This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 10099.92 597.88 4299.98 299.85 3
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4299.59 15997.21 6899.76 5899.40 100
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6798.05 4799.61 1399.52 793.72 19199.88 2098.72 2499.88 2799.65 33
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10596.62 10198.62 7698.30 12896.97 6799.75 6795.70 12899.25 20399.21 140
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30597.99 4999.15 3699.35 2389.84 26999.90 1498.64 2699.90 2499.82 6
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13799.72 8798.12 3499.86 3199.73 22
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10598.49 3199.38 2299.14 4695.44 14399.84 3096.47 9199.80 5199.47 79
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9997.71 6198.85 5799.10 4891.35 24599.83 3298.47 3099.90 2499.64 35
EPP-MVSNet96.84 14696.58 16197.65 11799.18 8093.78 17198.68 1496.34 30897.91 5197.30 18698.06 16688.46 28599.85 2793.85 22799.40 17199.32 115
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9599.91 1399.27 599.93 1199.73 22
MVSFormer96.14 18496.36 17695.49 25597.68 27187.81 30598.67 1599.02 7796.50 11094.48 31196.15 30086.90 30299.92 598.73 2299.13 21898.74 221
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7796.50 11099.32 2699.44 1497.43 4199.92 598.73 2299.95 599.86 2
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 32098.31 3697.09 20595.45 32597.17 5498.50 35498.67 2597.45 33496.48 367
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15799.35 2599.37 1997.38 4399.90 1498.59 2899.91 1999.77 12
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6795.43 16897.41 18497.50 21697.98 1999.79 4495.58 14099.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 14096.68 15597.70 11399.25 6294.00 16298.57 2096.74 30398.36 3498.14 13197.98 17588.23 28899.71 10293.10 24899.72 7199.38 106
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14199.89 1897.95 4199.91 1999.75 19
FE-MVS92.95 30392.22 30795.11 27197.21 31088.33 29098.54 2393.66 34989.91 31096.21 25998.14 15170.33 38799.50 18687.79 33998.24 29697.51 331
test250689.86 34489.16 34991.97 36498.95 11276.83 39998.54 2361.07 41396.20 12397.07 20699.16 4355.19 40799.69 11796.43 9399.83 4399.38 106
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12299.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26597.19 24196.88 7799.86 2497.50 6099.73 6798.41 253
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9198.82 32096.38 9599.50 13996.98 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4499.92 597.79 4899.93 1199.79 10
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17898.49 2898.88 11196.86 9697.11 19998.55 10095.82 12699.73 8295.94 11899.42 16699.13 156
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4899.93 397.71 5299.91 1999.70 26
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14899.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4899.92 597.64 5699.92 1699.75 19
LS3D97.77 8697.50 10898.57 4796.24 33797.58 2498.45 3198.85 12098.58 2897.51 17597.94 17995.74 13399.63 14495.19 16398.97 23698.51 246
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28696.92 25996.81 8399.87 2296.87 8299.76 5898.51 246
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19398.35 3599.21 3398.43 3298.89 5498.83 7494.30 17699.81 3697.87 4399.91 1999.77 12
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7595.88 14497.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
ab-mvs96.59 16596.59 16096.60 19998.64 14992.21 21598.35 3597.67 26594.45 20396.99 21298.79 7594.96 15899.49 19190.39 30599.07 22898.08 287
EGC-MVSNET83.08 37277.93 37598.53 5099.57 2097.55 2698.33 3898.57 1814.71 40810.38 40998.90 6995.60 13899.50 18695.69 13099.61 9898.55 242
test111194.53 25994.81 23793.72 32399.06 10181.94 37598.31 3983.87 40496.37 11598.49 8899.17 4281.49 33599.73 8296.64 8499.86 3199.49 70
ECVR-MVScopyleft94.37 26594.48 25594.05 31998.95 11283.10 36598.31 3982.48 40696.20 12398.23 12099.16 4381.18 33899.66 13495.95 11799.83 4399.38 106
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26997.01 25396.99 6699.82 3497.66 5599.64 8998.39 256
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8697.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 21098.28 4296.97 29498.30 3899.45 1899.35 2388.43 28699.89 1898.01 3999.76 5899.54 53
FA-MVS(test-final)94.91 23894.89 23194.99 27997.51 28888.11 29898.27 4495.20 33292.40 27296.68 23098.60 9583.44 32799.28 26093.34 24098.53 28097.59 328
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12399.05 1399.01 4498.65 9195.37 14499.90 1497.57 5799.91 1999.77 12
GG-mvs-BLEND90.60 37291.00 40684.21 35998.23 4672.63 41282.76 40384.11 40456.14 40396.79 39372.20 40292.09 39390.78 401
GBi-Net96.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
test196.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17498.23 4698.66 16897.41 7999.00 4699.19 3695.47 14199.73 8295.83 12599.76 5899.30 120
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 18098.23 4699.05 6797.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18698.20 5198.87 11398.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
gg-mvs-nofinetune88.28 35986.96 36592.23 36192.84 40284.44 35598.19 5274.60 40999.08 1087.01 40099.47 1156.93 40098.23 37278.91 39195.61 37494.01 391
QAPM95.88 19595.57 21096.80 18897.90 23691.84 23098.18 5398.73 15188.41 32996.42 24698.13 15394.73 16099.75 6788.72 32898.94 24098.81 212
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15197.79 5399.42 2097.83 18894.40 17499.78 4795.91 12099.76 5899.46 81
MIMVSNet93.42 29492.86 29395.10 27398.17 20988.19 29298.13 5593.69 34692.07 27495.04 29998.21 14680.95 34199.03 30381.42 38498.06 30398.07 289
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9499.75 299.45 1395.82 12699.92 598.80 1999.96 499.89 1
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9695.75 15297.91 15698.06 16696.89 7599.76 6195.32 15799.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13898.59 8098.69 8696.94 6999.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8497.82 16699.11 4796.75 8599.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 16098.13 4396.93 21798.45 11095.30 14799.62 14995.64 13598.96 23799.24 137
FIs97.93 6598.07 4597.48 13599.38 4892.95 19698.03 6199.11 5098.04 4898.62 7698.66 8893.75 19099.78 4797.23 6699.84 4099.73 22
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18397.96 6298.25 21598.58 2898.78 6499.39 1698.21 1499.56 16892.65 25299.86 3199.52 58
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4599.45 20394.08 21799.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet96.98 13896.84 14697.41 14399.40 4593.26 19097.94 6495.31 33199.26 798.39 10099.18 3987.85 29599.62 14995.13 17299.09 22599.35 114
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9696.11 12896.89 22097.45 21896.85 8099.78 4795.19 16399.63 9199.38 106
ANet_high98.31 3198.94 696.41 21399.33 5389.64 26397.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5998.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
ambc96.56 20498.23 19991.68 23397.88 6898.13 23798.42 9698.56 9994.22 17899.04 30094.05 22099.35 18298.95 187
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21298.79 2299.23 3298.86 7395.76 13299.61 15695.49 14299.36 17799.23 138
sasdasda97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
canonicalmvs97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
tfpnnormal97.72 9097.97 5596.94 17799.26 5992.23 21497.83 7298.45 19098.25 3999.13 3898.66 8896.65 8899.69 11793.92 22599.62 9298.91 197
MGCFI-Net97.20 12797.23 12297.08 16897.68 27193.71 17397.79 7399.09 5797.40 8096.59 23793.96 35097.67 3199.35 24196.43 9398.50 28498.17 283
Anonymous2024052197.07 13197.51 10695.76 24199.35 5188.18 29397.78 7498.40 19997.11 8998.34 10799.04 5389.58 27199.79 4498.09 3699.93 1199.30 120
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25197.64 20596.49 9899.72 8795.66 13399.37 17499.45 85
X-MVStestdata92.86 30490.83 33198.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25136.50 40696.49 9899.72 8795.66 13399.37 17499.45 85
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7799.00 8698.40 3399.07 4298.98 5896.89 7599.75 6797.19 7199.79 5399.55 52
dcpmvs_297.12 12997.99 5494.51 30499.11 9484.00 36097.75 7899.65 997.38 8299.14 3798.42 11395.16 15099.96 295.52 14199.78 5699.58 39
UGNet96.81 15196.56 16397.58 12196.64 32693.84 16897.75 7897.12 28896.47 11393.62 33498.88 7193.22 20099.53 17895.61 13799.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 8098.78 14396.04 13397.10 20097.73 20096.53 9599.78 4795.16 16799.50 13999.46 81
OpenMVScopyleft94.22 895.48 21295.20 21596.32 21697.16 31291.96 22797.74 8098.84 12387.26 34094.36 31398.01 17293.95 18599.67 12890.70 29798.75 26197.35 338
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
MSP-MVS97.45 11196.92 14399.03 599.26 5997.70 1897.66 8498.89 10595.65 15598.51 8596.46 28692.15 22999.81 3695.14 17098.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LFMVS95.32 22094.88 23296.62 19898.03 22191.47 23697.65 8590.72 38199.11 997.89 15898.31 12479.20 34699.48 19493.91 22699.12 22198.93 193
K. test v396.44 17396.28 17996.95 17699.41 4291.53 23497.65 8590.31 38598.89 2098.93 5099.36 2184.57 32099.92 597.81 4699.56 11199.39 104
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8798.20 22393.00 25498.16 12898.06 16695.89 12199.72 8795.67 13299.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs397.38 11697.56 10196.84 18698.63 15392.81 19897.60 8899.61 1390.87 29498.76 6999.66 394.03 18297.90 37899.24 699.68 8299.81 8
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8898.84 12396.00 13697.22 18997.62 20796.87 7999.76 6195.48 14599.43 16399.46 81
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 9098.84 12396.05 13197.49 17797.54 21297.07 5999.70 11095.61 13799.46 15199.30 120
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 9098.83 12996.05 13197.46 18297.63 20696.77 8499.76 6195.61 13799.46 15199.49 70
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9299.06 6396.19 12598.48 9098.70 8594.72 16199.24 27094.37 20699.33 19099.17 148
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19897.55 9398.94 9997.10 9098.85 5798.88 7195.03 15499.67 12897.39 6499.65 8799.26 132
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.60 9399.76 6195.49 14299.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.94 6995.49 14299.20 20899.26 132
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9398.92 10297.72 5998.25 11898.13 15397.10 5699.75 6795.44 14999.24 20699.32 115
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9399.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18899.72 7199.32 115
Vis-MVSNet (Re-imp)95.11 23094.85 23395.87 23899.12 9389.17 27197.54 9894.92 33696.50 11096.58 23897.27 23683.64 32699.48 19488.42 33399.67 8498.97 185
MP-MVScopyleft97.64 9697.18 12699.00 999.32 5597.77 1797.49 9998.73 15196.27 11995.59 28497.75 19796.30 11099.78 4793.70 23399.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 10098.84 12395.76 15096.93 21797.43 22097.26 5099.79 4496.06 10799.53 12599.45 85
tttt051793.31 29792.56 30495.57 24998.71 14287.86 30297.44 10187.17 39895.79 14997.47 18196.84 26364.12 39499.81 3696.20 10399.32 19299.02 179
v1097.55 10497.97 5596.31 21798.60 15789.64 26397.44 10199.02 7796.60 10398.72 7299.16 4393.48 19599.72 8798.76 2199.92 1699.58 39
v897.60 10098.06 4796.23 21998.71 14289.44 26797.43 10398.82 13797.29 8698.74 7099.10 4893.86 18699.68 12298.61 2799.94 899.56 50
PMVScopyleft89.60 1796.71 15996.97 13895.95 23399.51 3097.81 1697.42 10497.49 27697.93 5095.95 26998.58 9696.88 7796.91 39189.59 31699.36 17793.12 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10598.83 12997.32 8498.06 14197.85 18796.65 8899.77 5695.00 17999.11 22299.32 115
FMVSNet593.39 29592.35 30596.50 20695.83 35790.81 24997.31 10698.27 21392.74 26396.27 25598.28 13362.23 39799.67 12890.86 28799.36 17799.03 176
HY-MVS91.43 1592.58 30891.81 31394.90 28496.49 33288.87 27997.31 10694.62 33885.92 35590.50 37996.84 26385.05 31599.40 22183.77 37795.78 37196.43 368
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10898.99 8996.35 11898.13 13295.95 31195.99 11999.66 13494.36 20899.73 6798.59 238
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10998.73 15197.69 6397.90 15797.96 17695.81 13099.82 3496.13 10699.61 9899.45 85
CPTT-MVS96.69 16096.08 18798.49 5298.89 12196.64 5597.25 10998.77 14492.89 26096.01 26897.13 24392.23 22899.67 12892.24 25899.34 18599.17 148
EU-MVSNet94.25 26694.47 25693.60 32698.14 21582.60 37097.24 11192.72 36085.08 36498.48 9098.94 6382.59 33398.76 32797.47 6299.53 12599.44 95
XXY-MVS97.54 10597.70 8197.07 16999.46 3692.21 21597.22 11299.00 8694.93 18998.58 8198.92 6597.31 4699.41 21994.44 20199.43 16399.59 38
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11399.08 5996.57 10898.07 14098.38 11896.22 11599.14 28494.71 19599.31 19598.52 245
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11498.79 13995.96 13897.53 17397.40 22296.93 7199.77 5695.04 17699.35 18299.42 97
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11598.90 10496.58 10598.08 13897.87 18697.02 6499.76 6195.25 16099.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 15796.67 15696.87 18397.96 23091.88 22897.15 11598.06 24695.59 15998.50 8798.62 9489.51 27599.65 13694.99 18199.60 10199.07 171
AllTest97.20 12796.92 14398.06 8899.08 9896.16 7097.14 11799.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11898.79 13998.98 1798.74 7098.49 10595.80 13199.49 19195.04 17699.44 15599.11 164
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11998.98 9295.75 15297.62 17097.59 20997.61 3799.77 5696.34 9799.44 15599.36 112
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 12099.06 6395.45 16597.55 17297.94 17997.11 5599.78 4794.77 19199.46 15199.48 76
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 12099.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12299.10 5295.32 17197.83 16597.88 18596.44 10399.72 8794.59 20099.39 17299.25 136
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12395.61 32498.59 2798.51 8598.72 8292.54 22199.58 16196.02 11299.49 14299.12 161
wuyk23d93.25 29995.20 21587.40 38696.07 34995.38 10597.04 12394.97 33595.33 17099.70 698.11 15798.14 1791.94 40477.76 39599.68 8274.89 404
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12599.65 996.74 9999.47 1798.93 6496.91 7499.84 3090.11 30899.06 23198.32 265
MAR-MVS94.21 26993.03 28997.76 10996.94 32197.44 3396.97 12697.15 28687.89 33892.00 36892.73 36992.14 23099.12 28883.92 37497.51 33096.73 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_vis1_n95.67 20395.89 19895.03 27698.18 20689.89 26096.94 12799.28 2988.25 33398.20 12298.92 6586.69 30597.19 38697.70 5498.82 25598.00 301
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21596.92 12898.60 17698.58 2898.78 6499.39 1697.80 2599.62 14994.98 18299.86 3199.52 58
h-mvs3396.29 17895.63 20898.26 7098.50 17396.11 7396.90 12997.09 28996.58 10597.21 19198.19 14784.14 32299.78 4795.89 12196.17 36598.89 201
test072699.24 6395.51 9796.89 13098.89 10595.92 14198.64 7498.31 12497.06 60
baseline97.44 11297.78 7796.43 21098.52 16890.75 25096.84 13199.03 7596.51 10997.86 16398.02 17096.67 8799.36 23797.09 7499.47 14899.19 145
API-MVS95.09 23295.01 22595.31 26296.61 32794.02 16196.83 13297.18 28595.60 15895.79 27694.33 34794.54 17098.37 36585.70 35998.52 28193.52 393
test_vis3_rt97.04 13296.98 13797.23 15798.44 18095.88 8096.82 13399.67 690.30 30399.27 2999.33 2794.04 18196.03 39797.14 7297.83 31299.78 11
test_fmvs1_n95.21 22495.28 21394.99 27998.15 21389.13 27596.81 13499.43 2186.97 34697.21 19198.92 6583.00 33097.13 38798.09 3698.94 24098.72 224
test_fmvs296.38 17696.45 17196.16 22497.85 23891.30 23996.81 13499.45 1989.24 31798.49 8899.38 1888.68 28297.62 38398.83 1899.32 19299.57 46
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13698.83 12996.11 12899.08 4098.24 14097.87 2399.72 8795.44 14999.51 13599.14 154
OPU-MVS97.64 11898.01 22495.27 11396.79 13697.35 23196.97 6798.51 35391.21 28099.25 20399.14 154
PHI-MVS96.96 13996.53 16798.25 7397.48 29096.50 5996.76 13898.85 12093.52 23196.19 26196.85 26295.94 12099.42 21093.79 22999.43 16398.83 210
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13998.23 21895.92 14198.40 9898.28 13397.06 6099.71 10295.48 14599.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13998.89 10599.75 6795.48 14599.52 13099.53 56
Anonymous20240521196.34 17795.98 19297.43 14098.25 19693.85 16796.74 13994.41 34197.72 5998.37 10198.03 16987.15 30199.53 17894.06 21899.07 22898.92 196
SMA-MVScopyleft97.48 10997.11 12898.60 4598.83 12696.67 5396.74 13998.73 15191.61 28398.48 9098.36 11996.53 9599.68 12295.17 16599.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14399.05 6798.67 2498.84 5998.45 11097.58 3899.88 2096.45 9299.86 3199.54 53
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14498.73 15198.66 2598.56 8298.41 11496.84 8199.69 11794.82 18699.81 4898.64 232
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14599.82 195.44 16799.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
SSC-MVS95.92 19397.03 13592.58 35499.28 5778.39 39096.68 14695.12 33398.90 1999.11 3998.66 8891.36 24499.68 12295.00 17999.16 21499.67 28
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14698.83 12995.21 17498.36 10498.13 15398.13 1899.62 14996.04 11099.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 30192.64 30294.62 29797.34 30387.20 31896.67 14893.02 35594.71 19496.51 24395.83 31481.64 33498.60 34690.00 31188.06 40098.07 289
bld_raw_dy_0_6495.16 22995.16 21895.15 27096.54 32889.06 27696.63 14999.54 1789.68 31398.72 7294.50 34488.64 28399.38 22892.24 25899.93 1197.03 345
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20696.57 15099.15 4493.68 22898.89 5499.30 2896.42 10499.37 23499.03 1399.83 4399.66 30
MTMP96.55 15174.60 409
SD-MVS97.37 11897.70 8196.35 21498.14 21595.13 12296.54 15298.92 10295.94 14099.19 3498.08 15997.74 2895.06 39895.24 16199.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 16296.33 17897.68 11698.70 14494.29 15196.50 15398.75 14896.36 11696.16 26296.77 26991.91 23999.46 19992.59 25499.20 20899.28 127
plane_prior296.50 15396.36 116
MVS_030496.62 16496.40 17497.28 15197.91 23492.30 21196.47 15589.74 39097.52 7195.38 29098.63 9392.76 21099.81 3699.28 499.93 1199.75 19
Effi-MVS+-dtu96.81 15196.09 18698.99 1096.90 32398.69 496.42 15698.09 24095.86 14695.15 29495.54 32294.26 17799.81 3694.06 21898.51 28398.47 250
MM96.87 14596.62 15797.62 11997.72 26893.30 18796.39 15792.61 36397.90 5296.76 22798.64 9290.46 25799.81 3699.16 999.94 899.76 17
thres100view90091.76 32491.26 32493.26 33298.21 20084.50 35496.39 15790.39 38296.87 9596.33 25093.08 36173.44 37899.42 21078.85 39297.74 31695.85 374
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15798.98 9295.05 18398.06 14198.02 17095.86 12299.56 16894.37 20699.64 8999.00 180
Patchmtry95.03 23594.59 25096.33 21594.83 38090.82 24796.38 16097.20 28396.59 10497.49 17798.57 9777.67 35399.38 22892.95 25199.62 9298.80 213
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18499.09 9791.43 23896.37 16199.11 5094.19 21199.01 4499.25 3196.30 11099.38 22899.00 1499.88 2799.73 22
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16298.79 13995.07 18297.88 15998.35 12097.24 5299.72 8796.05 10999.58 10599.45 85
VNet96.84 14696.83 14796.88 18298.06 22092.02 22596.35 16397.57 27597.70 6297.88 15997.80 19392.40 22699.54 17694.73 19398.96 23799.08 169
V4297.04 13297.16 12796.68 19798.59 15991.05 24296.33 16498.36 20494.60 19897.99 14798.30 12893.32 19799.62 14997.40 6399.53 12599.38 106
test_fmvsmvis_n_192098.08 4598.47 2696.93 17899.03 10793.29 18896.32 16599.65 995.59 15999.71 499.01 5497.66 3399.60 15899.44 299.83 4397.90 307
APD-MVScopyleft97.00 13496.53 16798.41 5998.55 16496.31 6696.32 16598.77 14492.96 25997.44 18397.58 21195.84 12399.74 7691.96 26399.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 12497.49 10996.59 20099.47 3590.58 25296.27 16798.53 18397.77 5498.46 9398.41 11494.59 16799.68 12294.61 19699.29 19899.52 58
thres600view792.03 32091.43 31793.82 32198.19 20384.61 35396.27 16790.39 38296.81 9796.37 24993.11 35773.44 37899.49 19180.32 38797.95 30797.36 336
EPNet93.72 28492.62 30397.03 17387.61 41192.25 21396.27 16791.28 37596.74 9987.65 39797.39 22685.00 31699.64 14092.14 26199.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 31591.83 31293.25 33396.18 34283.68 36396.27 16793.68 34876.97 39992.54 36499.18 3989.20 28098.55 35083.88 37598.60 27897.51 331
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20696.25 17199.06 6393.67 22998.64 7499.00 5596.23 11499.36 23798.99 1599.80 5199.53 56
ACMP92.54 1397.47 11097.10 12998.55 4999.04 10696.70 5196.24 17298.89 10593.71 22597.97 15197.75 19797.44 4099.63 14493.22 24599.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17399.02 7793.92 22198.62 7698.99 5797.69 2999.62 14996.18 10599.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 12097.10 12998.14 8298.91 12096.77 4996.20 17498.63 17493.82 22298.54 8398.33 12293.98 18399.05 29995.99 11599.45 15498.61 237
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17599.73 395.05 18399.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
MVS_Test96.27 17996.79 15194.73 29496.94 32186.63 32796.18 17598.33 20894.94 18796.07 26598.28 13395.25 14899.26 26497.21 6897.90 31098.30 269
CR-MVSNet93.29 29892.79 29694.78 29295.44 36988.15 29496.18 17597.20 28384.94 36994.10 31898.57 9777.67 35399.39 22595.17 16595.81 36896.81 358
RPMNet94.68 25194.60 24894.90 28495.44 36988.15 29496.18 17598.86 11697.43 7494.10 31898.49 10579.40 34599.76 6195.69 13095.81 36896.81 358
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17999.57 1495.66 15499.52 1598.71 8497.04 6299.64 14099.21 799.87 2998.69 228
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18898.79 13191.44 23796.14 18099.06 6394.19 21198.82 6198.98 5896.22 11599.38 22898.98 1699.86 3199.58 39
WB-MVS95.50 20996.62 15792.11 36399.21 7577.26 39896.12 18195.40 33098.62 2698.84 5998.26 13891.08 24899.50 18693.37 23898.70 26799.58 39
EIA-MVS96.04 18895.77 20396.85 18497.80 25192.98 19596.12 18199.16 4094.65 19693.77 32991.69 38295.68 13499.67 12894.18 21398.85 25197.91 306
Effi-MVS+96.19 18296.01 18996.71 19497.43 29692.19 21996.12 18199.10 5295.45 16593.33 34594.71 33897.23 5399.56 16893.21 24697.54 32898.37 258
alignmvs96.01 19095.52 21197.50 13197.77 26094.71 13196.07 18496.84 29797.48 7396.78 22694.28 34885.50 31399.40 22196.22 10298.73 26598.40 254
PatchT93.75 28393.57 27994.29 31395.05 37787.32 31696.05 18592.98 35697.54 7094.25 31498.72 8275.79 36699.24 27095.92 11995.81 36896.32 369
Patchmatch-test93.60 29093.25 28594.63 29696.14 34787.47 31196.04 18694.50 34093.57 23096.47 24496.97 25476.50 36198.61 34490.67 29898.41 29097.81 315
thisisatest053092.71 30791.76 31595.56 25198.42 18288.23 29196.03 18787.35 39794.04 21896.56 24095.47 32464.03 39599.77 5694.78 19099.11 22298.68 231
9.1496.69 15498.53 16796.02 18898.98 9293.23 24197.18 19497.46 21796.47 10099.62 14992.99 24999.32 192
DeepC-MVS_fast94.34 796.74 15496.51 16997.44 13997.69 27094.15 15796.02 18898.43 19393.17 24997.30 18697.38 22895.48 14099.28 26093.74 23099.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 19099.64 1294.99 18699.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
114514_t93.96 27893.22 28696.19 22299.06 10190.97 24595.99 19198.94 9973.88 40293.43 34296.93 25792.38 22799.37 23489.09 32399.28 19998.25 275
FMVSNet395.26 22394.94 22696.22 22196.53 33190.06 25695.99 19197.66 26794.11 21597.99 14797.91 18380.22 34499.63 14494.60 19799.44 15598.96 186
HPM-MVS++copyleft96.99 13596.38 17598.81 2798.64 14997.59 2395.97 19398.20 22395.51 16395.06 29696.53 28294.10 18099.70 11094.29 20999.15 21599.13 156
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17598.57 16192.10 22395.97 19399.18 3897.67 6699.00 4698.48 10997.64 3499.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testgi96.07 18696.50 17094.80 29099.26 5987.69 30895.96 19598.58 18095.08 18198.02 14696.25 29697.92 2097.60 38488.68 33098.74 26299.11 164
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18195.96 19598.97 9594.55 20298.82 6198.76 8097.31 4699.29 25897.20 7099.44 15599.38 106
iter_conf0593.65 28893.05 28795.46 25796.13 34887.45 31295.95 19798.22 21992.66 26597.04 20897.89 18463.52 39699.72 8796.19 10499.82 4799.21 140
PAPM_NR94.61 25594.17 26795.96 23198.36 18691.23 24095.93 19897.95 24892.98 25593.42 34394.43 34690.53 25598.38 36387.60 34396.29 36298.27 273
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19999.04 7497.51 7298.22 12197.81 19294.68 16499.78 4797.14 7299.75 6599.41 99
test_vis1_n_192095.77 19996.41 17393.85 32098.55 16484.86 35095.91 20099.71 492.72 26497.67 16998.90 6987.44 29898.73 32997.96 4098.85 25197.96 303
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20395.89 20199.41 2493.36 23699.00 4698.44 11296.46 10299.65 13699.09 1199.76 5899.45 85
131492.38 31192.30 30692.64 35395.42 37185.15 34595.86 20296.97 29485.40 36290.62 37693.06 36291.12 24797.80 38186.74 35495.49 37694.97 386
MVS90.02 33989.20 34692.47 35794.71 38186.90 32395.86 20296.74 30364.72 40490.62 37692.77 36792.54 22198.39 36279.30 39095.56 37592.12 397
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21295.83 20499.32 2593.22 24298.91 5398.49 10596.31 10999.64 14099.07 1299.76 5899.40 100
casdiffmvspermissive97.50 10797.81 7196.56 20498.51 17091.04 24395.83 20499.09 5797.23 8798.33 11098.30 12897.03 6399.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmvs90.79 33590.87 32990.57 37392.75 40376.30 40095.79 20693.64 35091.04 29391.91 36996.26 29577.19 35998.86 31989.38 32089.85 39796.56 365
mvsany_test396.21 18195.93 19697.05 17097.40 29894.33 15095.76 20794.20 34389.10 31899.36 2499.60 693.97 18497.85 37995.40 15698.63 27498.99 183
MSLP-MVS++96.42 17596.71 15395.57 24997.82 24690.56 25495.71 20898.84 12394.72 19396.71 22997.39 22694.91 15998.10 37695.28 15899.02 23398.05 296
tfpn200view991.55 32691.00 32693.21 33698.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31695.85 374
Anonymous2023120695.27 22295.06 22495.88 23798.72 13989.37 26895.70 20997.85 25488.00 33696.98 21497.62 20791.95 23699.34 24489.21 32199.53 12598.94 189
thres40091.68 32591.00 32693.71 32498.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31697.36 336
test20.0396.58 16796.61 15996.48 20898.49 17491.72 23295.68 21297.69 26496.81 9798.27 11797.92 18294.18 17998.71 33290.78 29199.66 8699.00 180
hse-mvs295.77 19995.09 22197.79 10797.84 24395.51 9795.66 21395.43 32996.58 10597.21 19196.16 29984.14 32299.54 17695.89 12196.92 34298.32 265
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21399.02 7798.11 4498.31 11397.69 20394.65 16699.85 2797.02 7799.71 7499.48 76
dmvs_re92.08 31991.27 32294.51 30497.16 31292.79 20195.65 21592.64 36294.11 21592.74 35790.98 38983.41 32894.44 40280.72 38694.07 38696.29 370
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21598.87 11397.57 6798.31 11397.83 18894.69 16299.85 2797.02 7799.71 7499.46 81
EPMVS89.26 35088.55 35291.39 36892.36 40479.11 38995.65 21579.86 40788.60 32793.12 34996.53 28270.73 38698.10 37690.75 29289.32 39896.98 347
MVP-Stereo95.69 20195.28 21396.92 17998.15 21393.03 19495.64 21898.20 22390.39 30296.63 23697.73 20091.63 24199.10 29491.84 26897.31 33898.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_cas_vis1_n_192095.34 21895.67 20594.35 31098.21 20086.83 32595.61 21999.26 3090.45 30198.17 12798.96 6184.43 32198.31 36896.74 8399.17 21397.90 307
test_f95.82 19895.88 19995.66 24697.61 28193.21 19295.61 21998.17 22986.98 34598.42 9699.47 1190.46 25794.74 40097.71 5298.45 28799.03 176
F-COLMAP95.30 22194.38 26098.05 9298.64 14996.04 7595.61 21998.66 16889.00 32193.22 34696.40 29092.90 20799.35 24187.45 34897.53 32998.77 218
AUN-MVS93.95 28092.69 30097.74 11097.80 25195.38 10595.57 22295.46 32891.26 29092.64 36196.10 30574.67 36999.55 17393.72 23296.97 34198.30 269
v14419296.69 16096.90 14596.03 22898.25 19688.92 27795.49 22398.77 14493.05 25298.09 13698.29 13292.51 22499.70 11098.11 3599.56 11199.47 79
Fast-Effi-MVS+-dtu96.44 17396.12 18497.39 14597.18 31194.39 14595.46 22498.73 15196.03 13594.72 30494.92 33596.28 11399.69 11793.81 22897.98 30598.09 286
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18895.44 22598.86 11698.20 4298.37 10199.24 3294.69 16299.55 17395.98 11699.79 5399.65 33
LF4IMVS96.07 18695.63 20897.36 14698.19 20395.55 9495.44 22598.82 13792.29 27395.70 28296.55 28092.63 21698.69 33591.75 27299.33 19097.85 311
v192192096.72 15796.96 14095.99 22998.21 20088.79 28295.42 22798.79 13993.22 24298.19 12698.26 13892.68 21399.70 11098.34 3399.55 11899.49 70
plane_prior94.29 15195.42 22794.31 20898.93 242
v114496.84 14697.08 13196.13 22698.42 18289.28 27095.41 22998.67 16694.21 20997.97 15198.31 12493.06 20299.65 13698.06 3899.62 9299.45 85
ETV-MVS96.13 18595.90 19796.82 18797.76 26193.89 16595.40 23098.95 9895.87 14595.58 28591.00 38896.36 10899.72 8793.36 23998.83 25496.85 354
v124096.74 15497.02 13695.91 23698.18 20688.52 28595.39 23198.88 11193.15 25098.46 9398.40 11792.80 20999.71 10298.45 3199.49 14299.49 70
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23298.99 8992.45 27098.11 13398.31 12497.25 5199.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 14997.06 13396.15 22598.28 19289.29 26995.36 23398.77 14493.73 22498.11 13398.34 12193.02 20699.67 12898.35 3299.58 10599.50 62
v2v48296.78 15397.06 13395.95 23398.57 16188.77 28395.36 23398.26 21495.18 17797.85 16498.23 14292.58 21799.63 14497.80 4799.69 7899.45 85
test_fmvs194.51 26094.60 24894.26 31495.91 35187.92 30095.35 23599.02 7786.56 35096.79 22298.52 10282.64 33297.00 39097.87 4398.71 26697.88 309
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 30092.08 22495.34 23697.65 26997.74 5798.29 11698.11 15795.05 15299.68 12297.50 6099.50 13999.56 50
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30392.01 22695.33 23797.65 26997.74 5798.30 11598.14 15195.04 15399.69 11797.55 5899.52 13099.58 39
CostFormer89.75 34589.25 34391.26 36994.69 38278.00 39395.32 23891.98 36881.50 38390.55 37896.96 25671.06 38498.89 31588.59 33192.63 39196.87 352
PVSNet_Blended_VisFu95.95 19295.80 20196.42 21199.28 5790.62 25195.31 23999.08 5988.40 33096.97 21598.17 15092.11 23199.78 4793.64 23499.21 20798.86 208
UnsupCasMVSNet_eth95.91 19495.73 20496.44 20998.48 17691.52 23595.31 23998.45 19095.76 15097.48 17997.54 21289.53 27498.69 33594.43 20294.61 38399.13 156
EI-MVSNet96.63 16396.93 14195.74 24297.26 30888.13 29695.29 24197.65 26996.99 9197.94 15498.19 14792.55 21999.58 16196.91 8099.56 11199.50 62
CVMVSNet92.33 31392.79 29690.95 37097.26 30875.84 40295.29 24192.33 36581.86 38096.27 25598.19 14781.44 33698.46 35894.23 21298.29 29498.55 242
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24398.46 18994.58 20198.10 13598.07 16197.09 5899.39 22595.16 16799.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS93.32 1294.93 23794.23 26397.04 17298.18 20694.51 14195.22 24498.73 15181.22 38596.25 25795.95 31193.80 18998.98 30889.89 31298.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24598.99 8995.84 14798.78 6498.08 15996.84 8199.81 3693.98 22399.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER94.21 26993.93 27495.05 27595.83 35786.46 32895.18 24697.65 26992.41 27197.94 15498.00 17472.39 38099.58 16196.36 9699.56 11199.12 161
PatchmatchNetpermissive91.98 32191.87 31192.30 36094.60 38379.71 38695.12 24793.59 35189.52 31493.61 33597.02 25177.94 35199.18 27790.84 28894.57 38598.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-LS96.92 14197.29 11895.79 24098.51 17088.13 29695.10 24898.66 16896.99 9198.46 9398.68 8792.55 21999.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 16796.97 13895.42 25998.63 15387.57 30995.09 24997.90 25195.91 14398.24 11997.96 17693.42 19699.39 22596.04 11099.52 13099.29 126
tpm288.47 35787.69 36090.79 37194.98 37877.34 39695.09 24991.83 36977.51 39889.40 38996.41 28867.83 39198.73 32983.58 37992.60 39296.29 370
OpenMVS_ROBcopyleft91.80 1493.64 28993.05 28795.42 25997.31 30791.21 24195.08 25196.68 30681.56 38296.88 22196.41 28890.44 25999.25 26685.39 36597.67 32395.80 376
TAMVS95.49 21094.94 22697.16 15998.31 18893.41 18595.07 25296.82 29991.09 29297.51 17597.82 19189.96 26699.42 21088.42 33399.44 15598.64 232
tpmrst90.31 33790.61 33589.41 37894.06 39172.37 40995.06 25393.69 34688.01 33592.32 36696.86 26177.45 35598.82 32091.04 28287.01 40197.04 344
ADS-MVSNet291.47 32890.51 33694.36 30995.51 36785.63 33695.05 25495.70 31983.46 37692.69 35896.84 26379.15 34799.41 21985.66 36190.52 39498.04 297
ADS-MVSNet90.95 33490.26 33893.04 33995.51 36782.37 37195.05 25493.41 35283.46 37692.69 35896.84 26379.15 34798.70 33385.66 36190.52 39498.04 297
tpm91.08 33290.85 33091.75 36695.33 37278.09 39195.03 25691.27 37688.75 32493.53 33897.40 22271.24 38299.30 25491.25 27993.87 38797.87 310
NCCC96.52 16995.99 19198.10 8597.81 24795.68 8995.00 25798.20 22395.39 16995.40 28996.36 29293.81 18899.45 20393.55 23698.42 28999.17 148
test_post194.98 25810.37 41076.21 36499.04 30089.47 318
AdaColmapbinary95.11 23094.62 24796.58 20197.33 30594.45 14494.92 25998.08 24193.15 25093.98 32595.53 32394.34 17599.10 29485.69 36098.61 27696.20 372
MDTV_nov1_ep13_2view57.28 41394.89 26080.59 38794.02 32378.66 34985.50 36397.82 313
CNVR-MVS96.92 14196.55 16498.03 9398.00 22895.54 9594.87 26198.17 22994.60 19896.38 24897.05 24995.67 13599.36 23795.12 17399.08 22699.19 145
OMC-MVS96.48 17196.00 19097.91 10098.30 18996.01 7894.86 26298.60 17691.88 27997.18 19497.21 24096.11 11799.04 30090.49 30499.34 18598.69 228
testing389.72 34688.26 35594.10 31897.66 27684.30 35894.80 26388.25 39594.66 19595.07 29592.51 37241.15 41399.43 20891.81 26998.44 28898.55 242
EPNet_dtu91.39 32990.75 33293.31 33190.48 40882.61 36994.80 26392.88 35793.39 23581.74 40594.90 33681.36 33799.11 29188.28 33598.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 32194.31 38573.51 40794.80 26393.16 35486.75 34993.45 34197.40 22276.37 36298.55 35088.85 32696.43 357
pmmvs-eth3d96.49 17096.18 18397.42 14298.25 19694.29 15194.77 26698.07 24589.81 31197.97 15198.33 12293.11 20199.08 29695.46 14899.84 4098.89 201
test_yl94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
DCV-MVSNet94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
dmvs_testset87.30 36786.99 36488.24 38396.71 32577.48 39594.68 26986.81 40092.64 26689.61 38887.01 40285.91 30993.12 40361.04 40788.49 39994.13 390
MCST-MVS96.24 18095.80 20197.56 12298.75 13694.13 15894.66 27098.17 22990.17 30696.21 25996.10 30595.14 15199.43 20894.13 21698.85 25199.13 156
XVG-OURS-SEG-HR97.38 11697.07 13298.30 6899.01 10997.41 3494.66 27099.02 7795.20 17598.15 13097.52 21498.83 598.43 35994.87 18496.41 35899.07 171
mvs_anonymous95.36 21796.07 18893.21 33696.29 33681.56 37794.60 27297.66 26793.30 23996.95 21698.91 6893.03 20599.38 22896.60 8697.30 33998.69 228
DP-MVS Recon95.55 20895.13 21996.80 18898.51 17093.99 16394.60 27298.69 16190.20 30595.78 27896.21 29892.73 21298.98 30890.58 30098.86 25097.42 335
save fliter98.48 17694.71 13194.53 27498.41 19795.02 185
patch_mono-296.59 16596.93 14195.55 25298.88 12287.12 31994.47 27599.30 2794.12 21496.65 23598.41 11494.98 15799.87 2295.81 12799.78 5699.66 30
tpm cat188.01 36187.33 36290.05 37794.48 38476.28 40194.47 27594.35 34273.84 40389.26 39095.61 32173.64 37498.30 36984.13 37386.20 40295.57 381
CANet95.86 19695.65 20796.49 20796.41 33490.82 24794.36 27798.41 19794.94 18792.62 36396.73 27292.68 21399.71 10295.12 17399.60 10198.94 189
WR-MVS96.90 14396.81 14897.16 15998.56 16392.20 21894.33 27898.12 23897.34 8398.20 12297.33 23392.81 20899.75 6794.79 18899.81 4899.54 53
HQP-NCC97.85 23894.26 27993.18 24692.86 354
ACMP_Plane97.85 23894.26 27993.18 24692.86 354
HQP-MVS95.17 22894.58 25196.92 17997.85 23892.47 20894.26 27998.43 19393.18 24692.86 35495.08 32990.33 26099.23 27290.51 30298.74 26299.05 175
PLCcopyleft91.02 1694.05 27692.90 29297.51 12798.00 22895.12 12394.25 28298.25 21586.17 35291.48 37395.25 32791.01 24999.19 27685.02 36996.69 35398.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 27293.42 28196.23 21998.59 15990.85 24694.24 28398.85 12085.49 35992.97 35294.94 33386.01 30899.64 14091.78 27097.92 30898.20 279
MS-PatchMatch94.83 24194.91 23094.57 30196.81 32487.10 32094.23 28497.34 28088.74 32597.14 19697.11 24591.94 23798.23 37292.99 24997.92 30898.37 258
Fast-Effi-MVS+95.49 21095.07 22296.75 19297.67 27592.82 19794.22 28598.60 17691.61 28393.42 34392.90 36496.73 8699.70 11092.60 25397.89 31197.74 319
CMPMVSbinary73.10 2392.74 30691.39 31896.77 19193.57 39794.67 13494.21 28697.67 26580.36 38993.61 33596.60 27882.85 33197.35 38584.86 37098.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 36088.05 35688.16 38592.85 40168.81 41194.17 28792.88 35785.47 36091.38 37496.14 30268.87 39098.81 32286.88 35383.80 40496.87 352
JIA-IIPM91.79 32390.69 33395.11 27193.80 39490.98 24494.16 28891.78 37096.38 11490.30 38299.30 2872.02 38198.90 31488.28 33590.17 39695.45 382
D2MVS95.18 22695.17 21795.21 26697.76 26187.76 30794.15 28997.94 24989.77 31296.99 21297.68 20487.45 29799.14 28495.03 17899.81 4898.74 221
TSAR-MVS + GP.96.47 17296.12 18497.49 13497.74 26695.23 11594.15 28996.90 29693.26 24098.04 14496.70 27394.41 17398.89 31594.77 19199.14 21698.37 258
PVSNet_BlendedMVS95.02 23694.93 22895.27 26397.79 25687.40 31494.14 29198.68 16388.94 32294.51 30998.01 17293.04 20399.30 25489.77 31499.49 14299.11 164
TinyColmap96.00 19196.34 17794.96 28197.90 23687.91 30194.13 29298.49 18794.41 20498.16 12897.76 19496.29 11298.68 33890.52 30199.42 16698.30 269
CNLPA95.04 23394.47 25696.75 19297.81 24795.25 11494.12 29397.89 25294.41 20494.57 30795.69 31690.30 26398.35 36686.72 35598.76 26096.64 362
BH-untuned94.69 24994.75 24094.52 30397.95 23387.53 31094.07 29497.01 29293.99 21997.10 20095.65 31892.65 21598.95 31387.60 34396.74 35197.09 342
pmmvs594.63 25494.34 26195.50 25497.63 28088.34 28994.02 29597.13 28787.15 34295.22 29397.15 24287.50 29699.27 26393.99 22299.26 20298.88 205
thres20091.00 33390.42 33792.77 35097.47 29483.98 36194.01 29691.18 37795.12 18095.44 28791.21 38673.93 37199.31 25177.76 39597.63 32695.01 385
xiu_mvs_v1_base_debu95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base_debi95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
test_vis1_rt94.03 27793.65 27795.17 26995.76 36293.42 18493.97 30098.33 20884.68 37093.17 34895.89 31392.53 22394.79 39993.50 23794.97 37997.31 339
CDS-MVSNet94.88 24094.12 26897.14 16197.64 27993.57 17993.96 30197.06 29190.05 30896.30 25496.55 28086.10 30799.47 19690.10 30999.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 25394.21 26595.96 23195.90 35289.68 26293.92 30297.83 25893.19 24590.12 38495.64 31988.52 28499.57 16793.27 24499.47 14898.62 235
WTY-MVS93.55 29193.00 29195.19 26797.81 24787.86 30293.89 30396.00 31389.02 32094.07 32095.44 32686.27 30699.33 24687.69 34196.82 34898.39 256
sss94.22 26793.72 27695.74 24297.71 26989.95 25993.84 30496.98 29388.38 33193.75 33095.74 31587.94 29098.89 31591.02 28398.10 30198.37 258
baseline289.65 34888.44 35493.25 33395.62 36582.71 36793.82 30585.94 40188.89 32387.35 39992.54 37171.23 38399.33 24686.01 35694.60 38497.72 320
XVG-OURS97.12 12996.74 15298.26 7098.99 11097.45 3293.82 30599.05 6795.19 17698.32 11197.70 20295.22 14998.41 36094.27 21098.13 30098.93 193
MVS_111021_LR96.82 15096.55 16497.62 11998.27 19495.34 11093.81 30798.33 20894.59 20096.56 24096.63 27796.61 9198.73 32994.80 18799.34 18598.78 215
BH-RMVSNet94.56 25794.44 25994.91 28297.57 28387.44 31393.78 30896.26 30993.69 22796.41 24796.50 28592.10 23299.00 30485.96 35797.71 31998.31 267
CDPH-MVS95.45 21594.65 24397.84 10598.28 19294.96 12693.73 30998.33 20885.03 36695.44 28796.60 27895.31 14699.44 20690.01 31099.13 21899.11 164
PatchMatch-RL94.61 25593.81 27597.02 17498.19 20395.72 8693.66 31097.23 28288.17 33494.94 30195.62 32091.43 24298.57 34787.36 34997.68 32296.76 360
TEST997.84 24395.23 11593.62 31198.39 20086.81 34793.78 32795.99 30794.68 16499.52 181
train_agg95.46 21494.66 24297.88 10297.84 24395.23 11593.62 31198.39 20087.04 34393.78 32795.99 30794.58 16899.52 18191.76 27198.90 24498.89 201
test_prior495.38 10593.61 313
test_897.81 24795.07 12493.54 31498.38 20287.04 34393.71 33195.96 31094.58 16899.52 181
TR-MVS92.54 30992.20 30893.57 32796.49 33286.66 32693.51 31594.73 33789.96 30994.95 30093.87 35290.24 26598.61 34481.18 38594.88 38095.45 382
新几何293.43 316
diffmvspermissive96.04 18896.23 18095.46 25797.35 30188.03 29993.42 31799.08 5994.09 21796.66 23396.93 25793.85 18799.29 25896.01 11498.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR96.73 15696.54 16697.27 15298.35 18793.66 17793.42 31798.36 20494.74 19296.58 23896.76 27196.54 9498.99 30694.87 18499.27 20199.15 151
UnsupCasMVSNet_bld94.72 24894.26 26296.08 22798.62 15590.54 25593.38 31998.05 24790.30 30397.02 21096.80 26889.54 27299.16 28288.44 33296.18 36498.56 240
旧先验293.35 32077.95 39795.77 28098.67 33990.74 295
test_prior293.33 32194.21 20994.02 32396.25 29693.64 19291.90 26598.96 237
WB-MVSnew91.50 32791.29 32092.14 36294.85 37980.32 38493.29 32288.77 39388.57 32894.03 32292.21 37592.56 21898.28 37080.21 38897.08 34097.81 315
SCA93.38 29693.52 28092.96 34496.24 33781.40 37993.24 32394.00 34491.58 28594.57 30796.97 25487.94 29099.42 21089.47 31897.66 32498.06 293
无先验93.20 32497.91 25080.78 38699.40 22187.71 34097.94 305
MG-MVS94.08 27594.00 27194.32 31197.09 31585.89 33593.19 32595.96 31592.52 26794.93 30297.51 21589.54 27298.77 32587.52 34797.71 31998.31 267
MVS-HIRNet88.40 35890.20 33982.99 38797.01 31760.04 41293.11 32685.61 40284.45 37488.72 39399.09 5084.72 31998.23 37282.52 38196.59 35690.69 402
new-patchmatchnet95.67 20396.58 16192.94 34597.48 29080.21 38592.96 32798.19 22894.83 19098.82 6198.79 7593.31 19899.51 18595.83 12599.04 23299.12 161
ETVMVS87.62 36485.75 37193.22 33596.15 34683.26 36492.94 32890.37 38491.39 28790.37 38088.45 39851.93 41098.64 34173.76 39996.38 35997.75 318
MDA-MVSNet-bldmvs95.69 20195.67 20595.74 24298.48 17688.76 28492.84 32997.25 28196.00 13697.59 17197.95 17891.38 24399.46 19993.16 24796.35 36098.99 183
原ACMM292.82 330
testdata192.77 33193.78 223
Test_1112_low_res93.53 29292.86 29395.54 25398.60 15788.86 28092.75 33298.69 16182.66 37992.65 36096.92 25984.75 31899.56 16890.94 28597.76 31598.19 280
USDC94.56 25794.57 25394.55 30297.78 25986.43 33092.75 33298.65 17385.96 35496.91 21997.93 18190.82 25298.74 32890.71 29699.59 10398.47 250
test22298.17 20993.24 19192.74 33497.61 27475.17 40094.65 30696.69 27490.96 25198.66 27197.66 322
jason94.39 26494.04 27095.41 26198.29 19087.85 30492.74 33496.75 30285.38 36395.29 29196.15 30088.21 28999.65 13694.24 21199.34 18598.74 221
jason: jason.
testing9189.67 34788.55 35293.04 33995.90 35281.80 37692.71 33693.71 34593.71 22590.18 38390.15 39457.11 39999.22 27487.17 35296.32 36198.12 285
testing9989.21 35188.04 35792.70 35295.78 36081.00 38292.65 33792.03 36693.20 24489.90 38790.08 39655.25 40599.14 28487.54 34595.95 36797.97 302
Patchmatch-RL test94.66 25294.49 25495.19 26798.54 16688.91 27892.57 33898.74 15091.46 28698.32 11197.75 19777.31 35898.81 32296.06 10799.61 9897.85 311
DeepPCF-MVS94.58 596.90 14396.43 17298.31 6797.48 29097.23 4092.56 33998.60 17692.84 26198.54 8397.40 22296.64 9098.78 32494.40 20599.41 17098.93 193
N_pmnet95.18 22694.23 26398.06 8897.85 23896.55 5892.49 34091.63 37189.34 31598.09 13697.41 22190.33 26099.06 29891.58 27399.31 19598.56 240
testing1188.93 35387.63 36192.80 34995.87 35481.49 37892.48 34191.54 37291.62 28288.27 39590.24 39255.12 40899.11 29187.30 35096.28 36397.81 315
Syy-MVS92.09 31891.80 31492.93 34695.19 37482.65 36892.46 34291.35 37390.67 29891.76 37187.61 40085.64 31298.50 35494.73 19396.84 34697.65 323
myMVS_eth3d87.16 36985.61 37291.82 36595.19 37479.32 38792.46 34291.35 37390.67 29891.76 37187.61 40041.96 41298.50 35482.66 38096.84 34697.65 323
BH-w/o92.14 31691.94 31092.73 35197.13 31485.30 34192.46 34295.64 32189.33 31694.21 31592.74 36889.60 27098.24 37181.68 38394.66 38294.66 387
IterMVS-SCA-FT95.86 19696.19 18294.85 28797.68 27185.53 33892.42 34597.63 27396.99 9198.36 10498.54 10187.94 29099.75 6797.07 7699.08 22699.27 131
IterMVS95.42 21695.83 20094.20 31597.52 28783.78 36292.41 34697.47 27895.49 16498.06 14198.49 10587.94 29099.58 16196.02 11299.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing22287.35 36685.50 37392.93 34695.79 35982.83 36692.40 34790.10 38892.80 26288.87 39289.02 39748.34 41198.70 33375.40 39896.74 35197.27 340
DELS-MVS96.17 18396.23 18095.99 22997.55 28690.04 25792.38 34898.52 18494.13 21396.55 24297.06 24894.99 15699.58 16195.62 13699.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 31291.69 31694.32 31196.23 33989.16 27292.27 34992.88 35784.39 37595.29 29196.35 29385.66 31196.74 39584.53 37297.56 32797.05 343
CHOSEN 1792x268894.10 27393.41 28296.18 22399.16 8290.04 25792.15 35098.68 16379.90 39096.22 25897.83 18887.92 29499.42 21089.18 32299.65 8799.08 169
xiu_mvs_v2_base94.22 26794.63 24692.99 34397.32 30684.84 35192.12 35197.84 25691.96 27794.17 31693.43 35596.07 11899.71 10291.27 27797.48 33194.42 388
lupinMVS93.77 28193.28 28495.24 26497.68 27187.81 30592.12 35196.05 31184.52 37294.48 31195.06 33186.90 30299.63 14493.62 23599.13 21898.27 273
pmmvs494.82 24294.19 26696.70 19597.42 29792.75 20292.09 35396.76 30186.80 34895.73 28197.22 23989.28 27898.89 31593.28 24399.14 21698.46 252
PAPR92.22 31491.27 32295.07 27495.73 36488.81 28191.97 35497.87 25385.80 35790.91 37592.73 36991.16 24698.33 36779.48 38995.76 37298.08 287
UWE-MVS87.57 36586.72 36790.13 37695.21 37373.56 40691.94 35583.78 40588.73 32693.00 35192.87 36555.22 40699.25 26681.74 38297.96 30697.59 328
PS-MVSNAJ94.10 27394.47 25693.00 34297.35 30184.88 34991.86 35697.84 25691.96 27794.17 31692.50 37395.82 12699.71 10291.27 27797.48 33194.40 389
c3_l95.20 22595.32 21294.83 28996.19 34186.43 33091.83 35798.35 20793.47 23397.36 18597.26 23788.69 28199.28 26095.41 15599.36 17798.78 215
test0.0.03 190.11 33889.21 34592.83 34893.89 39386.87 32491.74 35888.74 39492.02 27594.71 30591.14 38773.92 37294.48 40183.75 37892.94 38997.16 341
FPMVS89.92 34388.63 35193.82 32198.37 18596.94 4591.58 35993.34 35388.00 33690.32 38197.10 24670.87 38591.13 40571.91 40396.16 36693.39 395
iter_conf05_1193.77 28193.29 28395.24 26496.54 32889.14 27491.55 36095.02 33490.16 30793.21 34793.94 35187.37 29999.56 16892.24 25899.56 11197.03 345
ET-MVSNet_ETH3D91.12 33089.67 34295.47 25696.41 33489.15 27391.54 36190.23 38689.07 31986.78 40192.84 36669.39 38999.44 20694.16 21496.61 35597.82 313
PVSNet_Blended93.96 27893.65 27794.91 28297.79 25687.40 31491.43 36298.68 16384.50 37394.51 30994.48 34593.04 20399.30 25489.77 31498.61 27698.02 299
CLD-MVS95.47 21395.07 22296.69 19698.27 19492.53 20591.36 36398.67 16691.22 29195.78 27894.12 34995.65 13698.98 30890.81 28999.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 23994.93 22894.75 29395.99 35086.12 33391.35 36498.49 18793.40 23497.12 19897.25 23886.87 30499.35 24195.08 17598.82 25598.78 215
cl____94.73 24494.64 24495.01 27795.85 35687.00 32191.33 36598.08 24193.34 23797.10 20097.33 23384.01 32599.30 25495.14 17099.56 11198.71 227
DIV-MVS_self_test94.73 24494.64 24495.01 27795.86 35587.00 32191.33 36598.08 24193.34 23797.10 20097.34 23284.02 32499.31 25195.15 16999.55 11898.72 224
miper_ehance_all_eth94.69 24994.70 24194.64 29595.77 36186.22 33291.32 36798.24 21791.67 28197.05 20796.65 27688.39 28799.22 27494.88 18398.34 29198.49 249
pmmvs390.00 34088.90 35093.32 33094.20 39085.34 34091.25 36892.56 36478.59 39493.82 32695.17 32867.36 39298.69 33589.08 32498.03 30495.92 373
HyFIR lowres test93.72 28492.65 30196.91 18198.93 11691.81 23191.23 36998.52 18482.69 37896.46 24596.52 28480.38 34399.90 1490.36 30698.79 25799.03 176
DPM-MVS93.68 28692.77 29996.42 21197.91 23492.54 20491.17 37097.47 27884.99 36893.08 35094.74 33789.90 26799.00 30487.54 34598.09 30297.72 320
CL-MVSNet_self_test95.04 23394.79 23995.82 23997.51 28889.79 26191.14 37196.82 29993.05 25296.72 22896.40 29090.82 25299.16 28291.95 26498.66 27198.50 248
miper_lstm_enhance94.81 24394.80 23894.85 28796.16 34386.45 32991.14 37198.20 22393.49 23297.03 20997.37 23084.97 31799.26 26495.28 15899.56 11198.83 210
cl2293.25 29992.84 29594.46 30694.30 38686.00 33491.09 37396.64 30790.74 29595.79 27696.31 29478.24 35098.77 32594.15 21598.34 29198.62 235
MSDG95.33 21995.13 21995.94 23597.40 29891.85 22991.02 37498.37 20395.30 17296.31 25395.99 30794.51 17198.38 36389.59 31697.65 32597.60 327
IB-MVS85.98 2088.63 35686.95 36693.68 32595.12 37684.82 35290.85 37590.17 38787.55 33988.48 39491.34 38558.01 39899.59 15987.24 35193.80 38896.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsany_test193.47 29393.03 28994.79 29194.05 39292.12 22090.82 37690.01 38985.02 36797.26 18898.28 13393.57 19397.03 38892.51 25695.75 37395.23 384
test12312.59 37615.49 3793.87 3916.07 4142.55 41690.75 3772.59 4162.52 4095.20 41113.02 4084.96 4141.85 4115.20 4099.09 4087.23 406
ppachtmachnet_test94.49 26194.84 23493.46 32996.16 34382.10 37290.59 37897.48 27790.53 30097.01 21197.59 20991.01 24999.36 23793.97 22499.18 21298.94 189
PMMVS92.39 31091.08 32596.30 21893.12 39992.81 19890.58 37995.96 31579.17 39391.85 37092.27 37490.29 26498.66 34089.85 31396.68 35497.43 334
our_test_394.20 27194.58 25193.07 33896.16 34381.20 38090.42 38096.84 29790.72 29697.14 19697.13 24390.47 25699.11 29194.04 22198.25 29598.91 197
YYNet194.73 24494.84 23494.41 30897.47 29485.09 34790.29 38195.85 31892.52 26797.53 17397.76 19491.97 23599.18 27793.31 24296.86 34598.95 187
MDA-MVSNet_test_wron94.73 24494.83 23694.42 30797.48 29085.15 34590.28 38295.87 31792.52 26797.48 17997.76 19491.92 23899.17 28193.32 24196.80 35098.94 189
GA-MVS92.83 30592.15 30994.87 28696.97 31887.27 31790.03 38396.12 31091.83 28094.05 32194.57 33976.01 36598.97 31292.46 25797.34 33798.36 263
miper_enhance_ethall93.14 30192.78 29894.20 31593.65 39585.29 34289.97 38497.85 25485.05 36596.15 26494.56 34085.74 31099.14 28493.74 23098.34 29198.17 283
test-LLR89.97 34289.90 34090.16 37494.24 38874.98 40389.89 38589.06 39192.02 27589.97 38590.77 39073.92 37298.57 34791.88 26697.36 33596.92 349
TESTMET0.1,187.20 36886.57 36889.07 37993.62 39672.84 40889.89 38587.01 39985.46 36189.12 39190.20 39356.00 40497.72 38290.91 28696.92 34296.64 362
test-mter87.92 36287.17 36390.16 37494.24 38874.98 40389.89 38589.06 39186.44 35189.97 38590.77 39054.96 40998.57 34791.88 26697.36 33596.92 349
PCF-MVS89.43 1892.12 31790.64 33496.57 20397.80 25193.48 18289.88 38898.45 19074.46 40196.04 26795.68 31790.71 25499.31 25173.73 40099.01 23596.91 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 33689.18 34894.17 31797.07 31685.44 33989.75 38987.58 39688.28 33293.69 33391.72 38165.27 39399.58 16190.59 29998.67 26997.50 333
KD-MVS_2432*160088.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
miper_refine_blended88.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
testmvs12.33 37715.23 3803.64 3925.77 4152.23 41788.99 3923.62 4152.30 4105.29 41013.09 4074.52 4151.95 4105.16 4108.32 4096.75 407
cascas91.89 32291.35 31993.51 32894.27 38785.60 33788.86 39398.61 17579.32 39292.16 36791.44 38489.22 27998.12 37590.80 29097.47 33396.82 357
PAPM87.64 36385.84 37093.04 33996.54 32884.99 34888.42 39495.57 32579.52 39183.82 40293.05 36380.57 34298.41 36062.29 40692.79 39095.71 377
PVSNet86.72 1991.10 33190.97 32891.49 36797.56 28578.04 39287.17 39594.60 33984.65 37192.34 36592.20 37687.37 29998.47 35785.17 36897.69 32197.96 303
PMMVS293.66 28794.07 26992.45 35897.57 28380.67 38386.46 39696.00 31393.99 21997.10 20097.38 22889.90 26797.82 38088.76 32799.47 14898.86 208
CHOSEN 280x42089.98 34189.19 34792.37 35995.60 36681.13 38186.22 39797.09 28981.44 38487.44 39893.15 35673.99 37099.47 19688.69 32999.07 22896.52 366
tmp_tt57.23 37462.50 37741.44 39034.77 41349.21 41483.93 39860.22 41415.31 40671.11 40779.37 40570.09 38844.86 40964.76 40582.93 40530.25 405
PVSNet_081.89 2184.49 37183.21 37488.34 38295.76 36274.97 40583.49 39992.70 36178.47 39587.94 39686.90 40383.38 32996.63 39673.44 40166.86 40793.40 394
E-PMN89.52 34989.78 34188.73 38093.14 39877.61 39483.26 40092.02 36794.82 19193.71 33193.11 35775.31 36796.81 39285.81 35896.81 34991.77 399
EMVS89.06 35289.22 34488.61 38193.00 40077.34 39682.91 40190.92 37894.64 19792.63 36291.81 38076.30 36397.02 38983.83 37696.90 34491.48 400
MVEpermissive73.61 2286.48 37085.92 36988.18 38496.23 33985.28 34381.78 40275.79 40886.01 35382.53 40491.88 37992.74 21187.47 40771.42 40494.86 38191.78 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.88 37366.13 37669.11 38962.68 41225.73 41549.76 40396.04 31214.32 40764.27 40891.69 38273.45 37788.05 40676.06 39766.94 40693.54 392
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.22 37532.30 3780.00 3930.00 4160.00 4180.00 40498.10 2390.00 4110.00 41295.06 33197.54 390.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.98 37810.65 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41195.82 1260.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.91 37910.55 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.94 3330.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.32 38785.41 364
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
PC_three_145287.24 34198.37 10197.44 21997.00 6596.78 39492.01 26299.25 20399.21 140
No_MVS98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
test_one_060199.05 10595.50 10098.87 11397.21 8898.03 14598.30 12896.93 71
eth-test20.00 416
eth-test0.00 416
ZD-MVS98.43 18195.94 7998.56 18290.72 29696.66 23397.07 24795.02 15599.74 7691.08 28198.93 242
IU-MVS99.22 6895.40 10398.14 23685.77 35898.36 10495.23 16299.51 13599.49 70
test_241102_TWO98.83 12996.11 12898.62 7698.24 14096.92 7399.72 8795.44 14999.49 14299.49 70
test_241102_ONE99.22 6895.35 10898.83 12996.04 13399.08 4098.13 15397.87 2399.33 246
test_0728_THIRD96.62 10198.40 9898.28 13397.10 5699.71 10295.70 12899.62 9299.58 39
GSMVS98.06 293
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35298.06 293
sam_mvs77.38 356
MTGPAbinary98.73 151
test_post10.87 40976.83 36099.07 297
patchmatchnet-post96.84 26377.36 35799.42 210
gm-plane-assit91.79 40571.40 41081.67 38190.11 39598.99 30684.86 370
test9_res91.29 27698.89 24799.00 180
agg_prior290.34 30798.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20493.49 33999.53 178
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
test_prior97.46 13797.79 25694.26 15598.42 19699.34 24498.79 214
新几何197.25 15598.29 19094.70 13397.73 26277.98 39694.83 30396.67 27592.08 23399.45 20388.17 33798.65 27397.61 326
旧先验197.80 25193.87 16697.75 26197.04 25093.57 19398.68 26898.72 224
原ACMM196.58 20198.16 21192.12 22098.15 23585.90 35693.49 33996.43 28792.47 22599.38 22887.66 34298.62 27598.23 276
testdata299.46 19987.84 338
segment_acmp95.34 145
testdata95.70 24598.16 21190.58 25297.72 26380.38 38895.62 28397.02 25192.06 23498.98 30889.06 32598.52 28197.54 330
test1297.46 13797.61 28194.07 15997.78 26093.57 33793.31 19899.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 239
plane_prior598.75 14899.46 19992.59 25499.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17396.16 262
plane_prior198.49 174
n20.00 417
nn0.00 417
door-mid98.17 229
lessismore_v097.05 17099.36 5092.12 22084.07 40398.77 6898.98 5885.36 31499.74 7697.34 6599.37 17499.30 120
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
test1198.08 241
door97.81 259
HQP5-MVS92.47 208
BP-MVS90.51 302
HQP4-MVS92.87 35399.23 27299.06 173
HQP3-MVS98.43 19398.74 262
HQP2-MVS90.33 260
NP-MVS98.14 21593.72 17295.08 329
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 171
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18695.63 15697.22 18997.30 23595.52 13998.55 35090.97 28498.90 24498.34 264
DeepMVS_CXcopyleft77.17 38890.94 40785.28 34374.08 41152.51 40580.87 40688.03 39975.25 36870.63 40859.23 40884.94 40375.62 403