This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6599.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6499.17 699.05 4398.05 4199.61 1199.52 593.72 18099.88 1898.72 999.88 2399.65 23
DVP-MVS++97.96 4697.90 4598.12 8497.75 24395.40 10299.03 798.89 7996.62 9298.62 5298.30 9496.97 5699.75 6595.70 10499.25 18799.21 129
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
Anonymous2023121198.55 1798.76 1397.94 9798.79 11294.37 14798.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 7998.49 2899.38 1799.14 3395.44 12999.84 2596.47 7199.80 3699.47 62
EPP-MVSNet96.84 12896.58 14097.65 11999.18 7093.78 17198.68 1296.34 29397.91 4597.30 16898.06 13088.46 26699.85 2293.85 20499.40 15199.32 101
v7n98.73 1198.99 597.95 9699.64 1194.20 15598.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
MVSFormer96.14 16796.36 15495.49 24597.68 25087.81 28798.67 1399.02 5296.50 10094.48 28396.15 27886.90 28199.92 498.73 799.13 20498.74 212
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6798.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3697.46 3398.57 1799.05 4395.43 15797.41 16697.50 18897.98 1599.79 3995.58 11799.57 8699.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 12296.68 13597.70 11599.25 5394.00 16198.57 1796.74 28998.36 3198.14 10897.98 13988.23 26999.71 10093.10 22299.72 5199.38 88
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 1999.05 1399.17 2998.79 5595.47 12799.89 1697.95 2199.91 1799.75 13
test250689.86 31889.16 32391.97 33298.95 9976.83 36598.54 2061.07 37996.20 11397.07 18599.16 3055.19 37899.69 11796.43 7399.83 3199.38 88
mvs_tets98.90 598.94 698.75 3399.69 896.48 6198.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
Gipumacopyleft98.07 4098.31 2997.36 15099.76 596.28 6898.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30696.38 7499.50 11596.98 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10198.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
3Dnovator96.53 297.61 8397.64 7297.50 13297.74 24693.65 17898.49 2398.88 8596.86 8797.11 17998.55 7395.82 10899.73 8195.94 9599.42 14499.13 146
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7298.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6198.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 8998.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
LS3D97.77 7397.50 8798.57 4896.24 31397.58 2598.45 2698.85 9498.58 2797.51 15497.94 14595.74 11699.63 14395.19 14098.97 22298.51 233
FC-MVSNet-test98.16 3398.37 2797.56 12499.49 2893.10 19198.35 2999.21 1498.43 2998.89 3998.83 5494.30 16599.81 3297.87 2499.91 1799.77 8
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 2999.03 5095.88 13497.88 13898.22 11098.15 1299.74 7596.50 7099.62 6999.42 81
ab-mvs96.59 14996.59 13896.60 19198.64 13092.21 20898.35 2997.67 24994.45 19296.99 19198.79 5594.96 14499.49 18990.39 28099.07 21498.08 269
EGC-MVSNET83.08 33877.93 34198.53 5199.57 1697.55 2798.33 3298.57 1614.71 37410.38 37598.90 5095.60 12199.50 18795.69 10699.61 7598.55 231
test111194.53 23994.81 21493.72 29999.06 8981.94 34898.31 3383.87 37196.37 10598.49 6599.17 2981.49 30799.73 8196.64 6299.86 2599.49 53
ECVR-MVScopyleft94.37 24594.48 23294.05 29698.95 9983.10 34098.31 3382.48 37296.20 11398.23 9799.16 3081.18 31099.66 13695.95 9499.83 3199.38 88
DROMVSNet97.90 6097.94 4497.79 10798.66 12995.14 12098.31 3399.66 297.57 6195.95 24297.01 22996.99 5599.82 2997.66 3399.64 6698.39 241
pm-mvs198.47 2198.67 1797.86 10399.52 2394.58 13998.28 3699.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
SixPastTwentyTwo97.49 9297.57 8197.26 15699.56 1792.33 20498.28 3696.97 28098.30 3499.45 1499.35 1688.43 26799.89 1698.01 2099.76 4299.54 38
CP-MVSNet98.42 2398.46 2498.30 6899.46 3095.22 11798.27 3898.84 9999.05 1399.01 3598.65 6795.37 13099.90 1397.57 3699.91 1799.77 8
GG-mvs-BLEND90.60 34091.00 37284.21 33698.23 3972.63 37882.76 36984.11 37056.14 37696.79 36472.20 36892.09 35990.78 367
GBi-Net96.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
test196.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
FMVSNet197.95 5098.08 3597.56 12499.14 8293.67 17498.23 3998.66 14997.41 7299.00 3699.19 2495.47 12799.73 8195.83 10299.76 4299.30 107
ACMH93.61 998.44 2298.76 1397.51 12999.43 3493.54 18098.23 3999.05 4397.40 7399.37 1899.08 3798.79 599.47 19597.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 2598.67 1797.51 12999.51 2493.39 18498.20 4498.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10199.60 26
gg-mvs-nofinetune88.28 32986.96 33492.23 33192.84 36884.44 33398.19 4574.60 37599.08 1087.01 36699.47 856.93 37398.23 35078.91 35995.61 34294.01 357
QAPM95.88 17995.57 18796.80 18097.90 21491.84 22098.18 4698.73 12988.41 29796.42 22098.13 11794.73 14899.75 6588.72 30398.94 22798.81 203
NR-MVSNet97.96 4697.86 5098.26 7098.73 11895.54 9498.14 4798.73 12997.79 4699.42 1597.83 15794.40 16399.78 4395.91 9799.76 4299.46 64
MIMVSNet93.42 27192.86 27095.10 25998.17 18688.19 27698.13 4893.69 32592.07 25595.04 26998.21 11180.95 31399.03 28881.42 35498.06 28298.07 271
PS-MVSNAJss98.53 1998.63 1998.21 7899.68 994.82 12998.10 4999.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5697.60 2398.09 5098.96 7195.75 14397.91 13498.06 13096.89 6499.76 5895.32 13399.57 8699.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS98.14 3498.03 4098.47 5598.72 12096.04 7598.07 5199.10 3195.96 12898.59 5798.69 6396.94 5899.81 3296.64 6299.58 8399.57 32
Vis-MVSNetpermissive98.27 2998.34 2898.07 8799.33 4595.21 11998.04 5299.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15999.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 7597.59 7998.15 8298.11 19695.60 9298.04 5298.70 13998.13 3996.93 19698.45 8095.30 13499.62 15195.64 11298.96 22399.24 126
FIs97.93 5598.07 3697.48 13699.38 4092.95 19498.03 5499.11 2998.04 4298.62 5298.66 6593.75 17999.78 4397.23 4599.84 2999.73 15
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5599.16 2098.34 3298.78 4598.52 7597.32 3599.45 20294.08 19399.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet96.98 12096.84 12697.41 14699.40 3893.26 18697.94 5695.31 31599.26 798.39 7599.18 2787.85 27699.62 15195.13 14999.09 21199.35 98
test_part196.77 13696.53 14697.47 13798.04 19892.92 19597.93 5798.85 9498.83 2199.30 2199.07 3879.25 31899.79 3997.59 3599.93 1099.69 20
CP-MVS97.92 5697.56 8298.99 1398.99 9797.82 1697.93 5798.96 7196.11 11896.89 19997.45 19296.85 6899.78 4395.19 14099.63 6899.38 88
ANet_high98.31 2898.94 696.41 20599.33 4589.64 25197.92 5999.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9097.90 6099.08 3798.31 3399.02 3498.74 5997.68 2499.61 15897.77 2999.85 2899.70 18
ambc96.56 19698.23 17891.68 22397.88 6198.13 21898.42 7298.56 7294.22 16899.04 28594.05 19799.35 16498.95 177
Anonymous2024052997.96 4698.04 3997.71 11398.69 12794.28 15297.86 6298.31 19498.79 2299.23 2698.86 5395.76 11599.61 15895.49 11899.36 15999.23 127
canonicalmvs97.23 11197.21 10697.30 15397.65 25494.39 14597.84 6399.05 4397.42 6996.68 20893.85 33197.63 2699.33 24096.29 7798.47 26898.18 266
tfpnnormal97.72 7697.97 4196.94 17199.26 5092.23 20797.83 6498.45 17198.25 3599.13 3098.66 6596.65 7599.69 11793.92 20299.62 6998.91 188
Anonymous2024052197.07 11497.51 8595.76 23399.35 4388.18 27797.78 6598.40 18197.11 8098.34 8299.04 4089.58 25499.79 3998.09 1899.93 1099.30 107
XVS97.96 4697.63 7498.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22597.64 17696.49 8699.72 8695.66 11099.37 15699.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22536.50 37296.49 8699.72 8695.66 11099.37 15699.45 69
VPA-MVSNet98.27 2998.46 2497.70 11599.06 8993.80 16997.76 6899.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
UGNet96.81 13396.56 14297.58 12396.64 30393.84 16897.75 6997.12 27496.47 10393.62 30998.88 5193.22 18999.53 17895.61 11499.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 5997.53 8399.04 799.22 5997.87 1597.74 7098.78 12096.04 12397.10 18097.73 16996.53 8399.78 4395.16 14499.50 11599.46 64
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20897.16 29091.96 21797.74 7098.84 9987.26 30794.36 28598.01 13693.95 17499.67 13090.70 27098.75 24897.35 308
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7299.11 2997.76 5098.62 5298.27 10397.88 1999.80 3895.67 10899.50 11599.38 88
MSP-MVS97.45 9596.92 12399.03 899.26 5097.70 1997.66 7398.89 7995.65 14598.51 6296.46 26292.15 21599.81 3295.14 14798.58 26499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LFMVS95.32 20194.88 20996.62 19098.03 19991.47 22697.65 7490.72 35599.11 997.89 13798.31 9079.20 31999.48 19293.91 20399.12 20798.93 183
K. test v396.44 15696.28 15796.95 17099.41 3791.53 22497.65 7490.31 35898.89 1998.93 3899.36 1484.57 29699.92 497.81 2699.56 8999.39 86
TSAR-MVS + MP.97.42 9797.23 10498.00 9499.38 4095.00 12497.63 7698.20 20493.00 24098.16 10498.06 13095.89 10399.72 8695.67 10899.10 21099.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R97.92 5697.59 7998.92 2299.22 5997.55 2797.60 7798.84 9996.00 12697.22 17097.62 17896.87 6799.76 5895.48 12199.43 14199.46 64
HFP-MVS97.94 5297.64 7298.83 2699.15 7497.50 3097.59 7898.84 9996.05 12197.49 15797.54 18397.07 4899.70 10995.61 11499.46 12899.30 107
ACMMPR97.95 5097.62 7698.94 1899.20 6797.56 2697.59 7898.83 10696.05 12197.46 16397.63 17796.77 7199.76 5895.61 11499.46 12899.49 53
RPSCF97.87 6397.51 8598.95 1799.15 7498.43 397.56 8099.06 4196.19 11598.48 6698.70 6294.72 14999.24 25994.37 18199.33 17499.17 136
KD-MVS_self_test97.86 6598.07 3697.25 15799.22 5992.81 19797.55 8198.94 7497.10 8198.85 4198.88 5195.03 14199.67 13097.39 4399.65 6499.26 120
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.60 8099.76 5895.49 11899.20 19299.26 120
RE-MVS-def97.88 4998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.94 5895.49 11899.20 19299.26 120
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11297.31 3897.55 8198.92 7697.72 5498.25 9498.13 11797.10 4599.75 6595.44 12599.24 19099.32 101
ACMH+93.58 1098.23 3298.31 2997.98 9599.39 3995.22 11797.55 8199.20 1698.21 3799.25 2598.51 7698.21 1199.40 21994.79 16399.72 5199.32 101
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 23099.12 8389.17 25997.54 8694.92 31796.50 10096.58 21297.27 21183.64 30199.48 19288.42 30899.67 6198.97 175
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4797.77 1897.49 8798.73 12996.27 10995.59 25797.75 16696.30 9699.78 4393.70 21099.48 12399.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4797.24 4197.45 8898.84 9995.76 14196.93 19697.43 19497.26 4099.79 3996.06 8499.53 10199.45 69
tttt051793.31 27492.56 28195.57 24098.71 12387.86 28497.44 8987.17 36695.79 14097.47 16296.84 23864.12 36799.81 3296.20 7999.32 17699.02 170
v1097.55 8797.97 4196.31 20998.60 13889.64 25197.44 8999.02 5296.60 9498.72 5099.16 3093.48 18499.72 8698.76 699.92 1499.58 28
v897.60 8498.06 3896.23 21298.71 12389.44 25597.43 9198.82 11497.29 7798.74 4899.10 3593.86 17599.68 12598.61 1099.94 899.56 35
PMVScopyleft89.60 1796.71 14296.97 11995.95 22599.51 2497.81 1797.42 9297.49 26197.93 4495.95 24298.58 6996.88 6696.91 36289.59 29199.36 15993.12 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test117298.08 3997.76 5999.05 698.78 11498.07 797.41 9398.85 9497.57 6198.15 10697.96 14096.60 8099.76 5895.30 13499.18 19799.33 100
SR-MVS98.00 4597.66 6799.01 1198.77 11697.93 1197.38 9498.83 10697.32 7598.06 11897.85 15596.65 7599.77 5395.00 15699.11 20899.32 101
FMVSNet593.39 27292.35 28396.50 19895.83 32890.81 23697.31 9598.27 19592.74 24896.27 22998.28 9962.23 36999.67 13090.86 26099.36 15999.03 168
HY-MVS91.43 1592.58 28491.81 29094.90 26796.49 30788.87 26497.31 9594.62 31985.92 32090.50 34996.84 23885.05 29199.40 21983.77 34995.78 34096.43 336
CSCG97.40 9997.30 9797.69 11798.95 9994.83 12897.28 9798.99 6396.35 10898.13 10995.95 29095.99 10199.66 13694.36 18499.73 4898.59 227
MTAPA98.14 3497.84 5199.06 499.44 3297.90 1297.25 9898.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
CPTT-MVS96.69 14396.08 16798.49 5398.89 10596.64 5697.25 9898.77 12192.89 24696.01 24197.13 21792.23 21499.67 13092.24 23199.34 16799.17 136
EU-MVSNet94.25 24794.47 23393.60 30298.14 19182.60 34397.24 10092.72 33885.08 33198.48 6698.94 4682.59 30498.76 31397.47 4099.53 10199.44 79
XXY-MVS97.54 8897.70 6297.07 16599.46 3092.21 20897.22 10199.00 6094.93 17898.58 5898.92 4897.31 3699.41 21794.44 17699.43 14199.59 27
CS-MVS-test96.62 14896.59 13896.69 18797.88 21693.16 18997.21 10299.53 695.61 14893.72 30495.33 30595.49 12499.69 11795.37 13299.19 19697.22 309
GST-MVS97.82 6997.49 8898.81 2999.23 5697.25 4097.16 10398.79 11695.96 12897.53 15297.40 19696.93 6099.77 5395.04 15399.35 16499.42 81
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3497.21 4397.15 10498.90 7896.58 9698.08 11697.87 15497.02 5399.76 5895.25 13799.59 8199.40 84
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 14096.67 13696.87 17697.96 20891.88 21897.15 10498.06 22895.59 15098.50 6498.62 6889.51 25899.65 13894.99 15799.60 7999.07 162
AllTest97.20 11296.92 12398.06 8999.08 8696.16 7097.14 10699.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
DP-MVS97.87 6397.89 4897.81 10698.62 13594.82 12997.13 10798.79 11698.98 1798.74 4898.49 7795.80 11499.49 18995.04 15399.44 13399.11 155
GeoE97.75 7497.70 6297.89 10098.88 10694.53 14097.10 10898.98 6695.75 14397.62 14997.59 18097.61 2799.77 5396.34 7699.44 13399.36 96
PGM-MVS97.88 6297.52 8498.96 1699.20 6797.62 2297.09 10999.06 4195.45 15597.55 15197.94 14597.11 4499.78 4394.77 16699.46 12899.48 59
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7497.02 4497.09 10999.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
SF-MVS97.60 8497.39 9298.22 7598.93 10295.69 8697.05 11199.10 3195.32 16097.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
VDD-MVS97.37 10197.25 10197.74 11198.69 12794.50 14397.04 11295.61 30998.59 2698.51 6298.72 6092.54 20899.58 16296.02 8999.49 11999.12 151
wuyk23d93.25 27695.20 19387.40 35296.07 32395.38 10497.04 11294.97 31695.33 15999.70 598.11 12198.14 1391.94 37077.76 36399.68 6074.89 370
MVS_030495.50 19095.05 20296.84 17896.28 31293.12 19097.00 11496.16 29595.03 17389.22 35797.70 17290.16 24999.48 19294.51 17599.34 16797.93 285
LCM-MVSNet-Re97.33 10497.33 9697.32 15298.13 19493.79 17096.99 11599.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28399.06 21798.32 250
MAR-MVS94.21 25093.03 26797.76 10996.94 29897.44 3596.97 11697.15 27287.89 30592.00 34092.73 34592.14 21699.12 27483.92 34697.51 30796.73 329
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3396.29 16095.63 18498.26 7098.50 15196.11 7396.90 11797.09 27596.58 9697.21 17298.19 11284.14 29799.78 4395.89 9896.17 33598.89 192
test072699.24 5495.51 9696.89 11898.89 7995.92 13198.64 5198.31 9097.06 50
baseline97.44 9697.78 5896.43 20298.52 14790.75 23796.84 11999.03 5096.51 9997.86 14298.02 13496.67 7499.36 23297.09 5499.47 12599.19 133
API-MVS95.09 21195.01 20395.31 25196.61 30494.02 16096.83 12097.18 27195.60 14995.79 24994.33 32694.54 15998.37 34585.70 33298.52 26593.52 359
#test#97.62 8297.22 10598.83 2699.15 7497.50 3096.81 12198.84 9994.25 20097.49 15797.54 18397.07 4899.70 10994.37 18199.46 12899.30 107
SED-MVS97.94 5297.90 4598.07 8799.22 5995.35 10796.79 12298.83 10696.11 11899.08 3198.24 10597.87 2099.72 8695.44 12599.51 11199.14 143
OPU-MVS97.64 12098.01 20295.27 11296.79 12297.35 20596.97 5698.51 33691.21 25399.25 18799.14 143
PHI-MVS96.96 12196.53 14698.25 7397.48 26596.50 6096.76 12498.85 9493.52 21996.19 23496.85 23795.94 10299.42 20893.79 20699.43 14198.83 201
DVP-MVScopyleft97.78 7297.65 6998.16 7999.24 5495.51 9696.74 12598.23 20095.92 13198.40 7398.28 9997.06 5099.71 10095.48 12199.52 10699.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 5695.49 10096.74 12598.89 7999.75 6595.48 12199.52 10699.53 41
Anonymous20240521196.34 15995.98 17297.43 14498.25 17593.85 16796.74 12594.41 32297.72 5498.37 7698.03 13387.15 28099.53 17894.06 19499.07 21498.92 187
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10896.67 5496.74 12598.73 12991.61 26398.48 6698.36 8596.53 8399.68 12595.17 14299.54 9899.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8895.87 8096.73 12999.05 4398.67 2498.84 4298.45 8097.58 2899.88 1896.45 7299.86 2599.54 38
test_040297.84 6697.97 4197.47 13799.19 6994.07 15896.71 13098.73 12998.66 2598.56 5998.41 8296.84 6999.69 11794.82 16199.81 3398.64 221
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7497.55 2796.68 13198.83 10695.21 16398.36 7998.13 11798.13 1499.62 15196.04 8799.54 9899.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 27892.64 27994.62 27997.34 27987.20 29996.67 13293.02 33394.71 18496.51 21795.83 29381.64 30698.60 32990.00 28688.06 36598.07 271
MTMP96.55 13374.60 375
SD-MVS97.37 10197.70 6296.35 20698.14 19195.13 12196.54 13498.92 7695.94 13099.19 2898.08 12397.74 2295.06 36895.24 13899.54 9898.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 14696.33 15697.68 11898.70 12594.29 14996.50 13598.75 12596.36 10696.16 23596.77 24491.91 22699.46 19892.59 22899.20 19299.28 115
plane_prior296.50 13596.36 106
testtj96.69 14396.13 16398.36 6298.46 15896.02 7796.44 13798.70 13994.26 19996.79 20197.13 21794.07 17199.75 6590.53 27598.80 24399.31 106
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 30098.69 296.42 13898.09 22195.86 13695.15 26595.54 30194.26 16699.81 3294.06 19498.51 26798.47 236
thres100view90091.76 29991.26 29893.26 30898.21 17984.50 33296.39 13990.39 35696.87 8696.33 22493.08 33873.44 35199.42 20878.85 36097.74 29395.85 342
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5399.16 7196.90 4896.39 13998.98 6695.05 17298.06 11898.02 13495.86 10499.56 16994.37 18199.64 6699.00 171
Patchmtry95.03 21494.59 22796.33 20794.83 34590.82 23496.38 14197.20 26996.59 9597.49 15798.57 7077.67 32699.38 22792.95 22599.62 6998.80 204
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4396.84 4996.36 14298.79 11695.07 17197.88 13898.35 8697.24 4299.72 8696.05 8699.58 8399.45 69
VNet96.84 12896.83 12796.88 17598.06 19792.02 21596.35 14397.57 26097.70 5697.88 13897.80 16292.40 21299.54 17694.73 16898.96 22399.08 160
V4297.04 11597.16 10896.68 18998.59 14091.05 22996.33 14498.36 18694.60 18797.99 12598.30 9493.32 18699.62 15197.40 4299.53 10199.38 88
APD-MVScopyleft97.00 11696.53 14698.41 5898.55 14496.31 6696.32 14598.77 12192.96 24597.44 16597.58 18295.84 10599.74 7591.96 23499.35 16499.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 10897.49 8896.59 19299.47 2990.58 23996.27 14698.53 16497.77 4798.46 6998.41 8294.59 15699.68 12594.61 16999.29 18299.52 42
thres600view792.03 29591.43 29393.82 29798.19 18184.61 33196.27 14690.39 35696.81 8896.37 22393.11 33473.44 35199.49 18980.32 35697.95 28597.36 306
EPNet93.72 26392.62 28097.03 16887.61 37792.25 20696.27 14691.28 34996.74 9087.65 36397.39 20085.00 29299.64 14192.14 23299.48 12399.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 29291.83 28993.25 30996.18 31883.68 33996.27 14693.68 32776.97 36592.54 33699.18 2789.20 26398.55 33383.88 34798.60 26397.51 302
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9496.70 5396.24 15098.89 7993.71 21697.97 12997.75 16697.44 3099.63 14393.22 21999.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 6997.70 6298.16 7998.78 11495.72 8496.23 15199.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 10397.10 11198.14 8398.91 10496.77 5196.20 15298.63 15593.82 21398.54 6098.33 8893.98 17399.05 28495.99 9299.45 13298.61 226
MVS_Test96.27 16196.79 13194.73 27696.94 29886.63 30696.18 15398.33 19194.94 17696.07 23898.28 9995.25 13599.26 25697.21 4897.90 28898.30 254
CR-MVSNet93.29 27592.79 27394.78 27495.44 33788.15 27896.18 15397.20 26984.94 33594.10 29198.57 7077.67 32699.39 22495.17 14295.81 33796.81 326
RPMNet94.68 23194.60 22594.90 26795.44 33788.15 27896.18 15398.86 9097.43 6894.10 29198.49 7779.40 31799.76 5895.69 10695.81 33796.81 326
EIA-MVS96.04 17195.77 18096.85 17797.80 22992.98 19396.12 15699.16 2094.65 18593.77 30291.69 35695.68 11799.67 13094.18 18998.85 23997.91 286
Effi-MVS+96.19 16596.01 16996.71 18597.43 27192.19 21196.12 15699.10 3195.45 15593.33 32194.71 31897.23 4399.56 16993.21 22097.54 30598.37 243
alignmvs96.01 17395.52 18897.50 13297.77 24094.71 13396.07 15896.84 28397.48 6796.78 20594.28 32885.50 28999.40 21996.22 7898.73 25298.40 239
PatchT93.75 26293.57 25894.29 29295.05 34387.32 29796.05 15992.98 33497.54 6594.25 28798.72 6075.79 33999.24 25995.92 9695.81 33796.32 337
Patchmatch-test93.60 26893.25 26494.63 27896.14 32287.47 29396.04 16094.50 32193.57 21896.47 21896.97 23076.50 33498.61 32790.67 27198.41 27097.81 292
thisisatest053092.71 28391.76 29195.56 24298.42 16088.23 27596.03 16187.35 36594.04 20796.56 21495.47 30364.03 36899.77 5394.78 16599.11 20898.68 220
9.1496.69 13498.53 14696.02 16298.98 6693.23 22997.18 17497.46 19196.47 8899.62 15192.99 22399.32 176
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14397.69 24994.15 15696.02 16298.43 17493.17 23597.30 16897.38 20295.48 12699.28 25393.74 20799.34 16798.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t93.96 25893.22 26596.19 21599.06 8990.97 23295.99 16498.94 7473.88 36893.43 31896.93 23392.38 21399.37 23089.09 29899.28 18398.25 260
FMVSNet395.26 20494.94 20496.22 21496.53 30690.06 24395.99 16497.66 25194.11 20597.99 12597.91 14980.22 31699.63 14394.60 17099.44 13398.96 176
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 13097.59 2495.97 16698.20 20495.51 15395.06 26696.53 25894.10 17099.70 10994.29 18599.15 19999.13 146
ETH3D-3000-0.196.89 12796.46 15198.16 7998.62 13595.69 8695.96 16798.98 6693.36 22497.04 18797.31 20994.93 14599.63 14392.60 22699.34 16799.17 136
testgi96.07 16996.50 15094.80 27399.26 5087.69 29095.96 16798.58 16095.08 17098.02 12496.25 27397.92 1697.60 35988.68 30598.74 24999.11 155
EG-PatchMatch MVS97.69 7897.79 5597.40 14799.06 8993.52 18195.96 16798.97 7094.55 19198.82 4398.76 5897.31 3699.29 25197.20 5099.44 13399.38 88
PAPM_NR94.61 23594.17 24495.96 22398.36 16491.23 22795.93 17097.95 23192.98 24193.42 31994.43 32590.53 24098.38 34387.60 31896.29 33398.27 258
UniMVSNet (Re)97.83 6797.65 6998.35 6498.80 11195.86 8195.92 17199.04 4997.51 6698.22 9897.81 16194.68 15299.78 4397.14 5399.75 4699.41 83
131492.38 28892.30 28492.64 32395.42 33985.15 32495.86 17296.97 28085.40 32990.62 34693.06 33991.12 23397.80 35786.74 32695.49 34494.97 353
112194.26 24693.26 26397.27 15498.26 17494.73 13195.86 17297.71 24777.96 36294.53 28096.71 24891.93 22499.40 21987.71 31498.64 25997.69 296
MVS90.02 31389.20 32092.47 32694.71 34686.90 30395.86 17296.74 28964.72 37090.62 34692.77 34392.54 20898.39 34279.30 35895.56 34392.12 363
CS-MVS95.98 17596.24 15895.20 25597.26 28489.88 24795.84 17599.39 993.89 21294.28 28695.15 30894.81 14799.62 15196.11 8399.40 15196.10 340
casdiffmvs97.50 9197.81 5496.56 19698.51 14891.04 23095.83 17699.09 3697.23 7898.33 8698.30 9497.03 5299.37 23096.58 6699.38 15599.28 115
tpmvs90.79 30990.87 30390.57 34192.75 36976.30 36695.79 17793.64 32891.04 27391.91 34196.26 27277.19 33298.86 30589.38 29589.85 36396.56 334
RRT_test8_iter0592.46 28692.52 28292.29 33095.33 34077.43 36295.73 17898.55 16394.41 19397.46 16397.72 17157.44 37299.74 7596.92 5999.14 20099.69 20
MSLP-MVS++96.42 15896.71 13395.57 24097.82 22490.56 24195.71 17998.84 9994.72 18396.71 20797.39 20094.91 14698.10 35495.28 13599.02 21998.05 278
tfpn200view991.55 30191.00 30093.21 31198.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29395.85 342
Anonymous2023120695.27 20395.06 20195.88 22998.72 12089.37 25695.70 18097.85 23788.00 30396.98 19397.62 17891.95 22299.34 23789.21 29699.53 10198.94 179
thres40091.68 30091.00 30093.71 30098.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29397.36 306
test20.0396.58 15096.61 13796.48 20098.49 15291.72 22295.68 18397.69 24896.81 8898.27 9397.92 14894.18 16998.71 31790.78 26499.66 6399.00 171
hse-mvs295.77 18295.09 19897.79 10797.84 22195.51 9695.66 18495.43 31496.58 9697.21 17296.16 27784.14 29799.54 17695.89 9896.92 31898.32 250
zzz-MVS98.01 4497.66 6799.06 499.44 3297.90 1295.66 18498.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6198.72 12095.78 8295.66 18499.02 5298.11 4098.31 8997.69 17494.65 15499.85 2297.02 5799.71 5499.48 59
DU-MVS97.79 7197.60 7898.36 6298.73 11895.78 8295.65 18798.87 8797.57 6198.31 8997.83 15794.69 15099.85 2297.02 5799.71 5499.46 64
EPMVS89.26 32288.55 32691.39 33592.36 37079.11 35695.65 18779.86 37388.60 29693.12 32396.53 25870.73 36098.10 35490.75 26589.32 36496.98 315
MVP-Stereo95.69 18395.28 19296.92 17298.15 19093.03 19295.64 18998.20 20490.39 27896.63 21197.73 16991.63 22999.10 27991.84 24097.31 31498.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP95.30 20294.38 23798.05 9298.64 13096.04 7595.61 19098.66 14989.00 29193.22 32296.40 26692.90 19699.35 23587.45 32297.53 30698.77 210
AUN-MVS93.95 26092.69 27797.74 11197.80 22995.38 10495.57 19195.46 31391.26 27092.64 33396.10 28374.67 34299.55 17393.72 20996.97 31798.30 254
v14419296.69 14396.90 12596.03 22098.25 17588.92 26295.49 19298.77 12193.05 23898.09 11498.29 9892.51 21099.70 10998.11 1799.56 8999.47 62
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14897.18 28994.39 14595.46 19398.73 12996.03 12594.72 27494.92 31596.28 9899.69 11793.81 20597.98 28498.09 268
Baseline_NR-MVSNet97.72 7697.79 5597.50 13299.56 1793.29 18595.44 19498.86 9098.20 3898.37 7699.24 2094.69 15099.55 17395.98 9399.79 3899.65 23
LF4IMVS96.07 16995.63 18497.36 15098.19 18195.55 9395.44 19498.82 11492.29 25495.70 25596.55 25692.63 20498.69 31991.75 24399.33 17497.85 288
v192192096.72 14096.96 12195.99 22198.21 17988.79 26795.42 19698.79 11693.22 23098.19 10298.26 10492.68 20199.70 10998.34 1599.55 9599.49 53
plane_prior94.29 14995.42 19694.31 19898.93 229
v114496.84 12897.08 11396.13 21898.42 16089.28 25895.41 19898.67 14794.21 20197.97 12998.31 9093.06 19199.65 13898.06 1999.62 6999.45 69
ETV-MVS96.13 16895.90 17696.82 17997.76 24193.89 16495.40 19998.95 7395.87 13595.58 25891.00 36296.36 9599.72 8693.36 21498.83 24196.85 322
v124096.74 13797.02 11895.91 22898.18 18488.52 27095.39 20098.88 8593.15 23698.46 6998.40 8492.80 19899.71 10098.45 1399.49 11999.49 53
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2796.84 4995.38 20198.99 6392.45 25298.11 11098.31 9097.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 13197.06 11596.15 21798.28 17089.29 25795.36 20298.77 12193.73 21598.11 11098.34 8793.02 19599.67 13098.35 1499.58 8399.50 45
v2v48296.78 13597.06 11595.95 22598.57 14288.77 26895.36 20298.26 19795.18 16697.85 14398.23 10792.58 20599.63 14397.80 2799.69 5899.45 69
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16297.36 27492.08 21495.34 20497.65 25397.74 5198.29 9298.11 12195.05 13899.68 12597.50 3999.50 11599.56 35
EI-MVSNet-UG-set97.32 10597.40 9197.09 16497.34 27992.01 21695.33 20597.65 25397.74 5198.30 9198.14 11695.04 14099.69 11797.55 3799.52 10699.58 28
CostFormer89.75 31989.25 31791.26 33794.69 34778.00 36095.32 20691.98 34381.50 34890.55 34896.96 23271.06 35898.89 30188.59 30692.63 35796.87 320
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20399.28 4990.62 23895.31 20799.08 3788.40 29896.97 19498.17 11592.11 21799.78 4393.64 21199.21 19198.86 199
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20198.48 15491.52 22595.31 20798.45 17195.76 14197.48 16097.54 18389.53 25798.69 31994.43 17794.61 35099.13 146
EI-MVSNet96.63 14796.93 12295.74 23497.26 28488.13 28095.29 20997.65 25396.99 8297.94 13298.19 11292.55 20699.58 16296.91 6099.56 8999.50 45
CVMVSNet92.33 29092.79 27390.95 33897.26 28475.84 36895.29 20992.33 34181.86 34596.27 22998.19 11281.44 30898.46 33894.23 18898.29 27498.55 231
RRT_MVS94.90 21794.07 24697.39 14893.18 36293.21 18895.26 21197.49 26193.94 21098.25 9497.85 15572.96 35399.84 2597.90 2299.78 4199.14 143
Regformer-397.25 10997.29 9897.11 16297.35 27592.32 20595.26 21197.62 25897.67 5998.17 10397.89 15095.05 13899.56 16997.16 5299.42 14499.46 64
Regformer-497.53 9097.47 9097.71 11397.35 27593.91 16395.26 21198.14 21697.97 4398.34 8297.89 15095.49 12499.71 10097.41 4199.42 14499.51 44
OPM-MVS97.54 8897.25 10198.41 5899.11 8496.61 5795.24 21498.46 17094.58 19098.10 11398.07 12597.09 4799.39 22495.16 14499.44 13399.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS93.32 1294.93 21694.23 24097.04 16798.18 18494.51 14195.22 21598.73 12981.22 35096.25 23195.95 29093.80 17898.98 29389.89 28798.87 23597.62 298
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVScopyleft97.64 8097.35 9598.50 5298.85 10796.18 6995.21 21698.99 6395.84 13898.78 4598.08 12396.84 6999.81 3293.98 20099.57 8699.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER94.21 25093.93 25395.05 26195.83 32886.46 30795.18 21797.65 25392.41 25397.94 13298.00 13872.39 35499.58 16296.36 7599.56 8999.12 151
PatchmatchNetpermissive91.98 29691.87 28892.30 32994.60 34879.71 35595.12 21893.59 32989.52 28693.61 31097.02 22777.94 32499.18 26590.84 26194.57 35298.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DWT-MVSNet_test87.92 33286.77 33691.39 33593.18 36278.62 35795.10 21991.42 34785.58 32488.00 36188.73 36760.60 37098.90 29990.60 27287.70 36696.65 330
IterMVS-LS96.92 12397.29 9895.79 23298.51 14888.13 28095.10 21998.66 14996.99 8298.46 6998.68 6492.55 20699.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 15096.97 11995.42 24898.63 13487.57 29195.09 22197.90 23495.91 13398.24 9697.96 14093.42 18599.39 22496.04 8799.52 10699.29 114
tpm288.47 32787.69 33190.79 33994.98 34477.34 36395.09 22191.83 34477.51 36489.40 35596.41 26467.83 36498.73 31583.58 35192.60 35896.29 338
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24897.31 28391.21 22895.08 22396.68 29181.56 34796.88 20096.41 26490.44 24299.25 25885.39 33797.67 30095.80 344
mvs-test196.20 16495.50 18998.32 6596.90 30098.16 595.07 22498.09 22195.86 13693.63 30894.32 32794.26 16699.71 10094.06 19497.27 31697.07 312
TAMVS95.49 19194.94 20497.16 15998.31 16693.41 18395.07 22496.82 28591.09 27297.51 15497.82 16089.96 25099.42 20888.42 30899.44 13398.64 221
tpmrst90.31 31190.61 30989.41 34594.06 35672.37 37495.06 22693.69 32588.01 30292.32 33896.86 23677.45 32898.82 30691.04 25587.01 36797.04 314
ADS-MVSNet291.47 30290.51 31094.36 28995.51 33585.63 31595.05 22795.70 30583.46 34192.69 33096.84 23879.15 32099.41 21785.66 33490.52 36098.04 279
ADS-MVSNet90.95 30890.26 31293.04 31495.51 33582.37 34495.05 22793.41 33083.46 34192.69 33096.84 23879.15 32098.70 31885.66 33490.52 36098.04 279
tpm91.08 30690.85 30491.75 33395.33 34078.09 35895.03 22991.27 35088.75 29493.53 31397.40 19671.24 35699.30 24791.25 25293.87 35397.87 287
NCCC96.52 15295.99 17198.10 8597.81 22595.68 8895.00 23098.20 20495.39 15895.40 26196.36 26993.81 17799.45 20293.55 21398.42 26999.17 136
test_post194.98 23110.37 37676.21 33799.04 28589.47 293
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8697.91 21295.65 9194.94 23298.74 12791.31 26996.02 24097.08 22294.05 17299.69 11791.51 24698.94 22798.93 183
AdaColmapbinary95.11 20994.62 22496.58 19397.33 28194.45 14494.92 23398.08 22393.15 23693.98 29895.53 30294.34 16499.10 27985.69 33398.61 26196.20 339
MDTV_nov1_ep13_2view57.28 37894.89 23480.59 35294.02 29578.66 32285.50 33697.82 290
CNVR-MVS96.92 12396.55 14398.03 9398.00 20695.54 9494.87 23598.17 21094.60 18796.38 22297.05 22595.67 11899.36 23295.12 15099.08 21299.19 133
OMC-MVS96.48 15496.00 17097.91 9998.30 16796.01 7894.86 23698.60 15791.88 26097.18 17497.21 21596.11 9999.04 28590.49 27999.34 16798.69 218
Regformer-197.27 10797.16 10897.61 12297.21 28793.86 16694.85 23798.04 23097.62 6098.03 12297.50 18895.34 13199.63 14396.52 6899.31 17899.35 98
Regformer-297.41 9897.24 10397.93 9897.21 28794.72 13294.85 23798.27 19597.74 5198.11 11097.50 18895.58 12299.69 11796.57 6799.31 17899.37 95
EPNet_dtu91.39 30390.75 30693.31 30790.48 37482.61 34294.80 23992.88 33593.39 22381.74 37194.90 31681.36 30999.11 27788.28 31098.87 23598.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 29694.31 35073.51 37294.80 23993.16 33286.75 31593.45 31797.40 19676.37 33598.55 33388.85 30196.43 330
pmmvs-eth3d96.49 15396.18 16297.42 14598.25 17594.29 14994.77 24198.07 22789.81 28497.97 12998.33 8893.11 19099.08 28195.46 12499.84 2998.89 192
test_yl94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
DCV-MVSNet94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
MCST-MVS96.24 16295.80 17897.56 12498.75 11794.13 15794.66 24498.17 21090.17 28196.21 23396.10 28395.14 13799.43 20794.13 19298.85 23999.13 146
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6899.01 9697.41 3694.66 24499.02 5295.20 16498.15 10697.52 18698.83 498.43 33994.87 15996.41 33199.07 162
mvs_anonymous95.36 19996.07 16893.21 31196.29 31181.56 34994.60 24697.66 25193.30 22796.95 19598.91 4993.03 19499.38 22796.60 6497.30 31598.69 218
DP-MVS Recon95.55 18995.13 19696.80 18098.51 14893.99 16294.60 24698.69 14290.20 28095.78 25196.21 27692.73 20098.98 29390.58 27498.86 23797.42 305
ETH3 D test640094.77 22393.87 25497.47 13798.12 19593.73 17294.56 24898.70 13985.45 32894.70 27695.93 29291.77 22899.63 14386.45 32899.14 20099.05 166
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 10098.48 15494.71 13394.53 24999.07 4095.02 17497.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
save fliter98.48 15494.71 13394.53 24998.41 17995.02 174
tpm cat188.01 33187.33 33290.05 34494.48 34976.28 36794.47 25194.35 32373.84 36989.26 35695.61 30073.64 34798.30 34884.13 34586.20 36895.57 349
CANet95.86 18095.65 18396.49 19996.41 30990.82 23494.36 25298.41 17994.94 17692.62 33596.73 24792.68 20199.71 10095.12 15099.60 7998.94 179
WR-MVS96.90 12596.81 12897.16 15998.56 14392.20 21094.33 25398.12 21997.34 7498.20 9997.33 20792.81 19799.75 6594.79 16399.81 3399.54 38
HQP-NCC97.85 21794.26 25493.18 23292.86 327
ACMP_Plane97.85 21794.26 25493.18 23292.86 327
HQP-MVS95.17 20894.58 22896.92 17297.85 21792.47 20294.26 25498.43 17493.18 23292.86 32795.08 30990.33 24399.23 26190.51 27798.74 24999.05 166
PLCcopyleft91.02 1694.05 25792.90 26997.51 12998.00 20695.12 12294.25 25798.25 19886.17 31791.48 34395.25 30691.01 23499.19 26485.02 34196.69 32698.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 25393.42 26096.23 21298.59 14090.85 23394.24 25898.85 9485.49 32592.97 32594.94 31386.01 28699.64 14191.78 24197.92 28698.20 264
MS-PatchMatch94.83 22094.91 20894.57 28396.81 30287.10 30094.23 25997.34 26688.74 29597.14 17697.11 22091.94 22398.23 35092.99 22397.92 28698.37 243
Fast-Effi-MVS+95.49 19195.07 19996.75 18397.67 25392.82 19694.22 26098.60 15791.61 26393.42 31992.90 34196.73 7399.70 10992.60 22697.89 28997.74 293
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18293.57 36194.67 13794.21 26197.67 24980.36 35493.61 31096.60 25482.85 30397.35 36084.86 34298.78 24598.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 33088.05 32888.16 35192.85 36768.81 37694.17 26292.88 33585.47 32691.38 34496.14 28068.87 36398.81 30886.88 32583.80 37096.87 320
JIA-IIPM91.79 29890.69 30795.11 25893.80 35890.98 23194.16 26391.78 34596.38 10490.30 35199.30 1872.02 35598.90 29988.28 31090.17 36295.45 350
D2MVS95.18 20695.17 19595.21 25497.76 24187.76 28994.15 26497.94 23289.77 28596.99 19197.68 17587.45 27899.14 27295.03 15599.81 3398.74 212
TSAR-MVS + GP.96.47 15596.12 16497.49 13597.74 24695.23 11494.15 26496.90 28293.26 22898.04 12196.70 24994.41 16298.89 30194.77 16699.14 20098.37 243
PVSNet_BlendedMVS95.02 21594.93 20695.27 25297.79 23587.40 29594.14 26698.68 14488.94 29294.51 28198.01 13693.04 19299.30 24789.77 28999.49 11999.11 155
TinyColmap96.00 17496.34 15594.96 26497.90 21487.91 28394.13 26798.49 16894.41 19398.16 10497.76 16396.29 9798.68 32290.52 27699.42 14498.30 254
CNLPA95.04 21294.47 23396.75 18397.81 22595.25 11394.12 26897.89 23594.41 19394.57 27895.69 29590.30 24698.35 34686.72 32798.76 24796.64 331
BH-untuned94.69 22994.75 21794.52 28597.95 21187.53 29294.07 26997.01 27893.99 20897.10 18095.65 29792.65 20398.95 29887.60 31896.74 32597.09 311
pmmvs594.63 23494.34 23895.50 24497.63 25688.34 27494.02 27097.13 27387.15 31095.22 26497.15 21687.50 27799.27 25593.99 19999.26 18698.88 196
thres20091.00 30790.42 31192.77 32197.47 26983.98 33794.01 27191.18 35195.12 16995.44 25991.21 36073.93 34499.31 24477.76 36397.63 30395.01 352
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
CDS-MVSNet94.88 21994.12 24597.14 16197.64 25593.57 17993.96 27597.06 27790.05 28296.30 22896.55 25686.10 28599.47 19590.10 28499.31 17898.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 23394.21 24295.96 22395.90 32589.68 25093.92 27697.83 24193.19 23190.12 35295.64 29888.52 26599.57 16893.27 21899.47 12598.62 224
WTY-MVS93.55 26993.00 26895.19 25697.81 22587.86 28493.89 27796.00 29989.02 29094.07 29395.44 30486.27 28499.33 24087.69 31696.82 32298.39 241
sss94.22 24893.72 25695.74 23497.71 24889.95 24693.84 27896.98 27988.38 29993.75 30395.74 29487.94 27198.89 30191.02 25698.10 28098.37 243
baseline289.65 32088.44 32793.25 30995.62 33382.71 34193.82 27985.94 36888.89 29387.35 36592.54 34771.23 35799.33 24086.01 32994.60 35197.72 294
XVG-OURS97.12 11396.74 13298.26 7098.99 9797.45 3493.82 27999.05 4395.19 16598.32 8797.70 17295.22 13698.41 34094.27 18698.13 27998.93 183
MVS_111021_LR96.82 13296.55 14397.62 12198.27 17295.34 10993.81 28198.33 19194.59 18996.56 21496.63 25396.61 7898.73 31594.80 16299.34 16798.78 207
BH-RMVSNet94.56 23794.44 23694.91 26597.57 25887.44 29493.78 28296.26 29493.69 21796.41 22196.50 26192.10 21899.00 28985.96 33097.71 29698.31 252
CDPH-MVS95.45 19694.65 22097.84 10598.28 17094.96 12593.73 28398.33 19185.03 33395.44 25996.60 25495.31 13399.44 20590.01 28599.13 20499.11 155
PatchMatch-RL94.61 23593.81 25597.02 16998.19 18195.72 8493.66 28497.23 26888.17 30194.94 27195.62 29991.43 23098.57 33087.36 32397.68 29996.76 328
TEST997.84 22195.23 11493.62 28598.39 18286.81 31393.78 30095.99 28594.68 15299.52 182
train_agg95.46 19594.66 21997.88 10297.84 22195.23 11493.62 28598.39 18287.04 31193.78 30095.99 28594.58 15799.52 18291.76 24298.90 23198.89 192
test_prior495.38 10493.61 287
test_897.81 22595.07 12393.54 28898.38 18487.04 31193.71 30595.96 28994.58 15799.52 182
TR-MVS92.54 28592.20 28593.57 30396.49 30786.66 30593.51 28994.73 31889.96 28394.95 27093.87 33090.24 24898.61 32781.18 35594.88 34795.45 350
新几何293.43 290
diffmvs96.04 17196.23 15995.46 24797.35 27588.03 28293.42 29199.08 3794.09 20696.66 20996.93 23393.85 17699.29 25196.01 9198.67 25499.06 164
MVS_111021_HR96.73 13996.54 14597.27 15498.35 16593.66 17793.42 29198.36 18694.74 18296.58 21296.76 24696.54 8298.99 29194.87 15999.27 18599.15 140
agg_prior195.39 19894.60 22597.75 11097.80 22994.96 12593.39 29398.36 18687.20 30993.49 31495.97 28894.65 15499.53 17891.69 24498.86 23798.77 210
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21998.62 13590.54 24293.38 29498.05 22990.30 27997.02 18996.80 24389.54 25599.16 27088.44 30796.18 33498.56 229
旧先验293.35 29577.95 36395.77 25398.67 32390.74 268
test_prior395.91 17795.39 19097.46 14097.79 23594.26 15393.33 29698.42 17794.21 20194.02 29596.25 27393.64 18199.34 23791.90 23698.96 22398.79 205
test_prior293.33 29694.21 20194.02 29596.25 27393.64 18191.90 23698.96 223
SCA93.38 27393.52 25992.96 31896.24 31381.40 35093.24 29894.00 32491.58 26594.57 27896.97 23087.94 27199.42 20889.47 29397.66 30198.06 275
无先验93.20 29997.91 23380.78 35199.40 21987.71 31497.94 284
MG-MVS94.08 25694.00 24994.32 29097.09 29285.89 31493.19 30095.96 30192.52 24994.93 27297.51 18789.54 25598.77 31187.52 32197.71 29698.31 252
MVS-HIRNet88.40 32890.20 31382.99 35397.01 29460.04 37793.11 30185.61 36984.45 33988.72 35999.09 3684.72 29598.23 35082.52 35296.59 32990.69 368
new-patchmatchnet95.67 18596.58 14092.94 31997.48 26580.21 35492.96 30298.19 20994.83 18098.82 4398.79 5593.31 18799.51 18695.83 10299.04 21899.12 151
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23498.48 15488.76 26992.84 30397.25 26796.00 12697.59 15097.95 14491.38 23199.46 19893.16 22196.35 33298.99 174
原ACMM292.82 304
testdata192.77 30593.78 214
Test_1112_low_res93.53 27092.86 27095.54 24398.60 13888.86 26592.75 30698.69 14282.66 34492.65 33296.92 23584.75 29499.56 16990.94 25897.76 29298.19 265
USDC94.56 23794.57 23094.55 28497.78 23986.43 30992.75 30698.65 15485.96 31996.91 19897.93 14790.82 23798.74 31490.71 26999.59 8198.47 236
test22298.17 18693.24 18792.74 30897.61 25975.17 36694.65 27796.69 25090.96 23698.66 25697.66 297
jason94.39 24494.04 24895.41 25098.29 16887.85 28692.74 30896.75 28885.38 33095.29 26296.15 27888.21 27099.65 13894.24 18799.34 16798.74 212
jason: jason.
Patchmatch-RL test94.66 23294.49 23195.19 25698.54 14588.91 26392.57 31098.74 12791.46 26698.32 8797.75 16677.31 33198.81 30896.06 8499.61 7597.85 288
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6797.48 26597.23 4292.56 31198.60 15792.84 24798.54 6097.40 19696.64 7798.78 31094.40 18099.41 15098.93 183
N_pmnet95.18 20694.23 24098.06 8997.85 21796.55 5992.49 31291.63 34689.34 28798.09 11497.41 19590.33 24399.06 28391.58 24599.31 17898.56 229
BH-w/o92.14 29391.94 28792.73 32297.13 29185.30 32092.46 31395.64 30689.33 28894.21 28892.74 34489.60 25398.24 34981.68 35394.66 34994.66 354
IterMVS-SCA-FT95.86 18096.19 16194.85 27097.68 25085.53 31792.42 31497.63 25796.99 8298.36 7998.54 7487.94 27199.75 6597.07 5699.08 21299.27 119
IterMVS95.42 19795.83 17794.20 29397.52 26383.78 33892.41 31597.47 26495.49 15498.06 11898.49 7787.94 27199.58 16296.02 8999.02 21999.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS96.17 16696.23 15995.99 22197.55 26290.04 24492.38 31698.52 16594.13 20496.55 21697.06 22494.99 14399.58 16295.62 11399.28 18398.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 28991.69 29294.32 29096.23 31589.16 26092.27 31792.88 33584.39 34095.29 26296.35 27085.66 28896.74 36684.53 34497.56 30497.05 313
CHOSEN 1792x268894.10 25493.41 26196.18 21699.16 7190.04 24492.15 31898.68 14479.90 35596.22 23297.83 15787.92 27599.42 20889.18 29799.65 6499.08 160
xiu_mvs_v2_base94.22 24894.63 22392.99 31797.32 28284.84 32992.12 31997.84 23991.96 25894.17 28993.43 33296.07 10099.71 10091.27 25097.48 30894.42 355
lupinMVS93.77 26193.28 26295.24 25397.68 25087.81 28792.12 31996.05 29784.52 33794.48 28395.06 31186.90 28199.63 14393.62 21299.13 20498.27 258
pmmvs494.82 22194.19 24396.70 18697.42 27292.75 19992.09 32196.76 28786.80 31495.73 25497.22 21489.28 26198.89 30193.28 21799.14 20098.46 238
PAPR92.22 29191.27 29795.07 26095.73 33288.81 26691.97 32297.87 23685.80 32290.91 34592.73 34591.16 23298.33 34779.48 35795.76 34198.08 269
PS-MVSNAJ94.10 25494.47 23393.00 31697.35 27584.88 32891.86 32397.84 23991.96 25894.17 28992.50 34895.82 10899.71 10091.27 25097.48 30894.40 356
c3_l95.20 20595.32 19194.83 27296.19 31786.43 30991.83 32498.35 19093.47 22197.36 16797.26 21288.69 26499.28 25395.41 13199.36 15998.78 207
test0.0.03 190.11 31289.21 31992.83 32093.89 35786.87 30491.74 32588.74 36392.02 25694.71 27591.14 36173.92 34594.48 36983.75 35092.94 35597.16 310
FPMVS89.92 31788.63 32593.82 29798.37 16396.94 4791.58 32693.34 33188.00 30390.32 35097.10 22170.87 35991.13 37171.91 36996.16 33693.39 361
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24696.41 30989.15 26191.54 32790.23 35989.07 28986.78 36792.84 34269.39 36299.44 20594.16 19096.61 32897.82 290
PVSNet_Blended93.96 25893.65 25794.91 26597.79 23587.40 29591.43 32898.68 14484.50 33894.51 28194.48 32493.04 19299.30 24789.77 28998.61 26198.02 281
CLD-MVS95.47 19495.07 19996.69 18798.27 17292.53 20191.36 32998.67 14791.22 27195.78 25194.12 32995.65 11998.98 29390.81 26299.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 21894.93 20694.75 27595.99 32486.12 31291.35 33098.49 16893.40 22297.12 17897.25 21386.87 28399.35 23595.08 15298.82 24298.78 207
cl____94.73 22494.64 22195.01 26295.85 32787.00 30191.33 33198.08 22393.34 22597.10 18097.33 20784.01 30099.30 24795.14 14799.56 8998.71 217
DIV-MVS_self_test94.73 22494.64 22195.01 26295.86 32687.00 30191.33 33198.08 22393.34 22597.10 18097.34 20684.02 29999.31 24495.15 14699.55 9598.72 215
miper_ehance_all_eth94.69 22994.70 21894.64 27795.77 33086.22 31191.32 33398.24 19991.67 26297.05 18696.65 25288.39 26899.22 26394.88 15898.34 27198.49 235
pmmvs390.00 31488.90 32493.32 30694.20 35585.34 31991.25 33492.56 34078.59 35993.82 29995.17 30767.36 36598.69 31989.08 29998.03 28395.92 341
HyFIR lowres test93.72 26392.65 27896.91 17498.93 10291.81 22191.23 33598.52 16582.69 34396.46 21996.52 26080.38 31599.90 1390.36 28198.79 24499.03 168
DPM-MVS93.68 26592.77 27696.42 20397.91 21292.54 20091.17 33697.47 26484.99 33493.08 32494.74 31789.90 25199.00 28987.54 32098.09 28197.72 294
CL-MVSNet_self_test95.04 21294.79 21695.82 23197.51 26489.79 24991.14 33796.82 28593.05 23896.72 20696.40 26690.82 23799.16 27091.95 23598.66 25698.50 234
miper_lstm_enhance94.81 22294.80 21594.85 27096.16 31986.45 30891.14 33798.20 20493.49 22097.03 18897.37 20484.97 29399.26 25695.28 13599.56 8998.83 201
cl2293.25 27692.84 27294.46 28694.30 35186.00 31391.09 33996.64 29290.74 27495.79 24996.31 27178.24 32398.77 31194.15 19198.34 27198.62 224
MSDG95.33 20095.13 19695.94 22797.40 27391.85 21991.02 34098.37 18595.30 16196.31 22795.99 28594.51 16098.38 34389.59 29197.65 30297.60 300
IB-MVS85.98 2088.63 32686.95 33593.68 30195.12 34284.82 33090.85 34190.17 36087.55 30688.48 36091.34 35958.01 37199.59 16087.24 32493.80 35496.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12312.59 34215.49 3453.87 3576.07 3802.55 38190.75 3422.59 3822.52 3755.20 37713.02 3744.96 3801.85 3775.20 3749.09 3747.23 372
ppachtmachnet_test94.49 24194.84 21193.46 30596.16 31982.10 34590.59 34397.48 26390.53 27797.01 19097.59 18091.01 23499.36 23293.97 20199.18 19798.94 179
PMMVS92.39 28791.08 29996.30 21093.12 36592.81 19790.58 34495.96 30179.17 35891.85 34292.27 34990.29 24798.66 32489.85 28896.68 32797.43 304
our_test_394.20 25294.58 22893.07 31396.16 31981.20 35190.42 34596.84 28390.72 27597.14 17697.13 21790.47 24199.11 27794.04 19898.25 27598.91 188
YYNet194.73 22494.84 21194.41 28897.47 26985.09 32690.29 34695.85 30492.52 24997.53 15297.76 16391.97 22199.18 26593.31 21696.86 32198.95 177
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28797.48 26585.15 32490.28 34795.87 30392.52 24997.48 16097.76 16391.92 22599.17 26993.32 21596.80 32498.94 179
GA-MVS92.83 28192.15 28694.87 26996.97 29587.27 29890.03 34896.12 29691.83 26194.05 29494.57 31976.01 33898.97 29792.46 23097.34 31398.36 248
miper_enhance_ethall93.14 27892.78 27594.20 29393.65 35985.29 32189.97 34997.85 23785.05 33296.15 23794.56 32085.74 28799.14 27293.74 20798.34 27198.17 267
test-LLR89.97 31689.90 31490.16 34294.24 35374.98 36989.89 35089.06 36192.02 25689.97 35390.77 36373.92 34598.57 33091.88 23897.36 31196.92 317
TESTMET0.1,187.20 33586.57 33789.07 34693.62 36072.84 37389.89 35087.01 36785.46 32789.12 35890.20 36556.00 37797.72 35890.91 25996.92 31896.64 331
test-mter87.92 33287.17 33390.16 34294.24 35374.98 36989.89 35089.06 36186.44 31689.97 35390.77 36354.96 37998.57 33091.88 23897.36 31196.92 317
PCF-MVS89.43 1892.12 29490.64 30896.57 19597.80 22993.48 18289.88 35398.45 17174.46 36796.04 23995.68 29690.71 23999.31 24473.73 36699.01 22196.91 319
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 31089.18 32294.17 29597.07 29385.44 31889.75 35487.58 36488.28 30093.69 30791.72 35565.27 36699.58 16290.59 27398.67 25497.50 303
KD-MVS_2432*160088.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
miper_refine_blended88.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
testmvs12.33 34315.23 3463.64 3585.77 3812.23 38288.99 3573.62 3812.30 3765.29 37613.09 3734.52 3811.95 3765.16 3758.32 3756.75 373
cascas91.89 29791.35 29593.51 30494.27 35285.60 31688.86 35898.61 15679.32 35792.16 33991.44 35889.22 26298.12 35390.80 26397.47 31096.82 325
bset_n11_16_dypcd94.53 23993.95 25296.25 21197.56 26089.85 24888.52 35991.32 34894.90 17997.51 15496.38 26882.34 30599.78 4397.22 4699.80 3699.12 151
PAPM87.64 33485.84 33993.04 31496.54 30584.99 32788.42 36095.57 31079.52 35683.82 36893.05 34080.57 31498.41 34062.29 37292.79 35695.71 345
PVSNet86.72 1991.10 30590.97 30291.49 33497.56 26078.04 35987.17 36194.60 32084.65 33692.34 33792.20 35087.37 27998.47 33785.17 34097.69 29897.96 283
PMMVS293.66 26694.07 24692.45 32797.57 25880.67 35386.46 36296.00 29993.99 20897.10 18097.38 20289.90 25197.82 35688.76 30299.47 12598.86 199
CHOSEN 280x42089.98 31589.19 32192.37 32895.60 33481.13 35286.22 36397.09 27581.44 34987.44 36493.15 33373.99 34399.47 19588.69 30499.07 21496.52 335
tmp_tt57.23 34062.50 34341.44 35634.77 37949.21 37983.93 36460.22 38015.31 37271.11 37379.37 37170.09 36144.86 37564.76 37182.93 37130.25 371
PVSNet_081.89 2184.49 33783.21 34088.34 34995.76 33174.97 37183.49 36592.70 33978.47 36087.94 36286.90 36983.38 30296.63 36773.44 36766.86 37393.40 360
E-PMN89.52 32189.78 31588.73 34793.14 36477.61 36183.26 36692.02 34294.82 18193.71 30593.11 33475.31 34096.81 36385.81 33196.81 32391.77 365
EMVS89.06 32389.22 31888.61 34893.00 36677.34 36382.91 36790.92 35294.64 18692.63 33491.81 35476.30 33697.02 36183.83 34896.90 32091.48 366
MVEpermissive73.61 2286.48 33685.92 33888.18 35096.23 31585.28 32281.78 36875.79 37486.01 31882.53 37091.88 35392.74 19987.47 37371.42 37094.86 34891.78 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.88 33966.13 34269.11 35562.68 37825.73 38049.76 36996.04 29814.32 37364.27 37491.69 35673.45 35088.05 37276.06 36566.94 37293.54 358
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.22 34132.30 3440.00 3590.00 3820.00 3830.00 37098.10 2200.00 3770.00 37895.06 31197.54 290.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.98 34410.65 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37795.82 1080.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.91 34510.55 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37894.94 3130.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
PC_three_145287.24 30898.37 7697.44 19397.00 5496.78 36592.01 23399.25 18799.21 129
No_MVS98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
test_one_060199.05 9395.50 9998.87 8797.21 7998.03 12298.30 9496.93 60
eth-test20.00 382
eth-test0.00 382
ZD-MVS98.43 15995.94 7998.56 16290.72 27596.66 20997.07 22395.02 14299.74 7591.08 25498.93 229
IU-MVS99.22 5995.40 10298.14 21685.77 32398.36 7995.23 13999.51 11199.49 53
test_241102_TWO98.83 10696.11 11898.62 5298.24 10596.92 6299.72 8695.44 12599.49 11999.49 53
test_241102_ONE99.22 5995.35 10798.83 10696.04 12399.08 3198.13 11797.87 2099.33 240
test_0728_THIRD96.62 9298.40 7398.28 9997.10 4599.71 10095.70 10499.62 6999.58 28
GSMVS98.06 275
test_part299.03 9596.07 7498.08 116
sam_mvs177.80 32598.06 275
sam_mvs77.38 329
MTGPAbinary98.73 129
test_post10.87 37576.83 33399.07 282
patchmatchnet-post96.84 23877.36 33099.42 208
gm-plane-assit91.79 37171.40 37581.67 34690.11 36698.99 29184.86 342
test9_res91.29 24998.89 23499.00 171
agg_prior290.34 28298.90 23199.10 159
agg_prior97.80 22994.96 12598.36 18693.49 31499.53 178
TestCases98.06 8999.08 8696.16 7099.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
test_prior97.46 14097.79 23594.26 15398.42 17799.34 23798.79 205
新几何197.25 15798.29 16894.70 13697.73 24577.98 36194.83 27396.67 25192.08 21999.45 20288.17 31298.65 25897.61 299
旧先验197.80 22993.87 16597.75 24497.04 22693.57 18398.68 25398.72 215
原ACMM196.58 19398.16 18892.12 21298.15 21585.90 32193.49 31496.43 26392.47 21199.38 22787.66 31798.62 26098.23 261
testdata299.46 19887.84 313
segment_acmp95.34 131
testdata95.70 23798.16 18890.58 23997.72 24680.38 35395.62 25697.02 22792.06 22098.98 29389.06 30098.52 26597.54 301
test1297.46 14097.61 25794.07 15897.78 24393.57 31293.31 18799.42 20898.78 24598.89 192
plane_prior798.70 12594.67 137
plane_prior698.38 16294.37 14791.91 226
plane_prior598.75 12599.46 19892.59 22899.20 19299.28 115
plane_prior496.77 244
plane_prior394.51 14195.29 16296.16 235
plane_prior198.49 152
n20.00 383
nn0.00 383
door-mid98.17 210
lessismore_v097.05 16699.36 4292.12 21284.07 37098.77 4798.98 4385.36 29099.74 7597.34 4499.37 15699.30 107
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
test1198.08 223
door97.81 242
HQP5-MVS92.47 202
BP-MVS90.51 277
HQP4-MVS92.87 32699.23 26199.06 164
HQP3-MVS98.43 17498.74 249
HQP2-MVS90.33 243
NP-MVS98.14 19193.72 17395.08 309
ACMMP++_ref99.52 106
ACMMP++99.55 95
Test By Simon94.51 160
ITE_SJBPF97.85 10498.64 13096.66 5598.51 16795.63 14697.22 17097.30 21095.52 12398.55 33390.97 25798.90 23198.34 249
DeepMVS_CXcopyleft77.17 35490.94 37385.28 32274.08 37752.51 37180.87 37288.03 36875.25 34170.63 37459.23 37384.94 36975.62 369