This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3895.57 1285.80 1085.87 3893.31 11
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 9077.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3257.50 23584.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 2057.71 22981.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3496.39 481.68 2987.13 2192.47 31
test072689.40 2057.45 1992.32 788.63 4557.71 22983.14 993.96 655.17 29
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8274.48 582.63 1093.80 950.83 6193.70 2890.11 286.44 3393.01 21
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2275.28 482.41 1193.86 854.30 3593.98 2390.29 187.13 2193.30 12
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3670.31 2577.64 3693.87 752.58 4693.91 2684.17 1587.92 1692.39 33
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7470.62 2280.75 2193.22 2437.77 20692.50 4682.75 2386.25 3591.57 60
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7770.30 2680.77 2093.07 2937.63 21192.28 5282.73 2485.71 3991.57 60
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8673.13 879.89 2593.10 2549.88 7092.98 3384.09 1784.75 5093.08 19
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 13069.12 3476.67 3992.02 4644.82 12390.23 10780.83 3680.09 8692.08 41
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5467.71 4873.81 5692.75 3246.88 9193.28 3078.79 4784.07 5591.50 64
test_yl75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
DCV-MVSNet75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5663.22 12374.63 4890.83 7541.38 17194.40 2075.42 7279.90 9194.72 2
VDD-MVS76.08 6374.97 7279.44 4184.27 9053.33 11991.13 2085.88 9865.33 8772.37 7689.34 11032.52 28192.76 4077.90 5775.96 13192.22 39
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8585.46 6649.56 20590.99 2186.66 8270.58 2380.07 2495.30 156.18 2490.97 8782.57 2586.22 3693.28 13
VNet77.99 3777.92 3178.19 7887.43 4250.12 19390.93 2291.41 867.48 5275.12 4390.15 9546.77 9391.00 8473.52 8978.46 10393.44 9
CLD-MVS75.60 7375.39 6576.24 12280.69 18852.40 14190.69 2386.20 9274.40 665.01 15288.93 11742.05 16190.58 9676.57 6373.96 15585.73 205
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15468.26 3774.10 5490.91 7242.14 15989.99 11279.30 4179.12 9791.36 68
jason: jason.
IB-MVS68.87 274.01 9472.03 11779.94 3883.04 11955.50 5390.24 2588.65 4367.14 5561.38 20081.74 23753.21 4294.28 2160.45 18462.41 25790.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet74.37 8972.13 11281.09 2079.58 20456.52 3790.02 2686.70 8152.61 29271.23 9087.20 15531.75 29193.96 2574.30 8275.77 13492.79 27
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19290.02 2690.57 1656.58 25474.26 5391.60 5954.26 3692.16 5575.87 6679.91 9093.05 20
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9768.31 3671.33 8992.75 3245.52 10990.37 10071.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6866.04 7679.46 2693.00 3053.10 4391.76 6380.40 3789.56 992.68 29
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 5064.83 9273.52 5988.09 13748.07 7892.19 5462.24 16484.53 5291.53 62
VPNet72.07 13071.42 12474.04 18778.64 22847.17 27489.91 3187.97 5772.56 1164.66 15585.04 18241.83 16688.33 17261.17 17460.97 26486.62 188
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10666.11 7176.59 4191.99 4854.07 3989.05 13977.34 6077.00 11692.89 23
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6255.91 26078.56 3092.49 3748.20 7792.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7662.94 12871.65 8391.56 6042.33 15592.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
Anonymous20240521170.11 16367.88 18076.79 11687.20 4447.24 27389.49 3577.38 28354.88 27466.14 13586.84 16020.93 36091.54 6856.45 22671.62 17691.59 58
SPE-MVS-test77.20 4577.25 4177.05 10384.60 8149.04 22089.42 3685.83 10065.90 7772.85 6891.98 5045.10 11491.27 7475.02 7684.56 5190.84 82
WBMVS73.93 9673.39 8975.55 14487.82 3955.21 6589.37 3787.29 7067.27 5363.70 17480.30 24960.32 686.47 23361.58 17062.85 25484.97 217
DP-MVS Recon71.99 13170.31 14377.01 10690.65 853.44 11389.37 3782.97 17556.33 25763.56 17889.47 10734.02 26792.15 5754.05 23972.41 16985.43 212
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14989.36 3984.07 15173.22 777.03 3891.72 5449.32 7490.17 10973.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
save fliter85.35 6856.34 4189.31 4081.46 19861.55 151
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19771.82 8290.05 9759.72 1096.04 1078.37 5088.40 1493.75 7
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2962.95 12770.54 10392.33 3941.05 17294.95 1757.90 21086.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior289.04 4361.88 14673.55 5891.46 6348.01 8074.73 7785.46 42
ET-MVSNet_ETH3D75.23 8074.08 8478.67 6484.52 8355.59 5188.92 4489.21 2868.06 4253.13 30590.22 9149.71 7187.62 20172.12 9770.82 18492.82 25
PVSNet_Blended76.53 5676.54 4976.50 11885.91 5651.83 15588.89 4584.24 14867.82 4669.09 11189.33 11246.70 9488.13 17975.43 7081.48 7389.55 115
Anonymous2024052969.71 17467.28 19577.00 10783.78 9950.36 18788.87 4685.10 12447.22 32964.03 16883.37 20427.93 31292.10 5857.78 21367.44 20988.53 145
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5855.55 26581.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS76.77 5376.70 4876.99 10883.55 10248.75 23088.60 4885.18 11966.38 6672.47 7591.62 5845.53 10890.99 8674.48 7982.51 6291.23 72
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17588.57 4988.59 4858.14 21873.60 5793.31 2143.14 14793.79 2773.81 8788.53 1392.37 34
WTY-MVS77.47 4377.52 3877.30 9788.33 3046.25 28788.46 5090.32 1871.40 1872.32 7791.72 5453.44 4192.37 4966.28 13375.42 13893.28 13
9.1478.19 2885.67 6188.32 5188.84 3859.89 18074.58 5092.62 3546.80 9292.66 4181.40 3585.62 41
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10288.37 12957.69 1792.30 5075.25 7476.24 12891.20 73
MVS_111021_HR76.39 5875.38 6679.42 4285.33 6956.47 3888.15 5384.97 12665.15 9066.06 13789.88 10043.79 13492.16 5575.03 7580.03 8989.64 113
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5276.17 279.40 2791.09 6455.43 2790.09 11085.01 1280.40 8291.99 48
MS-PatchMatch72.34 12471.26 12675.61 14182.38 14055.55 5288.00 5589.95 2165.38 8556.51 27680.74 24732.28 28492.89 3457.95 20888.10 1578.39 316
HQP-NCC79.02 21788.00 5565.45 8164.48 161
ACMP_Plane79.02 21788.00 5565.45 8164.48 161
HQP-MVS72.34 12471.44 12375.03 16579.02 21751.56 16188.00 5583.68 15865.45 8164.48 16185.13 17937.35 21888.62 15766.70 12873.12 16184.91 219
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13757.29 1992.63 4469.24 11375.13 14491.91 49
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 14155.82 2692.65 4269.61 10975.00 14892.05 44
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10571.67 1571.38 8888.35 13151.58 5091.22 7779.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12858.53 1689.08 13773.21 9477.98 10792.08 41
VPA-MVSNet71.12 14670.66 13472.49 22578.75 22344.43 30687.64 6590.02 1963.97 10665.02 15181.58 24042.14 15987.42 20663.42 15763.38 24585.63 209
test_885.72 5855.31 6187.60 6683.88 15557.84 22672.84 6990.99 6644.99 11788.34 171
TEST985.68 5955.42 5687.59 6784.00 15257.72 22872.99 6590.98 6744.87 12188.58 160
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15257.84 22672.99 6590.98 6744.99 11788.58 16078.19 5285.32 4491.34 70
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7961.48 15480.26 2393.10 2546.53 9692.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
plane_prior49.57 20387.43 7064.57 9472.84 165
EC-MVSNet75.30 7675.20 6775.62 14080.98 17649.00 22187.43 7084.68 13663.49 11870.97 9590.15 9542.86 15291.14 8174.33 8181.90 6886.71 187
TR-MVS69.71 17467.85 18375.27 16082.94 12448.48 23987.40 7280.86 21157.15 24264.61 15887.08 15732.67 28089.64 12346.38 29371.55 17887.68 166
CDPH-MVS76.05 6475.19 6878.62 6686.51 5054.98 7587.32 7384.59 13858.62 21270.75 9790.85 7443.10 14990.63 9570.50 10484.51 5390.24 96
3Dnovator+62.71 772.29 12670.50 13677.65 9083.40 10851.29 16987.32 7386.40 8859.01 20458.49 24388.32 13332.40 28291.27 7457.04 21982.15 6790.38 92
API-MVS74.17 9272.07 11480.49 2590.02 1158.55 987.30 7584.27 14557.51 23465.77 14387.77 14641.61 16895.97 1151.71 25682.63 6186.94 178
BH-RMVSNet70.08 16568.01 17776.27 12184.21 9151.22 17187.29 7679.33 24758.96 20663.63 17686.77 16133.29 27590.30 10544.63 30273.96 15587.30 175
MTMP87.27 7715.34 426
APD-MVScopyleft76.15 6175.68 5877.54 9288.52 2753.44 11387.26 7885.03 12553.79 28274.91 4691.68 5643.80 13390.31 10374.36 8081.82 6988.87 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12255.19 2891.24 7665.18 14876.32 12791.29 71
EIA-MVS75.92 6675.18 6978.13 7985.14 7251.60 16087.17 8085.32 11264.69 9368.56 11590.53 8045.79 10591.58 6767.21 12682.18 6691.20 73
test_prior456.39 4087.15 81
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9872.11 1371.57 8588.63 12750.89 6090.35 10176.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas69.01 18766.13 21677.66 8979.36 20755.41 5886.99 8383.75 15756.69 25158.92 23381.35 24124.31 34092.10 5853.23 24370.61 18685.46 211
nrg03072.27 12871.56 12074.42 17675.93 27350.60 17786.97 8483.21 16962.75 13067.15 12584.38 18750.07 6586.66 22771.19 10062.37 25885.99 199
114514_t69.87 17267.88 18075.85 13588.38 2952.35 14386.94 8583.68 15853.70 28355.68 28285.60 17530.07 30291.20 7855.84 22971.02 18283.99 233
CP-MVS72.59 12171.46 12276.00 13382.93 12552.32 14486.93 8682.48 18155.15 26963.65 17590.44 8535.03 25888.53 16468.69 11777.83 10987.15 176
ZNCC-MVS75.82 7175.02 7178.23 7783.88 9853.80 10386.91 8786.05 9659.71 18367.85 12190.55 7942.23 15791.02 8372.66 9685.29 4589.87 110
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9168.60 3570.18 10588.84 12051.57 5187.16 21265.48 14186.68 3090.15 101
UWE-MVS72.17 12972.15 11172.21 23282.26 14244.29 30886.83 8989.58 2365.58 8065.82 14185.06 18145.02 11684.35 27654.07 23875.18 14187.99 159
Fast-Effi-MVS+72.73 11771.15 12977.48 9382.75 13254.76 7986.77 9080.64 21463.05 12665.93 13984.01 19144.42 12889.03 14056.45 22676.36 12688.64 140
thisisatest051573.64 10572.20 10977.97 8281.63 15953.01 12986.69 9188.81 3962.53 13464.06 16785.65 17452.15 4992.50 4658.43 19769.84 19288.39 149
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 14086.63 9287.80 5958.78 20974.63 4892.38 3847.75 8391.35 7278.18 5486.85 2791.15 75
BH-w/o70.02 16768.51 16974.56 17282.77 13150.39 18486.60 9378.14 27059.77 18259.65 21685.57 17639.27 19487.30 20949.86 26774.94 14985.99 199
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 8066.96 5867.91 12089.97 9948.03 7991.41 7175.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TransMVSNet (Re)62.82 27160.76 27369.02 28573.98 29841.61 33786.36 9579.30 24856.90 24452.53 30876.44 29441.85 16587.60 20238.83 32140.61 37477.86 322
MSLP-MVS++74.21 9172.25 10880.11 3681.45 16956.47 3886.32 9679.65 23658.19 21766.36 13492.29 4036.11 24490.66 9367.39 12482.49 6393.18 17
QAPM71.88 13469.33 16079.52 4082.20 14354.30 9386.30 9788.77 4056.61 25359.72 21587.48 15033.90 26995.36 1347.48 28481.49 7288.90 132
WR-MVS67.58 21666.76 20270.04 27675.92 27445.06 30286.23 9885.28 11564.31 9858.50 24281.00 24244.80 12582.00 29749.21 27355.57 31683.06 254
PVSNet_BlendedMVS73.42 10773.30 9173.76 19885.91 5651.83 15586.18 9984.24 14865.40 8469.09 11180.86 24546.70 9488.13 17975.43 7065.92 22481.33 281
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 11168.20 3873.10 6490.52 8145.23 11390.66 9379.37 4080.95 7490.22 97
AdaColmapbinary67.86 20965.48 23275.00 16688.15 3654.99 7486.10 10176.63 29849.30 31457.80 25286.65 16529.39 30588.94 14845.10 29970.21 19081.06 286
OPM-MVS70.75 15669.58 15574.26 18275.55 27851.34 16786.05 10283.29 16861.94 14562.95 18485.77 17334.15 26688.44 16665.44 14571.07 18182.99 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive70.61 15869.34 15974.42 17680.95 18148.49 23886.03 10377.51 28058.74 21065.55 14587.78 14534.37 26485.95 25352.53 25480.61 7888.80 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121166.08 24963.67 25273.31 20883.07 11848.75 23086.01 10484.67 13745.27 34356.54 27476.67 29228.06 31188.95 14652.78 25059.95 26782.23 263
EG-PatchMatch MVS62.40 27859.59 28270.81 26373.29 30349.05 21885.81 10584.78 13251.85 29944.19 35173.48 32515.52 38389.85 11540.16 31867.24 21073.54 361
PVSNet_Blended_VisFu73.40 10872.44 10376.30 12081.32 17354.70 8385.81 10578.82 25463.70 11164.53 16085.38 17847.11 8987.38 20867.75 12377.55 11086.81 186
HQP_MVS70.96 15269.91 15174.12 18577.95 23849.57 20385.76 10782.59 17963.60 11462.15 19383.28 20636.04 24788.30 17465.46 14272.34 17084.49 223
plane_prior285.76 10763.60 114
GST-MVS74.87 8573.90 8777.77 8683.30 11053.45 11285.75 10985.29 11459.22 19666.50 13389.85 10140.94 17490.76 9070.94 10283.35 5889.10 129
SD-MVS76.18 6074.85 7480.18 3285.39 6756.90 2885.75 10982.45 18256.79 24974.48 5191.81 5243.72 13790.75 9174.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 1792x268876.24 5974.03 8682.88 183.09 11762.84 285.73 11185.39 10869.79 2864.87 15483.49 20141.52 17093.69 2970.55 10381.82 6992.12 40
WB-MVSnew69.36 18368.24 17472.72 21979.26 21149.40 21285.72 11288.85 3761.33 15564.59 15982.38 22534.57 26287.53 20446.82 29070.63 18581.22 285
FMVSNet368.84 19067.40 19373.19 21185.05 7348.53 23685.71 11385.36 10960.90 16857.58 25879.15 26142.16 15886.77 22347.25 28663.40 24284.27 227
MP-MVScopyleft74.99 8474.33 8176.95 11082.89 12753.05 12885.63 11483.50 16357.86 22567.25 12490.24 8943.38 14488.85 15376.03 6482.23 6588.96 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.37 8973.13 9778.10 8084.30 8753.68 10685.58 11584.36 14356.82 24765.78 14290.56 7840.70 17990.90 8869.18 11480.88 7589.71 111
ACMMPR73.76 10072.61 9977.24 10183.92 9652.96 13185.58 11584.29 14456.82 24765.12 14890.45 8237.24 22390.18 10869.18 11480.84 7688.58 142
BH-untuned68.28 20366.40 20973.91 19281.62 16050.01 19585.56 11777.39 28257.63 23157.47 26383.69 19836.36 24287.08 21444.81 30073.08 16484.65 222
ETVMVS75.80 7275.44 6476.89 11286.23 5450.38 18585.55 11891.42 771.30 2068.80 11387.94 14356.42 2389.24 13256.54 22274.75 15191.07 77
region2R73.75 10172.55 10177.33 9683.90 9752.98 13085.54 11984.09 15056.83 24665.10 14990.45 8237.34 22090.24 10668.89 11680.83 7788.77 138
xiu_mvs_v1_base_debu71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base_debi71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
fmvsm_s_conf0.5_n74.48 8674.12 8375.56 14376.96 25647.85 26385.32 12369.80 35464.16 10178.74 2893.48 1645.51 11089.29 13186.48 866.62 21589.55 115
NR-MVSNet67.25 22665.99 22071.04 26073.27 30543.91 31285.32 12384.75 13466.05 7553.65 30382.11 23245.05 11585.97 25247.55 28356.18 30883.24 249
fmvsm_l_conf0.5_n_a75.88 6776.07 5675.31 15476.08 26848.34 24485.24 12570.62 34763.13 12581.45 1893.62 1449.98 6887.40 20787.76 676.77 12090.20 99
GDP-MVS75.27 7874.38 8077.95 8479.04 21652.86 13385.22 12686.19 9362.43 13870.66 10090.40 8653.51 4091.60 6669.25 11272.68 16789.39 120
Effi-MVS+75.24 7973.61 8880.16 3381.92 14857.42 2185.21 12776.71 29660.68 17273.32 6289.34 11047.30 8691.63 6568.28 12079.72 9391.42 65
无先验85.19 12878.00 27249.08 31585.13 26752.78 25087.45 171
FMVSNet267.57 21765.79 22572.90 21582.71 13347.97 25985.15 12984.93 12758.55 21356.71 27278.26 26836.72 23786.67 22646.15 29562.94 25384.07 230
test-LLR69.65 17869.01 16471.60 24978.67 22548.17 25085.13 13079.72 23359.18 19963.13 18182.58 21936.91 23280.24 31560.56 18075.17 14286.39 193
TESTMET0.1,172.86 11572.33 10574.46 17481.98 14550.77 17385.13 13085.47 10466.09 7267.30 12383.69 19837.27 22183.57 28565.06 15078.97 10089.05 130
test-mter68.36 20067.29 19471.60 24978.67 22548.17 25085.13 13079.72 23353.38 28663.13 18182.58 21927.23 31880.24 31560.56 18075.17 14286.39 193
1112_ss70.05 16669.37 15872.10 23480.77 18642.78 32785.12 13376.75 29359.69 18461.19 20292.12 4247.48 8583.84 28053.04 24668.21 20289.66 112
XXY-MVS70.18 16269.28 16272.89 21777.64 24242.88 32685.06 13487.50 6962.58 13362.66 18882.34 22943.64 13989.83 11658.42 19963.70 24085.96 201
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13585.04 13588.63 4566.08 7386.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
thres20068.71 19567.27 19673.02 21284.73 7846.76 27785.03 13687.73 6362.34 13959.87 21283.45 20243.15 14688.32 17331.25 35867.91 20683.98 235
MVP-Stereo70.97 15170.44 13772.59 22276.03 27151.36 16685.02 13786.99 7560.31 17656.53 27578.92 26340.11 18690.00 11160.00 18890.01 776.41 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
fmvsm_l_conf0.5_n75.95 6576.16 5575.31 15476.01 27248.44 24184.98 13871.08 34463.50 11781.70 1793.52 1550.00 6687.18 21187.80 576.87 11990.32 94
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13888.88 3458.00 22183.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
FOURS183.24 11249.90 19884.98 13878.76 25647.71 32673.42 60
PS-MVSNAJss68.78 19467.17 19773.62 20473.01 30848.33 24684.95 14184.81 13159.30 19558.91 23479.84 25437.77 20688.86 15062.83 16063.12 25183.67 243
v2v48269.55 18067.64 18675.26 16172.32 31853.83 10284.93 14281.94 18865.37 8660.80 20579.25 25941.62 16788.98 14563.03 15959.51 27282.98 256
XVS72.92 11371.62 11976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 17089.63 10535.50 25189.78 11765.50 13980.50 8088.16 152
X-MVStestdata65.85 25162.20 25976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 1704.82 42235.50 25189.78 11765.50 13980.50 8088.16 152
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14583.68 15867.85 4569.36 10790.24 8960.20 892.10 5884.14 1680.40 8292.82 25
test111171.06 14970.42 14072.97 21479.48 20641.49 33984.82 14682.74 17864.20 10062.98 18387.43 15235.20 25487.92 18558.54 19678.42 10489.49 118
Fast-Effi-MVS+-dtu66.53 24264.10 25173.84 19572.41 31652.30 14584.73 14775.66 30559.51 18756.34 27779.11 26228.11 31085.85 25557.74 21463.29 24683.35 245
BP-MVS176.09 6275.55 6177.71 8879.49 20552.27 14684.70 14890.49 1764.44 9569.86 10690.31 8855.05 3291.35 7270.07 10775.58 13789.53 117
ECVR-MVScopyleft71.81 13571.00 13074.26 18280.12 19843.49 31684.69 14982.16 18364.02 10364.64 15687.43 15235.04 25789.21 13561.24 17379.66 9490.08 103
h-mvs3373.95 9572.89 9877.15 10280.17 19750.37 18684.68 15083.33 16468.08 3971.97 8088.65 12642.50 15391.15 8078.82 4557.78 29789.91 109
v114468.81 19266.82 20074.80 17072.34 31753.46 11084.68 15081.77 19564.25 9960.28 20977.91 27040.23 18388.95 14660.37 18559.52 27181.97 265
CANet_DTU73.71 10273.14 9575.40 15082.61 13750.05 19484.67 15279.36 24469.72 3075.39 4290.03 9829.41 30485.93 25467.99 12279.11 9890.22 97
test_vis1_n_192068.59 19868.31 17269.44 28269.16 34541.51 33884.63 15368.58 36058.80 20873.26 6388.37 12925.30 33180.60 31079.10 4267.55 20886.23 195
PVSNet62.49 869.27 18467.81 18473.64 20284.41 8551.85 15484.63 15377.80 27466.42 6559.80 21484.95 18422.14 35580.44 31355.03 23275.11 14588.62 141
fmvsm_s_conf0.1_n73.80 9973.26 9275.43 14973.28 30447.80 26484.57 15569.43 35663.34 12078.40 3193.29 2244.73 12689.22 13485.99 966.28 22289.26 122
mPP-MVS71.79 13770.38 14176.04 13182.65 13652.06 14884.45 15681.78 19455.59 26462.05 19589.68 10433.48 27388.28 17665.45 14478.24 10687.77 163
CL-MVSNet_self_test62.98 26961.14 27068.50 29765.86 36242.96 32484.37 15782.98 17460.98 16453.95 29972.70 33240.43 18183.71 28341.10 31547.93 35078.83 308
OpenMVScopyleft61.00 1169.99 16967.55 18977.30 9778.37 23454.07 10184.36 15885.76 10157.22 24056.71 27287.67 14830.79 29792.83 3643.04 30984.06 5685.01 216
MP-MVS-pluss75.54 7575.03 7077.04 10481.37 17152.65 13784.34 15984.46 14161.16 15869.14 11091.76 5339.98 18988.99 14478.19 5284.89 4989.48 119
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR75.20 8174.13 8278.41 7388.31 3255.10 7184.31 16085.66 10263.76 11067.55 12290.73 7743.48 14289.40 12766.36 13277.03 11590.73 85
SR-MVS70.92 15369.73 15374.50 17383.38 10950.48 18184.27 16179.35 24548.96 31766.57 13290.45 8233.65 27287.11 21366.42 13074.56 15285.91 202
v14868.24 20566.35 21073.88 19371.76 32251.47 16484.23 16281.90 19263.69 11258.94 23176.44 29443.72 13787.78 19360.63 17855.86 31382.39 262
UniMVSNet_NR-MVSNet68.82 19168.29 17370.40 26975.71 27642.59 32984.23 16286.78 7866.31 6758.51 24082.45 22251.57 5184.64 27453.11 24455.96 31183.96 237
GeoE69.96 17067.88 18076.22 12381.11 17551.71 15884.15 16476.74 29559.83 18160.91 20384.38 18741.56 16988.10 18151.67 25770.57 18788.84 135
v14419267.86 20965.76 22674.16 18471.68 32353.09 12684.14 16580.83 21262.85 12959.21 22877.28 28139.30 19388.00 18458.67 19557.88 29581.40 278
UGNet68.71 19567.11 19873.50 20680.55 19247.61 26684.08 16678.51 26359.45 18865.68 14482.73 21523.78 34285.08 26852.80 24976.40 12287.80 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS72.98 11272.05 11575.78 13683.57 10148.60 23384.08 16682.85 17761.62 15068.24 11890.33 8728.35 30887.78 19372.71 9576.69 12190.95 80
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16885.35 11061.10 16172.99 6591.50 6140.25 18291.00 8476.84 6286.98 2590.51 90
v119267.96 20865.74 22774.63 17171.79 32153.43 11584.06 16880.99 21063.19 12459.56 21977.46 27737.50 21788.65 15658.20 20358.93 27881.79 268
FIs70.00 16870.24 14769.30 28377.93 24038.55 35383.99 17087.72 6466.86 5957.66 25684.17 19052.28 4785.31 26152.72 25368.80 19984.02 231
MVS_Test75.85 6874.93 7378.62 6684.08 9255.20 6783.99 17085.17 12068.07 4173.38 6182.76 21250.44 6389.00 14265.90 13780.61 7891.64 56
reproduce_monomvs69.71 17468.52 16873.29 21086.43 5248.21 24983.91 17286.17 9468.02 4354.91 28777.46 27742.96 15088.86 15068.44 11848.38 34782.80 259
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17384.88 12971.38 1971.51 8689.15 11550.51 6290.55 9775.71 6778.65 10191.39 66
fmvsm_s_conf0.5_n_a73.68 10473.15 9375.29 15775.45 27948.05 25683.88 17468.84 35963.43 11978.60 2993.37 2045.32 11188.92 14985.39 1164.04 23588.89 133
baseline275.15 8274.54 7976.98 10981.67 15851.74 15783.84 17591.94 369.97 2758.98 23086.02 17059.73 991.73 6468.37 11970.40 18987.48 169
EPP-MVSNet71.14 14570.07 14974.33 17979.18 21346.52 28083.81 17686.49 8556.32 25857.95 24984.90 18554.23 3789.14 13658.14 20469.65 19587.33 173
原ACMM283.77 177
v192192067.45 22065.23 23974.10 18671.51 32652.90 13283.75 17880.44 21862.48 13759.12 22977.13 28236.98 23087.90 18657.53 21558.14 28981.49 273
OpenMVS_ROBcopyleft53.19 1759.20 29556.00 30768.83 28871.13 33144.30 30783.64 17975.02 31146.42 33646.48 34773.03 32818.69 36888.14 17827.74 37361.80 26074.05 357
MVSTER73.25 11072.33 10576.01 13285.54 6453.76 10583.52 18087.16 7267.06 5663.88 17281.66 23852.77 4490.44 9864.66 15264.69 23183.84 240
GBi-Net67.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
test167.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
FMVSNet164.57 25462.11 26071.96 24077.32 24846.36 28283.52 18083.31 16552.43 29454.42 29376.23 29827.80 31486.20 23942.59 31361.34 26383.32 246
baseline172.51 12272.12 11373.69 20185.05 7344.46 30483.51 18486.13 9571.61 1664.64 15687.97 14255.00 3389.48 12559.07 19156.05 31087.13 177
CDS-MVSNet70.48 16069.43 15673.64 20277.56 24548.83 22783.51 18477.45 28163.27 12262.33 19085.54 17743.85 13183.29 29057.38 21874.00 15488.79 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest053070.47 16168.56 16776.20 12579.78 20251.52 16383.49 18688.58 4957.62 23258.60 23982.79 21151.03 5691.48 6952.84 24862.36 25985.59 210
Test_1112_low_res67.18 22866.23 21470.02 27778.75 22341.02 34383.43 18773.69 32357.29 23858.45 24582.39 22445.30 11280.88 30450.50 26366.26 22388.16 152
ACMMPcopyleft70.81 15569.29 16175.39 15181.52 16751.92 15383.43 18783.03 17356.67 25258.80 23788.91 11831.92 28988.58 16065.89 13873.39 15985.67 206
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpn200view967.57 21766.13 21671.89 24784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21982.78 260
thres40067.40 22466.13 21671.19 25784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21980.71 291
v124066.99 23464.68 24473.93 19171.38 32952.66 13683.39 19179.98 22661.97 14458.44 24677.11 28335.25 25387.81 18856.46 22558.15 28781.33 281
Baseline_NR-MVSNet65.49 25364.27 24969.13 28474.37 29441.65 33683.39 19178.85 25259.56 18659.62 21876.88 28940.75 17687.44 20549.99 26555.05 31878.28 318
miper_enhance_ethall69.77 17368.90 16572.38 22878.93 22049.91 19783.29 19378.85 25264.90 9159.37 22379.46 25652.77 4485.16 26663.78 15458.72 27982.08 264
diffmvspermissive75.11 8374.65 7776.46 11978.52 23053.35 11783.28 19479.94 22870.51 2471.64 8488.72 12146.02 10286.08 24877.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_cas_vis1_n_192067.10 23066.60 20768.59 29565.17 36743.23 32283.23 19569.84 35355.34 26870.67 9987.71 14724.70 33876.66 34978.57 4964.20 23485.89 203
test250672.91 11472.43 10474.32 18080.12 19844.18 31183.19 19684.77 13364.02 10365.97 13887.43 15247.67 8488.72 15459.08 19079.66 9490.08 103
ACMP61.11 966.24 24764.33 24872.00 23974.89 28649.12 21683.18 19779.83 23155.41 26752.29 31082.68 21625.83 32786.10 24560.89 17563.94 23880.78 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GA-MVS69.04 18666.70 20476.06 13075.11 28152.36 14283.12 19880.23 22263.32 12160.65 20779.22 26030.98 29688.37 16861.25 17266.41 21887.46 170
3Dnovator64.70 674.46 8772.48 10280.41 2982.84 13055.40 5983.08 19988.61 4767.61 5159.85 21388.66 12334.57 26293.97 2458.42 19988.70 1291.85 52
PGM-MVS72.60 11971.20 12876.80 11582.95 12352.82 13483.07 20082.14 18456.51 25563.18 18089.81 10235.68 25089.76 11967.30 12580.19 8587.83 161
LPG-MVS_test66.44 24464.58 24572.02 23774.42 29248.60 23383.07 20080.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
TranMVSNet+NR-MVSNet66.94 23665.61 23070.93 26273.45 30143.38 31983.02 20284.25 14665.31 8858.33 24781.90 23639.92 19085.52 25749.43 27054.89 32083.89 239
test0.0.03 162.54 27362.44 25762.86 33772.28 32029.51 39082.93 20378.78 25559.18 19953.07 30682.41 22336.91 23277.39 34237.45 32458.96 27781.66 271
pm-mvs164.12 25862.56 25668.78 29071.68 32338.87 35182.89 20481.57 19655.54 26653.89 30077.82 27237.73 20986.74 22448.46 27953.49 33280.72 290
EPNet_dtu66.25 24666.71 20364.87 32578.66 22734.12 36982.80 20575.51 30661.75 14764.47 16486.90 15937.06 22872.46 36843.65 30769.63 19688.02 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n_a72.82 11672.05 11575.12 16370.95 33347.97 25982.72 20668.43 36162.52 13578.17 3293.08 2844.21 12988.86 15084.82 1363.54 24188.54 144
test_fmvsmconf_n74.41 8874.05 8575.49 14874.16 29648.38 24282.66 20772.57 33167.05 5775.11 4492.88 3146.35 9787.81 18883.93 1871.71 17590.28 95
pmmvs562.80 27261.18 26967.66 30169.53 34242.37 33482.65 20875.19 31054.30 28152.03 31378.51 26631.64 29280.67 30848.60 27758.15 28779.95 300
cl____67.43 22165.93 22271.95 24376.33 26248.02 25782.58 20979.12 24961.30 15756.72 27176.92 28746.12 9986.44 23557.98 20656.31 30581.38 280
DIV-MVS_self_test67.43 22165.93 22271.94 24476.33 26248.01 25882.57 21079.11 25061.31 15656.73 27076.92 28746.09 10086.43 23657.98 20656.31 30581.39 279
TAMVS69.51 18168.16 17673.56 20576.30 26448.71 23282.57 21077.17 28662.10 14161.32 20184.23 18941.90 16483.46 28754.80 23573.09 16388.50 146
EI-MVSNet-Vis-set73.19 11172.60 10074.99 16782.56 13849.80 20182.55 21289.00 3166.17 7065.89 14088.98 11643.83 13292.29 5165.38 14769.01 19882.87 258
reproduce-ours71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
our_new_method71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
DP-MVS59.24 29456.12 30668.63 29388.24 3450.35 18882.51 21564.43 37141.10 36346.70 34578.77 26424.75 33788.57 16322.26 38956.29 30766.96 381
miper_ehance_all_eth68.70 19767.58 18772.08 23576.91 25749.48 21182.47 21678.45 26562.68 13258.28 24877.88 27150.90 5785.01 26961.91 16758.72 27981.75 269
cl2268.85 18967.69 18572.35 22978.07 23749.98 19682.45 21778.48 26462.50 13658.46 24477.95 26949.99 6785.17 26562.55 16158.72 27981.90 267
UniMVSNet (Re)67.71 21366.80 20170.45 26774.44 29142.93 32582.42 21884.90 12863.69 11259.63 21780.99 24347.18 8785.23 26451.17 26156.75 30283.19 251
v867.25 22664.99 24274.04 18772.89 31153.31 12082.37 21980.11 22461.54 15254.29 29676.02 30342.89 15188.41 16758.43 19756.36 30380.39 295
ACMM58.35 1264.35 25662.01 26171.38 25374.21 29548.51 23782.25 22079.66 23547.61 32754.54 29280.11 25025.26 33286.00 24951.26 25963.16 24979.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf0.1_n73.69 10373.15 9375.34 15270.71 33448.26 24782.15 22171.83 33666.75 6074.47 5292.59 3644.89 12087.78 19383.59 1971.35 17989.97 106
thres600view766.46 24365.12 24070.47 26683.41 10543.80 31482.15 22187.78 6059.37 19156.02 27982.21 23043.73 13586.90 22126.51 37764.94 22880.71 291
c3_l67.97 20766.66 20571.91 24676.20 26749.31 21482.13 22378.00 27261.99 14357.64 25776.94 28649.41 7284.93 27060.62 17957.01 30181.49 273
Effi-MVS+-dtu66.24 24764.96 24370.08 27475.17 28049.64 20282.01 22474.48 31562.15 14057.83 25176.08 30230.59 29883.79 28165.40 14660.93 26576.81 331
our_test_359.11 29755.08 31371.18 25871.42 32753.29 12181.96 22574.52 31448.32 32142.08 36069.28 35628.14 30982.15 29434.35 34545.68 36478.11 321
CPTT-MVS67.15 22965.84 22471.07 25980.96 17850.32 18981.94 22674.10 31746.18 33957.91 25087.64 14929.57 30381.31 30064.10 15370.18 19181.56 272
APD-MVS_3200maxsize69.62 17968.23 17573.80 19781.58 16348.22 24881.91 22779.50 23948.21 32364.24 16689.75 10331.91 29087.55 20363.08 15873.85 15785.64 208
v1066.61 24164.20 25073.83 19672.59 31453.37 11681.88 22879.91 23061.11 16054.09 29875.60 30540.06 18788.26 17756.47 22456.10 30979.86 301
EI-MVSNet-UG-set72.37 12371.73 11874.29 18181.60 16149.29 21581.85 22988.64 4465.29 8965.05 15088.29 13443.18 14591.83 6263.74 15567.97 20581.75 269
ppachtmachnet_test58.56 30554.34 31571.24 25571.42 32754.74 8081.84 23072.27 33349.02 31645.86 35068.99 35726.27 32383.30 28930.12 36043.23 36975.69 341
test_fmvsm_n_192075.56 7475.54 6275.61 14174.60 29049.51 21081.82 23174.08 31866.52 6480.40 2293.46 1746.95 9089.72 12086.69 775.30 13987.61 167
test_040256.45 31853.03 32266.69 31276.78 25850.31 19081.76 23269.61 35542.79 35943.88 35272.13 33922.82 34986.46 23416.57 40350.94 34163.31 390
testing359.97 28960.19 27959.32 35277.60 24330.01 38781.75 23381.79 19353.54 28450.34 32379.94 25148.99 7576.91 34517.19 40250.59 34271.03 375
reproduce_model71.07 14869.67 15475.28 15981.51 16848.82 22881.73 23480.57 21747.81 32568.26 11790.78 7636.49 24188.60 15965.12 14974.76 15088.42 148
旧先验281.73 23445.53 34274.66 4770.48 37558.31 201
thres100view90066.87 23765.42 23671.24 25583.29 11143.15 32381.67 23687.78 6059.04 20355.92 28082.18 23143.73 13587.80 19028.80 36566.36 21982.78 260
MVSFormer73.53 10672.19 11077.57 9183.02 12055.24 6381.63 23781.44 19950.28 30776.67 3990.91 7244.82 12386.11 24360.83 17680.09 8691.36 68
test_djsdf63.84 26061.56 26470.70 26468.78 34744.69 30381.63 23781.44 19950.28 30752.27 31176.26 29726.72 32186.11 24360.83 17655.84 31481.29 284
新几何281.61 239
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 24086.41 8769.61 3181.72 1688.16 13655.09 3188.04 18374.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS-dyc-post68.27 20466.87 19972.48 22680.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10831.17 29586.09 24760.52 18272.06 17383.19 251
RE-MVS-def66.66 20580.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10829.28 30660.52 18272.06 17383.19 251
V4267.66 21465.60 23173.86 19470.69 33653.63 10781.50 24378.61 26163.85 10859.49 22277.49 27637.98 20387.65 19862.33 16258.43 28280.29 296
DU-MVS66.84 23865.74 22770.16 27273.27 30542.59 32981.50 24382.92 17663.53 11658.51 24082.11 23240.75 17684.64 27453.11 24455.96 31183.24 249
HyFIR lowres test69.94 17167.58 18777.04 10477.11 25557.29 2281.49 24579.11 25058.27 21658.86 23580.41 24842.33 15586.96 21861.91 16768.68 20186.87 180
IterMVS-LS66.63 24065.36 23770.42 26875.10 28248.90 22581.45 24676.69 29761.05 16255.71 28177.10 28445.86 10483.65 28457.44 21657.88 29578.70 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax63.21 26760.84 27270.32 27068.33 35244.45 30581.23 24781.05 20553.37 28750.96 32077.81 27317.49 37485.49 25959.31 18958.05 29081.02 287
HPM-MVS_fast67.86 20966.28 21372.61 22180.67 18948.34 24481.18 24875.95 30450.81 30559.55 22088.05 14027.86 31385.98 25058.83 19373.58 15883.51 244
tfpnnormal61.47 28359.09 28768.62 29476.29 26541.69 33581.14 24985.16 12154.48 27851.32 31673.63 32332.32 28386.89 22221.78 39155.71 31577.29 328
IS-MVSNet68.80 19367.55 18972.54 22378.50 23143.43 31881.03 25079.35 24559.12 20257.27 26686.71 16246.05 10187.70 19644.32 30475.60 13686.49 190
eth_miper_zixun_eth66.98 23565.28 23872.06 23675.61 27750.40 18381.00 25176.97 29262.00 14256.99 26876.97 28544.84 12285.58 25658.75 19454.42 32480.21 297
Syy-MVS61.51 28261.35 26762.00 34081.73 15330.09 38580.97 25281.02 20660.93 16655.06 28582.64 21735.09 25680.81 30616.40 40458.32 28375.10 349
myMVS_eth3d63.52 26363.56 25463.40 33281.73 15334.28 36680.97 25281.02 20660.93 16655.06 28582.64 21748.00 8280.81 30623.42 38758.32 28375.10 349
mvs_tets62.96 27060.55 27470.19 27168.22 35544.24 31080.90 25480.74 21352.99 29050.82 32277.56 27416.74 37885.44 26059.04 19257.94 29280.89 288
tttt051768.33 20266.29 21274.46 17478.08 23649.06 21780.88 25589.08 3054.40 28054.75 29080.77 24651.31 5390.33 10249.35 27158.01 29183.99 233
FC-MVSNet-test67.49 21967.91 17866.21 31576.06 26933.06 37480.82 25687.18 7164.44 9554.81 28882.87 20950.40 6482.60 29248.05 28166.55 21782.98 256
sss70.49 15970.13 14871.58 25181.59 16239.02 35080.78 25784.71 13559.34 19266.61 13088.09 13737.17 22585.52 25761.82 16971.02 18290.20 99
HPM-MVScopyleft72.60 11971.50 12175.89 13482.02 14451.42 16580.70 25883.05 17256.12 25964.03 16889.53 10637.55 21488.37 16870.48 10580.04 8887.88 160
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs659.64 29157.15 29867.09 30666.01 36036.86 36180.50 25978.64 25945.05 34549.05 32973.94 31727.28 31786.10 24543.96 30649.94 34478.31 317
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 26089.51 2469.76 2971.05 9486.66 16458.68 1593.24 3184.64 1490.40 693.14 18
IterMVS63.77 26261.67 26270.08 27472.68 31351.24 17080.44 26175.51 30660.51 17451.41 31573.70 32232.08 28678.91 32654.30 23754.35 32580.08 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT59.12 29658.81 29060.08 35070.68 33745.07 29980.42 26274.25 31643.54 35650.02 32473.73 31931.97 28756.74 39651.06 26253.60 33178.42 315
test_fmvsmconf0.01_n71.97 13270.95 13175.04 16466.21 35947.87 26280.35 26370.08 35165.85 7872.69 7091.68 5639.99 18887.67 19782.03 2869.66 19489.58 114
ACMH+54.58 1558.55 30655.24 31068.50 29774.68 28845.80 29380.27 26470.21 35047.15 33042.77 35975.48 30616.73 37985.98 25035.10 34354.78 32173.72 359
Anonymous2023120659.08 29857.59 29563.55 33068.77 34832.14 37980.26 26579.78 23250.00 31149.39 32772.39 33626.64 32278.36 32933.12 35157.94 29280.14 298
131471.11 14769.41 15776.22 12379.32 20950.49 18080.23 26685.14 12359.44 18958.93 23288.89 11933.83 27189.60 12461.49 17177.42 11388.57 143
MVS76.91 4975.48 6381.23 1984.56 8255.21 6580.23 26691.64 458.65 21165.37 14691.48 6245.72 10695.05 1672.11 9889.52 1093.44 9
ACMH53.70 1659.78 29055.94 30871.28 25476.59 25948.35 24380.15 26876.11 30249.74 31241.91 36273.45 32616.50 38090.31 10331.42 35657.63 29875.17 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MGCFI-Net74.07 9374.64 7872.34 23082.90 12643.33 32180.04 26979.96 22765.61 7974.93 4591.85 5148.01 8080.86 30571.41 9977.10 11492.84 24
pmmvs463.34 26661.07 27170.16 27270.14 33850.53 17979.97 27071.41 34355.08 27054.12 29778.58 26532.79 27982.09 29650.33 26457.22 30077.86 322
MVS_111021_LR69.07 18567.91 17872.54 22377.27 24949.56 20579.77 27173.96 32159.33 19460.73 20687.82 14430.19 30181.53 29869.94 10872.19 17286.53 189
CNLPA60.59 28758.44 29167.05 30879.21 21247.26 27279.75 27264.34 37242.46 36151.90 31483.94 19227.79 31575.41 35437.12 32659.49 27378.47 313
EI-MVSNet69.70 17768.70 16672.68 22075.00 28448.90 22579.54 27387.16 7261.05 16263.88 17283.74 19645.87 10390.44 9857.42 21764.68 23278.70 309
CVMVSNet60.85 28660.44 27662.07 33875.00 28432.73 37679.54 27373.49 32636.98 37456.28 27883.74 19629.28 30669.53 37746.48 29263.23 24783.94 238
AUN-MVS68.20 20666.35 21073.76 19876.37 26047.45 26879.52 27579.52 23860.98 16462.34 18986.02 17036.59 24086.94 21962.32 16353.47 33386.89 179
hse-mvs271.44 14370.68 13373.73 20076.34 26147.44 26979.45 27679.47 24068.08 3971.97 8086.01 17242.50 15386.93 22078.82 4553.46 33486.83 185
PVSNet_057.04 1361.19 28457.24 29773.02 21277.45 24750.31 19079.43 27777.36 28463.96 10747.51 34172.45 33525.03 33483.78 28252.76 25219.22 41084.96 218
PCF-MVS61.03 1070.10 16468.40 17175.22 16277.15 25451.99 15079.30 27882.12 18556.47 25661.88 19686.48 16843.98 13087.24 21055.37 23172.79 16686.43 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192071.29 14470.38 14174.00 18971.04 33248.79 22979.19 27964.62 37062.75 13066.73 12691.99 4840.94 17488.35 17083.00 2173.18 16084.85 221
PLCcopyleft52.38 1860.89 28558.97 28966.68 31381.77 15245.70 29478.96 28074.04 32043.66 35547.63 33883.19 20823.52 34577.78 34137.47 32360.46 26676.55 337
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS63.49 26461.39 26669.77 27869.29 34448.93 22478.89 28177.71 27760.64 17349.70 32572.10 34127.08 31983.48 28654.48 23662.65 25576.90 330
OMC-MVS65.97 25065.06 24168.71 29272.97 30942.58 33178.61 28275.35 30954.72 27559.31 22586.25 16933.30 27477.88 33857.99 20567.05 21185.66 207
PAPM_NR71.80 13669.98 15077.26 10081.54 16553.34 11878.60 28385.25 11753.46 28560.53 20888.66 12345.69 10789.24 13256.49 22379.62 9689.19 126
mvs_anonymous72.29 12670.74 13276.94 11182.85 12954.72 8278.43 28481.54 19763.77 10961.69 19779.32 25851.11 5485.31 26162.15 16675.79 13390.79 84
RRT-MVS73.29 10971.37 12579.07 5284.63 8054.16 9978.16 28586.64 8461.67 14960.17 21082.35 22840.63 18092.26 5370.19 10677.87 10890.81 83
tt080563.39 26561.31 26869.64 27969.36 34338.87 35178.00 28685.48 10348.82 31855.66 28481.66 23824.38 33986.37 23749.04 27459.36 27583.68 242
test22279.36 20750.97 17277.99 28767.84 36242.54 36062.84 18586.53 16630.26 30076.91 11785.23 213
v7n62.50 27559.27 28672.20 23367.25 35849.83 20077.87 28880.12 22352.50 29348.80 33173.07 32732.10 28587.90 18646.83 28954.92 31978.86 307
test20.0355.22 32554.07 31858.68 35563.14 37825.00 39977.69 28974.78 31352.64 29143.43 35572.39 33626.21 32474.76 35629.31 36347.05 35876.28 339
testdata177.55 29064.14 102
PEN-MVS58.35 30857.15 29861.94 34167.55 35734.39 36577.01 29178.35 26751.87 29847.72 33776.73 29133.91 26873.75 36134.03 34647.17 35677.68 324
WR-MVS_H58.91 30158.04 29361.54 34469.07 34633.83 37176.91 29281.99 18751.40 30248.17 33274.67 31040.23 18374.15 35731.78 35548.10 34876.64 335
CP-MVSNet58.54 30757.57 29661.46 34568.50 35033.96 37076.90 29378.60 26251.67 30147.83 33676.60 29334.99 25972.79 36635.45 33647.58 35277.64 326
PS-CasMVS58.12 30957.03 30061.37 34668.24 35433.80 37276.73 29478.01 27151.20 30347.54 34076.20 30132.85 27772.76 36735.17 34147.37 35477.55 327
tpm68.36 20067.48 19270.97 26179.93 20151.34 16776.58 29578.75 25767.73 4763.54 17974.86 30948.33 7672.36 36953.93 24063.71 23989.21 125
MonoMVSNet66.80 23964.41 24773.96 19076.21 26648.07 25576.56 29678.26 26864.34 9754.32 29574.02 31637.21 22486.36 23864.85 15153.96 32787.45 171
DTE-MVSNet57.03 31455.73 30960.95 34965.94 36132.57 37775.71 29777.09 28851.16 30446.65 34676.34 29632.84 27873.22 36530.94 35944.87 36577.06 329
tpmrst71.04 15069.77 15274.86 16983.19 11455.86 5075.64 29878.73 25867.88 4464.99 15373.73 31949.96 6979.56 32565.92 13667.85 20789.14 128
CostFormer73.89 9872.30 10778.66 6582.36 14156.58 3375.56 29985.30 11366.06 7470.50 10476.88 28957.02 2089.06 13868.27 12168.74 20090.33 93
HY-MVS67.03 573.90 9773.14 9576.18 12784.70 7947.36 27075.56 29986.36 8966.27 6870.66 10083.91 19351.05 5589.31 13067.10 12772.61 16891.88 51
K. test v354.04 33049.42 34267.92 30068.55 34942.57 33275.51 30163.07 37552.07 29539.21 37464.59 37119.34 36582.21 29337.11 32725.31 40178.97 306
Vis-MVSNet (Re-imp)65.52 25265.63 22965.17 32377.49 24630.54 38175.49 30277.73 27659.34 19252.26 31286.69 16349.38 7380.53 31237.07 32875.28 14084.42 225
pmmvs-eth3d55.97 32252.78 32665.54 31961.02 38346.44 28175.36 30367.72 36349.61 31343.65 35467.58 36121.63 35777.04 34344.11 30544.33 36673.15 365
TAPA-MVS56.12 1461.82 28160.18 28066.71 31178.48 23237.97 35775.19 30476.41 30146.82 33257.04 26786.52 16727.67 31677.03 34426.50 37867.02 21285.14 214
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet558.61 30456.45 30265.10 32477.20 25339.74 34774.77 30577.12 28750.27 30943.28 35767.71 36026.15 32676.90 34736.78 33154.78 32178.65 311
FA-MVS(test-final)69.00 18866.60 20776.19 12683.48 10447.96 26174.73 30682.07 18657.27 23962.18 19278.47 26736.09 24592.89 3453.76 24271.32 18087.73 164
SixPastTwentyTwo54.37 32750.10 33667.21 30570.70 33541.46 34074.73 30664.69 36947.56 32839.12 37569.49 35218.49 37184.69 27331.87 35434.20 38975.48 343
F-COLMAP55.96 32353.65 32162.87 33672.76 31242.77 32874.70 30870.37 34940.03 36441.11 36879.36 25717.77 37373.70 36232.80 35253.96 32772.15 367
MVSMamba_PlusPlus75.28 7773.39 8980.96 2180.85 18358.25 1074.47 30987.61 6750.53 30665.24 14783.41 20357.38 1892.83 3673.92 8687.13 2191.80 54
MSDG59.44 29255.14 31272.32 23174.69 28750.71 17474.39 31073.58 32444.44 35043.40 35677.52 27519.45 36490.87 8931.31 35757.49 29975.38 344
tpm270.82 15468.44 17077.98 8180.78 18556.11 4474.21 31181.28 20360.24 17768.04 11975.27 30752.26 4888.50 16555.82 23068.03 20489.33 121
SDMVSNet71.89 13370.62 13575.70 13981.70 15551.61 15973.89 31288.72 4266.58 6161.64 19882.38 22537.63 21189.48 12577.44 5965.60 22586.01 197
UniMVSNet_ETH3D62.51 27460.49 27568.57 29668.30 35340.88 34573.89 31279.93 22951.81 30054.77 28979.61 25524.80 33681.10 30149.93 26661.35 26283.73 241
UA-Net67.32 22566.23 21470.59 26578.85 22141.23 34273.60 31475.45 30861.54 15266.61 13084.53 18638.73 19986.57 23242.48 31474.24 15383.98 235
Anonymous2024052151.65 34148.42 34461.34 34756.43 39239.65 34973.57 31573.47 32936.64 37636.59 38163.98 37210.75 39172.25 37035.35 33749.01 34572.11 368
ab-mvs70.65 15769.11 16375.29 15780.87 18246.23 28873.48 31685.24 11859.99 17966.65 12880.94 24443.13 14888.69 15563.58 15668.07 20390.95 80
LS3D56.40 31953.82 31964.12 32781.12 17445.69 29573.42 31766.14 36635.30 38243.24 35879.88 25222.18 35479.62 32419.10 39864.00 23767.05 380
testmvs6.14 3928.18 3950.01 4060.01 4290.00 43273.40 3180.00 4300.00 4240.02 4250.15 4240.00 4290.00 4250.02 4240.00 4230.02 421
UnsupCasMVSNet_eth57.56 31255.15 31164.79 32664.57 37233.12 37373.17 31983.87 15658.98 20541.75 36370.03 35122.54 35079.92 31946.12 29635.31 38381.32 283
anonymousdsp60.46 28857.65 29468.88 28663.63 37645.09 29872.93 32078.63 26046.52 33451.12 31772.80 33121.46 35883.07 29157.79 21253.97 32678.47 313
mmtdpeth57.93 31054.78 31467.39 30472.32 31843.38 31972.72 32168.93 35854.45 27956.85 26962.43 37617.02 37683.46 28757.95 20830.31 39575.31 345
EU-MVSNet52.63 33750.72 33458.37 35662.69 38028.13 39672.60 32275.97 30330.94 38940.76 37072.11 34020.16 36270.80 37335.11 34246.11 36276.19 340
dp64.41 25561.58 26372.90 21582.40 13954.09 10072.53 32376.59 29960.39 17555.68 28270.39 35035.18 25576.90 34739.34 32061.71 26187.73 164
N_pmnet41.25 36039.77 36345.66 37868.50 3500.82 43072.51 3240.38 42935.61 37935.26 38661.51 37920.07 36367.74 37823.51 38540.63 37368.42 379
MDTV_nov1_ep1361.56 26481.68 15755.12 6972.41 32578.18 26959.19 19758.85 23669.29 35534.69 26186.16 24236.76 33262.96 252
YYNet153.82 33249.96 33865.41 32170.09 34048.95 22272.30 32671.66 34044.25 35231.89 39563.07 37523.73 34373.95 35933.26 34939.40 37673.34 362
MDA-MVSNet_test_wron53.82 33249.95 33965.43 32070.13 33949.05 21872.30 32671.65 34144.23 35331.85 39663.13 37423.68 34474.01 35833.25 35039.35 37773.23 364
testgi54.25 32952.57 32859.29 35362.76 37921.65 40872.21 32870.47 34853.25 28841.94 36177.33 28014.28 38477.95 33729.18 36451.72 34078.28 318
KD-MVS_2432*160059.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
miper_refine_blended59.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
PatchmatchNetpermissive67.07 23363.63 25377.40 9583.10 11558.03 1172.11 33177.77 27558.85 20759.37 22370.83 34637.84 20584.93 27042.96 31069.83 19389.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test1236.01 3938.01 3960.01 4060.00 4300.01 43171.93 3320.00 4300.00 4240.02 4250.11 4250.00 4290.00 4250.02 4240.00 4230.02 421
EPMVS68.45 19965.44 23577.47 9484.91 7656.17 4371.89 33381.91 19161.72 14860.85 20472.49 33336.21 24387.06 21547.32 28571.62 17689.17 127
UnsupCasMVSNet_bld53.86 33150.53 33563.84 32863.52 37734.75 36471.38 33481.92 19046.53 33338.95 37657.93 38920.55 36180.20 31739.91 31934.09 39076.57 336
COLMAP_ROBcopyleft43.60 2050.90 34548.05 34659.47 35167.81 35640.57 34671.25 33562.72 37736.49 37736.19 38373.51 32413.48 38573.92 36020.71 39350.26 34363.92 389
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDTV_nov1_ep13_2view43.62 31571.13 33654.95 27359.29 22736.76 23446.33 29487.32 174
test_post170.84 33714.72 42134.33 26583.86 27948.80 275
new-patchmatchnet48.21 35046.55 35253.18 36757.73 38918.19 41670.24 33871.02 34645.70 34033.70 38960.23 38318.00 37269.86 37627.97 37234.35 38771.49 373
pmmvs345.53 35641.55 36257.44 35848.97 40539.68 34870.06 33957.66 38128.32 39334.06 38857.29 3908.50 39966.85 38034.86 34434.26 38865.80 385
tpmvs62.45 27759.42 28471.53 25283.93 9554.32 9270.03 34077.61 27851.91 29753.48 30468.29 35937.91 20486.66 22733.36 34858.27 28573.62 360
tpm cat166.28 24562.78 25576.77 11781.40 17057.14 2470.03 34077.19 28553.00 28958.76 23870.73 34946.17 9886.73 22543.27 30864.46 23386.44 191
PatchMatch-RL56.66 31553.75 32065.37 32277.91 24145.28 29769.78 34260.38 37841.35 36247.57 33973.73 31916.83 37776.91 34536.99 32959.21 27673.92 358
MDA-MVSNet-bldmvs51.56 34247.75 34963.00 33471.60 32547.32 27169.70 34372.12 33443.81 35427.65 40363.38 37321.97 35675.96 35127.30 37532.19 39165.70 386
miper_lstm_enhance63.91 25962.30 25868.75 29175.06 28346.78 27669.02 34481.14 20459.68 18552.76 30772.39 33640.71 17877.99 33656.81 22153.09 33581.48 275
sd_testset67.79 21265.95 22173.32 20781.70 15546.33 28568.99 34580.30 22166.58 6161.64 19882.38 22530.45 29987.63 19955.86 22865.60 22586.01 197
test_fmvs153.60 33452.54 32956.78 35958.07 38730.26 38368.95 34642.19 39932.46 38563.59 17782.56 22111.55 38860.81 38658.25 20255.27 31779.28 303
GG-mvs-BLEND77.77 8686.68 4850.61 17668.67 34788.45 5168.73 11487.45 15159.15 1190.67 9254.83 23387.67 1792.03 45
OurMVSNet-221017-052.39 33948.73 34363.35 33365.21 36638.42 35468.54 34864.95 36838.19 36939.57 37371.43 34313.23 38679.92 31937.16 32540.32 37571.72 370
FE-MVS64.15 25760.43 27775.30 15680.85 18349.86 19968.28 34978.37 26650.26 31059.31 22573.79 31826.19 32591.92 6140.19 31766.67 21484.12 228
test_fmvs1_n52.55 33851.19 33356.65 36051.90 39830.14 38467.66 35042.84 39832.27 38662.30 19182.02 2359.12 39760.84 38557.82 21154.75 32378.99 305
MIMVSNet150.35 34647.81 34757.96 35761.53 38227.80 39767.40 35174.06 31943.25 35733.31 39465.38 37016.03 38171.34 37121.80 39047.55 35374.75 351
mvsmamba69.38 18267.52 19174.95 16882.86 12852.22 14767.36 35276.75 29361.14 15949.43 32682.04 23437.26 22284.14 27773.93 8576.91 11788.50 146
test_vis1_n51.19 34349.66 34155.76 36451.26 40029.85 38867.20 35338.86 40432.12 38759.50 22179.86 2538.78 39858.23 39356.95 22052.46 33779.19 304
MTAPA72.73 11771.22 12777.27 9981.54 16553.57 10867.06 35481.31 20159.41 19068.39 11690.96 6936.07 24689.01 14173.80 8882.45 6489.23 124
WB-MVS37.41 36736.37 36740.54 38554.23 39410.43 42365.29 35543.75 39634.86 38327.81 40254.63 39224.94 33563.21 3826.81 41815.00 41347.98 404
kuosan50.20 34750.09 33750.52 37173.09 30729.09 39365.25 35674.89 31248.27 32241.34 36560.85 38243.45 14367.48 37918.59 40025.07 40255.01 396
MIMVSNet63.12 26860.29 27871.61 24875.92 27446.65 27865.15 35781.94 18859.14 20154.65 29169.47 35325.74 32880.63 30941.03 31669.56 19787.55 168
XVG-OURS-SEG-HR62.02 27959.54 28369.46 28165.30 36545.88 29065.06 35873.57 32546.45 33557.42 26483.35 20526.95 32078.09 33253.77 24164.03 23684.42 225
XVG-OURS61.88 28059.34 28569.49 28065.37 36446.27 28664.80 35973.49 32647.04 33157.41 26582.85 21025.15 33378.18 33053.00 24764.98 22784.01 232
dmvs_re67.61 21566.00 21972.42 22781.86 15043.45 31764.67 36080.00 22569.56 3260.07 21185.00 18334.71 26087.63 19951.48 25866.68 21386.17 196
gg-mvs-nofinetune67.43 22164.53 24676.13 12885.95 5547.79 26564.38 36188.28 5339.34 36666.62 12941.27 40358.69 1489.00 14249.64 26986.62 3191.59 58
dongtai43.51 35744.07 35841.82 38263.75 37521.90 40663.80 36272.05 33539.59 36533.35 39354.54 39341.04 17357.30 39410.75 41117.77 41146.26 405
dmvs_testset57.65 31158.21 29255.97 36374.62 2899.82 42463.75 36363.34 37467.23 5448.89 33083.68 20039.12 19576.14 35023.43 38659.80 27081.96 266
XVG-ACMP-BASELINE56.03 32152.85 32565.58 31861.91 38140.95 34463.36 36472.43 33245.20 34446.02 34874.09 3149.20 39678.12 33145.13 29858.27 28577.66 325
TinyColmap48.15 35144.49 35559.13 35465.73 36338.04 35563.34 36562.86 37638.78 36729.48 39867.23 3636.46 40673.30 36424.59 38241.90 37266.04 384
MVS-HIRNet49.01 34944.71 35361.92 34276.06 26946.61 27963.23 36654.90 38524.77 39833.56 39036.60 40721.28 35975.88 35229.49 36262.54 25663.26 391
PM-MVS46.92 35343.76 36056.41 36252.18 39732.26 37863.21 36738.18 40537.99 37140.78 36966.20 3645.09 41065.42 38148.19 28041.99 37171.54 372
AllTest47.32 35244.66 35455.32 36565.08 36837.50 35962.96 36854.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
USDC54.36 32851.23 33263.76 32964.29 37337.71 35862.84 36973.48 32856.85 24535.47 38571.94 3429.23 39578.43 32838.43 32248.57 34675.13 348
mvs5depth50.97 34446.98 35062.95 33556.63 39134.23 36862.73 37067.35 36545.03 34648.00 33565.41 36910.40 39279.88 32336.00 33331.27 39474.73 352
SSC-MVS35.20 36934.30 37137.90 38852.58 3968.65 42661.86 37141.64 40031.81 38825.54 40552.94 39823.39 34659.28 3916.10 41912.86 41445.78 407
Patchmatch-RL test58.72 30354.32 31671.92 24563.91 37444.25 30961.73 37255.19 38457.38 23749.31 32854.24 39437.60 21380.89 30362.19 16547.28 35590.63 86
SCA63.84 26060.01 28175.32 15378.58 22957.92 1261.61 37377.53 27956.71 25057.75 25570.77 34731.97 28779.91 32148.80 27556.36 30388.13 155
CMPMVSbinary40.41 2155.34 32452.64 32763.46 33160.88 38443.84 31361.58 37471.06 34530.43 39036.33 38274.63 31124.14 34175.44 35348.05 28166.62 21571.12 374
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re58.82 30256.54 30165.68 31779.31 21029.09 39361.39 37545.79 39360.73 17137.65 38072.47 33431.42 29381.08 30249.66 26870.41 18886.87 180
CR-MVSNet62.47 27659.04 28872.77 21873.97 29956.57 3460.52 37671.72 33860.04 17857.49 26165.86 36538.94 19680.31 31442.86 31159.93 26881.42 276
RPMNet59.29 29354.25 31774.42 17673.97 29956.57 3460.52 37676.98 28935.72 37857.49 26158.87 38837.73 20985.26 26327.01 37659.93 26881.42 276
EGC-MVSNET33.75 37130.42 37543.75 38164.94 37036.21 36260.47 37840.70 4020.02 4230.10 42453.79 3957.39 40060.26 38711.09 41035.23 38534.79 409
test_vis1_rt40.29 36338.64 36445.25 37948.91 40630.09 38559.44 37927.07 41824.52 39938.48 37851.67 3996.71 40449.44 40244.33 30346.59 36156.23 394
Patchmtry56.56 31752.95 32467.42 30372.53 31550.59 17859.05 38071.72 33837.86 37246.92 34365.86 36538.94 19680.06 31836.94 33046.72 36071.60 371
TDRefinement40.91 36138.37 36548.55 37550.45 40233.03 37558.98 38150.97 39028.50 39129.89 39767.39 3626.21 40854.51 39817.67 40135.25 38458.11 393
test_fmvs245.89 35444.32 35650.62 37045.85 40924.70 40058.87 38237.84 40725.22 39652.46 30974.56 3127.07 40154.69 39749.28 27247.70 35172.48 366
KD-MVS_self_test49.24 34846.85 35156.44 36154.32 39322.87 40257.39 38373.36 33044.36 35137.98 37959.30 38718.97 36771.17 37233.48 34742.44 37075.26 346
PatchT56.60 31652.97 32367.48 30272.94 31046.16 28957.30 38473.78 32238.77 36854.37 29457.26 39137.52 21578.06 33332.02 35352.79 33678.23 320
ttmdpeth40.58 36237.50 36649.85 37249.40 40322.71 40356.65 38546.78 39128.35 39240.29 37269.42 3545.35 40961.86 38420.16 39521.06 40864.96 387
mvsany_test143.38 35842.57 36145.82 37750.96 40126.10 39855.80 38627.74 41727.15 39447.41 34274.39 31318.67 36944.95 40844.66 30136.31 38166.40 383
ANet_high34.39 37029.59 37648.78 37430.34 41922.28 40455.53 38763.79 37338.11 37015.47 41136.56 4086.94 40259.98 38813.93 4075.64 42264.08 388
ADS-MVSNet255.21 32651.44 33166.51 31480.60 19049.56 20555.03 38865.44 36744.72 34751.00 31861.19 38022.83 34775.41 35428.54 36853.63 32974.57 354
ADS-MVSNet56.17 32051.95 33068.84 28780.60 19053.07 12755.03 38870.02 35244.72 34751.00 31861.19 38022.83 34778.88 32728.54 36853.63 32974.57 354
RPSCF45.77 35544.13 35750.68 36957.67 39029.66 38954.92 39045.25 39526.69 39545.92 34975.92 30417.43 37545.70 40727.44 37445.95 36376.67 332
new_pmnet33.56 37231.89 37438.59 38649.01 40420.42 40951.01 39137.92 40620.58 40023.45 40646.79 4016.66 40549.28 40420.00 39731.57 39346.09 406
MVStest138.35 36434.53 37049.82 37351.43 39930.41 38250.39 39255.25 38317.56 40626.45 40465.85 36711.72 38757.00 39514.79 40517.31 41262.05 392
test_fmvs337.95 36635.75 36844.55 38035.50 41518.92 41248.32 39334.00 41218.36 40541.31 36761.58 3782.29 41748.06 40642.72 31237.71 37966.66 382
E-PMN19.16 38518.40 38921.44 40136.19 41413.63 42147.59 39430.89 41310.73 4145.91 42116.59 4173.66 41339.77 4115.95 4208.14 41710.92 417
EMVS18.42 38617.66 39020.71 40234.13 41612.64 42246.94 39529.94 41510.46 4165.58 42214.93 4204.23 41238.83 4125.24 4227.51 41910.67 418
CHOSEN 280x42057.53 31356.38 30560.97 34874.01 29748.10 25446.30 39654.31 38648.18 32450.88 32177.43 27938.37 20259.16 39254.83 23363.14 25075.66 342
LTVRE_ROB45.45 1952.73 33649.74 34061.69 34369.78 34134.99 36344.52 39767.60 36443.11 35843.79 35374.03 31518.54 37081.45 29928.39 37057.94 29268.62 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LF4IMVS33.04 37332.55 37334.52 39140.96 41022.03 40544.45 39835.62 40920.42 40128.12 40162.35 3775.03 41131.88 42021.61 39234.42 38649.63 402
mamv442.60 35944.05 35938.26 38759.21 38638.00 35644.14 39939.03 40325.03 39740.61 37168.39 35837.01 22924.28 42146.62 29136.43 38052.50 399
Patchmatch-test53.33 33548.17 34568.81 28973.31 30242.38 33342.98 40058.23 38032.53 38438.79 37770.77 34739.66 19173.51 36325.18 38052.06 33990.55 87
PMMVS226.71 37822.98 38337.87 38936.89 4138.51 42742.51 40129.32 41619.09 40413.01 41337.54 4042.23 41853.11 39914.54 40611.71 41551.99 401
FPMVS35.40 36833.67 37240.57 38446.34 40828.74 39541.05 40257.05 38220.37 40222.27 40753.38 3966.87 40344.94 4098.62 41247.11 35748.01 403
PMVScopyleft19.57 2225.07 38022.43 38532.99 39523.12 42622.98 40140.98 40335.19 41015.99 40811.95 41735.87 4091.47 42349.29 4035.41 42131.90 39226.70 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 37924.41 38032.62 39637.58 41221.74 40740.50 40430.39 41411.45 41316.33 41043.76 4021.63 42241.62 41011.24 40926.82 40034.51 410
JIA-IIPM52.33 34047.77 34866.03 31671.20 33046.92 27540.00 40576.48 30037.10 37346.73 34437.02 40532.96 27677.88 33835.97 33452.45 33873.29 363
DSMNet-mixed38.35 36435.36 36947.33 37648.11 40714.91 42037.87 40636.60 40819.18 40334.37 38759.56 38615.53 38253.01 40020.14 39646.89 35974.07 356
test_vis3_rt24.79 38122.95 38430.31 39728.59 42118.92 41237.43 40717.27 42512.90 41021.28 40829.92 4141.02 42436.35 41328.28 37129.82 39835.65 408
ambc62.06 33953.98 39529.38 39135.08 40879.65 23641.37 36459.96 3846.27 40782.15 29435.34 33838.22 37874.65 353
mvsany_test328.00 37525.98 37734.05 39228.97 42015.31 41834.54 40918.17 42316.24 40729.30 39953.37 3972.79 41533.38 41930.01 36120.41 40953.45 398
testf121.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
APD_test221.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
LCM-MVSNet28.07 37423.85 38240.71 38327.46 42418.93 41130.82 41246.19 39212.76 41116.40 40934.70 4101.90 42048.69 40520.25 39424.22 40354.51 397
test_f27.12 37724.85 37833.93 39326.17 42515.25 41930.24 41322.38 42212.53 41228.23 40049.43 4002.59 41634.34 41825.12 38126.99 39952.20 400
test_method24.09 38221.07 38633.16 39427.67 4238.35 42826.63 41435.11 4113.40 42014.35 41236.98 4063.46 41435.31 41519.08 39922.95 40455.81 395
wuyk23d9.11 3908.77 39410.15 40440.18 41116.76 41720.28 4151.01 4282.58 4212.66 4230.98 4230.23 42812.49 4234.08 4236.90 4201.19 420
MVEpermissive16.60 2317.34 38813.39 39129.16 39828.43 42219.72 41013.73 41623.63 4217.23 4197.96 41921.41 4150.80 42536.08 4146.97 41610.39 41631.69 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft27.47 37624.26 38137.12 39060.55 38529.17 39211.68 41760.00 37914.18 40910.52 41815.12 4192.20 41963.01 3838.39 41335.65 38219.18 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.44 38910.68 3925.73 4052.49 4284.21 42910.48 41818.04 4240.34 42212.59 41420.49 41611.39 3897.03 42413.84 4086.46 4215.95 419
mmdepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k18.33 38724.44 3790.00 4080.00 4300.00 4320.00 41989.40 250.00 4240.00 42792.02 4638.55 2000.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.15 3944.20 3970.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 42637.77 2060.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
ab-mvs-re7.68 39110.24 3930.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 42792.12 420.00 4290.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
WAC-MVS34.28 36622.56 388
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
test_one_060189.39 2257.29 2288.09 5557.21 24182.06 1393.39 1854.94 34
eth-test20.00 430
eth-test0.00 430
ZD-MVS89.55 1453.46 11084.38 14257.02 24373.97 5591.03 6544.57 12791.17 7975.41 7381.78 71
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
test_241102_TWO88.76 4157.50 23583.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
test_241102_ONE89.48 1756.89 2988.94 3257.53 23384.61 493.29 2258.81 1296.45 1
test_0728_THIRD58.00 22181.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
GSMVS88.13 155
test_part289.33 2355.48 5482.27 12
sam_mvs138.86 19888.13 155
sam_mvs35.99 249
MTGPAbinary81.31 201
test_post16.22 41837.52 21584.72 272
patchmatchnet-post59.74 38538.41 20179.91 321
gm-plane-assit83.24 11254.21 9670.91 2188.23 13595.25 1466.37 131
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
agg_prior85.64 6254.92 7683.61 16272.53 7488.10 181
TestCases55.32 36565.08 36837.50 35954.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
test_prior78.39 7486.35 5354.91 7785.45 10689.70 12190.55 87
新几何173.30 20983.10 11553.48 10971.43 34245.55 34166.14 13587.17 15633.88 27080.54 31148.50 27880.33 8485.88 204
旧先验181.57 16447.48 26771.83 33688.66 12336.94 23178.34 10588.67 139
原ACMM176.13 12884.89 7754.59 8885.26 11651.98 29666.70 12787.07 15840.15 18589.70 12151.23 26085.06 4884.10 229
testdata277.81 34045.64 297
segment_acmp44.97 119
testdata67.08 30777.59 24445.46 29669.20 35744.47 34971.50 8788.34 13231.21 29470.76 37452.20 25575.88 13285.03 215
test1279.24 4486.89 4656.08 4585.16 12172.27 7847.15 8891.10 8285.93 3790.54 89
plane_prior777.95 23848.46 240
plane_prior678.42 23349.39 21336.04 247
plane_prior582.59 17988.30 17465.46 14272.34 17084.49 223
plane_prior483.28 206
plane_prior348.95 22264.01 10562.15 193
plane_prior178.31 235
n20.00 430
nn0.00 430
door-mid41.31 401
lessismore_v067.98 29964.76 37141.25 34145.75 39436.03 38465.63 36819.29 36684.11 27835.67 33521.24 40778.59 312
LGP-MVS_train72.02 23774.42 29248.60 23380.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
test1184.25 146
door43.27 397
HQP5-MVS51.56 161
BP-MVS66.70 128
HQP4-MVS64.47 16488.61 15884.91 219
HQP3-MVS83.68 15873.12 161
HQP2-MVS37.35 218
NP-MVS78.76 22250.43 18285.12 180
ACMMP++_ref63.20 248
ACMMP++59.38 274
Test By Simon39.38 192
ITE_SJBPF51.84 36858.03 38831.94 38053.57 38936.67 37541.32 36675.23 30811.17 39051.57 40125.81 37948.04 34972.02 369
DeepMVS_CXcopyleft13.10 40321.34 4278.99 42510.02 42710.59 4157.53 42030.55 4131.82 42114.55 4226.83 4177.52 41815.75 416