This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6798.05 4799.61 1399.52 793.72 19199.88 2098.72 2499.88 2799.65 33
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9198.82 32096.38 9599.50 13996.98 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10598.49 3199.38 2299.14 4695.44 14399.84 3096.47 9199.80 5199.47 79
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12299.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9499.75 299.45 1395.82 12699.92 598.80 1999.96 499.89 1
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30597.99 4999.15 3699.35 2389.84 26999.90 1498.64 2699.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14899.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9599.91 1399.27 599.93 1199.73 22
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7796.50 11099.32 2699.44 1497.43 4199.92 598.73 2299.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15799.35 2599.37 1997.38 4399.90 1498.59 2899.91 1999.77 12
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11399.08 5996.57 10898.07 14098.38 11896.22 11599.14 28494.71 19599.31 19598.52 245
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4899.92 597.64 5699.92 1699.75 19
EGC-MVSNET83.08 37277.93 37598.53 5099.57 2097.55 2698.33 3898.57 1814.71 40810.38 40998.90 6995.60 13899.50 18695.69 13099.61 9898.55 242
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18895.44 22598.86 11698.20 4298.37 10199.24 3294.69 16299.55 17395.98 11699.79 5399.65 33
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 21098.28 4296.97 29498.30 3899.45 1899.35 2388.43 28699.89 1898.01 3999.76 5899.54 53
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 32098.31 3697.09 20595.45 32597.17 5498.50 35498.67 2597.45 33496.48 367
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4499.92 597.79 4899.93 1199.79 10
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4899.93 397.71 5299.91 1999.70 26
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7595.88 14497.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4299.59 15997.21 6899.76 5899.40 100
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9997.71 6198.85 5799.10 4891.35 24599.83 3298.47 3099.90 2499.64 35
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8697.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18698.20 5198.87 11398.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14199.89 1897.95 4199.91 1999.75 19
PMVScopyleft89.60 1796.71 15996.97 13895.95 23399.51 3097.81 1697.42 10497.49 27697.93 5095.95 26998.58 9696.88 7796.91 39189.59 31699.36 17793.12 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23298.99 8992.45 27098.11 13398.31 12497.25 5199.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19398.35 3599.21 3398.43 3298.89 5498.83 7494.30 17699.81 3697.87 4399.91 1999.77 12
VPNet97.26 12497.49 10996.59 20099.47 3590.58 25296.27 16798.53 18397.77 5498.46 9398.41 11494.59 16799.68 12294.61 19699.29 19899.52 58
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12399.05 1399.01 4498.65 9195.37 14499.90 1497.57 5799.91 1999.77 12
XXY-MVS97.54 10597.70 8197.07 16999.46 3692.21 21597.22 11299.00 8694.93 18998.58 8198.92 6597.31 4699.41 21994.44 20199.43 16399.59 38
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10998.73 15197.69 6397.90 15797.96 17695.81 13099.82 3496.13 10699.61 9899.45 85
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11598.90 10496.58 10598.08 13897.87 18697.02 6499.76 6195.25 16099.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 18098.23 4699.05 6797.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6795.43 16897.41 18497.50 21697.98 1999.79 4495.58 14099.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21596.92 12898.60 17698.58 2898.78 6499.39 1697.80 2599.62 14994.98 18299.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18397.96 6298.25 21598.58 2898.78 6499.39 1698.21 1499.56 16892.65 25299.86 3199.52 58
K. test v396.44 17396.28 17996.95 17699.41 4291.53 23497.65 8590.31 38598.89 2098.93 5099.36 2184.57 32099.92 597.81 4699.56 11199.39 104
VDDNet96.98 13896.84 14697.41 14399.40 4593.26 19097.94 6495.31 33199.26 798.39 10099.18 3987.85 29599.62 14995.13 17299.09 22599.35 114
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14599.82 195.44 16799.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9399.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18899.72 7199.32 115
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8798.20 22393.00 25498.16 12898.06 16695.89 12199.72 8795.67 13299.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 6598.07 4597.48 13599.38 4892.95 19698.03 6199.11 5098.04 4898.62 7698.66 8893.75 19099.78 4797.23 6699.84 4099.73 22
lessismore_v097.05 17099.36 5092.12 22084.07 40398.77 6898.98 5885.36 31499.74 7697.34 6599.37 17499.30 120
Anonymous2024052197.07 13197.51 10695.76 24199.35 5188.18 29397.78 7498.40 19997.11 8998.34 10799.04 5389.58 27199.79 4498.09 3699.93 1199.30 120
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16298.79 13995.07 18297.88 15998.35 12097.24 5299.72 8796.05 10999.58 10599.45 85
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8497.82 16699.11 4796.75 8599.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 3198.94 696.41 21399.33 5389.64 26397.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 10098.84 12395.76 15096.93 21797.43 22097.26 5099.79 4496.06 10799.53 12599.45 85
MP-MVScopyleft97.64 9697.18 12699.00 999.32 5597.77 1797.49 9998.73 15196.27 11995.59 28497.75 19796.30 11099.78 4793.70 23399.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SSC-MVS95.92 19397.03 13592.58 35499.28 5778.39 39096.68 14695.12 33398.90 1999.11 3998.66 8891.36 24499.68 12295.00 17999.16 21499.67 28
PVSNet_Blended_VisFu95.95 19295.80 20196.42 21199.28 5790.62 25195.31 23999.08 5988.40 33096.97 21598.17 15092.11 23199.78 4793.64 23499.21 20798.86 208
tfpnnormal97.72 9097.97 5596.94 17799.26 5992.23 21497.83 7298.45 19098.25 3999.13 3898.66 8896.65 8899.69 11793.92 22599.62 9298.91 197
MSP-MVS97.45 11196.92 14399.03 599.26 5997.70 1897.66 8498.89 10595.65 15598.51 8596.46 28692.15 22999.81 3695.14 17098.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 18696.50 17094.80 29099.26 5987.69 30895.96 19598.58 18095.08 18198.02 14696.25 29697.92 2097.60 38488.68 33098.74 26299.11 164
IS-MVSNet96.93 14096.68 15597.70 11399.25 6294.00 16298.57 2096.74 30398.36 3498.14 13197.98 17588.23 28899.71 10293.10 24899.72 7199.38 106
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13998.23 21895.92 14198.40 9898.28 13397.06 6099.71 10295.48 14599.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6395.51 9796.89 13098.89 10595.92 14198.64 7498.31 12497.06 60
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13998.89 10599.75 6795.48 14599.52 13099.53 56
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11498.79 13995.96 13897.53 17397.40 22296.93 7199.77 5695.04 17699.35 18299.42 97
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9695.75 15297.91 15698.06 16696.89 7599.76 6195.32 15799.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19897.55 9398.94 9997.10 9098.85 5798.88 7195.03 15499.67 12897.39 6499.65 8799.26 132
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13698.83 12996.11 12899.08 4098.24 14097.87 2399.72 8795.44 14999.51 13599.14 154
IU-MVS99.22 6895.40 10398.14 23685.77 35898.36 10495.23 16299.51 13599.49 70
test_241102_ONE99.22 6895.35 10898.83 12996.04 13399.08 4098.13 15397.87 2399.33 246
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5998.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8898.84 12396.00 13697.22 18997.62 20796.87 7999.76 6195.48 14599.43 16399.46 81
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 8098.78 14396.04 13397.10 20097.73 20096.53 9599.78 4795.16 16799.50 13999.46 81
WB-MVS95.50 20996.62 15792.11 36399.21 7577.26 39896.12 18195.40 33098.62 2698.84 5998.26 13891.08 24899.50 18693.37 23898.70 26799.58 39
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4599.45 20394.08 21799.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 9098.83 12996.05 13197.46 18297.63 20696.77 8499.76 6195.61 13799.46 15199.49 70
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 12099.06 6395.45 16597.55 17297.94 17997.11 5599.78 4794.77 19199.46 15199.48 76
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14498.73 15198.66 2598.56 8298.41 11496.84 8199.69 11794.82 18699.81 4898.64 232
EPP-MVSNet96.84 14696.58 16197.65 11799.18 8093.78 17198.68 1496.34 30897.91 5197.30 18698.06 16688.46 28599.85 2793.85 22799.40 17199.32 115
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20696.57 15099.15 4493.68 22898.89 5499.30 2896.42 10499.37 23499.03 1399.83 4399.66 30
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17599.73 395.05 18399.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15798.98 9295.05 18398.06 14198.02 17095.86 12299.56 16894.37 20699.64 8999.00 180
CHOSEN 1792x268894.10 27393.41 28296.18 22399.16 8290.04 25792.15 35098.68 16379.90 39096.22 25897.83 18887.92 29499.42 21089.18 32299.65 8799.08 169
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 9098.84 12396.05 13197.49 17797.54 21297.07 5999.70 11095.61 13799.46 15199.30 120
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25197.64 20596.49 9899.72 8795.66 13399.37 17499.45 85
X-MVStestdata92.86 30490.83 33198.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25136.50 40696.49 9899.72 8795.66 13399.37 17499.45 85
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 12099.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9299.06 6396.19 12598.48 9098.70 8594.72 16199.24 27094.37 20699.33 19099.17 148
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14698.83 12995.21 17498.36 10498.13 15398.13 1899.62 14996.04 11099.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17498.23 4698.66 16897.41 7999.00 4699.19 3695.47 14199.73 8295.83 12599.76 5899.30 120
Vis-MVSNet (Re-imp)95.11 23094.85 23395.87 23899.12 9389.17 27197.54 9894.92 33696.50 11096.58 23897.27 23683.64 32699.48 19488.42 33399.67 8498.97 185
dcpmvs_297.12 12997.99 5494.51 30499.11 9484.00 36097.75 7899.65 997.38 8299.14 3798.42 11395.16 15099.96 295.52 14199.78 5699.58 39
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24398.46 18994.58 20198.10 13598.07 16197.09 5899.39 22595.16 16799.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 10099.92 597.88 4299.98 299.85 3
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18499.09 9791.43 23896.37 16199.11 5094.19 21199.01 4499.25 3196.30 11099.38 22899.00 1499.88 2799.73 22
AllTest97.20 12796.92 14398.06 8899.08 9896.16 7097.14 11799.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14399.05 6798.67 2498.84 5998.45 11097.58 3899.88 2096.45 9299.86 3199.54 53
test111194.53 25994.81 23793.72 32399.06 10181.94 37598.31 3983.87 40496.37 11598.49 8899.17 4281.49 33599.73 8296.64 8499.86 3199.49 70
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7799.00 8698.40 3399.07 4298.98 5896.89 7599.75 6797.19 7199.79 5399.55 52
114514_t93.96 27893.22 28696.19 22299.06 10190.97 24595.99 19198.94 9973.88 40293.43 34296.93 25792.38 22799.37 23489.09 32399.28 19998.25 275
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18195.96 19598.97 9594.55 20298.82 6198.76 8097.31 4699.29 25897.20 7099.44 15599.38 106
test_one_060199.05 10595.50 10098.87 11397.21 8898.03 14598.30 12896.93 71
ACMP92.54 1397.47 11097.10 12998.55 4999.04 10696.70 5196.24 17298.89 10593.71 22597.97 15197.75 19797.44 4099.63 14493.22 24599.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsmvis_n_192098.08 4598.47 2696.93 17899.03 10793.29 18896.32 16599.65 995.59 15999.71 499.01 5497.66 3399.60 15899.44 299.83 4397.90 307
test_part299.03 10796.07 7498.08 138
XVG-OURS-SEG-HR97.38 11697.07 13298.30 6899.01 10997.41 3494.66 27099.02 7795.20 17598.15 13097.52 21498.83 598.43 35994.87 18496.41 35899.07 171
XVG-OURS97.12 12996.74 15298.26 7098.99 11097.45 3293.82 30599.05 6795.19 17698.32 11197.70 20295.22 14998.41 36094.27 21098.13 30098.93 193
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9696.11 12896.89 22097.45 21896.85 8099.78 4795.19 16399.63 9199.38 106
test250689.86 34489.16 34991.97 36498.95 11276.83 39998.54 2361.07 41396.20 12397.07 20699.16 4355.19 40799.69 11796.43 9399.83 4399.38 106
ECVR-MVScopyleft94.37 26594.48 25594.05 31998.95 11283.10 36598.31 3982.48 40696.20 12398.23 12099.16 4381.18 33899.66 13495.95 11799.83 4399.38 106
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10898.99 8996.35 11898.13 13295.95 31195.99 11999.66 13494.36 20899.73 6798.59 238
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 19099.64 1294.99 18699.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12299.10 5295.32 17197.83 16597.88 18596.44 10399.72 8794.59 20099.39 17299.25 136
HyFIR lowres test93.72 28492.65 30196.91 18198.93 11691.81 23191.23 36998.52 18482.69 37896.46 24596.52 28480.38 34399.90 1490.36 30698.79 25799.03 176
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21295.83 20499.32 2593.22 24298.91 5398.49 10596.31 10999.64 14099.07 1299.76 5899.40 100
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20395.89 20199.41 2493.36 23699.00 4698.44 11296.46 10299.65 13699.09 1199.76 5899.45 85
PM-MVS97.36 12097.10 12998.14 8298.91 12096.77 4996.20 17498.63 17493.82 22298.54 8398.33 12293.98 18399.05 29995.99 11599.45 15498.61 237
CPTT-MVS96.69 16096.08 18798.49 5298.89 12196.64 5597.25 10998.77 14492.89 26096.01 26897.13 24392.23 22899.67 12892.24 25899.34 18599.17 148
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17999.57 1495.66 15499.52 1598.71 8497.04 6299.64 14099.21 799.87 2998.69 228
patch_mono-296.59 16596.93 14195.55 25298.88 12287.12 31994.47 27599.30 2794.12 21496.65 23598.41 11494.98 15799.87 2295.81 12799.78 5699.66 30
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11998.98 9295.75 15297.62 17097.59 20997.61 3799.77 5696.34 9799.44 15599.36 112
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24598.99 8995.84 14798.78 6498.08 15996.84 8199.81 3693.98 22399.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 10997.11 12898.60 4598.83 12696.67 5396.74 13998.73 15191.61 28398.48 9098.36 11996.53 9599.68 12295.17 16599.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.60 9399.76 6195.49 14299.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.94 6995.49 14299.20 20899.26 132
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20696.25 17199.06 6393.67 22998.64 7499.00 5596.23 11499.36 23798.99 1599.80 5199.53 56
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19999.04 7497.51 7298.22 12197.81 19294.68 16499.78 4797.14 7299.75 6599.41 99
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18898.79 13191.44 23796.14 18099.06 6394.19 21198.82 6198.98 5896.22 11599.38 22898.98 1699.86 3199.58 39
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13799.72 8798.12 3499.86 3199.73 22
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9398.92 10297.72 5998.25 11898.13 15397.10 5699.75 6795.44 14999.24 20699.32 115
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17399.02 7793.92 22198.62 7698.99 5797.69 2999.62 14996.18 10599.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10598.83 12997.32 8498.06 14197.85 18796.65 8899.77 5695.00 17999.11 22299.32 115
MCST-MVS96.24 18095.80 20197.56 12298.75 13694.13 15894.66 27098.17 22990.17 30696.21 25996.10 30595.14 15199.43 20894.13 21698.85 25199.13 156
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21598.87 11397.57 6798.31 11397.83 18894.69 16299.85 2797.02 7799.71 7499.46 81
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15197.79 5399.42 2097.83 18894.40 17499.78 4795.91 12099.76 5899.46 81
Anonymous2023120695.27 22295.06 22495.88 23798.72 13989.37 26895.70 20997.85 25488.00 33696.98 21497.62 20791.95 23699.34 24489.21 32199.53 12598.94 189
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13898.59 8098.69 8696.94 6999.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21399.02 7798.11 4498.31 11397.69 20394.65 16699.85 2797.02 7799.71 7499.48 76
tttt051793.31 29792.56 30495.57 24998.71 14287.86 30297.44 10187.17 39895.79 14997.47 18196.84 26364.12 39499.81 3696.20 10399.32 19299.02 179
v897.60 10098.06 4796.23 21998.71 14289.44 26797.43 10398.82 13797.29 8698.74 7099.10 4893.86 18699.68 12298.61 2799.94 899.56 50
HQP_MVS96.66 16296.33 17897.68 11698.70 14494.29 15196.50 15398.75 14896.36 11696.16 26296.77 26991.91 23999.46 19992.59 25499.20 20899.28 127
plane_prior798.70 14494.67 134
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21298.79 2299.23 3298.86 7395.76 13299.61 15695.49 14299.36 17799.23 138
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12395.61 32498.59 2798.51 8598.72 8292.54 22199.58 16196.02 11299.49 14299.12 161
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26997.01 25396.99 6699.82 3497.66 5599.64 8998.39 256
HPM-MVS++copyleft96.99 13596.38 17598.81 2798.64 14997.59 2395.97 19398.20 22395.51 16395.06 29696.53 28294.10 18099.70 11094.29 20999.15 21599.13 156
ab-mvs96.59 16596.59 16096.60 19998.64 14992.21 21598.35 3597.67 26594.45 20396.99 21298.79 7594.96 15899.49 19190.39 30599.07 22898.08 287
F-COLMAP95.30 22194.38 26098.05 9298.64 14996.04 7595.61 21998.66 16889.00 32193.22 34696.40 29092.90 20799.35 24187.45 34897.53 32998.77 218
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18695.63 15697.22 18997.30 23595.52 13998.55 35090.97 28498.90 24498.34 264
test_fmvs397.38 11697.56 10196.84 18698.63 15392.81 19897.60 8899.61 1390.87 29498.76 6999.66 394.03 18297.90 37899.24 699.68 8299.81 8
v14896.58 16796.97 13895.42 25998.63 15387.57 30995.09 24997.90 25195.91 14398.24 11997.96 17693.42 19699.39 22596.04 11099.52 13099.29 126
UnsupCasMVSNet_bld94.72 24894.26 26296.08 22798.62 15590.54 25593.38 31998.05 24790.30 30397.02 21096.80 26889.54 27299.16 28288.44 33296.18 36498.56 240
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11898.79 13998.98 1798.74 7098.49 10595.80 13199.49 19195.04 17699.44 15599.11 164
v1097.55 10497.97 5596.31 21798.60 15789.64 26397.44 10199.02 7796.60 10398.72 7299.16 4393.48 19599.72 8798.76 2199.92 1699.58 39
Test_1112_low_res93.53 29292.86 29395.54 25398.60 15788.86 28092.75 33298.69 16182.66 37992.65 36096.92 25984.75 31899.56 16890.94 28597.76 31598.19 280
V4297.04 13297.16 12796.68 19798.59 15991.05 24296.33 16498.36 20494.60 19897.99 14798.30 12893.32 19799.62 14997.40 6399.53 12599.38 106
1112_ss94.12 27293.42 28196.23 21998.59 15990.85 24694.24 28398.85 12085.49 35992.97 35294.94 33386.01 30899.64 14091.78 27097.92 30898.20 279
v2v48296.78 15397.06 13395.95 23398.57 16188.77 28395.36 23398.26 21495.18 17797.85 16498.23 14292.58 21799.63 14497.80 4799.69 7899.45 85
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17598.57 16192.10 22395.97 19399.18 3897.67 6699.00 4698.48 10997.64 3499.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS96.90 14396.81 14897.16 15998.56 16392.20 21894.33 27898.12 23897.34 8398.20 12297.33 23392.81 20899.75 6794.79 18899.81 4899.54 53
test_vis1_n_192095.77 19996.41 17393.85 32098.55 16484.86 35095.91 20099.71 492.72 26497.67 16998.90 6987.44 29898.73 32997.96 4098.85 25197.96 303
APD-MVScopyleft97.00 13496.53 16798.41 5998.55 16496.31 6696.32 16598.77 14492.96 25997.44 18397.58 21195.84 12399.74 7691.96 26399.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 25294.49 25495.19 26798.54 16688.91 27892.57 33898.74 15091.46 28698.32 11197.75 19777.31 35898.81 32296.06 10799.61 9897.85 311
9.1496.69 15498.53 16796.02 18898.98 9293.23 24197.18 19497.46 21796.47 10099.62 14992.99 24999.32 192
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28696.92 25996.81 8399.87 2296.87 8299.76 5898.51 246
baseline97.44 11297.78 7796.43 21098.52 16890.75 25096.84 13199.03 7596.51 10997.86 16398.02 17096.67 8799.36 23797.09 7499.47 14899.19 145
casdiffmvspermissive97.50 10797.81 7196.56 20498.51 17091.04 24395.83 20499.09 5797.23 8798.33 11098.30 12897.03 6399.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS96.92 14197.29 11895.79 24098.51 17088.13 29695.10 24898.66 16896.99 9198.46 9398.68 8792.55 21999.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 20895.13 21996.80 18898.51 17093.99 16394.60 27298.69 16190.20 30595.78 27896.21 29892.73 21298.98 30890.58 30098.86 25097.42 335
h-mvs3396.29 17895.63 20898.26 7098.50 17396.11 7396.90 12997.09 28996.58 10597.21 19198.19 14784.14 32299.78 4795.89 12196.17 36598.89 201
test20.0396.58 16796.61 15996.48 20898.49 17491.72 23295.68 21297.69 26496.81 9798.27 11797.92 18294.18 17998.71 33290.78 29199.66 8699.00 180
plane_prior198.49 174
save fliter98.48 17694.71 13194.53 27498.41 19795.02 185
MDA-MVSNet-bldmvs95.69 20195.67 20595.74 24298.48 17688.76 28492.84 32997.25 28196.00 13697.59 17197.95 17891.38 24399.46 19993.16 24796.35 36098.99 183
UnsupCasMVSNet_eth95.91 19495.73 20496.44 20998.48 17691.52 23595.31 23998.45 19095.76 15097.48 17997.54 21289.53 27498.69 33594.43 20294.61 38399.13 156
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26597.19 24196.88 7799.86 2497.50 6099.73 6798.41 253
test_vis3_rt97.04 13296.98 13797.23 15798.44 18095.88 8096.82 13399.67 690.30 30399.27 2999.33 2794.04 18196.03 39797.14 7297.83 31299.78 11
ZD-MVS98.43 18195.94 7998.56 18290.72 29696.66 23397.07 24795.02 15599.74 7691.08 28198.93 242
thisisatest053092.71 30791.76 31595.56 25198.42 18288.23 29196.03 18787.35 39794.04 21896.56 24095.47 32464.03 39599.77 5694.78 19099.11 22298.68 231
v114496.84 14697.08 13196.13 22698.42 18289.28 27095.41 22998.67 16694.21 20997.97 15198.31 12493.06 20299.65 13698.06 3899.62 9299.45 85
plane_prior698.38 18494.37 14891.91 239
FPMVS89.92 34388.63 35193.82 32198.37 18596.94 4591.58 35993.34 35388.00 33690.32 38197.10 24670.87 38591.13 40571.91 40396.16 36693.39 395
PAPM_NR94.61 25594.17 26795.96 23198.36 18691.23 24095.93 19897.95 24892.98 25593.42 34394.43 34690.53 25598.38 36387.60 34396.29 36298.27 273
MVS_111021_HR96.73 15696.54 16697.27 15298.35 18793.66 17793.42 31798.36 20494.74 19296.58 23896.76 27196.54 9498.99 30694.87 18499.27 20199.15 151
TAMVS95.49 21094.94 22697.16 15998.31 18893.41 18595.07 25296.82 29991.09 29297.51 17597.82 19189.96 26699.42 21088.42 33399.44 15598.64 232
OMC-MVS96.48 17196.00 19097.91 10098.30 18996.01 7894.86 26298.60 17691.88 27997.18 19497.21 24096.11 11799.04 30090.49 30499.34 18598.69 228
新几何197.25 15598.29 19094.70 13397.73 26277.98 39694.83 30396.67 27592.08 23399.45 20388.17 33798.65 27397.61 326
jason94.39 26494.04 27095.41 26198.29 19087.85 30492.74 33496.75 30285.38 36395.29 29196.15 30088.21 28999.65 13694.24 21199.34 18598.74 221
jason: jason.
v119296.83 14997.06 13396.15 22598.28 19289.29 26995.36 23398.77 14493.73 22498.11 13398.34 12193.02 20699.67 12898.35 3299.58 10599.50 62
CDPH-MVS95.45 21594.65 24397.84 10598.28 19294.96 12693.73 30998.33 20885.03 36695.44 28796.60 27895.31 14699.44 20690.01 31099.13 21899.11 164
MVS_111021_LR96.82 15096.55 16497.62 11998.27 19495.34 11093.81 30798.33 20894.59 20096.56 24096.63 27796.61 9198.73 32994.80 18799.34 18598.78 215
CLD-MVS95.47 21395.07 22296.69 19698.27 19492.53 20591.36 36398.67 16691.22 29195.78 27894.12 34995.65 13698.98 30890.81 28999.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521196.34 17795.98 19297.43 14098.25 19693.85 16796.74 13994.41 34197.72 5998.37 10198.03 16987.15 30199.53 17894.06 21899.07 22898.92 196
pmmvs-eth3d96.49 17096.18 18397.42 14298.25 19694.29 15194.77 26698.07 24589.81 31197.97 15198.33 12293.11 20199.08 29695.46 14899.84 4098.89 201
v14419296.69 16096.90 14596.03 22898.25 19688.92 27795.49 22398.77 14493.05 25298.09 13698.29 13292.51 22499.70 11098.11 3599.56 11199.47 79
ambc96.56 20498.23 19991.68 23397.88 6898.13 23798.42 9698.56 9994.22 17899.04 30094.05 22099.35 18298.95 187
test_cas_vis1_n_192095.34 21895.67 20594.35 31098.21 20086.83 32595.61 21999.26 3090.45 30198.17 12798.96 6184.43 32198.31 36896.74 8399.17 21397.90 307
thres100view90091.76 32491.26 32493.26 33298.21 20084.50 35496.39 15790.39 38296.87 9596.33 25093.08 36173.44 37899.42 21078.85 39297.74 31695.85 374
v192192096.72 15796.96 14095.99 22998.21 20088.79 28295.42 22798.79 13993.22 24298.19 12698.26 13892.68 21399.70 11098.34 3399.55 11899.49 70
thres600view792.03 32091.43 31793.82 32198.19 20384.61 35396.27 16790.39 38296.81 9796.37 24993.11 35773.44 37899.49 19180.32 38797.95 30797.36 336
PatchMatch-RL94.61 25593.81 27597.02 17498.19 20395.72 8693.66 31097.23 28288.17 33494.94 30195.62 32091.43 24298.57 34787.36 34997.68 32296.76 360
LF4IMVS96.07 18695.63 20897.36 14698.19 20395.55 9495.44 22598.82 13792.29 27395.70 28296.55 28092.63 21698.69 33591.75 27299.33 19097.85 311
test_vis1_n95.67 20395.89 19895.03 27698.18 20689.89 26096.94 12799.28 2988.25 33398.20 12298.92 6586.69 30597.19 38697.70 5498.82 25598.00 301
v124096.74 15497.02 13695.91 23698.18 20688.52 28595.39 23198.88 11193.15 25098.46 9398.40 11792.80 20999.71 10298.45 3199.49 14299.49 70
TAPA-MVS93.32 1294.93 23794.23 26397.04 17298.18 20694.51 14195.22 24498.73 15181.22 38596.25 25795.95 31193.80 18998.98 30889.89 31298.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 20993.24 19192.74 33497.61 27475.17 40094.65 30696.69 27490.96 25198.66 27197.66 322
MIMVSNet93.42 29492.86 29395.10 27398.17 20988.19 29298.13 5593.69 34692.07 27495.04 29998.21 14680.95 34199.03 30381.42 38498.06 30398.07 289
原ACMM196.58 20198.16 21192.12 22098.15 23585.90 35693.49 33996.43 28792.47 22599.38 22887.66 34298.62 27598.23 276
testdata95.70 24598.16 21190.58 25297.72 26380.38 38895.62 28397.02 25192.06 23498.98 30889.06 32598.52 28197.54 330
test_fmvs1_n95.21 22495.28 21394.99 27998.15 21389.13 27596.81 13499.43 2186.97 34697.21 19198.92 6583.00 33097.13 38798.09 3698.94 24098.72 224
MVP-Stereo95.69 20195.28 21396.92 17998.15 21393.03 19495.64 21898.20 22390.39 30296.63 23697.73 20091.63 24199.10 29491.84 26897.31 33898.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 11897.70 8196.35 21498.14 21595.13 12296.54 15298.92 10295.94 14099.19 3498.08 15997.74 2895.06 39895.24 16199.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 26694.47 25693.60 32698.14 21582.60 37097.24 11192.72 36085.08 36498.48 9098.94 6382.59 33398.76 32797.47 6299.53 12599.44 95
NP-MVS98.14 21593.72 17295.08 329
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12599.65 996.74 9999.47 1798.93 6496.91 7499.84 3090.11 30899.06 23198.32 265
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 16098.13 4396.93 21798.45 11095.30 14799.62 14995.64 13598.96 23799.24 137
VNet96.84 14696.83 14796.88 18298.06 22092.02 22596.35 16397.57 27597.70 6297.88 15997.80 19392.40 22699.54 17694.73 19398.96 23799.08 169
LFMVS95.32 22094.88 23296.62 19898.03 22191.47 23697.65 8590.72 38199.11 997.89 15898.31 12479.20 34699.48 19493.91 22699.12 22198.93 193
tfpn200view991.55 32691.00 32693.21 33698.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31695.85 374
thres40091.68 32591.00 32693.71 32498.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31697.36 336
OPU-MVS97.64 11898.01 22495.27 11396.79 13697.35 23196.97 6798.51 35391.21 28099.25 20399.14 154
xiu_mvs_v1_base_debu95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base_debi95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
CNVR-MVS96.92 14196.55 16498.03 9398.00 22895.54 9594.87 26198.17 22994.60 19896.38 24897.05 24995.67 13599.36 23795.12 17399.08 22699.19 145
PLCcopyleft91.02 1694.05 27692.90 29297.51 12798.00 22895.12 12394.25 28298.25 21586.17 35291.48 37395.25 32791.01 24999.19 27685.02 36996.69 35398.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
test196.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
FMVSNet296.72 15796.67 15696.87 18397.96 23091.88 22897.15 11598.06 24695.59 15998.50 8798.62 9489.51 27599.65 13694.99 18199.60 10199.07 171
BH-untuned94.69 24994.75 24094.52 30397.95 23387.53 31094.07 29497.01 29293.99 21997.10 20095.65 31892.65 21598.95 31387.60 34396.74 35197.09 342
DPM-MVS93.68 28692.77 29996.42 21197.91 23492.54 20491.17 37097.47 27884.99 36893.08 35094.74 33789.90 26799.00 30487.54 34598.09 30297.72 320
MVS_030496.62 16496.40 17497.28 15197.91 23492.30 21196.47 15589.74 39097.52 7195.38 29098.63 9392.76 21099.81 3699.28 499.93 1199.75 19
QAPM95.88 19595.57 21096.80 18897.90 23691.84 23098.18 5398.73 15188.41 32996.42 24698.13 15394.73 16099.75 6788.72 32898.94 24098.81 212
TinyColmap96.00 19196.34 17794.96 28197.90 23687.91 30194.13 29298.49 18794.41 20498.16 12897.76 19496.29 11298.68 33890.52 30199.42 16698.30 269
test_fmvs296.38 17696.45 17196.16 22497.85 23891.30 23996.81 13499.45 1989.24 31798.49 8899.38 1888.68 28297.62 38398.83 1899.32 19299.57 46
HQP-NCC97.85 23894.26 27993.18 24692.86 354
ACMP_Plane97.85 23894.26 27993.18 24692.86 354
N_pmnet95.18 22694.23 26398.06 8897.85 23896.55 5892.49 34091.63 37189.34 31598.09 13697.41 22190.33 26099.06 29891.58 27399.31 19598.56 240
HQP-MVS95.17 22894.58 25196.92 17997.85 23892.47 20894.26 27998.43 19393.18 24692.86 35495.08 32990.33 26099.23 27290.51 30298.74 26299.05 175
hse-mvs295.77 19995.09 22197.79 10797.84 24395.51 9795.66 21395.43 32996.58 10597.21 19196.16 29984.14 32299.54 17695.89 12196.92 34298.32 265
TEST997.84 24395.23 11593.62 31198.39 20086.81 34793.78 32795.99 30794.68 16499.52 181
train_agg95.46 21494.66 24297.88 10297.84 24395.23 11593.62 31198.39 20087.04 34393.78 32795.99 30794.58 16899.52 18191.76 27198.90 24498.89 201
MSLP-MVS++96.42 17596.71 15395.57 24997.82 24690.56 25495.71 20898.84 12394.72 19396.71 22997.39 22694.91 15998.10 37695.28 15899.02 23398.05 296
test_897.81 24795.07 12493.54 31498.38 20287.04 34393.71 33195.96 31094.58 16899.52 181
NCCC96.52 16995.99 19198.10 8597.81 24795.68 8995.00 25798.20 22395.39 16995.40 28996.36 29293.81 18899.45 20393.55 23698.42 28999.17 148
WTY-MVS93.55 29193.00 29195.19 26797.81 24787.86 30293.89 30396.00 31389.02 32094.07 32095.44 32686.27 30699.33 24687.69 34196.82 34898.39 256
CNLPA95.04 23394.47 25696.75 19297.81 24795.25 11494.12 29397.89 25294.41 20494.57 30795.69 31690.30 26398.35 36686.72 35598.76 26096.64 362
AUN-MVS93.95 28092.69 30097.74 11097.80 25195.38 10595.57 22295.46 32891.26 29092.64 36196.10 30574.67 36999.55 17393.72 23296.97 34198.30 269
EIA-MVS96.04 18895.77 20396.85 18497.80 25192.98 19596.12 18199.16 4094.65 19693.77 32991.69 38295.68 13499.67 12894.18 21398.85 25197.91 306
agg_prior97.80 25194.96 12698.36 20493.49 33999.53 178
旧先验197.80 25193.87 16697.75 26197.04 25093.57 19398.68 26898.72 224
PCF-MVS89.43 1892.12 31790.64 33496.57 20397.80 25193.48 18289.88 38898.45 19074.46 40196.04 26795.68 31790.71 25499.31 25173.73 40099.01 23596.91 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior97.46 13797.79 25694.26 15598.42 19699.34 24498.79 214
PVSNet_BlendedMVS95.02 23694.93 22895.27 26397.79 25687.40 31494.14 29198.68 16388.94 32294.51 30998.01 17293.04 20399.30 25489.77 31499.49 14299.11 164
PVSNet_Blended93.96 27893.65 27794.91 28297.79 25687.40 31491.43 36298.68 16384.50 37394.51 30994.48 34593.04 20399.30 25489.77 31498.61 27698.02 299
USDC94.56 25794.57 25394.55 30297.78 25986.43 33092.75 33298.65 17385.96 35496.91 21997.93 18190.82 25298.74 32890.71 29699.59 10398.47 250
alignmvs96.01 19095.52 21197.50 13197.77 26094.71 13196.07 18496.84 29797.48 7396.78 22694.28 34885.50 31399.40 22196.22 10298.73 26598.40 254
ETV-MVS96.13 18595.90 19796.82 18797.76 26193.89 16595.40 23098.95 9895.87 14595.58 28591.00 38896.36 10899.72 8793.36 23998.83 25496.85 354
D2MVS95.18 22695.17 21795.21 26697.76 26187.76 30794.15 28997.94 24989.77 31296.99 21297.68 20487.45 29799.14 28495.03 17899.81 4898.74 221
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10596.62 10198.62 7698.30 12896.97 6799.75 6795.70 12899.25 20399.21 140
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
TSAR-MVS + GP.96.47 17296.12 18497.49 13497.74 26695.23 11594.15 28996.90 29693.26 24098.04 14496.70 27394.41 17398.89 31594.77 19199.14 21698.37 258
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17898.49 2898.88 11196.86 9697.11 19998.55 10095.82 12699.73 8295.94 11899.42 16699.13 156
MM96.87 14596.62 15797.62 11997.72 26893.30 18796.39 15792.61 36397.90 5296.76 22798.64 9290.46 25799.81 3699.16 999.94 899.76 17
sss94.22 26793.72 27695.74 24297.71 26989.95 25993.84 30496.98 29388.38 33193.75 33095.74 31587.94 29098.89 31591.02 28398.10 30198.37 258
DeepC-MVS_fast94.34 796.74 15496.51 16997.44 13997.69 27094.15 15796.02 18898.43 19393.17 24997.30 18697.38 22895.48 14099.28 26093.74 23099.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net97.20 12797.23 12297.08 16897.68 27193.71 17397.79 7399.09 5797.40 8096.59 23793.96 35097.67 3199.35 24196.43 9398.50 28498.17 283
IterMVS-SCA-FT95.86 19696.19 18294.85 28797.68 27185.53 33892.42 34597.63 27396.99 9198.36 10498.54 10187.94 29099.75 6797.07 7699.08 22699.27 131
MVSFormer96.14 18496.36 17695.49 25597.68 27187.81 30598.67 1599.02 7796.50 11094.48 31196.15 30086.90 30299.92 598.73 2299.13 21898.74 221
lupinMVS93.77 28193.28 28495.24 26497.68 27187.81 30592.12 35196.05 31184.52 37294.48 31195.06 33186.90 30299.63 14493.62 23599.13 21898.27 273
Fast-Effi-MVS+95.49 21095.07 22296.75 19297.67 27592.82 19794.22 28598.60 17691.61 28393.42 34392.90 36496.73 8699.70 11092.60 25397.89 31197.74 319
testing389.72 34688.26 35594.10 31897.66 27684.30 35894.80 26388.25 39594.66 19595.07 29592.51 37241.15 41399.43 20891.81 26998.44 28898.55 242
sasdasda97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
canonicalmvs97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
CDS-MVSNet94.88 24094.12 26897.14 16197.64 27993.57 17993.96 30197.06 29190.05 30896.30 25496.55 28086.10 30799.47 19690.10 30999.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 25494.34 26195.50 25497.63 28088.34 28994.02 29597.13 28787.15 34295.22 29397.15 24287.50 29699.27 26393.99 22299.26 20298.88 205
test_f95.82 19895.88 19995.66 24697.61 28193.21 19295.61 21998.17 22986.98 34598.42 9699.47 1190.46 25794.74 40097.71 5298.45 28799.03 176
test1297.46 13797.61 28194.07 15997.78 26093.57 33793.31 19899.42 21098.78 25898.89 201
PMMVS293.66 28794.07 26992.45 35897.57 28380.67 38386.46 39696.00 31393.99 21997.10 20097.38 22889.90 26797.82 38088.76 32799.47 14898.86 208
BH-RMVSNet94.56 25794.44 25994.91 28297.57 28387.44 31393.78 30896.26 30993.69 22796.41 24796.50 28592.10 23299.00 30485.96 35797.71 31998.31 267
PVSNet86.72 1991.10 33190.97 32891.49 36797.56 28578.04 39287.17 39594.60 33984.65 37192.34 36592.20 37687.37 29998.47 35785.17 36897.69 32197.96 303
DELS-MVS96.17 18396.23 18095.99 22997.55 28690.04 25792.38 34898.52 18494.13 21396.55 24297.06 24894.99 15699.58 16195.62 13699.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 21695.83 20094.20 31597.52 28783.78 36292.41 34697.47 27895.49 16498.06 14198.49 10587.94 29099.58 16196.02 11299.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 23894.89 23194.99 27997.51 28888.11 29898.27 4495.20 33292.40 27296.68 23098.60 9583.44 32799.28 26093.34 24098.53 28097.59 328
CL-MVSNet_self_test95.04 23394.79 23995.82 23997.51 28889.79 26191.14 37196.82 29993.05 25296.72 22896.40 29090.82 25299.16 28291.95 26498.66 27198.50 248
new-patchmatchnet95.67 20396.58 16192.94 34597.48 29080.21 38592.96 32798.19 22894.83 19098.82 6198.79 7593.31 19899.51 18595.83 12599.04 23299.12 161
MDA-MVSNet_test_wron94.73 24494.83 23694.42 30797.48 29085.15 34590.28 38295.87 31792.52 26797.48 17997.76 19491.92 23899.17 28193.32 24196.80 35098.94 189
PHI-MVS96.96 13996.53 16798.25 7397.48 29096.50 5996.76 13898.85 12093.52 23196.19 26196.85 26295.94 12099.42 21093.79 22999.43 16398.83 210
DeepPCF-MVS94.58 596.90 14396.43 17298.31 6797.48 29097.23 4092.56 33998.60 17692.84 26198.54 8397.40 22296.64 9098.78 32494.40 20599.41 17098.93 193
thres20091.00 33390.42 33792.77 35097.47 29483.98 36194.01 29691.18 37795.12 18095.44 28791.21 38673.93 37199.31 25177.76 39597.63 32695.01 385
YYNet194.73 24494.84 23494.41 30897.47 29485.09 34790.29 38195.85 31892.52 26797.53 17397.76 19491.97 23599.18 27793.31 24296.86 34598.95 187
Effi-MVS+96.19 18296.01 18996.71 19497.43 29692.19 21996.12 18199.10 5295.45 16593.33 34594.71 33897.23 5399.56 16893.21 24697.54 32898.37 258
pmmvs494.82 24294.19 26696.70 19597.42 29792.75 20292.09 35396.76 30186.80 34895.73 28197.22 23989.28 27898.89 31593.28 24399.14 21698.46 252
mvsany_test396.21 18195.93 19697.05 17097.40 29894.33 15095.76 20794.20 34389.10 31899.36 2499.60 693.97 18497.85 37995.40 15698.63 27498.99 183
MSDG95.33 21995.13 21995.94 23597.40 29891.85 22991.02 37498.37 20395.30 17296.31 25395.99 30794.51 17198.38 36389.59 31697.65 32597.60 327
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 30092.08 22495.34 23697.65 26997.74 5798.29 11698.11 15795.05 15299.68 12297.50 6099.50 13999.56 50
PS-MVSNAJ94.10 27394.47 25693.00 34297.35 30184.88 34991.86 35697.84 25691.96 27794.17 31692.50 37395.82 12699.71 10291.27 27797.48 33194.40 389
diffmvspermissive96.04 18896.23 18095.46 25797.35 30188.03 29993.42 31799.08 5994.09 21796.66 23396.93 25793.85 18799.29 25896.01 11498.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30392.01 22695.33 23797.65 26997.74 5798.30 11598.14 15195.04 15399.69 11797.55 5899.52 13099.58 39
baseline193.14 30192.64 30294.62 29797.34 30387.20 31896.67 14893.02 35594.71 19496.51 24395.83 31481.64 33498.60 34690.00 31188.06 40098.07 289
AdaColmapbinary95.11 23094.62 24796.58 20197.33 30594.45 14494.92 25998.08 24193.15 25093.98 32595.53 32394.34 17599.10 29485.69 36098.61 27696.20 372
xiu_mvs_v2_base94.22 26794.63 24692.99 34397.32 30684.84 35192.12 35197.84 25691.96 27794.17 31693.43 35596.07 11899.71 10291.27 27797.48 33194.42 388
OpenMVS_ROBcopyleft91.80 1493.64 28993.05 28795.42 25997.31 30791.21 24195.08 25196.68 30681.56 38296.88 22196.41 28890.44 25999.25 26685.39 36597.67 32395.80 376
EI-MVSNet96.63 16396.93 14195.74 24297.26 30888.13 29695.29 24197.65 26996.99 9197.94 15498.19 14792.55 21999.58 16196.91 8099.56 11199.50 62
CVMVSNet92.33 31392.79 29690.95 37097.26 30875.84 40295.29 24192.33 36581.86 38096.27 25598.19 14781.44 33698.46 35894.23 21298.29 29498.55 242
FE-MVS92.95 30392.22 30795.11 27197.21 31088.33 29098.54 2393.66 34989.91 31096.21 25998.14 15170.33 38799.50 18687.79 33998.24 29697.51 331
Fast-Effi-MVS+-dtu96.44 17396.12 18497.39 14597.18 31194.39 14595.46 22498.73 15196.03 13594.72 30494.92 33596.28 11399.69 11793.81 22897.98 30598.09 286
dmvs_re92.08 31991.27 32294.51 30497.16 31292.79 20195.65 21592.64 36294.11 21592.74 35790.98 38983.41 32894.44 40280.72 38694.07 38696.29 370
OpenMVScopyleft94.22 895.48 21295.20 21596.32 21697.16 31291.96 22797.74 8098.84 12387.26 34094.36 31398.01 17293.95 18599.67 12890.70 29798.75 26197.35 338
BH-w/o92.14 31691.94 31092.73 35197.13 31485.30 34192.46 34295.64 32189.33 31694.21 31592.74 36889.60 27098.24 37181.68 38394.66 38294.66 387
MG-MVS94.08 27594.00 27194.32 31197.09 31585.89 33593.19 32595.96 31592.52 26794.93 30297.51 21589.54 27298.77 32587.52 34797.71 31998.31 267
thisisatest051590.43 33689.18 34894.17 31797.07 31685.44 33989.75 38987.58 39688.28 33293.69 33391.72 38165.27 39399.58 16190.59 29998.67 26997.50 333
MVS-HIRNet88.40 35890.20 33982.99 38797.01 31760.04 41293.11 32685.61 40284.45 37488.72 39399.09 5084.72 31998.23 37282.52 38196.59 35690.69 402
GA-MVS92.83 30592.15 30994.87 28696.97 31887.27 31790.03 38396.12 31091.83 28094.05 32194.57 33976.01 36598.97 31292.46 25797.34 33798.36 263
test_yl94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
DCV-MVSNet94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
MVS_Test96.27 17996.79 15194.73 29496.94 32186.63 32796.18 17598.33 20894.94 18796.07 26598.28 13395.25 14899.26 26497.21 6897.90 31098.30 269
MAR-MVS94.21 26993.03 28997.76 10996.94 32197.44 3396.97 12697.15 28687.89 33892.00 36892.73 36992.14 23099.12 28883.92 37497.51 33096.73 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 15196.09 18698.99 1096.90 32398.69 496.42 15698.09 24095.86 14695.15 29495.54 32294.26 17799.81 3694.06 21898.51 28398.47 250
MS-PatchMatch94.83 24194.91 23094.57 30196.81 32487.10 32094.23 28497.34 28088.74 32597.14 19697.11 24591.94 23798.23 37292.99 24997.92 30898.37 258
dmvs_testset87.30 36786.99 36488.24 38396.71 32577.48 39594.68 26986.81 40092.64 26689.61 38887.01 40285.91 30993.12 40361.04 40788.49 39994.13 390
UGNet96.81 15196.56 16397.58 12196.64 32693.84 16897.75 7897.12 28896.47 11393.62 33498.88 7193.22 20099.53 17895.61 13799.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 23295.01 22595.31 26296.61 32794.02 16196.83 13297.18 28595.60 15895.79 27694.33 34794.54 17098.37 36585.70 35998.52 28193.52 393
iter_conf05_1193.77 28193.29 28395.24 26496.54 32889.14 27491.55 36095.02 33490.16 30793.21 34793.94 35187.37 29999.56 16892.24 25899.56 11197.03 345
bld_raw_dy_0_6495.16 22995.16 21895.15 27096.54 32889.06 27696.63 14999.54 1789.68 31398.72 7294.50 34488.64 28399.38 22892.24 25899.93 1197.03 345
PAPM87.64 36385.84 37093.04 33996.54 32884.99 34888.42 39495.57 32579.52 39183.82 40293.05 36380.57 34298.41 36062.29 40692.79 39095.71 377
FMVSNet395.26 22394.94 22696.22 22196.53 33190.06 25695.99 19197.66 26794.11 21597.99 14797.91 18380.22 34499.63 14494.60 19799.44 15598.96 186
HY-MVS91.43 1592.58 30891.81 31394.90 28496.49 33288.87 27997.31 10694.62 33885.92 35590.50 37996.84 26385.05 31599.40 22183.77 37795.78 37196.43 368
TR-MVS92.54 30992.20 30893.57 32796.49 33286.66 32693.51 31594.73 33789.96 30994.95 30093.87 35290.24 26598.61 34481.18 38594.88 38095.45 382
ET-MVSNet_ETH3D91.12 33089.67 34295.47 25696.41 33489.15 27391.54 36190.23 38689.07 31986.78 40192.84 36669.39 38999.44 20694.16 21496.61 35597.82 313
CANet95.86 19695.65 20796.49 20796.41 33490.82 24794.36 27798.41 19794.94 18792.62 36396.73 27292.68 21399.71 10295.12 17399.60 10198.94 189
mvs_anonymous95.36 21796.07 18893.21 33696.29 33681.56 37794.60 27297.66 26793.30 23996.95 21698.91 6893.03 20599.38 22896.60 8697.30 33998.69 228
SCA93.38 29693.52 28092.96 34496.24 33781.40 37993.24 32394.00 34491.58 28594.57 30796.97 25487.94 29099.42 21089.47 31897.66 32498.06 293
LS3D97.77 8697.50 10898.57 4796.24 33797.58 2498.45 3198.85 12098.58 2897.51 17597.94 17995.74 13399.63 14495.19 16398.97 23698.51 246
new_pmnet92.34 31291.69 31694.32 31196.23 33989.16 27292.27 34992.88 35784.39 37595.29 29196.35 29385.66 31196.74 39584.53 37297.56 32797.05 343
MVEpermissive73.61 2286.48 37085.92 36988.18 38496.23 33985.28 34381.78 40275.79 40886.01 35382.53 40491.88 37992.74 21187.47 40771.42 40494.86 38191.78 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
c3_l95.20 22595.32 21294.83 28996.19 34186.43 33091.83 35798.35 20793.47 23397.36 18597.26 23788.69 28199.28 26095.41 15599.36 17798.78 215
DSMNet-mixed92.19 31591.83 31293.25 33396.18 34283.68 36396.27 16793.68 34876.97 39992.54 36499.18 3989.20 28098.55 35083.88 37598.60 27897.51 331
miper_lstm_enhance94.81 24394.80 23894.85 28796.16 34386.45 32991.14 37198.20 22393.49 23297.03 20997.37 23084.97 31799.26 26495.28 15899.56 11198.83 210
our_test_394.20 27194.58 25193.07 33896.16 34381.20 38090.42 38096.84 29790.72 29697.14 19697.13 24390.47 25699.11 29194.04 22198.25 29598.91 197
ppachtmachnet_test94.49 26194.84 23493.46 32996.16 34382.10 37290.59 37897.48 27790.53 30097.01 21197.59 20991.01 24999.36 23793.97 22499.18 21298.94 189
ETVMVS87.62 36485.75 37193.22 33596.15 34683.26 36492.94 32890.37 38491.39 28790.37 38088.45 39851.93 41098.64 34173.76 39996.38 35997.75 318
Patchmatch-test93.60 29093.25 28594.63 29696.14 34787.47 31196.04 18694.50 34093.57 23096.47 24496.97 25476.50 36198.61 34490.67 29898.41 29097.81 315
iter_conf0593.65 28893.05 28795.46 25796.13 34887.45 31295.95 19798.22 21992.66 26597.04 20897.89 18463.52 39699.72 8796.19 10499.82 4799.21 140
wuyk23d93.25 29995.20 21587.40 38696.07 34995.38 10597.04 12394.97 33595.33 17099.70 698.11 15798.14 1791.94 40477.76 39599.68 8274.89 404
eth_miper_zixun_eth94.89 23994.93 22894.75 29395.99 35086.12 33391.35 36498.49 18793.40 23497.12 19897.25 23886.87 30499.35 24195.08 17598.82 25598.78 215
test_fmvs194.51 26094.60 24894.26 31495.91 35187.92 30095.35 23599.02 7786.56 35096.79 22298.52 10282.64 33297.00 39097.87 4398.71 26697.88 309
testing9189.67 34788.55 35293.04 33995.90 35281.80 37692.71 33693.71 34593.71 22590.18 38390.15 39457.11 39999.22 27487.17 35296.32 36198.12 285
CANet_DTU94.65 25394.21 26595.96 23195.90 35289.68 26293.92 30297.83 25893.19 24590.12 38495.64 31988.52 28499.57 16793.27 24499.47 14898.62 235
testing1188.93 35387.63 36192.80 34995.87 35481.49 37892.48 34191.54 37291.62 28288.27 39590.24 39255.12 40899.11 29187.30 35096.28 36397.81 315
DIV-MVS_self_test94.73 24494.64 24495.01 27795.86 35587.00 32191.33 36598.08 24193.34 23797.10 20097.34 23284.02 32499.31 25195.15 16999.55 11898.72 224
cl____94.73 24494.64 24495.01 27795.85 35687.00 32191.33 36598.08 24193.34 23797.10 20097.33 23384.01 32599.30 25495.14 17099.56 11198.71 227
MVSTER94.21 26993.93 27495.05 27595.83 35786.46 32895.18 24697.65 26992.41 27197.94 15498.00 17472.39 38099.58 16196.36 9699.56 11199.12 161
FMVSNet593.39 29592.35 30596.50 20695.83 35790.81 24997.31 10698.27 21392.74 26396.27 25598.28 13362.23 39799.67 12890.86 28799.36 17799.03 176
testing22287.35 36685.50 37392.93 34695.79 35982.83 36692.40 34790.10 38892.80 26288.87 39289.02 39748.34 41198.70 33375.40 39896.74 35197.27 340
testing9989.21 35188.04 35792.70 35295.78 36081.00 38292.65 33792.03 36693.20 24489.90 38790.08 39655.25 40599.14 28487.54 34595.95 36797.97 302
miper_ehance_all_eth94.69 24994.70 24194.64 29595.77 36186.22 33291.32 36798.24 21791.67 28197.05 20796.65 27688.39 28799.22 27494.88 18398.34 29198.49 249
test_vis1_rt94.03 27793.65 27795.17 26995.76 36293.42 18493.97 30098.33 20884.68 37093.17 34895.89 31392.53 22394.79 39993.50 23794.97 37997.31 339
PVSNet_081.89 2184.49 37183.21 37488.34 38295.76 36274.97 40583.49 39992.70 36178.47 39587.94 39686.90 40383.38 32996.63 39673.44 40166.86 40793.40 394
PAPR92.22 31491.27 32295.07 27495.73 36488.81 28191.97 35497.87 25385.80 35790.91 37592.73 36991.16 24698.33 36779.48 38995.76 37298.08 287
baseline289.65 34888.44 35493.25 33395.62 36582.71 36793.82 30585.94 40188.89 32387.35 39992.54 37171.23 38399.33 24686.01 35694.60 38497.72 320
CHOSEN 280x42089.98 34189.19 34792.37 35995.60 36681.13 38186.22 39797.09 28981.44 38487.44 39893.15 35673.99 37099.47 19688.69 32999.07 22896.52 366
ADS-MVSNet291.47 32890.51 33694.36 30995.51 36785.63 33695.05 25495.70 31983.46 37692.69 35896.84 26379.15 34799.41 21985.66 36190.52 39498.04 297
ADS-MVSNet90.95 33490.26 33893.04 33995.51 36782.37 37195.05 25493.41 35283.46 37692.69 35896.84 26379.15 34798.70 33385.66 36190.52 39498.04 297
CR-MVSNet93.29 29892.79 29694.78 29295.44 36988.15 29496.18 17597.20 28384.94 36994.10 31898.57 9777.67 35399.39 22595.17 16595.81 36896.81 358
RPMNet94.68 25194.60 24894.90 28495.44 36988.15 29496.18 17598.86 11697.43 7494.10 31898.49 10579.40 34599.76 6195.69 13095.81 36896.81 358
131492.38 31192.30 30692.64 35395.42 37185.15 34595.86 20296.97 29485.40 36290.62 37693.06 36291.12 24797.80 38186.74 35495.49 37694.97 386
tpm91.08 33290.85 33091.75 36695.33 37278.09 39195.03 25691.27 37688.75 32493.53 33897.40 22271.24 38299.30 25491.25 27993.87 38797.87 310
UWE-MVS87.57 36586.72 36790.13 37695.21 37373.56 40691.94 35583.78 40588.73 32693.00 35192.87 36555.22 40699.25 26681.74 38297.96 30697.59 328
Syy-MVS92.09 31891.80 31492.93 34695.19 37482.65 36892.46 34291.35 37390.67 29891.76 37187.61 40085.64 31298.50 35494.73 19396.84 34697.65 323
myMVS_eth3d87.16 36985.61 37291.82 36595.19 37479.32 38792.46 34291.35 37390.67 29891.76 37187.61 40041.96 41298.50 35482.66 38096.84 34697.65 323
IB-MVS85.98 2088.63 35686.95 36693.68 32595.12 37684.82 35290.85 37590.17 38787.55 33988.48 39491.34 38558.01 39899.59 15987.24 35193.80 38896.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 28393.57 27994.29 31395.05 37787.32 31696.05 18592.98 35697.54 7094.25 31498.72 8275.79 36699.24 27095.92 11995.81 36896.32 369
tpm288.47 35787.69 36090.79 37194.98 37877.34 39695.09 24991.83 36977.51 39889.40 38996.41 28867.83 39198.73 32983.58 37992.60 39296.29 370
WB-MVSnew91.50 32791.29 32092.14 36294.85 37980.32 38493.29 32288.77 39388.57 32894.03 32292.21 37592.56 21898.28 37080.21 38897.08 34097.81 315
Patchmtry95.03 23594.59 25096.33 21594.83 38090.82 24796.38 16097.20 28396.59 10497.49 17798.57 9777.67 35399.38 22892.95 25199.62 9298.80 213
MVS90.02 33989.20 34692.47 35794.71 38186.90 32395.86 20296.74 30364.72 40490.62 37692.77 36792.54 22198.39 36279.30 39095.56 37592.12 397
CostFormer89.75 34589.25 34391.26 36994.69 38278.00 39395.32 23891.98 36881.50 38390.55 37896.96 25671.06 38498.89 31588.59 33192.63 39196.87 352
PatchmatchNetpermissive91.98 32191.87 31192.30 36094.60 38379.71 38695.12 24793.59 35189.52 31493.61 33597.02 25177.94 35199.18 27790.84 28894.57 38598.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 36187.33 36290.05 37794.48 38476.28 40194.47 27594.35 34273.84 40389.26 39095.61 32173.64 37498.30 36984.13 37386.20 40295.57 381
MDTV_nov1_ep1391.28 32194.31 38573.51 40794.80 26393.16 35486.75 34993.45 34197.40 22276.37 36298.55 35088.85 32696.43 357
cl2293.25 29992.84 29594.46 30694.30 38686.00 33491.09 37396.64 30790.74 29595.79 27696.31 29478.24 35098.77 32594.15 21598.34 29198.62 235
cascas91.89 32291.35 31993.51 32894.27 38785.60 33788.86 39398.61 17579.32 39292.16 36791.44 38489.22 27998.12 37590.80 29097.47 33396.82 357
test-LLR89.97 34289.90 34090.16 37494.24 38874.98 40389.89 38589.06 39192.02 27589.97 38590.77 39073.92 37298.57 34791.88 26697.36 33596.92 349
test-mter87.92 36287.17 36390.16 37494.24 38874.98 40389.89 38589.06 39186.44 35189.97 38590.77 39054.96 40998.57 34791.88 26697.36 33596.92 349
pmmvs390.00 34088.90 35093.32 33094.20 39085.34 34091.25 36892.56 36478.59 39493.82 32695.17 32867.36 39298.69 33589.08 32498.03 30495.92 373
tpmrst90.31 33790.61 33589.41 37894.06 39172.37 40995.06 25393.69 34688.01 33592.32 36696.86 26177.45 35598.82 32091.04 28287.01 40197.04 344
mvsany_test193.47 29393.03 28994.79 29194.05 39292.12 22090.82 37690.01 38985.02 36797.26 18898.28 13393.57 19397.03 38892.51 25695.75 37395.23 384
test0.0.03 190.11 33889.21 34592.83 34893.89 39386.87 32491.74 35888.74 39492.02 27594.71 30591.14 38773.92 37294.48 40183.75 37892.94 38997.16 341
JIA-IIPM91.79 32390.69 33395.11 27193.80 39490.98 24494.16 28891.78 37096.38 11490.30 38299.30 2872.02 38198.90 31488.28 33590.17 39695.45 382
miper_enhance_ethall93.14 30192.78 29894.20 31593.65 39585.29 34289.97 38497.85 25485.05 36596.15 26494.56 34085.74 31099.14 28493.74 23098.34 29198.17 283
TESTMET0.1,187.20 36886.57 36889.07 37993.62 39672.84 40889.89 38587.01 39985.46 36189.12 39190.20 39356.00 40497.72 38290.91 28696.92 34296.64 362
CMPMVSbinary73.10 2392.74 30691.39 31896.77 19193.57 39794.67 13494.21 28697.67 26580.36 38993.61 33596.60 27882.85 33197.35 38584.86 37098.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN89.52 34989.78 34188.73 38093.14 39877.61 39483.26 40092.02 36794.82 19193.71 33193.11 35775.31 36796.81 39285.81 35896.81 34991.77 399
PMMVS92.39 31091.08 32596.30 21893.12 39992.81 19890.58 37995.96 31579.17 39391.85 37092.27 37490.29 26498.66 34089.85 31396.68 35497.43 334
EMVS89.06 35289.22 34488.61 38193.00 40077.34 39682.91 40190.92 37894.64 19792.63 36291.81 38076.30 36397.02 38983.83 37696.90 34491.48 400
dp88.08 36088.05 35688.16 38592.85 40168.81 41194.17 28792.88 35785.47 36091.38 37496.14 30268.87 39098.81 32286.88 35383.80 40496.87 352
gg-mvs-nofinetune88.28 35986.96 36592.23 36192.84 40284.44 35598.19 5274.60 40999.08 1087.01 40099.47 1156.93 40098.23 37278.91 39195.61 37494.01 391
tpmvs90.79 33590.87 32990.57 37392.75 40376.30 40095.79 20693.64 35091.04 29391.91 36996.26 29577.19 35998.86 31989.38 32089.85 39796.56 365
EPMVS89.26 35088.55 35291.39 36892.36 40479.11 38995.65 21579.86 40788.60 32793.12 34996.53 28270.73 38698.10 37690.75 29289.32 39896.98 347
gm-plane-assit91.79 40571.40 41081.67 38190.11 39598.99 30684.86 370
GG-mvs-BLEND90.60 37291.00 40684.21 35998.23 4672.63 41282.76 40384.11 40456.14 40396.79 39372.20 40292.09 39390.78 401
DeepMVS_CXcopyleft77.17 38890.94 40785.28 34374.08 41152.51 40580.87 40688.03 39975.25 36870.63 40859.23 40884.94 40375.62 403
EPNet_dtu91.39 32990.75 33293.31 33190.48 40882.61 36994.80 26392.88 35793.39 23581.74 40594.90 33681.36 33799.11 29188.28 33598.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
miper_refine_blended88.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
EPNet93.72 28492.62 30397.03 17387.61 41192.25 21396.27 16791.28 37596.74 9987.65 39797.39 22685.00 31699.64 14092.14 26199.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 37366.13 37669.11 38962.68 41225.73 41549.76 40396.04 31214.32 40764.27 40891.69 38273.45 37788.05 40676.06 39766.94 40693.54 392
tmp_tt57.23 37462.50 37741.44 39034.77 41349.21 41483.93 39860.22 41415.31 40671.11 40779.37 40570.09 38844.86 40964.76 40582.93 40530.25 405
test12312.59 37615.49 3793.87 3916.07 4142.55 41690.75 3772.59 4162.52 4095.20 41113.02 4084.96 4141.85 4115.20 4099.09 4087.23 406
testmvs12.33 37715.23 3803.64 3925.77 4152.23 41788.99 3923.62 4152.30 4105.29 41013.09 4074.52 4151.95 4105.16 4108.32 4096.75 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.22 37532.30 3780.00 3930.00 4160.00 4180.00 40498.10 2390.00 4110.00 41295.06 33197.54 390.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.98 37810.65 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41195.82 1260.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.91 37910.55 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.94 3330.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.32 38785.41 364
PC_three_145287.24 34198.37 10197.44 21997.00 6596.78 39492.01 26299.25 20399.21 140
test_241102_TWO98.83 12996.11 12898.62 7698.24 14096.92 7399.72 8795.44 14999.49 14299.49 70
test_0728_THIRD96.62 10198.40 9898.28 13397.10 5699.71 10295.70 12899.62 9299.58 39
GSMVS98.06 293
sam_mvs177.80 35298.06 293
sam_mvs77.38 356
MTGPAbinary98.73 151
test_post194.98 25810.37 41076.21 36499.04 30089.47 318
test_post10.87 40976.83 36099.07 297
patchmatchnet-post96.84 26377.36 35799.42 210
MTMP96.55 15174.60 409
test9_res91.29 27698.89 24799.00 180
agg_prior290.34 30798.90 24499.10 168
test_prior495.38 10593.61 313
test_prior293.33 32194.21 20994.02 32396.25 29693.64 19291.90 26598.96 237
旧先验293.35 32077.95 39795.77 28098.67 33990.74 295
新几何293.43 316
无先验93.20 32497.91 25080.78 38699.40 22187.71 34097.94 305
原ACMM292.82 330
testdata299.46 19987.84 338
segment_acmp95.34 145
testdata192.77 33193.78 223
plane_prior598.75 14899.46 19992.59 25499.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17396.16 262
plane_prior296.50 15396.36 116
plane_prior94.29 15195.42 22794.31 20898.93 242
n20.00 417
nn0.00 417
door-mid98.17 229
test1198.08 241
door97.81 259
HQP5-MVS92.47 208
BP-MVS90.51 302
HQP4-MVS92.87 35399.23 27299.06 173
HQP3-MVS98.43 19398.74 262
HQP2-MVS90.33 260
MDTV_nov1_ep13_2view57.28 41394.89 26080.59 38794.02 32378.66 34985.50 36397.82 313
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 171