This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
IB-MVS68.87 274.01 9172.03 11479.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19481.74 23053.21 3694.28 2360.45 17562.41 25090.03 103
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8992.75 3445.52 10490.37 9871.15 9985.14 4591.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9586.71 7666.96 5767.91 11489.97 9648.03 7391.41 6975.60 7084.14 5389.96 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HY-MVS67.03 573.90 9373.14 9176.18 12484.70 7747.36 26075.56 29386.36 8366.27 6770.66 9983.91 18951.05 5089.31 12667.10 12272.61 15991.88 51
3Dnovator64.70 674.46 8472.48 9880.41 2882.84 12655.40 5983.08 19888.61 4567.61 5159.85 20688.66 12034.57 24793.97 2658.42 19088.70 1291.85 52
3Dnovator+62.71 772.29 12270.50 13277.65 8683.40 10551.29 16487.32 7386.40 8259.01 19958.49 23688.32 12932.40 26791.27 7157.04 20982.15 6690.38 90
PVSNet62.49 869.27 17567.81 17673.64 19384.41 8251.85 14984.63 15277.80 26366.42 6459.80 20784.95 17922.14 34380.44 30455.03 22275.11 13888.62 137
ACMP61.11 966.24 23864.33 23972.00 23074.89 27749.12 20983.18 19679.83 22055.41 26252.29 30282.68 21125.83 31386.10 23860.89 16663.94 23180.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27482.12 17756.47 25161.88 19086.48 16343.98 12587.24 20555.37 22172.79 15886.43 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9478.37 22554.07 9984.36 15785.76 9357.22 23556.71 26487.67 14430.79 28292.83 3743.04 29984.06 5585.01 208
ACMM58.35 1264.35 24762.01 25271.38 24574.21 28648.51 22982.25 21779.66 22447.61 31754.54 28480.11 24325.26 31886.00 24251.26 25063.16 24379.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_057.04 1361.19 27657.24 28973.02 20377.45 23850.31 18579.43 27377.36 27363.96 10447.51 33172.45 32725.03 32083.78 27452.76 24319.22 39784.96 209
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34775.19 29876.41 28946.82 32257.04 26086.52 16227.67 30277.03 33426.50 36767.02 20585.14 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 26070.21 33847.15 32042.77 34975.48 29916.73 36785.98 24335.10 33254.78 31573.72 349
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23580.15 26476.11 29049.74 30641.91 35273.45 31816.50 36890.31 10131.42 34557.63 29175.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32144.30 29983.64 17775.02 30046.42 32646.48 33773.03 32018.69 35788.14 17227.74 36261.80 25374.05 347
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27674.04 30843.66 34447.63 32883.19 20323.52 33177.78 33137.47 31360.46 25976.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB45.45 1952.73 32749.74 33061.69 33369.78 33134.99 35344.52 38367.60 35343.11 34743.79 34374.03 30818.54 35981.45 29028.39 35957.94 28568.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33659.47 34167.81 34640.57 33771.25 32762.72 36536.49 36536.19 37073.51 31613.48 37373.92 35020.71 38250.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37343.84 30561.58 36271.06 33230.43 37836.33 36974.63 30424.14 32775.44 34348.05 27266.62 20871.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft19.57 2225.07 36522.43 37032.99 38023.12 41122.98 38840.98 38835.19 39515.99 39311.95 40235.87 3941.47 40849.29 3895.41 40631.90 38326.70 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive16.60 2317.34 37313.39 37629.16 38328.43 40719.72 39513.73 40123.63 4067.23 4047.96 40421.41 4000.80 41036.08 4006.97 40110.39 40131.69 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net74.07 9074.64 7672.34 22182.90 12343.33 31280.04 26579.96 21665.61 7874.93 4691.85 5348.01 7480.86 29671.41 9777.10 11192.84 24
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9688.04 13755.82 2292.65 4269.61 10675.00 14192.05 44
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 10088.37 12557.69 1492.30 5075.25 7576.24 12491.20 72
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9588.09 13357.29 1592.63 4469.24 10975.13 13791.91 49
UWE-MVS72.17 12572.15 10872.21 22382.26 13944.29 30086.83 8989.58 2165.58 7965.82 13585.06 17645.02 11184.35 26954.07 22975.18 13487.99 151
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10887.94 13956.42 1989.24 12856.54 21274.75 14391.07 76
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9388.70 11955.19 2491.24 7365.18 14176.32 12391.29 70
WB-MVSnew69.36 17468.24 16672.72 21079.26 20349.40 20585.72 11388.85 3561.33 15164.59 15382.38 22034.57 24787.53 19946.82 28170.63 17781.22 277
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23685.24 12670.62 33563.13 12281.45 1893.62 1649.98 6287.40 20287.76 676.77 11690.20 97
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23384.98 13871.08 33163.50 11481.70 1793.52 1750.00 6087.18 20687.80 576.87 11590.32 92
fmvsm_s_conf0.1_n_a72.82 11272.05 11275.12 15670.95 32347.97 24982.72 20568.43 34962.52 13378.17 3393.08 3044.21 12488.86 14684.82 1363.54 23488.54 140
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25484.57 15469.43 34463.34 11778.40 3293.29 2444.73 12189.22 13085.99 966.28 21589.26 118
fmvsm_s_conf0.5_n_a73.68 10073.15 8975.29 15175.45 26948.05 24683.88 17268.84 34763.43 11678.60 3093.37 2245.32 10688.92 14585.39 1164.04 22888.89 129
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25385.32 12469.80 34264.16 9878.74 2993.48 1845.51 10589.29 12786.48 866.62 20889.55 113
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
WAC-MVS34.28 35622.56 377
Syy-MVS61.51 27461.35 25862.00 33081.73 14830.09 37380.97 24981.02 19860.93 16155.06 27882.64 21235.09 24180.81 29716.40 39158.32 27675.10 340
test_fmvsmconf0.1_n73.69 9973.15 8975.34 14670.71 32448.26 23982.15 21871.83 32366.75 5974.47 5392.59 3844.89 11587.78 18783.59 2071.35 17189.97 104
test_fmvsmconf0.01_n71.97 12870.95 12775.04 15766.21 34947.87 25280.35 25970.08 33965.85 7772.69 7191.68 5839.99 17987.67 19182.03 2969.66 18689.58 112
myMVS_eth3d63.52 25563.56 24563.40 32381.73 14834.28 35680.97 24981.02 19860.93 16155.06 27882.64 21248.00 7680.81 29723.42 37658.32 27675.10 340
testing359.97 28160.19 27159.32 34277.60 23430.01 37581.75 23081.79 18553.54 27950.34 31579.94 24448.99 6976.91 33517.19 38950.59 33571.03 365
SSC-MVS35.20 35434.30 35637.90 37352.58 3838.65 41161.86 35941.64 38631.81 37625.54 39052.94 38323.39 33259.28 3796.10 40412.86 39945.78 392
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28748.38 23482.66 20672.57 31967.05 5675.11 4592.88 3346.35 9287.81 18283.93 1971.71 16790.28 93
WB-MVS37.41 35236.37 35340.54 37154.23 38110.43 40865.29 34643.75 38234.86 37127.81 38854.63 37824.94 32163.21 3716.81 40315.00 39847.98 390
test_fmvsmvis_n_192071.29 13870.38 13574.00 18171.04 32248.79 22179.19 27564.62 35862.75 12766.73 12091.99 5040.94 16688.35 16483.00 2273.18 15284.85 212
dmvs_re67.61 20666.00 21072.42 21881.86 14543.45 30964.67 35080.00 21469.56 3260.07 20485.00 17834.71 24587.63 19451.48 24966.68 20686.17 187
SDMVSNet71.89 12970.62 13175.70 13481.70 15051.61 15473.89 30588.72 4066.58 6061.64 19282.38 22037.63 20289.48 12377.44 6065.60 21886.01 188
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 40963.75 35263.34 36267.23 5348.89 32183.68 19639.12 18676.14 34023.43 37559.80 26381.96 257
sd_testset67.79 20365.95 21273.32 19881.70 15046.33 27668.99 33780.30 21066.58 6061.64 19282.38 22030.45 28487.63 19455.86 21865.60 21886.01 188
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20381.82 22874.08 30666.52 6380.40 2293.46 1946.95 8589.72 11886.69 775.30 13287.61 159
test_cas_vis1_n_192067.10 22166.60 19868.59 28765.17 35743.23 31383.23 19469.84 34155.34 26370.67 9887.71 14324.70 32476.66 33978.57 5064.20 22785.89 194
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33541.51 32984.63 15268.58 34858.80 20373.26 6488.37 12525.30 31780.60 30179.10 4367.55 20186.23 186
test_vis1_n51.19 33449.66 33155.76 35451.26 38629.85 37667.20 34438.86 38932.12 37559.50 21479.86 2468.78 38458.23 38156.95 21052.46 33079.19 296
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38530.14 37267.66 34242.84 38432.27 37462.30 18582.02 2289.12 38360.84 37357.82 20154.75 31778.99 297
mvsany_test143.38 34642.57 34845.82 36450.96 38726.10 38555.80 37327.74 40227.15 38147.41 33274.39 30618.67 35844.95 39444.66 29136.31 37266.40 373
APD_test126.46 36424.41 36532.62 38137.58 39721.74 39240.50 38930.39 39911.45 39816.33 39543.76 3871.63 40741.62 39611.24 39526.82 38934.51 395
test_vis1_rt40.29 34938.64 35145.25 36648.91 39130.09 37359.44 36727.07 40324.52 38538.48 36551.67 3846.71 39049.44 38844.33 29346.59 35356.23 382
test_vis3_rt24.79 36622.95 36930.31 38228.59 40618.92 39737.43 39217.27 41012.90 39521.28 39329.92 3991.02 40936.35 39928.28 36029.82 38735.65 393
test_fmvs245.89 34344.32 34550.62 36045.85 39424.70 38758.87 37037.84 39225.22 38352.46 30174.56 3057.07 38754.69 38349.28 26347.70 34372.48 356
test_fmvs153.60 32552.54 32056.78 34958.07 37530.26 37168.95 33842.19 38532.46 37363.59 17182.56 21611.55 37560.81 37458.25 19355.27 31179.28 295
test_fmvs337.95 35135.75 35444.55 36735.50 40018.92 39748.32 37934.00 39718.36 39141.31 35661.58 3652.29 40248.06 39242.72 30237.71 37166.66 372
mvsany_test328.00 36025.98 36234.05 37728.97 40515.31 40334.54 39418.17 40816.24 39229.30 38553.37 3822.79 40033.38 40530.01 35020.41 39653.45 385
testf121.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
APD_test221.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
test_f27.12 36224.85 36333.93 37826.17 41015.25 40430.24 39822.38 40712.53 39728.23 38649.43 3852.59 40134.34 40425.12 37026.99 38852.20 386
FE-MVS64.15 24860.43 26975.30 15080.85 17749.86 19468.28 34178.37 25650.26 30459.31 21873.79 31026.19 31191.92 6040.19 30766.67 20784.12 219
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10147.96 25174.73 30082.07 17857.27 23462.18 18678.47 26136.09 23092.89 3553.76 23371.32 17287.73 156
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22974.74 683.40 894.00 621.51 34694.70 2184.07 1789.68 793.82 7
bld_raw_dy_0_6475.36 7473.18 8881.89 1187.91 4057.01 2486.77 9067.69 35278.56 165.01 14593.99 722.18 34194.84 1984.07 1772.45 16093.82 7
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6655.43 2390.09 10885.01 1280.40 8191.99 48
EGC-MVSNET33.75 35630.42 36043.75 36864.94 36036.21 35260.47 36640.70 3880.02 4080.10 40953.79 3807.39 38660.26 37511.09 39635.23 37634.79 394
test250672.91 11072.43 10074.32 17280.12 19144.18 30383.19 19584.77 12564.02 10065.97 13287.43 14847.67 7888.72 14959.08 18179.66 9390.08 101
test111171.06 14270.42 13472.97 20579.48 19841.49 33084.82 14682.74 17064.20 9762.98 17787.43 14835.20 23987.92 17958.54 18778.42 10389.49 115
ECVR-MVScopyleft71.81 13171.00 12674.26 17480.12 19143.49 30884.69 14882.16 17564.02 10064.64 15087.43 14835.04 24289.21 13161.24 16479.66 9390.08 101
test_blank0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
tt080563.39 25761.31 25969.64 27169.36 33338.87 34278.00 28185.48 9548.82 31255.66 27781.66 23124.38 32586.37 23149.04 26559.36 26883.68 233
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21683.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
FOURS183.24 10949.90 19384.98 13878.76 24647.71 31673.42 61
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
test_one_060189.39 2257.29 2088.09 5357.21 23682.06 1393.39 2054.94 29
eth-test20.00 415
eth-test0.00 415
GeoE69.96 16367.88 17276.22 12081.11 16951.71 15384.15 16376.74 28359.83 17660.91 19784.38 18241.56 16288.10 17551.67 24870.57 17988.84 131
test_method24.09 36721.07 37133.16 37927.67 4088.35 41326.63 39935.11 3963.40 40514.35 39736.98 3913.46 39935.31 40119.08 38722.95 39255.81 383
Anonymous2024052151.65 33248.42 33461.34 33756.43 37939.65 34073.57 30873.47 31736.64 36436.59 36863.98 36010.75 37872.25 36035.35 32649.01 33872.11 358
h-mvs3373.95 9272.89 9477.15 9980.17 19050.37 18184.68 14983.33 15668.08 4071.97 8088.65 12342.50 14691.15 7778.82 4657.78 29089.91 107
hse-mvs271.44 13770.68 12973.73 19176.34 25247.44 25979.45 27279.47 23068.08 4071.97 8086.01 16742.50 14686.93 21578.82 4653.46 32786.83 176
CL-MVSNet_self_test62.98 26161.14 26168.50 28965.86 35242.96 31584.37 15682.98 16660.98 15953.95 29072.70 32440.43 17283.71 27541.10 30547.93 34278.83 300
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
KD-MVS_self_test49.24 33746.85 34056.44 35154.32 38022.87 38957.39 37173.36 31844.36 34037.98 36659.30 37318.97 35671.17 36233.48 33642.44 36275.26 337
AUN-MVS68.20 19766.35 20173.76 18976.37 25147.45 25879.52 27179.52 22760.98 15962.34 18386.02 16536.59 22686.94 21462.32 15553.47 32686.89 170
ZD-MVS89.55 1453.46 10884.38 13457.02 23873.97 5691.03 6744.57 12291.17 7675.41 7481.78 70
SR-MVS-dyc-post68.27 19566.87 19072.48 21780.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10531.17 28086.09 24060.52 17372.06 16583.19 242
RE-MVS-def66.66 19680.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10529.28 29260.52 17372.06 16583.19 242
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 23084.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 33
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
test_241102_TWO88.76 3957.50 23083.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 31
test_241102_ONE89.48 1756.89 2988.94 3057.53 22884.61 493.29 2458.81 1196.45 1
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20474.63 4992.38 4047.75 7791.35 7078.18 5586.85 2691.15 74
cl2268.85 18067.69 17772.35 22078.07 22849.98 19182.45 21478.48 25462.50 13458.46 23777.95 26349.99 6185.17 25862.55 15358.72 27281.90 258
miper_ehance_all_eth68.70 18867.58 17972.08 22676.91 24849.48 20482.47 21378.45 25562.68 12958.28 24177.88 26550.90 5285.01 26261.91 15958.72 27281.75 260
miper_enhance_ethall69.77 16668.90 15872.38 21978.93 21149.91 19283.29 19278.85 24264.90 9059.37 21679.46 24952.77 3885.16 25963.78 14558.72 27282.08 255
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17867.85 11590.55 7842.23 15091.02 8072.66 9485.29 4489.87 108
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10490.24 8660.20 792.10 5784.14 1580.40 8192.82 25
cl____67.43 21265.93 21371.95 23476.33 25348.02 24782.58 20879.12 23961.30 15356.72 26376.92 28046.12 9486.44 22957.98 19756.31 29881.38 272
DIV-MVS_self_test67.43 21265.93 21371.94 23576.33 25348.01 24882.57 20979.11 24061.31 15256.73 26276.92 28046.09 9586.43 23057.98 19756.31 29881.39 271
eth_miper_zixun_eth66.98 22665.28 22972.06 22775.61 26750.40 17881.00 24876.97 28162.00 13956.99 26176.97 27844.84 11785.58 24958.75 18554.42 31880.21 289
9.1478.19 2785.67 5988.32 5188.84 3659.89 17574.58 5192.62 3746.80 8792.66 4181.40 3685.62 40
uanet_test0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
save fliter85.35 6656.34 4189.31 4081.46 19061.55 147
ET-MVSNet_ETH3D75.23 7774.08 8178.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29690.22 8849.71 6587.62 19672.12 9570.82 17692.82 25
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34340.88 33673.89 30579.93 21851.81 29554.77 28179.61 24824.80 32281.10 29249.93 25761.35 25583.73 232
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9268.56 11090.53 7945.79 10091.58 6567.21 12182.18 6591.20 72
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
miper_lstm_enhance63.91 25062.30 24968.75 28375.06 27346.78 26769.02 33681.14 19659.68 18052.76 29972.39 32840.71 17077.99 32656.81 21153.09 32881.48 266
ETV-MVS77.17 4576.74 4678.48 6881.80 14654.55 8886.13 10185.33 10368.20 3973.10 6590.52 8045.23 10890.66 9179.37 4180.95 7390.22 95
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7691.62 6045.53 10390.99 8374.48 8082.51 6191.23 71
D2MVS63.49 25661.39 25769.77 27069.29 33448.93 21778.89 27777.71 26660.64 16849.70 31772.10 33327.08 30583.48 27854.48 22662.65 24876.90 322
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22481.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 21681.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 38
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 32
test072689.40 2057.45 1792.32 888.63 4357.71 22483.14 1093.96 855.17 25
SR-MVS70.92 14669.73 14774.50 16583.38 10650.48 17684.27 16079.35 23548.96 31166.57 12690.45 8133.65 25787.11 20866.42 12574.56 14485.91 193
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
GST-MVS74.87 8273.90 8477.77 8383.30 10753.45 11085.75 11085.29 10659.22 19166.50 12789.85 9840.94 16690.76 8870.94 10183.35 5789.10 125
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18488.58 4757.62 22758.60 23282.79 20651.03 5191.48 6752.84 23962.36 25285.59 201
Anonymous2024052969.71 16767.28 18677.00 10483.78 9650.36 18288.87 4685.10 11647.22 31964.03 16383.37 19927.93 29892.10 5757.78 20367.44 20288.53 141
Anonymous20240521170.11 15667.88 17276.79 11387.20 4547.24 26489.49 3677.38 27254.88 26966.14 12986.84 15620.93 34991.54 6656.45 21671.62 16891.59 57
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
tttt051768.33 19366.29 20374.46 16678.08 22749.06 21080.88 25289.08 2754.40 27454.75 28280.77 24051.31 4890.33 10049.35 26258.01 28483.99 224
our_test_359.11 28955.08 30571.18 25071.42 31753.29 11981.96 22274.52 30248.32 31342.08 35069.28 34728.14 29582.15 28534.35 33445.68 35678.11 313
thisisatest051573.64 10172.20 10677.97 8081.63 15453.01 12786.69 9288.81 3762.53 13264.06 16185.65 16952.15 4492.50 4658.43 18869.84 18488.39 143
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31754.74 7981.84 22772.27 32149.02 31045.86 34068.99 34826.27 30983.30 28030.12 34943.23 36175.69 333
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 15080.26 2393.10 2746.53 9192.41 4879.97 3988.77 1192.08 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS88.13 147
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 26081.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part289.33 2355.48 5582.27 12
thres100view90066.87 22965.42 22771.24 24783.29 10843.15 31481.67 23287.78 5859.04 19855.92 27282.18 22543.73 13087.80 18428.80 35466.36 21282.78 251
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24685.16 11354.48 27351.32 30873.63 31532.32 26886.89 21721.78 38055.71 30877.29 320
tfpn200view967.57 20866.13 20771.89 23884.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21282.78 251
c3_l67.97 19866.66 19671.91 23776.20 25749.31 20782.13 22078.00 26161.99 14057.64 25076.94 27949.41 6684.93 26360.62 17057.01 29481.49 264
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28848.10 24546.30 38254.31 37348.18 31550.88 31377.43 27238.37 19359.16 38054.83 22363.14 24475.66 334
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
Fast-Effi-MVS+-dtu66.53 23364.10 24273.84 18672.41 30752.30 14284.73 14775.66 29459.51 18256.34 26979.11 25628.11 29685.85 24857.74 20463.29 24083.35 236
Effi-MVS+-dtu66.24 23864.96 23470.08 26675.17 27049.64 19782.01 22174.48 30362.15 13757.83 24476.08 29530.59 28383.79 27365.40 13960.93 25876.81 323
CANet_DTU73.71 9873.14 9175.40 14482.61 13350.05 18984.67 15179.36 23469.72 3075.39 4390.03 9529.41 29085.93 24767.99 11779.11 9790.22 95
MVS_030481.58 982.05 780.20 3182.36 13754.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 30
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16552.65 13484.34 15884.46 13361.16 15469.14 10591.76 5539.98 18088.99 14078.19 5384.89 4889.48 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs138.86 18988.13 147
sam_mvs35.99 234
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32745.07 29180.42 25874.25 30443.54 34550.02 31673.73 31131.97 27256.74 38251.06 25353.60 32478.42 307
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16656.31 4281.59 23686.41 8169.61 3181.72 1688.16 13255.09 2788.04 17774.12 8486.31 3391.09 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
OPM-MVS70.75 14969.58 14874.26 17475.55 26851.34 16286.05 10383.29 16061.94 14262.95 17885.77 16834.15 25188.44 16065.44 13871.07 17382.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14354.67 8584.06 16785.35 10261.10 15672.99 6691.50 6340.25 17391.00 8176.84 6386.98 2490.51 88
ambc62.06 32953.98 38229.38 37935.08 39379.65 22541.37 35459.96 3706.27 39382.15 28535.34 32738.22 37074.65 343
MTGPAbinary81.31 193
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6991.98 5245.10 10991.27 7175.02 7784.56 5090.84 81
Effi-MVS+75.24 7673.61 8580.16 3381.92 14357.42 1985.21 12776.71 28460.68 16773.32 6389.34 10747.30 8191.63 6468.28 11579.72 9291.42 64
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20292.28 5282.73 2585.71 3891.57 59
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
new-patchmatchnet48.21 33946.55 34153.18 35757.73 37718.19 40170.24 33071.02 33345.70 33033.70 37660.23 36918.00 36169.86 36627.97 36134.35 37871.49 363
pmmvs659.64 28357.15 29067.09 29766.01 35036.86 35180.50 25678.64 24945.05 33549.05 32073.94 30927.28 30386.10 23843.96 29649.94 33778.31 309
pmmvs562.80 26461.18 26067.66 29369.53 33242.37 32582.65 20775.19 29954.30 27652.03 30578.51 26031.64 27780.67 29948.60 26858.15 28079.95 292
test_post170.84 32914.72 40634.33 25083.86 27148.80 266
test_post16.22 40337.52 20684.72 265
Fast-Effi-MVS+72.73 11371.15 12577.48 8982.75 12854.76 7886.77 9080.64 20463.05 12365.93 13384.01 18744.42 12389.03 13656.45 21676.36 12288.64 136
patchmatchnet-post59.74 37138.41 19279.91 312
Anonymous2023121166.08 24063.67 24373.31 19983.07 11548.75 22286.01 10584.67 12945.27 33356.54 26676.67 28528.06 29788.95 14252.78 24159.95 26082.23 254
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37246.44 27275.36 29767.72 35149.61 30743.65 34467.58 35121.63 34577.04 33344.11 29544.33 35873.15 355
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33988.45 4968.73 10987.45 14759.15 1090.67 9054.83 22387.67 1792.03 45
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
Anonymous2023120659.08 29057.59 28763.55 32168.77 33832.14 36880.26 26179.78 22150.00 30549.39 31872.39 32826.64 30878.36 31933.12 34057.94 28580.14 290
MTAPA72.73 11371.22 12377.27 9681.54 16053.57 10667.06 34581.31 19359.41 18568.39 11190.96 7136.07 23189.01 13773.80 8782.45 6389.23 120
MTMP87.27 7715.34 411
gm-plane-assit83.24 10954.21 9570.91 2288.23 13195.25 1466.37 126
test9_res78.72 4985.44 4291.39 65
MVP-Stereo70.97 14470.44 13372.59 21376.03 26151.36 16185.02 13786.99 7160.31 17156.53 26778.92 25740.11 17790.00 10960.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST985.68 5755.42 5687.59 6784.00 14457.72 22372.99 6690.98 6944.87 11688.58 154
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22172.99 6690.98 6944.99 11288.58 15478.19 5385.32 4391.34 69
gg-mvs-nofinetune67.43 21264.53 23876.13 12585.95 5347.79 25564.38 35188.28 5139.34 35466.62 12341.27 38858.69 1389.00 13849.64 26086.62 3091.59 57
SCA63.84 25160.01 27375.32 14778.58 22057.92 1061.61 36177.53 26856.71 24557.75 24870.77 33931.97 27279.91 31248.80 26656.36 29688.13 147
Patchmatch-test53.33 32648.17 33568.81 28173.31 29442.38 32442.98 38558.23 36832.53 37238.79 36470.77 33939.66 18273.51 35325.18 36952.06 33290.55 85
test_885.72 5655.31 6187.60 6683.88 14757.84 22172.84 7090.99 6844.99 11288.34 165
MS-PatchMatch72.34 12071.26 12275.61 13682.38 13655.55 5388.00 5589.95 1965.38 8456.51 26880.74 24132.28 26992.89 3557.95 19988.10 1578.39 308
Patchmatch-RL test58.72 29554.32 30771.92 23663.91 36444.25 30161.73 36055.19 37157.38 23249.31 31954.24 37937.60 20480.89 29462.19 15747.28 34790.63 84
cdsmvs_eth3d_5k18.33 37224.44 3640.00 3930.00 4150.00 4170.00 40489.40 220.00 4090.00 41292.02 4838.55 1910.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.15 3794.20 3820.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 41137.77 1970.00 4100.00 4110.00 4080.00 408
agg_prior275.65 6985.11 4691.01 77
agg_prior85.64 6054.92 7583.61 15472.53 7588.10 175
tmp_tt9.44 37410.68 3775.73 3902.49 4134.21 41410.48 40318.04 4090.34 40712.59 39920.49 40111.39 3767.03 40913.84 3946.46 4065.95 404
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
anonymousdsp60.46 28057.65 28668.88 27863.63 36545.09 29072.93 31378.63 25046.52 32451.12 30972.80 32321.46 34783.07 28257.79 20253.97 32078.47 305
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11392.89 23
nrg03072.27 12471.56 11774.42 16875.93 26350.60 17286.97 8483.21 16162.75 12767.15 11984.38 18250.07 5986.66 22271.19 9862.37 25185.99 190
v14419267.86 20065.76 21774.16 17671.68 31353.09 12484.14 16480.83 20262.85 12659.21 22177.28 27439.30 18488.00 17858.67 18657.88 28881.40 270
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16987.72 6266.86 5857.66 24984.17 18652.28 4285.31 25452.72 24468.80 19184.02 222
v192192067.45 21165.23 23074.10 17871.51 31652.90 13083.75 17680.44 20762.48 13559.12 22277.13 27536.98 21687.90 18057.53 20558.14 28281.49 264
UA-Net67.32 21666.23 20570.59 25778.85 21241.23 33373.60 30775.45 29761.54 14866.61 12484.53 18138.73 19086.57 22742.48 30474.24 14583.98 226
v119267.96 19965.74 21874.63 16371.79 31153.43 11384.06 16780.99 20063.19 12159.56 21277.46 27137.50 20888.65 15158.20 19458.93 27181.79 259
FC-MVSNet-test67.49 21067.91 17066.21 30676.06 25933.06 36380.82 25387.18 6764.44 9454.81 28082.87 20450.40 5882.60 28348.05 27266.55 21082.98 247
v114468.81 18366.82 19174.80 16272.34 30853.46 10884.68 14981.77 18764.25 9660.28 20377.91 26440.23 17488.95 14260.37 17659.52 26481.97 256
sosnet-low-res0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
HFP-MVS74.37 8673.13 9378.10 7884.30 8453.68 10485.58 11684.36 13556.82 24265.78 13690.56 7740.70 17190.90 8569.18 11080.88 7489.71 109
v14868.24 19666.35 20173.88 18471.76 31251.47 15984.23 16181.90 18463.69 10958.94 22476.44 28743.72 13287.78 18760.63 16955.86 30682.39 253
sosnet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
AllTest47.32 34144.66 34355.32 35565.08 35837.50 34962.96 35754.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
TestCases55.32 35565.08 35837.50 34954.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
v7n62.50 26759.27 27872.20 22467.25 34849.83 19577.87 28380.12 21252.50 28848.80 32273.07 31932.10 27087.90 18046.83 28054.92 31378.86 299
region2R73.75 9772.55 9777.33 9283.90 9452.98 12885.54 12084.09 14256.83 24165.10 14290.45 8137.34 21190.24 10468.89 11280.83 7688.77 134
iter_conf0573.51 10372.24 10577.33 9287.93 3955.97 4887.90 6170.81 33468.72 3564.04 16284.36 18447.54 7990.87 8671.11 10067.75 20085.13 206
RRT_MVS63.68 25461.01 26371.70 23973.48 29245.98 28181.19 24476.08 29154.33 27552.84 29879.27 25222.21 34087.65 19254.13 22855.54 31081.46 267
PS-MVSNAJss68.78 18567.17 18873.62 19573.01 29948.33 23884.95 14184.81 12359.30 19058.91 22779.84 24737.77 19788.86 14662.83 15263.12 24583.67 234
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19792.50 4682.75 2486.25 3491.57 59
jajsoiax63.21 25960.84 26470.32 26268.33 34244.45 29781.23 24381.05 19753.37 28250.96 31277.81 26717.49 36385.49 25259.31 18058.05 28381.02 279
mvs_tets62.96 26260.55 26670.19 26368.22 34544.24 30280.90 25180.74 20352.99 28550.82 31477.56 26816.74 36685.44 25359.04 18357.94 28580.89 280
EI-MVSNet-UG-set72.37 11971.73 11574.29 17381.60 15649.29 20881.85 22688.64 4265.29 8865.05 14388.29 13043.18 13991.83 6163.74 14667.97 19781.75 260
EI-MVSNet-Vis-set73.19 10772.60 9674.99 16082.56 13449.80 19682.55 21189.00 2866.17 6965.89 13488.98 11343.83 12792.29 5165.38 14069.01 19082.87 249
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 29
test_prior456.39 4087.15 81
XVS72.92 10971.62 11676.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 16589.63 10235.50 23689.78 11565.50 13280.50 7988.16 144
v124066.99 22564.68 23673.93 18271.38 31952.66 13383.39 18979.98 21561.97 14158.44 23977.11 27635.25 23887.81 18256.46 21558.15 28081.33 273
pm-mvs164.12 24962.56 24768.78 28271.68 31338.87 34282.89 20381.57 18855.54 26153.89 29177.82 26637.73 20086.74 21948.46 27053.49 32580.72 282
test_prior289.04 4361.88 14373.55 5991.46 6548.01 7474.73 7885.46 41
X-MVStestdata65.85 24262.20 25076.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 1654.82 40735.50 23689.78 11565.50 13280.50 7988.16 144
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 85
旧先验281.73 23145.53 33274.66 4870.48 36558.31 192
新几何281.61 235
新几何173.30 20083.10 11253.48 10771.43 32945.55 33166.14 12987.17 15233.88 25580.54 30248.50 26980.33 8385.88 195
旧先验181.57 15947.48 25771.83 32388.66 12036.94 21778.34 10488.67 135
无先验85.19 12878.00 26149.08 30985.13 26052.78 24187.45 163
原ACMM283.77 175
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29166.70 12187.07 15440.15 17689.70 11951.23 25185.06 4784.10 220
test22279.36 19950.97 16777.99 28267.84 35042.54 34962.84 17986.53 16130.26 28576.91 11485.23 204
testdata277.81 33045.64 287
segment_acmp44.97 114
testdata67.08 29877.59 23545.46 28869.20 34644.47 33871.50 8788.34 12831.21 27970.76 36452.20 24675.88 12685.03 207
testdata177.55 28564.14 99
v867.25 21764.99 23374.04 17972.89 30253.31 11882.37 21680.11 21361.54 14854.29 28776.02 29642.89 14488.41 16158.43 18856.36 29680.39 287
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 26285.14 11559.44 18458.93 22588.89 11633.83 25689.60 12261.49 16277.42 11088.57 139
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 12074.63 4990.83 7541.38 16494.40 2275.42 7379.90 9094.72 2
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8672.37 7789.34 10732.52 26692.76 4077.90 5875.96 12592.22 40
VDDNet74.37 8672.13 10981.09 2179.58 19756.52 3790.02 2786.70 7752.61 28771.23 9087.20 15131.75 27693.96 2774.30 8375.77 12892.79 27
v1066.61 23264.20 24173.83 18772.59 30553.37 11481.88 22579.91 21961.11 15554.09 28975.60 29840.06 17888.26 17156.47 21456.10 30279.86 293
VPNet72.07 12671.42 12174.04 17978.64 21947.17 26589.91 3287.97 5572.56 1264.66 14985.04 17741.83 15988.33 16661.17 16560.97 25786.62 179
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20665.37 14091.48 6445.72 10195.05 1672.11 9689.52 1093.44 11
v2v48269.55 17267.64 17875.26 15472.32 30953.83 10084.93 14281.94 18065.37 8560.80 19979.25 25341.62 16088.98 14163.03 15159.51 26582.98 247
V4267.66 20565.60 22273.86 18570.69 32653.63 10581.50 23978.61 25163.85 10559.49 21577.49 27037.98 19487.65 19262.33 15458.43 27580.29 288
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24474.48 5291.81 5443.72 13290.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19780.23 21163.32 11860.65 20179.22 25430.98 28188.37 16261.25 16366.41 21187.46 162
MSLP-MVS++74.21 8872.25 10480.11 3681.45 16356.47 3886.32 9779.65 22558.19 21266.36 12892.29 4236.11 22990.66 9167.39 11982.49 6293.18 19
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25578.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 89
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize69.62 17168.23 16773.80 18881.58 15848.22 24081.91 22479.50 22848.21 31464.24 16089.75 10031.91 27587.55 19863.08 15073.85 14985.64 199
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20055.03 37565.44 35544.72 33651.00 31061.19 36722.83 33375.41 34428.54 35753.63 32274.57 344
EI-MVSNet69.70 16968.70 15972.68 21175.00 27548.90 21879.54 26987.16 6861.05 15763.88 16783.74 19245.87 9890.44 9657.42 20764.68 22578.70 301
Regformer0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36579.54 26973.49 31436.98 36256.28 27083.74 19229.28 29269.53 36746.48 28263.23 24183.94 229
pmmvs463.34 25861.07 26270.16 26470.14 32850.53 17479.97 26671.41 33055.08 26554.12 28878.58 25932.79 26482.09 28750.33 25557.22 29377.86 314
EU-MVSNet52.63 32850.72 32558.37 34662.69 36928.13 38372.60 31475.97 29230.94 37740.76 35972.11 33220.16 35170.80 36335.11 33146.11 35476.19 332
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9246.77 8891.00 8173.52 8878.46 10293.44 11
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24185.13 13079.72 22259.18 19463.13 17582.58 21436.91 21880.24 30660.56 17175.17 13586.39 184
TESTMET0.1,172.86 11172.33 10174.46 16681.98 14250.77 16885.13 13085.47 9666.09 7167.30 11783.69 19437.27 21283.57 27765.06 14278.97 9989.05 126
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24185.13 13079.72 22253.38 28163.13 17582.58 21427.23 30480.24 30660.56 17175.17 13586.39 184
VPA-MVSNet71.12 14070.66 13072.49 21678.75 21444.43 29887.64 6590.02 1763.97 10365.02 14481.58 23342.14 15287.42 20163.42 14863.38 23985.63 200
ACMMPR73.76 9672.61 9577.24 9883.92 9352.96 12985.58 11684.29 13656.82 24265.12 14190.45 8137.24 21390.18 10669.18 11080.84 7588.58 138
testgi54.25 32052.57 31959.29 34362.76 36821.65 39372.21 32070.47 33653.25 28341.94 35177.33 27314.28 37277.95 32729.18 35351.72 33378.28 310
test20.0355.22 31654.07 30958.68 34563.14 36725.00 38677.69 28474.78 30152.64 28643.43 34572.39 32826.21 31074.76 34629.31 35247.05 35076.28 331
thres600view766.46 23465.12 23170.47 25883.41 10243.80 30682.15 21887.78 5859.37 18656.02 27182.21 22443.73 13086.90 21626.51 36664.94 22180.71 283
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37570.02 34044.72 33651.00 31061.19 36722.83 33378.88 31728.54 35753.63 32274.57 344
MP-MVScopyleft74.99 8174.33 7876.95 10782.89 12453.05 12685.63 11583.50 15557.86 22067.25 11890.24 8643.38 13888.85 14876.03 6582.23 6488.96 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs6.14 3778.18 3800.01 3910.01 4140.00 41773.40 3110.00 4150.00 4090.02 4100.15 4090.00 4140.00 4100.02 4090.00 4080.02 406
thres40067.40 21566.13 20771.19 24984.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21280.71 283
test1236.01 3788.01 3810.01 3910.00 4150.01 41671.93 3240.00 4150.00 4090.02 4100.11 4100.00 4140.00 4100.02 4090.00 4080.02 406
thres20068.71 18667.27 18773.02 20384.73 7646.76 26885.03 13687.73 6162.34 13659.87 20583.45 19843.15 14088.32 16731.25 34767.91 19883.98 226
test0.0.03 162.54 26562.44 24862.86 32772.28 31029.51 37882.93 20278.78 24559.18 19453.07 29782.41 21836.91 21877.39 33237.45 31458.96 27081.66 262
pmmvs345.53 34541.55 34957.44 34848.97 39039.68 33970.06 33157.66 36928.32 38034.06 37557.29 3768.50 38566.85 36934.86 33334.26 37965.80 375
EMVS18.42 37117.66 37520.71 38734.13 40112.64 40746.94 38129.94 40010.46 4015.58 40714.93 4054.23 39738.83 3985.24 4077.51 40410.67 403
E-PMN19.16 37018.40 37421.44 38636.19 39913.63 40647.59 38030.89 39810.73 3995.91 40616.59 4023.66 39839.77 3975.95 4058.14 40210.92 402
PGM-MVS72.60 11571.20 12476.80 11282.95 12052.82 13183.07 19982.14 17656.51 25063.18 17489.81 9935.68 23589.76 11767.30 12080.19 8487.83 153
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38161.39 36345.79 37960.73 16637.65 36772.47 32631.42 27881.08 29349.66 25970.41 18086.87 171
LCM-MVSNet28.07 35923.85 36740.71 36927.46 40918.93 39630.82 39746.19 37812.76 39616.40 39434.70 3951.90 40548.69 39120.25 38324.22 39154.51 384
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
mvs_anonymous72.29 12270.74 12876.94 10882.85 12554.72 8178.43 28081.54 18963.77 10661.69 19179.32 25151.11 4985.31 25462.15 15875.79 12790.79 82
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6282.76 20750.44 5789.00 13865.90 13080.61 7791.64 55
MDA-MVSNet-bldmvs51.56 33347.75 33963.00 32571.60 31547.32 26169.70 33572.12 32243.81 34327.65 38963.38 36121.97 34475.96 34127.30 36432.19 38265.70 376
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20770.75 9690.85 7443.10 14390.63 9370.50 10384.51 5290.24 94
test1279.24 4486.89 4756.08 4585.16 11372.27 7947.15 8391.10 7985.93 3690.54 87
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8285.88 9072.11 1471.57 8588.63 12450.89 5590.35 9976.00 6679.11 9791.63 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive75.11 8074.65 7576.46 11678.52 22153.35 11583.28 19379.94 21770.51 2571.64 8488.72 11846.02 9786.08 24177.52 5975.75 12989.96 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.15 7974.54 7776.98 10681.67 15351.74 15283.84 17391.94 369.97 2858.98 22386.02 16559.73 891.73 6368.37 11470.40 18187.48 161
baseline172.51 11872.12 11073.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 15087.97 13855.00 2889.48 12359.07 18256.05 30387.13 168
YYNet153.82 32349.96 32865.41 31270.09 33048.95 21572.30 31871.66 32744.25 34131.89 38163.07 36323.73 32973.95 34933.26 33839.40 36873.34 352
PMMVS226.71 36322.98 36837.87 37436.89 3988.51 41242.51 38629.32 40119.09 39013.01 39837.54 3892.23 40353.11 38514.54 39211.71 40051.99 387
MDA-MVSNet_test_wron53.82 32349.95 32965.43 31170.13 32949.05 21172.30 31871.65 32844.23 34231.85 38263.13 36223.68 33074.01 34833.25 33939.35 36973.23 354
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9170.03 33277.61 26751.91 29253.48 29568.29 34937.91 19586.66 22233.36 33758.27 27873.62 350
PM-MVS46.92 34243.76 34756.41 35252.18 38432.26 36763.21 35638.18 39037.99 35940.78 35866.20 3545.09 39565.42 37048.19 27141.99 36371.54 362
HQP_MVS70.96 14569.91 14574.12 17777.95 22949.57 19885.76 10882.59 17163.60 11162.15 18783.28 20136.04 23288.30 16865.46 13572.34 16284.49 214
plane_prior777.95 22948.46 232
plane_prior678.42 22449.39 20636.04 232
plane_prior582.59 17188.30 16865.46 13572.34 16284.49 214
plane_prior483.28 201
plane_prior348.95 21564.01 10262.15 187
plane_prior285.76 10863.60 111
plane_prior178.31 226
plane_prior49.57 19887.43 7064.57 9372.84 157
PS-CasMVS58.12 30157.03 29261.37 33668.24 34433.80 36176.73 28978.01 26051.20 29847.54 33076.20 29432.85 26272.76 35735.17 33047.37 34677.55 319
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 16186.78 7466.31 6658.51 23382.45 21751.57 4684.64 26753.11 23555.96 30483.96 228
PEN-MVS58.35 30057.15 29061.94 33167.55 34734.39 35577.01 28678.35 25751.87 29347.72 32776.73 28433.91 25373.75 35134.03 33547.17 34877.68 316
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 28941.61 32886.36 9679.30 23856.90 23952.53 30076.44 28741.85 15887.60 19738.83 31140.61 36677.86 314
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35132.57 36675.71 29177.09 27751.16 29946.65 33676.34 28932.84 26373.22 35530.94 34844.87 35777.06 321
DU-MVS66.84 23065.74 21870.16 26473.27 29742.59 32081.50 23982.92 16863.53 11358.51 23382.11 22640.75 16884.64 26753.11 23555.96 30483.24 240
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28242.93 31682.42 21584.90 12063.69 10959.63 21080.99 23747.18 8285.23 25751.17 25256.75 29583.19 242
CP-MVSNet58.54 29957.57 28861.46 33568.50 34033.96 35976.90 28878.60 25251.67 29647.83 32676.60 28634.99 24472.79 35635.45 32547.58 34477.64 318
WR-MVS_H58.91 29358.04 28561.54 33469.07 33633.83 36076.91 28781.99 17951.40 29748.17 32374.67 30340.23 17474.15 34731.78 34448.10 34076.64 327
WR-MVS67.58 20766.76 19370.04 26875.92 26445.06 29486.23 9985.28 10764.31 9558.50 23581.00 23644.80 12082.00 28849.21 26455.57 30983.06 245
NR-MVSNet67.25 21765.99 21171.04 25273.27 29743.91 30485.32 12484.75 12666.05 7453.65 29482.11 22645.05 11085.97 24547.55 27456.18 30183.24 240
Baseline_NR-MVSNet65.49 24464.27 24069.13 27674.37 28541.65 32783.39 18978.85 24259.56 18159.62 21176.88 28240.75 16887.44 20049.99 25655.05 31278.28 310
TranMVSNet+NR-MVSNet66.94 22765.61 22170.93 25473.45 29343.38 31183.02 20184.25 13865.31 8758.33 24081.90 22939.92 18185.52 25049.43 26154.89 31483.89 230
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24974.26 5491.60 6154.26 3192.16 5475.87 6779.91 8993.05 21
n20.00 415
nn0.00 415
mPP-MVS71.79 13370.38 13576.04 12882.65 13252.06 14384.45 15581.78 18655.59 25962.05 18989.68 10133.48 25888.28 17065.45 13778.24 10587.77 155
door-mid41.31 387
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35545.88 28265.06 34873.57 31346.45 32557.42 25783.35 20026.95 30678.09 32253.77 23264.03 22984.42 216
mvsmamba66.93 22864.88 23573.09 20275.06 27347.26 26283.36 19169.21 34562.64 13055.68 27481.43 23429.72 28889.20 13263.35 14963.50 23582.79 250
MVSFormer73.53 10272.19 10777.57 8783.02 11755.24 6381.63 23381.44 19150.28 30176.67 4090.91 7244.82 11886.11 23660.83 16780.09 8591.36 67
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2583.99 14668.26 3874.10 5590.91 7242.14 15289.99 11079.30 4279.12 9691.36 67
jason: jason.
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11890.23 10580.83 3780.09 8592.08 42
test_djsdf63.84 25161.56 25570.70 25668.78 33744.69 29581.63 23381.44 19150.28 30152.27 30376.26 29026.72 30786.11 23660.83 16755.84 30781.29 276
HPM-MVS_fast67.86 20066.28 20472.61 21280.67 18248.34 23681.18 24575.95 29350.81 30059.55 21388.05 13627.86 29985.98 24358.83 18473.58 15083.51 235
K. test v354.04 32149.42 33267.92 29268.55 33942.57 32375.51 29563.07 36352.07 29039.21 36164.59 35919.34 35482.21 28437.11 31725.31 39078.97 298
lessismore_v067.98 29164.76 36141.25 33245.75 38036.03 37165.63 35719.29 35584.11 27035.67 32421.24 39578.59 304
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32541.46 33174.73 30064.69 35747.56 31839.12 36269.49 34418.49 36084.69 26631.87 34334.20 38075.48 335
OurMVSNet-221017-052.39 33048.73 33363.35 32465.21 35638.42 34568.54 34064.95 35638.19 35739.57 36071.43 33513.23 37479.92 31037.16 31540.32 36771.72 360
HPM-MVScopyleft72.60 11571.50 11875.89 13182.02 14151.42 16080.70 25583.05 16456.12 25464.03 16389.53 10337.55 20588.37 16270.48 10480.04 8787.88 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS61.88 27259.34 27769.49 27265.37 35446.27 27764.80 34973.49 31447.04 32157.41 25882.85 20525.15 31978.18 32053.00 23864.98 22084.01 223
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37040.95 33563.36 35372.43 32045.20 33446.02 33874.09 3079.20 38278.12 32145.13 28858.27 27877.66 317
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6285.46 9771.67 1671.38 8888.35 12751.58 4591.22 7479.02 4479.89 9191.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test66.44 23564.58 23772.02 22874.42 28348.60 22583.07 19980.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
LGP-MVS_train72.02 22874.42 28348.60 22580.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 17184.88 12171.38 2071.51 8689.15 11250.51 5690.55 9575.71 6878.65 10091.39 65
test1184.25 138
door43.27 383
EPNet_dtu66.25 23766.71 19464.87 31678.66 21834.12 35882.80 20475.51 29561.75 14464.47 15886.90 15537.06 21572.46 35843.65 29769.63 18888.02 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14883.49 19741.52 16393.69 3070.55 10281.82 6892.12 41
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5649.32 6890.17 10773.46 8982.77 5991.69 54
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS51.56 156
HQP-NCC79.02 20888.00 5565.45 8064.48 155
ACMP_Plane79.02 20888.00 5565.45 8064.48 155
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27774.91 4791.68 5843.80 12890.31 10174.36 8181.82 6888.87 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS66.70 123
HQP4-MVS64.47 15888.61 15384.91 210
HQP3-MVS83.68 15073.12 153
HQP2-MVS37.35 209
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 34
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5792.75 3446.88 8693.28 3178.79 4884.07 5491.50 63
114514_t69.87 16567.88 17275.85 13288.38 2952.35 14086.94 8583.68 15053.70 27855.68 27485.60 17030.07 28791.20 7555.84 21971.02 17483.99 224
CP-MVS72.59 11771.46 11976.00 13082.93 12252.32 14186.93 8682.48 17355.15 26463.65 16990.44 8435.03 24388.53 15868.69 11377.83 10687.15 167
DSMNet-mixed38.35 35035.36 35547.33 36348.11 39214.91 40537.87 39136.60 39319.18 38934.37 37459.56 37215.53 37053.01 38620.14 38446.89 35174.07 346
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30481.28 19560.24 17268.04 11375.27 30052.26 4388.50 15955.82 22068.03 19689.33 117
NP-MVS78.76 21350.43 17785.12 175
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21185.81 10684.78 12451.85 29444.19 34173.48 31715.52 37189.85 11340.16 30867.24 20373.54 351
tpm cat166.28 23662.78 24676.77 11481.40 16457.14 2270.03 33277.19 27453.00 28458.76 23170.73 34146.17 9386.73 22043.27 29864.46 22686.44 182
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 17055.31 6189.76 3486.91 7262.94 12571.65 8391.56 6242.33 14892.56 4577.14 6283.69 5690.15 99
Skip Steuart: Steuart Systems R&D Blog.
CostFormer73.89 9472.30 10378.66 6382.36 13756.58 3375.56 29385.30 10566.06 7370.50 10276.88 28257.02 1689.06 13468.27 11668.74 19290.33 91
CR-MVSNet62.47 26859.04 28072.77 20973.97 29056.57 3460.52 36471.72 32560.04 17357.49 25465.86 35538.94 18780.31 30542.86 30159.93 26181.42 268
JIA-IIPM52.33 33147.77 33866.03 30771.20 32046.92 26640.00 39076.48 28837.10 36146.73 33437.02 39032.96 26177.88 32835.97 32352.45 33173.29 353
Patchmtry56.56 30852.95 31567.42 29572.53 30650.59 17359.05 36871.72 32537.86 36046.92 33365.86 35538.94 18780.06 30936.94 32046.72 35271.60 361
PatchT56.60 30752.97 31467.48 29472.94 30146.16 28057.30 37273.78 31038.77 35654.37 28657.26 37737.52 20678.06 32332.02 34252.79 32978.23 312
tpmrst71.04 14369.77 14674.86 16183.19 11155.86 5175.64 29278.73 24867.88 4464.99 14773.73 31149.96 6379.56 31565.92 12967.85 19989.14 124
BH-w/o70.02 16068.51 16174.56 16482.77 12750.39 17986.60 9478.14 25959.77 17759.65 20985.57 17139.27 18587.30 20449.86 25874.94 14285.99 190
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 29078.75 24767.73 4763.54 17374.86 30248.33 7072.36 35953.93 23163.71 23289.21 121
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned68.28 19466.40 20073.91 18381.62 15550.01 19085.56 11877.39 27157.63 22657.47 25683.69 19436.36 22787.08 20944.81 29073.08 15684.65 213
RPMNet59.29 28554.25 30874.42 16873.97 29056.57 3460.52 36476.98 27835.72 36657.49 25458.87 37437.73 20085.26 25627.01 36559.93 26181.42 268
MVSTER73.25 10672.33 10176.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16781.66 23152.77 3890.44 9664.66 14364.69 22483.84 231
CPTT-MVS67.15 22065.84 21571.07 25180.96 17250.32 18481.94 22374.10 30546.18 32957.91 24387.64 14529.57 28981.31 29164.10 14470.18 18381.56 263
GBi-Net67.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
PVSNet_Blended_VisFu73.40 10572.44 9976.30 11781.32 16754.70 8285.81 10678.82 24463.70 10864.53 15485.38 17347.11 8487.38 20367.75 11877.55 10786.81 177
PVSNet_BlendedMVS73.42 10473.30 8673.76 18985.91 5451.83 15086.18 10084.24 14065.40 8369.09 10680.86 23946.70 8988.13 17375.43 7165.92 21781.33 273
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36233.12 36273.17 31283.87 14858.98 20041.75 35370.03 34322.54 33679.92 31046.12 28635.31 37481.32 275
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36634.75 35471.38 32681.92 18246.53 32338.95 36357.93 37520.55 35080.20 30839.91 30934.09 38176.57 328
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10689.33 10946.70 8988.13 17375.43 7181.48 7289.55 113
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29977.12 27650.27 30343.28 34767.71 35026.15 31276.90 33736.78 32154.78 31578.65 303
test167.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
new_pmnet33.56 35731.89 35938.59 37249.01 38920.42 39451.01 37837.92 39120.58 38623.45 39146.79 3866.66 39149.28 39020.00 38531.57 38446.09 391
FMVSNet368.84 18167.40 18473.19 20185.05 7148.53 22885.71 11485.36 10160.90 16357.58 25179.15 25542.16 15186.77 21847.25 27763.40 23684.27 218
dp64.41 24661.58 25472.90 20682.40 13554.09 9872.53 31576.59 28760.39 17055.68 27470.39 34235.18 24076.90 33739.34 31061.71 25487.73 156
FMVSNet267.57 20865.79 21672.90 20682.71 12947.97 24985.15 12984.93 11958.55 20856.71 26478.26 26236.72 22386.67 22146.15 28562.94 24784.07 221
FMVSNet164.57 24562.11 25171.96 23177.32 23946.36 27383.52 17883.31 15752.43 28954.42 28576.23 29127.80 30086.20 23242.59 30361.34 25683.32 237
N_pmnet41.25 34739.77 35045.66 36568.50 3400.82 41572.51 3160.38 41435.61 36735.26 37361.51 36620.07 35267.74 36823.51 37440.63 36568.42 369
cascas69.01 17866.13 20777.66 8579.36 19955.41 5886.99 8383.75 14956.69 24658.92 22681.35 23524.31 32692.10 5753.23 23470.61 17885.46 202
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8851.22 16687.29 7679.33 23758.96 20163.63 17086.77 15733.29 26090.30 10344.63 29273.96 14787.30 166
UGNet68.71 18667.11 18973.50 19780.55 18547.61 25684.08 16578.51 25359.45 18365.68 13882.73 21023.78 32885.08 26152.80 24076.40 11887.80 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7891.72 5653.44 3592.37 4966.28 12875.42 13193.28 15
XXY-MVS70.18 15569.28 15572.89 20877.64 23342.88 31785.06 13487.50 6662.58 13162.66 18282.34 22343.64 13489.83 11458.42 19063.70 23385.96 192
EC-MVSNet75.30 7575.20 6575.62 13580.98 17049.00 21487.43 7084.68 12863.49 11570.97 9490.15 9242.86 14591.14 7874.33 8281.90 6786.71 178
sss70.49 15270.13 14271.58 24381.59 15739.02 34180.78 25484.71 12759.34 18766.61 12488.09 13337.17 21485.52 25061.82 16171.02 17490.20 97
Test_1112_low_res67.18 21966.23 20570.02 26978.75 21441.02 33483.43 18573.69 31157.29 23358.45 23882.39 21945.30 10780.88 29550.50 25466.26 21688.16 144
1112_ss70.05 15969.37 15172.10 22580.77 17942.78 31885.12 13376.75 28259.69 17961.19 19692.12 4447.48 8083.84 27253.04 23768.21 19489.66 110
ab-mvs-re7.68 37610.24 3780.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 41292.12 440.00 4140.00 4100.00 4110.00 4080.00 408
ab-mvs70.65 15069.11 15675.29 15180.87 17646.23 27973.48 30985.24 11059.99 17466.65 12280.94 23843.13 14288.69 15063.58 14768.07 19590.95 79
TR-MVS69.71 16767.85 17575.27 15382.94 12148.48 23187.40 7280.86 20157.15 23764.61 15287.08 15332.67 26589.64 12146.38 28371.55 17087.68 158
MDTV_nov1_ep13_2view43.62 30771.13 32854.95 26859.29 22036.76 22046.33 28487.32 165
MDTV_nov1_ep1361.56 25581.68 15255.12 6872.41 31778.18 25859.19 19258.85 22969.29 34634.69 24686.16 23536.76 32262.96 246
MIMVSNet150.35 33647.81 33757.96 34761.53 37127.80 38467.40 34374.06 30743.25 34633.31 38065.38 35816.03 36971.34 36121.80 37947.55 34574.75 342
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 26965.15 34781.94 18059.14 19654.65 28369.47 34525.74 31480.63 30041.03 30669.56 18987.55 160
IterMVS-LS66.63 23165.36 22870.42 26075.10 27248.90 21881.45 24276.69 28561.05 15755.71 27377.10 27745.86 9983.65 27657.44 20657.88 28878.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet70.48 15369.43 14973.64 19377.56 23648.83 22083.51 18277.45 27063.27 11962.33 18485.54 17243.85 12683.29 28157.38 20874.00 14688.79 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref63.20 242
IterMVS63.77 25361.67 25370.08 26672.68 30451.24 16580.44 25775.51 29560.51 16951.41 30773.70 31432.08 27178.91 31654.30 22754.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16756.33 25263.56 17289.47 10434.02 25292.15 5654.05 23072.41 16185.43 203
MVS_111021_LR69.07 17667.91 17072.54 21477.27 24049.56 20079.77 26773.96 30959.33 18960.73 20087.82 14030.19 28681.53 28969.94 10572.19 16486.53 180
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18382.51 21264.43 35941.10 35246.70 33578.77 25824.75 32388.57 15722.26 37856.29 30066.96 371
ACMMP++59.38 267
HQP-MVS72.34 12071.44 12075.03 15879.02 20851.56 15688.00 5583.68 15065.45 8064.48 15585.13 17437.35 20988.62 15266.70 12373.12 15384.91 210
QAPM71.88 13069.33 15379.52 4082.20 14054.30 9286.30 9888.77 3856.61 24859.72 20887.48 14633.90 25495.36 1347.48 27581.49 7188.90 128
Vis-MVSNetpermissive70.61 15169.34 15274.42 16880.95 17548.49 23086.03 10477.51 26958.74 20565.55 13987.78 14134.37 24985.95 24652.53 24580.61 7788.80 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet49.01 33844.71 34261.92 33276.06 25946.61 27063.23 35554.90 37224.77 38433.56 37736.60 39221.28 34875.88 34229.49 35162.54 24963.26 380
IS-MVSNet68.80 18467.55 18172.54 21478.50 22243.43 31081.03 24779.35 23559.12 19757.27 25986.71 15846.05 9687.70 19044.32 29475.60 13086.49 181
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2081.49 24179.11 24058.27 21158.86 22880.41 24242.33 14886.96 21361.91 15968.68 19386.87 171
EPMVS68.45 19065.44 22677.47 9084.91 7456.17 4371.89 32581.91 18361.72 14560.85 19872.49 32536.21 22887.06 21047.32 27671.62 16889.17 123
PAPM_NR71.80 13269.98 14477.26 9781.54 16053.34 11678.60 27985.25 10953.46 28060.53 20288.66 12045.69 10289.24 12856.49 21379.62 9589.19 122
TAMVS69.51 17368.16 16873.56 19676.30 25548.71 22482.57 20977.17 27562.10 13861.32 19584.23 18541.90 15783.46 27954.80 22573.09 15588.50 142
PAPR75.20 7874.13 7978.41 7188.31 3255.10 7084.31 15985.66 9463.76 10767.55 11690.73 7643.48 13789.40 12566.36 12777.03 11290.73 83
RPSCF45.77 34444.13 34650.68 35957.67 37829.66 37754.92 37745.25 38126.69 38245.92 33975.92 29717.43 36445.70 39327.44 36345.95 35576.67 324
Vis-MVSNet (Re-imp)65.52 24365.63 22065.17 31477.49 23730.54 37075.49 29677.73 26559.34 18752.26 30486.69 15949.38 6780.53 30337.07 31875.28 13384.42 216
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22969.61 34342.79 34843.88 34272.13 33122.82 33586.46 22816.57 39050.94 33463.31 379
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8966.06 13189.88 9743.79 12992.16 5475.03 7680.03 8889.64 111
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19271.82 8290.05 9459.72 996.04 1078.37 5188.40 1493.75 9
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33460.38 36641.35 35147.57 32973.73 31116.83 36576.91 33536.99 31959.21 26973.92 348
API-MVS74.17 8972.07 11180.49 2590.02 1158.55 887.30 7584.27 13757.51 22965.77 13787.77 14241.61 16195.97 1151.71 24782.63 6086.94 169
Test By Simon39.38 183
TDRefinement40.91 34838.37 35248.55 36250.45 38833.03 36458.98 36950.97 37728.50 37929.89 38367.39 3526.21 39454.51 38417.67 38835.25 37558.11 381
USDC54.36 31951.23 32363.76 32064.29 36337.71 34862.84 35873.48 31656.85 24035.47 37271.94 3349.23 38178.43 31838.43 31248.57 33975.13 339
EPP-MVSNet71.14 13970.07 14374.33 17179.18 20546.52 27183.81 17486.49 7956.32 25357.95 24284.90 18054.23 3289.14 13358.14 19569.65 18787.33 164
PMMVS72.98 10872.05 11275.78 13383.57 9848.60 22584.08 16582.85 16961.62 14668.24 11290.33 8528.35 29487.78 18772.71 9376.69 11790.95 79
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8886.23 8568.60 3670.18 10388.84 11751.57 4687.16 20765.48 13486.68 2990.15 99
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16251.92 14883.43 18583.03 16556.67 24758.80 23088.91 11531.92 27488.58 15465.89 13173.39 15185.67 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26279.75 26864.34 36042.46 35051.90 30683.94 18827.79 30175.41 34437.12 31659.49 26678.47 305
PatchmatchNetpermissive67.07 22463.63 24477.40 9183.10 11258.03 972.11 32377.77 26458.85 20259.37 21670.83 33837.84 19684.93 26342.96 30069.83 18589.26 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21373.60 5893.31 2343.14 14193.79 2973.81 8688.53 1392.37 35
F-COLMAP55.96 31453.65 31262.87 32672.76 30342.77 31974.70 30270.37 33740.03 35341.11 35779.36 25017.77 36273.70 35232.80 34153.96 32172.15 357
ANet_high34.39 35529.59 36148.78 36130.34 40422.28 39055.53 37463.79 36138.11 35815.47 39636.56 3936.94 38859.98 37613.93 3935.64 40764.08 377
wuyk23d9.11 3758.77 37910.15 38940.18 39616.76 40220.28 4001.01 4132.58 4062.66 4080.98 4080.23 41312.49 4084.08 4086.90 4051.19 405
OMC-MVS65.97 24165.06 23268.71 28472.97 30042.58 32278.61 27875.35 29854.72 27059.31 21886.25 16433.30 25977.88 32857.99 19667.05 20485.66 198
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9173.52 6088.09 13348.07 7292.19 5362.24 15684.53 5191.53 61
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3654.99 7386.10 10276.63 28649.30 30857.80 24586.65 16029.39 29188.94 14445.10 28970.21 18281.06 278
uanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
ITE_SJBPF51.84 35858.03 37631.94 36953.57 37636.67 36341.32 35575.23 30111.17 37751.57 38725.81 36848.04 34172.02 359
DeepMVS_CXcopyleft13.10 38821.34 4128.99 41010.02 41210.59 4007.53 40530.55 3981.82 40614.55 4076.83 4027.52 40315.75 401
TinyColmap48.15 34044.49 34459.13 34465.73 35338.04 34663.34 35462.86 36438.78 35529.48 38467.23 3536.46 39273.30 35424.59 37141.90 36466.04 374
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12470.54 10192.33 4141.05 16594.95 1757.90 20086.55 3291.00 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS33.04 35832.55 35834.52 37640.96 39522.03 39144.45 38435.62 39420.42 38728.12 38762.35 3645.03 39631.88 40621.61 38134.42 37749.63 388
MSDG59.44 28455.14 30472.32 22274.69 27850.71 16974.39 30373.58 31244.44 33943.40 34677.52 26919.45 35390.87 8631.31 34657.49 29275.38 336
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 31066.14 35435.30 37043.24 34879.88 24522.18 34179.62 31419.10 38664.00 23067.05 370
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2486.20 8674.40 865.01 14588.93 11442.05 15490.58 9476.57 6473.96 14785.73 196
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS35.40 35333.67 35740.57 37046.34 39328.74 38241.05 38757.05 37020.37 38822.27 39253.38 3816.87 38944.94 3958.62 39747.11 34948.01 389
Gipumacopyleft27.47 36124.26 36637.12 37560.55 37429.17 38011.68 40260.00 36714.18 39410.52 40315.12 4042.20 40463.01 3728.39 39835.65 37319.18 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015