This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 218
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 33198.69 596.42 16598.09 24795.86 15395.15 30695.54 33694.26 18299.81 4194.06 22898.51 29198.47 260
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6496.57 11398.07 14398.38 12796.22 11899.14 29294.71 20599.31 20198.52 255
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6896.19 13198.48 9298.70 9194.72 16699.24 27894.37 21699.33 19699.17 154
FOURS199.59 1798.20 899.03 899.25 3498.96 2298.87 59
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16897.21 7299.76 5799.40 105
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.60 9699.76 6895.49 15199.20 21599.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.94 7195.49 15199.20 21599.26 139
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6198.42 3799.03 4398.71 8996.93 7399.83 3497.09 7999.63 9099.56 50
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13797.32 8898.06 14497.85 19796.65 9199.77 6395.00 18999.11 22999.32 122
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15997.69 6897.90 16197.96 18795.81 13499.82 3696.13 11599.61 9899.45 90
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4599.98 299.85 5
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15196.04 13997.10 20697.73 21196.53 9899.78 5395.16 17799.50 14499.46 86
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10396.11 13496.89 22597.45 22996.85 8399.78 5395.19 17399.63 9099.38 112
PMVScopyleft89.60 1796.71 16596.97 14495.95 24099.51 2897.81 2097.42 11097.49 28397.93 5695.95 27998.58 10396.88 8096.91 40189.59 32899.36 18393.12 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15996.27 12595.59 29697.75 20896.30 11399.78 5393.70 24399.48 15199.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11195.65 16298.51 8796.46 29992.15 23699.81 4195.14 18098.58 28699.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25997.64 21696.49 10199.72 9595.66 14299.37 18099.45 90
X-MVStestdata92.86 31390.83 34298.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25936.50 42196.49 10199.72 9595.66 14299.37 18099.45 90
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6895.45 17397.55 17797.94 19097.11 5799.78 5394.77 20199.46 15699.48 81
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10395.75 15997.91 16098.06 17796.89 7899.76 6895.32 16799.57 11399.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20398.20 23095.51 17095.06 30896.53 29594.10 18599.70 11794.29 21999.15 22299.13 163
LS3D97.77 9097.50 11398.57 5196.24 34497.58 2898.45 3198.85 12798.58 3297.51 18097.94 19095.74 13799.63 15395.19 17398.97 24398.51 256
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13796.05 13797.46 18797.63 21796.77 8799.76 6895.61 14699.46 15699.49 75
EGC-MVSNET83.08 38577.93 38898.53 5499.57 1997.55 3098.33 3898.57 1894.71 42310.38 42498.90 7395.60 14299.50 19495.69 13999.61 9898.55 252
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13196.00 14297.22 19597.62 21896.87 8299.76 6895.48 15599.43 16999.46 86
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15698.83 13795.21 18398.36 10698.13 16498.13 1899.62 15896.04 11999.54 12699.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13196.05 13797.49 18297.54 22397.07 6199.70 11795.61 14699.46 15699.30 127
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 8095.88 15197.88 16398.22 15698.15 1699.74 8396.50 9999.62 9299.42 102
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7295.43 17697.41 18997.50 22797.98 1999.79 4995.58 14999.57 11399.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31799.05 7295.19 18598.32 11497.70 21395.22 15498.41 37094.27 22098.13 30998.93 201
MAR-MVS94.21 27893.03 29897.76 11196.94 32997.44 3796.97 13397.15 29387.89 35192.00 38092.73 38192.14 23799.12 29683.92 38697.51 34196.73 373
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28299.02 8295.20 18498.15 13397.52 22598.83 598.43 36994.87 19496.41 37099.07 178
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4398.34 4098.78 6698.52 11097.32 4599.45 21294.08 22799.67 8399.13 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10897.72 6598.25 12198.13 16497.10 5899.75 7495.44 15999.24 21399.32 122
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 4095.62 16499.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14795.96 14497.53 17897.40 23396.93 7399.77 6395.04 18699.35 18899.42 102
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13195.76 15796.93 22297.43 23197.26 5299.79 4996.06 11699.53 13099.45 90
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29897.23 4492.56 35198.60 18492.84 27298.54 8597.40 23396.64 9398.78 33494.40 21599.41 17698.93 201
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 11096.58 11098.08 14197.87 19697.02 6699.76 6895.25 17099.59 10799.40 105
Skip Steuart: Steuart Systems R&D Blog.
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18998.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FPMVS89.92 35588.63 36393.82 32898.37 19096.94 4991.58 37293.34 36588.00 34990.32 39397.10 25970.87 39591.13 41871.91 41696.16 37893.39 408
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16698.98 9995.05 19398.06 14498.02 18195.86 12699.56 17794.37 21699.64 8899.00 187
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24398.99 9692.45 28098.11 13698.31 13597.25 5399.77 6396.60 9599.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 17198.79 14795.07 19197.88 16398.35 13097.24 5499.72 9596.05 11899.58 11099.45 90
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18398.63 18293.82 23398.54 8598.33 13393.98 18899.05 30795.99 12499.45 15998.61 247
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11198.49 3599.38 2399.14 4995.44 14799.84 3296.47 10099.80 5099.47 84
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 18198.89 11193.71 23697.97 15497.75 20897.44 4099.63 15393.22 25599.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27597.19 25296.88 8099.86 2697.50 6499.73 6698.41 263
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14998.73 15991.61 29598.48 9298.36 12996.53 9899.68 12995.17 17599.54 12699.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19495.63 16397.22 19597.30 24695.52 14398.55 36090.97 29498.90 25198.34 274
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15292.89 27196.01 27897.13 25592.23 23499.67 13792.24 26999.34 19199.17 154
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25598.46 19794.58 21198.10 13898.07 17297.09 6099.39 23495.16 17799.44 16099.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4299.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
N_pmnet95.18 23594.23 27298.06 9097.85 24496.55 6292.49 35291.63 38389.34 32898.09 13997.41 23290.33 26699.06 30691.58 28299.31 20198.56 250
PHI-MVS96.96 14496.53 17398.25 7597.48 29896.50 6396.76 14798.85 12793.52 24296.19 27196.85 27595.94 12399.42 21993.79 23999.43 16998.83 218
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5295.83 15599.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3596.23 12899.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12997.75 5499.89 2399.62 36
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32998.31 4197.09 21195.45 33997.17 5698.50 36498.67 2597.45 34596.48 379
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7298.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3899.67 299.73 499.65 699.15 399.86 2697.22 7199.92 1499.77 13
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17498.77 15292.96 27097.44 18897.58 22295.84 12799.74 8391.96 27299.35 18899.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8296.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5698.76 2796.79 22899.34 2696.61 9498.82 33096.38 10499.50 14496.98 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25798.99 9695.84 15498.78 6698.08 17096.84 8499.81 4193.98 23399.57 11399.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
TestCases98.06 9099.08 9696.16 7499.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5699.36 599.29 2999.06 5697.27 4899.93 497.71 5699.91 1799.70 26
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29696.58 11097.21 19798.19 15884.14 32899.78 5395.89 13096.17 37798.89 209
test_part299.03 10796.07 7898.08 141
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5695.96 14498.59 8298.69 9296.94 7199.81 4196.64 9399.58 11099.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
F-COLMAP95.30 23094.38 26998.05 9498.64 15496.04 7995.61 23098.66 17689.00 33493.22 35996.40 30492.90 21499.35 24987.45 36097.53 34098.77 228
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29996.92 27296.81 8699.87 2496.87 8999.76 5798.51 256
OMC-MVS96.48 17696.00 19697.91 10298.30 19596.01 8294.86 27498.60 18491.88 29097.18 20097.21 25196.11 12099.04 30990.49 31599.34 19198.69 238
ZD-MVS98.43 18695.94 8398.56 19090.72 31096.66 23997.07 26095.02 16099.74 8391.08 29098.93 249
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31799.27 3099.33 2894.04 18696.03 40997.14 7797.83 32299.78 12
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15399.05 7298.67 2898.84 6198.45 11897.58 3899.88 2196.45 10199.86 2899.54 54
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20899.04 7997.51 7698.22 12497.81 20394.68 16999.78 5397.14 7799.75 6499.41 104
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22499.02 8298.11 5198.31 11697.69 21494.65 17199.85 2997.02 8499.71 7399.48 81
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22698.87 12097.57 7298.31 11697.83 19894.69 16799.85 2997.02 8499.71 7399.46 86
PatchMatch-RL94.61 26493.81 28697.02 17798.19 21095.72 8993.66 32297.23 28988.17 34794.94 31395.62 33491.43 24998.57 35787.36 36197.68 33296.76 372
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18299.02 8293.92 23298.62 7898.99 6197.69 2999.62 15896.18 11499.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5695.32 18097.83 16997.88 19596.44 10699.72 9594.59 21099.39 17899.25 143
NCCC96.52 17495.99 19798.10 8797.81 25395.68 9295.00 26998.20 23095.39 17795.40 30296.36 30693.81 19399.45 21293.55 24698.42 29799.17 154
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4799.33 699.30 2899.00 5997.27 4899.92 697.64 6099.92 1499.75 20
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6498.31 4199.02 4498.74 8597.68 3099.61 16597.77 5399.85 3699.70 26
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22695.60 9598.04 5998.70 16898.13 5096.93 22298.45 11895.30 15299.62 15895.64 14498.96 24499.24 144
LF4IMVS96.07 19195.63 21497.36 14998.19 21095.55 9695.44 23698.82 14592.29 28395.70 29396.55 29392.63 22298.69 34591.75 28199.33 19697.85 322
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15997.79 5999.42 2197.83 19894.40 17999.78 5395.91 12999.76 5799.46 86
CNVR-MVS96.92 14696.55 17098.03 9598.00 23595.54 9794.87 27398.17 23694.60 20896.38 25697.05 26295.67 13999.36 24595.12 18399.08 23399.19 151
hse-mvs295.77 20595.09 22797.79 10997.84 24995.51 9995.66 22495.43 33896.58 11097.21 19796.16 31384.14 32899.54 18495.89 13096.92 35398.32 275
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14998.23 22695.92 14898.40 10098.28 14497.06 6299.71 10995.48 15599.52 13599.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6195.51 9996.89 13798.89 11195.92 14898.64 7698.31 13597.06 62
test_one_060199.05 10595.50 10298.87 12097.21 9398.03 14898.30 13996.93 73
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14998.89 11199.75 7495.48 15599.52 13599.53 57
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5199.22 1099.22 3498.96 6597.35 4499.92 697.79 5199.93 1199.79 11
DVP-MVS++97.96 5997.90 6598.12 8697.75 26995.40 10599.03 898.89 11196.62 10698.62 7898.30 13996.97 6999.75 7495.70 13799.25 21099.21 147
IU-MVS99.22 6695.40 10598.14 24385.77 37198.36 10695.23 17299.51 14099.49 75
AUN-MVS93.95 29092.69 30997.74 11297.80 25795.38 10795.57 23395.46 33791.26 30492.64 37396.10 31974.67 37999.55 18193.72 24296.97 35298.30 279
test_prior495.38 10793.61 325
wuyk23d93.25 30895.20 22187.40 39996.07 35695.38 10797.04 12994.97 34695.33 17999.70 798.11 16898.14 1791.94 41777.76 40899.68 8174.89 417
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13796.11 13499.08 4098.24 15197.87 2399.72 9595.44 15999.51 14099.14 161
test_241102_ONE99.22 6695.35 11098.83 13796.04 13999.08 4098.13 16497.87 2399.33 254
MSC_two_6792asdad98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
No_MVS98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
MVS_111021_LR96.82 15696.55 17097.62 12298.27 20095.34 11293.81 31998.33 21694.59 21096.56 24796.63 29096.61 9498.73 33994.80 19799.34 19198.78 225
OPU-MVS97.64 12198.01 23195.27 11596.79 14597.35 24296.97 6998.51 36391.21 28999.25 21099.14 161
CNLPA95.04 24194.47 26496.75 19797.81 25395.25 11694.12 30597.89 25994.41 21594.57 31995.69 33090.30 26998.35 37686.72 36798.76 26796.64 374
TEST997.84 24995.23 11793.62 32398.39 20886.81 36093.78 34095.99 32194.68 16999.52 189
train_agg95.46 22194.66 25097.88 10497.84 24995.23 11793.62 32398.39 20887.04 35693.78 34095.99 32194.58 17399.52 18991.76 28098.90 25198.89 209
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27295.23 11794.15 30196.90 30493.26 25198.04 14796.70 28694.41 17898.89 32594.77 20199.14 22398.37 268
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13199.05 1799.01 4598.65 9795.37 14999.90 1697.57 6199.91 1799.77 13
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3898.21 4899.25 3298.51 11298.21 1499.40 23094.79 19899.72 7099.32 122
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4899.36 18399.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27997.01 26696.99 6899.82 3697.66 5999.64 8898.39 266
SD-MVS97.37 12397.70 8696.35 22198.14 22295.13 12496.54 16198.92 10895.94 14699.19 3598.08 17097.74 2895.06 41195.24 17199.54 12698.87 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft91.02 1694.05 28592.90 30197.51 13098.00 23595.12 12594.25 29498.25 22386.17 36591.48 38595.25 34191.01 25599.19 28485.02 38196.69 36598.22 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_897.81 25395.07 12693.54 32698.38 21087.04 35693.71 34495.96 32494.58 17399.52 189
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 23093.00 26598.16 13198.06 17795.89 12599.72 9595.67 14199.10 23199.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior97.80 25794.96 12898.36 21293.49 35299.53 186
CDPH-MVS95.45 22294.65 25197.84 10798.28 19894.96 12893.73 32198.33 21685.03 37995.44 30096.60 29195.31 15199.44 21590.01 32199.13 22599.11 171
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9696.35 12498.13 13595.95 32595.99 12299.66 14394.36 21899.73 6698.59 248
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3696.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14798.98 2198.74 7398.49 11395.80 13599.49 19995.04 18699.44 16099.11 171
save fliter98.48 18194.71 13394.53 28698.41 20595.02 195
alignmvs96.01 19595.52 21797.50 13497.77 26694.71 13396.07 19396.84 30597.48 7796.78 23294.28 36185.50 31999.40 23096.22 11298.73 27298.40 264
新几何197.25 15898.29 19694.70 13597.73 26977.98 40994.83 31596.67 28892.08 24099.45 21288.17 34998.65 28097.61 340
plane_prior798.70 14994.67 136
CMPMVSbinary73.10 2392.74 31591.39 32996.77 19693.57 40994.67 13694.21 29897.67 27280.36 40293.61 34896.60 29182.85 33997.35 39584.86 38298.78 26598.29 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15599.82 195.44 17599.64 1199.52 998.96 499.74 8399.38 399.86 2899.81 9
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18499.73 595.05 19399.60 1599.34 2698.68 899.72 9599.21 799.85 3699.76 18
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19999.64 1594.99 19699.43 2099.18 4298.51 1099.71 10999.13 1099.84 3899.67 28
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9397.57 7299.27 3099.22 3598.32 1299.50 19497.09 7999.75 6499.50 67
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9995.75 15997.62 17597.59 22097.61 3799.77 6396.34 10799.44 16099.36 118
plane_prior394.51 14395.29 18296.16 272
TAPA-MVS93.32 1294.93 24594.23 27297.04 17598.18 21394.51 14395.22 25698.73 15981.22 39896.25 26695.95 32593.80 19498.98 31789.89 32498.87 25597.62 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33398.59 3198.51 8798.72 8692.54 22799.58 17096.02 12199.49 14799.12 168
AdaColmapbinary95.11 23894.62 25596.58 20697.33 31394.45 14694.92 27198.08 24893.15 26193.98 33895.53 33794.34 18099.10 30285.69 37298.61 28396.20 384
sasdasda97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31994.39 14795.46 23598.73 15996.03 14194.72 31694.92 34996.28 11699.69 12493.81 23897.98 31498.09 297
canonicalmvs97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4799.37 499.67 899.43 1795.61 14199.72 9598.12 3699.86 2899.73 22
plane_prior698.38 18994.37 15091.91 246
mvsany_test396.21 18695.93 20297.05 17397.40 30694.33 15295.76 21794.20 35589.10 33199.36 2599.60 893.97 18997.85 38995.40 16698.63 28198.99 190
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20394.29 15394.77 27898.07 25289.81 32497.97 15498.33 13393.11 20799.08 30495.46 15899.84 3898.89 209
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16298.75 15696.36 12296.16 27296.77 28291.91 24699.46 20792.59 26499.20 21599.28 134
plane_prior94.29 15395.42 23894.31 21998.93 249
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 22098.79 2699.23 3398.86 7795.76 13699.61 16595.49 15199.36 18399.23 145
test_prior97.46 14097.79 26294.26 15798.42 20499.34 25298.79 224
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 5099.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27694.15 15996.02 19798.43 20193.17 26097.30 19197.38 23995.48 14499.28 26893.74 24099.34 19198.88 213
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28298.17 23690.17 32096.21 26996.10 31995.14 15699.43 21794.13 22698.85 25899.13 163
test1297.46 14097.61 28994.07 16197.78 26793.57 35093.31 20399.42 21998.78 26598.89 209
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15498.73 15998.66 2998.56 8498.41 12396.84 8499.69 12494.82 19699.81 4798.64 242
API-MVS95.09 24095.01 23195.31 27096.61 33694.02 16396.83 13997.18 29295.60 16595.79 28794.33 36094.54 17598.37 37585.70 37198.52 28893.52 406
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31198.36 3998.14 13497.98 18688.23 29399.71 10993.10 25899.72 7099.38 112
DP-MVS Recon95.55 21595.13 22596.80 19398.51 17593.99 16594.60 28498.69 16990.20 31995.78 28996.21 31292.73 21898.98 31790.58 31198.86 25797.42 349
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18899.57 1795.66 16199.52 1698.71 8997.04 6499.64 14999.21 799.87 2698.69 238
ETV-MVS96.13 19095.90 20396.82 19297.76 26793.89 16795.40 24198.95 10595.87 15295.58 29791.00 40096.36 11199.72 9593.36 24998.83 26196.85 366
旧先验197.80 25793.87 16897.75 26897.04 26393.57 19898.68 27598.72 234
Anonymous20240521196.34 18295.98 19897.43 14398.25 20393.85 16996.74 14994.41 35397.72 6598.37 10398.03 18087.15 30599.53 18694.06 22899.07 23598.92 204
UGNet96.81 15796.56 16997.58 12496.64 33593.84 17097.75 8297.12 29596.47 11993.62 34798.88 7593.22 20599.53 18695.61 14699.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9398.40 3899.07 4298.98 6296.89 7899.75 7497.19 7599.79 5299.55 53
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22593.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31999.06 23898.32 275
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31697.91 5797.30 19198.06 17788.46 28999.85 2993.85 23799.40 17799.32 122
NP-MVS98.14 22293.72 17495.08 343
MGCFI-Net97.20 13297.23 12897.08 17197.68 27793.71 17597.79 7799.09 6197.40 8496.59 24493.96 36397.67 3199.35 24996.43 10298.50 29298.17 294
GBi-Net96.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
test196.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17697.41 8399.00 4799.19 3895.47 14599.73 8995.83 13499.76 5799.30 127
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32998.36 21294.74 20296.58 24596.76 28496.54 9798.99 31594.87 19499.27 20799.15 157
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27293.65 18098.49 2898.88 11896.86 10197.11 20598.55 10795.82 13099.73 8995.94 12799.42 17299.13 163
CDS-MVSNet94.88 24994.12 27897.14 16497.64 28793.57 18193.96 31397.06 29890.05 32196.30 26396.55 29386.10 31299.47 20490.10 32099.31 20198.40 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7297.40 8499.37 2499.08 5598.79 699.47 20497.74 5599.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20598.97 10294.55 21298.82 6398.76 8497.31 4699.29 26697.20 7499.44 16099.38 112
PCF-MVS89.43 1892.12 32690.64 34696.57 20897.80 25793.48 18489.88 40198.45 19874.46 41596.04 27795.68 33190.71 26099.31 25973.73 41399.01 24296.91 363
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8998.53 2999.86 2899.95 2
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22398.58 3298.78 6699.39 1898.21 1499.56 17792.65 26299.86 2899.52 60
test_vis1_rt94.03 28793.65 28895.17 27695.76 37193.42 18793.97 31298.33 21684.68 38393.17 36095.89 32792.53 22994.79 41293.50 24794.97 39197.31 353
TAMVS95.49 21794.94 23297.16 16298.31 19493.41 18895.07 26496.82 30791.09 30697.51 18097.82 20189.96 27299.42 21988.42 34599.44 16098.64 242
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 12098.23 4799.48 1799.27 3198.47 1199.55 18196.52 9899.53 13099.60 37
MM96.87 15196.62 16397.62 12297.72 27493.30 19096.39 16692.61 37597.90 5896.76 23398.64 9890.46 26399.81 4199.16 999.94 899.76 18
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17499.65 1295.59 16699.71 599.01 5897.66 3399.60 16799.44 299.83 4297.90 318
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23698.86 12398.20 4998.37 10399.24 3394.69 16799.55 18195.98 12599.79 5299.65 33
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34199.26 998.39 10299.18 4287.85 30099.62 15895.13 18299.09 23299.35 120
test22298.17 21693.24 19492.74 34697.61 28175.17 41494.65 31896.69 28790.96 25798.66 27897.66 336
test_f95.82 20395.88 20595.66 25497.61 28993.21 19595.61 23098.17 23686.98 35898.42 9899.47 1390.46 26394.74 41397.71 5698.45 29599.03 183
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3698.43 3698.89 5798.83 7894.30 18199.81 4197.87 4699.91 1799.77 13
MVP-Stereo95.69 20895.28 21996.92 18298.15 22093.03 19795.64 22998.20 23090.39 31696.63 24297.73 21191.63 24899.10 30291.84 27797.31 34998.63 244
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EIA-MVS96.04 19395.77 20996.85 18997.80 25792.98 19896.12 19099.16 4394.65 20693.77 34291.69 39495.68 13899.67 13794.18 22398.85 25897.91 317
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5398.04 5598.62 7898.66 9493.75 19599.78 5397.23 7099.84 3899.73 22
MVS_030495.71 20795.18 22397.33 15194.85 38992.82 20095.36 24490.89 39295.51 17095.61 29597.82 20188.39 29199.78 5398.23 3599.91 1799.40 105
Fast-Effi-MVS+95.49 21795.07 22896.75 19797.67 28192.82 20094.22 29798.60 18491.61 29593.42 35692.90 37696.73 8999.70 11792.60 26397.89 32097.74 331
test_fmvs397.38 12197.56 10696.84 19198.63 15892.81 20297.60 9499.61 1690.87 30898.76 7199.66 494.03 18797.90 38899.24 699.68 8199.81 9
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10697.10 9598.85 6098.88 7595.03 15999.67 13797.39 6899.65 8699.26 139
PMMVS92.39 31991.08 33696.30 22593.12 41192.81 20290.58 39295.96 32379.17 40691.85 38292.27 38690.29 27098.66 35089.85 32596.68 36697.43 348
dmvs_re92.08 32891.27 33394.51 31097.16 32092.79 20595.65 22692.64 37494.11 22692.74 36990.98 40183.41 33594.44 41580.72 39994.07 39896.29 382
pmmvs494.82 25194.19 27596.70 20097.42 30592.75 20692.09 36596.76 30986.80 36195.73 29297.22 25089.28 28398.89 32593.28 25399.14 22398.46 262
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 21099.41 2693.36 24799.00 4798.44 12096.46 10599.65 14599.09 1199.76 5799.45 90
DPM-MVS93.68 29592.77 30896.42 21797.91 24192.54 20891.17 38397.47 28584.99 38193.08 36294.74 35189.90 27399.00 31387.54 35798.09 31197.72 334
CLD-MVS95.47 22095.07 22896.69 20198.27 20092.53 20991.36 37698.67 17491.22 30595.78 28994.12 36295.65 14098.98 31790.81 29999.72 7098.57 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15999.15 4793.68 23998.89 5799.30 2996.42 10799.37 24299.03 1399.83 4299.66 30
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 18099.06 6893.67 24098.64 7699.00 5996.23 11799.36 24598.99 1599.80 5099.53 57
HQP5-MVS92.47 212
HQP-MVS95.17 23794.58 25996.92 18297.85 24492.47 21294.26 29198.43 20193.18 25792.86 36695.08 34390.33 26699.23 28090.51 31398.74 26999.05 182
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30298.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21399.32 2793.22 25398.91 5698.49 11396.31 11299.64 14999.07 1299.76 5799.40 105
EPNet93.72 29392.62 31297.03 17687.61 42492.25 21696.27 17691.28 38896.74 10487.65 41097.39 23785.00 32299.64 14992.14 27099.48 15199.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19898.25 4699.13 3898.66 9496.65 9199.69 12493.92 23599.62 9298.91 205
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18498.58 3298.78 6699.39 1897.80 2599.62 15894.98 19299.86 2899.52 60
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9394.93 19998.58 8398.92 6997.31 4699.41 22894.44 21199.43 16999.59 38
ab-mvs96.59 17096.59 16696.60 20498.64 15492.21 21898.35 3597.67 27294.45 21496.99 21798.79 7994.96 16399.49 19990.39 31699.07 23598.08 298
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 29098.12 24597.34 8798.20 12597.33 24492.81 21599.75 7494.79 19899.81 4799.54 54
Effi-MVS+96.19 18796.01 19596.71 19997.43 30492.19 22296.12 19099.10 5695.45 17393.33 35894.71 35297.23 5599.56 17793.21 25697.54 33998.37 268
mvsany_test193.47 30193.03 29894.79 29794.05 40492.12 22390.82 38990.01 40385.02 38097.26 19498.28 14493.57 19897.03 39892.51 26695.75 38595.23 397
原ACMM196.58 20698.16 21892.12 22398.15 24285.90 36993.49 35296.43 30192.47 23199.38 23787.66 35498.62 28298.23 286
lessismore_v097.05 17399.36 4892.12 22384.07 41698.77 7098.98 6285.36 32099.74 8397.34 6999.37 18099.30 127
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20399.18 4197.67 7199.00 4798.48 11797.64 3499.50 19496.96 8699.54 12699.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30892.08 22795.34 24897.65 27697.74 6398.29 11998.11 16895.05 15799.68 12997.50 6499.50 14499.56 50
VNet96.84 15296.83 15396.88 18798.06 22792.02 22896.35 17297.57 28297.70 6797.88 16397.80 20492.40 23299.54 18494.73 20398.96 24499.08 176
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 31192.01 22995.33 24997.65 27697.74 6398.30 11898.14 16295.04 15899.69 12497.55 6299.52 13599.58 39
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22397.16 32091.96 23097.74 8498.84 13187.26 35394.36 32598.01 18393.95 19099.67 13790.70 30898.75 26897.35 352
GDP-MVS95.39 22494.89 23796.90 18598.26 20291.91 23196.48 16499.28 3195.06 19296.54 25097.12 25774.83 37899.82 3697.19 7599.27 20798.96 193
FMVSNet296.72 16396.67 16296.87 18897.96 23791.88 23297.15 12198.06 25395.59 16698.50 8998.62 9989.51 28099.65 14594.99 19199.60 10499.07 178
MSDG95.33 22895.13 22595.94 24297.40 30691.85 23391.02 38798.37 21195.30 18196.31 26295.99 32194.51 17698.38 37389.59 32897.65 33697.60 341
QAPM95.88 20095.57 21696.80 19397.90 24291.84 23498.18 5398.73 15988.41 34296.42 25498.13 16494.73 16599.75 7488.72 34098.94 24798.81 221
HyFIR lowres test93.72 29392.65 31096.91 18498.93 12091.81 23591.23 38298.52 19282.69 39196.46 25396.52 29780.38 35199.90 1690.36 31798.79 26499.03 183
BP-MVS195.36 22594.86 24096.89 18698.35 19291.72 23696.76 14795.21 34296.48 11896.23 26797.19 25275.97 37499.80 4897.91 4499.60 10499.15 157
test20.0396.58 17296.61 16596.48 21498.49 17991.72 23695.68 22297.69 27196.81 10298.27 12097.92 19394.18 18498.71 34290.78 30199.66 8599.00 187
ambc96.56 20998.23 20691.68 23897.88 7298.13 24498.42 9898.56 10694.22 18399.04 30994.05 23099.35 18898.95 195
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23997.65 9190.31 39998.89 2498.93 5399.36 2384.57 32699.92 697.81 4999.56 11699.39 110
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21598.48 18191.52 24095.31 25198.45 19895.76 15797.48 18497.54 22389.53 27998.69 34594.43 21294.61 39599.13 163
LFMVS95.32 22994.88 23996.62 20398.03 22891.47 24197.65 9190.72 39599.11 1297.89 16298.31 13579.20 35499.48 20293.91 23699.12 22898.93 201
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19398.79 13691.44 24296.14 18999.06 6894.19 22298.82 6398.98 6296.22 11899.38 23798.98 1699.86 2899.58 39
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18999.09 9591.43 24396.37 17099.11 5394.19 22299.01 4599.25 3296.30 11399.38 23799.00 1499.88 2499.73 22
test_fmvs296.38 18196.45 17796.16 23197.85 24491.30 24496.81 14199.45 2189.24 33098.49 9099.38 2088.68 28797.62 39398.83 1899.32 19899.57 46
mvsmamba94.91 24694.41 26896.40 22097.65 28491.30 24497.92 6995.32 34091.50 29895.54 29898.38 12783.06 33799.68 12992.46 26797.84 32198.23 286
PAPM_NR94.61 26494.17 27695.96 23898.36 19191.23 24695.93 20797.95 25592.98 26693.42 35694.43 35990.53 26198.38 37387.60 35596.29 37498.27 283
OpenMVS_ROBcopyleft91.80 1493.64 29793.05 29795.42 26797.31 31591.21 24795.08 26396.68 31481.56 39596.88 22696.41 30290.44 26599.25 27485.39 37797.67 33395.80 389
V4297.04 13797.16 13396.68 20298.59 16491.05 24896.33 17398.36 21294.60 20897.99 15098.30 13993.32 20299.62 15897.40 6799.53 13099.38 112
casdiffmvspermissive97.50 11197.81 7796.56 20998.51 17591.04 24995.83 21399.09 6197.23 9198.33 11398.30 13997.03 6599.37 24296.58 9799.38 17999.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.79 33490.69 34595.11 27793.80 40690.98 25094.16 30091.78 38296.38 12090.30 39499.30 2972.02 39198.90 32488.28 34790.17 40995.45 395
114514_t93.96 28893.22 29696.19 22999.06 10090.97 25195.99 20198.94 10673.88 41693.43 35596.93 27092.38 23399.37 24289.09 33599.28 20598.25 285
1112_ss94.12 28193.42 29296.23 22698.59 16490.85 25294.24 29598.85 12785.49 37292.97 36494.94 34786.01 31399.64 14991.78 27997.92 31798.20 290
CANet95.86 20195.65 21396.49 21396.41 34190.82 25394.36 28998.41 20594.94 19792.62 37596.73 28592.68 21999.71 10995.12 18399.60 10498.94 197
Patchmtry95.03 24394.59 25896.33 22294.83 39190.82 25396.38 16997.20 29096.59 10997.49 18298.57 10477.67 36199.38 23792.95 26199.62 9298.80 222
FMVSNet593.39 30392.35 31496.50 21295.83 36590.81 25597.31 11298.27 22192.74 27496.27 26498.28 14462.23 40699.67 13790.86 29799.36 18399.03 183
baseline97.44 11697.78 8296.43 21698.52 17390.75 25696.84 13899.03 8096.51 11497.86 16798.02 18196.67 9099.36 24597.09 7999.47 15399.19 151
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21799.28 5590.62 25795.31 25199.08 6488.40 34396.97 22098.17 16192.11 23899.78 5393.64 24499.21 21498.86 216
testdata95.70 25398.16 21890.58 25897.72 27080.38 40195.62 29497.02 26492.06 24198.98 31789.06 33798.52 28897.54 344
VPNet97.26 12997.49 11496.59 20599.47 3390.58 25896.27 17698.53 19197.77 6098.46 9598.41 12394.59 17299.68 12994.61 20699.29 20499.52 60
MSLP-MVS++96.42 18096.71 15995.57 25897.82 25290.56 26095.71 21898.84 13194.72 20396.71 23597.39 23794.91 16498.10 38695.28 16899.02 24098.05 307
UnsupCasMVSNet_bld94.72 25794.26 27196.08 23498.62 16090.54 26193.38 33198.05 25490.30 31797.02 21596.80 28189.54 27799.16 29088.44 34496.18 37698.56 250
FMVSNet395.26 23294.94 23296.22 22896.53 33890.06 26295.99 20197.66 27494.11 22697.99 15097.91 19480.22 35299.63 15394.60 20799.44 16098.96 193
CHOSEN 1792x268894.10 28293.41 29396.18 23099.16 8090.04 26392.15 36298.68 17179.90 40396.22 26897.83 19887.92 29999.42 21989.18 33499.65 8699.08 176
DELS-MVS96.17 18896.23 18695.99 23697.55 29490.04 26392.38 36098.52 19294.13 22496.55 24997.06 26194.99 16199.58 17095.62 14599.28 20598.37 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 27693.72 28795.74 25097.71 27589.95 26593.84 31696.98 30188.38 34493.75 34395.74 32987.94 29598.89 32591.02 29298.10 31098.37 268
test_vis1_n95.67 21095.89 20495.03 28298.18 21389.89 26696.94 13499.28 3188.25 34698.20 12598.92 6986.69 30997.19 39697.70 5898.82 26298.00 312
CL-MVSNet_self_test95.04 24194.79 24795.82 24697.51 29689.79 26791.14 38496.82 30793.05 26396.72 23496.40 30490.82 25899.16 29091.95 27398.66 27898.50 258
MVSMamba_PlusPlus97.43 11897.98 6095.78 24898.88 12689.70 26898.03 6198.85 12799.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12297.73 332
CANet_DTU94.65 26294.21 27495.96 23895.90 36089.68 26993.92 31497.83 26593.19 25690.12 39695.64 33388.52 28899.57 17693.27 25499.47 15398.62 245
mvs5depth98.06 5298.58 2696.51 21198.97 11489.65 27099.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
v1097.55 10897.97 6196.31 22498.60 16289.64 27197.44 10799.02 8296.60 10898.72 7599.16 4693.48 20099.72 9598.76 2199.92 1499.58 39
ANet_high98.31 3698.94 696.41 21999.33 5189.64 27197.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6299.98 299.77 13
test_yl94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
DCV-MVSNet94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
balanced_conf0396.88 15097.29 12395.63 25597.66 28289.47 27597.95 6698.89 11195.94 14697.77 17398.55 10792.23 23499.68 12997.05 8399.61 9897.73 332
v897.60 10498.06 5396.23 22698.71 14789.44 27697.43 10998.82 14597.29 9098.74 7399.10 5293.86 19199.68 12998.61 2699.94 899.56 50
Anonymous2023120695.27 23195.06 23095.88 24498.72 14489.37 27795.70 21997.85 26188.00 34996.98 21997.62 21891.95 24399.34 25289.21 33399.53 13098.94 197
v119296.83 15597.06 13996.15 23298.28 19889.29 27895.36 24498.77 15293.73 23598.11 13698.34 13293.02 21399.67 13798.35 3399.58 11099.50 67
v114496.84 15297.08 13796.13 23398.42 18789.28 27995.41 24098.67 17494.21 22097.97 15498.31 13593.06 20899.65 14598.06 4099.62 9299.45 90
Vis-MVSNet (Re-imp)95.11 23894.85 24195.87 24599.12 9189.17 28097.54 10494.92 34896.50 11596.58 24597.27 24783.64 33399.48 20288.42 34599.67 8398.97 192
new_pmnet92.34 32191.69 32694.32 31896.23 34689.16 28192.27 36192.88 36984.39 38895.29 30396.35 30785.66 31796.74 40684.53 38497.56 33897.05 357
ET-MVSNet_ETH3D91.12 34189.67 35495.47 26596.41 34189.15 28291.54 37390.23 40089.07 33286.78 41492.84 37869.39 39999.44 21594.16 22496.61 36797.82 324
test_fmvs1_n95.21 23395.28 21994.99 28598.15 22089.13 28396.81 14199.43 2386.97 35997.21 19798.92 6983.00 33897.13 39798.09 3898.94 24798.72 234
v14419296.69 16696.90 15196.03 23598.25 20388.92 28495.49 23498.77 15293.05 26398.09 13998.29 14392.51 23099.70 11798.11 3799.56 11699.47 84
Patchmatch-RL test94.66 26194.49 26295.19 27498.54 17188.91 28592.57 35098.74 15891.46 30098.32 11497.75 20877.31 36698.81 33296.06 11699.61 9897.85 322
HY-MVS91.43 1592.58 31791.81 32394.90 29096.49 33988.87 28697.31 11294.62 35085.92 36890.50 39196.84 27685.05 32199.40 23083.77 38995.78 38396.43 380
Test_1112_low_res93.53 30092.86 30295.54 26298.60 16288.86 28792.75 34498.69 16982.66 39292.65 37296.92 27284.75 32499.56 17790.94 29597.76 32598.19 291
PAPR92.22 32391.27 33395.07 28095.73 37388.81 28891.97 36697.87 26085.80 37090.91 38792.73 38191.16 25298.33 37779.48 40295.76 38498.08 298
v192192096.72 16396.96 14695.99 23698.21 20788.79 28995.42 23898.79 14793.22 25398.19 12998.26 14992.68 21999.70 11798.34 3499.55 12299.49 75
v2v48296.78 15997.06 13995.95 24098.57 16688.77 29095.36 24498.26 22295.18 18697.85 16898.23 15392.58 22399.63 15397.80 5099.69 7799.45 90
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 25098.48 18188.76 29192.84 34197.25 28896.00 14297.59 17697.95 18991.38 25099.46 20793.16 25796.35 37298.99 190
v124096.74 16097.02 14295.91 24398.18 21388.52 29295.39 24298.88 11893.15 26198.46 9598.40 12692.80 21699.71 10998.45 3199.49 14799.49 75
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
pmmvs594.63 26394.34 27095.50 26397.63 28888.34 29694.02 30797.13 29487.15 35595.22 30597.15 25487.50 30199.27 27193.99 23299.26 20998.88 213
FE-MVS92.95 31292.22 31795.11 27797.21 31888.33 29798.54 2393.66 36189.91 32396.21 26998.14 16270.33 39799.50 19487.79 35198.24 30597.51 345
thisisatest053092.71 31691.76 32595.56 26098.42 18788.23 29896.03 19687.35 41094.04 22996.56 24795.47 33864.03 40599.77 6394.78 20099.11 22998.68 241
MIMVSNet93.42 30292.86 30295.10 27998.17 21688.19 29998.13 5593.69 35892.07 28495.04 31198.21 15780.95 34999.03 31281.42 39698.06 31298.07 300
Anonymous2024052197.07 13697.51 11195.76 24999.35 4988.18 30097.78 7898.40 20797.11 9498.34 11099.04 5789.58 27699.79 4998.09 3899.93 1199.30 127
CR-MVSNet93.29 30792.79 30594.78 29895.44 37888.15 30196.18 18497.20 29084.94 38294.10 33198.57 10477.67 36199.39 23495.17 17595.81 38096.81 370
RPMNet94.68 26094.60 25694.90 29095.44 37888.15 30196.18 18498.86 12397.43 7894.10 33198.49 11379.40 35399.76 6895.69 13995.81 38096.81 370
EI-MVSNet96.63 16996.93 14795.74 25097.26 31688.13 30395.29 25397.65 27696.99 9697.94 15898.19 15892.55 22599.58 17096.91 8799.56 11699.50 67
IterMVS-LS96.92 14697.29 12395.79 24798.51 17588.13 30395.10 26098.66 17696.99 9698.46 9598.68 9392.55 22599.74 8396.91 8799.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 24694.89 23794.99 28597.51 29688.11 30598.27 4495.20 34392.40 28296.68 23698.60 10283.44 33499.28 26893.34 25098.53 28797.59 342
diffmvspermissive96.04 19396.23 18695.46 26697.35 30988.03 30693.42 32999.08 6494.09 22896.66 23996.93 27093.85 19299.29 26696.01 12398.67 27699.06 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs194.51 26994.60 25694.26 32195.91 35987.92 30795.35 24799.02 8286.56 36396.79 22898.52 11082.64 34097.00 40097.87 4698.71 27397.88 320
TinyColmap96.00 19696.34 18294.96 28797.90 24287.91 30894.13 30498.49 19594.41 21598.16 13197.76 20596.29 11598.68 34890.52 31299.42 17298.30 279
tttt051793.31 30592.56 31395.57 25898.71 14787.86 30997.44 10787.17 41195.79 15697.47 18696.84 27664.12 40499.81 4196.20 11399.32 19899.02 186
WTY-MVS93.55 29993.00 30095.19 27497.81 25387.86 30993.89 31596.00 32189.02 33394.07 33395.44 34086.27 31199.33 25487.69 35396.82 35998.39 266
jason94.39 27394.04 28095.41 26998.29 19687.85 31192.74 34696.75 31085.38 37695.29 30396.15 31488.21 29499.65 14594.24 22199.34 19198.74 231
jason: jason.
MVSFormer96.14 18996.36 18195.49 26497.68 27787.81 31298.67 1599.02 8296.50 11594.48 32396.15 31486.90 30699.92 698.73 2299.13 22598.74 231
lupinMVS93.77 29193.28 29495.24 27297.68 27787.81 31292.12 36396.05 31984.52 38594.48 32395.06 34586.90 30699.63 15393.62 24599.13 22598.27 283
D2MVS95.18 23595.17 22495.21 27397.76 26787.76 31494.15 30197.94 25689.77 32596.99 21797.68 21587.45 30299.14 29295.03 18899.81 4798.74 231
testgi96.07 19196.50 17694.80 29699.26 5787.69 31595.96 20598.58 18895.08 19098.02 14996.25 31097.92 2097.60 39488.68 34298.74 26999.11 171
v14896.58 17296.97 14495.42 26798.63 15887.57 31695.09 26197.90 25895.91 15098.24 12297.96 18793.42 20199.39 23496.04 11999.52 13599.29 133
BH-untuned94.69 25894.75 24894.52 30997.95 24087.53 31794.07 30697.01 30093.99 23097.10 20695.65 33292.65 22198.95 32287.60 35596.74 36297.09 356
Patchmatch-test93.60 29893.25 29594.63 30296.14 35487.47 31896.04 19594.50 35293.57 24196.47 25296.97 26776.50 36998.61 35490.67 30998.41 29897.81 326
BH-RMVSNet94.56 26694.44 26794.91 28897.57 29187.44 31993.78 32096.26 31793.69 23896.41 25596.50 29892.10 23999.00 31385.96 36997.71 32998.31 277
PVSNet_BlendedMVS95.02 24494.93 23495.27 27197.79 26287.40 32094.14 30398.68 17188.94 33594.51 32198.01 18393.04 20999.30 26289.77 32699.49 14799.11 171
PVSNet_Blended93.96 28893.65 28894.91 28897.79 26287.40 32091.43 37598.68 17184.50 38694.51 32194.48 35893.04 20999.30 26289.77 32698.61 28398.02 310
PatchT93.75 29293.57 29094.29 32095.05 38787.32 32296.05 19492.98 36897.54 7594.25 32698.72 8675.79 37599.24 27895.92 12895.81 38096.32 381
GA-MVS92.83 31492.15 31994.87 29296.97 32687.27 32390.03 39696.12 31891.83 29194.05 33494.57 35376.01 37398.97 32192.46 26797.34 34898.36 273
baseline193.14 31092.64 31194.62 30397.34 31187.20 32496.67 15893.02 36794.71 20496.51 25195.83 32881.64 34298.60 35690.00 32288.06 41398.07 300
patch_mono-296.59 17096.93 14795.55 26198.88 12687.12 32594.47 28799.30 2994.12 22596.65 24198.41 12394.98 16299.87 2495.81 13699.78 5599.66 30
MS-PatchMatch94.83 25094.91 23694.57 30796.81 33287.10 32694.23 29697.34 28788.74 33897.14 20297.11 25891.94 24498.23 38292.99 25997.92 31798.37 268
cl____94.73 25394.64 25295.01 28395.85 36487.00 32791.33 37898.08 24893.34 24897.10 20697.33 24484.01 33299.30 26295.14 18099.56 11698.71 237
DIV-MVS_self_test94.73 25394.64 25295.01 28395.86 36387.00 32791.33 37898.08 24893.34 24897.10 20697.34 24384.02 33199.31 25995.15 17999.55 12298.72 234
MVS90.02 35189.20 35892.47 36694.71 39286.90 32995.86 21196.74 31164.72 41890.62 38892.77 37992.54 22798.39 37279.30 40395.56 38792.12 410
test0.0.03 190.11 35089.21 35792.83 35793.89 40586.87 33091.74 37088.74 40792.02 28694.71 31791.14 39973.92 38294.48 41483.75 39092.94 40197.16 355
test_cas_vis1_n_192095.34 22795.67 21194.35 31698.21 20786.83 33195.61 23099.26 3390.45 31598.17 13098.96 6584.43 32798.31 37896.74 9299.17 22097.90 318
TR-MVS92.54 31892.20 31893.57 33596.49 33986.66 33293.51 32794.73 34989.96 32294.95 31293.87 36490.24 27198.61 35481.18 39894.88 39295.45 395
MVS_Test96.27 18496.79 15794.73 30096.94 32986.63 33396.18 18498.33 21694.94 19796.07 27598.28 14495.25 15399.26 27297.21 7297.90 31998.30 279
MVSTER94.21 27893.93 28595.05 28195.83 36586.46 33495.18 25897.65 27692.41 28197.94 15898.00 18572.39 39099.58 17096.36 10599.56 11699.12 168
miper_lstm_enhance94.81 25294.80 24694.85 29396.16 35086.45 33591.14 38498.20 23093.49 24397.03 21497.37 24184.97 32399.26 27295.28 16899.56 11698.83 218
c3_l95.20 23495.32 21894.83 29596.19 34886.43 33691.83 36998.35 21593.47 24497.36 19097.26 24888.69 28699.28 26895.41 16599.36 18398.78 225
USDC94.56 26694.57 26194.55 30897.78 26586.43 33692.75 34498.65 18185.96 36796.91 22497.93 19290.82 25898.74 33890.71 30799.59 10798.47 260
miper_ehance_all_eth94.69 25894.70 24994.64 30195.77 37086.22 33891.32 38098.24 22591.67 29297.05 21396.65 28988.39 29199.22 28294.88 19398.34 30098.49 259
eth_miper_zixun_eth94.89 24894.93 23494.75 29995.99 35786.12 33991.35 37798.49 19593.40 24597.12 20497.25 24986.87 30899.35 24995.08 18598.82 26298.78 225
cl2293.25 30892.84 30494.46 31294.30 39786.00 34091.09 38696.64 31590.74 30995.79 28796.31 30878.24 35898.77 33594.15 22598.34 30098.62 245
MG-MVS94.08 28494.00 28194.32 31897.09 32385.89 34193.19 33795.96 32392.52 27794.93 31497.51 22689.54 27798.77 33587.52 35997.71 32998.31 277
ADS-MVSNet291.47 33990.51 34894.36 31595.51 37685.63 34295.05 26695.70 32883.46 38992.69 37096.84 27679.15 35599.41 22885.66 37390.52 40798.04 308
cascas91.89 33291.35 33093.51 33694.27 39885.60 34388.86 40698.61 18379.32 40592.16 37991.44 39689.22 28498.12 38590.80 30097.47 34496.82 369
IterMVS-SCA-FT95.86 20196.19 18894.85 29397.68 27785.53 34492.42 35797.63 28096.99 9698.36 10698.54 10987.94 29599.75 7497.07 8299.08 23399.27 138
thisisatest051590.43 34889.18 36094.17 32497.07 32485.44 34589.75 40287.58 40988.28 34593.69 34691.72 39365.27 40399.58 17090.59 31098.67 27697.50 347
pmmvs390.00 35288.90 36293.32 33894.20 40185.34 34691.25 38192.56 37678.59 40793.82 33995.17 34267.36 40298.69 34589.08 33698.03 31395.92 385
ttmdpeth94.05 28594.15 27793.75 33095.81 36785.32 34796.00 19994.93 34792.07 28494.19 32899.09 5385.73 31696.41 40890.98 29398.52 28899.53 57
BH-w/o92.14 32591.94 32092.73 36097.13 32285.30 34892.46 35495.64 33089.33 32994.21 32792.74 38089.60 27598.24 38181.68 39594.66 39494.66 400
miper_enhance_ethall93.14 31092.78 30794.20 32293.65 40785.29 34989.97 39797.85 26185.05 37896.15 27494.56 35485.74 31599.14 29293.74 24098.34 30098.17 294
DeepMVS_CXcopyleft77.17 40190.94 41985.28 35074.08 42452.51 42080.87 42088.03 41275.25 37770.63 42259.23 42184.94 41675.62 416
MVEpermissive73.61 2286.48 38385.92 38288.18 39796.23 34685.28 35081.78 41775.79 42186.01 36682.53 41791.88 39192.74 21787.47 42071.42 41794.86 39391.78 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131492.38 32092.30 31592.64 36295.42 38085.15 35295.86 21196.97 30285.40 37590.62 38893.06 37491.12 25397.80 39186.74 36695.49 38894.97 399
MDA-MVSNet_test_wron94.73 25394.83 24494.42 31397.48 29885.15 35290.28 39595.87 32692.52 27797.48 18497.76 20591.92 24599.17 28993.32 25196.80 36198.94 197
YYNet194.73 25394.84 24294.41 31497.47 30285.09 35490.29 39495.85 32792.52 27797.53 17897.76 20591.97 24299.18 28593.31 25296.86 35698.95 195
PAPM87.64 37685.84 38393.04 34896.54 33784.99 35588.42 40795.57 33479.52 40483.82 41593.05 37580.57 35098.41 37062.29 41992.79 40295.71 390
PS-MVSNAJ94.10 28294.47 26493.00 35197.35 30984.88 35691.86 36897.84 26391.96 28894.17 32992.50 38595.82 13099.71 10991.27 28697.48 34294.40 402
MVStest191.89 33291.45 32793.21 34489.01 42184.87 35795.82 21595.05 34591.50 29898.75 7299.19 3857.56 41095.11 41097.78 5298.37 29999.64 35
test_vis1_n_192095.77 20596.41 17993.85 32798.55 16984.86 35895.91 20999.71 692.72 27597.67 17498.90 7387.44 30398.73 33997.96 4298.85 25897.96 314
xiu_mvs_v2_base94.22 27694.63 25492.99 35297.32 31484.84 35992.12 36397.84 26391.96 28894.17 32993.43 36796.07 12199.71 10991.27 28697.48 34294.42 401
IB-MVS85.98 2088.63 36886.95 37993.68 33395.12 38684.82 36090.85 38890.17 40187.55 35288.48 40791.34 39758.01 40999.59 16887.24 36393.80 40096.63 376
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view792.03 33091.43 32893.82 32898.19 21084.61 36196.27 17690.39 39696.81 10296.37 25793.11 36973.44 38899.49 19980.32 40097.95 31697.36 350
thres100view90091.76 33591.26 33593.26 34098.21 20784.50 36296.39 16690.39 39696.87 10096.33 25893.08 37373.44 38899.42 21978.85 40597.74 32695.85 387
RRT-MVS95.78 20496.25 18594.35 31696.68 33484.47 36397.72 8699.11 5397.23 9197.27 19398.72 8686.39 31099.79 4995.49 15197.67 33398.80 222
gg-mvs-nofinetune88.28 37286.96 37892.23 37192.84 41484.44 36498.19 5274.60 42299.08 1487.01 41399.47 1356.93 41298.23 38278.91 40495.61 38694.01 404
tfpn200view991.55 33791.00 33793.21 34498.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32695.85 387
thres40091.68 33691.00 33793.71 33298.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32697.36 350
testing389.72 35888.26 36794.10 32597.66 28284.30 36794.80 27588.25 40894.66 20595.07 30792.51 38441.15 42699.43 21791.81 27898.44 29698.55 252
GG-mvs-BLEND90.60 38591.00 41884.21 36898.23 4672.63 42582.76 41684.11 41756.14 41596.79 40372.20 41592.09 40690.78 414
dcpmvs_297.12 13497.99 5994.51 31099.11 9284.00 36997.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 15099.78 5599.58 39
thres20091.00 34590.42 34992.77 35997.47 30283.98 37094.01 30891.18 39095.12 18995.44 30091.21 39873.93 38199.31 25977.76 40897.63 33795.01 398
IterMVS95.42 22395.83 20694.20 32297.52 29583.78 37192.41 35897.47 28595.49 17298.06 14498.49 11387.94 29599.58 17096.02 12199.02 24099.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DSMNet-mixed92.19 32491.83 32293.25 34196.18 34983.68 37296.27 17693.68 36076.97 41392.54 37699.18 4289.20 28598.55 36083.88 38798.60 28597.51 345
ETVMVS87.62 37785.75 38493.22 34396.15 35383.26 37392.94 34090.37 39891.39 30190.37 39288.45 41151.93 42398.64 35173.76 41296.38 37197.75 330
ECVR-MVScopyleft94.37 27494.48 26394.05 32698.95 11583.10 37498.31 3982.48 41996.20 12998.23 12399.16 4681.18 34699.66 14395.95 12699.83 4299.38 112
testing22287.35 37985.50 38692.93 35595.79 36882.83 37592.40 35990.10 40292.80 27388.87 40589.02 40948.34 42498.70 34375.40 41196.74 36297.27 354
baseline289.65 36088.44 36693.25 34195.62 37482.71 37693.82 31785.94 41488.89 33687.35 41292.54 38371.23 39399.33 25486.01 36894.60 39697.72 334
Syy-MVS92.09 32791.80 32492.93 35595.19 38482.65 37792.46 35491.35 38690.67 31291.76 38387.61 41385.64 31898.50 36494.73 20396.84 35797.65 337
EPNet_dtu91.39 34090.75 34393.31 33990.48 42082.61 37894.80 27592.88 36993.39 24681.74 41894.90 35081.36 34599.11 29988.28 34798.87 25598.21 289
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet94.25 27594.47 26493.60 33498.14 22282.60 37997.24 11792.72 37285.08 37798.48 9298.94 6782.59 34198.76 33797.47 6699.53 13099.44 100
ADS-MVSNet90.95 34690.26 35093.04 34895.51 37682.37 38095.05 26693.41 36483.46 38992.69 37096.84 27679.15 35598.70 34385.66 37390.52 40798.04 308
ppachtmachnet_test94.49 27094.84 24293.46 33796.16 35082.10 38190.59 39197.48 28490.53 31497.01 21697.59 22091.01 25599.36 24593.97 23499.18 21998.94 197
KD-MVS_2432*160088.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
miper_refine_blended88.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
test111194.53 26894.81 24593.72 33199.06 10081.94 38498.31 3983.87 41796.37 12198.49 9099.17 4581.49 34399.73 8996.64 9399.86 2899.49 75
testing9189.67 35988.55 36493.04 34895.90 36081.80 38592.71 34893.71 35793.71 23690.18 39590.15 40657.11 41199.22 28287.17 36496.32 37398.12 296
mvs_anonymous95.36 22596.07 19493.21 34496.29 34381.56 38694.60 28497.66 27493.30 25096.95 22198.91 7293.03 21299.38 23796.60 9597.30 35098.69 238
testing1188.93 36587.63 37392.80 35895.87 36281.49 38792.48 35391.54 38491.62 29488.27 40890.24 40455.12 42199.11 29987.30 36296.28 37597.81 326
SCA93.38 30493.52 29192.96 35396.24 34481.40 38893.24 33594.00 35691.58 29794.57 31996.97 26787.94 29599.42 21989.47 33097.66 33598.06 304
MonoMVSNet93.30 30693.96 28491.33 38194.14 40281.33 38997.68 8996.69 31395.38 17896.32 25998.42 12184.12 33096.76 40590.78 30192.12 40595.89 386
our_test_394.20 28094.58 25993.07 34796.16 35081.20 39090.42 39396.84 30590.72 31097.14 20297.13 25590.47 26299.11 29994.04 23198.25 30498.91 205
CHOSEN 280x42089.98 35389.19 35992.37 36895.60 37581.13 39186.22 41097.09 29681.44 39787.44 41193.15 36873.99 38099.47 20488.69 34199.07 23596.52 378
testing9989.21 36388.04 36992.70 36195.78 36981.00 39292.65 34992.03 37893.20 25589.90 39990.08 40855.25 41899.14 29287.54 35795.95 37997.97 313
PMMVS293.66 29694.07 27992.45 36797.57 29180.67 39386.46 40996.00 32193.99 23097.10 20697.38 23989.90 27397.82 39088.76 33999.47 15398.86 216
WB-MVSnew91.50 33891.29 33192.14 37294.85 38980.32 39493.29 33488.77 40688.57 34194.03 33592.21 38792.56 22498.28 38080.21 40197.08 35197.81 326
new-patchmatchnet95.67 21096.58 16792.94 35497.48 29880.21 39592.96 33998.19 23594.83 20098.82 6398.79 7993.31 20399.51 19395.83 13499.04 23999.12 168
PatchmatchNetpermissive91.98 33191.87 32192.30 36994.60 39479.71 39695.12 25993.59 36389.52 32793.61 34897.02 26477.94 35999.18 28590.84 29894.57 39798.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WAC-MVS79.32 39785.41 376
myMVS_eth3d87.16 38285.61 38591.82 37595.19 38479.32 39792.46 35491.35 38690.67 31291.76 38387.61 41341.96 42598.50 36482.66 39296.84 35797.65 337
EPMVS89.26 36288.55 36491.39 38092.36 41679.11 39995.65 22679.86 42088.60 34093.12 36196.53 29570.73 39698.10 38690.75 30389.32 41196.98 359
SSC-MVS95.92 19897.03 14192.58 36399.28 5578.39 40096.68 15695.12 34498.90 2399.11 3998.66 9491.36 25199.68 12995.00 18999.16 22199.67 28
UBG88.29 37187.17 37591.63 37796.08 35578.21 40191.61 37191.50 38589.67 32689.71 40088.97 41059.01 40898.91 32381.28 39796.72 36497.77 329
tpm91.08 34490.85 34191.75 37695.33 38278.09 40295.03 26891.27 38988.75 33793.53 35197.40 23371.24 39299.30 26291.25 28893.87 39997.87 321
PVSNet86.72 1991.10 34390.97 33991.49 37897.56 29378.04 40387.17 40894.60 35184.65 38492.34 37792.20 38887.37 30498.47 36785.17 38097.69 33197.96 314
CostFormer89.75 35789.25 35591.26 38294.69 39378.00 40495.32 25091.98 38081.50 39690.55 39096.96 26971.06 39498.89 32588.59 34392.63 40396.87 364
WBMVS91.11 34290.72 34492.26 37095.99 35777.98 40591.47 37495.90 32591.63 29395.90 28496.45 30059.60 40799.46 20789.97 32399.59 10799.33 121
E-PMN89.52 36189.78 35388.73 39393.14 41077.61 40683.26 41592.02 37994.82 20193.71 34493.11 36975.31 37696.81 40285.81 37096.81 36091.77 412
dmvs_testset87.30 38086.99 37788.24 39696.71 33377.48 40794.68 28186.81 41392.64 27689.61 40187.01 41585.91 31493.12 41661.04 42088.49 41294.13 403
EMVS89.06 36489.22 35688.61 39493.00 41277.34 40882.91 41690.92 39194.64 20792.63 37491.81 39276.30 37197.02 39983.83 38896.90 35591.48 413
tpm288.47 36987.69 37290.79 38494.98 38877.34 40895.09 26191.83 38177.51 41289.40 40296.41 30267.83 40198.73 33983.58 39192.60 40496.29 382
WB-MVS95.50 21696.62 16392.11 37399.21 7377.26 41096.12 19095.40 33998.62 3098.84 6198.26 14991.08 25499.50 19493.37 24898.70 27499.58 39
test250689.86 35689.16 36191.97 37498.95 11576.83 41198.54 2361.07 42696.20 12997.07 21299.16 4655.19 42099.69 12496.43 10299.83 4299.38 112
tpmvs90.79 34790.87 34090.57 38692.75 41576.30 41295.79 21693.64 36291.04 30791.91 38196.26 30977.19 36798.86 32989.38 33289.85 41096.56 377
tpm cat188.01 37487.33 37490.05 39094.48 39576.28 41394.47 28794.35 35473.84 41789.26 40395.61 33573.64 38498.30 37984.13 38586.20 41595.57 394
CVMVSNet92.33 32292.79 30590.95 38397.26 31675.84 41495.29 25392.33 37781.86 39396.27 26498.19 15881.44 34498.46 36894.23 22298.29 30398.55 252
reproduce_monomvs92.05 32992.26 31691.43 37995.42 38075.72 41595.68 22297.05 29994.47 21397.95 15798.35 13055.58 41799.05 30796.36 10599.44 16099.51 64
test-LLR89.97 35489.90 35290.16 38794.24 39974.98 41689.89 39889.06 40492.02 28689.97 39790.77 40273.92 38298.57 35791.88 27597.36 34696.92 361
test-mter87.92 37587.17 37590.16 38794.24 39974.98 41689.89 39889.06 40486.44 36489.97 39790.77 40254.96 42298.57 35791.88 27597.36 34696.92 361
PVSNet_081.89 2184.49 38483.21 38788.34 39595.76 37174.97 41883.49 41492.70 37378.47 40887.94 40986.90 41683.38 33696.63 40773.44 41466.86 42093.40 407
UWE-MVS87.57 37886.72 38090.13 38995.21 38373.56 41991.94 36783.78 41888.73 33993.00 36392.87 37755.22 41999.25 27481.74 39497.96 31597.59 342
MDTV_nov1_ep1391.28 33294.31 39673.51 42094.80 27593.16 36686.75 36293.45 35497.40 23376.37 37098.55 36088.85 33896.43 369
TESTMET0.1,187.20 38186.57 38189.07 39293.62 40872.84 42189.89 39887.01 41285.46 37489.12 40490.20 40556.00 41697.72 39290.91 29696.92 35396.64 374
tpmrst90.31 34990.61 34789.41 39194.06 40372.37 42295.06 26593.69 35888.01 34892.32 37896.86 27477.45 36398.82 33091.04 29187.01 41497.04 358
gm-plane-assit91.79 41771.40 42381.67 39490.11 40798.99 31584.86 382
dp88.08 37388.05 36888.16 39892.85 41368.81 42494.17 29992.88 36985.47 37391.38 38696.14 31668.87 40098.81 33286.88 36583.80 41796.87 364
MVS-HIRNet88.40 37090.20 35182.99 40097.01 32560.04 42593.11 33885.61 41584.45 38788.72 40699.09 5384.72 32598.23 38282.52 39396.59 36890.69 415
MDTV_nov1_ep13_2view57.28 42694.89 27280.59 40094.02 33678.66 35785.50 37597.82 324
dongtai63.43 38763.37 39063.60 40383.91 42553.17 42785.14 41143.40 42977.91 41180.96 41979.17 41936.36 42777.10 42137.88 42245.63 42160.54 418
kuosan54.81 38954.94 39254.42 40474.43 42650.03 42884.98 41244.27 42861.80 41962.49 42370.43 42035.16 42858.04 42319.30 42341.61 42255.19 419
tmp_tt57.23 38862.50 39141.44 40534.77 42849.21 42983.93 41360.22 42715.31 42171.11 42179.37 41870.09 39844.86 42464.76 41882.93 41830.25 420
test_method66.88 38666.13 38969.11 40262.68 42725.73 43049.76 41896.04 32014.32 42264.27 42291.69 39473.45 38788.05 41976.06 41066.94 41993.54 405
test12312.59 39115.49 3943.87 4066.07 4292.55 43190.75 3902.59 4312.52 4245.20 42613.02 4234.96 4291.85 4265.20 4249.09 4237.23 421
testmvs12.33 39215.23 3953.64 4075.77 4302.23 43288.99 4053.62 4302.30 4255.29 42513.09 4224.52 4301.95 4255.16 4258.32 4246.75 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.22 39032.30 3930.00 4080.00 4310.00 4330.00 41998.10 2460.00 4260.00 42795.06 34597.54 390.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.98 39310.65 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42695.82 1300.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.91 39410.55 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.94 3470.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145287.24 35498.37 10397.44 23097.00 6796.78 40492.01 27199.25 21099.21 147
eth-test20.00 431
eth-test0.00 431
test_241102_TWO98.83 13796.11 13498.62 7898.24 15196.92 7699.72 9595.44 15999.49 14799.49 75
9.1496.69 16098.53 17296.02 19798.98 9993.23 25297.18 20097.46 22896.47 10399.62 15892.99 25999.32 198
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10995.70 13799.62 9299.58 39
GSMVS98.06 304
sam_mvs177.80 36098.06 304
sam_mvs77.38 364
MTGPAbinary98.73 159
test_post194.98 27010.37 42576.21 37299.04 30989.47 330
test_post10.87 42476.83 36899.07 305
patchmatchnet-post96.84 27677.36 36599.42 219
MTMP96.55 16074.60 422
test9_res91.29 28598.89 25499.00 187
agg_prior290.34 31898.90 25199.10 175
test_prior293.33 33394.21 22094.02 33696.25 31093.64 19791.90 27498.96 244
旧先验293.35 33277.95 41095.77 29198.67 34990.74 306
新几何293.43 328
无先验93.20 33697.91 25780.78 39999.40 23087.71 35297.94 316
原ACMM292.82 342
testdata299.46 20787.84 350
segment_acmp95.34 150
testdata192.77 34393.78 234
plane_prior598.75 15699.46 20792.59 26499.20 21599.28 134
plane_prior496.77 282
plane_prior296.50 16296.36 122
plane_prior198.49 179
n20.00 432
nn0.00 432
door-mid98.17 236
test1198.08 248
door97.81 266
HQP-NCC97.85 24494.26 29193.18 25792.86 366
ACMP_Plane97.85 24494.26 29193.18 25792.86 366
BP-MVS90.51 313
HQP4-MVS92.87 36599.23 28099.06 180
HQP3-MVS98.43 20198.74 269
HQP2-MVS90.33 266
ACMMP++_ref99.52 135
ACMMP++99.55 122
Test By Simon94.51 176