63 10683.50 14757.86 21067.25 11090.24 8243.38 13088.85 14176.03 6282.23 6388.96 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR75.20 6974.13 7078.41 6488.31 3155.10 6584.31 15085.66 8763.76 9767.55 10890.73 7243.48 12989.40 11966.36 12077.03 10990.73 74
fmvsm_s_conf0.5_n74.48 7474.12 7175.56 13176.96 23647.85 24585.32 11469.80 33364.16 8878.74 2893.48 1645.51 9889.29 12186.48 866.62 19889.55 104
ET-MVSNet_ETH3D75.23 6874.08 7278.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28690.22 8449.71 5987.62 18972.12 9170.82 16692.82 21
test_fmvsmconf_n74.41 7674.05 7375.49 13574.16 27648.38 22682.66 19772.57 31067.05 4875.11 4392.88 3146.35 8587.81 17583.93 1771.71 15790.28 84
CHOSEN 1792x268876.24 5174.03 7482.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13983.49 18841.52 15593.69 2870.55 9781.82 6792.12 37
GST-MVS74.87 7373.90 7577.77 7683.30 9953.45 10485.75 10285.29 9959.22 18166.50 11989.85 9440.94 15890.76 8370.94 9683.35 5689.10 116
Effi-MVS+75.24 6773.61 7680.16 2981.92 13357.42 1985.21 11776.71 27460.68 15673.32 6089.34 10347.30 7491.63 5968.28 10879.72 9191.42 58
PVSNet_BlendedMVS73.42 9473.30 7773.76 18285.91 4851.83 14486.18 9284.24 13265.40 7369.09 9980.86 22946.70 8288.13 16675.43 6865.92 20781.33 264
fmvsm_s_conf0.1_n73.80 8573.26 7875.43 13673.28 28547.80 24684.57 14569.43 33563.34 10778.40 3193.29 2244.73 11389.22 12385.99 966.28 20589.26 109
fmvsm_s_conf0.5_n_a73.68 9073.15 7975.29 14475.45 25848.05 23883.88 16368.84 33863.43 10678.60 2993.37 2045.32 9988.92 13885.39 1164.04 21888.89 120
test_fmvsmconf0.1_n73.69 8973.15 7975.34 13970.71 31348.26 23182.15 20971.83 31466.75 5174.47 5092.59 3644.89 10787.78 18083.59 1871.35 16189.97 95
CANet_DTU73.71 8873.14 8175.40 13782.61 12450.05 18284.67 14279.36 22469.72 2375.39 4190.03 9129.41 28285.93 23967.99 11079.11 9690.22 86
HY-MVS67.03 573.90 8373.14 8176.18 11784.70 7147.36 25275.56 28486.36 7666.27 5970.66 9383.91 18051.05 4589.31 12067.10 11572.61 15091.88 45
HFP-MVS74.37 7773.13 8378.10 7184.30 7753.68 9785.58 10784.36 12756.82 23265.78 12890.56 7340.70 16390.90 7969.18 10380.88 7389.71 100
h-mvs3373.95 8272.89 8477.15 9280.17 18050.37 17484.68 14083.33 14868.08 3371.97 7788.65 11842.50 13891.15 7178.82 4457.78 28189.91 98
ACMMPR73.76 8672.61 8577.24 9183.92 8552.96 12385.58 10784.29 12856.82 23265.12 13390.45 7737.24 20590.18 10169.18 10380.84 7488.58 129
EI-MVSNet-Vis-set73.19 9772.60 8674.99 15382.56 12549.80 18982.55 20289.00 2266.17 6165.89 12788.98 10943.83 11992.29 4665.38 13469.01 18082.87 240
region2R73.75 8772.55 8777.33 8583.90 8652.98 12285.54 11084.09 13456.83 23165.10 13490.45 7737.34 20390.24 9968.89 10580.83 7588.77 125
3Dnovator64.70 674.46 7572.48 8880.41 2482.84 11755.40 5483.08 18988.61 3867.61 4359.85 19688.66 11534.57 24093.97 2458.42 18388.70 1191.85 46
PVSNet_Blended_VisFu73.40 9572.44 8976.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14485.38 16447.11 7787.38 19567.75 11177.55 10686.81 167
test250672.91 10072.43 9074.32 16580.12 18144.18 29583.19 18684.77 11864.02 9065.97 12587.43 13947.67 7188.72 14259.08 17479.66 9290.08 92
TESTMET0.1,172.86 10172.33 9174.46 15981.98 13250.77 16285.13 12085.47 8966.09 6367.30 10983.69 18537.27 20483.57 26865.06 13578.97 9889.05 117
MVSTER73.25 9672.33 9176.01 12285.54 5653.76 9683.52 16987.16 6167.06 4763.88 15781.66 22152.77 3390.44 9164.66 13664.69 21483.84 222
CostFormer73.89 8472.30 9378.66 5682.36 12856.58 2875.56 28485.30 9866.06 6570.50 9576.88 27357.02 1489.06 12768.27 10968.74 18290.33 82
MSLP-MVS++74.21 7972.25 9480.11 3181.45 15356.47 3386.32 8979.65 21658.19 20266.36 12092.29 4036.11 22190.66 8667.39 11282.49 6193.18 16
iter_conf0573.51 9372.24 9577.33 8587.93 3655.97 4387.90 5770.81 32568.72 2864.04 15284.36 17447.54 7290.87 8071.11 9567.75 19085.13 197
thisisatest051573.64 9172.20 9677.97 7381.63 14453.01 12186.69 8488.81 3062.53 12264.06 15185.65 16052.15 3992.50 4258.43 18169.84 17488.39 134
MVSFormer73.53 9272.19 9777.57 8083.02 10955.24 5881.63 22481.44 18350.28 29276.67 3890.91 6844.82 11086.11 22860.83 16080.09 8491.36 61
VDDNet74.37 7772.13 9881.09 1979.58 18756.52 3290.02 2686.70 7052.61 27771.23 8787.20 14231.75 26893.96 2574.30 7975.77 12392.79 23
baseline172.51 10872.12 9973.69 18585.05 6544.46 28983.51 17386.13 8071.61 1264.64 14187.97 13055.00 2389.48 11759.07 17556.05 29487.13 158
API-MVS74.17 8072.07 10080.49 2290.02 1158.55 887.30 7084.27 12957.51 21965.77 12987.77 13341.61 15395.97 1151.71 23982.63 5986.94 159
fmvsm_s_conf0.1_n_a72.82 10272.05 10175.12 14970.95 31247.97 24182.72 19668.43 34062.52 12378.17 3293.08 2844.21 11688.86 13984.82 1363.54 22488.54 131
PMMVS72.98 9872.05 10175.78 12683.57 9048.60 21784.08 15682.85 16161.62 13668.24 10490.33 8128.35 28687.78 18072.71 8976.69 11490.95 70
IB-MVS68.87 274.01 8172.03 10379.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18481.74 22053.21 3194.28 2160.45 16862.41 24090.03 94
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet-UG-set72.37 10971.73 10474.29 16681.60 14649.29 20081.85 21788.64 3565.29 7865.05 13588.29 12443.18 13191.83 5663.74 13967.97 18781.75 251
XVS72.92 9971.62 10576.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 15589.63 9835.50 22889.78 10965.50 12580.50 7888.16 135
nrg03072.27 11471.56 10674.42 16175.93 25250.60 16686.97 7883.21 15362.75 11767.15 11184.38 17250.07 5386.66 21471.19 9362.37 24185.99 181
HPM-MVScopyleft72.60 10571.50 10775.89 12482.02 13151.42 15480.70 24683.05 15656.12 24464.03 15389.53 9937.55 19788.37 15570.48 9980.04 8687.88 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS72.59 10771.46 10876.00 12382.93 11452.32 13586.93 8082.48 16555.15 25463.65 15990.44 8035.03 23688.53 15168.69 10677.83 10587.15 157
HQP-MVS72.34 11071.44 10975.03 15179.02 19751.56 15088.00 5383.68 14265.45 7064.48 14585.13 16537.35 20188.62 14566.70 11673.12 14484.91 201
VPNet72.07 11571.42 11074.04 17278.64 20847.17 25789.91 3187.97 4872.56 964.66 14085.04 16741.83 15188.33 15961.17 15860.97 24786.62 169
MS-PatchMatch72.34 11071.26 11175.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25880.74 23132.28 26192.89 3357.95 19288.10 1478.39 299
MTAPA72.73 10371.22 11277.27 8981.54 15053.57 9967.06 33681.31 18559.41 17568.39 10390.96 6736.07 22389.01 13073.80 8382.45 6289.23 111
PGM-MVS72.60 10571.20 11376.80 10582.95 11252.82 12583.07 19082.14 16856.51 24063.18 16489.81 9535.68 22789.76 11167.30 11380.19 8387.83 143
Fast-Effi-MVS+72.73 10371.15 11477.48 8282.75 11954.76 7286.77 8380.64 19663.05 11365.93 12684.01 17844.42 11589.03 12956.45 20976.36 11988.64 127
ECVR-MVScopyleft71.81 12071.00 11574.26 16780.12 18143.49 30084.69 13982.16 16764.02 9064.64 14187.43 13935.04 23589.21 12461.24 15779.66 9290.08 92
test_fmvsmconf0.01_n71.97 11770.95 11675.04 15066.21 33947.87 24480.35 25070.08 33065.85 6972.69 6891.68 5439.99 17187.67 18482.03 2769.66 17689.58 103
mvs_anonymous72.29 11270.74 11776.94 10182.85 11654.72 7578.43 27081.54 18163.77 9661.69 18179.32 24151.11 4485.31 24662.15 15175.79 12290.79 73
hse-mvs271.44 12770.68 11873.73 18476.34 24147.44 25179.45 26279.47 22068.08 3371.97 7786.01 15842.50 13886.93 20778.82 4453.46 31886.83 166
VPA-MVSNet71.12 13070.66 11972.49 20878.75 20344.43 29187.64 6090.02 1263.97 9365.02 13681.58 22342.14 14487.42 19363.42 14163.38 22985.63 191
SDMVSNet71.89 11870.62 12075.70 12781.70 14051.61 14873.89 29688.72 3366.58 5261.64 18282.38 21137.63 19489.48 11777.44 5765.60 20886.01 179
3Dnovator+62.71 772.29 11270.50 12177.65 7983.40 9751.29 15887.32 6886.40 7559.01 18958.49 22688.32 12332.40 25991.27 6657.04 20282.15 6590.38 81
MVP-Stereo70.97 13470.44 12272.59 20576.03 25051.36 15585.02 12786.99 6460.31 16056.53 25778.92 24740.11 16990.00 10460.00 17290.01 676.41 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test111171.06 13270.42 12372.97 19879.48 18841.49 32184.82 13682.74 16264.20 8762.98 16787.43 13935.20 23187.92 17258.54 18078.42 10289.49 106
test_fmvsmvis_n_192071.29 12870.38 12474.00 17471.04 31148.79 21379.19 26564.62 34862.75 11766.73 11291.99 4740.94 15888.35 15783.00 2073.18 14384.85 203
mPP-MVS71.79 12270.38 12476.04 12182.65 12352.06 13784.45 14681.78 17855.59 24962.05 17989.68 9733.48 25088.28 16365.45 13078.24 10487.77 145
DP-MVS Recon71.99 11670.31 12677.01 9690.65 853.44 10589.37 3782.97 15956.33 24263.56 16289.47 10034.02 24492.15 5154.05 22272.41 15185.43 194
xiu_mvs_v1_base_debu71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base_debi71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
FIs70.00 15170.24 13069.30 26577.93 22038.55 33583.99 16087.72 5566.86 5057.66 23984.17 17752.28 3785.31 24652.72 23668.80 18184.02 213
sss70.49 14270.13 13171.58 23381.59 14739.02 33280.78 24584.71 12059.34 17766.61 11688.09 12737.17 20685.52 24261.82 15471.02 16490.20 88
EPP-MVSNet71.14 12970.07 13274.33 16479.18 19446.52 26383.81 16586.49 7256.32 24357.95 23284.90 17054.23 2789.14 12658.14 18869.65 17787.33 154
PAPM_NR71.80 12169.98 13377.26 9081.54 15053.34 11078.60 26985.25 10253.46 27060.53 19288.66 11545.69 9589.24 12256.49 20679.62 9489.19 113
HQP_MVS70.96 13569.91 13474.12 17077.95 21849.57 19185.76 10082.59 16363.60 10162.15 17783.28 19236.04 22488.30 16165.46 12872.34 15284.49 205
tpmrst71.04 13369.77 13574.86 15483.19 10355.86 4675.64 28378.73 23867.88 3764.99 13873.73 30249.96 5779.56 30565.92 12267.85 18989.14 115
SR-MVS70.92 13669.73 13674.50 15883.38 9850.48 17084.27 15179.35 22548.96 30266.57 11890.45 7733.65 24987.11 20066.42 11874.56 13585.91 184
iter_conf_final71.46 12669.68 13776.81 10286.03 4653.49 10084.73 13774.37 29460.27 16166.28 12184.36 17435.14 23390.87 8065.41 13270.51 16986.05 178
OPM-MVS70.75 13969.58 13874.26 16775.55 25751.34 15686.05 9583.29 15261.94 13262.95 16885.77 15934.15 24388.44 15365.44 13171.07 16382.99 237
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet70.48 14369.43 13973.64 18677.56 22548.83 21283.51 17377.45 26063.27 10962.33 17485.54 16343.85 11883.29 27257.38 20174.00 13788.79 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131471.11 13169.41 14076.22 11379.32 19150.49 16980.23 25385.14 10859.44 17458.93 21588.89 11233.83 24889.60 11661.49 15577.42 10888.57 130
1112_ss70.05 14969.37 14172.10 21580.77 16942.78 30985.12 12376.75 27259.69 16961.19 18692.12 4247.48 7383.84 26353.04 22968.21 18489.66 101
Vis-MVSNetpermissive70.61 14169.34 14274.42 16180.95 16548.49 22286.03 9677.51 25958.74 19565.55 13187.78 13234.37 24185.95 23852.53 23780.61 7688.80 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM71.88 11969.33 14379.52 3582.20 13054.30 8686.30 9088.77 3156.61 23859.72 19887.48 13733.90 24695.36 1347.48 26781.49 7088.90 119
ACMMPcopyleft70.81 13869.29 14475.39 13881.52 15251.92 14283.43 17683.03 15756.67 23758.80 22088.91 11131.92 26688.58 14765.89 12473.39 14285.67 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XXY-MVS70.18 14569.28 14572.89 20177.64 22242.88 30885.06 12487.50 5962.58 12162.66 17282.34 21343.64 12689.83 10858.42 18363.70 22385.96 183
ab-mvs70.65 14069.11 14675.29 14480.87 16646.23 27173.48 30085.24 10359.99 16466.65 11480.94 22843.13 13488.69 14363.58 14068.07 18590.95 70
test-LLR69.65 16069.01 14771.60 23178.67 20548.17 23385.13 12079.72 21359.18 18463.13 16582.58 20536.91 21080.24 29660.56 16475.17 12986.39 174
miper_enhance_ethall69.77 15668.90 14872.38 21178.93 20049.91 18583.29 18378.85 23264.90 8059.37 20679.46 23952.77 3385.16 25163.78 13858.72 26382.08 246
EI-MVSNet69.70 15968.70 14972.68 20375.00 26448.90 21079.54 25987.16 6161.05 14663.88 15783.74 18345.87 9190.44 9157.42 20064.68 21578.70 292
thisisatest053070.47 14468.56 15076.20 11579.78 18551.52 15283.49 17588.58 4057.62 21758.60 22282.79 19751.03 4691.48 6252.84 23162.36 24285.59 192
BH-w/o70.02 15068.51 15174.56 15782.77 11850.39 17386.60 8678.14 24959.77 16759.65 19985.57 16239.27 17787.30 19649.86 25074.94 13485.99 181
tpm270.82 13768.44 15277.98 7280.78 16856.11 3974.21 29581.28 18760.24 16268.04 10575.27 29152.26 3888.50 15255.82 21368.03 18689.33 108
PCF-MVS61.03 1070.10 14768.40 15375.22 14877.15 23451.99 13979.30 26482.12 16956.47 24161.88 18086.48 15443.98 11787.24 19755.37 21472.79 14986.43 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_vis1_n_192068.59 17868.31 15469.44 26469.16 32441.51 32084.63 14368.58 33958.80 19373.26 6188.37 12025.30 30980.60 29179.10 4167.55 19186.23 176
UniMVSNet_NR-MVSNet68.82 17168.29 15570.40 25175.71 25542.59 31184.23 15286.78 6766.31 5858.51 22382.45 20851.57 4184.64 25953.11 22755.96 29583.96 219
APD-MVS_3200maxsize69.62 16168.23 15673.80 18181.58 14848.22 23281.91 21579.50 21948.21 30564.24 15089.75 9631.91 26787.55 19163.08 14373.85 14085.64 190
TAMVS69.51 16368.16 15773.56 18976.30 24448.71 21682.57 20077.17 26562.10 12861.32 18584.23 17641.90 14983.46 27054.80 21873.09 14688.50 133
BH-RMVSNet70.08 14868.01 15876.27 11184.21 8051.22 16087.29 7179.33 22758.96 19163.63 16086.77 14833.29 25290.30 9844.63 28373.96 13887.30 156
FC-MVSNet-test67.49 19967.91 15966.21 29776.06 24833.06 35480.82 24487.18 6064.44 8454.81 27082.87 19550.40 5282.60 27448.05 26466.55 20082.98 238
MVS_111021_LR69.07 16567.91 15972.54 20677.27 22949.56 19379.77 25773.96 30059.33 17960.73 19087.82 13130.19 27881.53 28069.94 10072.19 15486.53 170
GeoE69.96 15367.88 16176.22 11381.11 15951.71 14784.15 15476.74 27359.83 16660.91 18784.38 17241.56 15488.10 16851.67 24070.57 16888.84 122
Anonymous20240521170.11 14667.88 16176.79 10687.20 4047.24 25689.49 3577.38 26254.88 25966.14 12286.84 14720.93 33991.54 6156.45 20971.62 15891.59 51
114514_t69.87 15567.88 16175.85 12588.38 2952.35 13486.94 7983.68 14253.70 26855.68 26485.60 16130.07 27991.20 6955.84 21271.02 16483.99 215
TR-MVS69.71 15767.85 16475.27 14682.94 11348.48 22387.40 6780.86 19357.15 22764.61 14387.08 14432.67 25789.64 11546.38 27471.55 16087.68 148
PVSNet62.49 869.27 16467.81 16573.64 18684.41 7651.85 14384.63 14377.80 25366.42 5659.80 19784.95 16922.14 33480.44 29455.03 21575.11 13188.62 128
cl2268.85 16967.69 16672.35 21278.07 21749.98 18482.45 20578.48 24462.50 12458.46 22777.95 25349.99 5585.17 25062.55 14658.72 26381.90 249
v2v48269.55 16267.64 16775.26 14772.32 29853.83 9384.93 13281.94 17265.37 7560.80 18979.25 24341.62 15288.98 13463.03 14459.51 25682.98 238
miper_ehance_all_eth68.70 17767.58 16872.08 21676.91 23749.48 19782.47 20478.45 24562.68 11958.28 23177.88 25550.90 4785.01 25461.91 15258.72 26381.75 251
HyFIR lowres test69.94 15467.58 16877.04 9477.11 23557.29 2081.49 23279.11 23058.27 20158.86 21880.41 23242.33 14086.96 20561.91 15268.68 18386.87 161
IS-MVSNet68.80 17367.55 17072.54 20678.50 21143.43 30281.03 23879.35 22559.12 18757.27 24986.71 14946.05 8987.70 18344.32 28575.60 12586.49 171
OpenMVScopyleft61.00 1169.99 15267.55 17077.30 8778.37 21454.07 9284.36 14885.76 8657.22 22556.71 25487.67 13530.79 27492.83 3543.04 29084.06 5485.01 199
tpm68.36 18067.48 17270.97 24379.93 18451.34 15676.58 28178.75 23767.73 4063.54 16374.86 29348.33 6472.36 35053.93 22363.71 22289.21 112
FMVSNet368.84 17067.40 17373.19 19485.05 6548.53 22085.71 10585.36 9460.90 15257.58 24179.15 24542.16 14386.77 21047.25 26963.40 22684.27 209
test-mter68.36 18067.29 17471.60 23178.67 20548.17 23385.13 12079.72 21353.38 27163.13 16582.58 20527.23 29680.24 29660.56 16475.17 12986.39 174
Anonymous2024052969.71 15767.28 17577.00 9783.78 8850.36 17588.87 4585.10 10947.22 31064.03 15383.37 19027.93 29092.10 5257.78 19667.44 19288.53 132
thres20068.71 17567.27 17673.02 19684.73 7046.76 26085.03 12687.73 5462.34 12659.87 19583.45 18943.15 13288.32 16031.25 33867.91 18883.98 217
PS-MVSNAJss68.78 17467.17 17773.62 18873.01 28848.33 23084.95 13184.81 11659.30 18058.91 21779.84 23737.77 18988.86 13962.83 14563.12 23583.67 225
UGNet68.71 17567.11 17873.50 19080.55 17547.61 24884.08 15678.51 24359.45 17365.68 13082.73 20123.78 32085.08 25352.80 23276.40 11587.80 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS-dyc-post68.27 18466.87 17972.48 20980.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10131.17 27286.09 23260.52 16672.06 15583.19 233
v114468.81 17266.82 18074.80 15572.34 29753.46 10284.68 14081.77 17964.25 8660.28 19377.91 25440.23 16688.95 13560.37 16959.52 25581.97 247
UniMVSNet (Re)67.71 19366.80 18170.45 24974.44 27142.93 30782.42 20684.90 11363.69 9959.63 20080.99 22747.18 7585.23 24951.17 24456.75 28683.19 233
WR-MVS67.58 19666.76 18270.04 25875.92 25345.06 28786.23 9185.28 10064.31 8558.50 22581.00 22644.80 11282.00 27949.21 25655.57 30083.06 236
EPNet_dtu66.25 22666.71 18364.87 30778.66 20734.12 34982.80 19575.51 28561.75 13464.47 14886.90 14637.06 20772.46 34943.65 28869.63 17888.02 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GA-MVS69.04 16666.70 18476.06 12075.11 26052.36 13383.12 18880.23 20363.32 10860.65 19179.22 24430.98 27388.37 15561.25 15666.41 20187.46 152
RE-MVS-def66.66 18580.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10129.28 28460.52 16672.06 15583.19 233
c3_l67.97 18766.66 18571.91 22776.20 24649.31 19982.13 21178.00 25161.99 13057.64 24076.94 27049.41 6084.93 25560.62 16357.01 28581.49 255
test_cas_vis1_n_192067.10 21066.60 18768.59 27765.17 34743.23 30483.23 18569.84 33255.34 25370.67 9287.71 13424.70 31676.66 33078.57 4864.20 21785.89 185
FA-MVS(test-final)69.00 16866.60 18776.19 11683.48 9347.96 24374.73 29182.07 17057.27 22462.18 17678.47 25136.09 22292.89 3353.76 22571.32 16287.73 146
BH-untuned68.28 18366.40 18973.91 17681.62 14550.01 18385.56 10977.39 26157.63 21657.47 24683.69 18536.36 21987.08 20144.81 28173.08 14784.65 204
AUN-MVS68.20 18666.35 19073.76 18276.37 24047.45 25079.52 26179.52 21860.98 14862.34 17386.02 15636.59 21886.94 20662.32 14853.47 31786.89 160
v14868.24 18566.35 19073.88 17771.76 30151.47 15384.23 15281.90 17663.69 9958.94 21476.44 27843.72 12487.78 18060.63 16255.86 29782.39 244
tttt051768.33 18266.29 19274.46 15978.08 21649.06 20280.88 24389.08 2154.40 26454.75 27280.77 23051.31 4390.33 9549.35 25458.01 27583.99 215
HPM-MVS_fast67.86 18966.28 19372.61 20480.67 17248.34 22881.18 23675.95 28350.81 29059.55 20388.05 12927.86 29185.98 23558.83 17773.58 14183.51 226
UA-Net67.32 20566.23 19470.59 24778.85 20141.23 32473.60 29875.45 28761.54 13866.61 11684.53 17138.73 18286.57 21942.48 29574.24 13683.98 217
Test_1112_low_res67.18 20866.23 19470.02 25978.75 20341.02 32583.43 17673.69 30257.29 22358.45 22882.39 21045.30 10080.88 28650.50 24666.26 20688.16 135
tfpn200view967.57 19766.13 19671.89 22884.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20282.78 242
thres40067.40 20466.13 19671.19 23984.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20280.71 273
cascas69.01 16766.13 19677.66 7879.36 18955.41 5386.99 7783.75 14156.69 23658.92 21681.35 22524.31 31892.10 5253.23 22670.61 16785.46 193
dmvs_re67.61 19566.00 19972.42 21081.86 13543.45 30164.67 34180.00 20669.56 2560.07 19485.00 16834.71 23887.63 18751.48 24166.68 19686.17 177
NR-MVSNet67.25 20665.99 20071.04 24273.27 28643.91 29685.32 11484.75 11966.05 6653.65 28482.11 21645.05 10385.97 23747.55 26656.18 29283.24 231
sd_testset67.79 19265.95 20173.32 19181.70 14046.33 26868.99 32880.30 20266.58 5261.64 18282.38 21130.45 27687.63 18755.86 21165.60 20886.01 179
cl____67.43 20165.93 20271.95 22476.33 24248.02 23982.58 19979.12 22961.30 14256.72 25376.92 27146.12 8786.44 22157.98 19056.31 28981.38 263
DIV-MVS_self_test67.43 20165.93 20271.94 22576.33 24248.01 24082.57 20079.11 23061.31 14156.73 25276.92 27146.09 8886.43 22257.98 19056.31 28981.39 262
CPTT-MVS67.15 20965.84 20471.07 24180.96 16250.32 17781.94 21474.10 29646.18 32057.91 23387.64 13629.57 28181.31 28264.10 13770.18 17381.56 254
FMVSNet267.57 19765.79 20572.90 19982.71 12047.97 24185.15 11984.93 11258.55 19856.71 25478.26 25236.72 21586.67 21346.15 27662.94 23784.07 212
v14419267.86 18965.76 20674.16 16971.68 30253.09 11884.14 15580.83 19462.85 11659.21 21177.28 26439.30 17688.00 17158.67 17957.88 27981.40 261
v119267.96 18865.74 20774.63 15671.79 30053.43 10784.06 15880.99 19263.19 11159.56 20277.46 26137.50 20088.65 14458.20 18758.93 26281.79 250
DU-MVS66.84 21965.74 20770.16 25473.27 28642.59 31181.50 23082.92 16063.53 10358.51 22382.11 21640.75 16084.64 25953.11 22755.96 29583.24 231
Vis-MVSNet (Re-imp)65.52 23265.63 20965.17 30577.49 22630.54 36175.49 28777.73 25559.34 17752.26 29486.69 15049.38 6180.53 29337.07 30975.28 12884.42 207
TranMVSNet+NR-MVSNet66.94 21665.61 21070.93 24473.45 28243.38 30383.02 19284.25 13065.31 7758.33 23081.90 21939.92 17385.52 24249.43 25354.89 30583.89 221
V4267.66 19465.60 21173.86 17870.69 31553.63 9881.50 23078.61 24163.85 9559.49 20577.49 26037.98 18687.65 18562.33 14758.43 26680.29 278
AdaColmapbinary67.86 18965.48 21275.00 15288.15 3354.99 6886.10 9476.63 27649.30 29957.80 23586.65 15129.39 28388.94 13745.10 28070.21 17281.06 268
GBi-Net67.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
test167.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
EPMVS68.45 17965.44 21577.47 8384.91 6856.17 3871.89 31681.91 17561.72 13560.85 18872.49 31636.21 22087.06 20247.32 26871.62 15889.17 114
thres100view90066.87 21865.42 21671.24 23783.29 10043.15 30581.67 22387.78 5159.04 18855.92 26282.18 21543.73 12287.80 17728.80 34566.36 20282.78 242
IterMVS-LS66.63 22065.36 21770.42 25075.10 26148.90 21081.45 23376.69 27561.05 14655.71 26377.10 26745.86 9283.65 26757.44 19957.88 27978.70 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth66.98 21565.28 21872.06 21775.61 25650.40 17281.00 23976.97 27162.00 12956.99 25176.97 26944.84 10985.58 24158.75 17854.42 30980.21 279
v192192067.45 20065.23 21974.10 17171.51 30552.90 12483.75 16780.44 19962.48 12559.12 21277.13 26536.98 20887.90 17357.53 19858.14 27381.49 255
thres600view766.46 22365.12 22070.47 24883.41 9443.80 29882.15 20987.78 5159.37 17656.02 26182.21 21443.73 12286.90 20826.51 35764.94 21180.71 273
OMC-MVS65.97 23065.06 22168.71 27472.97 28942.58 31378.61 26875.35 28854.72 26059.31 20886.25 15533.30 25177.88 31957.99 18967.05 19485.66 189
v867.25 20664.99 22274.04 17272.89 29153.31 11282.37 20780.11 20561.54 13854.29 27776.02 28742.89 13688.41 15458.43 18156.36 28780.39 277
Effi-MVS+-dtu66.24 22764.96 22370.08 25675.17 25949.64 19082.01 21274.48 29362.15 12757.83 23476.08 28630.59 27583.79 26465.40 13360.93 24876.81 314
mvsmamba66.93 21764.88 22473.09 19575.06 26247.26 25483.36 18269.21 33662.64 12055.68 26481.43 22429.72 28089.20 12563.35 14263.50 22582.79 241
v124066.99 21464.68 22573.93 17571.38 30852.66 12783.39 18079.98 20761.97 13158.44 22977.11 26635.25 23087.81 17556.46 20858.15 27181.33 264
LPG-MVS_test66.44 22464.58 22672.02 21874.42 27248.60 21783.07 19080.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
gg-mvs-nofinetune67.43 20164.53 22776.13 11885.95 4747.79 24764.38 34288.28 4439.34 34566.62 11541.27 37958.69 1389.00 13149.64 25286.62 2991.59 51
ACMP61.11 966.24 22764.33 22872.00 22074.89 26649.12 20183.18 18779.83 21155.41 25252.29 29282.68 20225.83 30586.10 23060.89 15963.94 22180.78 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Baseline_NR-MVSNet65.49 23364.27 22969.13 26674.37 27441.65 31883.39 18078.85 23259.56 17159.62 20176.88 27340.75 16087.44 19249.99 24855.05 30378.28 301
v1066.61 22164.20 23073.83 18072.59 29453.37 10881.88 21679.91 21061.11 14454.09 27975.60 28940.06 17088.26 16456.47 20756.10 29379.86 283
Fast-Effi-MVS+-dtu66.53 22264.10 23173.84 17972.41 29652.30 13684.73 13775.66 28459.51 17256.34 25979.11 24628.11 28885.85 24057.74 19763.29 23083.35 227
Anonymous2023121166.08 22963.67 23273.31 19283.07 10748.75 21486.01 9784.67 12245.27 32456.54 25676.67 27628.06 28988.95 13552.78 23359.95 25082.23 245
PatchmatchNetpermissive67.07 21363.63 23377.40 8483.10 10458.03 972.11 31477.77 25458.85 19259.37 20670.83 32937.84 18884.93 25542.96 29169.83 17589.26 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
myMVS_eth3d63.52 24463.56 23463.40 31481.73 13834.28 34780.97 24081.02 19060.93 15055.06 26882.64 20348.00 6980.81 28723.42 36758.32 26775.10 331
tpm cat166.28 22562.78 23576.77 10781.40 15457.14 2270.03 32377.19 26453.00 27458.76 22170.73 33246.17 8686.73 21243.27 28964.46 21686.44 172
pm-mvs164.12 23862.56 23668.78 27271.68 30238.87 33382.89 19481.57 18055.54 25153.89 28177.82 25637.73 19286.74 21148.46 26253.49 31680.72 272
test0.0.03 162.54 25462.44 23762.86 31872.28 29929.51 36982.93 19378.78 23559.18 18453.07 28782.41 20936.91 21077.39 32337.45 30558.96 26181.66 253
miper_lstm_enhance63.91 23962.30 23868.75 27375.06 26246.78 25969.02 32781.14 18859.68 17052.76 28972.39 31940.71 16277.99 31756.81 20553.09 31981.48 257
X-MVStestdata65.85 23162.20 23976.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 1554.82 39835.50 22889.78 10965.50 12580.50 7888.16 135
FMVSNet164.57 23462.11 24071.96 22177.32 22846.36 26583.52 16983.31 14952.43 27954.42 27576.23 28227.80 29286.20 22442.59 29461.34 24683.32 228
ACMM58.35 1264.35 23662.01 24171.38 23574.21 27548.51 22182.25 20879.66 21547.61 30854.54 27480.11 23325.26 31086.00 23451.26 24263.16 23379.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS63.77 24261.67 24270.08 25672.68 29351.24 15980.44 24875.51 28560.51 15851.41 29773.70 30532.08 26378.91 30754.30 22054.35 31080.08 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp64.41 23561.58 24372.90 19982.40 12654.09 9172.53 30676.59 27760.39 15955.68 26470.39 33335.18 23276.90 32839.34 30161.71 24487.73 146
test_djsdf63.84 24061.56 24470.70 24668.78 32644.69 28881.63 22481.44 18350.28 29252.27 29376.26 28126.72 29986.11 22860.83 16055.84 29881.29 267
MDTV_nov1_ep1361.56 24481.68 14255.12 6372.41 30878.18 24859.19 18258.85 21969.29 33734.69 23986.16 22736.76 31362.96 236
D2MVS63.49 24561.39 24669.77 26069.29 32348.93 20978.89 26777.71 25660.64 15749.70 30772.10 32427.08 29783.48 26954.48 21962.65 23876.90 313
Syy-MVS61.51 26361.35 24762.00 32181.73 13830.09 36480.97 24081.02 19060.93 15055.06 26882.64 20335.09 23480.81 28716.40 38258.32 26775.10 331
tt080563.39 24661.31 24869.64 26169.36 32238.87 33378.00 27185.48 8848.82 30355.66 26781.66 22124.38 31786.37 22349.04 25759.36 25983.68 224
pmmvs562.80 25361.18 24967.66 28469.53 32142.37 31682.65 19875.19 28954.30 26652.03 29578.51 25031.64 26980.67 28948.60 26058.15 27179.95 282
CL-MVSNet_self_test62.98 25061.14 25068.50 27965.86 34242.96 30684.37 14782.98 15860.98 14853.95 28072.70 31540.43 16483.71 26641.10 29647.93 33378.83 291
pmmvs463.34 24761.07 25170.16 25470.14 31750.53 16879.97 25671.41 32155.08 25554.12 27878.58 24932.79 25682.09 27850.33 24757.22 28477.86 305
RRT_MVS63.68 24361.01 25271.70 22973.48 28145.98 27381.19 23576.08 28154.33 26552.84 28879.27 24222.21 33287.65 18554.13 22155.54 30181.46 258
jajsoiax63.21 24860.84 25370.32 25268.33 33144.45 29081.23 23481.05 18953.37 27250.96 30277.81 25717.49 35385.49 24459.31 17358.05 27481.02 269
TransMVSNet (Re)62.82 25260.76 25469.02 26773.98 27841.61 31986.36 8879.30 22856.90 22952.53 29076.44 27841.85 15087.60 19038.83 30240.61 35777.86 305
mvs_tets62.96 25160.55 25570.19 25368.22 33444.24 29480.90 24280.74 19552.99 27550.82 30477.56 25816.74 35785.44 24559.04 17657.94 27680.89 270
UniMVSNet_ETH3D62.51 25560.49 25668.57 27868.30 33240.88 32773.89 29679.93 20951.81 28554.77 27179.61 23824.80 31481.10 28349.93 24961.35 24583.73 223
CVMVSNet60.85 26760.44 25762.07 31975.00 26432.73 35679.54 25973.49 30536.98 35356.28 26083.74 18329.28 28469.53 35846.48 27363.23 23183.94 220
FE-MVS64.15 23760.43 25875.30 14380.85 16749.86 18768.28 33278.37 24650.26 29559.31 20873.79 30126.19 30391.92 5540.19 29866.67 19784.12 210
MIMVSNet63.12 24960.29 25971.61 23075.92 25346.65 26165.15 33881.94 17259.14 18654.65 27369.47 33625.74 30680.63 29041.03 29769.56 17987.55 150
testing359.97 27060.19 26059.32 33377.60 22330.01 36681.75 22181.79 17753.54 26950.34 30579.94 23448.99 6376.91 32617.19 38050.59 32671.03 356
TAPA-MVS56.12 1461.82 26260.18 26166.71 29378.48 21237.97 33875.19 28976.41 27946.82 31357.04 25086.52 15327.67 29477.03 32526.50 35867.02 19585.14 196
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA63.84 24060.01 26275.32 14078.58 20957.92 1061.61 35277.53 25856.71 23557.75 23870.77 33031.97 26479.91 30248.80 25856.36 28788.13 138
EG-PatchMatch MVS62.40 25959.59 26370.81 24573.29 28449.05 20385.81 9884.78 11751.85 28444.19 33273.48 30815.52 36289.85 10740.16 29967.24 19373.54 342
XVG-OURS-SEG-HR62.02 26059.54 26469.46 26365.30 34545.88 27465.06 33973.57 30446.45 31657.42 24783.35 19126.95 29878.09 31353.77 22464.03 21984.42 207
tpmvs62.45 25859.42 26571.53 23483.93 8454.32 8570.03 32377.61 25751.91 28253.48 28568.29 34037.91 18786.66 21433.36 32858.27 26973.62 341
XVG-OURS61.88 26159.34 26669.49 26265.37 34446.27 26964.80 34073.49 30547.04 31257.41 24882.85 19625.15 31178.18 31153.00 23064.98 21084.01 214
v7n62.50 25659.27 26772.20 21467.25 33749.83 18877.87 27380.12 20452.50 27848.80 31273.07 31032.10 26287.90 17346.83 27254.92 30478.86 290
tfpnnormal61.47 26459.09 26868.62 27676.29 24541.69 31781.14 23785.16 10654.48 26351.32 29873.63 30632.32 26086.89 20921.78 37155.71 29977.29 311
CR-MVSNet62.47 25759.04 26972.77 20273.97 27956.57 2960.52 35571.72 31660.04 16357.49 24465.86 34638.94 17980.31 29542.86 29259.93 25181.42 259
PLCcopyleft52.38 1860.89 26658.97 27066.68 29581.77 13745.70 27878.96 26674.04 29943.66 33547.63 31883.19 19423.52 32377.78 32237.47 30460.46 24976.55 320
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT59.12 27858.81 27160.08 33170.68 31645.07 28480.42 24974.25 29543.54 33650.02 30673.73 30231.97 26456.74 37351.06 24553.60 31578.42 298
CNLPA60.59 26858.44 27267.05 29079.21 19347.26 25479.75 25864.34 35042.46 34151.90 29683.94 17927.79 29375.41 33537.12 30759.49 25778.47 296
dmvs_testset57.65 29258.21 27355.97 34474.62 2699.82 40063.75 34363.34 35267.23 4548.89 31183.68 18739.12 17876.14 33123.43 36659.80 25381.96 248
WR-MVS_H58.91 28358.04 27461.54 32569.07 32533.83 35176.91 27881.99 17151.40 28748.17 31374.67 29440.23 16674.15 33831.78 33548.10 33176.64 318
anonymousdsp60.46 26957.65 27568.88 26863.63 35545.09 28372.93 30478.63 24046.52 31551.12 29972.80 31421.46 33783.07 27357.79 19553.97 31178.47 296
Anonymous2023120659.08 28057.59 27663.55 31268.77 32732.14 35980.26 25279.78 21250.00 29649.39 30872.39 31926.64 30078.36 31033.12 33157.94 27680.14 280
CP-MVSNet58.54 28957.57 27761.46 32668.50 32933.96 35076.90 27978.60 24251.67 28647.83 31676.60 27734.99 23772.79 34735.45 31647.58 33577.64 309
PVSNet_057.04 1361.19 26557.24 27873.02 19677.45 22750.31 17879.43 26377.36 26363.96 9447.51 32172.45 31825.03 31283.78 26552.76 23519.22 38884.96 200
pmmvs659.64 27357.15 27967.09 28866.01 34036.86 34280.50 24778.64 23945.05 32649.05 31073.94 30027.28 29586.10 23043.96 28749.94 32878.31 300
PEN-MVS58.35 29057.15 27961.94 32267.55 33634.39 34677.01 27778.35 24751.87 28347.72 31776.73 27533.91 24573.75 34234.03 32647.17 33977.68 307
PS-CasMVS58.12 29157.03 28161.37 32768.24 33333.80 35276.73 28078.01 25051.20 28847.54 32076.20 28532.85 25472.76 34835.17 32147.37 33777.55 310
bld_raw_dy_0_6459.75 27257.01 28267.96 28266.73 33845.30 28177.59 27559.97 35850.49 29147.15 32377.03 26817.45 35479.06 30656.92 20459.76 25479.51 285
LCM-MVSNet-Re58.82 28456.54 28365.68 29979.31 19229.09 37261.39 35445.79 37060.73 15537.65 35872.47 31731.42 27081.08 28449.66 25170.41 17086.87 161
FMVSNet558.61 28656.45 28465.10 30677.20 23339.74 32974.77 29077.12 26650.27 29443.28 33867.71 34126.15 30476.90 32836.78 31254.78 30678.65 294
KD-MVS_2432*160059.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_refine_blended59.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
CHOSEN 280x42057.53 29456.38 28760.97 32974.01 27748.10 23746.30 37354.31 36448.18 30650.88 30377.43 26238.37 18559.16 37154.83 21663.14 23475.66 325
DP-MVS59.24 27656.12 28868.63 27588.24 3250.35 17682.51 20364.43 34941.10 34346.70 32678.77 24824.75 31588.57 15022.26 36956.29 29166.96 362
OpenMVS_ROBcopyleft53.19 1759.20 27756.00 28968.83 27071.13 31044.30 29283.64 16875.02 29046.42 31746.48 32873.03 31118.69 34788.14 16527.74 35361.80 24374.05 338
ACMH53.70 1659.78 27155.94 29071.28 23676.59 23948.35 22780.15 25576.11 28049.74 29741.91 34373.45 30916.50 35990.31 9631.42 33657.63 28275.17 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet57.03 29555.73 29160.95 33065.94 34132.57 35775.71 28277.09 26751.16 28946.65 32776.34 28032.84 25573.22 34630.94 33944.87 34877.06 312
ACMH+54.58 1558.55 28855.24 29268.50 27974.68 26845.80 27780.27 25170.21 32947.15 31142.77 34075.48 29016.73 35885.98 23535.10 32354.78 30673.72 340
UnsupCasMVSNet_eth57.56 29355.15 29364.79 30864.57 35233.12 35373.17 30383.87 14058.98 19041.75 34470.03 33422.54 32879.92 30046.12 27735.31 36581.32 266
MSDG59.44 27455.14 29472.32 21374.69 26750.71 16374.39 29473.58 30344.44 33043.40 33777.52 25919.45 34390.87 8031.31 33757.49 28375.38 327
our_test_359.11 27955.08 29571.18 24071.42 30653.29 11381.96 21374.52 29248.32 30442.08 34169.28 33828.14 28782.15 27634.35 32545.68 34778.11 304
ppachtmachnet_test58.56 28754.34 29671.24 23771.42 30654.74 7381.84 21872.27 31249.02 30145.86 33168.99 33926.27 30183.30 27130.12 34043.23 35275.69 324
Patchmatch-RL test58.72 28554.32 29771.92 22663.91 35444.25 29361.73 35155.19 36257.38 22249.31 30954.24 37037.60 19680.89 28562.19 15047.28 33890.63 75
RPMNet59.29 27554.25 29874.42 16173.97 27956.57 2960.52 35576.98 26835.72 35757.49 24458.87 36537.73 19285.26 24827.01 35659.93 25181.42 259
test20.0355.22 30654.07 29958.68 33663.14 35725.00 37777.69 27474.78 29152.64 27643.43 33672.39 31926.21 30274.76 33729.31 34347.05 34176.28 322
LS3D56.40 30053.82 30064.12 30981.12 15845.69 27973.42 30166.14 34435.30 36143.24 33979.88 23522.18 33379.62 30419.10 37764.00 22067.05 361
PatchMatch-RL56.66 29653.75 30165.37 30477.91 22145.28 28269.78 32560.38 35641.35 34247.57 31973.73 30216.83 35676.91 32636.99 31059.21 26073.92 339
F-COLMAP55.96 30453.65 30262.87 31772.76 29242.77 31074.70 29370.37 32840.03 34441.11 34879.36 24017.77 35273.70 34332.80 33253.96 31272.15 348
test_040256.45 29953.03 30366.69 29476.78 23850.31 17881.76 22069.61 33442.79 33943.88 33372.13 32222.82 32786.46 22016.57 38150.94 32563.31 370
PatchT56.60 29752.97 30467.48 28572.94 29046.16 27257.30 36373.78 30138.77 34754.37 27657.26 36837.52 19878.06 31432.02 33352.79 32078.23 303
Patchmtry56.56 29852.95 30567.42 28672.53 29550.59 16759.05 35971.72 31637.86 35146.92 32465.86 34638.94 17980.06 29936.94 31146.72 34371.60 352
XVG-ACMP-BASELINE56.03 30252.85 30665.58 30061.91 36040.95 32663.36 34472.43 31145.20 32546.02 32974.09 2989.20 37378.12 31245.13 27958.27 26977.66 308
pmmvs-eth3d55.97 30352.78 30765.54 30161.02 36246.44 26475.36 28867.72 34249.61 29843.65 33567.58 34221.63 33677.04 32444.11 28644.33 34973.15 346
CMPMVSbinary40.41 2155.34 30552.64 30863.46 31360.88 36343.84 29761.58 35371.06 32330.43 36936.33 36074.63 29524.14 31975.44 33448.05 26466.62 19871.12 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.25 31052.57 30959.29 33462.76 35821.65 38472.21 31170.47 32753.25 27341.94 34277.33 26314.28 36377.95 31829.18 34451.72 32478.28 301
test_fmvs153.60 31552.54 31056.78 34058.07 36530.26 36268.95 32942.19 37632.46 36463.59 16182.56 20711.55 36660.81 36558.25 18655.27 30279.28 286
ADS-MVSNet56.17 30151.95 31168.84 26980.60 17353.07 11955.03 36670.02 33144.72 32751.00 30061.19 35822.83 32578.88 30828.54 34853.63 31374.57 335
ADS-MVSNet255.21 30751.44 31266.51 29680.60 17349.56 19355.03 36665.44 34544.72 32751.00 30061.19 35822.83 32575.41 33528.54 34853.63 31374.57 335
USDC54.36 30951.23 31363.76 31164.29 35337.71 33962.84 34973.48 30756.85 23035.47 36371.94 3259.23 37278.43 30938.43 30348.57 33075.13 330
test_fmvs1_n52.55 31951.19 31456.65 34151.90 37530.14 36367.66 33342.84 37532.27 36562.30 17582.02 2189.12 37460.84 36457.82 19454.75 30878.99 288
EU-MVSNet52.63 31850.72 31558.37 33762.69 35928.13 37472.60 30575.97 28230.94 36840.76 35072.11 32320.16 34170.80 35435.11 32246.11 34576.19 323
UnsupCasMVSNet_bld53.86 31250.53 31663.84 31063.52 35634.75 34571.38 31781.92 17446.53 31438.95 35457.93 36620.55 34080.20 29839.91 30034.09 37276.57 319
SixPastTwentyTwo54.37 30850.10 31767.21 28770.70 31441.46 32274.73 29164.69 34747.56 30939.12 35369.49 33518.49 35084.69 25831.87 33434.20 37175.48 326
YYNet153.82 31349.96 31865.41 30370.09 31948.95 20772.30 30971.66 31844.25 33231.89 37263.07 35423.73 32173.95 34033.26 32939.40 35973.34 343
MDA-MVSNet_test_wron53.82 31349.95 31965.43 30270.13 31849.05 20372.30 30971.65 31944.23 33331.85 37363.13 35323.68 32274.01 33933.25 33039.35 36073.23 345
LTVRE_ROB45.45 1952.73 31749.74 32061.69 32469.78 32034.99 34444.52 37467.60 34343.11 33843.79 33474.03 29918.54 34981.45 28128.39 35057.94 27668.62 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_n51.19 32449.66 32155.76 34551.26 37629.85 36767.20 33538.86 38032.12 36659.50 20479.86 2368.78 37558.23 37256.95 20352.46 32179.19 287
K. test v354.04 31149.42 32267.92 28368.55 32842.57 31475.51 28663.07 35352.07 28039.21 35264.59 35019.34 34482.21 27537.11 30825.31 38178.97 289
OurMVSNet-221017-052.39 32048.73 32363.35 31565.21 34638.42 33668.54 33164.95 34638.19 34839.57 35171.43 32613.23 36579.92 30037.16 30640.32 35871.72 351
Anonymous2024052151.65 32248.42 32461.34 32856.43 36939.65 33173.57 29973.47 30836.64 35536.59 35963.98 35110.75 36972.25 35135.35 31749.01 32972.11 349
Patchmatch-test53.33 31648.17 32568.81 27173.31 28342.38 31542.98 37658.23 35932.53 36338.79 35570.77 33039.66 17473.51 34425.18 36052.06 32390.55 76
COLMAP_ROBcopyleft43.60 2050.90 32548.05 32659.47 33267.81 33540.57 32871.25 31862.72 35536.49 35636.19 36173.51 30713.48 36473.92 34120.71 37350.26 32763.92 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet150.35 32647.81 32757.96 33861.53 36127.80 37567.40 33474.06 29843.25 33733.31 37165.38 34916.03 36071.34 35221.80 37047.55 33674.75 333
JIA-IIPM52.33 32147.77 32866.03 29871.20 30946.92 25840.00 38176.48 27837.10 35246.73 32537.02 38132.96 25377.88 31935.97 31452.45 32273.29 344
MDA-MVSNet-bldmvs51.56 32347.75 32963.00 31671.60 30447.32 25369.70 32672.12 31343.81 33427.65 38063.38 35221.97 33575.96 33227.30 35532.19 37365.70 367
KD-MVS_self_test49.24 32746.85 33056.44 34254.32 37022.87 38057.39 36273.36 30944.36 33137.98 35759.30 36418.97 34671.17 35333.48 32742.44 35375.26 328
new-patchmatchnet48.21 32946.55 33153.18 34857.73 36718.19 39270.24 32171.02 32445.70 32133.70 36760.23 36018.00 35169.86 35727.97 35234.35 36971.49 354
MVS-HIRNet49.01 32844.71 33261.92 32376.06 24846.61 26263.23 34654.90 36324.77 37533.56 36836.60 38321.28 33875.88 33329.49 34262.54 23963.26 371
AllTest47.32 33144.66 33355.32 34665.08 34837.50 34062.96 34854.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
TinyColmap48.15 33044.49 33459.13 33565.73 34338.04 33763.34 34562.86 35438.78 34629.48 37567.23 3446.46 38373.30 34524.59 36241.90 35566.04 365
test_fmvs245.89 33344.32 33550.62 35145.85 38424.70 37858.87 36137.84 38325.22 37452.46 29174.56 2967.07 37854.69 37449.28 25547.70 33472.48 347
RPSCF45.77 33444.13 33650.68 35057.67 36829.66 36854.92 36845.25 37226.69 37345.92 33075.92 28817.43 35545.70 38427.44 35445.95 34676.67 315
PM-MVS46.92 33243.76 33756.41 34352.18 37432.26 35863.21 34738.18 38137.99 35040.78 34966.20 3455.09 38665.42 36148.19 26341.99 35471.54 353
mvsany_test143.38 33642.57 33845.82 35550.96 37726.10 37655.80 36427.74 39327.15 37247.41 32274.39 29718.67 34844.95 38544.66 28236.31 36366.40 364
pmmvs345.53 33541.55 33957.44 33948.97 38039.68 33070.06 32257.66 36028.32 37134.06 36657.29 3678.50 37666.85 36034.86 32434.26 37065.80 366
N_pmnet41.25 33739.77 34045.66 35668.50 3290.82 40672.51 3070.38 40535.61 35835.26 36461.51 35720.07 34267.74 35923.51 36540.63 35668.42 360
test_vis1_rt40.29 33938.64 34145.25 35748.91 38130.09 36459.44 35827.07 39424.52 37638.48 35651.67 3756.71 38149.44 37944.33 28446.59 34456.23 373
TDRefinement40.91 33838.37 34248.55 35350.45 37833.03 35558.98 36050.97 36828.50 37029.89 37467.39 3436.21 38554.51 37517.67 37935.25 36658.11 372
WB-MVS37.41 34236.37 34340.54 36254.23 37110.43 39965.29 33743.75 37334.86 36227.81 37954.63 36924.94 31363.21 3626.81 39415.00 38947.98 381
test_fmvs337.95 34135.75 34444.55 35835.50 39018.92 38848.32 37034.00 38818.36 38241.31 34761.58 3562.29 39348.06 38342.72 29337.71 36266.66 363
DSMNet-mixed38.35 34035.36 34547.33 35448.11 38214.91 39637.87 38236.60 38419.18 38034.37 36559.56 36315.53 36153.01 37720.14 37546.89 34274.07 337
SSC-MVS35.20 34434.30 34637.90 36452.58 3738.65 40261.86 35041.64 37731.81 36725.54 38152.94 37423.39 32459.28 3706.10 39512.86 39045.78 383
FPMVS35.40 34333.67 34740.57 36146.34 38328.74 37341.05 37857.05 36120.37 37922.27 38353.38 3726.87 38044.94 3868.62 38847.11 34048.01 380
LF4IMVS33.04 34832.55 34834.52 36740.96 38522.03 38244.45 37535.62 38520.42 37828.12 37862.35 3555.03 38731.88 39721.61 37234.42 36849.63 379
new_pmnet33.56 34731.89 34938.59 36349.01 37920.42 38551.01 36937.92 38220.58 37723.45 38246.79 3776.66 38249.28 38120.00 37631.57 37546.09 382
EGC-MVSNET33.75 34630.42 35043.75 35964.94 35036.21 34360.47 35740.70 3790.02 3990.10 40053.79 3717.39 37760.26 36611.09 38735.23 36734.79 385
ANet_high34.39 34529.59 35148.78 35230.34 39422.28 38155.53 36563.79 35138.11 34915.47 38736.56 3846.94 37959.98 36713.93 3845.64 39864.08 368
mvsany_test328.00 35025.98 35234.05 36828.97 39515.31 39434.54 38518.17 39916.24 38329.30 37653.37 3732.79 39133.38 39630.01 34120.41 38753.45 376
test_f27.12 35224.85 35333.93 36926.17 40015.25 39530.24 38922.38 39812.53 38828.23 37749.43 3762.59 39234.34 39525.12 36126.99 37952.20 377
cdsmvs_eth3d_5k18.33 36224.44 3540.00 3840.00 4050.00 4080.00 39589.40 160.00 4000.00 40392.02 4538.55 1830.00 4010.00 4020.00 3990.00 399
APD_test126.46 35424.41 35532.62 37237.58 38721.74 38340.50 38030.39 39011.45 38916.33 38643.76 3781.63 39841.62 38711.24 38626.82 38034.51 386
Gipumacopyleft27.47 35124.26 35637.12 36660.55 36429.17 37111.68 39360.00 35714.18 38510.52 39415.12 3952.20 39563.01 3638.39 38935.65 36419.18 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet28.07 34923.85 35740.71 36027.46 39918.93 38730.82 38846.19 36912.76 38716.40 38534.70 3861.90 39648.69 38220.25 37424.22 38254.51 375
PMMVS226.71 35322.98 35837.87 36536.89 3888.51 40342.51 37729.32 39219.09 38113.01 38937.54 3802.23 39453.11 37614.54 38311.71 39151.99 378
test_vis3_rt24.79 35622.95 35930.31 37328.59 39618.92 38837.43 38317.27 40112.90 38621.28 38429.92 3901.02 40036.35 39028.28 35129.82 37835.65 384
PMVScopyleft19.57 2225.07 35522.43 36032.99 37123.12 40122.98 37940.98 37935.19 38615.99 38411.95 39335.87 3851.47 39949.29 3805.41 39731.90 37426.70 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method24.09 35721.07 36133.16 37027.67 3988.35 40426.63 39035.11 3873.40 39614.35 38836.98 3823.46 39035.31 39219.08 37822.95 38355.81 374
testf121.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
APD_test221.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
E-PMN19.16 36018.40 36421.44 37736.19 38913.63 39747.59 37130.89 38910.73 3905.91 39716.59 3933.66 38939.77 3885.95 3968.14 39310.92 393
EMVS18.42 36117.66 36520.71 37834.13 39112.64 39846.94 37229.94 39110.46 3925.58 39814.93 3964.23 38838.83 3895.24 3987.51 39510.67 394
MVEpermissive16.60 2317.34 36313.39 36629.16 37428.43 39719.72 38613.73 39223.63 3977.23 3957.96 39521.41 3910.80 40136.08 3916.97 39210.39 39231.69 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.44 36410.68 3675.73 3812.49 4034.21 40510.48 39418.04 4000.34 39812.59 39020.49 39211.39 3677.03 40013.84 3856.46 3975.95 395
ab-mvs-re7.68 36610.24 3680.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 40392.12 420.00 4050.00 4010.00 4020.00 3990.00 399
wuyk23d9.11 3658.77 36910.15 38040.18 38616.76 39320.28 3911.01 4042.58 3972.66 3990.98 3990.23 40412.49 3994.08 3996.90 3961.19 396
testmvs6.14 3678.18 3700.01 3820.01 4040.00 40873.40 3020.00 4060.00 4000.02 4010.15 4000.00 4050.00 4010.02 4000.00 3990.02 397
test1236.01 3688.01 3710.01 3820.00 4050.01 40771.93 3150.00 4060.00 4000.02 4010.11 4010.00 4050.00 4010.02 4000.00 3990.02 397
pcd_1.5k_mvsjas3.15 3694.20 3720.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 40237.77 1890.00 4010.00 4020.00 3990.00 399
test_blank0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
WAC-MVS34.28 34722.56 368
FOURS183.24 10149.90 18684.98 12878.76 23647.71 30773.42 58
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
test_one_060189.39 2257.29 2088.09 4657.21 22682.06 1293.39 1854.94 24
eth-test20.00 405
eth-test0.00 405
ZD-MVS89.55 1453.46 10284.38 12657.02 22873.97 5391.03 6344.57 11491.17 7075.41 7181.78 69
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 2187.60 1792.44 29
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3257.50 22083.60 694.09 356.14 1896.37 682.28 2587.43 1992.55 27
test_241102_ONE89.48 1756.89 2588.94 2457.53 21884.61 493.29 2258.81 1196.45 1
save fliter85.35 6056.34 3689.31 3981.46 18261.55 137
test_0728_THIRD58.00 20681.91 1393.64 1156.54 1596.44 281.64 3086.86 2492.23 34
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2887.13 2092.47 28
test072689.40 2057.45 1792.32 788.63 3657.71 21483.14 993.96 655.17 20
GSMVS88.13 138
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 18188.13 138
sam_mvs35.99 226
ambc62.06 32053.98 37229.38 37035.08 38479.65 21641.37 34559.96 3616.27 38482.15 27635.34 31838.22 36174.65 334
MTGPAbinary81.31 185
test_post170.84 32014.72 39734.33 24283.86 26248.80 258
test_post16.22 39437.52 19884.72 257
patchmatchnet-post59.74 36238.41 18479.91 302
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 33088.45 4268.73 10187.45 13859.15 1090.67 8554.83 21687.67 1692.03 40
MTMP87.27 7215.34 402
gm-plane-assit83.24 10154.21 8870.91 1588.23 12595.25 1466.37 119
test9_res78.72 4785.44 4191.39 59
TEST985.68 5155.42 5187.59 6284.00 13657.72 21372.99 6390.98 6544.87 10888.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 21172.84 6790.99 6444.99 10488.34 158
agg_prior275.65 6685.11 4591.01 68
agg_prior85.64 5454.92 7083.61 14672.53 7288.10 168
TestCases55.32 34665.08 34837.50 34054.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13373.55 5691.46 6148.01 6874.73 7485.46 40
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
旧先验281.73 22245.53 32374.66 4570.48 35658.31 185
新几何281.61 226
新几何173.30 19383.10 10453.48 10171.43 32045.55 32266.14 12287.17 14333.88 24780.54 29248.50 26180.33 8285.88 186
旧先验181.57 14947.48 24971.83 31488.66 11536.94 20978.34 10388.67 126
无先验85.19 11878.00 25149.08 30085.13 25252.78 23387.45 153
原ACMM283.77 166
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 28166.70 11387.07 14540.15 16889.70 11351.23 24385.06 4684.10 211
test22279.36 18950.97 16177.99 27267.84 34142.54 34062.84 16986.53 15230.26 27776.91 11185.23 195
testdata277.81 32145.64 278
segment_acmp44.97 106
testdata67.08 28977.59 22445.46 28069.20 33744.47 32971.50 8488.34 12231.21 27170.76 35552.20 23875.88 12185.03 198
testdata177.55 27664.14 89
test1279.24 3986.89 4156.08 4085.16 10672.27 7647.15 7691.10 7385.93 3590.54 78
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 224
plane_prior582.59 16388.30 16165.46 12872.34 15284.49 205
plane_prior483.28 192
plane_prior348.95 20764.01 9262.15 177
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 148
n20.00 406
nn0.00 406
door-mid41.31 378
lessismore_v067.98 28164.76 35141.25 32345.75 37136.03 36265.63 34819.29 34584.11 26135.67 31521.24 38678.59 295
LGP-MVS_train72.02 21874.42 27248.60 21780.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
test1184.25 130
door43.27 374
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 145
ACMP_Plane79.02 19788.00 5365.45 7064.48 145
BP-MVS66.70 116
HQP4-MVS64.47 14888.61 14684.91 201
HQP3-MVS83.68 14273.12 144
HQP2-MVS37.35 201
NP-MVS78.76 20250.43 17185.12 166
MDTV_nov1_ep13_2view43.62 29971.13 31954.95 25859.29 21036.76 21246.33 27587.32 155
ACMMP++_ref63.20 232
ACMMP++59.38 258
Test By Simon39.38 175
ITE_SJBPF51.84 34958.03 36631.94 36053.57 36736.67 35441.32 34675.23 29211.17 36851.57 37825.81 35948.04 33272.02 350
DeepMVS_CXcopyleft13.10 37921.34 4028.99 40110.02 40310.59 3917.53 39630.55 3891.82 39714.55 3986.83 3937.52 39415.75 392