This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 4597.84 1092.68 23898.71 8978.11 36099.70 2797.71 8798.18 197.36 6599.76 190.37 5299.94 3599.27 1699.54 5499.99 1
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 26100.00 198.99 2599.90 799.96 10
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 2099.98 999.70 599.81 2399.99 1
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2599.98 999.70 599.82 1999.99 1
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 23
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8394.50 3898.64 3099.54 393.32 2099.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 17100.00 191.79 17399.80 2699.94 18
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6199.16 9897.65 10489.55 16699.22 1299.52 890.34 5399.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 2099.98 9
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2399.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7999.70 2798.13 4294.61 3697.78 5899.46 1089.85 5999.81 7997.97 5499.91 699.88 26
NCCC98.12 598.11 398.13 2599.76 694.46 5399.81 1297.88 5896.54 1398.84 2499.46 1092.55 2899.98 998.25 5099.93 199.94 18
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 18
9.1496.87 2799.34 5099.50 5197.49 14089.41 17198.59 3299.43 1689.78 6099.69 9498.69 3099.62 46
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16298.70 2799.42 1790.42 5099.72 9298.47 4199.65 4099.77 46
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5498.85 13797.64 10596.51 1695.88 10499.39 1887.35 10199.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
reproduce-ours96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
reproduce_model96.57 4396.75 3496.02 12698.93 8088.46 20098.56 17697.34 16393.18 7296.96 7699.35 2188.69 7599.80 8198.53 3799.21 7799.79 38
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 10199.33 2292.62 27100.00 198.99 2599.93 199.98 6
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9297.75 7895.66 2498.21 4299.29 2391.10 3699.99 597.68 6099.87 999.68 60
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 9099.86 598.04 4896.70 1099.58 299.26 2490.90 4199.94 3599.57 1298.66 10399.40 93
SteuartSystems-ACMMP97.25 1997.34 2197.01 6697.38 13291.46 11399.75 2297.66 9794.14 4898.13 4499.26 2492.16 3299.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
MP-MVS-pluss95.80 7095.30 7997.29 5598.95 7792.66 9398.59 17397.14 18188.95 18293.12 15899.25 2685.62 13799.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CSCG94.87 10094.71 9395.36 15199.54 3686.49 24199.34 7998.15 4082.71 32090.15 20699.25 2689.48 6499.86 6394.97 12698.82 9599.72 53
MTAPA96.09 5695.80 6696.96 7399.29 5591.19 11797.23 27697.45 14692.58 8594.39 13699.24 2886.43 12599.99 596.22 9299.40 6499.71 54
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9299.85 898.05 4696.78 899.60 199.23 2990.42 5099.92 4199.55 1398.50 10899.55 77
CDPH-MVS96.56 4496.18 5097.70 3999.59 2893.92 6599.13 10997.44 15089.02 17997.90 5599.22 3088.90 7299.49 11594.63 13399.79 2799.68 60
API-MVS94.78 10394.18 10696.59 9499.21 6190.06 15598.80 14397.78 7583.59 30293.85 14799.21 3183.79 16399.97 2192.37 16899.00 8499.74 50
PHI-MVS96.65 4096.46 4297.21 6099.34 5091.77 10699.70 2798.05 4686.48 25698.05 4999.20 3289.33 6599.96 2898.38 4399.62 4699.90 22
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
MSP-MVS97.77 1098.18 296.53 9999.54 3690.14 14899.41 6997.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_899.55 3593.07 8399.37 7597.64 10590.18 14498.36 3999.19 3390.94 3999.64 103
TEST999.57 3393.17 8099.38 7297.66 9789.57 16498.39 3799.18 3690.88 4299.66 97
train_agg97.20 2397.08 2397.57 4599.57 3393.17 8099.38 7297.66 9790.18 14498.39 3799.18 3690.94 3999.66 9798.58 3699.85 1399.88 26
MAR-MVS94.43 11794.09 10895.45 14899.10 6887.47 22198.39 20197.79 7388.37 20194.02 14499.17 3878.64 23599.91 4692.48 16798.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a95.97 6296.19 4895.31 15596.51 17389.01 18099.81 1298.39 2695.46 2899.19 1399.16 3981.44 21099.91 4698.83 2896.97 14497.01 228
ZD-MVS99.67 1093.28 7797.61 11287.78 22297.41 6399.16 3990.15 5699.56 10898.35 4599.70 37
CP-MVS96.22 5396.15 5696.42 10499.67 1089.62 16699.70 2797.61 11290.07 15096.00 10099.16 3987.43 9599.92 4196.03 9999.72 3299.70 55
fmvsm_s_conf0.5_n96.19 5496.49 4095.30 15697.37 13389.16 17299.86 598.47 2495.68 2398.87 2299.15 4282.44 19599.92 4199.14 2197.43 13596.83 232
旧先验198.97 7392.90 9197.74 7999.15 4291.05 3899.33 6599.60 73
testdata95.26 15898.20 10187.28 22897.60 11485.21 27398.48 3599.15 4288.15 8498.72 16990.29 19099.45 5999.78 41
ACMMP_NAP96.59 4196.18 5097.81 3698.82 8593.55 7198.88 13697.59 11890.66 12797.98 5399.14 4586.59 119100.00 196.47 8999.46 5799.89 25
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 12197.11 18595.83 2098.97 1999.14 4582.48 19199.60 10698.60 3399.08 7898.00 199
test_fmvsm_n_192097.08 2797.55 1495.67 14197.94 11089.61 16799.93 198.48 2397.08 599.08 1499.13 4788.17 8299.93 3999.11 2399.06 8097.47 212
DP-MVS Recon95.85 6895.15 8497.95 3299.87 294.38 5799.60 3997.48 14186.58 25194.42 13499.13 4787.36 10099.98 993.64 14998.33 11499.48 86
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
SR-MVS96.13 5596.16 5596.07 12399.42 4789.04 17698.59 17397.33 16490.44 13896.84 8099.12 4986.75 11399.41 12997.47 6399.44 6099.76 48
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13393.59 6498.01 5299.12 4990.80 4499.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PAPR96.35 4895.82 6397.94 3399.63 1894.19 6299.42 6897.55 12592.43 8893.82 14999.12 4987.30 10299.91 4694.02 14199.06 8099.74 50
xiu_mvs_v2_base96.66 3796.17 5398.11 2897.11 15096.96 699.01 12497.04 19295.51 2798.86 2399.11 5382.19 19999.36 13398.59 3598.14 11898.00 199
region2R96.30 5196.17 5396.70 8799.70 790.31 14299.46 5997.66 9790.55 13497.07 7399.07 5486.85 11199.97 2195.43 11299.74 2999.81 35
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 7099.16 9897.44 15090.08 14998.59 3299.07 5489.06 6799.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
新几何197.40 5198.92 8192.51 9897.77 7785.52 26996.69 8999.06 5688.08 8699.89 5384.88 25399.62 4699.79 38
SPE-MVS-test95.98 6196.34 4694.90 17098.06 10787.66 21599.69 3496.10 25593.66 6198.35 4099.05 5786.28 12797.66 23296.96 7698.90 9299.37 96
HFP-MVS96.42 4796.26 4796.90 7599.69 890.96 12899.47 5597.81 6990.54 13596.88 7799.05 5787.57 9299.96 2895.65 10499.72 3299.78 41
fmvsm_s_conf0.1_n95.56 8095.68 7095.20 15994.35 26389.10 17499.50 5197.67 9694.76 3598.68 2999.03 5981.13 21399.86 6398.63 3297.36 13796.63 235
ACMMPR96.28 5296.14 5796.73 8499.68 990.47 14099.47 5597.80 7190.54 13596.83 8299.03 5986.51 12399.95 3295.65 10499.72 3299.75 49
test22298.32 9691.21 11698.08 23297.58 12083.74 29895.87 10599.02 6186.74 11499.64 4299.81 35
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 8097.38 15793.73 6098.83 2599.02 6190.87 4399.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n_a95.16 9095.15 8495.18 16092.06 31588.94 18499.29 8297.53 12994.46 3998.98 1898.99 6379.99 21999.85 6798.24 5196.86 14796.73 233
APD-MVS_3200maxsize95.64 7995.65 7395.62 14499.24 5887.80 21198.42 19297.22 17288.93 18496.64 9298.98 6485.49 14199.36 13396.68 8299.27 7099.70 55
SR-MVS-dyc-post95.75 7495.86 6295.41 15099.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6586.73 11599.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6999.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6585.24 14796.62 8399.31 6799.60 73
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11699.96 2899.72 398.92 9099.69 58
test_prior299.57 4291.43 11298.12 4698.97 6590.43 4998.33 4699.81 23
原ACMM196.18 11799.03 7190.08 15197.63 10988.98 18097.00 7598.97 6588.14 8599.71 9388.23 21599.62 4698.76 158
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13699.90 5099.72 398.80 9699.85 30
XVS96.47 4696.37 4496.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7898.96 7087.37 9799.87 5895.65 10499.43 6199.78 41
CPTT-MVS94.60 11194.43 9995.09 16399.66 1286.85 23699.44 6297.47 14383.22 30794.34 13898.96 7082.50 18999.55 10994.81 12899.50 5598.88 143
MP-MVScopyleft96.00 5995.82 6396.54 9899.47 4690.13 15099.36 7697.41 15490.64 13095.49 11698.95 7385.51 14099.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS95.85 6895.65 7396.45 10299.50 4289.77 16398.22 21598.90 1389.19 17496.74 8798.95 7385.91 13599.92 4193.94 14299.46 5799.66 64
mPP-MVS95.90 6795.75 6896.38 10799.58 3089.41 17099.26 8797.41 15490.66 12794.82 12698.95 7386.15 13199.98 995.24 11999.64 4299.74 50
ZNCC-MVS96.09 5695.81 6596.95 7499.42 4791.19 11799.55 4497.53 12989.72 15795.86 10698.94 7686.59 11999.97 2195.13 12099.56 5299.68 60
test_fmvsmconf_n96.78 3596.84 2996.61 9295.99 20090.25 14399.90 398.13 4296.68 1198.42 3698.92 7785.34 14699.88 5499.12 2299.08 7899.70 55
patch_mono-297.10 2697.97 894.49 18599.21 6183.73 30199.62 3898.25 3195.28 3099.38 698.91 7892.28 3199.94 3599.61 1099.22 7499.78 41
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18899.93 3998.71 2998.80 9699.63 70
PAPM_NR95.43 8295.05 8996.57 9799.42 4790.14 14898.58 17597.51 13590.65 12992.44 16798.90 7987.77 9199.90 5090.88 18299.32 6699.68 60
test_fmvsmvis_n_192095.47 8195.40 7895.70 13994.33 26490.22 14699.70 2796.98 19996.80 792.75 16298.89 8182.46 19499.92 4198.36 4498.33 11496.97 229
CS-MVS95.75 7496.19 4894.40 18997.88 11286.22 25199.66 3596.12 25492.69 8498.07 4898.89 8187.09 10597.59 23896.71 8098.62 10499.39 95
EI-MVSNet-Vis-set95.76 7395.63 7596.17 11999.14 6490.33 14198.49 18597.82 6691.92 10094.75 12898.88 8387.06 10799.48 11995.40 11397.17 14298.70 161
CNLPA93.64 14092.74 14996.36 10998.96 7690.01 15899.19 9295.89 28286.22 25989.40 21598.85 8480.66 21799.84 6988.57 21196.92 14699.24 109
xiu_mvs_v1_base_debu94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base_debi94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
cdsmvs_eth3d_5k22.52 38930.03 3920.00 4080.00 4310.00 4330.00 41997.17 1790.00 4260.00 42798.77 8874.35 2590.00 4270.00 4260.00 4250.00 423
EI-MVSNet-UG-set95.43 8295.29 8095.86 13499.07 7089.87 16098.43 19197.80 7191.78 10294.11 14198.77 8886.25 12999.48 11994.95 12796.45 15398.22 191
lupinMVS96.32 5095.94 5997.44 4795.05 24394.87 3999.86 596.50 22793.82 5898.04 5098.77 8885.52 13898.09 20196.98 7598.97 8699.37 96
LS3D90.19 21888.72 22994.59 18498.97 7386.33 24896.90 28896.60 21874.96 37684.06 26298.74 9175.78 24899.83 7374.93 33697.57 12997.62 209
MVS_111021_HR96.69 3696.69 3696.72 8698.58 9291.00 12799.14 10699.45 193.86 5595.15 12298.73 9288.48 7799.76 8997.23 7099.56 5299.40 93
OMC-MVS93.90 13093.62 12794.73 17898.63 9187.00 23498.04 23496.56 22392.19 9592.46 16698.73 9279.49 22699.14 14892.16 17094.34 18298.03 198
GST-MVS95.97 6295.66 7196.90 7599.49 4591.22 11599.45 6197.48 14189.69 15895.89 10398.72 9486.37 12699.95 3294.62 13499.22 7499.52 80
PAPM96.35 4895.94 5997.58 4394.10 27195.25 2698.93 13198.17 3694.26 4393.94 14598.72 9489.68 6297.88 21496.36 9099.29 6999.62 72
ACMMPcopyleft94.67 10994.30 10095.79 13699.25 5788.13 20598.41 19498.67 2190.38 14091.43 18498.72 9482.22 19899.95 3293.83 14695.76 16799.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test194.57 11395.09 8892.98 22895.84 20582.07 32398.76 14995.24 32292.87 8296.45 9398.71 9784.81 15399.15 14497.68 6095.49 17297.73 204
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11599.06 1094.45 4196.42 9498.70 9888.81 7399.74 9195.35 11499.86 1299.97 7
MVS_111021_LR95.78 7195.94 5995.28 15798.19 10387.69 21298.80 14399.26 793.39 6895.04 12498.69 9984.09 16099.76 8996.96 7699.06 8098.38 178
test_fmvsmconf0.1_n95.94 6595.79 6796.40 10692.42 30989.92 15999.79 1796.85 20496.53 1597.22 6898.67 10082.71 18799.84 6998.92 2798.98 8599.43 92
AdaColmapbinary93.82 13393.06 14196.10 12299.88 189.07 17598.33 20697.55 12586.81 24790.39 20398.65 10175.09 25199.98 993.32 15797.53 13299.26 108
EIA-MVS95.11 9195.27 8194.64 18296.34 18286.51 24099.59 4096.62 21692.51 8694.08 14298.64 10286.05 13298.24 19395.07 12298.50 10899.18 114
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7498.52 17997.50 13894.46 3998.99 1798.64 10291.58 3399.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_295.67 7896.18 5094.12 20198.82 8584.22 29497.37 26995.45 30990.70 12695.77 10998.63 10490.47 4898.68 17199.20 2099.22 7499.45 89
TSAR-MVS + GP.96.95 2996.91 2697.07 6398.88 8391.62 10999.58 4196.54 22595.09 3296.84 8098.63 10491.16 3499.77 8899.04 2496.42 15499.81 35
alignmvs95.77 7295.00 9098.06 2997.35 13495.68 2099.71 2697.50 13891.50 10996.16 9998.61 10686.28 12799.00 15496.19 9391.74 21799.51 82
MVS93.92 12892.28 15898.83 795.69 21096.82 896.22 31498.17 3684.89 28284.34 25998.61 10679.32 22799.83 7393.88 14499.43 6199.86 29
GDP-MVS96.05 5895.63 7597.31 5495.37 22394.65 5099.36 7696.42 23292.14 9897.07 7398.53 10893.33 1998.50 17791.76 17496.66 15198.78 155
TAPA-MVS87.50 990.35 21389.05 22294.25 19698.48 9585.17 28098.42 19296.58 22282.44 32787.24 23398.53 10882.77 18398.84 16059.09 39897.88 12298.72 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSFormer94.71 10894.08 10996.61 9295.05 24394.87 3997.77 24996.17 25186.84 24598.04 5098.52 11085.52 13895.99 31889.83 19398.97 8698.96 133
jason95.40 8594.86 9297.03 6592.91 30394.23 6099.70 2796.30 23993.56 6596.73 8898.52 11081.46 20997.91 21196.08 9898.47 11198.96 133
jason: jason.
BP-MVS196.59 4196.36 4597.29 5595.05 24394.72 4799.44 6297.45 14692.71 8396.41 9598.50 11294.11 1698.50 17795.61 10997.97 12098.66 166
1112_ss92.71 16291.55 17696.20 11695.56 21491.12 12098.48 18794.69 34088.29 20686.89 23898.50 11287.02 10898.66 17284.75 25489.77 24498.81 151
ab-mvs-re8.21 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.50 1120.00 4310.00 4270.00 4260.00 4250.00 423
sasdasda95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
test_fmvsmconf0.01_n94.14 12293.51 13096.04 12486.79 38189.19 17199.28 8595.94 26995.70 2195.50 11598.49 11573.27 26999.79 8598.28 4998.32 11699.15 116
canonicalmvs95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
HPM-MVScopyleft95.41 8495.22 8295.99 12999.29 5589.14 17399.17 9797.09 18987.28 23695.40 11798.48 11884.93 15099.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CANet_DTU94.31 11993.35 13497.20 6197.03 15594.71 4898.62 16595.54 30495.61 2597.21 6998.47 11971.88 28299.84 6988.38 21397.46 13497.04 226
HPM-MVS_fast94.89 9694.62 9495.70 13999.11 6688.44 20199.14 10697.11 18585.82 26495.69 11298.47 11983.46 16899.32 13893.16 15999.63 4599.35 99
MGCFI-Net94.89 9693.84 12298.06 2997.49 12995.55 2198.64 16296.10 25591.60 10795.75 11098.46 12179.31 22898.98 15695.95 10191.24 23399.65 67
WTY-MVS95.97 6295.11 8798.54 1397.62 11996.65 999.44 6298.74 1592.25 9495.21 12098.46 12186.56 12199.46 12195.00 12592.69 19899.50 84
EC-MVSNet95.09 9295.17 8394.84 17395.42 21988.17 20399.48 5395.92 27491.47 11097.34 6698.36 12382.77 18397.41 24997.24 6998.58 10598.94 138
DeepC-MVS91.02 494.56 11493.92 11896.46 10197.16 14690.76 13298.39 20197.11 18593.92 5188.66 22098.33 12478.14 23999.85 6795.02 12398.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS92.23 17690.84 19196.42 10498.24 10091.08 12498.24 21496.22 24583.39 30594.74 12998.31 12561.12 35198.85 15994.45 13692.82 19599.32 102
ETV-MVS96.00 5996.00 5896.00 12896.56 16991.05 12599.63 3796.61 21793.26 7197.39 6498.30 12686.62 11898.13 19898.07 5397.57 12998.82 150
ET-MVSNet_ETH3D92.56 16891.45 17895.88 13396.39 18094.13 6399.46 5996.97 20092.18 9666.94 39298.29 12794.65 1494.28 36294.34 13783.82 28099.24 109
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 12198.24 12888.17 8299.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet96.82 3396.68 3797.25 5998.65 9093.10 8299.48 5398.76 1496.54 1397.84 5698.22 12987.49 9499.66 9795.35 11497.78 12699.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t94.06 12393.05 14297.06 6499.08 6992.26 10198.97 12997.01 19782.58 32292.57 16598.22 12980.68 21699.30 13989.34 20399.02 8399.63 70
PLCcopyleft91.07 394.23 12194.01 11094.87 17199.17 6387.49 22099.25 8896.55 22488.43 19991.26 18898.21 13185.92 13399.86 6389.77 19797.57 12997.24 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VDD-MVS91.24 19790.18 20394.45 18897.08 15285.84 26798.40 19796.10 25586.99 23993.36 15598.16 13254.27 37699.20 14196.59 8690.63 23998.31 185
PMMVS93.62 14193.90 12092.79 23396.79 16481.40 32998.85 13796.81 20591.25 11796.82 8398.15 13377.02 24598.13 19893.15 16096.30 15898.83 149
test_vis1_n_192093.08 15893.42 13292.04 25196.31 18379.36 34799.83 1096.06 26096.72 998.53 3498.10 13458.57 35899.91 4697.86 5798.79 9996.85 231
XVG-OURS90.83 20490.49 19991.86 25395.23 22681.25 33395.79 33095.92 27488.96 18190.02 20898.03 13571.60 28699.35 13691.06 17987.78 25094.98 257
XVG-OURS-SEG-HR90.95 20290.66 19791.83 25495.18 23281.14 33695.92 32295.92 27488.40 20090.33 20497.85 13670.66 29299.38 13192.83 16488.83 24694.98 257
sss94.85 10193.94 11797.58 4396.43 17694.09 6498.93 13199.16 889.50 16795.27 11997.85 13681.50 20799.65 10192.79 16594.02 18498.99 130
diffmvspermissive94.59 11294.19 10495.81 13595.54 21590.69 13498.70 15495.68 29691.61 10595.96 10197.81 13880.11 21898.06 20396.52 8895.76 16798.67 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet91.25 19689.99 20595.03 16796.75 16588.55 19798.65 16094.95 33087.74 22587.74 22797.80 13968.27 30798.14 19780.53 30097.49 13398.41 175
F-COLMAP92.07 18191.75 17393.02 22798.16 10482.89 31398.79 14795.97 26486.54 25387.92 22597.80 13978.69 23499.65 10185.97 23995.93 16696.53 241
test_cas_vis1_n_192093.86 13293.74 12594.22 19795.39 22286.08 25799.73 2396.07 25996.38 1797.19 7197.78 14165.46 33399.86 6396.71 8098.92 9096.73 233
PVSNet_Blended95.94 6595.66 7196.75 8298.77 8791.61 11099.88 498.04 4893.64 6394.21 13997.76 14283.50 16699.87 5897.41 6497.75 12798.79 153
VDDNet90.08 22288.54 23694.69 17994.41 26287.68 21398.21 21796.40 23376.21 37093.33 15697.75 14354.93 37498.77 16394.71 13290.96 23497.61 210
test_yl95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
DCV-MVSNet95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
131493.44 14391.98 16697.84 3495.24 22594.38 5796.22 31497.92 5690.18 14482.28 28797.71 14677.63 24299.80 8191.94 17298.67 10299.34 101
baseline93.91 12993.30 13695.72 13895.10 24090.07 15297.48 26495.91 27991.03 12093.54 15397.68 14779.58 22298.02 20794.27 13895.14 17599.08 125
PVSNet87.13 1293.69 13692.83 14896.28 11297.99 10990.22 14699.38 7298.93 1291.42 11393.66 15197.68 14771.29 28999.64 10387.94 21997.20 13998.98 131
casdiffmvspermissive93.98 12793.43 13195.61 14595.07 24289.86 16198.80 14395.84 28790.98 12192.74 16397.66 14979.71 22198.10 20094.72 13195.37 17398.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)93.26 15393.00 14594.06 20496.14 19486.71 23998.68 15696.70 21288.30 20589.71 21497.64 15085.43 14496.39 29388.06 21896.32 15699.08 125
3Dnovator+87.72 893.43 14491.84 16998.17 2395.73 20995.08 3598.92 13397.04 19291.42 11381.48 30497.60 15174.60 25499.79 8590.84 18398.97 8699.64 68
thisisatest051594.75 10494.19 10496.43 10396.13 19792.64 9699.47 5597.60 11487.55 23193.17 15797.59 15294.71 1298.42 18488.28 21493.20 19198.24 190
3Dnovator87.35 1193.17 15691.77 17297.37 5395.41 22093.07 8398.82 14097.85 6191.53 10882.56 28097.58 15371.97 28199.82 7691.01 18099.23 7399.22 112
test_fmvs192.35 17192.94 14690.57 28397.19 14375.43 37299.55 4494.97 32995.20 3196.82 8397.57 15459.59 35699.84 6997.30 6798.29 11796.46 243
CHOSEN 280x42096.80 3496.85 2896.66 9197.85 11394.42 5694.76 34298.36 2892.50 8795.62 11497.52 15597.92 197.38 25098.31 4898.80 9698.20 193
IS-MVSNet93.00 15992.51 15594.49 18596.14 19487.36 22598.31 20995.70 29488.58 19290.17 20597.50 15683.02 17997.22 25587.06 22496.07 16498.90 142
OpenMVScopyleft85.28 1490.75 20688.84 22696.48 10093.58 29093.51 7398.80 14397.41 15482.59 32178.62 33497.49 15768.00 31199.82 7684.52 25998.55 10796.11 249
test_fmvs1_n91.07 19991.41 17990.06 29794.10 27174.31 37699.18 9494.84 33394.81 3396.37 9697.46 15850.86 38999.82 7697.14 7197.90 12196.04 250
PCF-MVS89.78 591.26 19489.63 21096.16 12195.44 21891.58 11295.29 33796.10 25585.07 27782.75 27497.45 15978.28 23899.78 8780.60 29995.65 17097.12 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet95.08 9394.26 10197.55 4698.07 10693.88 6698.68 15698.73 1790.33 14197.16 7297.43 16079.19 22999.53 11296.91 7891.85 21599.24 109
QAPM91.41 19089.49 21397.17 6295.66 21293.42 7598.60 17197.51 13580.92 34681.39 30597.41 16172.89 27499.87 5882.33 28498.68 10198.21 192
casdiffmvs_mvgpermissive94.00 12593.33 13596.03 12595.22 22790.90 13099.09 11395.99 26290.58 13291.55 18297.37 16279.91 22098.06 20395.01 12495.22 17499.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053094.00 12593.52 12995.43 14995.76 20890.02 15798.99 12697.60 11486.58 25191.74 17597.36 16394.78 1198.34 18686.37 23592.48 20297.94 201
test250694.80 10294.21 10396.58 9596.41 17892.18 10298.01 23598.96 1190.82 12493.46 15497.28 16485.92 13398.45 18389.82 19597.19 14099.12 120
ECVR-MVScopyleft92.29 17391.33 18095.15 16196.41 17887.84 21098.10 22894.84 33390.82 12491.42 18697.28 16465.61 33098.49 18190.33 18997.19 14099.12 120
testing22294.48 11694.00 11195.95 13197.30 13692.27 10098.82 14097.92 5689.20 17394.82 12697.26 16687.13 10497.32 25391.95 17191.56 22198.25 187
test111192.12 17891.19 18394.94 16996.15 19287.36 22598.12 22594.84 33390.85 12390.97 19197.26 16665.60 33198.37 18589.74 19897.14 14399.07 127
DP-MVS88.75 24686.56 26595.34 15398.92 8187.45 22297.64 26093.52 36570.55 38981.49 30397.25 16874.43 25799.88 5471.14 36094.09 18398.67 163
TR-MVS90.77 20589.44 21494.76 17596.31 18388.02 20897.92 23995.96 26685.52 26988.22 22497.23 16966.80 32198.09 20184.58 25792.38 20398.17 195
Vis-MVSNetpermissive92.64 16491.85 16895.03 16795.12 23688.23 20298.48 18796.81 20591.61 10592.16 17297.22 17071.58 28798.00 20985.85 24497.81 12398.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testing1195.33 8694.98 9196.37 10897.20 14192.31 9999.29 8297.68 9290.59 13194.43 13397.20 17190.79 4598.60 17495.25 11892.38 20398.18 194
gm-plane-assit94.69 25688.14 20488.22 20897.20 17198.29 18990.79 185
tttt051793.30 15093.01 14494.17 19995.57 21386.47 24298.51 18297.60 11485.99 26290.55 19897.19 17394.80 1098.31 18785.06 25091.86 21497.74 203
EPP-MVSNet93.75 13593.67 12694.01 20795.86 20485.70 26998.67 15897.66 9784.46 28791.36 18797.18 17491.16 3497.79 22092.93 16293.75 18798.53 170
Effi-MVS+93.87 13193.15 14096.02 12695.79 20690.76 13296.70 29895.78 28886.98 24295.71 11197.17 17579.58 22298.01 20894.57 13596.09 16299.31 103
CLD-MVS91.06 20090.71 19592.10 24994.05 27586.10 25699.55 4496.29 24294.16 4684.70 25497.17 17569.62 29897.82 21894.74 13086.08 26292.39 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.87 22589.38 21691.36 26594.32 26585.87 26597.61 26196.59 21985.10 27585.51 24997.10 17781.30 21296.56 28283.85 27183.03 28791.64 296
CVMVSNet90.30 21590.91 18988.46 33094.32 26573.58 38097.61 26197.59 11890.16 14788.43 22397.10 17776.83 24692.86 37382.64 28193.54 18998.93 139
UA-Net93.30 15092.62 15395.34 15396.27 18588.53 19995.88 32596.97 20090.90 12295.37 11897.07 17982.38 19699.10 15083.91 26994.86 17898.38 178
testing9994.88 9894.45 9796.17 11997.20 14191.91 10499.20 9197.66 9789.95 15293.68 15097.06 18090.28 5498.50 17793.52 15191.54 22398.12 196
RPSCF85.33 30285.55 28084.67 36394.63 25962.28 40293.73 35393.76 35974.38 37985.23 25297.06 18064.09 33798.31 18780.98 29386.08 26293.41 265
testing9194.88 9894.44 9896.21 11597.19 14391.90 10599.23 8997.66 9789.91 15393.66 15197.05 18290.21 5598.50 17793.52 15191.53 22698.25 187
EPNet_dtu92.28 17492.15 16292.70 23797.29 13784.84 28698.64 16297.82 6692.91 8093.02 16097.02 18385.48 14395.70 33372.25 35794.89 17797.55 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o92.32 17291.79 17193.91 21196.85 15986.18 25399.11 11295.74 29288.13 21084.81 25397.00 18477.26 24497.91 21189.16 20898.03 11997.64 206
thres20093.69 13692.59 15496.97 7297.76 11494.74 4699.35 7899.36 289.23 17291.21 19096.97 18583.42 16998.77 16385.08 24990.96 23497.39 214
test_vis1_n90.40 21290.27 20290.79 27891.55 32676.48 36699.12 11194.44 34594.31 4297.34 6696.95 18643.60 40099.42 12697.57 6297.60 12896.47 242
baseline294.04 12493.80 12494.74 17793.07 30290.25 14398.12 22598.16 3989.86 15486.53 24196.95 18695.56 698.05 20591.44 17694.53 17995.93 251
MSDG88.29 25586.37 26794.04 20696.90 15886.15 25596.52 30194.36 35177.89 36379.22 32996.95 18669.72 29699.59 10773.20 35192.58 20196.37 246
ETVMVS94.50 11593.90 12096.31 11197.48 13092.98 8699.07 11597.86 6088.09 21294.40 13596.90 18988.35 7997.28 25490.72 18792.25 20998.66 166
tfpn200view993.43 14492.27 15996.90 7597.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23697.12 221
thres40093.39 14692.27 15996.73 8497.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23696.61 236
Anonymous20240521188.84 24087.03 25994.27 19498.14 10584.18 29598.44 19095.58 30276.79 36889.34 21696.88 19253.42 38099.54 11187.53 22387.12 25399.09 124
baseline192.61 16691.28 18196.58 9597.05 15494.63 5197.72 25496.20 24689.82 15588.56 22196.85 19386.85 11197.82 21888.42 21280.10 30297.30 216
Syy-MVS84.10 32184.53 29982.83 37295.14 23465.71 39997.68 25796.66 21486.52 25482.63 27796.84 19468.15 30889.89 39545.62 41091.54 22392.87 267
myMVS_eth3d88.68 25089.07 22187.50 33895.14 23479.74 34597.68 25796.66 21486.52 25482.63 27796.84 19485.22 14889.89 39569.43 36691.54 22392.87 267
GeoE90.60 21189.56 21193.72 21795.10 24085.43 27399.41 6994.94 33183.96 29587.21 23496.83 19674.37 25897.05 26380.50 30193.73 18898.67 163
UBG95.73 7695.41 7796.69 8896.97 15693.23 7899.13 10997.79 7391.28 11694.38 13796.78 19792.37 3098.56 17696.17 9493.84 18698.26 186
thres100view90093.34 14992.15 16296.90 7597.62 11994.84 4199.06 11899.36 287.96 21790.47 20196.78 19783.29 17298.75 16684.11 26590.69 23697.12 221
thres600view793.18 15492.00 16596.75 8297.62 11994.92 3699.07 11599.36 287.96 21790.47 20196.78 19783.29 17298.71 17082.93 27990.47 24096.61 236
h-mvs3392.47 17091.95 16794.05 20597.13 14885.01 28398.36 20498.08 4493.85 5696.27 9796.73 20083.19 17599.43 12595.81 10268.09 37497.70 205
BH-untuned91.46 18990.84 19193.33 22296.51 17384.83 28798.84 13995.50 30686.44 25883.50 26496.70 20175.49 25097.77 22286.78 23297.81 12397.40 213
testing387.75 26288.22 24186.36 34794.66 25877.41 36399.52 5097.95 5486.05 26181.12 30696.69 20286.18 13089.31 39961.65 39290.12 24292.35 278
NP-MVS93.94 27986.22 25196.67 203
HQP-MVS91.50 18791.23 18292.29 24393.95 27686.39 24599.16 9896.37 23593.92 5187.57 22896.67 20373.34 26697.77 22293.82 14786.29 25792.72 269
HQP_MVS91.26 19490.95 18892.16 24793.84 28386.07 25999.02 12296.30 23993.38 6986.99 23596.52 20572.92 27297.75 22893.46 15486.17 26092.67 271
plane_prior496.52 205
CDS-MVSNet93.47 14293.04 14394.76 17594.75 25589.45 16998.82 14097.03 19487.91 21990.97 19196.48 20789.06 6796.36 29589.50 19992.81 19798.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS89.76 22689.15 22091.57 26290.53 33985.58 27198.11 22795.93 27292.88 8186.05 24296.47 20867.06 32097.87 21589.29 20686.08 26291.26 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND96.98 7196.53 17194.81 4487.20 39297.74 7993.91 14696.40 20996.56 296.94 26795.08 12198.95 8999.20 113
CHOSEN 1792x268894.35 11893.82 12395.95 13197.40 13188.74 19398.41 19498.27 3092.18 9691.43 18496.40 20978.88 23099.81 7993.59 15097.81 12399.30 104
tmp_tt53.66 38352.86 38556.05 40032.75 42841.97 42473.42 41476.12 42121.91 42139.68 41796.39 21142.59 40165.10 42078.00 31614.92 42161.08 413
PVSNet_Blended_VisFu94.67 10994.11 10796.34 11097.14 14791.10 12299.32 8197.43 15292.10 9991.53 18396.38 21283.29 17299.68 9593.42 15696.37 15598.25 187
dmvs_re88.69 24888.06 24490.59 28293.83 28578.68 35495.75 33196.18 25087.99 21684.48 25896.32 21367.52 31596.94 26784.98 25285.49 26696.14 248
test0.0.03 188.96 23688.61 23290.03 30191.09 33384.43 29198.97 12997.02 19690.21 14280.29 31596.31 21484.89 15191.93 38772.98 35285.70 26593.73 261
UWE-MVS93.18 15493.40 13392.50 24196.56 16983.55 30398.09 23197.84 6289.50 16791.72 17696.23 21591.08 3796.70 27686.28 23693.33 19097.26 218
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19796.77 20993.00 7698.69 2896.19 21689.75 6198.76 16598.45 4299.72 3299.51 82
hse-mvs291.67 18691.51 17792.15 24896.22 18782.61 31997.74 25397.53 12993.85 5696.27 9796.15 21783.19 17597.44 24795.81 10266.86 38196.40 245
AUN-MVS90.17 21989.50 21292.19 24696.21 18882.67 31797.76 25297.53 12988.05 21391.67 17796.15 21783.10 17797.47 24488.11 21766.91 38096.43 244
LPG-MVS_test88.86 23988.47 23790.06 29793.35 29780.95 33898.22 21595.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
LGP-MVS_train90.06 29793.35 29780.95 33895.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
WB-MVSnew88.69 24888.34 23889.77 30794.30 26985.99 26298.14 22297.31 16587.15 23887.85 22696.07 22169.91 29395.52 33772.83 35491.47 22787.80 374
TAMVS92.62 16592.09 16494.20 19894.10 27187.68 21398.41 19496.97 20087.53 23289.74 21296.04 22284.77 15596.49 28888.97 20992.31 20698.42 174
Anonymous2024052987.66 26685.58 27993.92 21097.59 12385.01 28398.13 22397.13 18366.69 40388.47 22296.01 22355.09 37299.51 11387.00 22684.12 27697.23 220
MVSMamba_PlusPlus95.73 7695.15 8497.44 4797.28 13994.35 5998.26 21296.75 21083.09 31097.84 5695.97 22489.59 6398.48 18297.86 5799.73 3199.49 85
dmvs_testset77.17 35978.99 34471.71 38887.25 37738.55 42591.44 37781.76 41685.77 26569.49 38195.94 22569.71 29784.37 40852.71 40676.82 32192.21 283
COLMAP_ROBcopyleft82.69 1884.54 31282.82 31489.70 30996.72 16678.85 35195.89 32392.83 37171.55 38677.54 34495.89 22659.40 35799.14 14867.26 37588.26 24791.11 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080586.50 28484.79 29391.63 26191.97 31681.49 32796.49 30397.38 15782.24 32982.44 28295.82 22751.22 38698.25 19284.55 25880.96 29895.13 256
PatchMatch-RL91.47 18890.54 19894.26 19598.20 10186.36 24796.94 28697.14 18187.75 22488.98 21895.75 22871.80 28499.40 13080.92 29597.39 13697.02 227
mamv491.41 19093.57 12884.91 36097.11 15058.11 40795.68 33395.93 27282.09 33289.78 21195.71 22990.09 5798.24 19397.26 6898.50 10898.38 178
Fast-Effi-MVS+91.72 18590.79 19494.49 18595.89 20287.40 22499.54 4995.70 29485.01 28089.28 21795.68 23077.75 24197.57 24283.22 27495.06 17698.51 171
ACMP87.39 1088.71 24788.24 24090.12 29693.91 28181.06 33798.50 18395.67 29789.43 17080.37 31495.55 23165.67 32897.83 21790.55 18884.51 27191.47 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
AllTest84.97 30683.12 31290.52 28696.82 16078.84 35295.89 32392.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
TestCases90.52 28696.82 16078.84 35292.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
ITE_SJBPF87.93 33292.26 31176.44 36793.47 36687.67 22979.95 32095.49 23456.50 36597.38 25075.24 33482.33 29389.98 352
RRT-MVS93.39 14692.64 15295.64 14296.11 19888.75 19297.40 26595.77 29089.46 16992.70 16495.42 23572.98 27198.81 16196.91 7896.97 14499.37 96
testgi82.29 33081.00 33386.17 34987.24 37874.84 37597.39 26691.62 38888.63 18975.85 35295.42 23546.07 39791.55 38866.87 37879.94 30392.12 287
Fast-Effi-MVS+-dtu88.84 24088.59 23489.58 31293.44 29578.18 35898.65 16094.62 34288.46 19584.12 26195.37 23768.91 30196.52 28582.06 28791.70 21994.06 260
mvsmamba94.27 12093.91 11995.35 15296.42 17788.61 19597.77 24996.38 23491.17 11994.05 14395.27 23878.41 23797.96 21097.36 6698.40 11299.48 86
SDMVSNet91.09 19889.91 20694.65 18096.80 16290.54 13997.78 24797.81 6988.34 20385.73 24595.26 23966.44 32598.26 19194.25 13986.75 25495.14 254
sd_testset89.23 23288.05 24592.74 23696.80 16285.33 27695.85 32897.03 19488.34 20385.73 24595.26 23961.12 35197.76 22785.61 24586.75 25495.14 254
ACMM86.95 1388.77 24588.22 24190.43 28893.61 28981.34 33198.50 18395.92 27487.88 22083.85 26395.20 24167.20 31897.89 21386.90 23084.90 26992.06 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HyFIR lowres test93.68 13893.29 13794.87 17197.57 12588.04 20798.18 21998.47 2487.57 23091.24 18995.05 24285.49 14197.46 24593.22 15892.82 19599.10 123
VPNet88.30 25486.57 26493.49 21891.95 31891.35 11498.18 21997.20 17788.61 19084.52 25794.89 24362.21 34696.76 27589.34 20372.26 36092.36 275
TESTMET0.1,193.82 13393.26 13895.49 14795.21 22890.25 14399.15 10397.54 12889.18 17591.79 17494.87 24489.13 6697.63 23586.21 23796.29 15998.60 168
FIs90.70 20789.87 20793.18 22492.29 31091.12 12098.17 22198.25 3189.11 17783.44 26594.82 24582.26 19796.17 31287.76 22082.76 28992.25 279
HY-MVS88.56 795.29 8794.23 10298.48 1497.72 11596.41 1394.03 35198.74 1592.42 9095.65 11394.76 24686.52 12299.49 11595.29 11792.97 19499.53 79
FC-MVSNet-test90.22 21789.40 21592.67 23991.78 32289.86 16197.89 24098.22 3488.81 18782.96 27394.66 24781.90 20395.96 32085.89 24382.52 29292.20 284
nrg03090.23 21688.87 22594.32 19391.53 32793.54 7298.79 14795.89 28288.12 21184.55 25694.61 24878.80 23396.88 26992.35 16975.21 32792.53 273
cascas90.93 20389.33 21795.76 13795.69 21093.03 8598.99 12696.59 21980.49 34886.79 24094.45 24965.23 33498.60 17493.52 15192.18 21095.66 253
UniMVSNet_ETH3D85.65 30083.79 30891.21 26690.41 34180.75 34195.36 33595.78 28878.76 35781.83 30194.33 25049.86 39196.66 27784.30 26083.52 28496.22 247
XXY-MVS87.75 26286.02 27292.95 23190.46 34089.70 16497.71 25695.90 28084.02 29280.95 30794.05 25167.51 31697.10 26185.16 24878.41 30892.04 291
test-LLR93.11 15792.68 15094.40 18994.94 24987.27 22999.15 10397.25 16790.21 14291.57 17994.04 25284.89 15197.58 23985.94 24196.13 16098.36 182
test-mter93.27 15292.89 14794.40 18994.94 24987.27 22999.15 10397.25 16788.95 18291.57 17994.04 25288.03 8797.58 23985.94 24196.13 16098.36 182
MVS_Test93.67 13992.67 15196.69 8896.72 16692.66 9397.22 27796.03 26187.69 22895.12 12394.03 25481.55 20598.28 19089.17 20796.46 15299.14 117
ACMH+83.78 1584.21 31782.56 32389.15 32193.73 28879.16 34996.43 30494.28 35281.09 34374.00 36194.03 25454.58 37597.67 23176.10 32978.81 30790.63 338
MVSTER92.71 16292.32 15793.86 21297.29 13792.95 8999.01 12496.59 21990.09 14885.51 24994.00 25694.61 1596.56 28290.77 18683.03 28792.08 289
kuosan84.40 31683.34 31087.60 33695.87 20379.21 34892.39 36796.87 20376.12 37273.79 36293.98 25781.51 20690.63 39164.13 38475.42 32592.95 266
UniMVSNet_NR-MVSNet89.60 22888.55 23592.75 23592.17 31390.07 15298.74 15098.15 4088.37 20183.21 26793.98 25782.86 18195.93 32286.95 22772.47 35792.25 279
mvs_anonymous92.50 16991.65 17495.06 16496.60 16889.64 16597.06 28296.44 23186.64 25084.14 26093.93 25982.49 19096.17 31291.47 17596.08 16399.35 99
TranMVSNet+NR-MVSNet87.75 26286.31 26892.07 25090.81 33688.56 19698.33 20697.18 17887.76 22381.87 29893.90 26072.45 27695.43 34083.13 27771.30 36792.23 281
ab-mvs91.05 20189.17 21996.69 8895.96 20191.72 10892.62 36597.23 17185.61 26889.74 21293.89 26168.55 30499.42 12691.09 17887.84 24998.92 141
WR-MVS88.54 25287.22 25792.52 24091.93 32089.50 16898.56 17697.84 6286.99 23981.87 29893.81 26274.25 26195.92 32485.29 24774.43 33692.12 287
PS-MVSNAJss89.54 23089.05 22291.00 27188.77 36184.36 29297.39 26695.97 26488.47 19381.88 29793.80 26382.48 19196.50 28689.34 20383.34 28692.15 286
jajsoiax87.35 26986.51 26689.87 30287.75 37581.74 32597.03 28395.98 26388.47 19380.15 31793.80 26361.47 34896.36 29589.44 20184.47 27391.50 305
DU-MVS88.83 24287.51 25092.79 23391.46 32890.07 15298.71 15197.62 11188.87 18683.21 26793.68 26574.63 25295.93 32286.95 22772.47 35792.36 275
NR-MVSNet87.74 26586.00 27392.96 23091.46 32890.68 13596.65 29997.42 15388.02 21573.42 36593.68 26577.31 24395.83 32884.26 26171.82 36492.36 275
IB-MVS89.43 692.12 17890.83 19395.98 13095.40 22190.78 13199.81 1298.06 4591.23 11885.63 24893.66 26790.63 4698.78 16291.22 17771.85 36398.36 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets87.09 27286.22 26989.71 30887.87 37181.39 33096.73 29795.90 28088.19 20979.99 31993.61 26859.96 35596.31 30389.40 20284.34 27491.43 309
UGNet91.91 18390.85 19095.10 16297.06 15388.69 19498.01 23598.24 3392.41 9192.39 16993.61 26860.52 35399.68 9588.14 21697.25 13896.92 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMH83.09 1784.60 31082.61 32190.57 28393.18 30082.94 31096.27 30994.92 33281.01 34472.61 37493.61 26856.54 36497.79 22074.31 34181.07 29790.99 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch86.75 27785.92 27489.22 31991.97 31682.47 32096.91 28796.14 25383.74 29877.73 34293.53 27158.19 36097.37 25276.75 32598.35 11387.84 372
Test_1112_low_res92.27 17590.97 18796.18 11795.53 21691.10 12298.47 18994.66 34188.28 20786.83 23993.50 27287.00 10998.65 17384.69 25589.74 24598.80 152
test_fmvs285.10 30485.45 28284.02 36689.85 34765.63 40098.49 18592.59 37390.45 13785.43 25193.32 27343.94 39896.59 28090.81 18484.19 27589.85 354
CMPMVSbinary58.40 2180.48 34080.11 33981.59 37885.10 38859.56 40594.14 35095.95 26868.54 39760.71 40193.31 27455.35 37197.87 21583.06 27884.85 27087.33 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC84.74 30782.93 31390.16 29591.73 32483.54 30495.00 34093.30 36788.77 18873.19 36793.30 27553.62 37997.65 23475.88 33181.54 29689.30 361
OurMVSNet-221017-084.13 32083.59 30985.77 35487.81 37270.24 39294.89 34193.65 36386.08 26076.53 34593.28 27661.41 34996.14 31480.95 29477.69 31790.93 325
PVSNet_083.28 1687.31 27085.16 28593.74 21694.78 25484.59 28998.91 13498.69 2089.81 15678.59 33693.23 27761.95 34799.34 13794.75 12955.72 40397.30 216
EU-MVSNet84.19 31884.42 30283.52 37088.64 36467.37 39896.04 32095.76 29185.29 27278.44 33793.18 27870.67 29191.48 38975.79 33275.98 32291.70 295
pmmvs487.58 26886.17 27191.80 25689.58 35188.92 18797.25 27495.28 31882.54 32380.49 31293.17 27975.62 24996.05 31782.75 28078.90 30690.42 341
GA-MVS90.10 22188.69 23094.33 19292.44 30887.97 20999.08 11496.26 24389.65 15986.92 23793.11 28068.09 30996.96 26582.54 28390.15 24198.05 197
CP-MVSNet86.54 28285.45 28289.79 30691.02 33582.78 31697.38 26897.56 12485.37 27179.53 32693.03 28171.86 28395.25 34579.92 30273.43 35191.34 313
LF4IMVS81.94 33381.17 33284.25 36587.23 37968.87 39793.35 35791.93 38383.35 30675.40 35493.00 28249.25 39496.65 27878.88 31078.11 31087.22 380
XVG-ACMP-BASELINE85.86 29384.95 28988.57 32889.90 34577.12 36494.30 34695.60 30187.40 23482.12 29092.99 28353.42 38097.66 23285.02 25183.83 27890.92 326
PS-CasMVS85.81 29584.58 29889.49 31690.77 33782.11 32297.20 27897.36 16184.83 28379.12 33192.84 28467.42 31795.16 34778.39 31573.25 35291.21 319
dongtai81.36 33680.61 33483.62 36994.25 27073.32 38195.15 33996.81 20573.56 38269.79 37992.81 28581.00 21486.80 40652.08 40770.06 37090.75 333
LTVRE_ROB81.71 1984.59 31182.72 31990.18 29492.89 30483.18 30893.15 35894.74 33778.99 35475.14 35692.69 28665.64 32997.63 23569.46 36581.82 29589.74 355
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS85.21 30383.93 30789.07 32389.89 34681.31 33297.09 28197.24 17084.45 28878.66 33392.68 28768.44 30694.87 35275.98 33070.92 36891.04 323
PVSNet_BlendedMVS93.36 14893.20 13993.84 21398.77 8791.61 11099.47 5598.04 4891.44 11194.21 13992.63 28883.50 16699.87 5897.41 6483.37 28590.05 350
DTE-MVSNet84.14 31982.80 31588.14 33188.95 36079.87 34496.81 29196.24 24483.50 30377.60 34392.52 28967.89 31394.24 36372.64 35569.05 37290.32 343
reproduce_monomvs92.11 18091.82 17092.98 22898.25 9890.55 13898.38 20397.93 5594.81 3380.46 31392.37 29096.46 397.17 25694.06 14073.61 34591.23 318
miper_enhance_ethall90.33 21489.70 20992.22 24497.12 14988.93 18698.35 20595.96 26688.60 19183.14 27192.33 29187.38 9696.18 31186.49 23477.89 31191.55 304
FA-MVS(test-final)92.22 17791.08 18595.64 14296.05 19988.98 18191.60 37597.25 16786.99 23991.84 17392.12 29283.03 17899.00 15486.91 22993.91 18598.93 139
SixPastTwentyTwo82.63 32981.58 32785.79 35388.12 36971.01 39095.17 33892.54 37484.33 28972.93 37292.08 29360.41 35495.61 33674.47 34074.15 34190.75 333
UniMVSNet (Re)89.50 23188.32 23993.03 22692.21 31290.96 12898.90 13598.39 2689.13 17683.22 26692.03 29481.69 20496.34 30186.79 23172.53 35691.81 294
pmmvs585.87 29284.40 30390.30 29388.53 36584.23 29398.60 17193.71 36181.53 33880.29 31592.02 29564.51 33695.52 33782.04 28878.34 30991.15 320
pm-mvs184.68 30982.78 31790.40 28989.58 35185.18 27997.31 27094.73 33881.93 33576.05 34892.01 29665.48 33296.11 31578.75 31269.14 37189.91 353
VPA-MVSNet89.10 23487.66 24993.45 21992.56 30691.02 12697.97 23898.32 2986.92 24486.03 24392.01 29668.84 30397.10 26190.92 18175.34 32692.23 281
FE-MVS91.38 19290.16 20495.05 16696.46 17587.53 21989.69 38997.84 6282.97 31392.18 17192.00 29884.07 16198.93 15880.71 29795.52 17198.68 162
MVP-Stereo86.61 28185.83 27588.93 32688.70 36383.85 30096.07 31994.41 35082.15 33175.64 35391.96 29967.65 31496.45 29177.20 32198.72 10086.51 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_djsdf88.26 25687.73 24789.84 30488.05 37082.21 32197.77 24996.17 25186.84 24582.41 28591.95 30072.07 28095.99 31889.83 19384.50 27291.32 314
cl2289.57 22988.79 22891.91 25297.94 11087.62 21697.98 23796.51 22685.03 27882.37 28691.79 30183.65 16496.50 28685.96 24077.89 31191.61 301
v2v48287.27 27185.76 27691.78 26089.59 35087.58 21798.56 17695.54 30484.53 28682.51 28191.78 30273.11 27096.47 28982.07 28674.14 34291.30 315
TinyColmap80.42 34177.94 34687.85 33392.09 31478.58 35593.74 35289.94 39874.99 37569.77 38091.78 30246.09 39697.58 23965.17 38377.89 31187.38 376
WBMVS91.35 19390.49 19993.94 20996.97 15693.40 7699.27 8696.71 21187.40 23483.10 27291.76 30492.38 2996.23 30988.95 21077.89 31192.17 285
ttmdpeth79.80 34577.91 34785.47 35683.34 39475.75 36995.32 33691.45 39176.84 36774.81 35791.71 30553.98 37894.13 36472.42 35661.29 39286.51 384
TransMVSNet (Re)81.97 33279.61 34289.08 32289.70 34984.01 29797.26 27391.85 38478.84 35573.07 37191.62 30667.17 31995.21 34667.50 37459.46 39788.02 371
FMVSNet388.81 24487.08 25893.99 20896.52 17294.59 5298.08 23296.20 24685.85 26382.12 29091.60 30774.05 26295.40 34279.04 30780.24 29991.99 292
eth_miper_zixun_eth87.76 26187.00 26090.06 29794.67 25782.65 31897.02 28595.37 31584.19 29081.86 30091.58 30881.47 20895.90 32683.24 27373.61 34591.61 301
miper_ehance_all_eth88.94 23788.12 24391.40 26395.32 22486.93 23597.85 24495.55 30384.19 29081.97 29591.50 30984.16 15995.91 32584.69 25577.89 31191.36 312
Effi-MVS+-dtu89.97 22490.68 19687.81 33495.15 23371.98 38797.87 24395.40 31391.92 10087.57 22891.44 31074.27 26096.84 27089.45 20093.10 19394.60 259
c3_l88.19 25787.23 25691.06 26994.97 24786.17 25497.72 25495.38 31483.43 30481.68 30291.37 31182.81 18295.72 33284.04 26873.70 34491.29 316
Baseline_NR-MVSNet85.83 29484.82 29288.87 32788.73 36283.34 30698.63 16491.66 38680.41 35182.44 28291.35 31274.63 25295.42 34184.13 26471.39 36687.84 372
DIV-MVS_self_test87.82 25986.81 26290.87 27694.87 25285.39 27597.81 24595.22 32782.92 31780.76 30991.31 31381.99 20095.81 32981.36 29175.04 32991.42 310
cl____87.82 25986.79 26390.89 27594.88 25185.43 27397.81 24595.24 32282.91 31880.71 31091.22 31481.97 20295.84 32781.34 29275.06 32891.40 311
IterMVS-LS88.34 25387.44 25191.04 27094.10 27185.85 26698.10 22895.48 30785.12 27482.03 29491.21 31581.35 21195.63 33583.86 27075.73 32491.63 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet286.90 27484.79 29393.24 22395.11 23792.54 9797.67 25995.86 28682.94 31480.55 31191.17 31662.89 34395.29 34477.23 31979.71 30591.90 293
TDRefinement78.01 35575.31 35986.10 35070.06 41573.84 37893.59 35691.58 38974.51 37873.08 37091.04 31749.63 39397.12 25874.88 33759.47 39687.33 378
ppachtmachnet_test83.63 32581.57 32889.80 30589.01 35885.09 28297.13 28094.50 34478.84 35576.14 34791.00 31869.78 29594.61 35963.40 38674.36 33789.71 357
MonoMVSNet90.69 20889.78 20893.45 21991.78 32284.97 28596.51 30294.44 34590.56 13385.96 24490.97 31978.61 23696.27 30895.35 11483.79 28199.11 122
tfpnnormal83.65 32481.35 33090.56 28591.37 33088.06 20697.29 27197.87 5978.51 35876.20 34690.91 32064.78 33596.47 28961.71 39173.50 34887.13 381
WR-MVS_H86.53 28385.49 28189.66 31191.04 33483.31 30797.53 26398.20 3584.95 28179.64 32390.90 32178.01 24095.33 34376.29 32872.81 35390.35 342
Anonymous2023121184.72 30882.65 32090.91 27397.71 11684.55 29097.28 27296.67 21366.88 40279.18 33090.87 32258.47 35996.60 27982.61 28274.20 34091.59 303
v114486.83 27685.31 28491.40 26389.75 34887.21 23398.31 20995.45 30983.22 30782.70 27690.78 32373.36 26596.36 29579.49 30474.69 33390.63 338
CostFormer92.89 16092.48 15694.12 20194.99 24685.89 26492.89 36197.00 19886.98 24295.00 12590.78 32390.05 5897.51 24392.92 16391.73 21898.96 133
v192192086.02 29084.44 30190.77 27989.32 35685.20 27898.10 22895.35 31782.19 33082.25 28890.71 32570.73 29096.30 30676.85 32474.49 33590.80 329
anonymousdsp86.69 27885.75 27789.53 31386.46 38382.94 31096.39 30595.71 29383.97 29479.63 32490.70 32668.85 30295.94 32186.01 23884.02 27789.72 356
tpmrst92.78 16192.16 16194.65 18096.27 18587.45 22291.83 37197.10 18889.10 17894.68 13090.69 32788.22 8197.73 23089.78 19691.80 21698.77 157
V4287.00 27385.68 27890.98 27289.91 34486.08 25798.32 20895.61 30083.67 30182.72 27590.67 32874.00 26396.53 28481.94 28974.28 33990.32 343
tpm291.77 18491.09 18493.82 21494.83 25385.56 27292.51 36697.16 18084.00 29393.83 14890.66 32987.54 9397.17 25687.73 22191.55 22298.72 159
EPMVS92.59 16791.59 17595.59 14697.22 14090.03 15691.78 37298.04 4890.42 13991.66 17890.65 33086.49 12497.46 24581.78 29096.31 15799.28 106
LCM-MVSNet-Re88.59 25188.61 23288.51 32995.53 21672.68 38596.85 29088.43 40588.45 19673.14 36890.63 33175.82 24794.38 36192.95 16195.71 16998.48 173
SCA90.64 21089.25 21894.83 17494.95 24888.83 18896.26 31197.21 17390.06 15190.03 20790.62 33266.61 32296.81 27283.16 27594.36 18198.84 146
Patchmatch-test86.25 28884.06 30592.82 23294.42 26182.88 31482.88 40894.23 35371.58 38579.39 32790.62 33289.00 6996.42 29263.03 38891.37 23199.16 115
v119286.32 28784.71 29591.17 26789.53 35386.40 24498.13 22395.44 31182.52 32482.42 28490.62 33271.58 28796.33 30277.23 31974.88 33090.79 330
v14419286.40 28584.89 29090.91 27389.48 35485.59 27098.21 21795.43 31282.45 32682.62 27990.58 33572.79 27596.36 29578.45 31474.04 34390.79 330
PatchmatchNetpermissive92.05 18291.04 18695.06 16496.17 19189.04 17691.26 38097.26 16689.56 16590.64 19790.56 33688.35 7997.11 25979.53 30396.07 16499.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124085.77 29784.11 30490.73 28089.26 35785.15 28197.88 24295.23 32681.89 33682.16 28990.55 33769.60 29996.31 30375.59 33374.87 33190.72 335
our_test_384.47 31482.80 31589.50 31489.01 35883.90 29997.03 28394.56 34381.33 34075.36 35590.52 33871.69 28594.54 36068.81 36976.84 32090.07 348
miper_lstm_enhance86.90 27486.20 27089.00 32494.53 26081.19 33496.74 29695.24 32282.33 32880.15 31790.51 33981.99 20094.68 35880.71 29773.58 34791.12 321
MDTV_nov1_ep1390.47 20196.14 19488.55 19791.34 37997.51 13589.58 16392.24 17090.50 34086.99 11097.61 23777.64 31892.34 205
IterMVS-SCA-FT85.73 29884.64 29789.00 32493.46 29482.90 31296.27 30994.70 33985.02 27978.62 33490.35 34166.61 32293.33 36979.38 30677.36 31990.76 332
D2MVS87.96 25887.39 25289.70 30991.84 32183.40 30598.31 20998.49 2288.04 21478.23 34090.26 34273.57 26496.79 27484.21 26283.53 28388.90 366
GBi-Net86.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
test186.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
FMVSNet183.94 32281.32 33191.80 25691.94 31988.81 18996.77 29295.25 31977.98 35978.25 33990.25 34350.37 39094.97 34973.27 35077.81 31691.62 298
v14886.38 28685.06 28690.37 29289.47 35584.10 29698.52 17995.48 30783.80 29780.93 30890.22 34674.60 25496.31 30380.92 29571.55 36590.69 336
lessismore_v085.08 35885.59 38769.28 39590.56 39667.68 38990.21 34754.21 37795.46 33973.88 34562.64 38990.50 340
dp90.16 22088.83 22794.14 20096.38 18186.42 24391.57 37697.06 19184.76 28488.81 21990.19 34884.29 15897.43 24875.05 33591.35 23298.56 169
IterMVS85.81 29584.67 29689.22 31993.51 29183.67 30296.32 30894.80 33685.09 27678.69 33290.17 34966.57 32493.17 37279.48 30577.42 31890.81 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVStest176.56 36073.43 36685.96 35286.30 38580.88 34094.26 34791.74 38561.98 40758.53 40389.96 35069.30 30091.47 39059.26 39749.56 41285.52 391
test_040278.81 35076.33 35586.26 34891.18 33278.44 35795.88 32591.34 39268.55 39670.51 37889.91 35152.65 38294.99 34847.14 40979.78 30485.34 394
v886.11 28984.45 30091.10 26889.99 34386.85 23697.24 27595.36 31681.99 33379.89 32189.86 35274.53 25696.39 29378.83 31172.32 35990.05 350
v1085.73 29884.01 30690.87 27690.03 34286.73 23897.20 27895.22 32781.25 34179.85 32289.75 35373.30 26896.28 30776.87 32372.64 35589.61 358
test20.0378.51 35377.48 34981.62 37783.07 39571.03 38996.11 31892.83 37181.66 33769.31 38289.68 35457.53 36187.29 40558.65 39968.47 37386.53 383
pmmvs679.90 34377.31 35087.67 33584.17 39178.13 35995.86 32793.68 36267.94 39972.67 37389.62 35550.98 38895.75 33074.80 33966.04 38289.14 364
tpm89.67 22788.95 22491.82 25592.54 30781.43 32892.95 36095.92 27487.81 22190.50 20089.44 35684.99 14995.65 33483.67 27282.71 29098.38 178
v7n84.42 31582.75 31889.43 31788.15 36881.86 32496.75 29595.67 29780.53 34778.38 33889.43 35769.89 29496.35 30073.83 34772.13 36190.07 348
K. test v381.04 33879.77 34184.83 36187.41 37670.23 39395.60 33493.93 35883.70 30067.51 39089.35 35855.76 36693.58 36876.67 32668.03 37590.67 337
tpmvs89.16 23387.76 24693.35 22197.19 14384.75 28890.58 38797.36 16181.99 33384.56 25589.31 35983.98 16298.17 19674.85 33890.00 24397.12 221
Anonymous2023120680.76 33979.42 34384.79 36284.78 38972.98 38296.53 30092.97 36979.56 35274.33 35888.83 36061.27 35092.15 38460.59 39475.92 32389.24 363
EG-PatchMatch MVS79.92 34277.59 34886.90 34487.06 38077.90 36296.20 31694.06 35674.61 37766.53 39488.76 36140.40 40596.20 31067.02 37683.66 28286.61 382
tpm cat188.89 23887.27 25593.76 21595.79 20685.32 27790.76 38597.09 18976.14 37185.72 24788.59 36282.92 18098.04 20676.96 32291.43 22897.90 202
mvs5depth78.17 35475.56 35885.97 35180.43 40376.44 36785.46 39789.24 40376.39 36978.17 34188.26 36351.73 38495.73 33169.31 36761.09 39385.73 389
DeepMVS_CXcopyleft76.08 38390.74 33851.65 41690.84 39486.47 25757.89 40487.98 36435.88 40892.60 37765.77 38165.06 38583.97 399
MDA-MVSNet-bldmvs77.82 35774.75 36387.03 34288.33 36678.52 35696.34 30792.85 37075.57 37348.87 41087.89 36557.32 36392.49 38160.79 39364.80 38690.08 347
UnsupCasMVSNet_eth78.90 34976.67 35485.58 35582.81 39774.94 37491.98 37096.31 23884.64 28565.84 39687.71 36651.33 38592.23 38372.89 35356.50 40289.56 359
MIMVSNet84.48 31381.83 32592.42 24291.73 32487.36 22585.52 39694.42 34981.40 33981.91 29687.58 36751.92 38392.81 37573.84 34688.15 24897.08 225
YYNet179.64 34777.04 35287.43 34087.80 37379.98 34396.23 31394.44 34573.83 38151.83 40787.53 36867.96 31292.07 38666.00 38067.75 37890.23 345
APD_test168.93 37266.98 37574.77 38680.62 40253.15 41387.97 39185.01 41153.76 40959.26 40287.52 36925.19 41289.95 39456.20 40167.33 37981.19 404
KD-MVS_2432*160082.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
miper_refine_blended82.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
MDA-MVSNet_test_wron79.65 34677.05 35187.45 33987.79 37480.13 34296.25 31294.44 34573.87 38051.80 40887.47 37268.04 31092.12 38566.02 37967.79 37790.09 346
ADS-MVSNet287.62 26786.88 26189.86 30396.21 18879.14 35087.15 39392.99 36883.01 31189.91 20987.27 37378.87 23192.80 37674.20 34392.27 20797.64 206
ADS-MVSNet88.99 23587.30 25494.07 20396.21 18887.56 21887.15 39396.78 20883.01 31189.91 20987.27 37378.87 23197.01 26474.20 34392.27 20797.64 206
DSMNet-mixed81.60 33581.43 32982.10 37584.36 39060.79 40393.63 35586.74 40879.00 35379.32 32887.15 37563.87 33989.78 39766.89 37791.92 21395.73 252
OpenMVS_ROBcopyleft73.86 2077.99 35675.06 36286.77 34583.81 39377.94 36196.38 30691.53 39067.54 40068.38 38587.13 37643.94 39896.08 31655.03 40381.83 29486.29 386
CR-MVSNet88.83 24287.38 25393.16 22593.47 29286.24 24984.97 40194.20 35488.92 18590.76 19586.88 37784.43 15694.82 35470.64 36192.17 21198.41 175
Patchmtry83.61 32681.64 32689.50 31493.36 29682.84 31584.10 40494.20 35469.47 39579.57 32586.88 37784.43 15694.78 35568.48 37174.30 33890.88 327
N_pmnet70.19 37069.87 37271.12 39088.24 36730.63 42995.85 32828.70 42870.18 39168.73 38486.55 37964.04 33893.81 36553.12 40573.46 34988.94 365
MIMVSNet175.92 36273.30 36783.81 36881.29 40075.57 37192.26 36892.05 38173.09 38467.48 39186.18 38040.87 40487.64 40455.78 40270.68 36988.21 370
FMVSNet582.29 33080.54 33587.52 33793.79 28784.01 29793.73 35392.47 37576.92 36674.27 35986.15 38163.69 34189.24 40069.07 36874.79 33289.29 362
CL-MVSNet_self_test79.89 34478.34 34584.54 36481.56 39975.01 37396.88 28995.62 29981.10 34275.86 35185.81 38268.49 30590.26 39363.21 38756.51 40188.35 369
patchmatchnet-post84.86 38388.73 7496.81 272
Anonymous2024052178.63 35276.90 35383.82 36782.82 39672.86 38395.72 33293.57 36473.55 38372.17 37584.79 38449.69 39292.51 38065.29 38274.50 33486.09 387
test_method70.10 37168.66 37474.41 38786.30 38555.84 40994.47 34389.82 39935.18 41666.15 39584.75 38530.54 41077.96 41770.40 36460.33 39589.44 360
EGC-MVSNET60.70 37755.37 38176.72 38286.35 38471.08 38889.96 38884.44 4130.38 4251.50 42684.09 38637.30 40688.10 40340.85 41473.44 35070.97 410
KD-MVS_self_test77.47 35875.88 35782.24 37381.59 39868.93 39692.83 36494.02 35777.03 36573.14 36883.39 38755.44 37090.42 39267.95 37257.53 40087.38 376
mmtdpeth83.69 32382.59 32286.99 34392.82 30576.98 36596.16 31791.63 38782.89 31992.41 16882.90 38854.95 37398.19 19596.27 9153.27 40685.81 388
PM-MVS74.88 36572.85 36880.98 37978.98 40664.75 40190.81 38485.77 40980.95 34568.23 38782.81 38929.08 41192.84 37476.54 32762.46 39085.36 393
mvsany_test375.85 36374.52 36479.83 38073.53 41260.64 40491.73 37387.87 40783.91 29670.55 37782.52 39031.12 40993.66 36686.66 23362.83 38785.19 396
test_vis1_rt81.31 33780.05 34085.11 35791.29 33170.66 39198.98 12877.39 42085.76 26668.80 38382.40 39136.56 40799.44 12292.67 16686.55 25685.24 395
pmmvs-eth3d78.71 35176.16 35686.38 34680.25 40481.19 33494.17 34992.13 38077.97 36066.90 39382.31 39255.76 36692.56 37973.63 34962.31 39185.38 392
Patchmatch-RL test81.90 33480.13 33887.23 34180.71 40170.12 39484.07 40588.19 40683.16 30970.57 37682.18 39387.18 10392.59 37882.28 28562.78 38898.98 131
WB-MVS66.44 37366.29 37666.89 39374.84 40944.93 42093.00 35984.09 41471.15 38755.82 40581.63 39463.79 34080.31 41521.85 41950.47 41175.43 406
new_pmnet76.02 36173.71 36582.95 37183.88 39272.85 38491.26 38092.26 37770.44 39062.60 39981.37 39547.64 39592.32 38261.85 39072.10 36283.68 400
test_fmvs375.09 36475.19 36074.81 38577.45 40854.08 41195.93 32190.64 39582.51 32573.29 36681.19 39622.29 41486.29 40785.50 24667.89 37684.06 398
FPMVS61.57 37560.32 37865.34 39560.14 42242.44 42391.02 38389.72 40044.15 41142.63 41480.93 39719.02 41680.59 41442.50 41172.76 35473.00 408
SSC-MVS65.42 37465.20 37766.06 39473.96 41043.83 42192.08 36983.54 41569.77 39354.73 40680.92 39863.30 34279.92 41620.48 42048.02 41374.44 407
pmmvs372.86 36869.76 37382.17 37473.86 41174.19 37794.20 34889.01 40464.23 40667.72 38880.91 39941.48 40288.65 40262.40 38954.02 40583.68 400
ambc79.60 38172.76 41456.61 40876.20 41292.01 38268.25 38680.23 40023.34 41394.73 35673.78 34860.81 39487.48 375
new-patchmatchnet74.80 36672.40 36981.99 37678.36 40772.20 38694.44 34492.36 37677.06 36463.47 39879.98 40151.04 38788.85 40160.53 39554.35 40484.92 397
PatchT85.44 30183.19 31192.22 24493.13 30183.00 30983.80 40796.37 23570.62 38890.55 19879.63 40284.81 15394.87 35258.18 40091.59 22098.79 153
RPMNet85.07 30581.88 32494.64 18293.47 29286.24 24984.97 40197.21 17364.85 40590.76 19578.80 40380.95 21599.27 14053.76 40492.17 21198.41 175
test_f71.94 36970.82 37075.30 38472.77 41353.28 41291.62 37489.66 40175.44 37464.47 39778.31 40420.48 41589.56 39878.63 31366.02 38383.05 403
testf156.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
APD_test256.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
UnsupCasMVSNet_bld73.85 36770.14 37184.99 35979.44 40575.73 37088.53 39095.24 32270.12 39261.94 40074.81 40741.41 40393.62 36768.65 37051.13 41085.62 390
LCM-MVSNet60.07 37856.37 38071.18 38954.81 42448.67 41782.17 40989.48 40237.95 41449.13 40969.12 40813.75 42281.76 40959.28 39651.63 40983.10 402
PMMVS258.97 37955.07 38270.69 39162.72 41955.37 41085.97 39580.52 41749.48 41045.94 41168.31 40915.73 42080.78 41349.79 40837.12 41675.91 405
JIA-IIPM85.97 29184.85 29189.33 31893.23 29973.68 37985.05 40097.13 18369.62 39491.56 18168.03 41088.03 8796.96 26577.89 31793.12 19297.34 215
testmvs18.81 39023.05 3936.10 4074.48 4292.29 43297.78 2473.00 4303.27 42318.60 42362.71 4111.53 4302.49 42614.26 4241.80 42313.50 421
gg-mvs-nofinetune90.00 22387.71 24896.89 7996.15 19294.69 4985.15 39997.74 7968.32 39892.97 16160.16 41296.10 496.84 27093.89 14398.87 9399.14 117
PMVScopyleft41.42 2345.67 38542.50 38855.17 40134.28 42732.37 42766.24 41578.71 41930.72 41722.04 42259.59 4134.59 42677.85 41827.49 41758.84 39855.29 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet79.01 34875.13 36190.66 28193.82 28681.69 32685.16 39893.75 36054.54 40874.17 36059.15 41457.46 36296.58 28163.74 38594.38 18093.72 262
test_vis3_rt61.29 37658.75 37968.92 39267.41 41652.84 41491.18 38259.23 42766.96 40141.96 41558.44 41511.37 42394.72 35774.25 34257.97 39959.20 414
ANet_high50.71 38446.17 38764.33 39644.27 42652.30 41576.13 41378.73 41864.95 40427.37 41955.23 41614.61 42167.74 41936.01 41518.23 41972.95 409
Gipumacopyleft54.77 38252.22 38662.40 39986.50 38259.37 40650.20 41790.35 39736.52 41541.20 41649.49 41718.33 41881.29 41032.10 41665.34 38446.54 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive44.00 2241.70 38637.64 39153.90 40249.46 42543.37 42265.09 41666.66 42426.19 42025.77 42148.53 4183.58 42863.35 42126.15 41827.28 41754.97 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 38740.93 38941.29 40361.97 42033.83 42684.00 40665.17 42527.17 41827.56 41846.72 41917.63 41960.41 42219.32 42118.82 41829.61 418
test_post46.00 42087.37 9797.11 259
test12316.58 39219.47 3947.91 4063.59 4305.37 43194.32 3451.39 4312.49 42413.98 42444.60 4212.91 4292.65 42511.35 4250.57 42415.70 420
EMVS39.96 38839.88 39040.18 40459.57 42332.12 42884.79 40364.57 42626.27 41926.14 42044.18 42218.73 41759.29 42317.03 42217.67 42029.12 419
test_post190.74 38641.37 42385.38 14596.36 29583.16 275
X-MVStestdata90.69 20888.66 23196.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7829.59 42487.37 9799.87 5895.65 10499.43 6199.78 41
wuyk23d16.71 39116.73 39516.65 40560.15 42125.22 43041.24 4185.17 4296.56 4225.48 4253.61 4253.64 42722.72 42415.20 4239.52 4221.99 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.87 3949.16 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42682.48 1910.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.74 34567.75 373
FOURS199.50 4288.94 18499.55 4497.47 14391.32 11598.12 46
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
eth-test20.00 431
eth-test0.00 431
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
save fliter99.34 5093.85 6799.65 3697.63 10995.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
GSMVS98.84 146
test_part299.54 3695.42 2298.13 44
sam_mvs188.39 7898.84 146
sam_mvs87.08 106
MTGPAbinary97.45 146
MTMP99.21 9091.09 393
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
agg_prior99.54 3692.66 9397.64 10597.98 5399.61 105
test_prior492.00 10399.41 69
test_prior97.01 6699.58 3091.77 10697.57 12399.49 11599.79 38
旧先验298.67 15885.75 26798.96 2098.97 15793.84 145
新几何298.26 212
无先验98.52 17997.82 6687.20 23799.90 5087.64 22299.85 30
原ACMM298.69 155
testdata299.88 5484.16 263
segment_acmp90.56 47
testdata197.89 24092.43 88
test1297.83 3599.33 5394.45 5497.55 12597.56 5988.60 7699.50 11499.71 3699.55 77
plane_prior793.84 28385.73 268
plane_prior693.92 28086.02 26172.92 272
plane_prior596.30 23997.75 22893.46 15486.17 26092.67 271
plane_prior385.91 26393.65 6286.99 235
plane_prior299.02 12293.38 69
plane_prior193.90 282
plane_prior86.07 25999.14 10693.81 5986.26 259
n20.00 432
nn0.00 432
door-mid84.90 412
test1197.68 92
door85.30 410
HQP5-MVS86.39 245
HQP-NCC93.95 27699.16 9893.92 5187.57 228
ACMP_Plane93.95 27699.16 9893.92 5187.57 228
BP-MVS93.82 147
HQP4-MVS87.57 22897.77 22292.72 269
HQP3-MVS96.37 23586.29 257
HQP2-MVS73.34 266
MDTV_nov1_ep13_2view91.17 11991.38 37887.45 23393.08 15986.67 11787.02 22598.95 137
ACMMP++_ref82.64 291
ACMMP++83.83 278
Test By Simon83.62 165