| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 57 | 82.99 119 | 52.71 132 | 85.04 135 | 88.63 43 | 66.08 72 | 86.77 3 | 92.75 34 | 72.05 1 | 91.46 68 | 83.35 21 | 93.53 1 | 92.23 38 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPM-MVS | | | 82.39 4 | 82.36 6 | 82.49 5 | 80.12 191 | 59.50 5 | 92.24 9 | 90.72 14 | 69.37 33 | 83.22 9 | 94.47 2 | 63.81 5 | 93.18 33 | 74.02 85 | 93.25 2 | 94.80 1 |
|
| OPU-MVS | | | | | 81.71 14 | 92.05 3 | 55.97 48 | 92.48 4 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 5 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 138 | 88.88 32 | 58.00 216 | 83.60 6 | 93.39 20 | 67.21 2 | 96.39 4 | 81.64 32 | 91.98 4 | 93.98 5 |
|
| PC_three_1452 | | | | | | | | | | 66.58 60 | 87.27 2 | 93.70 11 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| MVP-Stereo | | | 70.97 144 | 70.44 133 | 72.59 213 | 76.03 261 | 51.36 161 | 85.02 137 | 86.99 71 | 60.31 171 | 56.53 267 | 78.92 257 | 40.11 177 | 90.00 109 | 60.00 179 | 90.01 6 | 76.41 330 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| iter_conf05_11 | | | 79.47 20 | 78.68 23 | 81.84 12 | 87.91 40 | 57.01 24 | 93.27 2 | 79.49 229 | 74.74 6 | 83.40 8 | 94.00 6 | 21.51 346 | 94.70 21 | 84.07 17 | 89.68 7 | 93.82 7 |
|
| DELS-MVS | | | 82.32 5 | 82.50 4 | 81.79 13 | 86.80 48 | 56.89 29 | 92.77 3 | 86.30 84 | 77.83 2 | 77.88 34 | 92.13 43 | 60.24 6 | 94.78 20 | 78.97 45 | 89.61 8 | 93.69 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 39 | 87.34 44 | 55.20 66 | 89.93 30 | 87.55 65 | 66.04 75 | 79.46 27 | 93.00 32 | 53.10 37 | 91.76 62 | 80.40 38 | 89.56 9 | 92.68 29 |
|
| MVS | | | 76.91 48 | 75.48 61 | 81.23 20 | 84.56 79 | 55.21 65 | 80.23 262 | 91.64 4 | 58.65 206 | 65.37 140 | 91.48 64 | 45.72 101 | 95.05 16 | 72.11 96 | 89.52 10 | 93.44 11 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 22 | 80.12 35 | 84.42 81 | 55.87 50 | 87.58 69 | 86.76 75 | 61.48 150 | 80.26 23 | 93.10 27 | 46.53 91 | 92.41 48 | 79.97 39 | 88.77 11 | 92.08 42 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| 3Dnovator | | 64.70 6 | 74.46 84 | 72.48 98 | 80.41 28 | 82.84 126 | 55.40 59 | 83.08 198 | 88.61 45 | 67.61 51 | 59.85 206 | 88.66 120 | 34.57 247 | 93.97 26 | 58.42 190 | 88.70 12 | 91.85 52 |
|
| PHI-MVS | | | 77.49 41 | 77.00 43 | 78.95 52 | 85.33 67 | 50.69 170 | 88.57 49 | 88.59 46 | 58.14 213 | 73.60 58 | 93.31 23 | 43.14 141 | 93.79 29 | 73.81 86 | 88.53 13 | 92.37 35 |
|
| CSCG | | | 80.41 15 | 79.72 15 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 41 | 91.54 5 | 59.19 192 | 71.82 82 | 90.05 94 | 59.72 9 | 96.04 10 | 78.37 51 | 88.40 14 | 93.75 9 |
|
| MS-PatchMatch | | | 72.34 120 | 71.26 122 | 75.61 136 | 82.38 136 | 55.55 53 | 88.00 55 | 89.95 19 | 65.38 84 | 56.51 268 | 80.74 241 | 32.28 269 | 92.89 35 | 57.95 199 | 88.10 15 | 78.39 308 |
|
| CNVR-MVS | | | 81.76 8 | 81.90 8 | 81.33 19 | 90.04 10 | 57.70 12 | 91.71 11 | 88.87 34 | 70.31 26 | 77.64 37 | 93.87 9 | 52.58 40 | 93.91 28 | 84.17 14 | 87.92 16 | 92.39 34 |
|
| GG-mvs-BLEND | | | | | 77.77 83 | 86.68 49 | 50.61 171 | 68.67 339 | 88.45 49 | | 68.73 109 | 87.45 147 | 59.15 10 | 90.67 90 | 54.83 223 | 87.67 17 | 92.03 45 |
|
| SED-MVS | | | 81.92 7 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 29 | 92.48 4 | 88.94 30 | 57.50 230 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 27 | 87.60 18 | 94.06 3 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 9 | 66.22 68 | 88.26 1 | | | | 82.83 23 | 87.60 18 | 92.44 33 |
|
| test_241102_TWO | | | | | | | | | 88.76 39 | 57.50 230 | 83.60 6 | 94.09 3 | 56.14 21 | 96.37 6 | 82.28 27 | 87.43 20 | 92.55 31 |
|
| MM | | | 82.69 2 | 83.29 3 | 80.89 22 | 84.38 83 | 55.40 59 | 92.16 10 | 89.85 20 | 75.28 5 | 82.41 11 | 93.86 10 | 54.30 30 | 93.98 25 | 90.29 1 | 87.13 21 | 93.30 14 |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 6 | 89.99 18 | 57.71 224 | 81.91 14 | 93.64 13 | 55.17 25 | 96.44 2 | 81.68 30 | 87.13 21 | 92.72 28 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 6 | 88.88 32 | | | | | 96.39 4 | 81.68 30 | 87.13 21 | 92.47 32 |
|
| ACMMP_NAP | | | 76.43 56 | 75.66 58 | 78.73 59 | 81.92 143 | 54.67 85 | 84.06 167 | 85.35 102 | 61.10 156 | 72.99 66 | 91.50 63 | 40.25 173 | 91.00 81 | 76.84 63 | 86.98 24 | 90.51 88 |
|
| test_0728_THIRD | | | | | | | | | | 58.00 216 | 81.91 14 | 93.64 13 | 56.54 17 | 96.44 2 | 81.64 32 | 86.86 25 | 92.23 38 |
|
| SF-MVS | | | 77.64 40 | 77.42 38 | 78.32 74 | 83.75 97 | 52.47 137 | 86.63 93 | 87.80 57 | 58.78 204 | 74.63 49 | 92.38 40 | 47.75 77 | 91.35 70 | 78.18 55 | 86.85 26 | 91.15 74 |
|
| MSC_two_6792asdad | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 36 |
|
| No_MVS | | | | | 81.53 16 | 91.77 4 | 56.03 46 | | 91.10 10 | | | | | 96.22 8 | 81.46 34 | 86.80 27 | 92.34 36 |
|
| PAPM | | | 76.76 53 | 76.07 55 | 78.81 56 | 80.20 189 | 59.11 6 | 86.86 88 | 86.23 85 | 68.60 36 | 70.18 103 | 88.84 117 | 51.57 46 | 87.16 207 | 65.48 134 | 86.68 29 | 90.15 99 |
|
| gg-mvs-nofinetune | | | 67.43 212 | 64.53 238 | 76.13 125 | 85.95 53 | 47.79 255 | 64.38 351 | 88.28 51 | 39.34 354 | 66.62 123 | 41.27 388 | 58.69 13 | 89.00 138 | 49.64 260 | 86.62 30 | 91.59 57 |
|
| MVS_0304 | | | 81.58 9 | 82.05 7 | 80.20 31 | 82.36 137 | 54.70 82 | 91.13 20 | 88.95 29 | 74.49 7 | 80.04 25 | 93.64 13 | 52.40 41 | 93.27 32 | 88.85 4 | 86.56 31 | 92.61 30 |
|
| MAR-MVS | | | 76.76 53 | 75.60 59 | 80.21 30 | 90.87 7 | 54.68 84 | 89.14 42 | 89.11 26 | 62.95 124 | 70.54 101 | 92.33 41 | 41.05 165 | 94.95 17 | 57.90 200 | 86.55 32 | 91.00 78 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| TSAR-MVS + MP. | | | 78.31 30 | 78.26 25 | 78.48 68 | 81.33 166 | 56.31 42 | 81.59 236 | 86.41 81 | 69.61 31 | 81.72 16 | 88.16 132 | 55.09 27 | 88.04 177 | 74.12 84 | 86.31 33 | 91.09 75 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PS-MVSNAJ | | | 80.06 16 | 79.52 17 | 81.68 15 | 85.58 61 | 60.97 3 | 91.69 12 | 87.02 70 | 70.62 23 | 80.75 21 | 93.22 26 | 37.77 197 | 92.50 46 | 82.75 24 | 86.25 34 | 91.57 59 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 82 | 85.46 64 | 49.56 200 | 90.99 22 | 86.66 78 | 70.58 24 | 80.07 24 | 95.30 1 | 56.18 20 | 90.97 84 | 82.57 26 | 86.22 35 | 93.28 15 |
|
| test12 | | | | | 79.24 44 | 86.89 47 | 56.08 45 | | 85.16 113 | | 72.27 79 | | 47.15 83 | 91.10 79 | | 85.93 36 | 90.54 87 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 10 | 75.95 4 | 77.10 38 | 93.09 29 | 54.15 33 | 95.57 12 | 85.80 10 | 85.87 37 | 93.31 13 |
|
| xiu_mvs_v2_base | | | 79.86 17 | 79.31 18 | 81.53 16 | 85.03 73 | 60.73 4 | 91.65 13 | 86.86 73 | 70.30 27 | 80.77 20 | 93.07 31 | 37.63 202 | 92.28 52 | 82.73 25 | 85.71 38 | 91.57 59 |
|
| DPE-MVS |  | | 79.82 18 | 79.66 16 | 80.29 29 | 89.27 24 | 55.08 71 | 88.70 47 | 87.92 56 | 55.55 260 | 81.21 19 | 93.69 12 | 56.51 18 | 94.27 24 | 78.36 52 | 85.70 39 | 91.51 62 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| 9.14 | | | | 78.19 27 | | 85.67 59 | | 88.32 51 | 88.84 36 | 59.89 175 | 74.58 51 | 92.62 37 | 46.80 87 | 92.66 41 | 81.40 36 | 85.62 40 | |
|
| test_prior2 | | | | | | | | 89.04 43 | | 61.88 143 | 73.55 59 | 91.46 65 | 48.01 74 | | 74.73 78 | 85.46 41 | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 49 | 85.44 42 | 91.39 65 |
|
| train_agg | | | 76.91 48 | 76.40 50 | 78.45 70 | 85.68 57 | 55.42 56 | 87.59 67 | 84.00 144 | 57.84 221 | 72.99 66 | 90.98 69 | 44.99 112 | 88.58 154 | 78.19 53 | 85.32 43 | 91.34 69 |
|
| ZNCC-MVS | | | 75.82 69 | 75.02 69 | 78.23 75 | 83.88 95 | 53.80 101 | 86.91 87 | 86.05 88 | 59.71 178 | 67.85 115 | 90.55 78 | 42.23 150 | 91.02 80 | 72.66 94 | 85.29 44 | 89.87 108 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 35 | 77.63 34 | 79.13 49 | 88.52 27 | 55.12 68 | 89.95 29 | 85.98 89 | 68.31 37 | 71.33 89 | 92.75 34 | 45.52 104 | 90.37 98 | 71.15 99 | 85.14 45 | 91.91 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| agg_prior2 | | | | | | | | | | | | | | | 75.65 69 | 85.11 46 | 91.01 77 |
|
| 原ACMM1 | | | | | 76.13 125 | 84.89 75 | 54.59 87 | | 85.26 108 | 51.98 291 | 66.70 121 | 87.07 154 | 40.15 176 | 89.70 119 | 51.23 251 | 85.06 47 | 84.10 220 |
|
| MP-MVS-pluss | | | 75.54 73 | 75.03 68 | 77.04 101 | 81.37 165 | 52.65 134 | 84.34 158 | 84.46 133 | 61.16 154 | 69.14 105 | 91.76 55 | 39.98 180 | 88.99 140 | 78.19 53 | 84.89 48 | 89.48 116 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| CANet | | | 80.90 11 | 81.17 12 | 80.09 37 | 87.62 42 | 54.21 95 | 91.60 14 | 86.47 80 | 73.13 10 | 79.89 26 | 93.10 27 | 49.88 64 | 92.98 34 | 84.09 16 | 84.75 49 | 93.08 20 |
|
| CS-MVS-test | | | 77.20 44 | 77.25 40 | 77.05 100 | 84.60 78 | 49.04 213 | 89.42 37 | 85.83 92 | 65.90 76 | 72.85 69 | 91.98 52 | 45.10 109 | 91.27 71 | 75.02 77 | 84.56 50 | 90.84 81 |
|
| MG-MVS | | | 78.42 27 | 76.99 44 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 30 | 88.51 48 | 64.83 91 | 73.52 60 | 88.09 133 | 48.07 72 | 92.19 53 | 62.24 156 | 84.53 51 | 91.53 61 |
|
| CDPH-MVS | | | 76.05 62 | 75.19 66 | 78.62 64 | 86.51 50 | 54.98 74 | 87.32 73 | 84.59 130 | 58.62 207 | 70.75 96 | 90.85 74 | 43.10 143 | 90.63 93 | 70.50 103 | 84.51 52 | 90.24 94 |
|
| DeepC-MVS | | 67.15 4 | 76.90 50 | 76.27 52 | 78.80 57 | 80.70 180 | 55.02 72 | 86.39 95 | 86.71 76 | 66.96 57 | 67.91 114 | 89.97 96 | 48.03 73 | 91.41 69 | 75.60 70 | 84.14 53 | 89.96 105 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| NCCC | | | 79.57 19 | 79.23 19 | 80.59 24 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 52 | 67.71 48 | 73.81 57 | 92.75 34 | 46.88 86 | 93.28 31 | 78.79 48 | 84.07 54 | 91.50 63 |
|
| OpenMVS |  | 61.00 11 | 69.99 162 | 67.55 181 | 77.30 94 | 78.37 225 | 54.07 99 | 84.36 157 | 85.76 93 | 57.22 235 | 56.71 264 | 87.67 144 | 30.79 282 | 92.83 37 | 43.04 299 | 84.06 55 | 85.01 208 |
|
| SteuartSystems-ACMMP | | | 77.08 46 | 76.33 51 | 79.34 43 | 80.98 170 | 55.31 61 | 89.76 34 | 86.91 72 | 62.94 125 | 71.65 83 | 91.56 62 | 42.33 148 | 92.56 45 | 77.14 62 | 83.69 56 | 90.15 99 |
| Skip Steuart: Steuart Systems R&D Blog. |
| GST-MVS | | | 74.87 82 | 73.90 84 | 77.77 83 | 83.30 107 | 53.45 110 | 85.75 110 | 85.29 106 | 59.22 191 | 66.50 127 | 89.85 98 | 40.94 166 | 90.76 88 | 70.94 101 | 83.35 57 | 89.10 125 |
|
| APDe-MVS |  | | 78.44 26 | 78.20 26 | 79.19 45 | 88.56 26 | 54.55 88 | 89.76 34 | 87.77 60 | 55.91 255 | 78.56 31 | 92.49 39 | 48.20 71 | 92.65 42 | 79.49 40 | 83.04 58 | 90.39 89 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| EPNet | | | 78.36 29 | 78.49 24 | 77.97 80 | 85.49 63 | 52.04 144 | 89.36 39 | 84.07 143 | 73.22 9 | 77.03 39 | 91.72 56 | 49.32 68 | 90.17 107 | 73.46 89 | 82.77 59 | 91.69 54 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| API-MVS | | | 74.17 89 | 72.07 111 | 80.49 25 | 90.02 11 | 58.55 8 | 87.30 75 | 84.27 137 | 57.51 229 | 65.77 137 | 87.77 142 | 41.61 161 | 95.97 11 | 51.71 247 | 82.63 60 | 86.94 169 |
|
| CS-MVS | | | 76.77 52 | 76.70 47 | 76.99 105 | 83.55 99 | 48.75 222 | 88.60 48 | 85.18 111 | 66.38 65 | 72.47 76 | 91.62 60 | 45.53 103 | 90.99 83 | 74.48 80 | 82.51 61 | 91.23 71 |
|
| MSLP-MVS++ | | | 74.21 88 | 72.25 104 | 80.11 36 | 81.45 163 | 56.47 38 | 86.32 97 | 79.65 225 | 58.19 212 | 66.36 128 | 92.29 42 | 36.11 229 | 90.66 91 | 67.39 119 | 82.49 62 | 93.18 19 |
|
| MTAPA | | | 72.73 113 | 71.22 123 | 77.27 96 | 81.54 160 | 53.57 106 | 67.06 345 | 81.31 193 | 59.41 185 | 68.39 111 | 90.96 71 | 36.07 231 | 89.01 137 | 73.80 87 | 82.45 63 | 89.23 120 |
|
| MP-MVS |  | | 74.99 81 | 74.33 78 | 76.95 107 | 82.89 124 | 53.05 126 | 85.63 115 | 83.50 155 | 57.86 220 | 67.25 118 | 90.24 86 | 43.38 138 | 88.85 148 | 76.03 65 | 82.23 64 | 88.96 127 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| EIA-MVS | | | 75.92 64 | 75.18 67 | 78.13 77 | 85.14 70 | 51.60 155 | 87.17 80 | 85.32 104 | 64.69 92 | 68.56 110 | 90.53 79 | 45.79 100 | 91.58 65 | 67.21 121 | 82.18 65 | 91.20 72 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 122 | 70.50 132 | 77.65 86 | 83.40 105 | 51.29 164 | 87.32 73 | 86.40 82 | 59.01 199 | 58.49 236 | 88.32 129 | 32.40 267 | 91.27 71 | 57.04 209 | 82.15 66 | 90.38 90 |
|
| EC-MVSNet | | | 75.30 75 | 75.20 65 | 75.62 135 | 80.98 170 | 49.00 214 | 87.43 70 | 84.68 128 | 63.49 115 | 70.97 94 | 90.15 92 | 42.86 145 | 91.14 78 | 74.33 82 | 81.90 67 | 86.71 178 |
|
| CHOSEN 1792x2688 | | | 76.24 58 | 74.03 83 | 82.88 1 | 83.09 114 | 62.84 2 | 85.73 112 | 85.39 100 | 69.79 29 | 64.87 148 | 83.49 197 | 41.52 163 | 93.69 30 | 70.55 102 | 81.82 68 | 92.12 41 |
|
| APD-MVS |  | | 76.15 60 | 75.68 57 | 77.54 88 | 88.52 27 | 53.44 111 | 87.26 78 | 85.03 117 | 53.79 277 | 74.91 47 | 91.68 58 | 43.80 128 | 90.31 101 | 74.36 81 | 81.82 68 | 88.87 130 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ZD-MVS | | | | | | 89.55 14 | 53.46 108 | | 84.38 134 | 57.02 238 | 73.97 56 | 91.03 67 | 44.57 122 | 91.17 76 | 75.41 74 | 81.78 70 | |
|
| QAPM | | | 71.88 130 | 69.33 153 | 79.52 40 | 82.20 140 | 54.30 92 | 86.30 98 | 88.77 38 | 56.61 248 | 59.72 208 | 87.48 146 | 33.90 254 | 95.36 13 | 47.48 275 | 81.49 71 | 88.90 128 |
|
| PVSNet_Blended | | | 76.53 55 | 76.54 48 | 76.50 115 | 85.91 54 | 51.83 150 | 88.89 45 | 84.24 140 | 67.82 46 | 69.09 106 | 89.33 109 | 46.70 89 | 88.13 173 | 75.43 71 | 81.48 72 | 89.55 113 |
|
| ETV-MVS | | | 77.17 45 | 76.74 46 | 78.48 68 | 81.80 146 | 54.55 88 | 86.13 101 | 85.33 103 | 68.20 39 | 73.10 65 | 90.52 80 | 45.23 108 | 90.66 91 | 79.37 41 | 80.95 73 | 90.22 95 |
|
| HFP-MVS | | | 74.37 86 | 73.13 93 | 78.10 78 | 84.30 84 | 53.68 104 | 85.58 116 | 84.36 135 | 56.82 242 | 65.78 136 | 90.56 77 | 40.70 171 | 90.90 85 | 69.18 110 | 80.88 74 | 89.71 109 |
|
| ACMMPR | | | 73.76 96 | 72.61 95 | 77.24 98 | 83.92 93 | 52.96 129 | 85.58 116 | 84.29 136 | 56.82 242 | 65.12 141 | 90.45 81 | 37.24 213 | 90.18 106 | 69.18 110 | 80.84 75 | 88.58 138 |
|
| region2R | | | 73.75 97 | 72.55 97 | 77.33 92 | 83.90 94 | 52.98 128 | 85.54 120 | 84.09 142 | 56.83 241 | 65.10 142 | 90.45 81 | 37.34 211 | 90.24 104 | 68.89 112 | 80.83 76 | 88.77 134 |
|
| MVS_Test | | | 75.85 66 | 74.93 71 | 78.62 64 | 84.08 89 | 55.20 66 | 83.99 169 | 85.17 112 | 68.07 42 | 73.38 62 | 82.76 207 | 50.44 57 | 89.00 138 | 65.90 130 | 80.61 77 | 91.64 55 |
|
| Vis-MVSNet |  | | 70.61 151 | 69.34 152 | 74.42 168 | 80.95 175 | 48.49 230 | 86.03 104 | 77.51 269 | 58.74 205 | 65.55 139 | 87.78 141 | 34.37 249 | 85.95 246 | 52.53 245 | 80.61 77 | 88.80 132 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| XVS | | | 72.92 109 | 71.62 116 | 76.81 110 | 83.41 102 | 52.48 135 | 84.88 143 | 83.20 162 | 58.03 214 | 63.91 165 | 89.63 102 | 35.50 236 | 89.78 115 | 65.50 132 | 80.50 79 | 88.16 144 |
|
| X-MVStestdata | | | 65.85 242 | 62.20 250 | 76.81 110 | 83.41 102 | 52.48 135 | 84.88 143 | 83.20 162 | 58.03 214 | 63.91 165 | 4.82 407 | 35.50 236 | 89.78 115 | 65.50 132 | 80.50 79 | 88.16 144 |
|
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 64 | 90.34 9 | 53.77 102 | 88.08 54 | 88.36 50 | 76.17 3 | 79.40 28 | 91.09 66 | 55.43 23 | 90.09 108 | 85.01 12 | 80.40 81 | 91.99 48 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 20 | 80.49 25 | 89.75 12 | 56.54 36 | 84.83 145 | 83.68 150 | 67.85 45 | 69.36 104 | 90.24 86 | 60.20 7 | 92.10 57 | 84.14 15 | 80.40 81 | 92.82 25 |
|
| 新几何1 | | | | | 73.30 200 | 83.10 112 | 53.48 107 | | 71.43 329 | 45.55 331 | 66.14 129 | 87.17 152 | 33.88 255 | 80.54 302 | 48.50 269 | 80.33 83 | 85.88 195 |
|
| PGM-MVS | | | 72.60 115 | 71.20 124 | 76.80 112 | 82.95 120 | 52.82 131 | 83.07 199 | 82.14 176 | 56.51 250 | 63.18 174 | 89.81 99 | 35.68 235 | 89.76 117 | 67.30 120 | 80.19 84 | 87.83 153 |
|
| MVSFormer | | | 73.53 102 | 72.19 107 | 77.57 87 | 83.02 117 | 55.24 63 | 81.63 233 | 81.44 191 | 50.28 301 | 76.67 40 | 90.91 72 | 44.82 118 | 86.11 236 | 60.83 167 | 80.09 85 | 91.36 67 |
|
| lupinMVS | | | 78.38 28 | 78.11 28 | 79.19 45 | 83.02 117 | 55.24 63 | 91.57 15 | 84.82 122 | 69.12 34 | 76.67 40 | 92.02 48 | 44.82 118 | 90.23 105 | 80.83 37 | 80.09 85 | 92.08 42 |
|
| HPM-MVS |  | | 72.60 115 | 71.50 118 | 75.89 131 | 82.02 141 | 51.42 160 | 80.70 255 | 83.05 164 | 56.12 254 | 64.03 163 | 89.53 103 | 37.55 205 | 88.37 162 | 70.48 104 | 80.04 87 | 87.88 152 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_HR | | | 76.39 57 | 75.38 64 | 79.42 42 | 85.33 67 | 56.47 38 | 88.15 53 | 84.97 118 | 65.15 89 | 66.06 131 | 89.88 97 | 43.79 129 | 92.16 54 | 75.03 76 | 80.03 88 | 89.64 111 |
|
| TSAR-MVS + GP. | | | 77.82 37 | 77.59 35 | 78.49 67 | 85.25 69 | 50.27 187 | 90.02 27 | 90.57 15 | 56.58 249 | 74.26 54 | 91.60 61 | 54.26 31 | 92.16 54 | 75.87 67 | 79.91 89 | 93.05 21 |
|
| LFMVS | | | 78.52 24 | 77.14 42 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 19 | 88.05 54 | 63.22 120 | 74.63 49 | 90.83 75 | 41.38 164 | 94.40 22 | 75.42 73 | 79.90 90 | 94.72 2 |
|
| casdiffmvs_mvg |  | | 77.75 38 | 77.28 39 | 79.16 47 | 80.42 187 | 54.44 90 | 87.76 62 | 85.46 97 | 71.67 16 | 71.38 88 | 88.35 127 | 51.58 45 | 91.22 74 | 79.02 44 | 79.89 91 | 91.83 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Effi-MVS+ | | | 75.24 76 | 73.61 85 | 80.16 33 | 81.92 143 | 57.42 19 | 85.21 127 | 76.71 284 | 60.68 167 | 73.32 63 | 89.34 107 | 47.30 81 | 91.63 64 | 68.28 115 | 79.72 92 | 91.42 64 |
|
| test2506 | | | 72.91 110 | 72.43 100 | 74.32 172 | 80.12 191 | 44.18 303 | 83.19 195 | 84.77 125 | 64.02 100 | 65.97 132 | 87.43 148 | 47.67 78 | 88.72 149 | 59.08 181 | 79.66 93 | 90.08 101 |
|
| ECVR-MVS |  | | 71.81 131 | 71.00 126 | 74.26 174 | 80.12 191 | 43.49 308 | 84.69 148 | 82.16 175 | 64.02 100 | 64.64 150 | 87.43 148 | 35.04 242 | 89.21 131 | 61.24 164 | 79.66 93 | 90.08 101 |
|
| PAPM_NR | | | 71.80 132 | 69.98 144 | 77.26 97 | 81.54 160 | 53.34 116 | 78.60 279 | 85.25 109 | 53.46 280 | 60.53 202 | 88.66 120 | 45.69 102 | 89.24 128 | 56.49 213 | 79.62 95 | 89.19 122 |
|
| jason | | | 77.01 47 | 76.45 49 | 78.69 61 | 79.69 196 | 54.74 79 | 90.56 25 | 83.99 146 | 68.26 38 | 74.10 55 | 90.91 72 | 42.14 152 | 89.99 110 | 79.30 42 | 79.12 96 | 91.36 67 |
| jason: jason. |
| CANet_DTU | | | 73.71 98 | 73.14 91 | 75.40 144 | 82.61 133 | 50.05 189 | 84.67 151 | 79.36 234 | 69.72 30 | 75.39 43 | 90.03 95 | 29.41 290 | 85.93 247 | 67.99 117 | 79.11 97 | 90.22 95 |
|
| casdiffmvs |  | | 77.36 43 | 76.85 45 | 78.88 55 | 80.40 188 | 54.66 86 | 87.06 82 | 85.88 90 | 72.11 14 | 71.57 85 | 88.63 124 | 50.89 55 | 90.35 99 | 76.00 66 | 79.11 97 | 91.63 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TESTMET0.1,1 | | | 72.86 111 | 72.33 101 | 74.46 166 | 81.98 142 | 50.77 168 | 85.13 130 | 85.47 96 | 66.09 71 | 67.30 117 | 83.69 194 | 37.27 212 | 83.57 277 | 65.06 142 | 78.97 99 | 89.05 126 |
|
| SD-MVS | | | 76.18 59 | 74.85 72 | 80.18 32 | 85.39 65 | 56.90 28 | 85.75 110 | 82.45 174 | 56.79 244 | 74.48 52 | 91.81 54 | 43.72 132 | 90.75 89 | 74.61 79 | 78.65 100 | 92.91 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| baseline | | | 76.86 51 | 76.24 53 | 78.71 60 | 80.47 186 | 54.20 97 | 83.90 171 | 84.88 121 | 71.38 20 | 71.51 86 | 89.15 112 | 50.51 56 | 90.55 95 | 75.71 68 | 78.65 100 | 91.39 65 |
|
| VNet | | | 77.99 36 | 77.92 30 | 78.19 76 | 87.43 43 | 50.12 188 | 90.93 23 | 91.41 8 | 67.48 52 | 75.12 44 | 90.15 92 | 46.77 88 | 91.00 81 | 73.52 88 | 78.46 102 | 93.44 11 |
|
| test1111 | | | 71.06 142 | 70.42 134 | 72.97 205 | 79.48 198 | 41.49 330 | 84.82 146 | 82.74 170 | 64.20 97 | 62.98 177 | 87.43 148 | 35.20 239 | 87.92 179 | 58.54 187 | 78.42 103 | 89.49 115 |
|
| 旧先验1 | | | | | | 81.57 159 | 47.48 257 | | 71.83 323 | | | 88.66 120 | 36.94 217 | | | 78.34 104 | 88.67 135 |
|
| mPP-MVS | | | 71.79 133 | 70.38 135 | 76.04 128 | 82.65 132 | 52.06 143 | 84.45 155 | 81.78 186 | 55.59 259 | 62.05 189 | 89.68 101 | 33.48 258 | 88.28 170 | 65.45 137 | 78.24 105 | 87.77 155 |
|
| CP-MVS | | | 72.59 117 | 71.46 119 | 76.00 130 | 82.93 122 | 52.32 141 | 86.93 86 | 82.48 173 | 55.15 264 | 63.65 169 | 90.44 84 | 35.03 243 | 88.53 158 | 68.69 113 | 77.83 106 | 87.15 167 |
|
| PVSNet_Blended_VisFu | | | 73.40 105 | 72.44 99 | 76.30 117 | 81.32 167 | 54.70 82 | 85.81 106 | 78.82 244 | 63.70 108 | 64.53 154 | 85.38 173 | 47.11 84 | 87.38 203 | 67.75 118 | 77.55 107 | 86.81 177 |
|
| sasdasda | | | 78.17 32 | 77.86 31 | 79.12 50 | 84.30 84 | 54.22 93 | 87.71 63 | 84.57 131 | 67.70 49 | 77.70 35 | 92.11 46 | 50.90 52 | 89.95 111 | 78.18 55 | 77.54 108 | 93.20 17 |
|
| canonicalmvs | | | 78.17 32 | 77.86 31 | 79.12 50 | 84.30 84 | 54.22 93 | 87.71 63 | 84.57 131 | 67.70 49 | 77.70 35 | 92.11 46 | 50.90 52 | 89.95 111 | 78.18 55 | 77.54 108 | 93.20 17 |
|
| 1314 | | | 71.11 141 | 69.41 150 | 76.22 120 | 79.32 201 | 50.49 175 | 80.23 262 | 85.14 115 | 59.44 184 | 58.93 225 | 88.89 116 | 33.83 256 | 89.60 122 | 61.49 162 | 77.42 110 | 88.57 139 |
|
| MGCFI-Net | | | 74.07 90 | 74.64 76 | 72.34 221 | 82.90 123 | 43.33 312 | 80.04 265 | 79.96 216 | 65.61 78 | 74.93 46 | 91.85 53 | 48.01 74 | 80.86 296 | 71.41 97 | 77.10 111 | 92.84 24 |
|
| PAPR | | | 75.20 78 | 74.13 79 | 78.41 71 | 88.31 32 | 55.10 70 | 84.31 159 | 85.66 94 | 63.76 107 | 67.55 116 | 90.73 76 | 43.48 137 | 89.40 125 | 66.36 127 | 77.03 112 | 90.73 83 |
|
| alignmvs | | | 78.08 34 | 77.98 29 | 78.39 72 | 83.53 100 | 53.22 120 | 89.77 33 | 85.45 98 | 66.11 70 | 76.59 42 | 91.99 50 | 54.07 34 | 89.05 135 | 77.34 61 | 77.00 113 | 92.89 23 |
|
| test222 | | | | | | 79.36 199 | 50.97 167 | 77.99 282 | 67.84 350 | 42.54 349 | 62.84 179 | 86.53 161 | 30.26 285 | | | 76.91 114 | 85.23 204 |
|
| fmvsm_l_conf0.5_n | | | 75.95 63 | 76.16 54 | 75.31 148 | 76.01 262 | 48.44 233 | 84.98 138 | 71.08 331 | 63.50 114 | 81.70 17 | 93.52 17 | 50.00 60 | 87.18 206 | 87.80 5 | 76.87 115 | 90.32 92 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 65 | 76.07 55 | 75.31 148 | 76.08 258 | 48.34 236 | 85.24 126 | 70.62 335 | 63.13 122 | 81.45 18 | 93.62 16 | 49.98 62 | 87.40 202 | 87.76 6 | 76.77 116 | 90.20 97 |
|
| PMMVS | | | 72.98 108 | 72.05 112 | 75.78 133 | 83.57 98 | 48.60 225 | 84.08 165 | 82.85 169 | 61.62 146 | 68.24 112 | 90.33 85 | 28.35 294 | 87.78 187 | 72.71 93 | 76.69 117 | 90.95 79 |
|
| UGNet | | | 68.71 186 | 67.11 189 | 73.50 197 | 80.55 185 | 47.61 256 | 84.08 165 | 78.51 253 | 59.45 183 | 65.68 138 | 82.73 210 | 23.78 328 | 85.08 261 | 52.80 240 | 76.40 118 | 87.80 154 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| xiu_mvs_v1_base_debu | | | 71.60 134 | 70.29 138 | 75.55 139 | 77.26 241 | 53.15 121 | 85.34 121 | 79.37 231 | 55.83 256 | 72.54 72 | 90.19 89 | 22.38 337 | 86.66 222 | 73.28 90 | 76.39 119 | 86.85 173 |
|
| xiu_mvs_v1_base | | | 71.60 134 | 70.29 138 | 75.55 139 | 77.26 241 | 53.15 121 | 85.34 121 | 79.37 231 | 55.83 256 | 72.54 72 | 90.19 89 | 22.38 337 | 86.66 222 | 73.28 90 | 76.39 119 | 86.85 173 |
|
| xiu_mvs_v1_base_debi | | | 71.60 134 | 70.29 138 | 75.55 139 | 77.26 241 | 53.15 121 | 85.34 121 | 79.37 231 | 55.83 256 | 72.54 72 | 90.19 89 | 22.38 337 | 86.66 222 | 73.28 90 | 76.39 119 | 86.85 173 |
|
| Fast-Effi-MVS+ | | | 72.73 113 | 71.15 125 | 77.48 89 | 82.75 128 | 54.76 78 | 86.77 90 | 80.64 204 | 63.05 123 | 65.93 133 | 84.01 187 | 44.42 123 | 89.03 136 | 56.45 216 | 76.36 122 | 88.64 136 |
|
| testing222 | | | 77.70 39 | 77.22 41 | 79.14 48 | 86.95 46 | 54.89 77 | 87.18 79 | 91.96 2 | 72.29 13 | 71.17 93 | 88.70 119 | 55.19 24 | 91.24 73 | 65.18 141 | 76.32 123 | 91.29 70 |
|
| testing11 | | | 79.18 22 | 78.85 21 | 80.16 33 | 88.33 30 | 56.99 26 | 88.31 52 | 92.06 1 | 72.82 11 | 70.62 100 | 88.37 125 | 57.69 14 | 92.30 50 | 75.25 75 | 76.24 124 | 91.20 72 |
|
| VDD-MVS | | | 76.08 61 | 74.97 70 | 79.44 41 | 84.27 87 | 53.33 117 | 91.13 20 | 85.88 90 | 65.33 86 | 72.37 77 | 89.34 107 | 32.52 266 | 92.76 40 | 77.90 58 | 75.96 125 | 92.22 40 |
|
| testdata | | | | | 67.08 298 | 77.59 235 | 45.46 288 | | 69.20 346 | 44.47 338 | 71.50 87 | 88.34 128 | 31.21 279 | 70.76 364 | 52.20 246 | 75.88 126 | 85.03 207 |
|
| mvs_anonymous | | | 72.29 122 | 70.74 128 | 76.94 108 | 82.85 125 | 54.72 81 | 78.43 280 | 81.54 189 | 63.77 106 | 61.69 191 | 79.32 251 | 51.11 49 | 85.31 254 | 62.15 158 | 75.79 127 | 90.79 82 |
|
| VDDNet | | | 74.37 86 | 72.13 109 | 81.09 21 | 79.58 197 | 56.52 37 | 90.02 27 | 86.70 77 | 52.61 287 | 71.23 90 | 87.20 151 | 31.75 276 | 93.96 27 | 74.30 83 | 75.77 128 | 92.79 27 |
|
| diffmvs |  | | 75.11 80 | 74.65 75 | 76.46 116 | 78.52 221 | 53.35 115 | 83.28 193 | 79.94 217 | 70.51 25 | 71.64 84 | 88.72 118 | 46.02 97 | 86.08 241 | 77.52 59 | 75.75 129 | 89.96 105 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IS-MVSNet | | | 68.80 184 | 67.55 181 | 72.54 214 | 78.50 222 | 43.43 310 | 81.03 247 | 79.35 235 | 59.12 197 | 57.27 259 | 86.71 158 | 46.05 96 | 87.70 190 | 44.32 294 | 75.60 130 | 86.49 181 |
|
| WTY-MVS | | | 77.47 42 | 77.52 37 | 77.30 94 | 88.33 30 | 46.25 278 | 88.46 50 | 90.32 16 | 71.40 19 | 72.32 78 | 91.72 56 | 53.44 35 | 92.37 49 | 66.28 128 | 75.42 131 | 93.28 15 |
|
| test_fmvsm_n_1920 | | | 75.56 72 | 75.54 60 | 75.61 136 | 74.60 281 | 49.51 203 | 81.82 228 | 74.08 306 | 66.52 63 | 80.40 22 | 93.46 19 | 46.95 85 | 89.72 118 | 86.69 7 | 75.30 132 | 87.61 159 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 243 | 65.63 220 | 65.17 314 | 77.49 237 | 30.54 370 | 75.49 296 | 77.73 265 | 59.34 187 | 52.26 304 | 86.69 159 | 49.38 67 | 80.53 303 | 37.07 318 | 75.28 133 | 84.42 216 |
|
| UWE-MVS | | | 72.17 125 | 72.15 108 | 72.21 223 | 82.26 139 | 44.29 300 | 86.83 89 | 89.58 21 | 65.58 79 | 65.82 135 | 85.06 176 | 45.02 111 | 84.35 269 | 54.07 229 | 75.18 134 | 87.99 151 |
|
| test-LLR | | | 69.65 170 | 69.01 157 | 71.60 241 | 78.67 216 | 48.17 241 | 85.13 130 | 79.72 222 | 59.18 194 | 63.13 175 | 82.58 214 | 36.91 218 | 80.24 306 | 60.56 171 | 75.17 135 | 86.39 184 |
|
| test-mter | | | 68.36 191 | 67.29 185 | 71.60 241 | 78.67 216 | 48.17 241 | 85.13 130 | 79.72 222 | 53.38 281 | 63.13 175 | 82.58 214 | 27.23 304 | 80.24 306 | 60.56 171 | 75.17 135 | 86.39 184 |
|
| testing99 | | | 78.45 25 | 77.78 33 | 80.45 27 | 88.28 33 | 56.81 32 | 87.95 59 | 91.49 6 | 71.72 15 | 70.84 95 | 88.09 133 | 57.29 15 | 92.63 44 | 69.24 109 | 75.13 137 | 91.91 49 |
|
| PVSNet | | 62.49 8 | 69.27 175 | 67.81 176 | 73.64 193 | 84.41 82 | 51.85 149 | 84.63 152 | 77.80 263 | 66.42 64 | 59.80 207 | 84.95 179 | 22.14 343 | 80.44 304 | 55.03 222 | 75.11 138 | 88.62 137 |
|
| test_yl | | | 75.85 66 | 74.83 73 | 78.91 53 | 88.08 37 | 51.94 146 | 91.30 17 | 89.28 23 | 57.91 218 | 71.19 91 | 89.20 110 | 42.03 155 | 92.77 38 | 69.41 107 | 75.07 139 | 92.01 46 |
|
| DCV-MVSNet | | | 75.85 66 | 74.83 73 | 78.91 53 | 88.08 37 | 51.94 146 | 91.30 17 | 89.28 23 | 57.91 218 | 71.19 91 | 89.20 110 | 42.03 155 | 92.77 38 | 69.41 107 | 75.07 139 | 92.01 46 |
|
| testing91 | | | 78.30 31 | 77.54 36 | 80.61 23 | 88.16 35 | 57.12 23 | 87.94 60 | 91.07 13 | 71.43 18 | 70.75 96 | 88.04 137 | 55.82 22 | 92.65 42 | 69.61 106 | 75.00 141 | 92.05 44 |
|
| BH-w/o | | | 70.02 160 | 68.51 161 | 74.56 164 | 82.77 127 | 50.39 179 | 86.60 94 | 78.14 259 | 59.77 177 | 59.65 209 | 85.57 171 | 39.27 185 | 87.30 204 | 49.86 258 | 74.94 142 | 85.99 190 |
|
| ETVMVS | | | 75.80 70 | 75.44 62 | 76.89 109 | 86.23 52 | 50.38 180 | 85.55 119 | 91.42 7 | 71.30 21 | 68.80 108 | 87.94 139 | 56.42 19 | 89.24 128 | 56.54 212 | 74.75 143 | 91.07 76 |
|
| SR-MVS | | | 70.92 146 | 69.73 147 | 74.50 165 | 83.38 106 | 50.48 176 | 84.27 160 | 79.35 235 | 48.96 311 | 66.57 126 | 90.45 81 | 33.65 257 | 87.11 208 | 66.42 125 | 74.56 144 | 85.91 193 |
|
| UA-Net | | | 67.32 216 | 66.23 205 | 70.59 257 | 78.85 212 | 41.23 333 | 73.60 307 | 75.45 297 | 61.54 148 | 66.61 124 | 84.53 181 | 38.73 190 | 86.57 227 | 42.48 304 | 74.24 145 | 83.98 226 |
|
| CDS-MVSNet | | | 70.48 153 | 69.43 149 | 73.64 193 | 77.56 236 | 48.83 220 | 83.51 182 | 77.45 270 | 63.27 119 | 62.33 184 | 85.54 172 | 43.85 126 | 83.29 281 | 57.38 208 | 74.00 146 | 88.79 133 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| BH-RMVSNet | | | 70.08 158 | 68.01 169 | 76.27 118 | 84.21 88 | 51.22 166 | 87.29 76 | 79.33 237 | 58.96 201 | 63.63 170 | 86.77 157 | 33.29 260 | 90.30 103 | 44.63 292 | 73.96 147 | 87.30 166 |
|
| CLD-MVS | | | 75.60 71 | 75.39 63 | 76.24 119 | 80.69 181 | 52.40 138 | 90.69 24 | 86.20 86 | 74.40 8 | 65.01 145 | 88.93 114 | 42.05 154 | 90.58 94 | 76.57 64 | 73.96 147 | 85.73 196 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| APD-MVS_3200maxsize | | | 69.62 171 | 68.23 167 | 73.80 188 | 81.58 158 | 48.22 240 | 81.91 224 | 79.50 228 | 48.21 314 | 64.24 160 | 89.75 100 | 31.91 275 | 87.55 198 | 63.08 150 | 73.85 149 | 85.64 199 |
|
| HPM-MVS_fast | | | 67.86 200 | 66.28 204 | 72.61 212 | 80.67 182 | 48.34 236 | 81.18 245 | 75.95 293 | 50.81 300 | 59.55 213 | 88.05 136 | 27.86 299 | 85.98 243 | 58.83 184 | 73.58 150 | 83.51 235 |
|
| ACMMP |  | | 70.81 148 | 69.29 154 | 75.39 145 | 81.52 162 | 51.92 148 | 83.43 185 | 83.03 165 | 56.67 247 | 58.80 230 | 88.91 115 | 31.92 274 | 88.58 154 | 65.89 131 | 73.39 151 | 85.67 197 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_fmvsmvis_n_1920 | | | 71.29 138 | 70.38 135 | 74.00 181 | 71.04 322 | 48.79 221 | 79.19 275 | 64.62 358 | 62.75 127 | 66.73 120 | 91.99 50 | 40.94 166 | 88.35 164 | 83.00 22 | 73.18 152 | 84.85 212 |
|
| HQP3-MVS | | | | | | | | | 83.68 150 | | | | | | | 73.12 153 | |
|
| HQP-MVS | | | 72.34 120 | 71.44 120 | 75.03 158 | 79.02 208 | 51.56 156 | 88.00 55 | 83.68 150 | 65.45 80 | 64.48 155 | 85.13 174 | 37.35 209 | 88.62 152 | 66.70 123 | 73.12 153 | 84.91 210 |
|
| TAMVS | | | 69.51 173 | 68.16 168 | 73.56 196 | 76.30 255 | 48.71 224 | 82.57 209 | 77.17 275 | 62.10 138 | 61.32 195 | 84.23 185 | 41.90 157 | 83.46 279 | 54.80 225 | 73.09 155 | 88.50 142 |
|
| BH-untuned | | | 68.28 194 | 66.40 200 | 73.91 183 | 81.62 155 | 50.01 190 | 85.56 118 | 77.39 271 | 57.63 226 | 57.47 256 | 83.69 194 | 36.36 227 | 87.08 209 | 44.81 290 | 73.08 156 | 84.65 213 |
|
| plane_prior | | | | | | | 49.57 198 | 87.43 70 | | 64.57 93 | | | | | | 72.84 157 | |
|
| PCF-MVS | | 61.03 10 | 70.10 157 | 68.40 163 | 75.22 155 | 77.15 245 | 51.99 145 | 79.30 274 | 82.12 177 | 56.47 251 | 61.88 190 | 86.48 163 | 43.98 125 | 87.24 205 | 55.37 221 | 72.79 158 | 86.43 183 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| HY-MVS | | 67.03 5 | 73.90 93 | 73.14 91 | 76.18 124 | 84.70 77 | 47.36 260 | 75.56 293 | 86.36 83 | 66.27 67 | 70.66 99 | 83.91 189 | 51.05 50 | 89.31 126 | 67.10 122 | 72.61 159 | 91.88 51 |
|
| bld_raw_dy_0_64 | | | 75.36 74 | 73.18 88 | 81.89 11 | 87.91 40 | 57.01 24 | 86.77 90 | 67.69 352 | 78.56 1 | 65.01 145 | 93.99 7 | 22.18 341 | 94.84 19 | 84.07 17 | 72.45 160 | 93.82 7 |
|
| DP-MVS Recon | | | 71.99 127 | 70.31 137 | 77.01 103 | 90.65 8 | 53.44 111 | 89.37 38 | 82.97 167 | 56.33 252 | 63.56 172 | 89.47 104 | 34.02 252 | 92.15 56 | 54.05 230 | 72.41 161 | 85.43 203 |
|
| HQP_MVS | | | 70.96 145 | 69.91 145 | 74.12 177 | 77.95 229 | 49.57 198 | 85.76 108 | 82.59 171 | 63.60 111 | 62.15 187 | 83.28 201 | 36.04 232 | 88.30 168 | 65.46 135 | 72.34 162 | 84.49 214 |
|
| plane_prior5 | | | | | | | | | 82.59 171 | | | | | 88.30 168 | 65.46 135 | 72.34 162 | 84.49 214 |
|
| MVS_111021_LR | | | 69.07 176 | 67.91 170 | 72.54 214 | 77.27 240 | 49.56 200 | 79.77 267 | 73.96 309 | 59.33 189 | 60.73 200 | 87.82 140 | 30.19 286 | 81.53 289 | 69.94 105 | 72.19 164 | 86.53 180 |
|
| SR-MVS-dyc-post | | | 68.27 195 | 66.87 190 | 72.48 217 | 80.96 172 | 48.14 243 | 81.54 237 | 76.98 278 | 46.42 326 | 62.75 180 | 89.42 105 | 31.17 280 | 86.09 240 | 60.52 173 | 72.06 165 | 83.19 242 |
|
| RE-MVS-def | | | | 66.66 196 | | 80.96 172 | 48.14 243 | 81.54 237 | 76.98 278 | 46.42 326 | 62.75 180 | 89.42 105 | 29.28 292 | | 60.52 173 | 72.06 165 | 83.19 242 |
|
| test_fmvsmconf_n | | | 74.41 85 | 74.05 82 | 75.49 142 | 74.16 287 | 48.38 234 | 82.66 206 | 72.57 319 | 67.05 56 | 75.11 45 | 92.88 33 | 46.35 92 | 87.81 182 | 83.93 19 | 71.71 167 | 90.28 93 |
|
| Anonymous202405211 | | | 70.11 156 | 67.88 172 | 76.79 113 | 87.20 45 | 47.24 264 | 89.49 36 | 77.38 272 | 54.88 269 | 66.14 129 | 86.84 156 | 20.93 349 | 91.54 66 | 56.45 216 | 71.62 168 | 91.59 57 |
|
| EPMVS | | | 68.45 190 | 65.44 226 | 77.47 90 | 84.91 74 | 56.17 43 | 71.89 325 | 81.91 183 | 61.72 145 | 60.85 198 | 72.49 325 | 36.21 228 | 87.06 210 | 47.32 276 | 71.62 168 | 89.17 123 |
|
| TR-MVS | | | 69.71 167 | 67.85 175 | 75.27 153 | 82.94 121 | 48.48 231 | 87.40 72 | 80.86 201 | 57.15 237 | 64.61 152 | 87.08 153 | 32.67 265 | 89.64 121 | 46.38 283 | 71.55 170 | 87.68 158 |
|
| test_fmvsmconf0.1_n | | | 73.69 99 | 73.15 89 | 75.34 146 | 70.71 324 | 48.26 239 | 82.15 218 | 71.83 323 | 66.75 59 | 74.47 53 | 92.59 38 | 44.89 115 | 87.78 187 | 83.59 20 | 71.35 171 | 89.97 104 |
|
| FA-MVS(test-final) | | | 69.00 179 | 66.60 198 | 76.19 123 | 83.48 101 | 47.96 251 | 74.73 300 | 82.07 178 | 57.27 234 | 62.18 186 | 78.47 261 | 36.09 230 | 92.89 35 | 53.76 233 | 71.32 172 | 87.73 156 |
|
| OPM-MVS | | | 70.75 149 | 69.58 148 | 74.26 174 | 75.55 268 | 51.34 162 | 86.05 103 | 83.29 160 | 61.94 142 | 62.95 178 | 85.77 168 | 34.15 251 | 88.44 160 | 65.44 138 | 71.07 173 | 82.99 246 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| 114514_t | | | 69.87 165 | 67.88 172 | 75.85 132 | 88.38 29 | 52.35 140 | 86.94 85 | 83.68 150 | 53.70 278 | 55.68 274 | 85.60 170 | 30.07 287 | 91.20 75 | 55.84 219 | 71.02 174 | 83.99 224 |
|
| sss | | | 70.49 152 | 70.13 142 | 71.58 243 | 81.59 157 | 39.02 341 | 80.78 254 | 84.71 127 | 59.34 187 | 66.61 124 | 88.09 133 | 37.17 214 | 85.52 250 | 61.82 161 | 71.02 174 | 90.20 97 |
|
| ET-MVSNet_ETH3D | | | 75.23 77 | 74.08 81 | 78.67 62 | 84.52 80 | 55.59 52 | 88.92 44 | 89.21 25 | 68.06 43 | 53.13 296 | 90.22 88 | 49.71 65 | 87.62 196 | 72.12 95 | 70.82 176 | 92.82 25 |
|
| WB-MVSnew | | | 69.36 174 | 68.24 166 | 72.72 210 | 79.26 203 | 49.40 205 | 85.72 113 | 88.85 35 | 61.33 151 | 64.59 153 | 82.38 220 | 34.57 247 | 87.53 199 | 46.82 281 | 70.63 177 | 81.22 277 |
|
| cascas | | | 69.01 178 | 66.13 207 | 77.66 85 | 79.36 199 | 55.41 58 | 86.99 83 | 83.75 149 | 56.69 246 | 58.92 226 | 81.35 235 | 24.31 326 | 92.10 57 | 53.23 234 | 70.61 178 | 85.46 202 |
|
| GeoE | | | 69.96 163 | 67.88 172 | 76.22 120 | 81.11 169 | 51.71 153 | 84.15 163 | 76.74 283 | 59.83 176 | 60.91 197 | 84.38 182 | 41.56 162 | 88.10 175 | 51.67 248 | 70.57 179 | 88.84 131 |
|
| LCM-MVSNet-Re | | | 58.82 294 | 56.54 293 | 65.68 308 | 79.31 202 | 29.09 381 | 61.39 363 | 45.79 379 | 60.73 166 | 37.65 367 | 72.47 326 | 31.42 278 | 81.08 293 | 49.66 259 | 70.41 180 | 86.87 171 |
|
| baseline2 | | | 75.15 79 | 74.54 77 | 76.98 106 | 81.67 153 | 51.74 152 | 83.84 173 | 91.94 3 | 69.97 28 | 58.98 223 | 86.02 165 | 59.73 8 | 91.73 63 | 68.37 114 | 70.40 181 | 87.48 161 |
|
| AdaColmap |  | | 67.86 200 | 65.48 223 | 75.00 159 | 88.15 36 | 54.99 73 | 86.10 102 | 76.63 286 | 49.30 308 | 57.80 245 | 86.65 160 | 29.39 291 | 88.94 144 | 45.10 289 | 70.21 182 | 81.06 278 |
|
| CPTT-MVS | | | 67.15 220 | 65.84 215 | 71.07 251 | 80.96 172 | 50.32 184 | 81.94 223 | 74.10 305 | 46.18 329 | 57.91 243 | 87.64 145 | 29.57 289 | 81.31 291 | 64.10 144 | 70.18 183 | 81.56 263 |
|
| thisisatest0515 | | | 73.64 101 | 72.20 106 | 77.97 80 | 81.63 154 | 53.01 127 | 86.69 92 | 88.81 37 | 62.53 132 | 64.06 161 | 85.65 169 | 52.15 44 | 92.50 46 | 58.43 188 | 69.84 184 | 88.39 143 |
|
| PatchmatchNet |  | | 67.07 224 | 63.63 244 | 77.40 91 | 83.10 112 | 58.03 9 | 72.11 323 | 77.77 264 | 58.85 202 | 59.37 216 | 70.83 338 | 37.84 196 | 84.93 263 | 42.96 300 | 69.83 185 | 89.26 118 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvsmconf0.01_n | | | 71.97 128 | 70.95 127 | 75.04 157 | 66.21 349 | 47.87 252 | 80.35 259 | 70.08 339 | 65.85 77 | 72.69 71 | 91.68 58 | 39.99 179 | 87.67 191 | 82.03 29 | 69.66 186 | 89.58 112 |
|
| EPP-MVSNet | | | 71.14 139 | 70.07 143 | 74.33 171 | 79.18 205 | 46.52 271 | 83.81 174 | 86.49 79 | 56.32 253 | 57.95 242 | 84.90 180 | 54.23 32 | 89.14 133 | 58.14 195 | 69.65 187 | 87.33 164 |
|
| EPNet_dtu | | | 66.25 237 | 66.71 194 | 64.87 316 | 78.66 218 | 34.12 358 | 82.80 204 | 75.51 295 | 61.75 144 | 64.47 158 | 86.90 155 | 37.06 215 | 72.46 358 | 43.65 297 | 69.63 188 | 88.02 150 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MIMVSNet | | | 63.12 260 | 60.29 270 | 71.61 240 | 75.92 264 | 46.65 269 | 65.15 347 | 81.94 180 | 59.14 196 | 54.65 283 | 69.47 345 | 25.74 314 | 80.63 300 | 41.03 306 | 69.56 189 | 87.55 160 |
|
| EI-MVSNet-Vis-set | | | 73.19 107 | 72.60 96 | 74.99 160 | 82.56 134 | 49.80 196 | 82.55 211 | 89.00 28 | 66.17 69 | 65.89 134 | 88.98 113 | 43.83 127 | 92.29 51 | 65.38 140 | 69.01 190 | 82.87 249 |
|
| FIs | | | 70.00 161 | 70.24 141 | 69.30 275 | 77.93 231 | 38.55 344 | 83.99 169 | 87.72 62 | 66.86 58 | 57.66 249 | 84.17 186 | 52.28 42 | 85.31 254 | 52.72 244 | 68.80 191 | 84.02 222 |
|
| CostFormer | | | 73.89 94 | 72.30 103 | 78.66 63 | 82.36 137 | 56.58 33 | 75.56 293 | 85.30 105 | 66.06 73 | 70.50 102 | 76.88 282 | 57.02 16 | 89.06 134 | 68.27 116 | 68.74 192 | 90.33 91 |
|
| HyFIR lowres test | | | 69.94 164 | 67.58 179 | 77.04 101 | 77.11 246 | 57.29 20 | 81.49 241 | 79.11 240 | 58.27 211 | 58.86 228 | 80.41 242 | 42.33 148 | 86.96 213 | 61.91 159 | 68.68 193 | 86.87 171 |
|
| 1112_ss | | | 70.05 159 | 69.37 151 | 72.10 225 | 80.77 179 | 42.78 318 | 85.12 133 | 76.75 282 | 59.69 179 | 61.19 196 | 92.12 44 | 47.48 80 | 83.84 272 | 53.04 237 | 68.21 194 | 89.66 110 |
|
| ab-mvs | | | 70.65 150 | 69.11 156 | 75.29 151 | 80.87 176 | 46.23 279 | 73.48 309 | 85.24 110 | 59.99 174 | 66.65 122 | 80.94 238 | 43.13 142 | 88.69 150 | 63.58 147 | 68.07 195 | 90.95 79 |
|
| tpm2 | | | 70.82 147 | 68.44 162 | 77.98 79 | 80.78 178 | 56.11 44 | 74.21 304 | 81.28 195 | 60.24 172 | 68.04 113 | 75.27 300 | 52.26 43 | 88.50 159 | 55.82 220 | 68.03 196 | 89.33 117 |
|
| EI-MVSNet-UG-set | | | 72.37 119 | 71.73 115 | 74.29 173 | 81.60 156 | 49.29 208 | 81.85 226 | 88.64 42 | 65.29 88 | 65.05 143 | 88.29 130 | 43.18 139 | 91.83 61 | 63.74 146 | 67.97 197 | 81.75 260 |
|
| thres200 | | | 68.71 186 | 67.27 187 | 73.02 203 | 84.73 76 | 46.76 268 | 85.03 136 | 87.73 61 | 62.34 136 | 59.87 205 | 83.45 198 | 43.15 140 | 88.32 167 | 31.25 347 | 67.91 198 | 83.98 226 |
|
| tpmrst | | | 71.04 143 | 69.77 146 | 74.86 161 | 83.19 111 | 55.86 51 | 75.64 292 | 78.73 248 | 67.88 44 | 64.99 147 | 73.73 311 | 49.96 63 | 79.56 315 | 65.92 129 | 67.85 199 | 89.14 124 |
|
| iter_conf05 | | | 73.51 103 | 72.24 105 | 77.33 92 | 87.93 39 | 55.97 48 | 87.90 61 | 70.81 334 | 68.72 35 | 64.04 162 | 84.36 184 | 47.54 79 | 90.87 86 | 71.11 100 | 67.75 200 | 85.13 206 |
|
| test_vis1_n_1920 | | | 68.59 189 | 68.31 164 | 69.44 274 | 69.16 335 | 41.51 329 | 84.63 152 | 68.58 348 | 58.80 203 | 73.26 64 | 88.37 125 | 25.30 317 | 80.60 301 | 79.10 43 | 67.55 201 | 86.23 186 |
|
| Anonymous20240529 | | | 69.71 167 | 67.28 186 | 77.00 104 | 83.78 96 | 50.36 182 | 88.87 46 | 85.10 116 | 47.22 319 | 64.03 163 | 83.37 199 | 27.93 298 | 92.10 57 | 57.78 203 | 67.44 202 | 88.53 141 |
|
| EG-PatchMatch MVS | | | 62.40 270 | 59.59 274 | 70.81 255 | 73.29 295 | 49.05 211 | 85.81 106 | 84.78 124 | 51.85 294 | 44.19 341 | 73.48 317 | 15.52 371 | 89.85 113 | 40.16 308 | 67.24 203 | 73.54 351 |
|
| OMC-MVS | | | 65.97 241 | 65.06 232 | 68.71 284 | 72.97 300 | 42.58 322 | 78.61 278 | 75.35 298 | 54.72 270 | 59.31 218 | 86.25 164 | 33.30 259 | 77.88 328 | 57.99 196 | 67.05 204 | 85.66 198 |
|
| TAPA-MVS | | 56.12 14 | 61.82 273 | 60.18 272 | 66.71 302 | 78.48 223 | 37.97 347 | 75.19 298 | 76.41 289 | 46.82 322 | 57.04 260 | 86.52 162 | 27.67 302 | 77.03 334 | 26.50 367 | 67.02 205 | 85.14 205 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| dmvs_re | | | 67.61 206 | 66.00 210 | 72.42 218 | 81.86 145 | 43.45 309 | 64.67 350 | 80.00 214 | 69.56 32 | 60.07 204 | 85.00 178 | 34.71 245 | 87.63 194 | 51.48 249 | 66.68 206 | 86.17 187 |
|
| FE-MVS | | | 64.15 248 | 60.43 269 | 75.30 150 | 80.85 177 | 49.86 194 | 68.28 341 | 78.37 256 | 50.26 304 | 59.31 218 | 73.79 310 | 26.19 311 | 91.92 60 | 40.19 307 | 66.67 207 | 84.12 219 |
|
| fmvsm_s_conf0.5_n | | | 74.48 83 | 74.12 80 | 75.56 138 | 76.96 247 | 47.85 253 | 85.32 124 | 69.80 342 | 64.16 98 | 78.74 29 | 93.48 18 | 45.51 105 | 89.29 127 | 86.48 8 | 66.62 208 | 89.55 113 |
|
| CMPMVS |  | 40.41 21 | 55.34 315 | 52.64 318 | 63.46 322 | 60.88 373 | 43.84 305 | 61.58 362 | 71.06 332 | 30.43 378 | 36.33 369 | 74.63 304 | 24.14 327 | 75.44 343 | 48.05 272 | 66.62 208 | 71.12 364 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| FC-MVSNet-test | | | 67.49 210 | 67.91 170 | 66.21 306 | 76.06 259 | 33.06 363 | 80.82 253 | 87.18 67 | 64.44 94 | 54.81 280 | 82.87 204 | 50.40 58 | 82.60 283 | 48.05 272 | 66.55 210 | 82.98 247 |
|
| GA-MVS | | | 69.04 177 | 66.70 195 | 76.06 127 | 75.11 271 | 52.36 139 | 83.12 197 | 80.23 211 | 63.32 118 | 60.65 201 | 79.22 254 | 30.98 281 | 88.37 162 | 61.25 163 | 66.41 211 | 87.46 162 |
|
| thres100view900 | | | 66.87 229 | 65.42 227 | 71.24 247 | 83.29 108 | 43.15 314 | 81.67 232 | 87.78 58 | 59.04 198 | 55.92 272 | 82.18 225 | 43.73 130 | 87.80 184 | 28.80 354 | 66.36 212 | 82.78 251 |
|
| tfpn200view9 | | | 67.57 208 | 66.13 207 | 71.89 238 | 84.05 90 | 45.07 291 | 83.40 187 | 87.71 63 | 60.79 164 | 57.79 246 | 82.76 207 | 43.53 135 | 87.80 184 | 28.80 354 | 66.36 212 | 82.78 251 |
|
| thres400 | | | 67.40 215 | 66.13 207 | 71.19 249 | 84.05 90 | 45.07 291 | 83.40 187 | 87.71 63 | 60.79 164 | 57.79 246 | 82.76 207 | 43.53 135 | 87.80 184 | 28.80 354 | 66.36 212 | 80.71 283 |
|
| fmvsm_s_conf0.1_n | | | 73.80 95 | 73.26 87 | 75.43 143 | 73.28 296 | 47.80 254 | 84.57 154 | 69.43 344 | 63.34 117 | 78.40 32 | 93.29 24 | 44.73 121 | 89.22 130 | 85.99 9 | 66.28 215 | 89.26 118 |
|
| Test_1112_low_res | | | 67.18 219 | 66.23 205 | 70.02 269 | 78.75 214 | 41.02 334 | 83.43 185 | 73.69 311 | 57.29 233 | 58.45 238 | 82.39 219 | 45.30 107 | 80.88 295 | 50.50 254 | 66.26 216 | 88.16 144 |
|
| PVSNet_BlendedMVS | | | 73.42 104 | 73.30 86 | 73.76 189 | 85.91 54 | 51.83 150 | 86.18 100 | 84.24 140 | 65.40 83 | 69.09 106 | 80.86 239 | 46.70 89 | 88.13 173 | 75.43 71 | 65.92 217 | 81.33 273 |
|
| SDMVSNet | | | 71.89 129 | 70.62 131 | 75.70 134 | 81.70 150 | 51.61 154 | 73.89 305 | 88.72 40 | 66.58 60 | 61.64 192 | 82.38 220 | 37.63 202 | 89.48 123 | 77.44 60 | 65.60 218 | 86.01 188 |
|
| sd_testset | | | 67.79 203 | 65.95 212 | 73.32 198 | 81.70 150 | 46.33 276 | 68.99 337 | 80.30 210 | 66.58 60 | 61.64 192 | 82.38 220 | 30.45 284 | 87.63 194 | 55.86 218 | 65.60 218 | 86.01 188 |
|
| XVG-OURS | | | 61.88 272 | 59.34 277 | 69.49 272 | 65.37 354 | 46.27 277 | 64.80 349 | 73.49 314 | 47.04 321 | 57.41 258 | 82.85 205 | 25.15 319 | 78.18 320 | 53.00 238 | 64.98 220 | 84.01 223 |
|
| thres600view7 | | | 66.46 234 | 65.12 231 | 70.47 258 | 83.41 102 | 43.80 306 | 82.15 218 | 87.78 58 | 59.37 186 | 56.02 271 | 82.21 224 | 43.73 130 | 86.90 216 | 26.51 366 | 64.94 221 | 80.71 283 |
|
| LPG-MVS_test | | | 66.44 235 | 64.58 237 | 72.02 228 | 74.42 283 | 48.60 225 | 83.07 199 | 80.64 204 | 54.69 271 | 53.75 292 | 83.83 190 | 25.73 315 | 86.98 211 | 60.33 177 | 64.71 222 | 80.48 285 |
|
| LGP-MVS_train | | | | | 72.02 228 | 74.42 283 | 48.60 225 | | 80.64 204 | 54.69 271 | 53.75 292 | 83.83 190 | 25.73 315 | 86.98 211 | 60.33 177 | 64.71 222 | 80.48 285 |
|
| MVSTER | | | 73.25 106 | 72.33 101 | 76.01 129 | 85.54 62 | 53.76 103 | 83.52 178 | 87.16 68 | 67.06 55 | 63.88 167 | 81.66 231 | 52.77 38 | 90.44 96 | 64.66 143 | 64.69 224 | 83.84 231 |
|
| EI-MVSNet | | | 69.70 169 | 68.70 159 | 72.68 211 | 75.00 275 | 48.90 218 | 79.54 269 | 87.16 68 | 61.05 157 | 63.88 167 | 83.74 192 | 45.87 98 | 90.44 96 | 57.42 207 | 64.68 225 | 78.70 301 |
|
| tpm cat1 | | | 66.28 236 | 62.78 246 | 76.77 114 | 81.40 164 | 57.14 22 | 70.03 332 | 77.19 274 | 53.00 284 | 58.76 231 | 70.73 341 | 46.17 93 | 86.73 220 | 43.27 298 | 64.46 226 | 86.44 182 |
|
| test_cas_vis1_n_1920 | | | 67.10 221 | 66.60 198 | 68.59 287 | 65.17 357 | 43.23 313 | 83.23 194 | 69.84 341 | 55.34 263 | 70.67 98 | 87.71 143 | 24.70 324 | 76.66 339 | 78.57 50 | 64.20 227 | 85.89 194 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 100 | 73.15 89 | 75.29 151 | 75.45 269 | 48.05 246 | 83.88 172 | 68.84 347 | 63.43 116 | 78.60 30 | 93.37 22 | 45.32 106 | 88.92 145 | 85.39 11 | 64.04 228 | 88.89 129 |
|
| XVG-OURS-SEG-HR | | | 62.02 271 | 59.54 275 | 69.46 273 | 65.30 355 | 45.88 282 | 65.06 348 | 73.57 313 | 46.45 325 | 57.42 257 | 83.35 200 | 26.95 306 | 78.09 322 | 53.77 232 | 64.03 229 | 84.42 216 |
|
| LS3D | | | 56.40 310 | 53.82 310 | 64.12 318 | 81.12 168 | 45.69 287 | 73.42 310 | 66.14 354 | 35.30 370 | 43.24 348 | 79.88 245 | 22.18 341 | 79.62 314 | 19.10 386 | 64.00 230 | 67.05 370 |
|
| ACMP | | 61.11 9 | 66.24 238 | 64.33 239 | 72.00 230 | 74.89 277 | 49.12 209 | 83.18 196 | 79.83 220 | 55.41 262 | 52.29 302 | 82.68 211 | 25.83 313 | 86.10 238 | 60.89 166 | 63.94 231 | 80.78 281 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| tpm | | | 68.36 191 | 67.48 183 | 70.97 253 | 79.93 194 | 51.34 162 | 76.58 290 | 78.75 247 | 67.73 47 | 63.54 173 | 74.86 302 | 48.33 70 | 72.36 359 | 53.93 231 | 63.71 232 | 89.21 121 |
|
| XXY-MVS | | | 70.18 155 | 69.28 155 | 72.89 208 | 77.64 233 | 42.88 317 | 85.06 134 | 87.50 66 | 62.58 131 | 62.66 182 | 82.34 223 | 43.64 134 | 89.83 114 | 58.42 190 | 63.70 233 | 85.96 192 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 112 | 72.05 112 | 75.12 156 | 70.95 323 | 47.97 249 | 82.72 205 | 68.43 349 | 62.52 133 | 78.17 33 | 93.08 30 | 44.21 124 | 88.86 146 | 84.82 13 | 63.54 234 | 88.54 140 |
|
| mvsmamba | | | 66.93 228 | 64.88 235 | 73.09 202 | 75.06 273 | 47.26 262 | 83.36 191 | 69.21 345 | 62.64 130 | 55.68 274 | 81.43 234 | 29.72 288 | 89.20 132 | 63.35 149 | 63.50 235 | 82.79 250 |
|
| GBi-Net | | | 67.09 222 | 65.47 224 | 71.96 231 | 82.71 129 | 46.36 273 | 83.52 178 | 83.31 157 | 58.55 208 | 57.58 251 | 76.23 291 | 36.72 223 | 86.20 232 | 47.25 277 | 63.40 236 | 83.32 237 |
|
| test1 | | | 67.09 222 | 65.47 224 | 71.96 231 | 82.71 129 | 46.36 273 | 83.52 178 | 83.31 157 | 58.55 208 | 57.58 251 | 76.23 291 | 36.72 223 | 86.20 232 | 47.25 277 | 63.40 236 | 83.32 237 |
|
| FMVSNet3 | | | 68.84 181 | 67.40 184 | 73.19 201 | 85.05 71 | 48.53 228 | 85.71 114 | 85.36 101 | 60.90 163 | 57.58 251 | 79.15 255 | 42.16 151 | 86.77 218 | 47.25 277 | 63.40 236 | 84.27 218 |
|
| VPA-MVSNet | | | 71.12 140 | 70.66 130 | 72.49 216 | 78.75 214 | 44.43 298 | 87.64 65 | 90.02 17 | 63.97 103 | 65.02 144 | 81.58 233 | 42.14 152 | 87.42 201 | 63.42 148 | 63.38 239 | 85.63 200 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 233 | 64.10 242 | 73.84 186 | 72.41 307 | 52.30 142 | 84.73 147 | 75.66 294 | 59.51 182 | 56.34 269 | 79.11 256 | 28.11 296 | 85.85 248 | 57.74 204 | 63.29 240 | 83.35 236 |
|
| CVMVSNet | | | 60.85 278 | 60.44 268 | 62.07 328 | 75.00 275 | 32.73 365 | 79.54 269 | 73.49 314 | 36.98 362 | 56.28 270 | 83.74 192 | 29.28 292 | 69.53 367 | 46.48 282 | 63.23 241 | 83.94 229 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 242 | |
|
| ACMM | | 58.35 12 | 64.35 247 | 62.01 252 | 71.38 245 | 74.21 286 | 48.51 229 | 82.25 217 | 79.66 224 | 47.61 317 | 54.54 284 | 80.11 243 | 25.26 318 | 86.00 242 | 51.26 250 | 63.16 243 | 79.64 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CHOSEN 280x420 | | | 57.53 304 | 56.38 297 | 60.97 338 | 74.01 288 | 48.10 245 | 46.30 382 | 54.31 373 | 48.18 315 | 50.88 313 | 77.43 272 | 38.37 193 | 59.16 380 | 54.83 223 | 63.14 244 | 75.66 334 |
|
| PS-MVSNAJss | | | 68.78 185 | 67.17 188 | 73.62 195 | 73.01 299 | 48.33 238 | 84.95 141 | 84.81 123 | 59.30 190 | 58.91 227 | 79.84 247 | 37.77 197 | 88.86 146 | 62.83 152 | 63.12 245 | 83.67 234 |
|
| MDTV_nov1_ep13 | | | | 61.56 255 | | 81.68 152 | 55.12 68 | 72.41 317 | 78.18 258 | 59.19 192 | 58.85 229 | 69.29 346 | 34.69 246 | 86.16 235 | 36.76 322 | 62.96 246 | |
|
| FMVSNet2 | | | 67.57 208 | 65.79 216 | 72.90 206 | 82.71 129 | 47.97 249 | 85.15 129 | 84.93 119 | 58.55 208 | 56.71 264 | 78.26 262 | 36.72 223 | 86.67 221 | 46.15 285 | 62.94 247 | 84.07 221 |
|
| D2MVS | | | 63.49 256 | 61.39 257 | 69.77 270 | 69.29 334 | 48.93 217 | 78.89 277 | 77.71 266 | 60.64 168 | 49.70 317 | 72.10 333 | 27.08 305 | 83.48 278 | 54.48 226 | 62.65 248 | 76.90 322 |
|
| MVS-HIRNet | | | 49.01 338 | 44.71 342 | 61.92 332 | 76.06 259 | 46.61 270 | 63.23 355 | 54.90 372 | 24.77 384 | 33.56 377 | 36.60 392 | 21.28 348 | 75.88 342 | 29.49 351 | 62.54 249 | 63.26 380 |
|
| IB-MVS | | 68.87 2 | 74.01 91 | 72.03 114 | 79.94 38 | 83.04 116 | 55.50 54 | 90.24 26 | 88.65 41 | 67.14 54 | 61.38 194 | 81.74 230 | 53.21 36 | 94.28 23 | 60.45 175 | 62.41 250 | 90.03 103 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| nrg030 | | | 72.27 124 | 71.56 117 | 74.42 168 | 75.93 263 | 50.60 172 | 86.97 84 | 83.21 161 | 62.75 127 | 67.15 119 | 84.38 182 | 50.07 59 | 86.66 222 | 71.19 98 | 62.37 251 | 85.99 190 |
|
| thisisatest0530 | | | 70.47 154 | 68.56 160 | 76.20 122 | 79.78 195 | 51.52 158 | 83.49 184 | 88.58 47 | 57.62 227 | 58.60 232 | 82.79 206 | 51.03 51 | 91.48 67 | 52.84 239 | 62.36 252 | 85.59 201 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 287 | 56.00 299 | 68.83 280 | 71.13 321 | 44.30 299 | 83.64 177 | 75.02 300 | 46.42 326 | 46.48 337 | 73.03 320 | 18.69 357 | 88.14 172 | 27.74 362 | 61.80 253 | 74.05 347 |
|
| dp | | | 64.41 246 | 61.58 254 | 72.90 206 | 82.40 135 | 54.09 98 | 72.53 315 | 76.59 287 | 60.39 170 | 55.68 274 | 70.39 342 | 35.18 240 | 76.90 337 | 39.34 310 | 61.71 254 | 87.73 156 |
|
| UniMVSNet_ETH3D | | | 62.51 266 | 60.49 267 | 68.57 288 | 68.30 343 | 40.88 336 | 73.89 305 | 79.93 218 | 51.81 295 | 54.77 281 | 79.61 248 | 24.80 322 | 81.10 292 | 49.93 257 | 61.35 255 | 83.73 232 |
|
| FMVSNet1 | | | 64.57 245 | 62.11 251 | 71.96 231 | 77.32 239 | 46.36 273 | 83.52 178 | 83.31 157 | 52.43 289 | 54.42 285 | 76.23 291 | 27.80 300 | 86.20 232 | 42.59 303 | 61.34 256 | 83.32 237 |
|
| VPNet | | | 72.07 126 | 71.42 121 | 74.04 179 | 78.64 219 | 47.17 265 | 89.91 32 | 87.97 55 | 72.56 12 | 64.66 149 | 85.04 177 | 41.83 159 | 88.33 166 | 61.17 165 | 60.97 257 | 86.62 179 |
|
| Effi-MVS+-dtu | | | 66.24 238 | 64.96 234 | 70.08 266 | 75.17 270 | 49.64 197 | 82.01 221 | 74.48 303 | 62.15 137 | 57.83 244 | 76.08 295 | 30.59 283 | 83.79 273 | 65.40 139 | 60.93 258 | 76.81 323 |
|
| PLC |  | 52.38 18 | 60.89 277 | 58.97 281 | 66.68 304 | 81.77 147 | 45.70 286 | 78.96 276 | 74.04 308 | 43.66 344 | 47.63 328 | 83.19 203 | 23.52 331 | 77.78 331 | 37.47 313 | 60.46 259 | 76.55 329 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Anonymous20231211 | | | 66.08 240 | 63.67 243 | 73.31 199 | 83.07 115 | 48.75 222 | 86.01 105 | 84.67 129 | 45.27 333 | 56.54 266 | 76.67 285 | 28.06 297 | 88.95 142 | 52.78 241 | 59.95 260 | 82.23 254 |
|
| CR-MVSNet | | | 62.47 268 | 59.04 280 | 72.77 209 | 73.97 290 | 56.57 34 | 60.52 364 | 71.72 325 | 60.04 173 | 57.49 254 | 65.86 355 | 38.94 187 | 80.31 305 | 42.86 301 | 59.93 261 | 81.42 268 |
|
| RPMNet | | | 59.29 285 | 54.25 308 | 74.42 168 | 73.97 290 | 56.57 34 | 60.52 364 | 76.98 278 | 35.72 366 | 57.49 254 | 58.87 374 | 37.73 200 | 85.26 256 | 27.01 365 | 59.93 261 | 81.42 268 |
|
| dmvs_testset | | | 57.65 302 | 58.21 284 | 55.97 353 | 74.62 280 | 9.82 409 | 63.75 352 | 63.34 362 | 67.23 53 | 48.89 321 | 83.68 196 | 39.12 186 | 76.14 340 | 23.43 375 | 59.80 263 | 81.96 257 |
|
| v1144 | | | 68.81 183 | 66.82 191 | 74.80 162 | 72.34 308 | 53.46 108 | 84.68 149 | 81.77 187 | 64.25 96 | 60.28 203 | 77.91 264 | 40.23 174 | 88.95 142 | 60.37 176 | 59.52 264 | 81.97 256 |
|
| v2v482 | | | 69.55 172 | 67.64 178 | 75.26 154 | 72.32 309 | 53.83 100 | 84.93 142 | 81.94 180 | 65.37 85 | 60.80 199 | 79.25 253 | 41.62 160 | 88.98 141 | 63.03 151 | 59.51 265 | 82.98 247 |
|
| CNLPA | | | 60.59 279 | 58.44 283 | 67.05 299 | 79.21 204 | 47.26 262 | 79.75 268 | 64.34 360 | 42.46 350 | 51.90 306 | 83.94 188 | 27.79 301 | 75.41 344 | 37.12 316 | 59.49 266 | 78.47 305 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 267 | |
|
| tt0805 | | | 63.39 257 | 61.31 259 | 69.64 271 | 69.36 333 | 38.87 342 | 78.00 281 | 85.48 95 | 48.82 312 | 55.66 277 | 81.66 231 | 24.38 325 | 86.37 231 | 49.04 265 | 59.36 268 | 83.68 233 |
|
| PatchMatch-RL | | | 56.66 306 | 53.75 311 | 65.37 313 | 77.91 232 | 45.28 289 | 69.78 334 | 60.38 366 | 41.35 351 | 47.57 329 | 73.73 311 | 16.83 365 | 76.91 335 | 36.99 319 | 59.21 269 | 73.92 348 |
|
| test0.0.03 1 | | | 62.54 265 | 62.44 248 | 62.86 327 | 72.28 310 | 29.51 378 | 82.93 202 | 78.78 245 | 59.18 194 | 53.07 297 | 82.41 218 | 36.91 218 | 77.39 332 | 37.45 314 | 58.96 270 | 81.66 262 |
|
| v1192 | | | 67.96 199 | 65.74 218 | 74.63 163 | 71.79 311 | 53.43 113 | 84.06 167 | 80.99 200 | 63.19 121 | 59.56 212 | 77.46 271 | 37.50 208 | 88.65 151 | 58.20 194 | 58.93 271 | 81.79 259 |
|
| cl22 | | | 68.85 180 | 67.69 177 | 72.35 220 | 78.07 228 | 49.98 191 | 82.45 214 | 78.48 254 | 62.50 134 | 58.46 237 | 77.95 263 | 49.99 61 | 85.17 258 | 62.55 153 | 58.72 272 | 81.90 258 |
|
| miper_ehance_all_eth | | | 68.70 188 | 67.58 179 | 72.08 226 | 76.91 248 | 49.48 204 | 82.47 213 | 78.45 255 | 62.68 129 | 58.28 241 | 77.88 265 | 50.90 52 | 85.01 262 | 61.91 159 | 58.72 272 | 81.75 260 |
|
| miper_enhance_ethall | | | 69.77 166 | 68.90 158 | 72.38 219 | 78.93 211 | 49.91 192 | 83.29 192 | 78.85 242 | 64.90 90 | 59.37 216 | 79.46 249 | 52.77 38 | 85.16 259 | 63.78 145 | 58.72 272 | 82.08 255 |
|
| V42 | | | 67.66 205 | 65.60 222 | 73.86 185 | 70.69 326 | 53.63 105 | 81.50 239 | 78.61 251 | 63.85 105 | 59.49 215 | 77.49 270 | 37.98 194 | 87.65 192 | 62.33 154 | 58.43 275 | 80.29 288 |
|
| Syy-MVS | | | 61.51 274 | 61.35 258 | 62.00 330 | 81.73 148 | 30.09 373 | 80.97 249 | 81.02 198 | 60.93 161 | 55.06 278 | 82.64 212 | 35.09 241 | 80.81 297 | 16.40 391 | 58.32 276 | 75.10 340 |
|
| myMVS_eth3d | | | 63.52 255 | 63.56 245 | 63.40 323 | 81.73 148 | 34.28 356 | 80.97 249 | 81.02 198 | 60.93 161 | 55.06 278 | 82.64 212 | 48.00 76 | 80.81 297 | 23.42 376 | 58.32 276 | 75.10 340 |
|
| tpmvs | | | 62.45 269 | 59.42 276 | 71.53 244 | 83.93 92 | 54.32 91 | 70.03 332 | 77.61 267 | 51.91 292 | 53.48 295 | 68.29 349 | 37.91 195 | 86.66 222 | 33.36 337 | 58.27 278 | 73.62 350 |
|
| XVG-ACMP-BASELINE | | | 56.03 312 | 52.85 316 | 65.58 309 | 61.91 370 | 40.95 335 | 63.36 353 | 72.43 320 | 45.20 334 | 46.02 338 | 74.09 307 | 9.20 382 | 78.12 321 | 45.13 288 | 58.27 278 | 77.66 317 |
|
| pmmvs5 | | | 62.80 264 | 61.18 260 | 67.66 293 | 69.53 332 | 42.37 325 | 82.65 207 | 75.19 299 | 54.30 276 | 52.03 305 | 78.51 260 | 31.64 277 | 80.67 299 | 48.60 268 | 58.15 280 | 79.95 292 |
|
| v1240 | | | 66.99 225 | 64.68 236 | 73.93 182 | 71.38 319 | 52.66 133 | 83.39 189 | 79.98 215 | 61.97 141 | 58.44 239 | 77.11 276 | 35.25 238 | 87.81 182 | 56.46 215 | 58.15 280 | 81.33 273 |
|
| v1921920 | | | 67.45 211 | 65.23 230 | 74.10 178 | 71.51 316 | 52.90 130 | 83.75 176 | 80.44 207 | 62.48 135 | 59.12 222 | 77.13 275 | 36.98 216 | 87.90 180 | 57.53 205 | 58.14 282 | 81.49 264 |
|
| jajsoiax | | | 63.21 259 | 60.84 264 | 70.32 262 | 68.33 342 | 44.45 297 | 81.23 243 | 81.05 197 | 53.37 282 | 50.96 312 | 77.81 267 | 17.49 363 | 85.49 252 | 59.31 180 | 58.05 283 | 81.02 279 |
|
| tttt0517 | | | 68.33 193 | 66.29 203 | 74.46 166 | 78.08 227 | 49.06 210 | 80.88 252 | 89.08 27 | 54.40 274 | 54.75 282 | 80.77 240 | 51.31 48 | 90.33 100 | 49.35 262 | 58.01 284 | 83.99 224 |
|
| Anonymous20231206 | | | 59.08 290 | 57.59 287 | 63.55 321 | 68.77 338 | 32.14 368 | 80.26 261 | 79.78 221 | 50.00 305 | 49.39 318 | 72.39 328 | 26.64 308 | 78.36 319 | 33.12 340 | 57.94 285 | 80.14 290 |
|
| mvs_tets | | | 62.96 262 | 60.55 266 | 70.19 263 | 68.22 345 | 44.24 302 | 80.90 251 | 80.74 203 | 52.99 285 | 50.82 314 | 77.56 268 | 16.74 366 | 85.44 253 | 59.04 183 | 57.94 285 | 80.89 280 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 327 | 49.74 330 | 61.69 333 | 69.78 331 | 34.99 353 | 44.52 383 | 67.60 353 | 43.11 347 | 43.79 343 | 74.03 308 | 18.54 359 | 81.45 290 | 28.39 359 | 57.94 285 | 68.62 368 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v144192 | | | 67.86 200 | 65.76 217 | 74.16 176 | 71.68 313 | 53.09 124 | 84.14 164 | 80.83 202 | 62.85 126 | 59.21 221 | 77.28 274 | 39.30 184 | 88.00 178 | 58.67 186 | 57.88 288 | 81.40 270 |
|
| IterMVS-LS | | | 66.63 231 | 65.36 228 | 70.42 260 | 75.10 272 | 48.90 218 | 81.45 242 | 76.69 285 | 61.05 157 | 55.71 273 | 77.10 277 | 45.86 99 | 83.65 276 | 57.44 206 | 57.88 288 | 78.70 301 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| h-mvs33 | | | 73.95 92 | 72.89 94 | 77.15 99 | 80.17 190 | 50.37 181 | 84.68 149 | 83.33 156 | 68.08 40 | 71.97 80 | 88.65 123 | 42.50 146 | 91.15 77 | 78.82 46 | 57.78 290 | 89.91 107 |
|
| ACMH | | 53.70 16 | 59.78 282 | 55.94 300 | 71.28 246 | 76.59 250 | 48.35 235 | 80.15 264 | 76.11 290 | 49.74 306 | 41.91 352 | 73.45 318 | 16.50 368 | 90.31 101 | 31.42 345 | 57.63 291 | 75.17 338 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MSDG | | | 59.44 284 | 55.14 304 | 72.32 222 | 74.69 278 | 50.71 169 | 74.39 303 | 73.58 312 | 44.44 339 | 43.40 346 | 77.52 269 | 19.45 353 | 90.87 86 | 31.31 346 | 57.49 292 | 75.38 336 |
|
| pmmvs4 | | | 63.34 258 | 61.07 262 | 70.16 264 | 70.14 328 | 50.53 174 | 79.97 266 | 71.41 330 | 55.08 265 | 54.12 288 | 78.58 259 | 32.79 264 | 82.09 287 | 50.33 255 | 57.22 293 | 77.86 314 |
|
| c3_l | | | 67.97 198 | 66.66 196 | 71.91 237 | 76.20 257 | 49.31 207 | 82.13 220 | 78.00 261 | 61.99 140 | 57.64 250 | 76.94 279 | 49.41 66 | 84.93 263 | 60.62 170 | 57.01 294 | 81.49 264 |
|
| UniMVSNet (Re) | | | 67.71 204 | 66.80 192 | 70.45 259 | 74.44 282 | 42.93 316 | 82.42 215 | 84.90 120 | 63.69 109 | 59.63 210 | 80.99 237 | 47.18 82 | 85.23 257 | 51.17 252 | 56.75 295 | 83.19 242 |
|
| SCA | | | 63.84 251 | 60.01 273 | 75.32 147 | 78.58 220 | 57.92 10 | 61.61 361 | 77.53 268 | 56.71 245 | 57.75 248 | 70.77 339 | 31.97 272 | 79.91 312 | 48.80 266 | 56.36 296 | 88.13 147 |
|
| v8 | | | 67.25 217 | 64.99 233 | 74.04 179 | 72.89 302 | 53.31 118 | 82.37 216 | 80.11 213 | 61.54 148 | 54.29 287 | 76.02 296 | 42.89 144 | 88.41 161 | 58.43 188 | 56.36 296 | 80.39 287 |
|
| cl____ | | | 67.43 212 | 65.93 213 | 71.95 234 | 76.33 253 | 48.02 247 | 82.58 208 | 79.12 239 | 61.30 153 | 56.72 263 | 76.92 280 | 46.12 94 | 86.44 229 | 57.98 197 | 56.31 298 | 81.38 272 |
|
| DIV-MVS_self_test | | | 67.43 212 | 65.93 213 | 71.94 235 | 76.33 253 | 48.01 248 | 82.57 209 | 79.11 240 | 61.31 152 | 56.73 262 | 76.92 280 | 46.09 95 | 86.43 230 | 57.98 197 | 56.31 298 | 81.39 271 |
|
| DP-MVS | | | 59.24 286 | 56.12 298 | 68.63 285 | 88.24 34 | 50.35 183 | 82.51 212 | 64.43 359 | 41.10 352 | 46.70 335 | 78.77 258 | 24.75 323 | 88.57 157 | 22.26 378 | 56.29 300 | 66.96 371 |
|
| NR-MVSNet | | | 67.25 217 | 65.99 211 | 71.04 252 | 73.27 297 | 43.91 304 | 85.32 124 | 84.75 126 | 66.05 74 | 53.65 294 | 82.11 226 | 45.05 110 | 85.97 245 | 47.55 274 | 56.18 301 | 83.24 240 |
|
| v10 | | | 66.61 232 | 64.20 241 | 73.83 187 | 72.59 305 | 53.37 114 | 81.88 225 | 79.91 219 | 61.11 155 | 54.09 289 | 75.60 298 | 40.06 178 | 88.26 171 | 56.47 214 | 56.10 302 | 79.86 293 |
|
| baseline1 | | | 72.51 118 | 72.12 110 | 73.69 192 | 85.05 71 | 44.46 296 | 83.51 182 | 86.13 87 | 71.61 17 | 64.64 150 | 87.97 138 | 55.00 28 | 89.48 123 | 59.07 182 | 56.05 303 | 87.13 168 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 182 | 68.29 165 | 70.40 261 | 75.71 266 | 42.59 320 | 84.23 161 | 86.78 74 | 66.31 66 | 58.51 233 | 82.45 217 | 51.57 46 | 84.64 267 | 53.11 235 | 55.96 304 | 83.96 228 |
|
| DU-MVS | | | 66.84 230 | 65.74 218 | 70.16 264 | 73.27 297 | 42.59 320 | 81.50 239 | 82.92 168 | 63.53 113 | 58.51 233 | 82.11 226 | 40.75 168 | 84.64 267 | 53.11 235 | 55.96 304 | 83.24 240 |
|
| v148 | | | 68.24 196 | 66.35 201 | 73.88 184 | 71.76 312 | 51.47 159 | 84.23 161 | 81.90 184 | 63.69 109 | 58.94 224 | 76.44 287 | 43.72 132 | 87.78 187 | 60.63 169 | 55.86 306 | 82.39 253 |
|
| test_djsdf | | | 63.84 251 | 61.56 255 | 70.70 256 | 68.78 337 | 44.69 295 | 81.63 233 | 81.44 191 | 50.28 301 | 52.27 303 | 76.26 290 | 26.72 307 | 86.11 236 | 60.83 167 | 55.84 307 | 81.29 276 |
|
| tfpnnormal | | | 61.47 275 | 59.09 279 | 68.62 286 | 76.29 256 | 41.69 326 | 81.14 246 | 85.16 113 | 54.48 273 | 51.32 308 | 73.63 315 | 32.32 268 | 86.89 217 | 21.78 380 | 55.71 308 | 77.29 320 |
|
| WR-MVS | | | 67.58 207 | 66.76 193 | 70.04 268 | 75.92 264 | 45.06 294 | 86.23 99 | 85.28 107 | 64.31 95 | 58.50 235 | 81.00 236 | 44.80 120 | 82.00 288 | 49.21 264 | 55.57 309 | 83.06 245 |
|
| RRT_MVS | | | 63.68 254 | 61.01 263 | 71.70 239 | 73.48 292 | 45.98 281 | 81.19 244 | 76.08 291 | 54.33 275 | 52.84 298 | 79.27 252 | 22.21 340 | 87.65 192 | 54.13 228 | 55.54 310 | 81.46 267 |
|
| test_fmvs1 | | | 53.60 325 | 52.54 320 | 56.78 349 | 58.07 375 | 30.26 371 | 68.95 338 | 42.19 385 | 32.46 373 | 63.59 171 | 82.56 216 | 11.55 375 | 60.81 374 | 58.25 193 | 55.27 311 | 79.28 295 |
|
| Baseline_NR-MVSNet | | | 65.49 244 | 64.27 240 | 69.13 276 | 74.37 285 | 41.65 327 | 83.39 189 | 78.85 242 | 59.56 181 | 59.62 211 | 76.88 282 | 40.75 168 | 87.44 200 | 49.99 256 | 55.05 312 | 78.28 310 |
|
| v7n | | | 62.50 267 | 59.27 278 | 72.20 224 | 67.25 348 | 49.83 195 | 77.87 283 | 80.12 212 | 52.50 288 | 48.80 322 | 73.07 319 | 32.10 270 | 87.90 180 | 46.83 280 | 54.92 313 | 78.86 299 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 227 | 65.61 221 | 70.93 254 | 73.45 293 | 43.38 311 | 83.02 201 | 84.25 138 | 65.31 87 | 58.33 240 | 81.90 229 | 39.92 181 | 85.52 250 | 49.43 261 | 54.89 314 | 83.89 230 |
|
| FMVSNet5 | | | 58.61 296 | 56.45 294 | 65.10 315 | 77.20 244 | 39.74 338 | 74.77 299 | 77.12 276 | 50.27 303 | 43.28 347 | 67.71 350 | 26.15 312 | 76.90 337 | 36.78 321 | 54.78 315 | 78.65 303 |
|
| ACMH+ | | 54.58 15 | 58.55 298 | 55.24 302 | 68.50 289 | 74.68 279 | 45.80 285 | 80.27 260 | 70.21 338 | 47.15 320 | 42.77 349 | 75.48 299 | 16.73 367 | 85.98 243 | 35.10 332 | 54.78 315 | 73.72 349 |
|
| test_fmvs1_n | | | 52.55 329 | 51.19 324 | 56.65 350 | 51.90 385 | 30.14 372 | 67.66 342 | 42.84 384 | 32.27 374 | 62.30 185 | 82.02 228 | 9.12 383 | 60.84 373 | 57.82 201 | 54.75 317 | 78.99 297 |
|
| eth_miper_zixun_eth | | | 66.98 226 | 65.28 229 | 72.06 227 | 75.61 267 | 50.40 178 | 81.00 248 | 76.97 281 | 62.00 139 | 56.99 261 | 76.97 278 | 44.84 117 | 85.58 249 | 58.75 185 | 54.42 318 | 80.21 289 |
|
| IterMVS | | | 63.77 253 | 61.67 253 | 70.08 266 | 72.68 304 | 51.24 165 | 80.44 257 | 75.51 295 | 60.51 169 | 51.41 307 | 73.70 314 | 32.08 271 | 78.91 316 | 54.30 227 | 54.35 319 | 80.08 291 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| anonymousdsp | | | 60.46 280 | 57.65 286 | 68.88 278 | 63.63 365 | 45.09 290 | 72.93 313 | 78.63 250 | 46.52 324 | 51.12 309 | 72.80 323 | 21.46 347 | 83.07 282 | 57.79 202 | 53.97 320 | 78.47 305 |
|
| F-COLMAP | | | 55.96 314 | 53.65 312 | 62.87 326 | 72.76 303 | 42.77 319 | 74.70 302 | 70.37 337 | 40.03 353 | 41.11 357 | 79.36 250 | 17.77 362 | 73.70 352 | 32.80 341 | 53.96 321 | 72.15 357 |
|
| ADS-MVSNet2 | | | 55.21 317 | 51.44 322 | 66.51 305 | 80.60 183 | 49.56 200 | 55.03 375 | 65.44 355 | 44.72 336 | 51.00 310 | 61.19 367 | 22.83 333 | 75.41 344 | 28.54 357 | 53.63 322 | 74.57 344 |
|
| ADS-MVSNet | | | 56.17 311 | 51.95 321 | 68.84 279 | 80.60 183 | 53.07 125 | 55.03 375 | 70.02 340 | 44.72 336 | 51.00 310 | 61.19 367 | 22.83 333 | 78.88 317 | 28.54 357 | 53.63 322 | 74.57 344 |
|
| IterMVS-SCA-FT | | | 59.12 288 | 58.81 282 | 60.08 340 | 70.68 327 | 45.07 291 | 80.42 258 | 74.25 304 | 43.54 345 | 50.02 316 | 73.73 311 | 31.97 272 | 56.74 382 | 51.06 253 | 53.60 324 | 78.42 307 |
|
| pm-mvs1 | | | 64.12 249 | 62.56 247 | 68.78 282 | 71.68 313 | 38.87 342 | 82.89 203 | 81.57 188 | 55.54 261 | 53.89 291 | 77.82 266 | 37.73 200 | 86.74 219 | 48.46 270 | 53.49 325 | 80.72 282 |
|
| AUN-MVS | | | 68.20 197 | 66.35 201 | 73.76 189 | 76.37 251 | 47.45 258 | 79.52 271 | 79.52 227 | 60.98 159 | 62.34 183 | 86.02 165 | 36.59 226 | 86.94 214 | 62.32 155 | 53.47 326 | 86.89 170 |
|
| hse-mvs2 | | | 71.44 137 | 70.68 129 | 73.73 191 | 76.34 252 | 47.44 259 | 79.45 272 | 79.47 230 | 68.08 40 | 71.97 80 | 86.01 167 | 42.50 146 | 86.93 215 | 78.82 46 | 53.46 327 | 86.83 176 |
|
| miper_lstm_enhance | | | 63.91 250 | 62.30 249 | 68.75 283 | 75.06 273 | 46.78 267 | 69.02 336 | 81.14 196 | 59.68 180 | 52.76 299 | 72.39 328 | 40.71 170 | 77.99 326 | 56.81 211 | 53.09 328 | 81.48 266 |
|
| PatchT | | | 56.60 307 | 52.97 314 | 67.48 294 | 72.94 301 | 46.16 280 | 57.30 372 | 73.78 310 | 38.77 356 | 54.37 286 | 57.26 377 | 37.52 206 | 78.06 323 | 32.02 342 | 52.79 329 | 78.23 312 |
|
| test_vis1_n | | | 51.19 334 | 49.66 331 | 55.76 354 | 51.26 386 | 29.85 376 | 67.20 344 | 38.86 389 | 32.12 375 | 59.50 214 | 79.86 246 | 8.78 384 | 58.23 381 | 56.95 210 | 52.46 330 | 79.19 296 |
|
| JIA-IIPM | | | 52.33 331 | 47.77 338 | 66.03 307 | 71.20 320 | 46.92 266 | 40.00 390 | 76.48 288 | 37.10 361 | 46.73 334 | 37.02 390 | 32.96 261 | 77.88 328 | 35.97 323 | 52.45 331 | 73.29 353 |
|
| Patchmatch-test | | | 53.33 326 | 48.17 335 | 68.81 281 | 73.31 294 | 42.38 324 | 42.98 385 | 58.23 368 | 32.53 372 | 38.79 364 | 70.77 339 | 39.66 182 | 73.51 353 | 25.18 369 | 52.06 332 | 90.55 85 |
|
| testgi | | | 54.25 320 | 52.57 319 | 59.29 343 | 62.76 368 | 21.65 393 | 72.21 320 | 70.47 336 | 53.25 283 | 41.94 351 | 77.33 273 | 14.28 372 | 77.95 327 | 29.18 353 | 51.72 333 | 78.28 310 |
|
| test_0402 | | | 56.45 309 | 53.03 313 | 66.69 303 | 76.78 249 | 50.31 185 | 81.76 229 | 69.61 343 | 42.79 348 | 43.88 342 | 72.13 331 | 22.82 335 | 86.46 228 | 16.57 390 | 50.94 334 | 63.31 379 |
|
| testing3 | | | 59.97 281 | 60.19 271 | 59.32 342 | 77.60 234 | 30.01 375 | 81.75 230 | 81.79 185 | 53.54 279 | 50.34 315 | 79.94 244 | 48.99 69 | 76.91 335 | 17.19 389 | 50.59 335 | 71.03 365 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 335 | 48.05 336 | 59.47 341 | 67.81 346 | 40.57 337 | 71.25 327 | 62.72 365 | 36.49 365 | 36.19 370 | 73.51 316 | 13.48 373 | 73.92 350 | 20.71 382 | 50.26 336 | 63.92 378 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| pmmvs6 | | | 59.64 283 | 57.15 290 | 67.09 297 | 66.01 350 | 36.86 351 | 80.50 256 | 78.64 249 | 45.05 335 | 49.05 320 | 73.94 309 | 27.28 303 | 86.10 238 | 43.96 296 | 49.94 337 | 78.31 309 |
|
| Anonymous20240521 | | | 51.65 332 | 48.42 334 | 61.34 337 | 56.43 379 | 39.65 340 | 73.57 308 | 73.47 317 | 36.64 364 | 36.59 368 | 63.98 360 | 10.75 378 | 72.25 360 | 35.35 326 | 49.01 338 | 72.11 358 |
|
| USDC | | | 54.36 319 | 51.23 323 | 63.76 320 | 64.29 363 | 37.71 348 | 62.84 358 | 73.48 316 | 56.85 240 | 35.47 372 | 71.94 334 | 9.23 381 | 78.43 318 | 38.43 312 | 48.57 339 | 75.13 339 |
|
| WR-MVS_H | | | 58.91 293 | 58.04 285 | 61.54 334 | 69.07 336 | 33.83 360 | 76.91 287 | 81.99 179 | 51.40 297 | 48.17 323 | 74.67 303 | 40.23 174 | 74.15 347 | 31.78 344 | 48.10 340 | 76.64 327 |
|
| ITE_SJBPF | | | | | 51.84 358 | 58.03 376 | 31.94 369 | | 53.57 376 | 36.67 363 | 41.32 355 | 75.23 301 | 11.17 377 | 51.57 387 | 25.81 368 | 48.04 341 | 72.02 359 |
|
| CL-MVSNet_self_test | | | 62.98 261 | 61.14 261 | 68.50 289 | 65.86 352 | 42.96 315 | 84.37 156 | 82.98 166 | 60.98 159 | 53.95 290 | 72.70 324 | 40.43 172 | 83.71 275 | 41.10 305 | 47.93 342 | 78.83 300 |
|
| test_fmvs2 | | | 45.89 343 | 44.32 345 | 50.62 360 | 45.85 394 | 24.70 387 | 58.87 370 | 37.84 392 | 25.22 383 | 52.46 301 | 74.56 305 | 7.07 387 | 54.69 383 | 49.28 263 | 47.70 343 | 72.48 356 |
|
| CP-MVSNet | | | 58.54 299 | 57.57 288 | 61.46 335 | 68.50 340 | 33.96 359 | 76.90 288 | 78.60 252 | 51.67 296 | 47.83 326 | 76.60 286 | 34.99 244 | 72.79 356 | 35.45 325 | 47.58 344 | 77.64 318 |
|
| MIMVSNet1 | | | 50.35 336 | 47.81 337 | 57.96 347 | 61.53 371 | 27.80 384 | 67.40 343 | 74.06 307 | 43.25 346 | 33.31 380 | 65.38 358 | 16.03 369 | 71.34 361 | 21.80 379 | 47.55 345 | 74.75 342 |
|
| PS-CasMVS | | | 58.12 301 | 57.03 292 | 61.37 336 | 68.24 344 | 33.80 361 | 76.73 289 | 78.01 260 | 51.20 298 | 47.54 330 | 76.20 294 | 32.85 262 | 72.76 357 | 35.17 330 | 47.37 346 | 77.55 319 |
|
| Patchmatch-RL test | | | 58.72 295 | 54.32 307 | 71.92 236 | 63.91 364 | 44.25 301 | 61.73 360 | 55.19 371 | 57.38 232 | 49.31 319 | 54.24 379 | 37.60 204 | 80.89 294 | 62.19 157 | 47.28 347 | 90.63 84 |
|
| PEN-MVS | | | 58.35 300 | 57.15 290 | 61.94 331 | 67.55 347 | 34.39 355 | 77.01 286 | 78.35 257 | 51.87 293 | 47.72 327 | 76.73 284 | 33.91 253 | 73.75 351 | 34.03 335 | 47.17 348 | 77.68 316 |
|
| FPMVS | | | 35.40 353 | 33.67 357 | 40.57 370 | 46.34 393 | 28.74 382 | 41.05 387 | 57.05 370 | 20.37 388 | 22.27 392 | 53.38 381 | 6.87 389 | 44.94 395 | 8.62 397 | 47.11 349 | 48.01 389 |
|
| test20.03 | | | 55.22 316 | 54.07 309 | 58.68 345 | 63.14 367 | 25.00 386 | 77.69 284 | 74.78 301 | 52.64 286 | 43.43 345 | 72.39 328 | 26.21 310 | 74.76 346 | 29.31 352 | 47.05 350 | 76.28 331 |
|
| DSMNet-mixed | | | 38.35 350 | 35.36 355 | 47.33 363 | 48.11 392 | 14.91 405 | 37.87 391 | 36.60 393 | 19.18 389 | 34.37 374 | 59.56 372 | 15.53 370 | 53.01 386 | 20.14 384 | 46.89 351 | 74.07 346 |
|
| Patchmtry | | | 56.56 308 | 52.95 315 | 67.42 295 | 72.53 306 | 50.59 173 | 59.05 368 | 71.72 325 | 37.86 360 | 46.92 333 | 65.86 355 | 38.94 187 | 80.06 309 | 36.94 320 | 46.72 352 | 71.60 361 |
|
| test_vis1_rt | | | 40.29 349 | 38.64 351 | 45.25 366 | 48.91 391 | 30.09 373 | 59.44 367 | 27.07 403 | 24.52 385 | 38.48 365 | 51.67 384 | 6.71 390 | 49.44 388 | 44.33 293 | 46.59 353 | 56.23 382 |
|
| EU-MVSNet | | | 52.63 328 | 50.72 325 | 58.37 346 | 62.69 369 | 28.13 383 | 72.60 314 | 75.97 292 | 30.94 377 | 40.76 359 | 72.11 332 | 20.16 351 | 70.80 363 | 35.11 331 | 46.11 354 | 76.19 332 |
|
| RPSCF | | | 45.77 344 | 44.13 346 | 50.68 359 | 57.67 378 | 29.66 377 | 54.92 377 | 45.25 381 | 26.69 382 | 45.92 339 | 75.92 297 | 17.43 364 | 45.70 393 | 27.44 363 | 45.95 355 | 76.67 324 |
|
| our_test_3 | | | 59.11 289 | 55.08 305 | 71.18 250 | 71.42 317 | 53.29 119 | 81.96 222 | 74.52 302 | 48.32 313 | 42.08 350 | 69.28 347 | 28.14 295 | 82.15 285 | 34.35 334 | 45.68 356 | 78.11 313 |
|
| DTE-MVSNet | | | 57.03 305 | 55.73 301 | 60.95 339 | 65.94 351 | 32.57 366 | 75.71 291 | 77.09 277 | 51.16 299 | 46.65 336 | 76.34 289 | 32.84 263 | 73.22 355 | 30.94 348 | 44.87 357 | 77.06 321 |
|
| pmmvs-eth3d | | | 55.97 313 | 52.78 317 | 65.54 310 | 61.02 372 | 46.44 272 | 75.36 297 | 67.72 351 | 49.61 307 | 43.65 344 | 67.58 351 | 21.63 345 | 77.04 333 | 44.11 295 | 44.33 358 | 73.15 355 |
|
| AllTest | | | 47.32 341 | 44.66 343 | 55.32 355 | 65.08 358 | 37.50 349 | 62.96 357 | 54.25 374 | 35.45 368 | 33.42 378 | 72.82 321 | 9.98 379 | 59.33 377 | 24.13 372 | 43.84 359 | 69.13 366 |
|
| TestCases | | | | | 55.32 355 | 65.08 358 | 37.50 349 | | 54.25 374 | 35.45 368 | 33.42 378 | 72.82 321 | 9.98 379 | 59.33 377 | 24.13 372 | 43.84 359 | 69.13 366 |
|
| ppachtmachnet_test | | | 58.56 297 | 54.34 306 | 71.24 247 | 71.42 317 | 54.74 79 | 81.84 227 | 72.27 321 | 49.02 310 | 45.86 340 | 68.99 348 | 26.27 309 | 83.30 280 | 30.12 349 | 43.23 361 | 75.69 333 |
|
| KD-MVS_self_test | | | 49.24 337 | 46.85 340 | 56.44 351 | 54.32 380 | 22.87 389 | 57.39 371 | 73.36 318 | 44.36 340 | 37.98 366 | 59.30 373 | 18.97 356 | 71.17 362 | 33.48 336 | 42.44 362 | 75.26 337 |
|
| PM-MVS | | | 46.92 342 | 43.76 347 | 56.41 352 | 52.18 384 | 32.26 367 | 63.21 356 | 38.18 390 | 37.99 359 | 40.78 358 | 66.20 354 | 5.09 395 | 65.42 370 | 48.19 271 | 41.99 363 | 71.54 362 |
|
| TinyColmap | | | 48.15 340 | 44.49 344 | 59.13 344 | 65.73 353 | 38.04 346 | 63.34 354 | 62.86 364 | 38.78 355 | 29.48 384 | 67.23 353 | 6.46 392 | 73.30 354 | 24.59 371 | 41.90 364 | 66.04 374 |
|
| N_pmnet | | | 41.25 347 | 39.77 350 | 45.66 365 | 68.50 340 | 0.82 415 | 72.51 316 | 0.38 414 | 35.61 367 | 35.26 373 | 61.51 366 | 20.07 352 | 67.74 368 | 23.51 374 | 40.63 365 | 68.42 369 |
|
| TransMVSNet (Re) | | | 62.82 263 | 60.76 265 | 69.02 277 | 73.98 289 | 41.61 328 | 86.36 96 | 79.30 238 | 56.90 239 | 52.53 300 | 76.44 287 | 41.85 158 | 87.60 197 | 38.83 311 | 40.61 366 | 77.86 314 |
|
| OurMVSNet-221017-0 | | | 52.39 330 | 48.73 333 | 63.35 324 | 65.21 356 | 38.42 345 | 68.54 340 | 64.95 356 | 38.19 357 | 39.57 360 | 71.43 335 | 13.23 374 | 79.92 310 | 37.16 315 | 40.32 367 | 71.72 360 |
|
| YYNet1 | | | 53.82 323 | 49.96 328 | 65.41 312 | 70.09 330 | 48.95 215 | 72.30 318 | 71.66 327 | 44.25 341 | 31.89 381 | 63.07 363 | 23.73 329 | 73.95 349 | 33.26 338 | 39.40 368 | 73.34 352 |
|
| MDA-MVSNet_test_wron | | | 53.82 323 | 49.95 329 | 65.43 311 | 70.13 329 | 49.05 211 | 72.30 318 | 71.65 328 | 44.23 342 | 31.85 382 | 63.13 362 | 23.68 330 | 74.01 348 | 33.25 339 | 39.35 369 | 73.23 354 |
|
| ambc | | | | | 62.06 329 | 53.98 382 | 29.38 379 | 35.08 393 | 79.65 225 | | 41.37 354 | 59.96 370 | 6.27 393 | 82.15 285 | 35.34 327 | 38.22 370 | 74.65 343 |
|
| test_fmvs3 | | | 37.95 351 | 35.75 354 | 44.55 367 | 35.50 400 | 18.92 397 | 48.32 379 | 34.00 397 | 18.36 391 | 41.31 356 | 61.58 365 | 2.29 402 | 48.06 392 | 42.72 302 | 37.71 371 | 66.66 372 |
|
| mvsany_test1 | | | 43.38 346 | 42.57 348 | 45.82 364 | 50.96 387 | 26.10 385 | 55.80 373 | 27.74 402 | 27.15 381 | 47.41 332 | 74.39 306 | 18.67 358 | 44.95 394 | 44.66 291 | 36.31 372 | 66.40 373 |
|
| Gipuma |  | | 27.47 361 | 24.26 366 | 37.12 375 | 60.55 374 | 29.17 380 | 11.68 402 | 60.00 367 | 14.18 394 | 10.52 403 | 15.12 404 | 2.20 404 | 63.01 372 | 8.39 398 | 35.65 373 | 19.18 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UnsupCasMVSNet_eth | | | 57.56 303 | 55.15 303 | 64.79 317 | 64.57 362 | 33.12 362 | 73.17 312 | 83.87 148 | 58.98 200 | 41.75 353 | 70.03 343 | 22.54 336 | 79.92 310 | 46.12 286 | 35.31 374 | 81.32 275 |
|
| TDRefinement | | | 40.91 348 | 38.37 352 | 48.55 362 | 50.45 388 | 33.03 364 | 58.98 369 | 50.97 377 | 28.50 379 | 29.89 383 | 67.39 352 | 6.21 394 | 54.51 384 | 17.67 388 | 35.25 375 | 58.11 381 |
|
| EGC-MVSNET | | | 33.75 356 | 30.42 360 | 43.75 368 | 64.94 360 | 36.21 352 | 60.47 366 | 40.70 388 | 0.02 408 | 0.10 409 | 53.79 380 | 7.39 386 | 60.26 375 | 11.09 396 | 35.23 376 | 34.79 394 |
|
| LF4IMVS | | | 33.04 358 | 32.55 358 | 34.52 376 | 40.96 395 | 22.03 391 | 44.45 384 | 35.62 394 | 20.42 387 | 28.12 387 | 62.35 364 | 5.03 396 | 31.88 406 | 21.61 381 | 34.42 377 | 49.63 388 |
|
| new-patchmatchnet | | | 48.21 339 | 46.55 341 | 53.18 357 | 57.73 377 | 18.19 401 | 70.24 330 | 71.02 333 | 45.70 330 | 33.70 376 | 60.23 369 | 18.00 361 | 69.86 366 | 27.97 361 | 34.35 378 | 71.49 363 |
|
| pmmvs3 | | | 45.53 345 | 41.55 349 | 57.44 348 | 48.97 390 | 39.68 339 | 70.06 331 | 57.66 369 | 28.32 380 | 34.06 375 | 57.29 376 | 8.50 385 | 66.85 369 | 34.86 333 | 34.26 379 | 65.80 375 |
|
| SixPastTwentyTwo | | | 54.37 318 | 50.10 327 | 67.21 296 | 70.70 325 | 41.46 331 | 74.73 300 | 64.69 357 | 47.56 318 | 39.12 362 | 69.49 344 | 18.49 360 | 84.69 266 | 31.87 343 | 34.20 380 | 75.48 335 |
|
| UnsupCasMVSNet_bld | | | 53.86 322 | 50.53 326 | 63.84 319 | 63.52 366 | 34.75 354 | 71.38 326 | 81.92 182 | 46.53 323 | 38.95 363 | 57.93 375 | 20.55 350 | 80.20 308 | 39.91 309 | 34.09 381 | 76.57 328 |
|
| MDA-MVSNet-bldmvs | | | 51.56 333 | 47.75 339 | 63.00 325 | 71.60 315 | 47.32 261 | 69.70 335 | 72.12 322 | 43.81 343 | 27.65 389 | 63.38 361 | 21.97 344 | 75.96 341 | 27.30 364 | 32.19 382 | 65.70 376 |
|
| PMVS |  | 19.57 22 | 25.07 365 | 22.43 370 | 32.99 380 | 23.12 411 | 22.98 388 | 40.98 388 | 35.19 395 | 15.99 393 | 11.95 402 | 35.87 394 | 1.47 408 | 49.29 389 | 5.41 406 | 31.90 383 | 26.70 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 33.56 357 | 31.89 359 | 38.59 372 | 49.01 389 | 20.42 394 | 51.01 378 | 37.92 391 | 20.58 386 | 23.45 391 | 46.79 386 | 6.66 391 | 49.28 390 | 20.00 385 | 31.57 384 | 46.09 391 |
|
| KD-MVS_2432*1600 | | | 59.04 291 | 56.44 295 | 66.86 300 | 79.07 206 | 45.87 283 | 72.13 321 | 80.42 208 | 55.03 266 | 48.15 324 | 71.01 336 | 36.73 221 | 78.05 324 | 35.21 328 | 30.18 385 | 76.67 324 |
|
| miper_refine_blended | | | 59.04 291 | 56.44 295 | 66.86 300 | 79.07 206 | 45.87 283 | 72.13 321 | 80.42 208 | 55.03 266 | 48.15 324 | 71.01 336 | 36.73 221 | 78.05 324 | 35.21 328 | 30.18 385 | 76.67 324 |
|
| test_vis3_rt | | | 24.79 366 | 22.95 369 | 30.31 382 | 28.59 406 | 18.92 397 | 37.43 392 | 17.27 410 | 12.90 395 | 21.28 393 | 29.92 399 | 1.02 409 | 36.35 399 | 28.28 360 | 29.82 387 | 35.65 393 |
|
| test_f | | | 27.12 362 | 24.85 363 | 33.93 378 | 26.17 410 | 15.25 404 | 30.24 398 | 22.38 407 | 12.53 397 | 28.23 386 | 49.43 385 | 2.59 401 | 34.34 404 | 25.12 370 | 26.99 388 | 52.20 386 |
|
| APD_test1 | | | 26.46 364 | 24.41 365 | 32.62 381 | 37.58 397 | 21.74 392 | 40.50 389 | 30.39 399 | 11.45 398 | 16.33 395 | 43.76 387 | 1.63 407 | 41.62 396 | 11.24 395 | 26.82 389 | 34.51 395 |
|
| K. test v3 | | | 54.04 321 | 49.42 332 | 67.92 292 | 68.55 339 | 42.57 323 | 75.51 295 | 63.07 363 | 52.07 290 | 39.21 361 | 64.59 359 | 19.34 354 | 82.21 284 | 37.11 317 | 25.31 390 | 78.97 298 |
|
| LCM-MVSNet | | | 28.07 359 | 23.85 367 | 40.71 369 | 27.46 409 | 18.93 396 | 30.82 397 | 46.19 378 | 12.76 396 | 16.40 394 | 34.70 395 | 1.90 405 | 48.69 391 | 20.25 383 | 24.22 391 | 54.51 384 |
|
| test_method | | | 24.09 367 | 21.07 371 | 33.16 379 | 27.67 408 | 8.35 413 | 26.63 399 | 35.11 396 | 3.40 405 | 14.35 397 | 36.98 391 | 3.46 399 | 35.31 401 | 19.08 387 | 22.95 392 | 55.81 383 |
|
| testf1 | | | 21.11 368 | 19.08 372 | 27.18 384 | 30.56 402 | 18.28 399 | 33.43 395 | 24.48 404 | 8.02 402 | 12.02 400 | 33.50 396 | 0.75 411 | 35.09 402 | 7.68 399 | 21.32 393 | 28.17 397 |
|
| APD_test2 | | | 21.11 368 | 19.08 372 | 27.18 384 | 30.56 402 | 18.28 399 | 33.43 395 | 24.48 404 | 8.02 402 | 12.02 400 | 33.50 396 | 0.75 411 | 35.09 402 | 7.68 399 | 21.32 393 | 28.17 397 |
|
| lessismore_v0 | | | | | 67.98 291 | 64.76 361 | 41.25 332 | | 45.75 380 | | 36.03 371 | 65.63 357 | 19.29 355 | 84.11 270 | 35.67 324 | 21.24 395 | 78.59 304 |
|
| mvsany_test3 | | | 28.00 360 | 25.98 362 | 34.05 377 | 28.97 405 | 15.31 403 | 34.54 394 | 18.17 408 | 16.24 392 | 29.30 385 | 53.37 382 | 2.79 400 | 33.38 405 | 30.01 350 | 20.41 396 | 53.45 385 |
|
| PVSNet_0 | | 57.04 13 | 61.19 276 | 57.24 289 | 73.02 203 | 77.45 238 | 50.31 185 | 79.43 273 | 77.36 273 | 63.96 104 | 47.51 331 | 72.45 327 | 25.03 320 | 83.78 274 | 52.76 243 | 19.22 397 | 84.96 209 |
|
| WB-MVS | | | 37.41 352 | 36.37 353 | 40.54 371 | 54.23 381 | 10.43 408 | 65.29 346 | 43.75 382 | 34.86 371 | 27.81 388 | 54.63 378 | 24.94 321 | 63.21 371 | 6.81 403 | 15.00 398 | 47.98 390 |
|
| SSC-MVS | | | 35.20 354 | 34.30 356 | 37.90 373 | 52.58 383 | 8.65 411 | 61.86 359 | 41.64 386 | 31.81 376 | 25.54 390 | 52.94 383 | 23.39 332 | 59.28 379 | 6.10 404 | 12.86 399 | 45.78 392 |
|
| PMMVS2 | | | 26.71 363 | 22.98 368 | 37.87 374 | 36.89 398 | 8.51 412 | 42.51 386 | 29.32 401 | 19.09 390 | 13.01 398 | 37.54 389 | 2.23 403 | 53.11 385 | 14.54 392 | 11.71 400 | 51.99 387 |
|
| MVE |  | 16.60 23 | 17.34 373 | 13.39 376 | 29.16 383 | 28.43 407 | 19.72 395 | 13.73 401 | 23.63 406 | 7.23 404 | 7.96 404 | 21.41 400 | 0.80 410 | 36.08 400 | 6.97 401 | 10.39 401 | 31.69 396 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 19.16 370 | 18.40 374 | 21.44 386 | 36.19 399 | 13.63 406 | 47.59 380 | 30.89 398 | 10.73 399 | 5.91 406 | 16.59 402 | 3.66 398 | 39.77 397 | 5.95 405 | 8.14 402 | 10.92 402 |
|
| DeepMVS_CX |  | | | | 13.10 388 | 21.34 412 | 8.99 410 | | 10.02 412 | 10.59 400 | 7.53 405 | 30.55 398 | 1.82 406 | 14.55 407 | 6.83 402 | 7.52 403 | 15.75 401 |
|
| EMVS | | | 18.42 371 | 17.66 375 | 20.71 387 | 34.13 401 | 12.64 407 | 46.94 381 | 29.94 400 | 10.46 401 | 5.58 407 | 14.93 405 | 4.23 397 | 38.83 398 | 5.24 407 | 7.51 404 | 10.67 403 |
|
| wuyk23d | | | 9.11 375 | 8.77 379 | 10.15 389 | 40.18 396 | 16.76 402 | 20.28 400 | 1.01 413 | 2.58 406 | 2.66 408 | 0.98 408 | 0.23 413 | 12.49 408 | 4.08 408 | 6.90 405 | 1.19 405 |
|
| tmp_tt | | | 9.44 374 | 10.68 377 | 5.73 390 | 2.49 413 | 4.21 414 | 10.48 403 | 18.04 409 | 0.34 407 | 12.59 399 | 20.49 401 | 11.39 376 | 7.03 409 | 13.84 394 | 6.46 406 | 5.95 404 |
|
| ANet_high | | | 34.39 355 | 29.59 361 | 48.78 361 | 30.34 404 | 22.28 390 | 55.53 374 | 63.79 361 | 38.11 358 | 15.47 396 | 36.56 393 | 6.94 388 | 59.98 376 | 13.93 393 | 5.64 407 | 64.08 377 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 18.33 372 | 24.44 364 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 89.40 22 | 0.00 409 | 0.00 412 | 92.02 48 | 38.55 191 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 3.15 379 | 4.20 382 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 37.77 197 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| testmvs | | | 6.14 377 | 8.18 380 | 0.01 391 | 0.01 414 | 0.00 417 | 73.40 311 | 0.00 415 | 0.00 409 | 0.02 410 | 0.15 409 | 0.00 414 | 0.00 410 | 0.02 409 | 0.00 408 | 0.02 406 |
|
| test123 | | | 6.01 378 | 8.01 381 | 0.01 391 | 0.00 415 | 0.01 416 | 71.93 324 | 0.00 415 | 0.00 409 | 0.02 410 | 0.11 410 | 0.00 414 | 0.00 410 | 0.02 409 | 0.00 408 | 0.02 406 |
|
| ab-mvs-re | | | 7.68 376 | 10.24 378 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 92.12 44 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 415 | 0.00 417 | 0.00 404 | 0.00 415 | 0.00 409 | 0.00 412 | 0.00 411 | 0.00 414 | 0.00 410 | 0.00 411 | 0.00 408 | 0.00 408 |
|
| WAC-MVS | | | | | | | 34.28 356 | | | | | | | | 22.56 377 | | |
|
| FOURS1 | | | | | | 83.24 109 | 49.90 193 | 84.98 138 | 78.76 246 | 47.71 316 | 73.42 61 | | | | | | |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 53 | 57.21 236 | 82.06 13 | 93.39 20 | 54.94 29 | | | | |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 29 | | 88.94 30 | 57.53 228 | 84.61 4 | 93.29 24 | 58.81 11 | 96.45 1 | | | |
|
| save fliter | | | | | | 85.35 66 | 56.34 41 | 89.31 40 | 81.46 190 | 61.55 147 | | | | | | | |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 8 | 88.63 43 | 57.71 224 | 83.14 10 | 93.96 8 | 55.17 25 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 147 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 55 | | | | 82.27 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 189 | | | | 88.13 147 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 234 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 193 | | | | | | | | |
|
| test_post1 | | | | | | | | 70.84 329 | | | | 14.72 406 | 34.33 250 | 83.86 271 | 48.80 266 | | |
|
| test_post | | | | | | | | | | | | 16.22 403 | 37.52 206 | 84.72 265 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 371 | 38.41 192 | 79.91 312 | | | |
|
| MTMP | | | | | | | | 87.27 77 | 15.34 411 | | | | | | | | |
|
| gm-plane-assit | | | | | | 83.24 109 | 54.21 95 | | | 70.91 22 | | 88.23 131 | | 95.25 14 | 66.37 126 | | |
|
| TEST9 | | | | | | 85.68 57 | 55.42 56 | 87.59 67 | 84.00 144 | 57.72 223 | 72.99 66 | 90.98 69 | 44.87 116 | 88.58 154 | | | |
|
| test_8 | | | | | | 85.72 56 | 55.31 61 | 87.60 66 | 83.88 147 | 57.84 221 | 72.84 70 | 90.99 68 | 44.99 112 | 88.34 165 | | | |
|
| agg_prior | | | | | | 85.64 60 | 54.92 75 | | 83.61 154 | | 72.53 75 | | | 88.10 175 | | | |
|
| test_prior4 | | | | | | | 56.39 40 | 87.15 81 | | | | | | | | | |
|
| test_prior | | | | | 78.39 72 | 86.35 51 | 54.91 76 | | 85.45 98 | | | | | 89.70 119 | | | 90.55 85 |
|
| 旧先验2 | | | | | | | | 81.73 231 | | 45.53 332 | 74.66 48 | | | 70.48 365 | 58.31 192 | | |
|
| 新几何2 | | | | | | | | 81.61 235 | | | | | | | | | |
|
| 无先验 | | | | | | | | 85.19 128 | 78.00 261 | 49.08 309 | | | | 85.13 260 | 52.78 241 | | 87.45 163 |
|
| 原ACMM2 | | | | | | | | 83.77 175 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 77.81 330 | 45.64 287 | | |
|
| segment_acmp | | | | | | | | | | | | | 44.97 114 | | | | |
|
| testdata1 | | | | | | | | 77.55 285 | | 64.14 99 | | | | | | | |
|
| plane_prior7 | | | | | | 77.95 229 | 48.46 232 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 224 | 49.39 206 | | | | | | 36.04 232 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 83.28 201 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 215 | | | 64.01 102 | 62.15 187 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 108 | | 63.60 111 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 226 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 387 | | | | | | | | |
|
| test11 | | | | | | | | | 84.25 138 | | | | | | | | |
|
| door | | | | | | | | | 43.27 383 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 156 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 208 | | 88.00 55 | | 65.45 80 | 64.48 155 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 208 | | 88.00 55 | | 65.45 80 | 64.48 155 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 123 | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 158 | | | 88.61 153 | | | 84.91 210 |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 209 | | | | |
|
| NP-MVS | | | | | | 78.76 213 | 50.43 177 | | | | | 85.12 175 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 307 | 71.13 328 | | 54.95 268 | 59.29 220 | | 36.76 220 | | 46.33 284 | | 87.32 165 |
|
| Test By Simon | | | | | | | | | | | | | 39.38 183 | | | | |
|