This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18998.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4599.98 299.85 5
mvs5depth98.06 5298.58 2696.51 21198.97 11489.65 27099.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16897.21 7299.76 5799.40 105
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3899.67 299.73 499.65 699.15 399.86 2697.22 7199.92 1499.77 13
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7298.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
DVP-MVS++97.96 5997.90 6598.12 8697.75 26995.40 10599.03 898.89 11196.62 10698.62 7898.30 13996.97 6999.75 7495.70 13799.25 21099.21 147
FOURS199.59 1798.20 899.03 899.25 3498.96 2298.87 59
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12997.75 5499.89 2399.62 36
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4799.37 499.67 899.43 1795.61 14199.72 9598.12 3699.86 2899.73 22
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8998.53 2999.86 2899.95 2
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11198.49 3599.38 2399.14 4995.44 14799.84 3296.47 10099.80 5099.47 84
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31697.91 5797.30 19198.06 17788.46 28999.85 2993.85 23799.40 17799.32 122
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 5099.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
MVSFormer96.14 18996.36 18195.49 26497.68 27787.81 31298.67 1599.02 8296.50 11594.48 32396.15 31486.90 30699.92 698.73 2299.13 22598.74 231
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8296.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32998.31 4197.09 21195.45 33997.17 5698.50 36498.67 2597.45 34596.48 379
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 4095.62 16499.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7295.43 17697.41 18997.50 22797.98 1999.79 4995.58 14999.57 11399.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31198.36 3998.14 13497.98 18688.23 29399.71 10993.10 25899.72 7099.38 112
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4299.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
FE-MVS92.95 31292.22 31795.11 27797.21 31888.33 29798.54 2393.66 36189.91 32396.21 26998.14 16270.33 39799.50 19487.79 35198.24 30597.51 345
test250689.86 35689.16 36191.97 37498.95 11576.83 41198.54 2361.07 42696.20 12997.07 21299.16 4655.19 42099.69 12496.43 10299.83 4299.38 112
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3596.23 12899.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27597.19 25296.88 8099.86 2697.50 6499.73 6698.41 263
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5698.76 2796.79 22899.34 2696.61 9498.82 33096.38 10499.50 14496.98 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5199.22 1099.22 3498.96 6597.35 4499.92 697.79 5199.93 1199.79 11
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27293.65 18098.49 2898.88 11896.86 10197.11 20598.55 10795.82 13099.73 8995.94 12799.42 17299.13 163
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5699.36 599.29 2999.06 5697.27 4899.93 497.71 5699.91 1799.70 26
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5295.83 15599.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4799.33 699.30 2899.00 5997.27 4899.92 697.64 6099.92 1499.75 20
LS3D97.77 9097.50 11398.57 5196.24 34497.58 2898.45 3198.85 12798.58 3297.51 18097.94 19095.74 13799.63 15395.19 17398.97 24398.51 256
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29996.92 27296.81 8699.87 2496.87 8999.76 5798.51 256
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3698.43 3698.89 5798.83 7894.30 18199.81 4197.87 4699.91 1799.77 13
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 8095.88 15197.88 16398.22 15698.15 1699.74 8396.50 9999.62 9299.42 102
ab-mvs96.59 17096.59 16696.60 20498.64 15492.21 21898.35 3597.67 27294.45 21496.99 21798.79 7994.96 16399.49 19990.39 31699.07 23598.08 298
EGC-MVSNET83.08 38577.93 38898.53 5499.57 1997.55 3098.33 3898.57 1894.71 42310.38 42498.90 7395.60 14299.50 19495.69 13999.61 9898.55 252
test111194.53 26894.81 24593.72 33199.06 10081.94 38498.31 3983.87 41796.37 12198.49 9099.17 4581.49 34399.73 8996.64 9399.86 2899.49 75
ECVR-MVScopyleft94.37 27494.48 26394.05 32698.95 11583.10 37498.31 3982.48 41996.20 12998.23 12399.16 4681.18 34699.66 14395.95 12699.83 4299.38 112
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27997.01 26696.99 6899.82 3697.66 5999.64 8898.39 266
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9397.57 7299.27 3099.22 3598.32 1299.50 19497.09 7999.75 6499.50 67
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30298.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
FA-MVS(test-final)94.91 24694.89 23794.99 28597.51 29688.11 30598.27 4495.20 34392.40 28296.68 23698.60 10283.44 33499.28 26893.34 25098.53 28797.59 342
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13199.05 1799.01 4598.65 9795.37 14999.90 1697.57 6199.91 1799.77 13
GG-mvs-BLEND90.60 38591.00 41884.21 36898.23 4672.63 42582.76 41684.11 41756.14 41596.79 40372.20 41592.09 40690.78 414
GBi-Net96.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
test196.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17697.41 8399.00 4799.19 3895.47 14599.73 8995.83 13499.76 5799.30 127
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7297.40 8499.37 2499.08 5598.79 699.47 20497.74 5599.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 12098.23 4799.48 1799.27 3198.47 1199.55 18196.52 9899.53 13099.60 37
gg-mvs-nofinetune88.28 37286.96 37892.23 37192.84 41484.44 36498.19 5274.60 42299.08 1487.01 41399.47 1356.93 41298.23 38278.91 40495.61 38694.01 404
QAPM95.88 20095.57 21696.80 19397.90 24291.84 23498.18 5398.73 15988.41 34296.42 25498.13 16494.73 16599.75 7488.72 34098.94 24798.81 221
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15997.79 5999.42 2197.83 19894.40 17999.78 5395.91 12999.76 5799.46 86
MIMVSNet93.42 30292.86 30295.10 27998.17 21688.19 29998.13 5593.69 35892.07 28495.04 31198.21 15780.95 34999.03 31281.42 39698.06 31298.07 300
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3696.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10395.75 15997.91 16098.06 17796.89 7899.76 6895.32 16799.57 11399.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5695.96 14498.59 8298.69 9296.94 7199.81 4196.64 9399.58 11099.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4899.36 18399.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22695.60 9598.04 5998.70 16898.13 5096.93 22298.45 11895.30 15299.62 15895.64 14498.96 24499.24 144
MVSMamba_PlusPlus97.43 11897.98 6095.78 24898.88 12689.70 26898.03 6198.85 12799.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12297.73 332
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5398.04 5598.62 7898.66 9493.75 19599.78 5397.23 7099.84 3899.73 22
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 218
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22398.58 3298.78 6699.39 1898.21 1499.56 17792.65 26299.86 2899.52 60
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4398.34 4098.78 6698.52 11097.32 4599.45 21294.08 22799.67 8399.13 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
balanced_conf0396.88 15097.29 12395.63 25597.66 28289.47 27597.95 6698.89 11195.94 14697.77 17398.55 10792.23 23499.68 12997.05 8399.61 9897.73 332
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34199.26 998.39 10299.18 4287.85 30099.62 15895.13 18299.09 23299.35 120
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10396.11 13496.89 22597.45 22996.85 8399.78 5395.19 17399.63 9099.38 112
mvsmamba94.91 24694.41 26896.40 22097.65 28491.30 24497.92 6995.32 34091.50 29895.54 29898.38 12783.06 33799.68 12992.46 26797.84 32198.23 286
ANet_high98.31 3698.94 696.41 21999.33 5189.64 27197.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6299.98 299.77 13
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6498.31 4199.02 4498.74 8597.68 3099.61 16597.77 5399.85 3699.70 26
ambc96.56 20998.23 20691.68 23897.88 7298.13 24498.42 9898.56 10694.22 18399.04 30994.05 23099.35 18898.95 195
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 22098.79 2699.23 3398.86 7795.76 13699.61 16595.49 15199.36 18399.23 145
sasdasda97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
canonicalmvs97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19898.25 4699.13 3898.66 9496.65 9199.69 12493.92 23599.62 9298.91 205
MGCFI-Net97.20 13297.23 12897.08 17197.68 27793.71 17597.79 7799.09 6197.40 8496.59 24493.96 36397.67 3199.35 24996.43 10298.50 29298.17 294
Anonymous2024052197.07 13697.51 11195.76 24999.35 4988.18 30097.78 7898.40 20797.11 9498.34 11099.04 5789.58 27699.79 4998.09 3899.93 1199.30 127
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25997.64 21696.49 10199.72 9595.66 14299.37 18099.45 90
X-MVStestdata92.86 31390.83 34298.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25936.50 42196.49 10199.72 9595.66 14299.37 18099.45 90
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9398.40 3899.07 4298.98 6296.89 7899.75 7497.19 7599.79 5299.55 53
dcpmvs_297.12 13497.99 5994.51 31099.11 9284.00 36997.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 15099.78 5599.58 39
UGNet96.81 15796.56 16997.58 12496.64 33593.84 17097.75 8297.12 29596.47 11993.62 34798.88 7593.22 20599.53 18695.61 14699.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15196.04 13997.10 20697.73 21196.53 9899.78 5395.16 17799.50 14499.46 86
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22397.16 32091.96 23097.74 8498.84 13187.26 35394.36 32598.01 18393.95 19099.67 13790.70 30898.75 26897.35 352
RRT-MVS95.78 20496.25 18594.35 31696.68 33484.47 36397.72 8699.11 5397.23 9197.27 19398.72 8686.39 31099.79 4995.49 15197.67 33398.80 222
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
MonoMVSNet93.30 30693.96 28491.33 38194.14 40281.33 38997.68 8996.69 31395.38 17896.32 25998.42 12184.12 33096.76 40590.78 30192.12 40595.89 386
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11195.65 16298.51 8796.46 29992.15 23699.81 4195.14 18098.58 28699.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LFMVS95.32 22994.88 23996.62 20398.03 22891.47 24197.65 9190.72 39599.11 1297.89 16298.31 13579.20 35499.48 20293.91 23699.12 22898.93 201
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23997.65 9190.31 39998.89 2498.93 5399.36 2384.57 32699.92 697.81 4999.56 11699.39 110
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 23093.00 26598.16 13198.06 17795.89 12599.72 9595.67 14199.10 23199.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs397.38 12197.56 10696.84 19198.63 15892.81 20297.60 9499.61 1690.87 30898.76 7199.66 494.03 18797.90 38899.24 699.68 8199.81 9
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13196.00 14297.22 19597.62 21896.87 8299.76 6895.48 15599.43 16999.46 86
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13196.05 13797.49 18297.54 22397.07 6199.70 11795.61 14699.46 15699.30 127
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13796.05 13797.46 18797.63 21796.77 8799.76 6895.61 14699.46 15699.49 75
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6896.19 13198.48 9298.70 9194.72 16699.24 27894.37 21699.33 19699.17 154
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10697.10 9598.85 6098.88 7595.03 15999.67 13797.39 6899.65 8699.26 139
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.60 9699.76 6895.49 15199.20 21599.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.94 7195.49 15199.20 21599.26 139
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10897.72 6598.25 12198.13 16497.10 5899.75 7495.44 15999.24 21399.32 122
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3898.21 4899.25 3298.51 11298.21 1499.40 23094.79 19899.72 7099.32 122
Vis-MVSNet (Re-imp)95.11 23894.85 24195.87 24599.12 9189.17 28097.54 10494.92 34896.50 11596.58 24597.27 24783.64 33399.48 20288.42 34599.67 8398.97 192
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15996.27 12595.59 29697.75 20896.30 11399.78 5393.70 24399.48 15199.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13195.76 15796.93 22297.43 23197.26 5299.79 4996.06 11699.53 13099.45 90
tttt051793.31 30592.56 31395.57 25898.71 14787.86 30997.44 10787.17 41195.79 15697.47 18696.84 27664.12 40499.81 4196.20 11399.32 19899.02 186
v1097.55 10897.97 6196.31 22498.60 16289.64 27197.44 10799.02 8296.60 10898.72 7599.16 4693.48 20099.72 9598.76 2199.92 1499.58 39
v897.60 10498.06 5396.23 22698.71 14789.44 27697.43 10998.82 14597.29 9098.74 7399.10 5293.86 19199.68 12998.61 2699.94 899.56 50
PMVScopyleft89.60 1796.71 16596.97 14495.95 24099.51 2897.81 2097.42 11097.49 28397.93 5695.95 27998.58 10396.88 8096.91 40189.59 32899.36 18393.12 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13797.32 8898.06 14497.85 19796.65 9199.77 6395.00 18999.11 22999.32 122
FMVSNet593.39 30392.35 31496.50 21295.83 36590.81 25597.31 11298.27 22192.74 27496.27 26498.28 14462.23 40699.67 13790.86 29799.36 18399.03 183
HY-MVS91.43 1592.58 31791.81 32394.90 29096.49 33988.87 28697.31 11294.62 35085.92 36890.50 39196.84 27685.05 32199.40 23083.77 38995.78 38396.43 380
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9696.35 12498.13 13595.95 32595.99 12299.66 14394.36 21899.73 6698.59 248
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15997.69 6897.90 16197.96 18795.81 13499.82 3696.13 11599.61 9899.45 90
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15292.89 27196.01 27897.13 25592.23 23499.67 13792.24 26999.34 19199.17 154
EU-MVSNet94.25 27594.47 26493.60 33498.14 22282.60 37997.24 11792.72 37285.08 37798.48 9298.94 6782.59 34198.76 33797.47 6699.53 13099.44 100
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9394.93 19998.58 8398.92 6997.31 4699.41 22894.44 21199.43 16999.59 38
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6496.57 11398.07 14398.38 12796.22 11899.14 29294.71 20599.31 20198.52 255
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14795.96 14497.53 17897.40 23396.93 7399.77 6395.04 18699.35 18899.42 102
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 11096.58 11098.08 14197.87 19697.02 6699.76 6895.25 17099.59 10799.40 105
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 16396.67 16296.87 18897.96 23791.88 23297.15 12198.06 25395.59 16698.50 8998.62 9989.51 28099.65 14594.99 19199.60 10499.07 178
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14798.98 2198.74 7398.49 11395.80 13599.49 19995.04 18699.44 16099.11 171
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9995.75 15997.62 17597.59 22097.61 3799.77 6396.34 10799.44 16099.36 118
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6895.45 17397.55 17797.94 19097.11 5799.78 5394.77 20199.46 15699.48 81
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5695.32 18097.83 16997.88 19596.44 10699.72 9594.59 21099.39 17899.25 143
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6198.42 3799.03 4398.71 8996.93 7399.83 3497.09 7999.63 9099.56 50
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33398.59 3198.51 8798.72 8692.54 22799.58 17096.02 12199.49 14799.12 168
wuyk23d93.25 30895.20 22187.40 39996.07 35695.38 10797.04 12994.97 34695.33 17999.70 798.11 16898.14 1791.94 41777.76 40899.68 8174.89 417
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22593.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31999.06 23898.32 275
MAR-MVS94.21 27893.03 29897.76 11196.94 32997.44 3796.97 13397.15 29387.89 35192.00 38092.73 38192.14 23799.12 29683.92 38697.51 34196.73 373
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_vis1_n95.67 21095.89 20495.03 28298.18 21389.89 26696.94 13499.28 3188.25 34698.20 12598.92 6986.69 30997.19 39697.70 5898.82 26298.00 312
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18498.58 3298.78 6699.39 1897.80 2599.62 15894.98 19299.86 2899.52 60
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29696.58 11097.21 19798.19 15884.14 32899.78 5395.89 13096.17 37798.89 209
test072699.24 6195.51 9996.89 13798.89 11195.92 14898.64 7698.31 13597.06 62
baseline97.44 11697.78 8296.43 21698.52 17390.75 25696.84 13899.03 8096.51 11497.86 16798.02 18196.67 9099.36 24597.09 7999.47 15399.19 151
API-MVS95.09 24095.01 23195.31 27096.61 33694.02 16396.83 13997.18 29295.60 16595.79 28794.33 36094.54 17598.37 37585.70 37198.52 28893.52 406
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31799.27 3099.33 2894.04 18696.03 40997.14 7797.83 32299.78 12
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
test_fmvs1_n95.21 23395.28 21994.99 28598.15 22089.13 28396.81 14199.43 2386.97 35997.21 19798.92 6983.00 33897.13 39798.09 3898.94 24798.72 234
test_fmvs296.38 18196.45 17796.16 23197.85 24491.30 24496.81 14199.45 2189.24 33098.49 9099.38 2088.68 28797.62 39398.83 1899.32 19899.57 46
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13796.11 13499.08 4098.24 15197.87 2399.72 9595.44 15999.51 14099.14 161
OPU-MVS97.64 12198.01 23195.27 11596.79 14597.35 24296.97 6998.51 36391.21 28999.25 21099.14 161
BP-MVS195.36 22594.86 24096.89 18698.35 19291.72 23696.76 14795.21 34296.48 11896.23 26797.19 25275.97 37499.80 4897.91 4499.60 10499.15 157
PHI-MVS96.96 14496.53 17398.25 7597.48 29896.50 6396.76 14798.85 12793.52 24296.19 27196.85 27595.94 12399.42 21993.79 23999.43 16998.83 218
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14998.23 22695.92 14898.40 10098.28 14497.06 6299.71 10995.48 15599.52 13599.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14998.89 11199.75 7495.48 15599.52 13599.53 57
Anonymous20240521196.34 18295.98 19897.43 14398.25 20393.85 16996.74 14994.41 35397.72 6598.37 10398.03 18087.15 30599.53 18694.06 22899.07 23598.92 204
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14998.73 15991.61 29598.48 9298.36 12996.53 9899.68 12995.17 17599.54 12699.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15399.05 7298.67 2898.84 6198.45 11897.58 3899.88 2196.45 10199.86 2899.54 54
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15498.73 15998.66 2998.56 8498.41 12396.84 8499.69 12494.82 19699.81 4798.64 242
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15599.82 195.44 17599.64 1199.52 998.96 499.74 8399.38 399.86 2899.81 9
SSC-MVS95.92 19897.03 14192.58 36399.28 5578.39 40096.68 15695.12 34498.90 2399.11 3998.66 9491.36 25199.68 12995.00 18999.16 22199.67 28
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15698.83 13795.21 18398.36 10698.13 16498.13 1899.62 15896.04 11999.54 12699.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 31092.64 31194.62 30397.34 31187.20 32496.67 15893.02 36794.71 20496.51 25195.83 32881.64 34298.60 35690.00 32288.06 41398.07 300
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15999.15 4793.68 23998.89 5799.30 2996.42 10799.37 24299.03 1399.83 4299.66 30
MTMP96.55 16074.60 422
SD-MVS97.37 12397.70 8696.35 22198.14 22295.13 12496.54 16198.92 10895.94 14699.19 3598.08 17097.74 2895.06 41195.24 17199.54 12698.87 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16298.75 15696.36 12296.16 27296.77 28291.91 24699.46 20792.59 26499.20 21599.28 134
plane_prior296.50 16296.36 122
GDP-MVS95.39 22494.89 23796.90 18598.26 20291.91 23196.48 16499.28 3195.06 19296.54 25097.12 25774.83 37899.82 3697.19 7599.27 20798.96 193
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 33198.69 596.42 16598.09 24795.86 15395.15 30695.54 33694.26 18299.81 4194.06 22898.51 29198.47 260
MM96.87 15196.62 16397.62 12297.72 27493.30 19096.39 16692.61 37597.90 5896.76 23398.64 9890.46 26399.81 4199.16 999.94 899.76 18
thres100view90091.76 33591.26 33593.26 34098.21 20784.50 36296.39 16690.39 39696.87 10096.33 25893.08 37373.44 38899.42 21978.85 40597.74 32695.85 387
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16698.98 9995.05 19398.06 14498.02 18195.86 12699.56 17794.37 21699.64 8899.00 187
Patchmtry95.03 24394.59 25896.33 22294.83 39190.82 25396.38 16997.20 29096.59 10997.49 18298.57 10477.67 36199.38 23792.95 26199.62 9298.80 222
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18999.09 9591.43 24396.37 17099.11 5394.19 22299.01 4599.25 3296.30 11399.38 23799.00 1499.88 2499.73 22
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 17198.79 14795.07 19197.88 16398.35 13097.24 5499.72 9596.05 11899.58 11099.45 90
VNet96.84 15296.83 15396.88 18798.06 22792.02 22896.35 17297.57 28297.70 6797.88 16397.80 20492.40 23299.54 18494.73 20398.96 24499.08 176
V4297.04 13797.16 13396.68 20298.59 16491.05 24896.33 17398.36 21294.60 20897.99 15098.30 13993.32 20299.62 15897.40 6799.53 13099.38 112
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17499.65 1295.59 16699.71 599.01 5897.66 3399.60 16799.44 299.83 4297.90 318
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17498.77 15292.96 27097.44 18897.58 22295.84 12799.74 8391.96 27299.35 18899.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 12997.49 11496.59 20599.47 3390.58 25896.27 17698.53 19197.77 6098.46 9598.41 12394.59 17299.68 12994.61 20699.29 20499.52 60
thres600view792.03 33091.43 32893.82 32898.19 21084.61 36196.27 17690.39 39696.81 10296.37 25793.11 36973.44 38899.49 19980.32 40097.95 31697.36 350
EPNet93.72 29392.62 31297.03 17687.61 42492.25 21696.27 17691.28 38896.74 10487.65 41097.39 23785.00 32299.64 14992.14 27099.48 15199.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 32491.83 32293.25 34196.18 34983.68 37296.27 17693.68 36076.97 41392.54 37699.18 4289.20 28598.55 36083.88 38798.60 28597.51 345
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 18099.06 6893.67 24098.64 7699.00 5996.23 11799.36 24598.99 1599.80 5099.53 57
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 18198.89 11193.71 23697.97 15497.75 20897.44 4099.63 15393.22 25599.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18299.02 8293.92 23298.62 7898.99 6197.69 2999.62 15896.18 11499.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18398.63 18293.82 23398.54 8598.33 13393.98 18899.05 30795.99 12499.45 15998.61 247
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18499.73 595.05 19399.60 1599.34 2698.68 899.72 9599.21 799.85 3699.76 18
MVS_Test96.27 18496.79 15794.73 30096.94 32986.63 33396.18 18498.33 21694.94 19796.07 27598.28 14495.25 15399.26 27297.21 7297.90 31998.30 279
CR-MVSNet93.29 30792.79 30594.78 29895.44 37888.15 30196.18 18497.20 29084.94 38294.10 33198.57 10477.67 36199.39 23495.17 17595.81 38096.81 370
RPMNet94.68 26094.60 25694.90 29095.44 37888.15 30196.18 18498.86 12397.43 7894.10 33198.49 11379.40 35399.76 6895.69 13995.81 38096.81 370
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18899.57 1795.66 16199.52 1698.71 8997.04 6499.64 14999.21 799.87 2698.69 238
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19398.79 13691.44 24296.14 18999.06 6894.19 22298.82 6398.98 6296.22 11899.38 23798.98 1699.86 2899.58 39
WB-MVS95.50 21696.62 16392.11 37399.21 7377.26 41096.12 19095.40 33998.62 3098.84 6198.26 14991.08 25499.50 19493.37 24898.70 27499.58 39
EIA-MVS96.04 19395.77 20996.85 18997.80 25792.98 19896.12 19099.16 4394.65 20693.77 34291.69 39495.68 13899.67 13794.18 22398.85 25897.91 317
Effi-MVS+96.19 18796.01 19596.71 19997.43 30492.19 22296.12 19099.10 5695.45 17393.33 35894.71 35297.23 5599.56 17793.21 25697.54 33998.37 268
alignmvs96.01 19595.52 21797.50 13497.77 26694.71 13396.07 19396.84 30597.48 7796.78 23294.28 36185.50 31999.40 23096.22 11298.73 27298.40 264
PatchT93.75 29293.57 29094.29 32095.05 38787.32 32296.05 19492.98 36897.54 7594.25 32698.72 8675.79 37599.24 27895.92 12895.81 38096.32 381
Patchmatch-test93.60 29893.25 29594.63 30296.14 35487.47 31896.04 19594.50 35293.57 24196.47 25296.97 26776.50 36998.61 35490.67 30998.41 29897.81 326
thisisatest053092.71 31691.76 32595.56 26098.42 18788.23 29896.03 19687.35 41094.04 22996.56 24795.47 33864.03 40599.77 6394.78 20099.11 22998.68 241
9.1496.69 16098.53 17296.02 19798.98 9993.23 25297.18 20097.46 22896.47 10399.62 15892.99 25999.32 198
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27694.15 15996.02 19798.43 20193.17 26097.30 19197.38 23995.48 14499.28 26893.74 24099.34 19198.88 213
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ttmdpeth94.05 28594.15 27793.75 33095.81 36785.32 34796.00 19994.93 34792.07 28494.19 32899.09 5385.73 31696.41 40890.98 29398.52 28899.53 57
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19999.64 1594.99 19699.43 2099.18 4298.51 1099.71 10999.13 1099.84 3899.67 28
114514_t93.96 28893.22 29696.19 22999.06 10090.97 25195.99 20198.94 10673.88 41693.43 35596.93 27092.38 23399.37 24289.09 33599.28 20598.25 285
FMVSNet395.26 23294.94 23296.22 22896.53 33890.06 26295.99 20197.66 27494.11 22697.99 15097.91 19480.22 35299.63 15394.60 20799.44 16098.96 193
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20398.20 23095.51 17095.06 30896.53 29594.10 18599.70 11794.29 21999.15 22299.13 163
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20399.18 4197.67 7199.00 4798.48 11797.64 3499.50 19496.96 8699.54 12699.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testgi96.07 19196.50 17694.80 29699.26 5787.69 31595.96 20598.58 18895.08 19098.02 14996.25 31097.92 2097.60 39488.68 34298.74 26999.11 171
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20598.97 10294.55 21298.82 6398.76 8497.31 4699.29 26697.20 7499.44 16099.38 112
PAPM_NR94.61 26494.17 27695.96 23898.36 19191.23 24695.93 20797.95 25592.98 26693.42 35694.43 35990.53 26198.38 37387.60 35596.29 37498.27 283
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20899.04 7997.51 7698.22 12497.81 20394.68 16999.78 5397.14 7799.75 6499.41 104
test_vis1_n_192095.77 20596.41 17993.85 32798.55 16984.86 35895.91 20999.71 692.72 27597.67 17498.90 7387.44 30398.73 33997.96 4298.85 25897.96 314
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 21099.41 2693.36 24799.00 4798.44 12096.46 10599.65 14599.09 1199.76 5799.45 90
131492.38 32092.30 31592.64 36295.42 38085.15 35295.86 21196.97 30285.40 37590.62 38893.06 37491.12 25397.80 39186.74 36695.49 38894.97 399
MVS90.02 35189.20 35892.47 36694.71 39286.90 32995.86 21196.74 31164.72 41890.62 38892.77 37992.54 22798.39 37279.30 40395.56 38792.12 410
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21399.32 2793.22 25398.91 5698.49 11396.31 11299.64 14999.07 1299.76 5799.40 105
casdiffmvspermissive97.50 11197.81 7796.56 20998.51 17591.04 24995.83 21399.09 6197.23 9198.33 11398.30 13997.03 6599.37 24296.58 9799.38 17999.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVStest191.89 33291.45 32793.21 34489.01 42184.87 35795.82 21595.05 34591.50 29898.75 7299.19 3857.56 41095.11 41097.78 5298.37 29999.64 35
tpmvs90.79 34790.87 34090.57 38692.75 41576.30 41295.79 21693.64 36291.04 30791.91 38196.26 30977.19 36798.86 32989.38 33289.85 41096.56 377
mvsany_test396.21 18695.93 20297.05 17397.40 30694.33 15295.76 21794.20 35589.10 33199.36 2599.60 893.97 18997.85 38995.40 16698.63 28198.99 190
MSLP-MVS++96.42 18096.71 15995.57 25897.82 25290.56 26095.71 21898.84 13194.72 20396.71 23597.39 23794.91 16498.10 38695.28 16899.02 24098.05 307
tfpn200view991.55 33791.00 33793.21 34498.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32695.85 387
Anonymous2023120695.27 23195.06 23095.88 24498.72 14489.37 27795.70 21997.85 26188.00 34996.98 21997.62 21891.95 24399.34 25289.21 33399.53 13098.94 197
thres40091.68 33691.00 33793.71 33298.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32697.36 350
reproduce_monomvs92.05 32992.26 31691.43 37995.42 38075.72 41595.68 22297.05 29994.47 21397.95 15798.35 13055.58 41799.05 30796.36 10599.44 16099.51 64
test20.0396.58 17296.61 16596.48 21498.49 17991.72 23695.68 22297.69 27196.81 10298.27 12097.92 19394.18 18498.71 34290.78 30199.66 8599.00 187
hse-mvs295.77 20595.09 22797.79 10997.84 24995.51 9995.66 22495.43 33896.58 11097.21 19796.16 31384.14 32899.54 18495.89 13096.92 35398.32 275
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22499.02 8298.11 5198.31 11697.69 21494.65 17199.85 2997.02 8499.71 7399.48 81
dmvs_re92.08 32891.27 33394.51 31097.16 32092.79 20595.65 22692.64 37494.11 22692.74 36990.98 40183.41 33594.44 41580.72 39994.07 39896.29 382
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22698.87 12097.57 7298.31 11697.83 19894.69 16799.85 2997.02 8499.71 7399.46 86
EPMVS89.26 36288.55 36491.39 38092.36 41679.11 39995.65 22679.86 42088.60 34093.12 36196.53 29570.73 39698.10 38690.75 30389.32 41196.98 359
MVP-Stereo95.69 20895.28 21996.92 18298.15 22093.03 19795.64 22998.20 23090.39 31696.63 24297.73 21191.63 24899.10 30291.84 27797.31 34998.63 244
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_cas_vis1_n_192095.34 22795.67 21194.35 31698.21 20786.83 33195.61 23099.26 3390.45 31598.17 13098.96 6584.43 32798.31 37896.74 9299.17 22097.90 318
test_f95.82 20395.88 20595.66 25497.61 28993.21 19595.61 23098.17 23686.98 35898.42 9899.47 1390.46 26394.74 41397.71 5698.45 29599.03 183
F-COLMAP95.30 23094.38 26998.05 9498.64 15496.04 7995.61 23098.66 17689.00 33493.22 35996.40 30492.90 21499.35 24987.45 36097.53 34098.77 228
AUN-MVS93.95 29092.69 30997.74 11297.80 25795.38 10795.57 23395.46 33791.26 30492.64 37396.10 31974.67 37999.55 18193.72 24296.97 35298.30 279
v14419296.69 16696.90 15196.03 23598.25 20388.92 28495.49 23498.77 15293.05 26398.09 13998.29 14392.51 23099.70 11798.11 3799.56 11699.47 84
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31994.39 14795.46 23598.73 15996.03 14194.72 31694.92 34996.28 11699.69 12493.81 23897.98 31498.09 297
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23698.86 12398.20 4998.37 10399.24 3394.69 16799.55 18195.98 12599.79 5299.65 33
LF4IMVS96.07 19195.63 21497.36 14998.19 21095.55 9695.44 23698.82 14592.29 28395.70 29396.55 29392.63 22298.69 34591.75 28199.33 19697.85 322
v192192096.72 16396.96 14695.99 23698.21 20788.79 28995.42 23898.79 14793.22 25398.19 12998.26 14992.68 21999.70 11798.34 3499.55 12299.49 75
plane_prior94.29 15395.42 23894.31 21998.93 249
v114496.84 15297.08 13796.13 23398.42 18789.28 27995.41 24098.67 17494.21 22097.97 15498.31 13593.06 20899.65 14598.06 4099.62 9299.45 90
ETV-MVS96.13 19095.90 20396.82 19297.76 26793.89 16795.40 24198.95 10595.87 15295.58 29791.00 40096.36 11199.72 9593.36 24998.83 26196.85 366
v124096.74 16097.02 14295.91 24398.18 21388.52 29295.39 24298.88 11893.15 26198.46 9598.40 12692.80 21699.71 10998.45 3199.49 14799.49 75
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24398.99 9692.45 28098.11 13698.31 13597.25 5399.77 6396.60 9599.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030495.71 20795.18 22397.33 15194.85 38992.82 20095.36 24490.89 39295.51 17095.61 29597.82 20188.39 29199.78 5398.23 3599.91 1799.40 105
v119296.83 15597.06 13996.15 23298.28 19889.29 27895.36 24498.77 15293.73 23598.11 13698.34 13293.02 21399.67 13798.35 3399.58 11099.50 67
v2v48296.78 15997.06 13995.95 24098.57 16688.77 29095.36 24498.26 22295.18 18697.85 16898.23 15392.58 22399.63 15397.80 5099.69 7799.45 90
test_fmvs194.51 26994.60 25694.26 32195.91 35987.92 30795.35 24799.02 8286.56 36396.79 22898.52 11082.64 34097.00 40097.87 4698.71 27397.88 320
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30892.08 22795.34 24897.65 27697.74 6398.29 11998.11 16895.05 15799.68 12997.50 6499.50 14499.56 50
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 31192.01 22995.33 24997.65 27697.74 6398.30 11898.14 16295.04 15899.69 12497.55 6299.52 13599.58 39
CostFormer89.75 35789.25 35591.26 38294.69 39378.00 40495.32 25091.98 38081.50 39690.55 39096.96 26971.06 39498.89 32588.59 34392.63 40396.87 364
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21799.28 5590.62 25795.31 25199.08 6488.40 34396.97 22098.17 16192.11 23899.78 5393.64 24499.21 21498.86 216
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21598.48 18191.52 24095.31 25198.45 19895.76 15797.48 18497.54 22389.53 27998.69 34594.43 21294.61 39599.13 163
EI-MVSNet96.63 16996.93 14795.74 25097.26 31688.13 30395.29 25397.65 27696.99 9697.94 15898.19 15892.55 22599.58 17096.91 8799.56 11699.50 67
CVMVSNet92.33 32292.79 30590.95 38397.26 31675.84 41495.29 25392.33 37781.86 39396.27 26498.19 15881.44 34498.46 36894.23 22298.29 30398.55 252
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25598.46 19794.58 21198.10 13898.07 17297.09 6099.39 23495.16 17799.44 16099.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS93.32 1294.93 24594.23 27297.04 17598.18 21394.51 14395.22 25698.73 15981.22 39896.25 26695.95 32593.80 19498.98 31789.89 32498.87 25597.62 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25798.99 9695.84 15498.78 6698.08 17096.84 8499.81 4193.98 23399.57 11399.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER94.21 27893.93 28595.05 28195.83 36586.46 33495.18 25897.65 27692.41 28197.94 15898.00 18572.39 39099.58 17096.36 10599.56 11699.12 168
PatchmatchNetpermissive91.98 33191.87 32192.30 36994.60 39479.71 39695.12 25993.59 36389.52 32793.61 34897.02 26477.94 35999.18 28590.84 29894.57 39798.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-LS96.92 14697.29 12395.79 24798.51 17588.13 30395.10 26098.66 17696.99 9698.46 9598.68 9392.55 22599.74 8396.91 8799.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 17296.97 14495.42 26798.63 15887.57 31695.09 26197.90 25895.91 15098.24 12297.96 18793.42 20199.39 23496.04 11999.52 13599.29 133
tpm288.47 36987.69 37290.79 38494.98 38877.34 40895.09 26191.83 38177.51 41289.40 40296.41 30267.83 40198.73 33983.58 39192.60 40496.29 382
OpenMVS_ROBcopyleft91.80 1493.64 29793.05 29795.42 26797.31 31591.21 24795.08 26396.68 31481.56 39596.88 22696.41 30290.44 26599.25 27485.39 37797.67 33395.80 389
TAMVS95.49 21794.94 23297.16 16298.31 19493.41 18895.07 26496.82 30791.09 30697.51 18097.82 20189.96 27299.42 21988.42 34599.44 16098.64 242
tpmrst90.31 34990.61 34789.41 39194.06 40372.37 42295.06 26593.69 35888.01 34892.32 37896.86 27477.45 36398.82 33091.04 29187.01 41497.04 358
ADS-MVSNet291.47 33990.51 34894.36 31595.51 37685.63 34295.05 26695.70 32883.46 38992.69 37096.84 27679.15 35599.41 22885.66 37390.52 40798.04 308
ADS-MVSNet90.95 34690.26 35093.04 34895.51 37682.37 38095.05 26693.41 36483.46 38992.69 37096.84 27679.15 35598.70 34385.66 37390.52 40798.04 308
tpm91.08 34490.85 34191.75 37695.33 38278.09 40295.03 26891.27 38988.75 33793.53 35197.40 23371.24 39299.30 26291.25 28893.87 39997.87 321
NCCC96.52 17495.99 19798.10 8797.81 25395.68 9295.00 26998.20 23095.39 17795.40 30296.36 30693.81 19399.45 21293.55 24698.42 29799.17 154
test_post194.98 27010.37 42576.21 37299.04 30989.47 330
AdaColmapbinary95.11 23894.62 25596.58 20697.33 31394.45 14694.92 27198.08 24893.15 26193.98 33895.53 33794.34 18099.10 30285.69 37298.61 28396.20 384
MDTV_nov1_ep13_2view57.28 42694.89 27280.59 40094.02 33678.66 35785.50 37597.82 324
CNVR-MVS96.92 14696.55 17098.03 9598.00 23595.54 9794.87 27398.17 23694.60 20896.38 25697.05 26295.67 13999.36 24595.12 18399.08 23399.19 151
OMC-MVS96.48 17696.00 19697.91 10298.30 19596.01 8294.86 27498.60 18491.88 29097.18 20097.21 25196.11 12099.04 30990.49 31599.34 19198.69 238
testing389.72 35888.26 36794.10 32597.66 28284.30 36794.80 27588.25 40894.66 20595.07 30792.51 38441.15 42699.43 21791.81 27898.44 29698.55 252
EPNet_dtu91.39 34090.75 34393.31 33990.48 42082.61 37894.80 27592.88 36993.39 24681.74 41894.90 35081.36 34599.11 29988.28 34798.87 25598.21 289
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 33294.31 39673.51 42094.80 27593.16 36686.75 36293.45 35497.40 23376.37 37098.55 36088.85 33896.43 369
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20394.29 15394.77 27898.07 25289.81 32497.97 15498.33 13393.11 20799.08 30495.46 15899.84 3898.89 209
test_yl94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
DCV-MVSNet94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
dmvs_testset87.30 38086.99 37788.24 39696.71 33377.48 40794.68 28186.81 41392.64 27689.61 40187.01 41585.91 31493.12 41661.04 42088.49 41294.13 403
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28298.17 23690.17 32096.21 26996.10 31995.14 15699.43 21794.13 22698.85 25899.13 163
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28299.02 8295.20 18498.15 13397.52 22598.83 598.43 36994.87 19496.41 37099.07 178
mvs_anonymous95.36 22596.07 19493.21 34496.29 34381.56 38694.60 28497.66 27493.30 25096.95 22198.91 7293.03 21299.38 23796.60 9597.30 35098.69 238
DP-MVS Recon95.55 21595.13 22596.80 19398.51 17593.99 16594.60 28498.69 16990.20 31995.78 28996.21 31292.73 21898.98 31790.58 31198.86 25797.42 349
save fliter98.48 18194.71 13394.53 28698.41 20595.02 195
patch_mono-296.59 17096.93 14795.55 26198.88 12687.12 32594.47 28799.30 2994.12 22596.65 24198.41 12394.98 16299.87 2495.81 13699.78 5599.66 30
tpm cat188.01 37487.33 37490.05 39094.48 39576.28 41394.47 28794.35 35473.84 41789.26 40395.61 33573.64 38498.30 37984.13 38586.20 41595.57 394
CANet95.86 20195.65 21396.49 21396.41 34190.82 25394.36 28998.41 20594.94 19792.62 37596.73 28592.68 21999.71 10995.12 18399.60 10498.94 197
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 29098.12 24597.34 8798.20 12597.33 24492.81 21599.75 7494.79 19899.81 4799.54 54
HQP-NCC97.85 24494.26 29193.18 25792.86 366
ACMP_Plane97.85 24494.26 29193.18 25792.86 366
HQP-MVS95.17 23794.58 25996.92 18297.85 24492.47 21294.26 29198.43 20193.18 25792.86 36695.08 34390.33 26699.23 28090.51 31398.74 26999.05 182
PLCcopyleft91.02 1694.05 28592.90 30197.51 13098.00 23595.12 12594.25 29498.25 22386.17 36591.48 38595.25 34191.01 25599.19 28485.02 38196.69 36598.22 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 28193.42 29296.23 22698.59 16490.85 25294.24 29598.85 12785.49 37292.97 36494.94 34786.01 31399.64 14991.78 27997.92 31798.20 290
MS-PatchMatch94.83 25094.91 23694.57 30796.81 33287.10 32694.23 29697.34 28788.74 33897.14 20297.11 25891.94 24498.23 38292.99 25997.92 31798.37 268
Fast-Effi-MVS+95.49 21795.07 22896.75 19797.67 28192.82 20094.22 29798.60 18491.61 29593.42 35692.90 37696.73 8999.70 11792.60 26397.89 32097.74 331
CMPMVSbinary73.10 2392.74 31591.39 32996.77 19693.57 40994.67 13694.21 29897.67 27280.36 40293.61 34896.60 29182.85 33997.35 39584.86 38298.78 26598.29 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 37388.05 36888.16 39892.85 41368.81 42494.17 29992.88 36985.47 37391.38 38696.14 31668.87 40098.81 33286.88 36583.80 41796.87 364
JIA-IIPM91.79 33490.69 34595.11 27793.80 40690.98 25094.16 30091.78 38296.38 12090.30 39499.30 2972.02 39198.90 32488.28 34790.17 40995.45 395
D2MVS95.18 23595.17 22495.21 27397.76 26787.76 31494.15 30197.94 25689.77 32596.99 21797.68 21587.45 30299.14 29295.03 18899.81 4798.74 231
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27295.23 11794.15 30196.90 30493.26 25198.04 14796.70 28694.41 17898.89 32594.77 20199.14 22398.37 268
PVSNet_BlendedMVS95.02 24494.93 23495.27 27197.79 26287.40 32094.14 30398.68 17188.94 33594.51 32198.01 18393.04 20999.30 26289.77 32699.49 14799.11 171
TinyColmap96.00 19696.34 18294.96 28797.90 24287.91 30894.13 30498.49 19594.41 21598.16 13197.76 20596.29 11598.68 34890.52 31299.42 17298.30 279
CNLPA95.04 24194.47 26496.75 19797.81 25395.25 11694.12 30597.89 25994.41 21594.57 31995.69 33090.30 26998.35 37686.72 36798.76 26796.64 374
BH-untuned94.69 25894.75 24894.52 30997.95 24087.53 31794.07 30697.01 30093.99 23097.10 20695.65 33292.65 22198.95 32287.60 35596.74 36297.09 356
pmmvs594.63 26394.34 27095.50 26397.63 28888.34 29694.02 30797.13 29487.15 35595.22 30597.15 25487.50 30199.27 27193.99 23299.26 20998.88 213
thres20091.00 34590.42 34992.77 35997.47 30283.98 37094.01 30891.18 39095.12 18995.44 30091.21 39873.93 38199.31 25977.76 40897.63 33795.01 398
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
test_vis1_rt94.03 28793.65 28895.17 27695.76 37193.42 18793.97 31298.33 21684.68 38393.17 36095.89 32792.53 22994.79 41293.50 24794.97 39197.31 353
CDS-MVSNet94.88 24994.12 27897.14 16497.64 28793.57 18193.96 31397.06 29890.05 32196.30 26396.55 29386.10 31299.47 20490.10 32099.31 20198.40 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 26294.21 27495.96 23895.90 36089.68 26993.92 31497.83 26593.19 25690.12 39695.64 33388.52 28899.57 17693.27 25499.47 15398.62 245
WTY-MVS93.55 29993.00 30095.19 27497.81 25387.86 30993.89 31596.00 32189.02 33394.07 33395.44 34086.27 31199.33 25487.69 35396.82 35998.39 266
sss94.22 27693.72 28795.74 25097.71 27589.95 26593.84 31696.98 30188.38 34493.75 34395.74 32987.94 29598.89 32591.02 29298.10 31098.37 268
baseline289.65 36088.44 36693.25 34195.62 37482.71 37693.82 31785.94 41488.89 33687.35 41292.54 38371.23 39399.33 25486.01 36894.60 39697.72 334
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31799.05 7295.19 18598.32 11497.70 21395.22 15498.41 37094.27 22098.13 30998.93 201
MVS_111021_LR96.82 15696.55 17097.62 12298.27 20095.34 11293.81 31998.33 21694.59 21096.56 24796.63 29096.61 9498.73 33994.80 19799.34 19198.78 225
BH-RMVSNet94.56 26694.44 26794.91 28897.57 29187.44 31993.78 32096.26 31793.69 23896.41 25596.50 29892.10 23999.00 31385.96 36997.71 32998.31 277
CDPH-MVS95.45 22294.65 25197.84 10798.28 19894.96 12893.73 32198.33 21685.03 37995.44 30096.60 29195.31 15199.44 21590.01 32199.13 22599.11 171
PatchMatch-RL94.61 26493.81 28697.02 17798.19 21095.72 8993.66 32297.23 28988.17 34794.94 31395.62 33491.43 24998.57 35787.36 36197.68 33296.76 372
TEST997.84 24995.23 11793.62 32398.39 20886.81 36093.78 34095.99 32194.68 16999.52 189
train_agg95.46 22194.66 25097.88 10497.84 24995.23 11793.62 32398.39 20887.04 35693.78 34095.99 32194.58 17399.52 18991.76 28098.90 25198.89 209
test_prior495.38 10793.61 325
test_897.81 25395.07 12693.54 32698.38 21087.04 35693.71 34495.96 32494.58 17399.52 189
TR-MVS92.54 31892.20 31893.57 33596.49 33986.66 33293.51 32794.73 34989.96 32294.95 31293.87 36490.24 27198.61 35481.18 39894.88 39295.45 395
新几何293.43 328
diffmvspermissive96.04 19396.23 18695.46 26697.35 30988.03 30693.42 32999.08 6494.09 22896.66 23996.93 27093.85 19299.29 26696.01 12398.67 27699.06 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32998.36 21294.74 20296.58 24596.76 28496.54 9798.99 31594.87 19499.27 20799.15 157
UnsupCasMVSNet_bld94.72 25794.26 27196.08 23498.62 16090.54 26193.38 33198.05 25490.30 31797.02 21596.80 28189.54 27799.16 29088.44 34496.18 37698.56 250
旧先验293.35 33277.95 41095.77 29198.67 34990.74 306
test_prior293.33 33394.21 22094.02 33696.25 31093.64 19791.90 27498.96 244
WB-MVSnew91.50 33891.29 33192.14 37294.85 38980.32 39493.29 33488.77 40688.57 34194.03 33592.21 38792.56 22498.28 38080.21 40197.08 35197.81 326
SCA93.38 30493.52 29192.96 35396.24 34481.40 38893.24 33594.00 35691.58 29794.57 31996.97 26787.94 29599.42 21989.47 33097.66 33598.06 304
无先验93.20 33697.91 25780.78 39999.40 23087.71 35297.94 316
MG-MVS94.08 28494.00 28194.32 31897.09 32385.89 34193.19 33795.96 32392.52 27794.93 31497.51 22689.54 27798.77 33587.52 35997.71 32998.31 277
MVS-HIRNet88.40 37090.20 35182.99 40097.01 32560.04 42593.11 33885.61 41584.45 38788.72 40699.09 5384.72 32598.23 38282.52 39396.59 36890.69 415
new-patchmatchnet95.67 21096.58 16792.94 35497.48 29880.21 39592.96 33998.19 23594.83 20098.82 6398.79 7993.31 20399.51 19395.83 13499.04 23999.12 168
ETVMVS87.62 37785.75 38493.22 34396.15 35383.26 37392.94 34090.37 39891.39 30190.37 39288.45 41151.93 42398.64 35173.76 41296.38 37197.75 330
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 25098.48 18188.76 29192.84 34197.25 28896.00 14297.59 17697.95 18991.38 25099.46 20793.16 25796.35 37298.99 190
原ACMM292.82 342
testdata192.77 34393.78 234
Test_1112_low_res93.53 30092.86 30295.54 26298.60 16288.86 28792.75 34498.69 16982.66 39292.65 37296.92 27284.75 32499.56 17790.94 29597.76 32598.19 291
USDC94.56 26694.57 26194.55 30897.78 26586.43 33692.75 34498.65 18185.96 36796.91 22497.93 19290.82 25898.74 33890.71 30799.59 10798.47 260
test22298.17 21693.24 19492.74 34697.61 28175.17 41494.65 31896.69 28790.96 25798.66 27897.66 336
jason94.39 27394.04 28095.41 26998.29 19687.85 31192.74 34696.75 31085.38 37695.29 30396.15 31488.21 29499.65 14594.24 22199.34 19198.74 231
jason: jason.
testing9189.67 35988.55 36493.04 34895.90 36081.80 38592.71 34893.71 35793.71 23690.18 39590.15 40657.11 41199.22 28287.17 36496.32 37398.12 296
testing9989.21 36388.04 36992.70 36195.78 36981.00 39292.65 34992.03 37893.20 25589.90 39990.08 40855.25 41899.14 29287.54 35795.95 37997.97 313
Patchmatch-RL test94.66 26194.49 26295.19 27498.54 17188.91 28592.57 35098.74 15891.46 30098.32 11497.75 20877.31 36698.81 33296.06 11699.61 9897.85 322
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29897.23 4492.56 35198.60 18492.84 27298.54 8597.40 23396.64 9398.78 33494.40 21599.41 17698.93 201
N_pmnet95.18 23594.23 27298.06 9097.85 24496.55 6292.49 35291.63 38389.34 32898.09 13997.41 23290.33 26699.06 30691.58 28299.31 20198.56 250
testing1188.93 36587.63 37392.80 35895.87 36281.49 38792.48 35391.54 38491.62 29488.27 40890.24 40455.12 42199.11 29987.30 36296.28 37597.81 326
Syy-MVS92.09 32791.80 32492.93 35595.19 38482.65 37792.46 35491.35 38690.67 31291.76 38387.61 41385.64 31898.50 36494.73 20396.84 35797.65 337
myMVS_eth3d87.16 38285.61 38591.82 37595.19 38479.32 39792.46 35491.35 38690.67 31291.76 38387.61 41341.96 42598.50 36482.66 39296.84 35797.65 337
BH-w/o92.14 32591.94 32092.73 36097.13 32285.30 34892.46 35495.64 33089.33 32994.21 32792.74 38089.60 27598.24 38181.68 39594.66 39494.66 400
IterMVS-SCA-FT95.86 20196.19 18894.85 29397.68 27785.53 34492.42 35797.63 28096.99 9698.36 10698.54 10987.94 29599.75 7497.07 8299.08 23399.27 138
IterMVS95.42 22395.83 20694.20 32297.52 29583.78 37192.41 35897.47 28595.49 17298.06 14498.49 11387.94 29599.58 17096.02 12199.02 24099.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing22287.35 37985.50 38692.93 35595.79 36882.83 37592.40 35990.10 40292.80 27388.87 40589.02 40948.34 42498.70 34375.40 41196.74 36297.27 354
DELS-MVS96.17 18896.23 18695.99 23697.55 29490.04 26392.38 36098.52 19294.13 22496.55 24997.06 26194.99 16199.58 17095.62 14599.28 20598.37 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 32191.69 32694.32 31896.23 34689.16 28192.27 36192.88 36984.39 38895.29 30396.35 30785.66 31796.74 40684.53 38497.56 33897.05 357
CHOSEN 1792x268894.10 28293.41 29396.18 23099.16 8090.04 26392.15 36298.68 17179.90 40396.22 26897.83 19887.92 29999.42 21989.18 33499.65 8699.08 176
xiu_mvs_v2_base94.22 27694.63 25492.99 35297.32 31484.84 35992.12 36397.84 26391.96 28894.17 32993.43 36796.07 12199.71 10991.27 28697.48 34294.42 401
lupinMVS93.77 29193.28 29495.24 27297.68 27787.81 31292.12 36396.05 31984.52 38594.48 32395.06 34586.90 30699.63 15393.62 24599.13 22598.27 283
pmmvs494.82 25194.19 27596.70 20097.42 30592.75 20692.09 36596.76 30986.80 36195.73 29297.22 25089.28 28398.89 32593.28 25399.14 22398.46 262
PAPR92.22 32391.27 33395.07 28095.73 37388.81 28891.97 36697.87 26085.80 37090.91 38792.73 38191.16 25298.33 37779.48 40295.76 38498.08 298
UWE-MVS87.57 37886.72 38090.13 38995.21 38373.56 41991.94 36783.78 41888.73 33993.00 36392.87 37755.22 41999.25 27481.74 39497.96 31597.59 342
PS-MVSNAJ94.10 28294.47 26493.00 35197.35 30984.88 35691.86 36897.84 26391.96 28894.17 32992.50 38595.82 13099.71 10991.27 28697.48 34294.40 402
c3_l95.20 23495.32 21894.83 29596.19 34886.43 33691.83 36998.35 21593.47 24497.36 19097.26 24888.69 28699.28 26895.41 16599.36 18398.78 225
test0.0.03 190.11 35089.21 35792.83 35793.89 40586.87 33091.74 37088.74 40792.02 28694.71 31791.14 39973.92 38294.48 41483.75 39092.94 40197.16 355
UBG88.29 37187.17 37591.63 37796.08 35578.21 40191.61 37191.50 38589.67 32689.71 40088.97 41059.01 40898.91 32381.28 39796.72 36497.77 329
FPMVS89.92 35588.63 36393.82 32898.37 19096.94 4991.58 37293.34 36588.00 34990.32 39397.10 25970.87 39591.13 41871.91 41696.16 37893.39 408
ET-MVSNet_ETH3D91.12 34189.67 35495.47 26596.41 34189.15 28291.54 37390.23 40089.07 33286.78 41492.84 37869.39 39999.44 21594.16 22496.61 36797.82 324
WBMVS91.11 34290.72 34492.26 37095.99 35777.98 40591.47 37495.90 32591.63 29395.90 28496.45 30059.60 40799.46 20789.97 32399.59 10799.33 121
PVSNet_Blended93.96 28893.65 28894.91 28897.79 26287.40 32091.43 37598.68 17184.50 38694.51 32194.48 35893.04 20999.30 26289.77 32698.61 28398.02 310
CLD-MVS95.47 22095.07 22896.69 20198.27 20092.53 20991.36 37698.67 17491.22 30595.78 28994.12 36295.65 14098.98 31790.81 29999.72 7098.57 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 24894.93 23494.75 29995.99 35786.12 33991.35 37798.49 19593.40 24597.12 20497.25 24986.87 30899.35 24995.08 18598.82 26298.78 225
cl____94.73 25394.64 25295.01 28395.85 36487.00 32791.33 37898.08 24893.34 24897.10 20697.33 24484.01 33299.30 26295.14 18099.56 11698.71 237
DIV-MVS_self_test94.73 25394.64 25295.01 28395.86 36387.00 32791.33 37898.08 24893.34 24897.10 20697.34 24384.02 33199.31 25995.15 17999.55 12298.72 234
miper_ehance_all_eth94.69 25894.70 24994.64 30195.77 37086.22 33891.32 38098.24 22591.67 29297.05 21396.65 28988.39 29199.22 28294.88 19398.34 30098.49 259
pmmvs390.00 35288.90 36293.32 33894.20 40185.34 34691.25 38192.56 37678.59 40793.82 33995.17 34267.36 40298.69 34589.08 33698.03 31395.92 385
HyFIR lowres test93.72 29392.65 31096.91 18498.93 12091.81 23591.23 38298.52 19282.69 39196.46 25396.52 29780.38 35199.90 1690.36 31798.79 26499.03 183
DPM-MVS93.68 29592.77 30896.42 21797.91 24192.54 20891.17 38397.47 28584.99 38193.08 36294.74 35189.90 27399.00 31387.54 35798.09 31197.72 334
CL-MVSNet_self_test95.04 24194.79 24795.82 24697.51 29689.79 26791.14 38496.82 30793.05 26396.72 23496.40 30490.82 25899.16 29091.95 27398.66 27898.50 258
miper_lstm_enhance94.81 25294.80 24694.85 29396.16 35086.45 33591.14 38498.20 23093.49 24397.03 21497.37 24184.97 32399.26 27295.28 16899.56 11698.83 218
cl2293.25 30892.84 30494.46 31294.30 39786.00 34091.09 38696.64 31590.74 30995.79 28796.31 30878.24 35898.77 33594.15 22598.34 30098.62 245
MSDG95.33 22895.13 22595.94 24297.40 30691.85 23391.02 38798.37 21195.30 18196.31 26295.99 32194.51 17698.38 37389.59 32897.65 33697.60 341
IB-MVS85.98 2088.63 36886.95 37993.68 33395.12 38684.82 36090.85 38890.17 40187.55 35288.48 40791.34 39758.01 40999.59 16887.24 36393.80 40096.63 376
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsany_test193.47 30193.03 29894.79 29794.05 40492.12 22390.82 38990.01 40385.02 38097.26 19498.28 14493.57 19897.03 39892.51 26695.75 38595.23 397
test12312.59 39115.49 3943.87 4066.07 4292.55 43190.75 3902.59 4312.52 4245.20 42613.02 4234.96 4291.85 4265.20 4249.09 4237.23 421
ppachtmachnet_test94.49 27094.84 24293.46 33796.16 35082.10 38190.59 39197.48 28490.53 31497.01 21697.59 22091.01 25599.36 24593.97 23499.18 21998.94 197
PMMVS92.39 31991.08 33696.30 22593.12 41192.81 20290.58 39295.96 32379.17 40691.85 38292.27 38690.29 27098.66 35089.85 32596.68 36697.43 348
our_test_394.20 28094.58 25993.07 34796.16 35081.20 39090.42 39396.84 30590.72 31097.14 20297.13 25590.47 26299.11 29994.04 23198.25 30498.91 205
YYNet194.73 25394.84 24294.41 31497.47 30285.09 35490.29 39495.85 32792.52 27797.53 17897.76 20591.97 24299.18 28593.31 25296.86 35698.95 195
MDA-MVSNet_test_wron94.73 25394.83 24494.42 31397.48 29885.15 35290.28 39595.87 32692.52 27797.48 18497.76 20591.92 24599.17 28993.32 25196.80 36198.94 197
GA-MVS92.83 31492.15 31994.87 29296.97 32687.27 32390.03 39696.12 31891.83 29194.05 33494.57 35376.01 37398.97 32192.46 26797.34 34898.36 273
miper_enhance_ethall93.14 31092.78 30794.20 32293.65 40785.29 34989.97 39797.85 26185.05 37896.15 27494.56 35485.74 31599.14 29293.74 24098.34 30098.17 294
test-LLR89.97 35489.90 35290.16 38794.24 39974.98 41689.89 39889.06 40492.02 28689.97 39790.77 40273.92 38298.57 35791.88 27597.36 34696.92 361
TESTMET0.1,187.20 38186.57 38189.07 39293.62 40872.84 42189.89 39887.01 41285.46 37489.12 40490.20 40556.00 41697.72 39290.91 29696.92 35396.64 374
test-mter87.92 37587.17 37590.16 38794.24 39974.98 41689.89 39889.06 40486.44 36489.97 39790.77 40254.96 42298.57 35791.88 27597.36 34696.92 361
PCF-MVS89.43 1892.12 32690.64 34696.57 20897.80 25793.48 18489.88 40198.45 19874.46 41596.04 27795.68 33190.71 26099.31 25973.73 41399.01 24296.91 363
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 34889.18 36094.17 32497.07 32485.44 34589.75 40287.58 40988.28 34593.69 34691.72 39365.27 40399.58 17090.59 31098.67 27697.50 347
KD-MVS_2432*160088.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
miper_refine_blended88.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
testmvs12.33 39215.23 3953.64 4075.77 4302.23 43288.99 4053.62 4302.30 4255.29 42513.09 4224.52 4301.95 4255.16 4258.32 4246.75 422
cascas91.89 33291.35 33093.51 33694.27 39885.60 34388.86 40698.61 18379.32 40592.16 37991.44 39689.22 28498.12 38590.80 30097.47 34496.82 369
PAPM87.64 37685.84 38393.04 34896.54 33784.99 35588.42 40795.57 33479.52 40483.82 41593.05 37580.57 35098.41 37062.29 41992.79 40295.71 390
PVSNet86.72 1991.10 34390.97 33991.49 37897.56 29378.04 40387.17 40894.60 35184.65 38492.34 37792.20 38887.37 30498.47 36785.17 38097.69 33197.96 314
PMMVS293.66 29694.07 27992.45 36797.57 29180.67 39386.46 40996.00 32193.99 23097.10 20697.38 23989.90 27397.82 39088.76 33999.47 15398.86 216
CHOSEN 280x42089.98 35389.19 35992.37 36895.60 37581.13 39186.22 41097.09 29681.44 39787.44 41193.15 36873.99 38099.47 20488.69 34199.07 23596.52 378
dongtai63.43 38763.37 39063.60 40383.91 42553.17 42785.14 41143.40 42977.91 41180.96 41979.17 41936.36 42777.10 42137.88 42245.63 42160.54 418
kuosan54.81 38954.94 39254.42 40474.43 42650.03 42884.98 41244.27 42861.80 41962.49 42370.43 42035.16 42858.04 42319.30 42341.61 42255.19 419
tmp_tt57.23 38862.50 39141.44 40534.77 42849.21 42983.93 41360.22 42715.31 42171.11 42179.37 41870.09 39844.86 42464.76 41882.93 41830.25 420
PVSNet_081.89 2184.49 38483.21 38788.34 39595.76 37174.97 41883.49 41492.70 37378.47 40887.94 40986.90 41683.38 33696.63 40773.44 41466.86 42093.40 407
E-PMN89.52 36189.78 35388.73 39393.14 41077.61 40683.26 41592.02 37994.82 20193.71 34493.11 36975.31 37696.81 40285.81 37096.81 36091.77 412
EMVS89.06 36489.22 35688.61 39493.00 41277.34 40882.91 41690.92 39194.64 20792.63 37491.81 39276.30 37197.02 39983.83 38896.90 35591.48 413
MVEpermissive73.61 2286.48 38385.92 38288.18 39796.23 34685.28 35081.78 41775.79 42186.01 36682.53 41791.88 39192.74 21787.47 42071.42 41794.86 39391.78 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.88 38666.13 38969.11 40262.68 42725.73 43049.76 41896.04 32014.32 42264.27 42291.69 39473.45 38788.05 41976.06 41066.94 41993.54 405
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.22 39032.30 3930.00 4080.00 4310.00 4330.00 41998.10 2460.00 4260.00 42795.06 34597.54 390.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.98 39310.65 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42695.82 1300.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.91 39410.55 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.94 3470.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.32 39785.41 376
MSC_two_6792asdad98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
PC_three_145287.24 35498.37 10397.44 23097.00 6796.78 40492.01 27199.25 21099.21 147
No_MVS98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
test_one_060199.05 10595.50 10298.87 12097.21 9398.03 14898.30 13996.93 73
eth-test20.00 431
eth-test0.00 431
ZD-MVS98.43 18695.94 8398.56 19090.72 31096.66 23997.07 26095.02 16099.74 8391.08 29098.93 249
IU-MVS99.22 6695.40 10598.14 24385.77 37198.36 10695.23 17299.51 14099.49 75
test_241102_TWO98.83 13796.11 13498.62 7898.24 15196.92 7699.72 9595.44 15999.49 14799.49 75
test_241102_ONE99.22 6695.35 11098.83 13796.04 13999.08 4098.13 16497.87 2399.33 254
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10995.70 13799.62 9299.58 39
GSMVS98.06 304
test_part299.03 10796.07 7898.08 141
sam_mvs177.80 36098.06 304
sam_mvs77.38 364
MTGPAbinary98.73 159
test_post10.87 42476.83 36899.07 305
patchmatchnet-post96.84 27677.36 36599.42 219
gm-plane-assit91.79 41771.40 42381.67 39490.11 40798.99 31584.86 382
test9_res91.29 28598.89 25499.00 187
agg_prior290.34 31898.90 25199.10 175
agg_prior97.80 25794.96 12898.36 21293.49 35299.53 186
TestCases98.06 9099.08 9696.16 7499.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
test_prior97.46 14097.79 26294.26 15798.42 20499.34 25298.79 224
新几何197.25 15898.29 19694.70 13597.73 26977.98 40994.83 31596.67 28892.08 24099.45 21288.17 34998.65 28097.61 340
旧先验197.80 25793.87 16897.75 26897.04 26393.57 19898.68 27598.72 234
原ACMM196.58 20698.16 21892.12 22398.15 24285.90 36993.49 35296.43 30192.47 23199.38 23787.66 35498.62 28298.23 286
testdata299.46 20787.84 350
segment_acmp95.34 150
testdata95.70 25398.16 21890.58 25897.72 27080.38 40195.62 29497.02 26492.06 24198.98 31789.06 33798.52 28897.54 344
test1297.46 14097.61 28994.07 16197.78 26793.57 35093.31 20399.42 21998.78 26598.89 209
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15699.46 20792.59 26499.20 21599.28 134
plane_prior496.77 282
plane_prior394.51 14395.29 18296.16 272
plane_prior198.49 179
n20.00 432
nn0.00 432
door-mid98.17 236
lessismore_v097.05 17399.36 4892.12 22384.07 41698.77 7098.98 6285.36 32099.74 8397.34 6999.37 18099.30 127
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
test1198.08 248
door97.81 266
HQP5-MVS92.47 212
BP-MVS90.51 313
HQP4-MVS92.87 36599.23 28099.06 180
HQP3-MVS98.43 20198.74 269
HQP2-MVS90.33 266
NP-MVS98.14 22293.72 17495.08 343
ACMMP++_ref99.52 135
ACMMP++99.55 122
Test By Simon94.51 176
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19495.63 16397.22 19597.30 24695.52 14398.55 36090.97 29498.90 25198.34 274
DeepMVS_CXcopyleft77.17 40190.94 41985.28 35074.08 42452.51 42080.87 42088.03 41275.25 37770.63 42259.23 42184.94 41675.62 416