This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 120
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 23096.47 2593.40 22797.46 9395.31 3795.47 35486.18 25798.78 14789.11 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24389.32 19099.23 8698.19 149
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28796.67 694.00 15195.41 24989.94 16391.93 28392.13 33290.12 17398.97 11787.68 23097.48 25597.67 207
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11393.38 7695.89 12497.23 11293.35 9297.66 27188.20 21698.66 16397.79 196
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12592.42 8993.41 22497.78 6791.21 14697.77 26191.06 14197.06 27098.80 85
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13494.64 3799.53 3798.99 56
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6798.84 13598.00 166
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6798.84 13598.00 166
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 123
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 133
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6995.17 4396.82 7996.73 15395.09 4999.43 3592.99 9398.71 15598.50 124
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10892.59 8795.47 14596.68 15694.50 7199.42 3693.10 8899.26 8298.99 56
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6692.67 8695.08 17396.39 17594.77 6299.42 3693.17 8699.44 4898.58 118
EGC-MVSNET80.97 36975.73 38696.67 4698.85 2394.55 1996.83 2296.60 1952.44 4235.32 42498.25 4092.24 12098.02 23391.85 12299.21 9097.45 220
FPMVS84.50 33983.28 34588.16 33296.32 20394.49 2085.76 37685.47 38283.09 28885.20 37394.26 27263.79 37986.58 41263.72 40891.88 38883.40 410
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 15190.11 17399.44 4898.31 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24698.17 5390.72 14795.30 15696.47 16587.94 19996.98 30991.41 13797.61 25098.30 141
LS3D96.11 5195.83 6996.95 4094.75 28694.20 2397.34 1397.98 8497.31 1295.32 15596.77 14693.08 10299.20 8791.79 12498.16 21097.44 222
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20498.13 5890.69 14893.75 21596.25 18898.03 297.02 30892.08 11495.55 31398.45 129
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10692.73 8393.48 22296.72 15494.23 7699.42 3691.99 11799.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21892.18 31985.92 24296.22 10796.61 16085.64 23595.99 34490.35 16198.23 20395.93 295
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13595.12 16995.15 23786.60 22499.50 2293.43 7696.81 28298.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11594.46 5496.29 10196.94 13693.56 8499.37 6094.29 4599.42 5098.99 56
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11787.68 21598.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19696.49 16494.56 6999.39 5293.57 6399.05 10698.93 68
X-MVStestdata90.70 22588.45 27397.44 2098.56 4193.99 3096.50 3797.95 8994.58 5094.38 19626.89 42194.56 6999.39 5293.57 6399.05 10698.93 68
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4499.38 5798.92 72
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 7099.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17696.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9699.21 9099.00 54
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7998.88 13098.75 91
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8792.35 9395.57 14096.61 16094.93 5899.41 4293.78 5799.15 9899.00 54
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8792.26 9695.28 15996.57 16295.02 5299.41 4293.63 6199.11 10198.94 66
N_pmnet88.90 27787.25 30093.83 15794.40 29893.81 3984.73 38487.09 36579.36 33093.26 23492.43 32679.29 29091.68 39177.50 34897.22 26596.00 291
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14996.99 16891.05 14092.40 26895.22 23691.03 15399.25 8192.11 11298.69 15897.90 181
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5299.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8492.35 9395.63 13796.47 16595.37 3299.27 8093.78 5799.14 9998.48 127
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20291.93 10694.82 18395.39 23391.99 12697.08 30585.53 26397.96 23097.41 223
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7390.45 15696.31 9996.76 14892.91 10798.72 15791.19 13999.42 5098.32 138
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11289.21 18093.28 23295.46 22688.89 18698.98 11389.80 18098.82 14197.80 195
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23492.96 4789.48 30697.46 13085.14 26096.23 10695.42 22993.19 9798.08 22790.37 16098.76 14997.38 229
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7890.82 14597.15 6196.85 14296.25 1499.00 11293.10 8899.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 26688.02 28992.64 20295.90 23892.87 4988.67 33091.06 33480.34 31690.03 31691.67 34083.34 25294.42 37276.35 35794.84 33590.64 396
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4299.28 8098.97 62
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8192.08 10295.74 13296.28 18495.22 4299.42 3693.17 8699.06 10398.88 77
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11787.57 21798.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13286.96 22798.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15495.04 17496.74 15192.54 11697.86 25185.11 27098.98 11597.98 170
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7892.07 11599.59 2799.11 44
LF4IMVS92.72 18092.02 19694.84 10995.65 25491.99 5892.92 18596.60 19585.08 26392.44 26693.62 29586.80 22096.35 33486.81 24298.25 20196.18 284
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8193.34 7796.64 8796.57 16294.99 5499.36 6193.48 6999.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 19491.06 22195.95 6197.52 12791.90 6093.53 16697.18 15383.98 27688.70 34194.04 28088.41 19098.55 18580.17 32395.99 30397.39 227
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8194.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
MAR-MVS90.32 24188.87 26894.66 11994.82 28191.85 6194.22 14294.75 26980.91 31287.52 36088.07 38286.63 22397.87 25076.67 35396.21 29994.25 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13488.98 18398.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6689.46 17296.61 8996.47 16595.85 1899.12 9690.45 15699.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26394.79 25593.56 8499.49 2893.47 7099.05 10697.89 183
PHI-MVS94.34 12693.80 14695.95 6195.65 25491.67 6694.82 11997.86 9587.86 20993.04 24494.16 27791.58 13698.78 14890.27 16698.96 12297.41 223
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7890.42 15796.37 9597.35 10395.68 2199.25 8194.44 4199.34 6398.80 85
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21797.40 13387.10 22694.56 19195.42 22993.74 8298.11 22586.62 24798.85 13498.06 158
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17598.32 3087.89 20896.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10586.48 23097.42 5297.51 9094.47 7499.29 7493.55 6599.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 20691.20 21693.26 18296.17 21691.02 7191.14 25495.55 24390.16 16190.87 29893.56 29886.31 22694.40 37379.92 32997.12 26894.37 348
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19697.33 14290.05 16296.77 8296.85 14295.04 5098.56 18392.77 9699.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 14893.28 16594.80 11096.25 21190.95 7390.21 28395.43 24887.91 20693.74 21794.40 26892.88 10996.38 33290.39 15898.28 19797.07 241
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8996.69 1991.78 28498.85 1491.77 13295.49 35391.72 12699.08 10295.02 329
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10189.22 17995.46 14796.17 19393.42 9099.34 6589.30 19298.87 13397.56 214
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24290.87 7690.97 25992.61 31388.04 20594.61 19093.79 29188.08 19497.81 25589.41 18998.39 18696.50 267
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 10096.13 3294.74 18797.23 11291.33 14199.16 9093.25 8398.30 19698.46 128
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29793.73 29293.52 8699.55 1991.81 12399.45 4597.58 211
hse-mvs292.24 19791.20 21695.38 8596.16 21790.65 7992.52 20092.01 32689.23 17793.95 21092.99 31176.88 31698.69 16691.02 14296.03 30196.81 255
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15494.01 28689.23 17793.95 21096.19 19076.88 31699.14 9391.02 14295.71 31097.04 245
AUN-MVS90.05 25288.30 27795.32 9096.09 22490.52 8192.42 20892.05 32582.08 30288.45 34592.86 31365.76 36698.69 16688.91 20696.07 30096.75 259
ZD-MVS97.23 14190.32 8297.54 12384.40 27394.78 18595.79 21092.76 11299.39 5288.72 21198.40 183
mvsany_test389.11 26988.21 28591.83 23091.30 36990.25 8388.09 33578.76 41276.37 35396.43 9398.39 3683.79 25090.43 39986.57 24894.20 35094.80 337
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15698.02 8087.35 21996.22 10797.99 5494.48 7399.05 10592.73 9999.68 1797.93 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 23488.92 26594.85 10896.53 18590.02 8591.58 24396.48 20580.16 31886.14 36892.18 33085.73 23298.25 21476.87 35294.61 34196.30 276
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_prior489.91 8690.74 265
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 21096.91 17590.64 15092.33 27494.60 26390.58 16598.96 11890.21 17097.70 24498.23 145
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16998.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12599.28 8098.41 132
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18697.68 11178.02 34192.79 25394.10 27890.85 15597.96 24084.76 27698.16 21096.54 262
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10899.05 10698.64 111
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17899.41 4294.06 4999.30 7298.72 96
TEST996.45 19089.46 9390.60 27096.92 17379.09 33390.49 30594.39 26991.31 14298.88 127
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 27096.92 17379.37 32890.49 30594.39 26991.20 14798.88 12788.66 21298.43 18297.72 203
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22886.28 25698.61 16597.95 174
test_part298.21 7689.41 9696.72 83
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7897.67 24697.85 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 4099.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23996.80 18389.66 16993.90 21395.44 22892.80 11198.72 15792.74 9898.52 17598.32 138
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23497.56 4298.66 2195.73 1998.44 19797.35 398.99 11498.27 143
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16798.60 1685.68 24897.42 5298.30 3895.34 3598.39 19896.85 498.98 11598.19 149
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17798.36 2785.61 25196.92 7498.02 5195.23 4198.38 20196.69 798.95 12498.09 157
test_896.37 19489.14 10390.51 27396.89 17679.37 32890.42 30794.36 27191.20 14798.82 136
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17590.30 16499.60 2598.72 96
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17893.73 6797.87 3198.49 3190.73 16199.05 10586.43 25399.60 2599.10 47
test_vis3_rt90.40 23490.03 24591.52 24592.58 33488.95 10690.38 27897.72 11073.30 37297.79 3397.51 9077.05 31287.10 41089.03 20394.89 33298.50 124
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18698.07 6993.46 7496.31 9995.97 20290.14 17299.34 6592.11 11299.64 2399.16 38
agg_prior96.20 21488.89 10896.88 17790.21 31298.78 148
SD-MVS95.19 9295.73 7493.55 16996.62 17788.88 10994.67 12398.05 7391.26 13597.25 6096.40 17195.42 3094.36 37492.72 10099.19 9297.40 226
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18285.23 25794.75 18697.12 12391.85 12999.40 4993.45 7298.33 19398.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 11488.68 111
wuyk23d87.83 29690.79 22878.96 39690.46 38288.63 11292.72 19190.67 34091.65 12598.68 1297.64 7696.06 1577.53 41859.84 41299.41 5470.73 416
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29294.49 3999.01 11399.80 3
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20688.62 11393.19 17898.07 6985.63 25097.08 6397.35 10390.86 15497.66 27195.70 1698.48 18097.74 202
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11396.94 1796.58 9097.32 10793.07 10398.72 15790.45 15698.84 13597.57 212
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21897.84 9894.91 4796.80 8095.78 21390.42 16699.41 4291.60 13099.58 3199.29 29
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19897.81 10193.99 6096.80 8095.90 20390.10 17599.41 4291.60 13099.58 3199.26 30
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 12093.85 5599.49 4099.36 25
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9388.72 18998.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27896.48 2495.38 15093.63 29494.89 5997.94 24295.38 2796.92 27895.17 320
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26797.07 16277.38 34492.34 27395.08 24292.67 11498.88 12785.74 26098.57 17098.20 148
plane_prior388.43 12290.35 15993.31 229
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29288.25 12392.05 22396.65 19389.62 17090.08 31491.23 34592.56 11598.60 17886.30 25596.27 29896.90 250
plane_prior697.21 14488.23 12486.93 217
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10191.74 12193.31 22995.59 22086.93 21798.95 12089.26 19698.51 17798.60 116
plane_prior88.12 12593.01 18288.98 18398.06 220
save fliter97.46 13288.05 12792.04 22497.08 16187.63 216
UGNet93.08 16692.50 18594.79 11193.87 31187.99 12895.07 11194.26 28090.64 15087.33 36297.67 7486.89 21998.49 19088.10 22098.71 15597.91 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 22087.90 12993.36 17497.14 15685.53 25393.90 21395.45 22791.30 14398.59 18089.51 18698.62 16497.31 232
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12192.68 8496.20 10993.44 30091.92 12898.78 14889.11 20199.24 8596.92 249
pmmvs-eth3d91.54 21190.73 23093.99 14595.76 24887.86 13190.83 26293.98 28778.23 34094.02 20896.22 18982.62 26596.83 31886.57 24898.33 19397.29 233
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9596.10 3398.14 2899.28 597.94 398.21 21691.38 13899.69 1499.42 20
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 17198.49 1985.57 25298.27 2197.11 12494.11 7997.75 26496.26 1198.72 15396.89 251
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15997.86 9595.96 3897.48 4897.14 12195.33 3699.44 3290.79 14799.76 1099.38 23
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25494.52 26693.95 8199.49 2893.62 6299.22 8997.51 217
alignmvs93.26 16092.85 17494.50 12895.70 25087.45 13693.45 17095.76 23191.58 12695.25 16292.42 32781.96 27298.72 15791.61 12997.87 23697.33 231
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12398.16 398.94 399.33 397.84 499.08 10090.73 14999.73 1399.59 14
新几何193.17 18497.16 14687.29 13894.43 27567.95 40191.29 29194.94 24786.97 21698.23 21581.06 31597.75 24093.98 357
test_fmvs392.42 18992.40 18892.46 21493.80 31487.28 13993.86 15697.05 16376.86 35096.25 10498.66 2182.87 25991.26 39395.44 2496.83 28198.82 82
test_prior94.61 12095.95 23587.23 14097.36 13998.68 16897.93 177
MM94.41 12294.14 13895.22 9795.84 24087.21 14194.31 13990.92 33794.48 5392.80 25297.52 8685.27 23899.49 2896.58 899.57 3398.97 62
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13493.92 6597.65 3795.90 20390.10 17599.33 7090.11 17399.66 2199.26 30
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
NP-MVS96.82 16587.10 14493.40 301
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26487.06 14596.63 3197.28 14891.82 11694.34 19897.41 9490.60 16498.65 17392.47 10798.11 21597.70 204
sasdasda94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
canonicalmvs94.59 11394.69 11694.30 13695.60 25887.03 14695.59 8598.24 4091.56 12795.21 16592.04 33494.95 5598.66 17091.45 13597.57 25197.20 237
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6391.95 10497.63 3897.25 11096.48 1099.35 6293.29 8099.29 7597.95 174
test_241102_ONE98.51 4986.97 14898.10 6391.85 11097.63 3897.03 13096.48 1098.95 120
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31396.23 21588.36 20093.57 22094.60 26393.45 8797.77 26190.23 16998.38 18798.03 164
DP-MVS Recon92.31 19391.88 20093.60 16797.18 14586.87 15191.10 25697.37 13484.92 26692.08 28094.08 27988.59 18798.20 21783.50 28598.14 21295.73 304
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6996.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
test_vis1_rt85.58 32984.58 33288.60 32287.97 40386.76 15385.45 37993.59 29166.43 40487.64 35789.20 37279.33 28985.38 41481.59 30789.98 39793.66 365
test1294.43 13395.95 23586.75 15496.24 21489.76 32389.79 18098.79 14597.95 23197.75 201
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7399.31 7098.53 122
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16691.85 11097.40 5497.35 10395.58 2499.34 6593.44 7399.31 7098.13 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5398.68 15998.04 161
IU-MVS98.51 4986.66 15896.83 18172.74 37795.83 12693.00 9299.29 7598.64 111
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22696.74 18888.16 20496.93 7397.61 7893.04 10497.90 24391.60 13098.12 21498.03 164
MVP-Stereo90.07 25188.92 26593.54 17196.31 20486.49 16190.93 26095.59 24079.80 32091.48 28895.59 22080.79 28197.39 28778.57 34091.19 39096.76 258
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 25988.22 28493.53 17295.37 26986.49 16189.26 31493.59 29179.76 32291.15 29592.31 32877.12 31198.38 20177.51 34797.92 23395.71 305
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27796.24 3196.28 10396.36 17882.88 25899.35 6288.19 21799.52 3998.96 64
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6697.42 1098.48 1797.86 6591.76 13499.63 894.23 4699.84 399.66 8
PMMVS83.00 35281.11 36188.66 32183.81 42086.44 16482.24 40185.65 37861.75 41482.07 40085.64 39879.75 28691.59 39275.99 36093.09 37387.94 404
TAMVS90.16 24589.05 26193.49 17696.49 18786.37 16690.34 28092.55 31480.84 31592.99 24594.57 26581.94 27398.20 21773.51 37498.21 20695.90 298
AdaColmapbinary91.63 20891.36 21392.47 21395.56 26086.36 16792.24 22096.27 21288.88 18789.90 31992.69 31991.65 13598.32 20777.38 34997.64 24892.72 381
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 9193.18 8599.74 1299.50 18
ETV-MVS92.99 16992.74 17793.72 16395.86 23986.30 16992.33 21297.84 9891.70 12492.81 25186.17 39492.22 12199.19 8888.03 22497.73 24195.66 309
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16296.16 21786.26 17092.46 20496.72 18981.69 30695.77 12897.11 12490.83 15697.82 25495.58 1997.99 22797.11 240
API-MVS91.52 21291.61 20591.26 25594.16 30186.26 17094.66 12494.82 26591.17 13892.13 27991.08 34890.03 17897.06 30779.09 33797.35 26290.45 397
EPNet89.80 25888.25 28194.45 13283.91 41986.18 17293.87 15587.07 36791.16 13980.64 40894.72 25778.83 29298.89 12685.17 26598.89 12898.28 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 33383.04 34791.19 26087.56 40586.14 17389.40 31084.44 39288.98 18382.20 39997.95 5656.82 39896.15 33776.55 35683.45 41091.30 392
test_f86.65 32387.13 30485.19 37090.28 38486.11 17486.52 36691.66 33069.76 39595.73 13497.21 11669.51 34881.28 41789.15 20094.40 34388.17 403
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15393.28 29894.49 5296.24 10597.78 6787.99 19898.79 14588.92 20599.14 9998.34 137
MVS_030492.88 17392.27 18994.69 11692.35 34086.03 17692.88 18889.68 34490.53 15391.52 28796.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33685.98 17792.44 20694.69 27193.70 6896.12 11495.81 20991.24 14498.86 13193.76 6098.22 20598.98 60
mvsany_test183.91 34582.93 34986.84 35286.18 41385.93 17881.11 40475.03 41970.80 39088.57 34494.63 26183.08 25687.38 40980.39 31786.57 40587.21 405
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18696.64 2197.61 4198.05 4793.23 9698.79 14588.60 21399.04 11198.78 87
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33985.87 18092.42 20894.69 27193.67 7196.13 11395.84 20791.20 14798.86 13193.78 5798.23 20399.03 52
PCF-MVS84.52 1789.12 26887.71 29293.34 17996.06 22685.84 18186.58 36597.31 14368.46 40093.61 21993.89 28887.51 20598.52 18867.85 39998.11 21595.66 309
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17697.24 15096.88 1897.69 3697.77 7194.12 7899.13 9591.54 13499.29 7597.88 184
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16595.23 25483.30 28295.13 16897.56 8192.22 12197.17 29995.51 2297.41 25998.64 111
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24683.25 28495.51 14298.05 4792.54 11697.19 29895.55 2197.46 25798.94 66
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 25097.13 15880.33 31792.91 25094.24 27391.23 14598.72 15789.99 17797.93 23297.86 187
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17696.10 22385.66 18692.32 21396.57 19881.32 30995.63 13797.14 12190.19 17197.73 26795.37 2898.03 22397.07 241
pmmvs488.95 27687.70 29392.70 19994.30 29985.60 18787.22 34792.16 32174.62 36489.75 32494.19 27577.97 30296.41 33082.71 29296.36 29596.09 287
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28394.22 5794.94 17896.19 19082.07 27099.57 1587.28 23798.89 12898.65 106
MGCFI-Net94.44 12094.67 12093.75 16095.56 26085.47 18995.25 10398.24 4091.53 12995.04 17492.21 32994.94 5798.54 18691.56 13397.66 24797.24 235
test_fmvs290.62 22990.40 23891.29 25391.93 35685.46 19092.70 19396.48 20574.44 36594.91 18097.59 7975.52 32490.57 39693.44 7396.56 29097.84 190
CMPMVSbinary68.83 2287.28 31085.67 32692.09 22588.77 40085.42 19190.31 28194.38 27670.02 39488.00 35193.30 30373.78 33194.03 37875.96 36196.54 29196.83 254
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23694.87 3499.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 15385.27 19388.83 32493.61 29065.09 40990.74 30194.85 25084.62 24597.36 26193.91 358
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14188.71 19095.26 16095.50 22594.65 6599.12 9690.94 14598.40 18398.23 145
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15991.84 11397.28 5898.46 3395.30 3897.71 26890.17 17199.42 5098.99 56
HQP5-MVS84.89 196
HQP-MVS92.09 19991.49 21093.88 15396.36 19684.89 19691.37 24797.31 14387.16 22388.81 33593.40 30184.76 24398.60 17886.55 25097.73 24198.14 154
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9298.14 498.67 1398.32 3795.04 5099.69 493.27 8299.82 799.62 12
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7398.06 598.64 1498.25 4095.01 5399.65 592.95 9499.83 599.68 6
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17497.22 14384.37 20093.73 16095.26 25384.45 27295.76 12998.00 5291.85 12997.21 29595.62 1797.82 23898.98 60
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17896.69 17084.37 20093.38 17395.13 25684.50 27195.40 14997.55 8591.77 13297.20 29695.59 1897.79 23998.69 103
GBi-Net93.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
test193.21 16392.96 17093.97 14795.40 26684.29 20295.99 6796.56 19988.63 19195.10 17098.53 2881.31 27798.98 11386.74 24398.38 18798.65 106
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19992.38 9097.03 6898.53 2890.12 17398.98 11388.78 20999.16 9798.65 106
原ACMM192.87 19496.91 15784.22 20597.01 16576.84 35189.64 32594.46 26788.00 19798.70 16481.53 30998.01 22695.70 307
DPM-MVS89.35 26488.40 27492.18 22296.13 22284.20 20686.96 35296.15 22175.40 35987.36 36191.55 34383.30 25398.01 23482.17 30296.62 28994.32 350
旧先验196.20 21484.17 20794.82 26595.57 22489.57 18197.89 23496.32 275
OpenMVScopyleft89.45 892.27 19692.13 19492.68 20194.53 29584.10 20895.70 8097.03 16482.44 29891.14 29696.42 16988.47 18998.38 20185.95 25897.47 25695.55 314
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8697.91 698.64 1498.13 4395.24 4099.65 593.39 7799.84 399.72 4
EIA-MVS92.35 19292.03 19593.30 18195.81 24483.97 21092.80 19098.17 5387.71 21389.79 32287.56 38491.17 15099.18 8987.97 22597.27 26396.77 257
PVSNet_Blended_VisFu91.63 20891.20 21692.94 19197.73 11283.95 21192.14 22197.46 13078.85 33792.35 27194.98 24584.16 24799.08 10086.36 25496.77 28495.79 302
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12597.60 898.34 2097.52 8691.98 12799.63 893.08 9099.81 899.70 5
lessismore_v093.87 15498.05 8683.77 21380.32 40997.13 6297.91 6277.49 30599.11 9892.62 10298.08 21998.74 94
GDP-MVS91.56 21090.83 22693.77 15996.34 20083.65 21493.66 16498.12 5987.32 22192.98 24794.71 25863.58 38099.30 7392.61 10398.14 21298.35 136
CLD-MVS91.82 20291.41 21293.04 18596.37 19483.65 21486.82 35797.29 14684.65 27092.27 27589.67 36692.20 12397.85 25383.95 28399.47 4197.62 209
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 19191.99 19793.52 17493.82 31383.46 21691.14 25497.00 16689.81 16686.47 36694.04 28087.90 20099.21 8489.50 18798.27 19897.90 181
BP-MVS191.77 20491.10 22093.75 16096.42 19283.40 21794.10 14891.89 32791.27 13493.36 22894.85 25064.43 37499.29 7494.88 3398.74 15298.56 119
QAPM92.88 17392.77 17593.22 18395.82 24283.31 21896.45 4197.35 14083.91 27793.75 21596.77 14689.25 18498.88 12784.56 27897.02 27297.49 218
Effi-MVS+92.79 17792.74 17792.94 19195.10 27483.30 21994.00 15197.53 12591.36 13389.35 32990.65 35794.01 8098.66 17087.40 23595.30 32296.88 253
sd_testset93.94 14294.39 12692.61 20797.93 9783.24 22093.17 17995.04 25893.65 7295.51 14298.63 2394.49 7295.89 34681.72 30699.35 5998.70 100
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17296.25 21183.23 22192.66 19598.19 4793.06 8197.49 4797.15 12094.78 6198.71 16392.27 11098.72 15398.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.58 18492.50 18592.83 19696.55 18183.22 22292.43 20791.64 33194.10 5995.59 13996.64 15881.88 27497.50 27885.12 26998.52 17597.77 198
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22395.93 7194.84 26494.86 4898.49 1698.74 1881.45 27599.60 1094.69 3699.39 5699.15 39
VPA-MVSNet95.14 9395.67 7793.58 16897.76 10883.15 22494.58 12897.58 12093.39 7597.05 6798.04 4993.25 9598.51 18989.75 18399.59 2799.08 48
LCM-MVSNet-Re94.20 13394.58 12393.04 18595.91 23783.13 22593.79 15899.19 692.00 10398.84 698.04 4993.64 8399.02 11081.28 31198.54 17396.96 248
mvs5depth95.28 8895.82 7193.66 16496.42 19283.08 22697.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23494.06 4998.93 12599.87 1
MSDG90.82 22190.67 23191.26 25594.16 30183.08 22686.63 36296.19 21890.60 15291.94 28291.89 33689.16 18595.75 34880.96 31694.51 34294.95 331
ambc92.98 18796.88 15983.01 22895.92 7296.38 20996.41 9497.48 9288.26 19197.80 25689.96 17898.93 12598.12 156
dmvs_re84.69 33883.94 34086.95 34992.24 34382.93 22989.51 30587.37 36384.38 27485.37 37185.08 40172.44 33586.59 41168.05 39891.03 39391.33 391
SDMVSNet94.43 12195.02 10392.69 20097.93 9782.88 23091.92 23195.99 22793.65 7295.51 14298.63 2394.60 6796.48 32787.57 23199.35 5998.70 100
MSLP-MVS++93.25 16293.88 14391.37 24896.34 20082.81 23193.11 18097.74 10889.37 17594.08 20395.29 23590.40 16896.35 33490.35 16198.25 20194.96 330
K. test v393.37 15693.27 16693.66 16498.05 8682.62 23294.35 13686.62 36996.05 3597.51 4698.85 1476.59 32099.65 593.21 8498.20 20898.73 95
test_fmvs1_n88.73 28288.38 27589.76 30092.06 35182.53 23392.30 21696.59 19771.14 38592.58 26095.41 23268.55 35089.57 40491.12 14095.66 31197.18 239
Fast-Effi-MVS+91.28 21890.86 22492.53 21195.45 26582.53 23389.25 31696.52 20385.00 26489.91 31888.55 37892.94 10598.84 13484.72 27795.44 31796.22 282
test_vis1_n89.01 27389.01 26389.03 31392.57 33582.46 23592.62 19796.06 22273.02 37590.40 30895.77 21474.86 32689.68 40290.78 14894.98 33094.95 331
VDDNet94.03 13894.27 13493.31 18098.87 2182.36 23695.51 9391.78 32997.19 1396.32 9898.60 2584.24 24698.75 15287.09 24098.83 14098.81 84
mvsmamba90.24 24389.43 25692.64 20295.52 26282.36 23696.64 3092.29 31781.77 30492.14 27896.28 18470.59 34499.10 9984.44 28095.22 32596.47 269
114514_t90.51 23089.80 25092.63 20598.00 9282.24 23893.40 17297.29 14665.84 40789.40 32894.80 25486.99 21598.75 15283.88 28498.61 16596.89 251
testdata91.03 26396.87 16082.01 23994.28 27971.55 38292.46 26495.42 22985.65 23497.38 28982.64 29397.27 26393.70 364
FMVSNet292.78 17892.73 17992.95 19095.40 26681.98 24094.18 14395.53 24488.63 19196.05 11697.37 9781.31 27798.81 14187.38 23698.67 16198.06 158
TransMVSNet (Re)95.27 9196.04 5692.97 18898.37 6381.92 24195.07 11196.76 18793.97 6297.77 3498.57 2695.72 2097.90 24388.89 20799.23 8699.08 48
FC-MVSNet-test95.32 8495.88 6593.62 16698.49 5681.77 24295.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9599.83 599.68 6
FIs94.90 10195.35 8993.55 16998.28 6981.76 24395.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7491.72 12699.69 1499.61 13
ab-mvs92.40 19092.62 18291.74 23497.02 15081.65 24495.84 7695.50 24586.95 22892.95 24997.56 8190.70 16297.50 27879.63 33097.43 25896.06 289
xiu_mvs_v1_base_debu91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
xiu_mvs_v1_base_debi91.47 21391.52 20791.33 25095.69 25181.56 24589.92 29396.05 22483.22 28591.26 29290.74 35291.55 13798.82 13689.29 19395.91 30493.62 367
casdiffmvspermissive94.32 12794.80 11092.85 19596.05 22781.44 24892.35 21198.05 7391.53 12995.75 13196.80 14593.35 9298.49 19091.01 14498.32 19598.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 32584.27 33691.79 23293.04 32581.28 24987.17 34986.14 37279.57 32583.65 38788.66 37557.10 39698.18 22087.74 22995.40 31895.90 298
test_fmvs187.59 30387.27 29988.54 32388.32 40281.26 25090.43 27795.72 23370.55 39191.70 28594.63 26168.13 35189.42 40590.59 15295.34 32194.94 333
V4293.43 15593.58 15692.97 18895.34 27081.22 25192.67 19496.49 20487.25 22296.20 10996.37 17787.32 20898.85 13392.39 10998.21 20698.85 81
OpenMVS_ROBcopyleft85.12 1689.52 26189.05 26190.92 26894.58 29481.21 25291.10 25693.41 29777.03 34993.41 22493.99 28483.23 25497.80 25679.93 32794.80 33693.74 363
PAPM_NR91.03 22090.81 22791.68 23896.73 16881.10 25393.72 16196.35 21088.19 20288.77 33992.12 33385.09 24197.25 29382.40 29993.90 35796.68 260
baseline94.26 12994.80 11092.64 20296.08 22580.99 25493.69 16298.04 7790.80 14694.89 18196.32 18093.19 9798.48 19491.68 12898.51 17798.43 131
1112_ss88.42 28787.41 29691.45 24696.69 17080.99 25489.72 30096.72 18973.37 37187.00 36490.69 35577.38 30898.20 21781.38 31093.72 36095.15 322
tfpnnormal94.27 12894.87 10892.48 21297.71 11480.88 25694.55 13295.41 24993.70 6896.67 8697.72 7291.40 14098.18 22087.45 23399.18 9498.36 133
Baseline_NR-MVSNet94.47 11995.09 10292.60 20898.50 5580.82 25792.08 22296.68 19193.82 6696.29 10198.56 2790.10 17597.75 26490.10 17599.66 2199.24 32
HyFIR lowres test87.19 31485.51 32792.24 21797.12 14980.51 25885.03 38296.06 22266.11 40691.66 28692.98 31270.12 34699.14 9375.29 36495.23 32497.07 241
UnsupCasMVSNet_eth90.33 24090.34 23990.28 28694.64 29380.24 25989.69 30195.88 22885.77 24593.94 21295.69 21781.99 27192.98 38684.21 28191.30 38997.62 209
MDA-MVSNet-bldmvs91.04 21990.88 22391.55 24394.68 29180.16 26085.49 37892.14 32290.41 15894.93 17995.79 21085.10 24096.93 31385.15 26794.19 35297.57 212
v1094.68 11195.27 9592.90 19396.57 17980.15 26194.65 12597.57 12190.68 14997.43 5098.00 5288.18 19299.15 9194.84 3599.55 3599.41 21
VNet92.67 18292.96 17091.79 23296.27 20880.15 26191.95 22794.98 26092.19 10094.52 19396.07 19787.43 20697.39 28784.83 27498.38 18797.83 191
DELS-MVS92.05 20092.16 19191.72 23594.44 29680.13 26387.62 33897.25 14987.34 22092.22 27693.18 30889.54 18298.73 15689.67 18498.20 20896.30 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 26788.32 27691.70 23795.73 24980.07 26488.10 33493.22 29971.98 38090.09 31392.79 31678.53 29798.56 18387.43 23497.06 27096.46 270
jason: jason.
MVSFormer92.18 19892.23 19092.04 22794.74 28780.06 26597.15 1597.37 13488.98 18388.83 33392.79 31677.02 31399.60 1096.41 996.75 28596.46 270
lupinMVS88.34 28987.31 29791.45 24694.74 28780.06 26587.23 34692.27 31871.10 38688.83 33391.15 34677.02 31398.53 18786.67 24696.75 28595.76 303
WR-MVS93.49 15293.72 14992.80 19797.57 12580.03 26790.14 28695.68 23493.70 6896.62 8895.39 23387.21 21099.04 10887.50 23299.64 2399.33 26
CANet_DTU89.85 25689.17 25991.87 22992.20 34680.02 26890.79 26395.87 22986.02 24082.53 39891.77 33880.01 28598.57 18285.66 26297.70 24497.01 246
FA-MVS(test-final)91.81 20391.85 20191.68 23894.95 27779.99 26996.00 6693.44 29687.80 21094.02 20897.29 10877.60 30498.45 19688.04 22397.49 25496.61 261
Patchmatch-RL test88.81 27988.52 27189.69 30395.33 27179.94 27086.22 37092.71 30978.46 33895.80 12794.18 27666.25 36495.33 35989.22 19898.53 17493.78 361
FMVSNet390.78 22390.32 24092.16 22393.03 32679.92 27192.54 19994.95 26186.17 23895.10 17096.01 20069.97 34798.75 15286.74 24398.38 18797.82 193
XXY-MVS92.58 18493.16 16890.84 27297.75 10979.84 27291.87 23596.22 21785.94 24195.53 14197.68 7392.69 11394.48 37083.21 28897.51 25398.21 147
test_yl90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
DCV-MVSNet90.11 24889.73 25391.26 25594.09 30479.82 27390.44 27492.65 31090.90 14193.19 23993.30 30373.90 32998.03 23082.23 30096.87 27995.93 295
FMVSNet587.82 29786.56 31691.62 24092.31 34179.81 27593.49 16894.81 26783.26 28391.36 29096.93 13752.77 40597.49 28076.07 35998.03 22397.55 215
v894.65 11295.29 9392.74 19896.65 17379.77 27694.59 12697.17 15491.86 10997.47 4997.93 5788.16 19399.08 10094.32 4399.47 4199.38 23
tttt051789.81 25788.90 26792.55 21097.00 15179.73 27795.03 11383.65 39489.88 16595.30 15694.79 25553.64 40399.39 5291.99 11798.79 14698.54 120
v119293.49 15293.78 14792.62 20696.16 21779.62 27891.83 23897.22 15286.07 23996.10 11596.38 17687.22 20999.02 11094.14 4898.88 13099.22 33
v114493.50 15193.81 14492.57 20996.28 20779.61 27991.86 23796.96 16986.95 22895.91 12296.32 18087.65 20298.96 11893.51 6698.88 13099.13 41
FE-MVS89.06 27088.29 27891.36 24994.78 28479.57 28096.77 2790.99 33584.87 26792.96 24896.29 18260.69 39298.80 14480.18 32297.11 26995.71 305
BH-untuned90.68 22690.90 22290.05 29695.98 23379.57 28090.04 28994.94 26287.91 20694.07 20493.00 31087.76 20197.78 26079.19 33695.17 32692.80 380
KD-MVS_self_test94.10 13694.73 11592.19 21997.66 12079.49 28294.86 11897.12 15989.59 17196.87 7597.65 7590.40 16898.34 20689.08 20299.35 5998.75 91
CHOSEN 1792x268887.19 31485.92 32591.00 26697.13 14879.41 28384.51 38895.60 23664.14 41090.07 31594.81 25278.26 30097.14 30273.34 37595.38 32096.46 270
thisisatest053088.69 28387.52 29592.20 21896.33 20279.36 28492.81 18984.01 39386.44 23193.67 21892.68 32053.62 40499.25 8189.65 18598.45 18198.00 166
LFMVS91.33 21691.16 21991.82 23196.27 20879.36 28495.01 11485.61 38196.04 3694.82 18397.06 12872.03 33998.46 19584.96 27398.70 15797.65 208
TR-MVS87.70 29887.17 30289.27 31094.11 30379.26 28688.69 32891.86 32881.94 30390.69 30389.79 36382.82 26197.42 28472.65 38091.98 38691.14 393
test20.0390.80 22290.85 22590.63 27895.63 25679.24 28789.81 29792.87 30489.90 16494.39 19596.40 17185.77 23195.27 36173.86 37399.05 10697.39 227
IterMVS-SCA-FT91.65 20791.55 20691.94 22893.89 31079.22 28887.56 34193.51 29491.53 12995.37 15296.62 15978.65 29498.90 12491.89 12194.95 33197.70 204
EI-MVSNet92.99 16993.26 16792.19 21992.12 34979.21 28992.32 21394.67 27391.77 11995.24 16395.85 20587.14 21298.49 19091.99 11798.26 19998.86 78
IterMVS-LS93.78 14694.28 13292.27 21696.27 20879.21 28991.87 23596.78 18491.77 11996.57 9197.07 12787.15 21198.74 15591.99 11799.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 29487.12 30590.22 28991.01 37278.93 29192.52 20092.81 30573.08 37489.10 33096.93 13767.11 35697.64 27388.80 20892.70 37894.08 352
RPMNet90.31 24290.14 24490.81 27491.01 37278.93 29192.52 20098.12 5991.91 10789.10 33096.89 14068.84 34999.41 4290.17 17192.70 37894.08 352
test_cas_vis1_n_192088.25 29088.27 28088.20 33192.19 34778.92 29389.45 30795.44 24675.29 36293.23 23795.65 21971.58 34090.23 40088.05 22293.55 36495.44 316
patch_mono-292.46 18892.72 18091.71 23696.65 17378.91 29488.85 32397.17 15483.89 27892.45 26596.76 14889.86 17997.09 30490.24 16898.59 16899.12 43
MVSMamba_PlusPlus94.82 10595.89 6491.62 24097.82 10478.88 29596.52 3597.60 11997.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 278
UnsupCasMVSNet_bld88.50 28588.03 28889.90 29895.52 26278.88 29587.39 34594.02 28579.32 33193.06 24294.02 28280.72 28294.27 37575.16 36593.08 37496.54 262
v2v48293.29 15893.63 15392.29 21596.35 19978.82 29791.77 24196.28 21188.45 19695.70 13696.26 18786.02 23098.90 12493.02 9198.81 14399.14 40
Anonymous2023120688.77 28088.29 27890.20 29196.31 20478.81 29889.56 30493.49 29574.26 36792.38 26995.58 22382.21 26795.43 35672.07 38298.75 15196.34 274
PVSNet_BlendedMVS90.35 23989.96 24691.54 24494.81 28278.80 29990.14 28696.93 17179.43 32788.68 34295.06 24386.27 22798.15 22380.27 31998.04 22297.68 206
PVSNet_Blended88.74 28188.16 28790.46 28394.81 28278.80 29986.64 36196.93 17174.67 36388.68 34289.18 37386.27 22798.15 22380.27 31996.00 30294.44 347
BH-RMVSNet90.47 23290.44 23690.56 28095.21 27378.65 30189.15 31793.94 28888.21 20192.74 25594.22 27486.38 22597.88 24778.67 33995.39 31995.14 323
balanced_conf0393.45 15494.17 13791.28 25495.81 24478.40 30296.20 6097.48 12988.56 19595.29 15897.20 11785.56 23799.21 8492.52 10698.91 12796.24 281
D2MVS89.93 25489.60 25590.92 26894.03 30778.40 30288.69 32894.85 26378.96 33593.08 24195.09 24174.57 32796.94 31188.19 21798.96 12297.41 223
v192192093.26 16093.61 15592.19 21996.04 23178.31 30491.88 23497.24 15085.17 25996.19 11296.19 19086.76 22199.05 10594.18 4798.84 13599.22 33
v14419293.20 16593.54 15992.16 22396.05 22778.26 30591.95 22797.14 15684.98 26595.96 11896.11 19587.08 21399.04 10893.79 5698.84 13599.17 37
diffmvspermissive91.74 20591.93 19991.15 26193.06 32478.17 30688.77 32697.51 12886.28 23392.42 26793.96 28588.04 19697.46 28190.69 15196.67 28897.82 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss87.23 31186.82 31088.46 32793.96 30877.94 30786.84 35592.78 30877.59 34387.61 35991.83 33778.75 29391.92 39077.84 34394.20 35095.52 315
MS-PatchMatch88.05 29387.75 29188.95 31493.28 31977.93 30887.88 33792.49 31575.42 35892.57 26193.59 29780.44 28394.24 37781.28 31192.75 37794.69 343
HY-MVS82.50 1886.81 32285.93 32489.47 30493.63 31577.93 30894.02 15091.58 33275.68 35583.64 38893.64 29377.40 30797.42 28471.70 38592.07 38593.05 376
v124093.29 15893.71 15092.06 22696.01 23277.89 31091.81 23997.37 13485.12 26196.69 8596.40 17186.67 22299.07 10494.51 3898.76 14999.22 33
CL-MVSNet_self_test90.04 25389.90 24890.47 28195.24 27277.81 31186.60 36492.62 31285.64 24993.25 23693.92 28683.84 24996.06 34179.93 32798.03 22397.53 216
Test_1112_low_res87.50 30686.58 31490.25 28896.80 16777.75 31287.53 34396.25 21369.73 39686.47 36693.61 29675.67 32397.88 24779.95 32593.20 37095.11 326
v14892.87 17593.29 16391.62 24096.25 21177.72 31391.28 25195.05 25789.69 16895.93 12196.04 19887.34 20798.38 20190.05 17697.99 22798.78 87
MVS84.98 33484.30 33587.01 34691.03 37177.69 31491.94 22994.16 28159.36 41584.23 38487.50 38685.66 23396.80 31971.79 38393.05 37586.54 407
miper_lstm_enhance89.90 25589.80 25090.19 29291.37 36877.50 31583.82 39595.00 25984.84 26893.05 24394.96 24676.53 32195.20 36289.96 17898.67 16197.86 187
pmmvs380.83 37078.96 37886.45 35687.23 40877.48 31684.87 38382.31 39963.83 41185.03 37689.50 36849.66 40693.10 38473.12 37895.10 32788.78 402
PAPR87.65 30186.77 31290.27 28792.85 33177.38 31788.56 33196.23 21576.82 35284.98 37789.75 36586.08 22997.16 30172.33 38193.35 36796.26 280
Vis-MVSNet (Re-imp)90.42 23390.16 24191.20 25997.66 12077.32 31894.33 13787.66 36191.20 13792.99 24595.13 23975.40 32598.28 20977.86 34299.19 9297.99 169
BH-w/o87.21 31287.02 30787.79 34094.77 28577.27 31987.90 33693.21 30181.74 30589.99 31788.39 38083.47 25196.93 31371.29 38792.43 38289.15 398
GA-MVS87.70 29886.82 31090.31 28593.27 32077.22 32084.72 38692.79 30785.11 26289.82 32090.07 35866.80 35997.76 26384.56 27894.27 34895.96 293
TinyColmap92.00 20192.76 17689.71 30295.62 25777.02 32190.72 26696.17 22087.70 21495.26 16096.29 18292.54 11696.45 32981.77 30498.77 14895.66 309
Patchmtry90.11 24889.92 24790.66 27790.35 38377.00 32292.96 18492.81 30590.25 16094.74 18796.93 13767.11 35697.52 27785.17 26598.98 11597.46 219
DIV-MVS_self_test90.65 22790.56 23490.91 27091.85 35776.99 32386.75 35895.36 25185.52 25594.06 20594.89 24877.37 30997.99 23890.28 16598.97 12097.76 199
cl____90.65 22790.56 23490.91 27091.85 35776.98 32486.75 35895.36 25185.53 25394.06 20594.89 24877.36 31097.98 23990.27 16698.98 11597.76 199
pmmvs587.87 29587.14 30390.07 29393.26 32176.97 32588.89 32192.18 31973.71 37088.36 34693.89 28876.86 31896.73 32180.32 31896.81 28296.51 264
eth_miper_zixun_eth90.72 22490.61 23291.05 26292.04 35276.84 32686.91 35396.67 19285.21 25894.41 19493.92 28679.53 28898.26 21389.76 18297.02 27298.06 158
c3_l91.32 21791.42 21191.00 26692.29 34276.79 32787.52 34496.42 20785.76 24694.72 18993.89 28882.73 26298.16 22290.93 14698.55 17198.04 161
test_vis1_n_192089.45 26289.85 24988.28 32993.59 31676.71 32890.67 26897.78 10679.67 32490.30 31196.11 19576.62 31992.17 38990.31 16393.57 36295.96 293
MVSTER89.32 26588.75 26991.03 26390.10 38676.62 32990.85 26194.67 27382.27 29995.24 16395.79 21061.09 39098.49 19090.49 15598.26 19997.97 173
miper_ehance_all_eth90.48 23190.42 23790.69 27691.62 36476.57 33086.83 35696.18 21983.38 28194.06 20592.66 32182.20 26898.04 22989.79 18197.02 27297.45 220
cl2289.02 27188.50 27290.59 27989.76 38876.45 33186.62 36394.03 28382.98 29192.65 25792.49 32272.05 33897.53 27688.93 20497.02 27297.78 197
cascas87.02 31986.28 32289.25 31191.56 36676.45 33184.33 39096.78 18471.01 38786.89 36585.91 39581.35 27696.94 31183.09 28995.60 31294.35 349
ADS-MVSNet284.01 34382.20 35589.41 30689.04 39776.37 33387.57 33990.98 33672.71 37884.46 38092.45 32368.08 35296.48 32770.58 39383.97 40895.38 317
EU-MVSNet87.39 30886.71 31389.44 30593.40 31876.11 33494.93 11790.00 34357.17 41695.71 13597.37 9764.77 37397.68 27092.67 10194.37 34594.52 345
MIMVSNet87.13 31686.54 31788.89 31696.05 22776.11 33494.39 13588.51 35081.37 30888.27 34896.75 15072.38 33695.52 35165.71 40495.47 31695.03 328
IterMVS90.18 24490.16 24190.21 29093.15 32275.98 33687.56 34192.97 30386.43 23294.09 20296.40 17178.32 29997.43 28387.87 22794.69 33997.23 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 18693.29 16390.40 28493.53 31775.85 33792.52 20096.96 16988.73 18892.35 27196.70 15590.77 15798.37 20592.53 10595.49 31596.99 247
IB-MVS77.21 1983.11 35081.05 36289.29 30991.15 37075.85 33785.66 37786.00 37479.70 32382.02 40286.61 39048.26 40798.39 19877.84 34392.22 38393.63 366
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 16693.76 14891.03 26398.60 3875.83 33991.51 24495.62 23591.84 11395.74 13297.10 12689.31 18398.32 20785.07 27299.06 10398.93 68
miper_enhance_ethall88.42 28787.87 29090.07 29388.67 40175.52 34085.10 38195.59 24075.68 35592.49 26289.45 36978.96 29197.88 24787.86 22897.02 27296.81 255
Anonymous2024052192.86 17693.57 15790.74 27596.57 17975.50 34194.15 14495.60 23689.38 17495.90 12397.90 6480.39 28497.96 24092.60 10499.68 1798.75 91
thisisatest051584.72 33782.99 34889.90 29892.96 32875.33 34284.36 38983.42 39577.37 34588.27 34886.65 38953.94 40298.72 15782.56 29597.40 26095.67 308
MVStest184.79 33684.06 33886.98 34777.73 42474.76 34391.08 25885.63 37977.70 34296.86 7697.97 5541.05 42388.24 40892.22 11196.28 29797.94 176
PS-MVSNAJ88.86 27888.99 26488.48 32694.88 27874.71 34486.69 36095.60 23680.88 31387.83 35487.37 38790.77 15798.82 13682.52 29694.37 34591.93 387
WTY-MVS86.93 32086.50 32088.24 33094.96 27674.64 34587.19 34892.07 32478.29 33988.32 34791.59 34278.06 30194.27 37574.88 36693.15 37295.80 301
xiu_mvs_v2_base89.00 27489.19 25888.46 32794.86 28074.63 34686.97 35195.60 23680.88 31387.83 35488.62 37791.04 15298.81 14182.51 29794.38 34491.93 387
131486.46 32486.33 32186.87 35191.65 36374.54 34791.94 22994.10 28274.28 36684.78 37987.33 38883.03 25795.00 36478.72 33891.16 39191.06 394
CHOSEN 280x42080.04 37777.97 38486.23 36190.13 38574.53 34872.87 41389.59 34566.38 40576.29 41485.32 40056.96 39795.36 35769.49 39694.72 33888.79 401
USDC89.02 27189.08 26088.84 31795.07 27574.50 34988.97 31996.39 20873.21 37393.27 23396.28 18482.16 26996.39 33177.55 34698.80 14495.62 312
MVEpermissive59.87 2373.86 38572.65 38877.47 39787.00 41174.35 35061.37 41760.93 42367.27 40269.69 41886.49 39281.24 28072.33 42056.45 41683.45 41085.74 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 32884.37 33489.40 30786.30 41274.33 35191.64 24288.26 35284.84 26872.96 41789.85 35971.27 34297.69 26976.60 35497.62 24996.18 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 30287.31 29788.54 32394.71 29074.27 35293.10 18188.20 35486.20 23692.18 27793.04 30973.21 33295.52 35179.32 33485.82 40695.83 300
ttmdpeth86.91 32186.57 31587.91 33789.68 39074.24 35391.49 24587.09 36579.84 31989.46 32797.86 6565.42 36891.04 39481.57 30896.74 28798.44 130
Patchmatch-test86.10 32686.01 32386.38 35990.63 37774.22 35489.57 30386.69 36885.73 24789.81 32192.83 31465.24 37191.04 39477.82 34595.78 30993.88 360
dcpmvs_293.96 14195.01 10490.82 27397.60 12274.04 35593.68 16398.85 1089.80 16797.82 3297.01 13391.14 15199.21 8490.56 15398.59 16899.19 36
MDA-MVSNet_test_wron88.16 29288.23 28387.93 33592.22 34473.71 35680.71 40688.84 34782.52 29694.88 18295.14 23882.70 26393.61 38083.28 28793.80 35996.46 270
YYNet188.17 29188.24 28287.93 33592.21 34573.62 35780.75 40588.77 34882.51 29794.99 17795.11 24082.70 26393.70 37983.33 28693.83 35896.48 268
test0.0.03 182.48 35681.47 36085.48 36789.70 38973.57 35884.73 38481.64 40183.07 28988.13 35086.61 39062.86 38489.10 40766.24 40390.29 39593.77 362
thres600view787.66 30087.10 30689.36 30896.05 22773.17 35992.72 19185.31 38491.89 10893.29 23190.97 34963.42 38198.39 19873.23 37696.99 27796.51 264
ANet_high94.83 10496.28 4190.47 28196.65 17373.16 36094.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16490.38 15999.68 1799.53 16
thres100view90087.35 30986.89 30988.72 31996.14 22073.09 36193.00 18385.31 38492.13 10193.26 23490.96 35063.42 38198.28 20971.27 38896.54 29194.79 338
RRT-MVS92.28 19493.01 16990.07 29394.06 30673.01 36295.36 9597.88 9392.24 9895.16 16797.52 8678.51 29899.29 7490.55 15495.83 30897.92 179
tfpn200view987.05 31886.52 31888.67 32095.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29194.79 338
thres40087.20 31386.52 31889.24 31295.77 24672.94 36391.89 23286.00 37490.84 14392.61 25889.80 36163.93 37798.28 20971.27 38896.54 29196.51 264
baseline283.38 34981.54 35988.90 31591.38 36772.84 36588.78 32581.22 40478.97 33479.82 41087.56 38461.73 38897.80 25674.30 37090.05 39696.05 290
ECVR-MVScopyleft90.12 24790.16 24190.00 29797.81 10572.68 36695.76 7978.54 41489.04 18195.36 15398.10 4470.51 34598.64 17487.10 23999.18 9498.67 104
thres20085.85 32785.18 32887.88 33894.44 29672.52 36789.08 31886.21 37188.57 19491.44 28988.40 37964.22 37598.00 23668.35 39795.88 30793.12 373
MG-MVS89.54 26089.80 25088.76 31894.88 27872.47 36889.60 30292.44 31685.82 24489.48 32695.98 20182.85 26097.74 26681.87 30395.27 32396.08 288
PAPM81.91 36380.11 37387.31 34493.87 31172.32 36984.02 39293.22 29969.47 39776.13 41589.84 36072.15 33797.23 29453.27 41789.02 39992.37 384
SCA87.43 30787.21 30188.10 33392.01 35371.98 37089.43 30888.11 35682.26 30088.71 34092.83 31478.65 29497.59 27479.61 33193.30 36894.75 340
testgi90.38 23791.34 21487.50 34297.49 12971.54 37189.43 30895.16 25588.38 19894.54 19294.68 26092.88 10993.09 38571.60 38697.85 23797.88 184
test111190.39 23690.61 23289.74 30198.04 8971.50 37295.59 8579.72 41189.41 17395.94 12098.14 4270.79 34398.81 14188.52 21499.32 6998.90 74
gg-mvs-nofinetune82.10 36181.02 36385.34 36887.46 40771.04 37394.74 12167.56 42196.44 2679.43 41198.99 845.24 41296.15 33767.18 40192.17 38488.85 400
GG-mvs-BLEND83.24 38685.06 41771.03 37494.99 11665.55 42274.09 41675.51 41644.57 41494.46 37159.57 41387.54 40384.24 409
ppachtmachnet_test88.61 28488.64 27088.50 32591.76 35970.99 37584.59 38792.98 30279.30 33292.38 26993.53 29979.57 28797.45 28286.50 25297.17 26797.07 241
our_test_387.55 30487.59 29487.44 34391.76 35970.48 37683.83 39490.55 34179.79 32192.06 28192.17 33178.63 29695.63 34984.77 27594.73 33796.22 282
CVMVSNet85.16 33284.72 33086.48 35592.12 34970.19 37792.32 21388.17 35556.15 41790.64 30495.85 20567.97 35496.69 32288.78 20990.52 39492.56 382
new_pmnet81.22 36681.01 36481.86 38990.92 37470.15 37884.03 39180.25 41070.83 38885.97 36989.78 36467.93 35584.65 41567.44 40091.90 38790.78 395
KD-MVS_2432*160082.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
miper_refine_blended82.17 35980.75 36686.42 35782.04 42170.09 37981.75 40290.80 33882.56 29490.37 30989.30 37042.90 41996.11 33974.47 36892.55 38093.06 374
MonoMVSNet88.46 28689.28 25785.98 36290.52 37970.07 38195.31 10194.81 26788.38 19893.47 22396.13 19473.21 33295.07 36382.61 29489.12 39892.81 379
DSMNet-mixed82.21 35881.56 35784.16 38089.57 39370.00 38290.65 26977.66 41654.99 41883.30 39297.57 8077.89 30390.50 39866.86 40295.54 31491.97 386
PatchmatchNetpermissive85.22 33184.64 33186.98 34789.51 39469.83 38390.52 27287.34 36478.87 33687.22 36392.74 31866.91 35896.53 32481.77 30486.88 40494.58 344
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 37480.28 37280.54 39384.73 41869.07 38472.54 41480.73 40787.80 21081.66 40481.73 41062.89 38389.84 40175.79 36294.65 34082.71 412
E-PMN80.72 37180.86 36580.29 39485.11 41668.77 38572.96 41281.97 40087.76 21283.25 39383.01 40962.22 38789.17 40677.15 35194.31 34782.93 411
testing22280.54 37378.53 38186.58 35492.54 33868.60 38686.24 36982.72 39883.78 28082.68 39784.24 40439.25 42495.94 34560.25 41195.09 32895.20 319
reproduce_monomvs87.13 31686.90 30887.84 33990.92 37468.15 38791.19 25393.75 28985.84 24394.21 20095.83 20842.99 41897.10 30389.46 18897.88 23598.26 144
mvs_anonymous90.37 23891.30 21587.58 34192.17 34868.00 38889.84 29694.73 27083.82 27993.22 23897.40 9587.54 20497.40 28687.94 22695.05 32997.34 230
testing9183.56 34882.45 35286.91 35092.92 32967.29 38986.33 36888.07 35786.22 23584.26 38385.76 39648.15 40997.17 29976.27 35894.08 35696.27 279
testing1181.98 36280.52 36986.38 35992.69 33367.13 39085.79 37584.80 38982.16 30181.19 40785.41 39945.24 41296.88 31674.14 37193.24 36995.14 323
CostFormer83.09 35182.21 35485.73 36389.27 39667.01 39190.35 27986.47 37070.42 39283.52 39093.23 30661.18 38996.85 31777.21 35088.26 40293.34 372
PatchT87.51 30588.17 28685.55 36690.64 37666.91 39292.02 22586.09 37392.20 9989.05 33297.16 11964.15 37696.37 33389.21 19992.98 37693.37 371
test-LLR83.58 34783.17 34684.79 37489.68 39066.86 39383.08 39784.52 39083.07 28982.85 39484.78 40262.86 38493.49 38182.85 29094.86 33394.03 355
test-mter81.21 36780.01 37484.79 37489.68 39066.86 39383.08 39784.52 39073.85 36982.85 39484.78 40243.66 41793.49 38182.85 29094.86 33394.03 355
testing9982.94 35381.72 35686.59 35392.55 33666.53 39586.08 37285.70 37785.47 25683.95 38585.70 39745.87 41197.07 30676.58 35593.56 36396.17 286
test250685.42 33084.57 33387.96 33497.81 10566.53 39596.14 6156.35 42489.04 18193.55 22198.10 4442.88 42198.68 16888.09 22199.18 9498.67 104
PVSNet_070.34 2174.58 38472.96 38779.47 39590.63 37766.24 39773.26 41183.40 39663.67 41278.02 41278.35 41572.53 33489.59 40356.68 41460.05 41982.57 413
ETVMVS79.85 37877.94 38585.59 36492.97 32766.20 39886.13 37180.99 40681.41 30783.52 39083.89 40541.81 42294.98 36756.47 41594.25 34995.61 313
WB-MVSnew84.20 34283.89 34185.16 37191.62 36466.15 39988.44 33381.00 40576.23 35487.98 35287.77 38384.98 24293.35 38362.85 41094.10 35595.98 292
testing383.66 34682.52 35187.08 34595.84 24065.84 40089.80 29877.17 41888.17 20390.84 29988.63 37630.95 42698.11 22584.05 28297.19 26697.28 234
ADS-MVSNet82.25 35781.55 35884.34 37889.04 39765.30 40187.57 33985.13 38872.71 37884.46 38092.45 32368.08 35292.33 38870.58 39383.97 40895.38 317
tpmvs84.22 34183.97 33984.94 37287.09 40965.18 40291.21 25288.35 35182.87 29285.21 37290.96 35065.24 37196.75 32079.60 33385.25 40792.90 378
tpm281.46 36480.35 37184.80 37389.90 38765.14 40390.44 27485.36 38365.82 40882.05 40192.44 32557.94 39596.69 32270.71 39288.49 40192.56 382
EPMVS81.17 36880.37 37083.58 38485.58 41565.08 40490.31 28171.34 42077.31 34785.80 37091.30 34459.38 39392.70 38779.99 32482.34 41392.96 377
tpm cat180.61 37279.46 37584.07 38188.78 39965.06 40589.26 31488.23 35362.27 41381.90 40389.66 36762.70 38695.29 36071.72 38480.60 41591.86 389
DeepMVS_CXcopyleft53.83 40270.38 42564.56 40648.52 42633.01 42065.50 42074.21 41756.19 39946.64 42338.45 42170.07 41750.30 418
PVSNet76.22 2082.89 35482.37 35384.48 37693.96 30864.38 40778.60 40888.61 34971.50 38384.43 38286.36 39374.27 32894.60 36969.87 39593.69 36194.46 346
TESTMET0.1,179.09 38178.04 38382.25 38887.52 40664.03 40883.08 39780.62 40870.28 39380.16 40983.22 40844.13 41590.56 39779.95 32593.36 36692.15 385
tpm84.38 34084.08 33785.30 36990.47 38163.43 40989.34 31185.63 37977.24 34887.62 35895.03 24461.00 39197.30 29079.26 33591.09 39295.16 321
Syy-MVS84.81 33584.93 32984.42 37791.71 36163.36 41085.89 37381.49 40281.03 31085.13 37481.64 41177.44 30695.00 36485.94 25994.12 35394.91 334
UBG80.28 37678.94 37984.31 37992.86 33061.77 41183.87 39383.31 39777.33 34682.78 39683.72 40647.60 41096.06 34165.47 40593.48 36595.11 326
WBMVS84.00 34483.48 34385.56 36592.71 33261.52 41283.82 39589.38 34679.56 32690.74 30193.20 30748.21 40897.28 29175.63 36398.10 21797.88 184
MDTV_nov1_ep1383.88 34289.42 39561.52 41288.74 32787.41 36273.99 36884.96 37894.01 28365.25 37095.53 35078.02 34193.16 371
WAC-MVS61.25 41474.55 367
myMVS_eth3d79.62 37978.26 38283.72 38391.71 36161.25 41485.89 37381.49 40281.03 31085.13 37481.64 41132.12 42595.00 36471.17 39194.12 35394.91 334
UWE-MVS80.29 37579.10 37683.87 38291.97 35559.56 41686.50 36777.43 41775.40 35987.79 35688.10 38144.08 41696.90 31564.23 40696.36 29595.14 323
gm-plane-assit87.08 41059.33 41771.22 38483.58 40797.20 29673.95 372
tpmrst82.85 35582.93 34982.64 38787.65 40458.99 41890.14 28687.90 35975.54 35783.93 38691.63 34166.79 36195.36 35781.21 31381.54 41493.57 370
dp79.28 38078.62 38081.24 39285.97 41456.45 41986.91 35385.26 38672.97 37681.45 40689.17 37456.01 40095.45 35573.19 37776.68 41691.82 390
new-patchmatchnet88.97 27590.79 22883.50 38594.28 30055.83 42085.34 38093.56 29386.18 23795.47 14595.73 21683.10 25596.51 32685.40 26498.06 22098.16 152
dmvs_testset78.23 38378.99 37775.94 39891.99 35455.34 42188.86 32278.70 41382.69 29381.64 40579.46 41375.93 32285.74 41348.78 41982.85 41286.76 406
SSC-MVS90.16 24592.96 17081.78 39097.88 10048.48 42290.75 26487.69 36096.02 3796.70 8497.63 7785.60 23697.80 25685.73 26198.60 16799.06 50
WB-MVS89.44 26392.15 19381.32 39197.73 11248.22 42389.73 29987.98 35895.24 4296.05 11696.99 13485.18 23996.95 31082.45 29897.97 22998.78 87
MVS-HIRNet78.83 38280.60 36873.51 40093.07 32347.37 42487.10 35078.00 41568.94 39877.53 41397.26 10971.45 34194.62 36863.28 40988.74 40078.55 415
PMMVS281.31 36583.44 34474.92 39990.52 37946.49 42569.19 41585.23 38784.30 27587.95 35394.71 25876.95 31584.36 41664.07 40798.09 21893.89 359
MDTV_nov1_ep13_2view42.48 42688.45 33267.22 40383.56 38966.80 35972.86 37994.06 354
dongtai53.72 38653.79 38953.51 40379.69 42336.70 42777.18 40932.53 42971.69 38168.63 41960.79 41826.65 42773.11 41930.67 42236.29 42150.73 417
kuosan43.63 38844.25 39241.78 40466.04 42634.37 42875.56 41032.62 42853.25 41950.46 42251.18 41925.28 42849.13 42213.44 42330.41 42241.84 419
tmp_tt37.97 38944.33 39118.88 40511.80 42821.54 42963.51 41645.66 4274.23 42251.34 42150.48 42059.08 39422.11 42444.50 42068.35 41813.00 420
test_method50.44 38748.94 39054.93 40139.68 42712.38 43028.59 41890.09 3426.82 42141.10 42378.41 41454.41 40170.69 42150.12 41851.26 42081.72 414
test1239.49 39112.01 3941.91 4062.87 4291.30 43182.38 4001.34 4311.36 4242.84 4256.56 4232.45 4290.97 4252.73 4245.56 4233.47 421
testmvs9.02 39211.42 3951.81 4072.77 4301.13 43279.44 4071.90 4301.18 4252.65 4266.80 4221.95 4300.87 4262.62 4253.45 4243.44 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.35 39031.13 3930.00 4080.00 4310.00 4330.00 41995.58 2420.00 4260.00 42791.15 34693.43 890.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.56 39310.09 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42690.77 1570.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.56 39310.08 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42790.69 3550.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145275.31 36195.87 12595.75 21592.93 10696.34 33687.18 23898.68 15998.04 161
eth-test20.00 431
eth-test0.00 431
test_241102_TWO98.10 6391.95 10497.54 4397.25 11095.37 3299.35 6293.29 8099.25 8398.49 126
9.1494.81 10997.49 12994.11 14798.37 2687.56 21895.38 15096.03 19994.66 6499.08 10090.70 15098.97 120
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5399.42 5098.89 75
GSMVS94.75 340
sam_mvs166.64 36294.75 340
sam_mvs66.41 363
MTGPAbinary97.62 115
test_post190.21 2835.85 42565.36 36996.00 34379.61 331
test_post6.07 42465.74 36795.84 347
patchmatchnet-post91.71 33966.22 36597.59 274
MTMP94.82 11954.62 425
test9_res88.16 21998.40 18397.83 191
agg_prior287.06 24198.36 19297.98 170
test_prior290.21 28389.33 17690.77 30094.81 25290.41 16788.21 21598.55 171
旧先验290.00 29168.65 39992.71 25696.52 32585.15 267
新几何290.02 290
无先验89.94 29295.75 23270.81 38998.59 18081.17 31494.81 336
原ACMM289.34 311
testdata298.03 23080.24 321
segment_acmp92.14 124
testdata188.96 32088.44 197
plane_prior597.81 10198.95 12089.26 19698.51 17798.60 116
plane_prior495.59 220
plane_prior294.56 13091.74 121
plane_prior197.38 134
n20.00 432
nn0.00 432
door-mid92.13 323
test1196.65 193
door91.26 333
HQP-NCC96.36 19691.37 24787.16 22388.81 335
ACMP_Plane96.36 19691.37 24787.16 22388.81 335
BP-MVS86.55 250
HQP4-MVS88.81 33598.61 17698.15 153
HQP3-MVS97.31 14397.73 241
HQP2-MVS84.76 243
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163