This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21683.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
MVP-Stereo70.97 14470.44 13372.59 21376.03 26151.36 16185.02 13786.99 7160.31 17156.53 26778.92 25740.11 17790.00 10960.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22974.74 683.40 894.00 621.51 34694.70 2184.07 1789.68 793.82 7
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 29
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20665.37 14091.48 6445.72 10195.05 1672.11 9689.52 1093.44 11
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 15080.26 2393.10 2746.53 9192.41 4879.97 3988.77 1192.08 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator64.70 674.46 8472.48 9880.41 2882.84 12655.40 5983.08 19888.61 4567.61 5159.85 20688.66 12034.57 24793.97 2658.42 19088.70 1291.85 52
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21373.60 5893.31 2343.14 14193.79 2973.81 8688.53 1392.37 35
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19271.82 8290.05 9459.72 996.04 1078.37 5188.40 1493.75 9
MS-PatchMatch72.34 12071.26 12275.61 13682.38 13655.55 5388.00 5589.95 1965.38 8456.51 26880.74 24132.28 26992.89 3557.95 19988.10 1578.39 308
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 34
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33988.45 4968.73 10987.45 14759.15 1090.67 9054.83 22387.67 1792.03 45
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 23084.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 33
test_241102_TWO88.76 3957.50 23083.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 31
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22481.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 32
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14354.67 8584.06 16785.35 10261.10 15672.99 6691.50 6340.25 17391.00 8176.84 6386.98 2490.51 88
test_0728_THIRD58.00 21681.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 38
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20474.63 4992.38 4047.75 7791.35 7078.18 5586.85 2691.15 74
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8886.23 8568.60 3670.18 10388.84 11751.57 4687.16 20765.48 13486.68 2990.15 99
gg-mvs-nofinetune67.43 21264.53 23876.13 12585.95 5347.79 25564.38 35188.28 5139.34 35466.62 12341.27 38858.69 1389.00 13849.64 26086.62 3091.59 57
MVS_030481.58 982.05 780.20 3182.36 13754.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 30
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12470.54 10192.33 4141.05 16594.95 1757.90 20086.55 3291.00 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16656.31 4281.59 23686.41 8169.61 3181.72 1688.16 13255.09 2788.04 17774.12 8486.31 3391.09 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19792.50 4682.75 2486.25 3491.57 59
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
test1279.24 4486.89 4756.08 4585.16 11372.27 7947.15 8391.10 7985.93 3690.54 87
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20292.28 5282.73 2585.71 3891.57 59
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 26081.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1478.19 2785.67 5988.32 5188.84 3659.89 17574.58 5192.62 3746.80 8792.66 4181.40 3685.62 40
test_prior289.04 4361.88 14373.55 5991.46 6548.01 7474.73 7885.46 41
test9_res78.72 4985.44 4291.39 65
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22172.99 6690.98 6944.99 11288.58 15478.19 5385.32 4391.34 69
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17867.85 11590.55 7842.23 15091.02 8072.66 9485.29 4489.87 108
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8992.75 3445.52 10490.37 9871.15 9985.14 4591.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior275.65 6985.11 4691.01 77
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29166.70 12187.07 15440.15 17689.70 11951.23 25185.06 4784.10 220
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16552.65 13484.34 15884.46 13361.16 15469.14 10591.76 5539.98 18088.99 14078.19 5384.89 4889.48 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6991.98 5245.10 10991.27 7175.02 7784.56 5090.84 81
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9173.52 6088.09 13348.07 7292.19 5362.24 15684.53 5191.53 61
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20770.75 9690.85 7443.10 14390.63 9370.50 10384.51 5290.24 94
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9586.71 7666.96 5767.91 11489.97 9648.03 7391.41 6975.60 7084.14 5389.96 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5792.75 3446.88 8693.28 3178.79 4884.07 5491.50 63
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9478.37 22554.07 9984.36 15785.76 9357.22 23556.71 26487.67 14430.79 28292.83 3743.04 29984.06 5585.01 208
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 17055.31 6189.76 3486.91 7262.94 12571.65 8391.56 6242.33 14892.56 4577.14 6283.69 5690.15 99
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS74.87 8273.90 8477.77 8383.30 10753.45 11085.75 11085.29 10659.22 19166.50 12789.85 9840.94 16690.76 8870.94 10183.35 5789.10 125
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25578.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 89
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5649.32 6890.17 10773.46 8982.77 5991.69 54
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
API-MVS74.17 8972.07 11180.49 2590.02 1158.55 887.30 7584.27 13757.51 22965.77 13787.77 14241.61 16195.97 1151.71 24782.63 6086.94 169
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7691.62 6045.53 10390.99 8374.48 8082.51 6191.23 71
MSLP-MVS++74.21 8872.25 10480.11 3681.45 16356.47 3886.32 9779.65 22558.19 21266.36 12892.29 4236.11 22990.66 9167.39 11982.49 6293.18 19
MTAPA72.73 11371.22 12377.27 9681.54 16053.57 10667.06 34581.31 19359.41 18568.39 11190.96 7136.07 23189.01 13773.80 8782.45 6389.23 120
MP-MVScopyleft74.99 8174.33 7876.95 10782.89 12453.05 12685.63 11583.50 15557.86 22067.25 11890.24 8643.38 13888.85 14876.03 6582.23 6488.96 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9268.56 11090.53 7945.79 10091.58 6567.21 12182.18 6591.20 72
3Dnovator+62.71 772.29 12270.50 13277.65 8683.40 10551.29 16487.32 7386.40 8259.01 19958.49 23688.32 12932.40 26791.27 7157.04 20982.15 6690.38 90
EC-MVSNet75.30 7575.20 6575.62 13580.98 17049.00 21487.43 7084.68 12863.49 11570.97 9490.15 9242.86 14591.14 7874.33 8281.90 6786.71 178
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14883.49 19741.52 16393.69 3070.55 10281.82 6892.12 41
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27774.91 4791.68 5843.80 12890.31 10174.36 8181.82 6888.87 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS89.55 1453.46 10884.38 13457.02 23873.97 5691.03 6744.57 12291.17 7675.41 7481.78 70
QAPM71.88 13069.33 15379.52 4082.20 14054.30 9286.30 9888.77 3856.61 24859.72 20887.48 14633.90 25495.36 1347.48 27581.49 7188.90 128
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10689.33 10946.70 8988.13 17375.43 7181.48 7289.55 113
ETV-MVS77.17 4576.74 4678.48 6881.80 14654.55 8886.13 10185.33 10368.20 3973.10 6590.52 8045.23 10890.66 9179.37 4180.95 7390.22 95
HFP-MVS74.37 8673.13 9378.10 7884.30 8453.68 10485.58 11684.36 13556.82 24265.78 13690.56 7740.70 17190.90 8569.18 11080.88 7489.71 109
ACMMPR73.76 9672.61 9577.24 9883.92 9352.96 12985.58 11684.29 13656.82 24265.12 14190.45 8137.24 21390.18 10669.18 11080.84 7588.58 138
region2R73.75 9772.55 9777.33 9283.90 9452.98 12885.54 12084.09 14256.83 24165.10 14290.45 8137.34 21190.24 10468.89 11280.83 7688.77 134
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6282.76 20750.44 5789.00 13865.90 13080.61 7791.64 55
Vis-MVSNetpermissive70.61 15169.34 15274.42 16880.95 17548.49 23086.03 10477.51 26958.74 20565.55 13987.78 14134.37 24985.95 24652.53 24580.61 7788.80 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS72.92 10971.62 11676.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 16589.63 10235.50 23689.78 11565.50 13280.50 7988.16 144
X-MVStestdata65.85 24262.20 25076.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 1654.82 40735.50 23689.78 11565.50 13280.50 7988.16 144
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6655.43 2390.09 10885.01 1280.40 8191.99 48
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10490.24 8660.20 792.10 5784.14 1580.40 8192.82 25
新几何173.30 20083.10 11253.48 10771.43 32945.55 33166.14 12987.17 15233.88 25580.54 30248.50 26980.33 8385.88 195
PGM-MVS72.60 11571.20 12476.80 11282.95 12052.82 13183.07 19982.14 17656.51 25063.18 17489.81 9935.68 23589.76 11767.30 12080.19 8487.83 153
MVSFormer73.53 10272.19 10777.57 8783.02 11755.24 6381.63 23381.44 19150.28 30176.67 4090.91 7244.82 11886.11 23660.83 16780.09 8591.36 67
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11890.23 10580.83 3780.09 8592.08 42
HPM-MVScopyleft72.60 11571.50 11875.89 13182.02 14151.42 16080.70 25583.05 16456.12 25464.03 16389.53 10337.55 20588.37 16270.48 10480.04 8787.88 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8966.06 13189.88 9743.79 12992.16 5475.03 7680.03 8889.64 111
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24974.26 5491.60 6154.26 3192.16 5475.87 6779.91 8993.05 21
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 12074.63 4990.83 7541.38 16494.40 2275.42 7379.90 9094.72 2
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6285.46 9771.67 1671.38 8888.35 12751.58 4591.22 7479.02 4479.89 9191.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+75.24 7673.61 8580.16 3381.92 14357.42 1985.21 12776.71 28460.68 16773.32 6389.34 10747.30 8191.63 6468.28 11579.72 9291.42 64
test250672.91 11072.43 10074.32 17280.12 19144.18 30383.19 19584.77 12564.02 10065.97 13287.43 14847.67 7888.72 14959.08 18179.66 9390.08 101
ECVR-MVScopyleft71.81 13171.00 12674.26 17480.12 19143.49 30884.69 14882.16 17564.02 10064.64 15087.43 14835.04 24289.21 13161.24 16479.66 9390.08 101
PAPM_NR71.80 13269.98 14477.26 9781.54 16053.34 11678.60 27985.25 10953.46 28060.53 20288.66 12045.69 10289.24 12856.49 21379.62 9589.19 122
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2583.99 14668.26 3874.10 5590.91 7242.14 15289.99 11079.30 4279.12 9691.36 67
jason: jason.
CANet_DTU73.71 9873.14 9175.40 14482.61 13350.05 18984.67 15179.36 23469.72 3075.39 4390.03 9529.41 29085.93 24767.99 11779.11 9790.22 95
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8285.88 9072.11 1471.57 8588.63 12450.89 5590.35 9976.00 6679.11 9791.63 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TESTMET0.1,172.86 11172.33 10174.46 16681.98 14250.77 16885.13 13085.47 9666.09 7167.30 11783.69 19437.27 21283.57 27765.06 14278.97 9989.05 126
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24474.48 5291.81 5443.72 13290.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 17184.88 12171.38 2071.51 8689.15 11250.51 5690.55 9575.71 6878.65 10091.39 65
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9246.77 8891.00 8173.52 8878.46 10293.44 11
test111171.06 14270.42 13472.97 20579.48 19841.49 33084.82 14682.74 17064.20 9762.98 17787.43 14835.20 23987.92 17958.54 18778.42 10389.49 115
旧先验181.57 15947.48 25771.83 32388.66 12036.94 21778.34 10488.67 135
mPP-MVS71.79 13370.38 13576.04 12882.65 13252.06 14384.45 15581.78 18655.59 25962.05 18989.68 10133.48 25888.28 17065.45 13778.24 10587.77 155
CP-MVS72.59 11771.46 11976.00 13082.93 12252.32 14186.93 8682.48 17355.15 26463.65 16990.44 8435.03 24388.53 15868.69 11377.83 10687.15 167
PVSNet_Blended_VisFu73.40 10572.44 9976.30 11781.32 16754.70 8285.81 10678.82 24463.70 10864.53 15485.38 17347.11 8487.38 20367.75 11877.55 10786.81 177
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 26285.14 11559.44 18458.93 22588.89 11633.83 25689.60 12261.49 16277.42 11088.57 139
MGCFI-Net74.07 9074.64 7672.34 22182.90 12343.33 31280.04 26579.96 21665.61 7874.93 4691.85 5348.01 7480.86 29671.41 9777.10 11192.84 24
PAPR75.20 7874.13 7978.41 7188.31 3255.10 7084.31 15985.66 9463.76 10767.55 11690.73 7643.48 13789.40 12566.36 12777.03 11290.73 83
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11392.89 23
test22279.36 19950.97 16777.99 28267.84 35042.54 34962.84 17986.53 16130.26 28576.91 11485.23 204
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23384.98 13871.08 33163.50 11481.70 1793.52 1750.00 6087.18 20687.80 576.87 11590.32 92
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23685.24 12670.62 33563.13 12281.45 1893.62 1649.98 6287.40 20287.76 676.77 11690.20 97
PMMVS72.98 10872.05 11275.78 13383.57 9848.60 22584.08 16582.85 16961.62 14668.24 11290.33 8528.35 29487.78 18772.71 9376.69 11790.95 79
UGNet68.71 18667.11 18973.50 19780.55 18547.61 25684.08 16578.51 25359.45 18365.68 13882.73 21023.78 32885.08 26152.80 24076.40 11887.80 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
Fast-Effi-MVS+72.73 11371.15 12577.48 8982.75 12854.76 7886.77 9080.64 20463.05 12365.93 13384.01 18744.42 12389.03 13656.45 21676.36 12288.64 136
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9388.70 11955.19 2491.24 7365.18 14176.32 12391.29 70
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 10088.37 12557.69 1492.30 5075.25 7576.24 12491.20 72
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8672.37 7789.34 10732.52 26692.76 4077.90 5875.96 12592.22 40
testdata67.08 29877.59 23545.46 28869.20 34644.47 33871.50 8788.34 12831.21 27970.76 36452.20 24675.88 12685.03 207
mvs_anonymous72.29 12270.74 12876.94 10882.85 12554.72 8178.43 28081.54 18963.77 10661.69 19179.32 25151.11 4985.31 25462.15 15875.79 12790.79 82
VDDNet74.37 8672.13 10981.09 2179.58 19756.52 3790.02 2786.70 7752.61 28771.23 9087.20 15131.75 27693.96 2774.30 8375.77 12892.79 27
diffmvspermissive75.11 8074.65 7576.46 11678.52 22153.35 11583.28 19379.94 21770.51 2571.64 8488.72 11846.02 9786.08 24177.52 5975.75 12989.96 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet68.80 18467.55 18172.54 21478.50 22243.43 31081.03 24779.35 23559.12 19757.27 25986.71 15846.05 9687.70 19044.32 29475.60 13086.49 181
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7891.72 5653.44 3592.37 4966.28 12875.42 13193.28 15
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20381.82 22874.08 30666.52 6380.40 2293.46 1946.95 8589.72 11886.69 775.30 13287.61 159
Vis-MVSNet (Re-imp)65.52 24365.63 22065.17 31477.49 23730.54 37075.49 29677.73 26559.34 18752.26 30486.69 15949.38 6780.53 30337.07 31875.28 13384.42 216
UWE-MVS72.17 12572.15 10872.21 22382.26 13944.29 30086.83 8989.58 2165.58 7965.82 13585.06 17645.02 11184.35 26954.07 22975.18 13487.99 151
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24185.13 13079.72 22259.18 19463.13 17582.58 21436.91 21880.24 30660.56 17175.17 13586.39 184
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24185.13 13079.72 22253.38 28163.13 17582.58 21427.23 30480.24 30660.56 17175.17 13586.39 184
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9588.09 13357.29 1592.63 4469.24 10975.13 13791.91 49
PVSNet62.49 869.27 17567.81 17673.64 19384.41 8251.85 14984.63 15277.80 26366.42 6459.80 20784.95 17922.14 34380.44 30455.03 22275.11 13888.62 137
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9688.04 13755.82 2292.65 4269.61 10675.00 14192.05 44
BH-w/o70.02 16068.51 16174.56 16482.77 12750.39 17986.60 9478.14 25959.77 17759.65 20985.57 17139.27 18587.30 20449.86 25874.94 14285.99 190
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10887.94 13956.42 1989.24 12856.54 21274.75 14391.07 76
SR-MVS70.92 14669.73 14774.50 16583.38 10650.48 17684.27 16079.35 23548.96 31166.57 12690.45 8133.65 25787.11 20866.42 12574.56 14485.91 193
UA-Net67.32 21666.23 20570.59 25778.85 21241.23 33373.60 30775.45 29761.54 14866.61 12484.53 18138.73 19086.57 22742.48 30474.24 14583.98 226
CDS-MVSNet70.48 15369.43 14973.64 19377.56 23648.83 22083.51 18277.45 27063.27 11962.33 18485.54 17243.85 12683.29 28157.38 20874.00 14688.79 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8851.22 16687.29 7679.33 23758.96 20163.63 17086.77 15733.29 26090.30 10344.63 29273.96 14787.30 166
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2486.20 8674.40 865.01 14588.93 11442.05 15490.58 9476.57 6473.96 14785.73 196
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
APD-MVS_3200maxsize69.62 17168.23 16773.80 18881.58 15848.22 24081.91 22479.50 22848.21 31464.24 16089.75 10031.91 27587.55 19863.08 15073.85 14985.64 199
HPM-MVS_fast67.86 20066.28 20472.61 21280.67 18248.34 23681.18 24575.95 29350.81 30059.55 21388.05 13627.86 29985.98 24358.83 18473.58 15083.51 235
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16251.92 14883.43 18583.03 16556.67 24758.80 23088.91 11531.92 27488.58 15465.89 13173.39 15185.67 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmvis_n_192071.29 13870.38 13574.00 18171.04 32248.79 22179.19 27564.62 35862.75 12766.73 12091.99 5040.94 16688.35 16483.00 2273.18 15284.85 212
HQP3-MVS83.68 15073.12 153
HQP-MVS72.34 12071.44 12075.03 15879.02 20851.56 15688.00 5583.68 15065.45 8064.48 15585.13 17437.35 20988.62 15266.70 12373.12 15384.91 210
TAMVS69.51 17368.16 16873.56 19676.30 25548.71 22482.57 20977.17 27562.10 13861.32 19584.23 18541.90 15783.46 27954.80 22573.09 15588.50 142
BH-untuned68.28 19466.40 20073.91 18381.62 15550.01 19085.56 11877.39 27157.63 22657.47 25683.69 19436.36 22787.08 20944.81 29073.08 15684.65 213
plane_prior49.57 19887.43 7064.57 9372.84 157
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27482.12 17756.47 25161.88 19086.48 16343.98 12587.24 20555.37 22172.79 15886.43 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS67.03 573.90 9373.14 9176.18 12484.70 7747.36 26075.56 29386.36 8366.27 6770.66 9983.91 18951.05 5089.31 12667.10 12272.61 15991.88 51
bld_raw_dy_0_6475.36 7473.18 8881.89 1187.91 4057.01 2486.77 9067.69 35278.56 165.01 14593.99 722.18 34194.84 1984.07 1772.45 16093.82 7
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16756.33 25263.56 17289.47 10434.02 25292.15 5654.05 23072.41 16185.43 203
HQP_MVS70.96 14569.91 14574.12 17777.95 22949.57 19885.76 10882.59 17163.60 11162.15 18783.28 20136.04 23288.30 16865.46 13572.34 16284.49 214
plane_prior582.59 17188.30 16865.46 13572.34 16284.49 214
MVS_111021_LR69.07 17667.91 17072.54 21477.27 24049.56 20079.77 26773.96 30959.33 18960.73 20087.82 14030.19 28681.53 28969.94 10572.19 16486.53 180
SR-MVS-dyc-post68.27 19566.87 19072.48 21780.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10531.17 28086.09 24060.52 17372.06 16583.19 242
RE-MVS-def66.66 19680.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10529.28 29260.52 17372.06 16583.19 242
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28748.38 23482.66 20672.57 31967.05 5675.11 4592.88 3346.35 9287.81 18283.93 1971.71 16790.28 93
Anonymous20240521170.11 15667.88 17276.79 11387.20 4547.24 26489.49 3677.38 27254.88 26966.14 12986.84 15620.93 34991.54 6656.45 21671.62 16891.59 57
EPMVS68.45 19065.44 22677.47 9084.91 7456.17 4371.89 32581.91 18361.72 14560.85 19872.49 32536.21 22887.06 21047.32 27671.62 16889.17 123
TR-MVS69.71 16767.85 17575.27 15382.94 12148.48 23187.40 7280.86 20157.15 23764.61 15287.08 15332.67 26589.64 12146.38 28371.55 17087.68 158
test_fmvsmconf0.1_n73.69 9973.15 8975.34 14670.71 32448.26 23982.15 21871.83 32366.75 5974.47 5392.59 3844.89 11587.78 18783.59 2071.35 17189.97 104
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10147.96 25174.73 30082.07 17857.27 23462.18 18678.47 26136.09 23092.89 3553.76 23371.32 17287.73 156
OPM-MVS70.75 14969.58 14874.26 17475.55 26851.34 16286.05 10383.29 16061.94 14262.95 17885.77 16834.15 25188.44 16065.44 13871.07 17382.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
114514_t69.87 16567.88 17275.85 13288.38 2952.35 14086.94 8583.68 15053.70 27855.68 27485.60 17030.07 28791.20 7555.84 21971.02 17483.99 224
sss70.49 15270.13 14271.58 24381.59 15739.02 34180.78 25484.71 12759.34 18766.61 12488.09 13337.17 21485.52 25061.82 16171.02 17490.20 97
ET-MVSNet_ETH3D75.23 7774.08 8178.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29690.22 8849.71 6587.62 19672.12 9570.82 17692.82 25
WB-MVSnew69.36 17468.24 16672.72 21079.26 20349.40 20585.72 11388.85 3561.33 15164.59 15382.38 22034.57 24787.53 19946.82 28170.63 17781.22 277
cascas69.01 17866.13 20777.66 8579.36 19955.41 5886.99 8383.75 14956.69 24658.92 22681.35 23524.31 32692.10 5753.23 23470.61 17885.46 202
GeoE69.96 16367.88 17276.22 12081.11 16951.71 15384.15 16376.74 28359.83 17660.91 19784.38 18241.56 16288.10 17551.67 24870.57 17988.84 131
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38161.39 36345.79 37960.73 16637.65 36772.47 32631.42 27881.08 29349.66 25970.41 18086.87 171
baseline275.15 7974.54 7776.98 10681.67 15351.74 15283.84 17391.94 369.97 2858.98 22386.02 16559.73 891.73 6368.37 11470.40 18187.48 161
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3654.99 7386.10 10276.63 28649.30 30857.80 24586.65 16029.39 29188.94 14445.10 28970.21 18281.06 278
CPTT-MVS67.15 22065.84 21571.07 25180.96 17250.32 18481.94 22374.10 30546.18 32957.91 24387.64 14529.57 28981.31 29164.10 14470.18 18381.56 263
thisisatest051573.64 10172.20 10677.97 8081.63 15453.01 12786.69 9288.81 3762.53 13264.06 16185.65 16952.15 4492.50 4658.43 18869.84 18488.39 143
PatchmatchNetpermissive67.07 22463.63 24477.40 9183.10 11258.03 972.11 32377.77 26458.85 20259.37 21670.83 33837.84 19684.93 26342.96 30069.83 18589.26 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvsmconf0.01_n71.97 12870.95 12775.04 15766.21 34947.87 25280.35 25970.08 33965.85 7772.69 7191.68 5839.99 17987.67 19182.03 2969.66 18689.58 112
EPP-MVSNet71.14 13970.07 14374.33 17179.18 20546.52 27183.81 17486.49 7956.32 25357.95 24284.90 18054.23 3289.14 13358.14 19569.65 18787.33 164
EPNet_dtu66.25 23766.71 19464.87 31678.66 21834.12 35882.80 20475.51 29561.75 14464.47 15886.90 15537.06 21572.46 35843.65 29769.63 18888.02 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 26965.15 34781.94 18059.14 19654.65 28369.47 34525.74 31480.63 30041.03 30669.56 18987.55 160
EI-MVSNet-Vis-set73.19 10772.60 9674.99 16082.56 13449.80 19682.55 21189.00 2866.17 6965.89 13488.98 11343.83 12792.29 5165.38 14069.01 19082.87 249
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16987.72 6266.86 5857.66 24984.17 18652.28 4285.31 25452.72 24468.80 19184.02 222
CostFormer73.89 9472.30 10378.66 6382.36 13756.58 3375.56 29385.30 10566.06 7370.50 10276.88 28257.02 1689.06 13468.27 11668.74 19290.33 91
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2081.49 24179.11 24058.27 21158.86 22880.41 24242.33 14886.96 21361.91 15968.68 19386.87 171
1112_ss70.05 15969.37 15172.10 22580.77 17942.78 31885.12 13376.75 28259.69 17961.19 19692.12 4447.48 8083.84 27253.04 23768.21 19489.66 110
ab-mvs70.65 15069.11 15675.29 15180.87 17646.23 27973.48 30985.24 11059.99 17466.65 12280.94 23843.13 14288.69 15063.58 14768.07 19590.95 79
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30481.28 19560.24 17268.04 11375.27 30052.26 4388.50 15955.82 22068.03 19689.33 117
EI-MVSNet-UG-set72.37 11971.73 11574.29 17381.60 15649.29 20881.85 22688.64 4265.29 8865.05 14388.29 13043.18 13991.83 6163.74 14667.97 19781.75 260
thres20068.71 18667.27 18773.02 20384.73 7646.76 26885.03 13687.73 6162.34 13659.87 20583.45 19843.15 14088.32 16731.25 34767.91 19883.98 226
tpmrst71.04 14369.77 14674.86 16183.19 11155.86 5175.64 29278.73 24867.88 4464.99 14773.73 31149.96 6379.56 31565.92 12967.85 19989.14 124
iter_conf0573.51 10372.24 10577.33 9287.93 3955.97 4887.90 6170.81 33468.72 3564.04 16284.36 18447.54 7990.87 8671.11 10067.75 20085.13 206
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33541.51 32984.63 15268.58 34858.80 20373.26 6488.37 12525.30 31780.60 30179.10 4367.55 20186.23 186
Anonymous2024052969.71 16767.28 18677.00 10483.78 9650.36 18288.87 4685.10 11647.22 31964.03 16383.37 19927.93 29892.10 5757.78 20367.44 20288.53 141
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21185.81 10684.78 12451.85 29444.19 34173.48 31715.52 37189.85 11340.16 30867.24 20373.54 351
OMC-MVS65.97 24165.06 23268.71 28472.97 30042.58 32278.61 27875.35 29854.72 27059.31 21886.25 16433.30 25977.88 32857.99 19667.05 20485.66 198
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34775.19 29876.41 28946.82 32257.04 26086.52 16227.67 30277.03 33426.50 36767.02 20585.14 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re67.61 20666.00 21072.42 21881.86 14543.45 30964.67 35080.00 21469.56 3260.07 20485.00 17834.71 24587.63 19451.48 24966.68 20686.17 187
FE-MVS64.15 24860.43 26975.30 15080.85 17749.86 19468.28 34178.37 25650.26 30459.31 21873.79 31026.19 31191.92 6040.19 30766.67 20784.12 219
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25385.32 12469.80 34264.16 9878.74 2993.48 1845.51 10589.29 12786.48 866.62 20889.55 113
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37343.84 30561.58 36271.06 33230.43 37836.33 36974.63 30424.14 32775.44 34348.05 27266.62 20871.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FC-MVSNet-test67.49 21067.91 17066.21 30676.06 25933.06 36380.82 25387.18 6764.44 9454.81 28082.87 20450.40 5882.60 28348.05 27266.55 21082.98 247
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19780.23 21163.32 11860.65 20179.22 25430.98 28188.37 16261.25 16366.41 21187.46 162
thres100view90066.87 22965.42 22771.24 24783.29 10843.15 31481.67 23287.78 5859.04 19855.92 27282.18 22543.73 13087.80 18428.80 35466.36 21282.78 251
tfpn200view967.57 20866.13 20771.89 23884.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21282.78 251
thres40067.40 21566.13 20771.19 24984.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21280.71 283
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25484.57 15469.43 34463.34 11778.40 3293.29 2444.73 12189.22 13085.99 966.28 21589.26 118
Test_1112_low_res67.18 21966.23 20570.02 26978.75 21441.02 33483.43 18573.69 31157.29 23358.45 23882.39 21945.30 10780.88 29550.50 25466.26 21688.16 144
PVSNet_BlendedMVS73.42 10473.30 8673.76 18985.91 5451.83 15086.18 10084.24 14065.40 8369.09 10680.86 23946.70 8988.13 17375.43 7165.92 21781.33 273
SDMVSNet71.89 12970.62 13175.70 13481.70 15051.61 15473.89 30588.72 4066.58 6061.64 19282.38 22037.63 20289.48 12377.44 6065.60 21886.01 188
sd_testset67.79 20365.95 21273.32 19881.70 15046.33 27668.99 33780.30 21066.58 6061.64 19282.38 22030.45 28487.63 19455.86 21865.60 21886.01 188
XVG-OURS61.88 27259.34 27769.49 27265.37 35446.27 27764.80 34973.49 31447.04 32157.41 25882.85 20525.15 31978.18 32053.00 23864.98 22084.01 223
thres600view766.46 23465.12 23170.47 25883.41 10243.80 30682.15 21887.78 5859.37 18656.02 27182.21 22443.73 13086.90 21626.51 36664.94 22180.71 283
LPG-MVS_test66.44 23564.58 23772.02 22874.42 28348.60 22583.07 19980.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
LGP-MVS_train72.02 22874.42 28348.60 22580.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
MVSTER73.25 10672.33 10176.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16781.66 23152.77 3890.44 9664.66 14364.69 22483.84 231
EI-MVSNet69.70 16968.70 15972.68 21175.00 27548.90 21879.54 26987.16 6861.05 15763.88 16783.74 19245.87 9890.44 9657.42 20764.68 22578.70 301
tpm cat166.28 23662.78 24676.77 11481.40 16457.14 2270.03 33277.19 27453.00 28458.76 23170.73 34146.17 9386.73 22043.27 29864.46 22686.44 182
test_cas_vis1_n_192067.10 22166.60 19868.59 28765.17 35743.23 31383.23 19469.84 34155.34 26370.67 9887.71 14324.70 32476.66 33978.57 5064.20 22785.89 194
fmvsm_s_conf0.5_n_a73.68 10073.15 8975.29 15175.45 26948.05 24683.88 17268.84 34763.43 11678.60 3093.37 2245.32 10688.92 14585.39 1164.04 22888.89 129
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35545.88 28265.06 34873.57 31346.45 32557.42 25783.35 20026.95 30678.09 32253.77 23264.03 22984.42 216
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 31066.14 35435.30 37043.24 34879.88 24522.18 34179.62 31419.10 38664.00 23067.05 370
ACMP61.11 966.24 23864.33 23972.00 23074.89 27749.12 20983.18 19679.83 22055.41 26252.29 30282.68 21125.83 31386.10 23860.89 16663.94 23180.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 29078.75 24767.73 4763.54 17374.86 30248.33 7072.36 35953.93 23163.71 23289.21 121
XXY-MVS70.18 15569.28 15572.89 20877.64 23342.88 31785.06 13487.50 6662.58 13162.66 18282.34 22343.64 13489.83 11458.42 19063.70 23385.96 192
fmvsm_s_conf0.1_n_a72.82 11272.05 11275.12 15670.95 32347.97 24982.72 20568.43 34962.52 13378.17 3393.08 3044.21 12488.86 14684.82 1363.54 23488.54 140
mvsmamba66.93 22864.88 23573.09 20275.06 27347.26 26283.36 19169.21 34562.64 13055.68 27481.43 23429.72 28889.20 13263.35 14963.50 23582.79 250
GBi-Net67.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
test167.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
FMVSNet368.84 18167.40 18473.19 20185.05 7148.53 22885.71 11485.36 10160.90 16357.58 25179.15 25542.16 15186.77 21847.25 27763.40 23684.27 218
VPA-MVSNet71.12 14070.66 13072.49 21678.75 21444.43 29887.64 6590.02 1763.97 10365.02 14481.58 23342.14 15287.42 20163.42 14863.38 23985.63 200
Fast-Effi-MVS+-dtu66.53 23364.10 24273.84 18672.41 30752.30 14284.73 14775.66 29459.51 18256.34 26979.11 25628.11 29685.85 24857.74 20463.29 24083.35 236
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36579.54 26973.49 31436.98 36256.28 27083.74 19229.28 29269.53 36746.48 28263.23 24183.94 229
ACMMP++_ref63.20 242
ACMM58.35 1264.35 24762.01 25271.38 24574.21 28648.51 22982.25 21779.66 22447.61 31754.54 28480.11 24325.26 31886.00 24251.26 25063.16 24379.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28848.10 24546.30 38254.31 37348.18 31550.88 31377.43 27238.37 19359.16 38054.83 22363.14 24475.66 334
PS-MVSNAJss68.78 18567.17 18873.62 19573.01 29948.33 23884.95 14184.81 12359.30 19058.91 22779.84 24737.77 19788.86 14662.83 15263.12 24583.67 234
MDTV_nov1_ep1361.56 25581.68 15255.12 6872.41 31778.18 25859.19 19258.85 22969.29 34634.69 24686.16 23536.76 32262.96 246
FMVSNet267.57 20865.79 21672.90 20682.71 12947.97 24985.15 12984.93 11958.55 20856.71 26478.26 26236.72 22386.67 22146.15 28562.94 24784.07 221
D2MVS63.49 25661.39 25769.77 27069.29 33448.93 21778.89 27777.71 26660.64 16849.70 31772.10 33327.08 30583.48 27854.48 22662.65 24876.90 322
MVS-HIRNet49.01 33844.71 34261.92 33276.06 25946.61 27063.23 35554.90 37224.77 38433.56 37736.60 39221.28 34875.88 34229.49 35162.54 24963.26 380
IB-MVS68.87 274.01 9172.03 11479.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19481.74 23053.21 3694.28 2360.45 17562.41 25090.03 103
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03072.27 12471.56 11774.42 16875.93 26350.60 17286.97 8483.21 16162.75 12767.15 11984.38 18250.07 5986.66 22271.19 9862.37 25185.99 190
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18488.58 4757.62 22758.60 23282.79 20651.03 5191.48 6752.84 23962.36 25285.59 201
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32144.30 29983.64 17775.02 30046.42 32646.48 33773.03 32018.69 35788.14 17227.74 36261.80 25374.05 347
dp64.41 24661.58 25472.90 20682.40 13554.09 9872.53 31576.59 28760.39 17055.68 27470.39 34235.18 24076.90 33739.34 31061.71 25487.73 156
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34340.88 33673.89 30579.93 21851.81 29554.77 28179.61 24824.80 32281.10 29249.93 25761.35 25583.73 232
FMVSNet164.57 24562.11 25171.96 23177.32 23946.36 27383.52 17883.31 15752.43 28954.42 28576.23 29127.80 30086.20 23242.59 30361.34 25683.32 237
VPNet72.07 12671.42 12174.04 17978.64 21947.17 26589.91 3287.97 5572.56 1264.66 14985.04 17741.83 15988.33 16661.17 16560.97 25786.62 179
Effi-MVS+-dtu66.24 23864.96 23470.08 26675.17 27049.64 19782.01 22174.48 30362.15 13757.83 24476.08 29530.59 28383.79 27365.40 13960.93 25876.81 323
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27674.04 30843.66 34447.63 32883.19 20323.52 33177.78 33137.47 31360.46 25976.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023121166.08 24063.67 24373.31 19983.07 11548.75 22286.01 10584.67 12945.27 33356.54 26676.67 28528.06 29788.95 14252.78 24159.95 26082.23 254
CR-MVSNet62.47 26859.04 28072.77 20973.97 29056.57 3460.52 36471.72 32560.04 17357.49 25465.86 35538.94 18780.31 30542.86 30159.93 26181.42 268
RPMNet59.29 28554.25 30874.42 16873.97 29056.57 3460.52 36476.98 27835.72 36657.49 25458.87 37437.73 20085.26 25627.01 36559.93 26181.42 268
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 40963.75 35263.34 36267.23 5348.89 32183.68 19639.12 18676.14 34023.43 37559.80 26381.96 257
v114468.81 18366.82 19174.80 16272.34 30853.46 10884.68 14981.77 18764.25 9660.28 20377.91 26440.23 17488.95 14260.37 17659.52 26481.97 256
v2v48269.55 17267.64 17875.26 15472.32 30953.83 10084.93 14281.94 18065.37 8560.80 19979.25 25341.62 16088.98 14163.03 15159.51 26582.98 247
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26279.75 26864.34 36042.46 35051.90 30683.94 18827.79 30175.41 34437.12 31659.49 26678.47 305
ACMMP++59.38 267
tt080563.39 25761.31 25969.64 27169.36 33338.87 34278.00 28185.48 9548.82 31255.66 27781.66 23124.38 32586.37 23149.04 26559.36 26883.68 233
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33460.38 36641.35 35147.57 32973.73 31116.83 36576.91 33536.99 31959.21 26973.92 348
test0.0.03 162.54 26562.44 24862.86 32772.28 31029.51 37882.93 20278.78 24559.18 19453.07 29782.41 21836.91 21877.39 33237.45 31458.96 27081.66 262
v119267.96 19965.74 21874.63 16371.79 31153.43 11384.06 16780.99 20063.19 12159.56 21277.46 27137.50 20888.65 15158.20 19458.93 27181.79 259
cl2268.85 18067.69 17772.35 22078.07 22849.98 19182.45 21478.48 25462.50 13458.46 23777.95 26349.99 6185.17 25862.55 15358.72 27281.90 258
miper_ehance_all_eth68.70 18867.58 17972.08 22676.91 24849.48 20482.47 21378.45 25562.68 12958.28 24177.88 26550.90 5285.01 26261.91 15958.72 27281.75 260
miper_enhance_ethall69.77 16668.90 15872.38 21978.93 21149.91 19283.29 19278.85 24264.90 9059.37 21679.46 24952.77 3885.16 25963.78 14558.72 27282.08 255
V4267.66 20565.60 22273.86 18570.69 32653.63 10581.50 23978.61 25163.85 10559.49 21577.49 27037.98 19487.65 19262.33 15458.43 27580.29 288
Syy-MVS61.51 27461.35 25862.00 33081.73 14830.09 37380.97 24981.02 19860.93 16155.06 27882.64 21235.09 24180.81 29716.40 39158.32 27675.10 340
myMVS_eth3d63.52 25563.56 24563.40 32381.73 14834.28 35680.97 24981.02 19860.93 16155.06 27882.64 21248.00 7680.81 29723.42 37658.32 27675.10 340
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9170.03 33277.61 26751.91 29253.48 29568.29 34937.91 19586.66 22233.36 33758.27 27873.62 350
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37040.95 33563.36 35372.43 32045.20 33446.02 33874.09 3079.20 38278.12 32145.13 28858.27 27877.66 317
pmmvs562.80 26461.18 26067.66 29369.53 33242.37 32582.65 20775.19 29954.30 27652.03 30578.51 26031.64 27780.67 29948.60 26858.15 28079.95 292
v124066.99 22564.68 23673.93 18271.38 31952.66 13383.39 18979.98 21561.97 14158.44 23977.11 27635.25 23887.81 18256.46 21558.15 28081.33 273
v192192067.45 21165.23 23074.10 17871.51 31652.90 13083.75 17680.44 20762.48 13559.12 22277.13 27536.98 21687.90 18057.53 20558.14 28281.49 264
jajsoiax63.21 25960.84 26470.32 26268.33 34244.45 29781.23 24381.05 19753.37 28250.96 31277.81 26717.49 36385.49 25259.31 18058.05 28381.02 279
tttt051768.33 19366.29 20374.46 16678.08 22749.06 21080.88 25289.08 2754.40 27454.75 28280.77 24051.31 4890.33 10049.35 26258.01 28483.99 224
Anonymous2023120659.08 29057.59 28763.55 32168.77 33832.14 36880.26 26179.78 22150.00 30549.39 31872.39 32826.64 30878.36 31933.12 34057.94 28580.14 290
mvs_tets62.96 26260.55 26670.19 26368.22 34544.24 30280.90 25180.74 20352.99 28550.82 31477.56 26816.74 36685.44 25359.04 18357.94 28580.89 280
LTVRE_ROB45.45 1952.73 32749.74 33061.69 33369.78 33134.99 35344.52 38367.60 35343.11 34743.79 34374.03 30818.54 35981.45 29028.39 35957.94 28568.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419267.86 20065.76 21774.16 17671.68 31353.09 12484.14 16480.83 20262.85 12659.21 22177.28 27439.30 18488.00 17858.67 18657.88 28881.40 270
IterMVS-LS66.63 23165.36 22870.42 26075.10 27248.90 21881.45 24276.69 28561.05 15755.71 27377.10 27745.86 9983.65 27657.44 20657.88 28878.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3373.95 9272.89 9477.15 9980.17 19050.37 18184.68 14983.33 15668.08 4071.97 8088.65 12342.50 14691.15 7778.82 4657.78 29089.91 107
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23580.15 26476.11 29049.74 30641.91 35273.45 31816.50 36890.31 10131.42 34557.63 29175.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 28455.14 30472.32 22274.69 27850.71 16974.39 30373.58 31244.44 33943.40 34677.52 26919.45 35390.87 8631.31 34657.49 29275.38 336
pmmvs463.34 25861.07 26270.16 26470.14 32850.53 17479.97 26671.41 33055.08 26554.12 28878.58 25932.79 26482.09 28750.33 25557.22 29377.86 314
c3_l67.97 19866.66 19671.91 23776.20 25749.31 20782.13 22078.00 26161.99 14057.64 25076.94 27949.41 6684.93 26360.62 17057.01 29481.49 264
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28242.93 31682.42 21584.90 12063.69 10959.63 21080.99 23747.18 8285.23 25751.17 25256.75 29583.19 242
SCA63.84 25160.01 27375.32 14778.58 22057.92 1061.61 36177.53 26856.71 24557.75 24870.77 33931.97 27279.91 31248.80 26656.36 29688.13 147
v867.25 21764.99 23374.04 17972.89 30253.31 11882.37 21680.11 21361.54 14854.29 28776.02 29642.89 14488.41 16158.43 18856.36 29680.39 287
cl____67.43 21265.93 21371.95 23476.33 25348.02 24782.58 20879.12 23961.30 15356.72 26376.92 28046.12 9486.44 22957.98 19756.31 29881.38 272
DIV-MVS_self_test67.43 21265.93 21371.94 23576.33 25348.01 24882.57 20979.11 24061.31 15256.73 26276.92 28046.09 9586.43 23057.98 19756.31 29881.39 271
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18382.51 21264.43 35941.10 35246.70 33578.77 25824.75 32388.57 15722.26 37856.29 30066.96 371
NR-MVSNet67.25 21765.99 21171.04 25273.27 29743.91 30485.32 12484.75 12666.05 7453.65 29482.11 22645.05 11085.97 24547.55 27456.18 30183.24 240
v1066.61 23264.20 24173.83 18772.59 30553.37 11481.88 22579.91 21961.11 15554.09 28975.60 29840.06 17888.26 17156.47 21456.10 30279.86 293
baseline172.51 11872.12 11073.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 15087.97 13855.00 2889.48 12359.07 18256.05 30387.13 168
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 16186.78 7466.31 6658.51 23382.45 21751.57 4684.64 26753.11 23555.96 30483.96 228
DU-MVS66.84 23065.74 21870.16 26473.27 29742.59 32081.50 23982.92 16863.53 11358.51 23382.11 22640.75 16884.64 26753.11 23555.96 30483.24 240
v14868.24 19666.35 20173.88 18471.76 31251.47 15984.23 16181.90 18463.69 10958.94 22476.44 28743.72 13287.78 18760.63 16955.86 30682.39 253
test_djsdf63.84 25161.56 25570.70 25668.78 33744.69 29581.63 23381.44 19150.28 30152.27 30376.26 29026.72 30786.11 23660.83 16755.84 30781.29 276
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24685.16 11354.48 27351.32 30873.63 31532.32 26886.89 21721.78 38055.71 30877.29 320
WR-MVS67.58 20766.76 19370.04 26875.92 26445.06 29486.23 9985.28 10764.31 9558.50 23581.00 23644.80 12082.00 28849.21 26455.57 30983.06 245
RRT_MVS63.68 25461.01 26371.70 23973.48 29245.98 28181.19 24476.08 29154.33 27552.84 29879.27 25222.21 34087.65 19254.13 22855.54 31081.46 267
test_fmvs153.60 32552.54 32056.78 34958.07 37530.26 37168.95 33842.19 38532.46 37363.59 17182.56 21611.55 37560.81 37458.25 19355.27 31179.28 295
Baseline_NR-MVSNet65.49 24464.27 24069.13 27674.37 28541.65 32783.39 18978.85 24259.56 18159.62 21176.88 28240.75 16887.44 20049.99 25655.05 31278.28 310
v7n62.50 26759.27 27872.20 22467.25 34849.83 19577.87 28380.12 21252.50 28848.80 32273.07 31932.10 27087.90 18046.83 28054.92 31378.86 299
TranMVSNet+NR-MVSNet66.94 22765.61 22170.93 25473.45 29343.38 31183.02 20184.25 13865.31 8758.33 24081.90 22939.92 18185.52 25049.43 26154.89 31483.89 230
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29977.12 27650.27 30343.28 34767.71 35026.15 31276.90 33736.78 32154.78 31578.65 303
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 26070.21 33847.15 32042.77 34975.48 29916.73 36785.98 24335.10 33254.78 31573.72 349
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38530.14 37267.66 34242.84 38432.27 37462.30 18582.02 2289.12 38360.84 37357.82 20154.75 31778.99 297
eth_miper_zixun_eth66.98 22665.28 22972.06 22775.61 26750.40 17881.00 24876.97 28162.00 13956.99 26176.97 27844.84 11785.58 24958.75 18554.42 31880.21 289
IterMVS63.77 25361.67 25370.08 26672.68 30451.24 16580.44 25775.51 29560.51 16951.41 30773.70 31432.08 27178.91 31654.30 22754.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp60.46 28057.65 28668.88 27863.63 36545.09 29072.93 31378.63 25046.52 32451.12 30972.80 32321.46 34783.07 28257.79 20253.97 32078.47 305
F-COLMAP55.96 31453.65 31262.87 32672.76 30342.77 31974.70 30270.37 33740.03 35341.11 35779.36 25017.77 36273.70 35232.80 34153.96 32172.15 357
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20055.03 37565.44 35544.72 33651.00 31061.19 36722.83 33375.41 34428.54 35753.63 32274.57 344
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37570.02 34044.72 33651.00 31061.19 36722.83 33378.88 31728.54 35753.63 32274.57 344
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32745.07 29180.42 25874.25 30443.54 34550.02 31673.73 31131.97 27256.74 38251.06 25353.60 32478.42 307
pm-mvs164.12 24962.56 24768.78 28271.68 31338.87 34282.89 20381.57 18855.54 26153.89 29177.82 26637.73 20086.74 21948.46 27053.49 32580.72 282
AUN-MVS68.20 19766.35 20173.76 18976.37 25147.45 25879.52 27179.52 22760.98 15962.34 18386.02 16536.59 22686.94 21462.32 15553.47 32686.89 170
hse-mvs271.44 13770.68 12973.73 19176.34 25247.44 25979.45 27279.47 23068.08 4071.97 8086.01 16742.50 14686.93 21578.82 4653.46 32786.83 176
miper_lstm_enhance63.91 25062.30 24968.75 28375.06 27346.78 26769.02 33681.14 19659.68 18052.76 29972.39 32840.71 17077.99 32656.81 21153.09 32881.48 266
PatchT56.60 30752.97 31467.48 29472.94 30146.16 28057.30 37273.78 31038.77 35654.37 28657.26 37737.52 20678.06 32332.02 34252.79 32978.23 312
test_vis1_n51.19 33449.66 33155.76 35451.26 38629.85 37667.20 34438.86 38932.12 37559.50 21479.86 2468.78 38458.23 38156.95 21052.46 33079.19 296
JIA-IIPM52.33 33147.77 33866.03 30771.20 32046.92 26640.00 39076.48 28837.10 36146.73 33437.02 39032.96 26177.88 32835.97 32352.45 33173.29 353
Patchmatch-test53.33 32648.17 33568.81 28173.31 29442.38 32442.98 38558.23 36832.53 37238.79 36470.77 33939.66 18273.51 35325.18 36952.06 33290.55 85
testgi54.25 32052.57 31959.29 34362.76 36821.65 39372.21 32070.47 33653.25 28341.94 35177.33 27314.28 37277.95 32729.18 35351.72 33378.28 310
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22969.61 34342.79 34843.88 34272.13 33122.82 33586.46 22816.57 39050.94 33463.31 379
testing359.97 28160.19 27159.32 34277.60 23430.01 37581.75 23081.79 18553.54 27950.34 31579.94 24448.99 6976.91 33517.19 38950.59 33571.03 365
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33659.47 34167.81 34640.57 33771.25 32762.72 36536.49 36536.19 37073.51 31613.48 37373.92 35020.71 38250.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs659.64 28357.15 29067.09 29766.01 35036.86 35180.50 25678.64 24945.05 33549.05 32073.94 30927.28 30386.10 23843.96 29649.94 33778.31 309
Anonymous2024052151.65 33248.42 33461.34 33756.43 37939.65 34073.57 30873.47 31736.64 36436.59 36863.98 36010.75 37872.25 36035.35 32649.01 33872.11 358
USDC54.36 31951.23 32363.76 32064.29 36337.71 34862.84 35873.48 31656.85 24035.47 37271.94 3349.23 38178.43 31838.43 31248.57 33975.13 339
WR-MVS_H58.91 29358.04 28561.54 33469.07 33633.83 36076.91 28781.99 17951.40 29748.17 32374.67 30340.23 17474.15 34731.78 34448.10 34076.64 327
ITE_SJBPF51.84 35858.03 37631.94 36953.57 37636.67 36341.32 35575.23 30111.17 37751.57 38725.81 36848.04 34172.02 359
CL-MVSNet_self_test62.98 26161.14 26168.50 28965.86 35242.96 31584.37 15682.98 16660.98 15953.95 29072.70 32440.43 17283.71 27541.10 30547.93 34278.83 300
test_fmvs245.89 34344.32 34550.62 36045.85 39424.70 38758.87 37037.84 39225.22 38352.46 30174.56 3057.07 38754.69 38349.28 26347.70 34372.48 356
CP-MVSNet58.54 29957.57 28861.46 33568.50 34033.96 35976.90 28878.60 25251.67 29647.83 32676.60 28634.99 24472.79 35635.45 32547.58 34477.64 318
MIMVSNet150.35 33647.81 33757.96 34761.53 37127.80 38467.40 34374.06 30743.25 34633.31 38065.38 35816.03 36971.34 36121.80 37947.55 34574.75 342
PS-CasMVS58.12 30157.03 29261.37 33668.24 34433.80 36176.73 28978.01 26051.20 29847.54 33076.20 29432.85 26272.76 35735.17 33047.37 34677.55 319
Patchmatch-RL test58.72 29554.32 30771.92 23663.91 36444.25 30161.73 36055.19 37157.38 23249.31 31954.24 37937.60 20480.89 29462.19 15747.28 34790.63 84
PEN-MVS58.35 30057.15 29061.94 33167.55 34734.39 35577.01 28678.35 25751.87 29347.72 32776.73 28433.91 25373.75 35134.03 33547.17 34877.68 316
FPMVS35.40 35333.67 35740.57 37046.34 39328.74 38241.05 38757.05 37020.37 38822.27 39253.38 3816.87 38944.94 3958.62 39747.11 34948.01 389
test20.0355.22 31654.07 30958.68 34563.14 36725.00 38677.69 28474.78 30152.64 28643.43 34572.39 32826.21 31074.76 34629.31 35247.05 35076.28 331
DSMNet-mixed38.35 35035.36 35547.33 36348.11 39214.91 40537.87 39136.60 39319.18 38934.37 37459.56 37215.53 37053.01 38620.14 38446.89 35174.07 346
Patchmtry56.56 30852.95 31567.42 29572.53 30650.59 17359.05 36871.72 32537.86 36046.92 33365.86 35538.94 18780.06 30936.94 32046.72 35271.60 361
test_vis1_rt40.29 34938.64 35145.25 36648.91 39130.09 37359.44 36727.07 40324.52 38538.48 36551.67 3846.71 39049.44 38844.33 29346.59 35356.23 382
EU-MVSNet52.63 32850.72 32558.37 34662.69 36928.13 38372.60 31475.97 29230.94 37740.76 35972.11 33220.16 35170.80 36335.11 33146.11 35476.19 332
RPSCF45.77 34444.13 34650.68 35957.67 37829.66 37754.92 37745.25 38126.69 38245.92 33975.92 29717.43 36445.70 39327.44 36345.95 35576.67 324
our_test_359.11 28955.08 30571.18 25071.42 31753.29 11981.96 22274.52 30248.32 31342.08 35069.28 34728.14 29582.15 28534.35 33445.68 35678.11 313
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35132.57 36675.71 29177.09 27751.16 29946.65 33676.34 28932.84 26373.22 35530.94 34844.87 35777.06 321
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37246.44 27275.36 29767.72 35149.61 30743.65 34467.58 35121.63 34577.04 33344.11 29544.33 35873.15 355
AllTest47.32 34144.66 34355.32 35565.08 35837.50 34962.96 35754.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
TestCases55.32 35565.08 35837.50 34954.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31754.74 7981.84 22772.27 32149.02 31045.86 34068.99 34826.27 30983.30 28030.12 34943.23 36175.69 333
KD-MVS_self_test49.24 33746.85 34056.44 35154.32 38022.87 38957.39 37173.36 31844.36 34037.98 36659.30 37318.97 35671.17 36233.48 33642.44 36275.26 337
PM-MVS46.92 34243.76 34756.41 35252.18 38432.26 36763.21 35638.18 39037.99 35940.78 35866.20 3545.09 39565.42 37048.19 27141.99 36371.54 362
TinyColmap48.15 34044.49 34459.13 34465.73 35338.04 34663.34 35462.86 36438.78 35529.48 38467.23 3536.46 39273.30 35424.59 37141.90 36466.04 374
N_pmnet41.25 34739.77 35045.66 36568.50 3400.82 41572.51 3160.38 41435.61 36735.26 37361.51 36620.07 35267.74 36823.51 37440.63 36568.42 369
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 28941.61 32886.36 9679.30 23856.90 23952.53 30076.44 28741.85 15887.60 19738.83 31140.61 36677.86 314
OurMVSNet-221017-052.39 33048.73 33363.35 32465.21 35638.42 34568.54 34064.95 35638.19 35739.57 36071.43 33513.23 37479.92 31037.16 31540.32 36771.72 360
YYNet153.82 32349.96 32865.41 31270.09 33048.95 21572.30 31871.66 32744.25 34131.89 38163.07 36323.73 32973.95 34933.26 33839.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 32965.43 31170.13 32949.05 21172.30 31871.65 32844.23 34231.85 38263.13 36223.68 33074.01 34833.25 33939.35 36973.23 354
ambc62.06 32953.98 38229.38 37935.08 39379.65 22541.37 35459.96 3706.27 39382.15 28535.34 32738.22 37074.65 343
test_fmvs337.95 35135.75 35444.55 36735.50 40018.92 39748.32 37934.00 39718.36 39141.31 35661.58 3652.29 40248.06 39242.72 30237.71 37166.66 372
mvsany_test143.38 34642.57 34845.82 36450.96 38726.10 38555.80 37327.74 40227.15 38147.41 33274.39 30618.67 35844.95 39444.66 29136.31 37266.40 373
Gipumacopyleft27.47 36124.26 36637.12 37560.55 37429.17 38011.68 40260.00 36714.18 39410.52 40315.12 4042.20 40463.01 3728.39 39835.65 37319.18 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36233.12 36273.17 31283.87 14858.98 20041.75 35370.03 34322.54 33679.92 31046.12 28635.31 37481.32 275
TDRefinement40.91 34838.37 35248.55 36250.45 38833.03 36458.98 36950.97 37728.50 37929.89 38367.39 3526.21 39454.51 38417.67 38835.25 37558.11 381
EGC-MVSNET33.75 35630.42 36043.75 36864.94 36036.21 35260.47 36640.70 3880.02 4080.10 40953.79 3807.39 38660.26 37511.09 39635.23 37634.79 394
LF4IMVS33.04 35832.55 35834.52 37640.96 39522.03 39144.45 38435.62 39420.42 38728.12 38762.35 3645.03 39631.88 40621.61 38134.42 37749.63 388
new-patchmatchnet48.21 33946.55 34153.18 35757.73 37718.19 40170.24 33071.02 33345.70 33033.70 37660.23 36918.00 36169.86 36627.97 36134.35 37871.49 363
pmmvs345.53 34541.55 34957.44 34848.97 39039.68 33970.06 33157.66 36928.32 38034.06 37557.29 3768.50 38566.85 36934.86 33334.26 37965.80 375
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32541.46 33174.73 30064.69 35747.56 31839.12 36269.49 34418.49 36084.69 26631.87 34334.20 38075.48 335
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36634.75 35471.38 32681.92 18246.53 32338.95 36357.93 37520.55 35080.20 30839.91 30934.09 38176.57 328
MDA-MVSNet-bldmvs51.56 33347.75 33963.00 32571.60 31547.32 26169.70 33572.12 32243.81 34327.65 38963.38 36121.97 34475.96 34127.30 36432.19 38265.70 376
PMVScopyleft19.57 2225.07 36522.43 37032.99 38023.12 41122.98 38840.98 38835.19 39515.99 39311.95 40235.87 3941.47 40849.29 3895.41 40631.90 38326.70 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 35731.89 35938.59 37249.01 38920.42 39451.01 37837.92 39120.58 38623.45 39146.79 3866.66 39149.28 39020.00 38531.57 38446.09 391
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
test_vis3_rt24.79 36622.95 36930.31 38228.59 40618.92 39737.43 39217.27 41012.90 39521.28 39329.92 3991.02 40936.35 39928.28 36029.82 38735.65 393
test_f27.12 36224.85 36333.93 37826.17 41015.25 40430.24 39822.38 40712.53 39728.23 38649.43 3852.59 40134.34 40425.12 37026.99 38852.20 386
APD_test126.46 36424.41 36532.62 38137.58 39721.74 39240.50 38930.39 39911.45 39816.33 39543.76 3871.63 40741.62 39611.24 39526.82 38934.51 395
K. test v354.04 32149.42 33267.92 29268.55 33942.57 32375.51 29563.07 36352.07 29039.21 36164.59 35919.34 35482.21 28437.11 31725.31 39078.97 298
LCM-MVSNet28.07 35923.85 36740.71 36927.46 40918.93 39630.82 39746.19 37812.76 39616.40 39434.70 3951.90 40548.69 39120.25 38324.22 39154.51 384
test_method24.09 36721.07 37133.16 37927.67 4088.35 41326.63 39935.11 3963.40 40514.35 39736.98 3913.46 39935.31 40119.08 38722.95 39255.81 383
testf121.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
APD_test221.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
lessismore_v067.98 29164.76 36141.25 33245.75 38036.03 37165.63 35719.29 35584.11 27035.67 32421.24 39578.59 304
mvsany_test328.00 36025.98 36234.05 37728.97 40515.31 40334.54 39418.17 40816.24 39229.30 38553.37 3822.79 40033.38 40530.01 35020.41 39653.45 385
PVSNet_057.04 1361.19 27657.24 28973.02 20377.45 23850.31 18579.43 27377.36 27363.96 10447.51 33172.45 32725.03 32083.78 27452.76 24319.22 39784.96 209
WB-MVS37.41 35236.37 35340.54 37154.23 38110.43 40865.29 34643.75 38234.86 37127.81 38854.63 37824.94 32163.21 3716.81 40315.00 39847.98 390
SSC-MVS35.20 35434.30 35637.90 37352.58 3838.65 41161.86 35941.64 38631.81 37625.54 39052.94 38323.39 33259.28 3796.10 40412.86 39945.78 392
PMMVS226.71 36322.98 36837.87 37436.89 3988.51 41242.51 38629.32 40119.09 39013.01 39837.54 3892.23 40353.11 38514.54 39211.71 40051.99 387
MVEpermissive16.60 2317.34 37313.39 37629.16 38328.43 40719.72 39513.73 40123.63 4067.23 4047.96 40421.41 4000.80 41036.08 4006.97 40110.39 40131.69 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN19.16 37018.40 37421.44 38636.19 39913.63 40647.59 38030.89 39810.73 3995.91 40616.59 4023.66 39839.77 3975.95 4058.14 40210.92 402
DeepMVS_CXcopyleft13.10 38821.34 4128.99 41010.02 41210.59 4007.53 40530.55 3981.82 40614.55 4076.83 4027.52 40315.75 401
EMVS18.42 37117.66 37520.71 38734.13 40112.64 40746.94 38129.94 40010.46 4015.58 40714.93 4054.23 39738.83 3985.24 4077.51 40410.67 403
wuyk23d9.11 3758.77 37910.15 38940.18 39616.76 40220.28 4001.01 4132.58 4062.66 4080.98 4080.23 41312.49 4084.08 4086.90 4051.19 405
tmp_tt9.44 37410.68 3775.73 3902.49 4134.21 41410.48 40318.04 4090.34 40712.59 39920.49 40111.39 3767.03 40913.84 3946.46 4065.95 404
ANet_high34.39 35529.59 36148.78 36130.34 40422.28 39055.53 37463.79 36138.11 35815.47 39636.56 3936.94 38859.98 37613.93 3935.64 40764.08 377
test_blank0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k18.33 37224.44 3640.00 3930.00 4150.00 4170.00 40489.40 220.00 4090.00 41292.02 4838.55 1910.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.15 3794.20 3820.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 41137.77 1970.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
testmvs6.14 3778.18 3800.01 3910.01 4140.00 41773.40 3110.00 4150.00 4090.02 4100.15 4090.00 4140.00 4100.02 4090.00 4080.02 406
test1236.01 3788.01 3810.01 3910.00 4150.01 41671.93 3240.00 4150.00 4090.02 4100.11 4100.00 4140.00 4100.02 4090.00 4080.02 406
ab-mvs-re7.68 37610.24 3780.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 41292.12 440.00 4140.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
WAC-MVS34.28 35622.56 377
FOURS183.24 10949.90 19384.98 13878.76 24647.71 31673.42 61
test_one_060189.39 2257.29 2088.09 5357.21 23682.06 1393.39 2054.94 29
eth-test20.00 415
eth-test0.00 415
test_241102_ONE89.48 1756.89 2988.94 3057.53 22884.61 493.29 2458.81 1196.45 1
save fliter85.35 6656.34 4189.31 4081.46 19061.55 147
test072689.40 2057.45 1792.32 888.63 4357.71 22483.14 1093.96 855.17 25
GSMVS88.13 147
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18988.13 147
sam_mvs35.99 234
MTGPAbinary81.31 193
test_post170.84 32914.72 40634.33 25083.86 27148.80 266
test_post16.22 40337.52 20684.72 265
patchmatchnet-post59.74 37138.41 19279.91 312
MTMP87.27 7715.34 411
gm-plane-assit83.24 10954.21 9570.91 2288.23 13195.25 1466.37 126
TEST985.68 5755.42 5687.59 6784.00 14457.72 22372.99 6690.98 6944.87 11688.58 154
test_885.72 5655.31 6187.60 6683.88 14757.84 22172.84 7090.99 6844.99 11288.34 165
agg_prior85.64 6054.92 7583.61 15472.53 7588.10 175
test_prior456.39 4087.15 81
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 85
旧先验281.73 23145.53 33274.66 4870.48 36558.31 192
新几何281.61 235
无先验85.19 12878.00 26149.08 30985.13 26052.78 24187.45 163
原ACMM283.77 175
testdata277.81 33045.64 287
segment_acmp44.97 114
testdata177.55 28564.14 99
plane_prior777.95 22948.46 232
plane_prior678.42 22449.39 20636.04 232
plane_prior483.28 201
plane_prior348.95 21564.01 10262.15 187
plane_prior285.76 10863.60 111
plane_prior178.31 226
n20.00 415
nn0.00 415
door-mid41.31 387
test1184.25 138
door43.27 383
HQP5-MVS51.56 156
HQP-NCC79.02 20888.00 5565.45 8064.48 155
ACMP_Plane79.02 20888.00 5565.45 8064.48 155
BP-MVS66.70 123
HQP4-MVS64.47 15888.61 15384.91 210
HQP2-MVS37.35 209
NP-MVS78.76 21350.43 17785.12 175
MDTV_nov1_ep13_2view43.62 30771.13 32854.95 26859.29 22036.76 22046.33 28487.32 165
Test By Simon39.38 183