| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 3 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 5 |
|
| mamv4 | | | 99.05 5 | 98.91 8 | 99.46 2 | 98.94 118 | 99.62 2 | 97.98 63 | 99.70 7 | 99.49 3 | 99.78 2 | 99.22 35 | 95.92 124 | 99.95 3 | 99.31 4 | 99.83 42 | 98.83 218 |
|
| testf1 | | | 98.57 18 | 98.45 32 | 98.93 22 | 99.79 3 | 98.78 3 | 97.69 87 | 99.42 24 | 97.69 68 | 98.92 54 | 98.77 82 | 97.80 25 | 99.25 274 | 96.27 110 | 99.69 77 | 98.76 229 |
|
| APD_test2 | | | 98.57 18 | 98.45 32 | 98.93 22 | 99.79 3 | 98.78 3 | 97.69 87 | 99.42 24 | 97.69 68 | 98.92 54 | 98.77 82 | 97.80 25 | 99.25 274 | 96.27 110 | 99.69 77 | 98.76 229 |
|
| Effi-MVS+-dtu | | | 96.81 157 | 96.09 192 | 98.99 14 | 96.90 331 | 98.69 5 | 96.42 165 | 98.09 247 | 95.86 153 | 95.15 306 | 95.54 336 | 94.26 182 | 99.81 41 | 94.06 228 | 98.51 291 | 98.47 260 |
|
| APD_test1 | | | 97.95 63 | 97.68 90 | 98.75 35 | 99.60 16 | 98.60 6 | 97.21 119 | 99.08 64 | 96.57 113 | 98.07 143 | 98.38 127 | 96.22 118 | 99.14 292 | 94.71 205 | 99.31 201 | 98.52 255 |
|
| RPSCF | | | 97.87 78 | 97.51 111 | 98.95 18 | 99.15 83 | 98.43 7 | 97.56 98 | 99.06 68 | 96.19 131 | 98.48 92 | 98.70 91 | 94.72 166 | 99.24 278 | 94.37 216 | 99.33 196 | 99.17 154 |
|
| FOURS1 | | | | | | 99.59 17 | 98.20 8 | 99.03 8 | 99.25 34 | 98.96 22 | 98.87 59 | | | | | | |
|
| TDRefinement | | | 98.90 6 | 98.86 9 | 99.02 10 | 99.54 25 | 98.06 9 | 99.34 5 | 99.44 22 | 98.85 25 | 99.00 47 | 99.20 37 | 97.42 42 | 99.59 168 | 97.21 72 | 99.76 57 | 99.40 105 |
|
| SR-MVS-dyc-post | | | 98.14 43 | 97.84 72 | 99.02 10 | 98.81 132 | 98.05 10 | 97.55 99 | 98.86 123 | 97.77 60 | 98.20 125 | 98.07 172 | 96.60 96 | 99.76 68 | 95.49 151 | 99.20 215 | 99.26 139 |
|
| RE-MVS-def | | | | 97.88 70 | | 98.81 132 | 98.05 10 | 97.55 99 | 98.86 123 | 97.77 60 | 98.20 125 | 98.07 172 | 96.94 71 | | 95.49 151 | 99.20 215 | 99.26 139 |
|
| reproduce_model | | | 98.54 22 | 98.33 38 | 99.15 4 | 99.06 100 | 98.04 12 | 97.04 129 | 99.09 61 | 98.42 37 | 99.03 43 | 98.71 89 | 96.93 73 | 99.83 34 | 97.09 79 | 99.63 90 | 99.56 50 |
|
| reproduce-ours | | | 98.48 26 | 98.27 43 | 99.12 5 | 98.99 110 | 98.02 13 | 96.81 141 | 99.02 82 | 98.29 44 | 98.97 51 | 98.61 100 | 97.27 48 | 99.82 36 | 96.86 90 | 99.61 98 | 99.51 64 |
|
| our_new_method | | | 98.48 26 | 98.27 43 | 99.12 5 | 98.99 110 | 98.02 13 | 96.81 141 | 99.02 82 | 98.29 44 | 98.97 51 | 98.61 100 | 97.27 48 | 99.82 36 | 96.86 90 | 99.61 98 | 99.51 64 |
|
| SR-MVS | | | 98.00 56 | 97.66 92 | 99.01 12 | 98.77 140 | 97.93 15 | 97.38 111 | 98.83 137 | 97.32 88 | 98.06 144 | 97.85 197 | 96.65 91 | 99.77 63 | 95.00 189 | 99.11 229 | 99.32 122 |
|
| MTAPA | | | 98.14 43 | 97.84 72 | 99.06 7 | 99.44 36 | 97.90 16 | 97.25 115 | 98.73 159 | 97.69 68 | 97.90 161 | 97.96 187 | 95.81 134 | 99.82 36 | 96.13 115 | 99.61 98 | 99.45 90 |
|
| UA-Net | | | 98.88 8 | 98.76 14 | 99.22 3 | 99.11 92 | 97.89 17 | 99.47 3 | 99.32 27 | 99.08 14 | 97.87 166 | 99.67 3 | 96.47 103 | 99.92 6 | 97.88 45 | 99.98 2 | 99.85 5 |
|
| mPP-MVS | | | 97.91 73 | 97.53 109 | 99.04 8 | 99.22 66 | 97.87 18 | 97.74 84 | 98.78 151 | 96.04 139 | 97.10 206 | 97.73 211 | 96.53 98 | 99.78 53 | 95.16 177 | 99.50 144 | 99.46 86 |
|
| CP-MVS | | | 97.92 70 | 97.56 106 | 98.99 14 | 98.99 110 | 97.82 19 | 97.93 68 | 98.96 103 | 96.11 134 | 96.89 225 | 97.45 229 | 96.85 83 | 99.78 53 | 95.19 173 | 99.63 90 | 99.38 112 |
|
| PMVS |  | 89.60 17 | 96.71 165 | 96.97 144 | 95.95 240 | 99.51 28 | 97.81 20 | 97.42 110 | 97.49 283 | 97.93 56 | 95.95 279 | 98.58 103 | 96.88 80 | 96.91 401 | 89.59 328 | 99.36 183 | 93.12 409 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MP-MVS |  | | 97.64 100 | 97.18 132 | 99.00 13 | 99.32 53 | 97.77 21 | 97.49 105 | 98.73 159 | 96.27 125 | 95.59 296 | 97.75 208 | 96.30 113 | 99.78 53 | 93.70 243 | 99.48 151 | 99.45 90 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MSP-MVS | | | 97.45 115 | 96.92 149 | 99.03 9 | 99.26 57 | 97.70 22 | 97.66 90 | 98.89 111 | 95.65 162 | 98.51 87 | 96.46 299 | 92.15 236 | 99.81 41 | 95.14 180 | 98.58 286 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVS | | | 97.96 59 | 97.63 98 | 98.94 19 | 99.15 83 | 97.66 23 | 97.77 79 | 98.83 137 | 97.42 79 | 96.32 259 | 97.64 216 | 96.49 101 | 99.72 95 | 95.66 142 | 99.37 180 | 99.45 90 |
|
| X-MVStestdata | | | 92.86 313 | 90.83 342 | 98.94 19 | 99.15 83 | 97.66 23 | 97.77 79 | 98.83 137 | 97.42 79 | 96.32 259 | 36.50 421 | 96.49 101 | 99.72 95 | 95.66 142 | 99.37 180 | 99.45 90 |
|
| PGM-MVS | | | 97.88 77 | 97.52 110 | 98.96 17 | 99.20 75 | 97.62 25 | 97.09 126 | 99.06 68 | 95.45 173 | 97.55 177 | 97.94 190 | 97.11 57 | 99.78 53 | 94.77 201 | 99.46 156 | 99.48 81 |
|
| ACMMP |  | | 98.05 53 | 97.75 85 | 98.93 22 | 99.23 63 | 97.60 26 | 98.09 57 | 98.96 103 | 95.75 159 | 97.91 160 | 98.06 177 | 96.89 78 | 99.76 68 | 95.32 167 | 99.57 113 | 99.43 101 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| HPM-MVS++ |  | | 96.99 140 | 96.38 180 | 98.81 31 | 98.64 154 | 97.59 27 | 95.97 203 | 98.20 230 | 95.51 170 | 95.06 308 | 96.53 295 | 94.10 185 | 99.70 117 | 94.29 219 | 99.15 222 | 99.13 163 |
|
| LS3D | | | 97.77 90 | 97.50 113 | 98.57 51 | 96.24 344 | 97.58 28 | 98.45 31 | 98.85 127 | 98.58 32 | 97.51 180 | 97.94 190 | 95.74 137 | 99.63 153 | 95.19 173 | 98.97 243 | 98.51 256 |
|
| ACMMPR | | | 97.95 63 | 97.62 100 | 98.94 19 | 99.20 75 | 97.56 29 | 97.59 96 | 98.83 137 | 96.05 137 | 97.46 187 | 97.63 217 | 96.77 87 | 99.76 68 | 95.61 146 | 99.46 156 | 99.49 75 |
|
| EGC-MVSNET | | | 83.08 385 | 77.93 388 | 98.53 54 | 99.57 19 | 97.55 30 | 98.33 38 | 98.57 189 | 4.71 423 | 10.38 424 | 98.90 73 | 95.60 142 | 99.50 194 | 95.69 139 | 99.61 98 | 98.55 252 |
|
| region2R | | | 97.92 70 | 97.59 103 | 98.92 25 | 99.22 66 | 97.55 30 | 97.60 94 | 98.84 131 | 96.00 142 | 97.22 195 | 97.62 218 | 96.87 82 | 99.76 68 | 95.48 155 | 99.43 169 | 99.46 86 |
|
| ACMM | | 93.33 11 | 98.05 53 | 97.79 79 | 98.85 28 | 99.15 83 | 97.55 30 | 96.68 156 | 98.83 137 | 95.21 183 | 98.36 106 | 98.13 164 | 98.13 18 | 99.62 158 | 96.04 119 | 99.54 126 | 99.39 110 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HFP-MVS | | | 97.94 66 | 97.64 96 | 98.83 29 | 99.15 83 | 97.50 33 | 97.59 96 | 98.84 131 | 96.05 137 | 97.49 182 | 97.54 223 | 97.07 61 | 99.70 117 | 95.61 146 | 99.46 156 | 99.30 127 |
|
| HPM-MVS_fast | | | 98.32 35 | 98.13 46 | 98.88 27 | 99.54 25 | 97.48 34 | 98.35 35 | 99.03 80 | 95.88 151 | 97.88 163 | 98.22 156 | 98.15 16 | 99.74 83 | 96.50 99 | 99.62 92 | 99.42 102 |
|
| HPM-MVS |  | | 98.11 47 | 97.83 75 | 98.92 25 | 99.42 39 | 97.46 35 | 98.57 20 | 99.05 72 | 95.43 176 | 97.41 189 | 97.50 227 | 97.98 19 | 99.79 49 | 95.58 149 | 99.57 113 | 99.50 67 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 97.12 134 | 96.74 158 | 98.26 72 | 98.99 110 | 97.45 36 | 93.82 317 | 99.05 72 | 95.19 185 | 98.32 114 | 97.70 213 | 95.22 154 | 98.41 370 | 94.27 220 | 98.13 309 | 98.93 201 |
|
| MAR-MVS | | | 94.21 278 | 93.03 298 | 97.76 111 | 96.94 329 | 97.44 37 | 96.97 133 | 97.15 293 | 87.89 351 | 92.00 380 | 92.73 381 | 92.14 237 | 99.12 296 | 83.92 386 | 97.51 341 | 96.73 373 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| XVG-OURS-SEG-HR | | | 97.38 121 | 97.07 138 | 98.30 70 | 99.01 109 | 97.41 38 | 94.66 282 | 99.02 82 | 95.20 184 | 98.15 133 | 97.52 225 | 98.83 5 | 98.43 369 | 94.87 194 | 96.41 370 | 99.07 178 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 40 | 98.11 48 | 98.64 47 | 99.21 73 | 97.35 39 | 97.96 64 | 99.16 43 | 98.34 40 | 98.78 66 | 98.52 110 | 97.32 45 | 99.45 212 | 94.08 227 | 99.67 83 | 99.13 163 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| APD-MVS_3200maxsize | | | 98.13 46 | 97.90 65 | 98.79 33 | 98.79 136 | 97.31 40 | 97.55 99 | 98.92 108 | 97.72 65 | 98.25 121 | 98.13 164 | 97.10 58 | 99.75 74 | 95.44 159 | 99.24 213 | 99.32 122 |
|
| anonymousdsp | | | 98.72 15 | 98.63 21 | 98.99 14 | 99.62 15 | 97.29 41 | 98.65 19 | 99.19 40 | 95.62 164 | 99.35 26 | 99.37 21 | 97.38 43 | 99.90 16 | 98.59 27 | 99.91 17 | 99.77 13 |
|
| GST-MVS | | | 97.82 85 | 97.49 114 | 98.81 31 | 99.23 63 | 97.25 42 | 97.16 120 | 98.79 147 | 95.96 144 | 97.53 178 | 97.40 233 | 96.93 73 | 99.77 63 | 95.04 186 | 99.35 188 | 99.42 102 |
|
| ZNCC-MVS | | | 97.92 70 | 97.62 100 | 98.83 29 | 99.32 53 | 97.24 43 | 97.45 106 | 98.84 131 | 95.76 157 | 96.93 222 | 97.43 231 | 97.26 52 | 99.79 49 | 96.06 116 | 99.53 130 | 99.45 90 |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 148 | 96.43 178 | 98.31 69 | 97.48 298 | 97.23 44 | 92.56 351 | 98.60 184 | 92.84 272 | 98.54 85 | 97.40 233 | 96.64 93 | 98.78 334 | 94.40 215 | 99.41 176 | 98.93 201 |
|
| SteuartSystems-ACMMP | | | 98.02 55 | 97.76 83 | 98.79 33 | 99.43 37 | 97.21 45 | 97.15 121 | 98.90 110 | 96.58 110 | 98.08 141 | 97.87 196 | 97.02 66 | 99.76 68 | 95.25 170 | 99.59 107 | 99.40 105 |
| Skip Steuart: Steuart Systems R&D Blog. |
| LPG-MVS_test | | | 97.94 66 | 97.67 91 | 98.74 38 | 99.15 83 | 97.02 46 | 97.09 126 | 99.02 82 | 95.15 187 | 98.34 110 | 98.23 153 | 97.91 21 | 99.70 117 | 94.41 213 | 99.73 66 | 99.50 67 |
|
| LGP-MVS_train | | | | | 98.74 38 | 99.15 83 | 97.02 46 | | 99.02 82 | 95.15 187 | 98.34 110 | 98.23 153 | 97.91 21 | 99.70 117 | 94.41 213 | 99.73 66 | 99.50 67 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 41 | 99.71 9 | 96.99 48 | 99.69 2 | 99.57 17 | 99.02 19 | 99.62 13 | 99.36 23 | 98.53 9 | 99.52 189 | 98.58 28 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| FPMVS | | | 89.92 355 | 88.63 363 | 93.82 328 | 98.37 190 | 96.94 49 | 91.58 372 | 93.34 365 | 88.00 349 | 90.32 393 | 97.10 259 | 70.87 395 | 91.13 418 | 71.91 416 | 96.16 378 | 93.39 408 |
|
| XVG-ACMP-BASELINE | | | 97.58 107 | 97.28 125 | 98.49 56 | 99.16 80 | 96.90 50 | 96.39 166 | 98.98 99 | 95.05 193 | 98.06 144 | 98.02 181 | 95.86 126 | 99.56 177 | 94.37 216 | 99.64 88 | 99.00 187 |
|
| MP-MVS-pluss | | | 97.69 96 | 97.36 119 | 98.70 42 | 99.50 31 | 96.84 51 | 95.38 243 | 98.99 96 | 92.45 280 | 98.11 136 | 98.31 135 | 97.25 53 | 99.77 63 | 96.60 95 | 99.62 92 | 99.48 81 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMMP_NAP | | | 97.89 76 | 97.63 98 | 98.67 44 | 99.35 49 | 96.84 51 | 96.36 171 | 98.79 147 | 95.07 191 | 97.88 163 | 98.35 130 | 97.24 54 | 99.72 95 | 96.05 118 | 99.58 110 | 99.45 90 |
|
| PM-MVS | | | 97.36 125 | 97.10 135 | 98.14 84 | 98.91 124 | 96.77 53 | 96.20 183 | 98.63 182 | 93.82 233 | 98.54 85 | 98.33 133 | 93.98 188 | 99.05 307 | 95.99 124 | 99.45 159 | 98.61 247 |
|
| MIMVSNet1 | | | 98.51 25 | 98.45 32 | 98.67 44 | 99.72 8 | 96.71 54 | 98.76 13 | 98.89 111 | 98.49 35 | 99.38 23 | 99.14 49 | 95.44 147 | 99.84 32 | 96.47 100 | 99.80 50 | 99.47 84 |
|
| ACMP | | 92.54 13 | 97.47 114 | 97.10 135 | 98.55 53 | 99.04 106 | 96.70 55 | 96.24 181 | 98.89 111 | 93.71 236 | 97.97 154 | 97.75 208 | 97.44 40 | 99.63 153 | 93.22 255 | 99.70 76 | 99.32 122 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CS-MVS | | | 98.09 48 | 98.01 57 | 98.32 67 | 98.45 184 | 96.69 56 | 98.52 26 | 99.69 8 | 98.07 53 | 96.07 275 | 97.19 252 | 96.88 80 | 99.86 26 | 97.50 64 | 99.73 66 | 98.41 263 |
|
| SMA-MVS |  | | 97.48 113 | 97.11 134 | 98.60 49 | 98.83 131 | 96.67 57 | 96.74 149 | 98.73 159 | 91.61 295 | 98.48 92 | 98.36 129 | 96.53 98 | 99.68 129 | 95.17 175 | 99.54 126 | 99.45 90 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ITE_SJBPF | | | | | 97.85 106 | 98.64 154 | 96.66 58 | | 98.51 194 | 95.63 163 | 97.22 195 | 97.30 246 | 95.52 143 | 98.55 360 | 90.97 294 | 98.90 251 | 98.34 274 |
|
| CPTT-MVS | | | 96.69 166 | 96.08 193 | 98.49 56 | 98.89 125 | 96.64 59 | 97.25 115 | 98.77 152 | 92.89 271 | 96.01 278 | 97.13 255 | 92.23 234 | 99.67 137 | 92.24 269 | 99.34 191 | 99.17 154 |
|
| OPM-MVS | | | 97.54 109 | 97.25 126 | 98.41 61 | 99.11 92 | 96.61 60 | 95.24 255 | 98.46 197 | 94.58 211 | 98.10 138 | 98.07 172 | 97.09 60 | 99.39 234 | 95.16 177 | 99.44 160 | 99.21 147 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| WR-MVS_H | | | 98.65 16 | 98.62 23 | 98.75 35 | 99.51 28 | 96.61 60 | 98.55 22 | 99.17 42 | 99.05 17 | 99.17 36 | 98.79 79 | 95.47 145 | 99.89 19 | 97.95 43 | 99.91 17 | 99.75 20 |
|
| N_pmnet | | | 95.18 235 | 94.23 272 | 98.06 90 | 97.85 244 | 96.55 62 | 92.49 352 | 91.63 383 | 89.34 328 | 98.09 139 | 97.41 232 | 90.33 266 | 99.06 306 | 91.58 282 | 99.31 201 | 98.56 250 |
|
| PHI-MVS | | | 96.96 144 | 96.53 173 | 98.25 75 | 97.48 298 | 96.50 63 | 96.76 147 | 98.85 127 | 93.52 242 | 96.19 271 | 96.85 275 | 95.94 123 | 99.42 219 | 93.79 239 | 99.43 169 | 98.83 218 |
|
| jajsoiax | | | 98.77 10 | 98.79 13 | 98.74 38 | 99.66 12 | 96.48 64 | 98.45 31 | 99.12 52 | 95.83 155 | 99.67 8 | 99.37 21 | 98.25 13 | 99.92 6 | 98.77 20 | 99.94 8 | 99.82 8 |
|
| mvs_tets | | | 98.90 6 | 98.94 6 | 98.75 35 | 99.69 10 | 96.48 64 | 98.54 23 | 99.22 35 | 96.23 128 | 99.71 5 | 99.48 12 | 98.77 7 | 99.93 4 | 98.89 17 | 99.95 5 | 99.84 7 |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 52 | 99.81 2 | 96.38 66 | 98.87 10 | 99.30 29 | 99.01 20 | 99.63 12 | 99.66 4 | 99.27 2 | 99.68 129 | 97.75 54 | 99.89 23 | 99.62 36 |
|
| tt0805 | | | 97.44 116 | 97.56 106 | 97.11 166 | 99.55 22 | 96.36 67 | 98.66 18 | 95.66 329 | 98.31 41 | 97.09 211 | 95.45 339 | 97.17 56 | 98.50 364 | 98.67 25 | 97.45 345 | 96.48 379 |
|
| OurMVSNet-221017-0 | | | 98.61 17 | 98.61 25 | 98.63 48 | 99.77 5 | 96.35 68 | 99.17 7 | 99.05 72 | 98.05 54 | 99.61 14 | 99.52 9 | 93.72 196 | 99.88 21 | 98.72 24 | 99.88 24 | 99.65 33 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 46 | 99.77 5 | 96.34 69 | 99.18 6 | 99.20 38 | 99.67 2 | 99.73 4 | 99.65 6 | 99.15 3 | 99.86 26 | 97.22 71 | 99.92 14 | 99.77 13 |
|
| APD-MVS |  | | 97.00 139 | 96.53 173 | 98.41 61 | 98.55 169 | 96.31 70 | 96.32 174 | 98.77 152 | 92.96 270 | 97.44 188 | 97.58 222 | 95.84 127 | 99.74 83 | 91.96 272 | 99.35 188 | 99.19 151 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_djsdf | | | 98.73 12 | 98.74 17 | 98.69 43 | 99.63 14 | 96.30 71 | 98.67 15 | 99.02 82 | 96.50 115 | 99.32 27 | 99.44 16 | 97.43 41 | 99.92 6 | 98.73 22 | 99.95 5 | 99.86 4 |
|
| Gipuma |  | | 98.07 51 | 98.31 39 | 97.36 149 | 99.76 7 | 96.28 72 | 98.51 27 | 99.10 56 | 98.76 27 | 96.79 228 | 99.34 26 | 96.61 94 | 98.82 330 | 96.38 104 | 99.50 144 | 96.98 359 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DPE-MVS |  | | 97.64 100 | 97.35 120 | 98.50 55 | 98.85 130 | 96.18 73 | 95.21 257 | 98.99 96 | 95.84 154 | 98.78 66 | 98.08 170 | 96.84 84 | 99.81 41 | 93.98 233 | 99.57 113 | 99.52 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| AllTest | | | 97.20 132 | 96.92 149 | 98.06 90 | 99.08 96 | 96.16 74 | 97.14 123 | 99.16 43 | 94.35 217 | 97.78 171 | 98.07 172 | 95.84 127 | 99.12 296 | 91.41 283 | 99.42 172 | 98.91 205 |
|
| TestCases | | | | | 98.06 90 | 99.08 96 | 96.16 74 | | 99.16 43 | 94.35 217 | 97.78 171 | 98.07 172 | 95.84 127 | 99.12 296 | 91.41 283 | 99.42 172 | 98.91 205 |
|
| DTE-MVSNet | | | 98.79 9 | 98.86 9 | 98.59 50 | 99.55 22 | 96.12 76 | 98.48 30 | 99.10 56 | 99.36 5 | 99.29 29 | 99.06 56 | 97.27 48 | 99.93 4 | 97.71 56 | 99.91 17 | 99.70 26 |
|
| h-mvs33 | | | 96.29 183 | 95.63 214 | 98.26 72 | 98.50 178 | 96.11 77 | 96.90 136 | 97.09 296 | 96.58 110 | 97.21 197 | 98.19 158 | 84.14 328 | 99.78 53 | 95.89 130 | 96.17 377 | 98.89 209 |
|
| test_part2 | | | | | | 99.03 107 | 96.07 78 | | | | 98.08 141 | | | | | | |
|
| APDe-MVS |  | | 98.14 43 | 98.03 55 | 98.47 58 | 98.72 144 | 96.04 79 | 98.07 58 | 99.10 56 | 95.96 144 | 98.59 82 | 98.69 92 | 96.94 71 | 99.81 41 | 96.64 93 | 99.58 110 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| F-COLMAP | | | 95.30 230 | 94.38 269 | 98.05 94 | 98.64 154 | 96.04 79 | 95.61 230 | 98.66 176 | 89.00 334 | 93.22 359 | 96.40 304 | 92.90 214 | 99.35 249 | 87.45 360 | 97.53 340 | 98.77 228 |
|
| SPE-MVS-test | | | 97.91 73 | 97.84 72 | 98.14 84 | 98.52 173 | 96.03 81 | 98.38 34 | 99.67 9 | 98.11 51 | 95.50 299 | 96.92 272 | 96.81 86 | 99.87 24 | 96.87 89 | 99.76 57 | 98.51 256 |
|
| OMC-MVS | | | 96.48 176 | 96.00 196 | 97.91 102 | 98.30 195 | 96.01 82 | 94.86 274 | 98.60 184 | 91.88 290 | 97.18 200 | 97.21 251 | 96.11 120 | 99.04 309 | 90.49 315 | 99.34 191 | 98.69 238 |
|
| ZD-MVS | | | | | | 98.43 186 | 95.94 83 | | 98.56 190 | 90.72 310 | 96.66 239 | 97.07 260 | 95.02 160 | 99.74 83 | 91.08 290 | 98.93 249 | |
|
| test_vis3_rt | | | 97.04 137 | 96.98 143 | 97.23 160 | 98.44 185 | 95.88 84 | 96.82 140 | 99.67 9 | 90.30 317 | 99.27 30 | 99.33 28 | 94.04 186 | 96.03 409 | 97.14 77 | 97.83 322 | 99.78 12 |
|
| TranMVSNet+NR-MVSNet | | | 98.33 33 | 98.30 41 | 98.43 60 | 99.07 98 | 95.87 85 | 96.73 153 | 99.05 72 | 98.67 28 | 98.84 61 | 98.45 118 | 97.58 38 | 99.88 21 | 96.45 101 | 99.86 28 | 99.54 54 |
|
| UniMVSNet (Re) | | | 97.83 82 | 97.65 93 | 98.35 66 | 98.80 134 | 95.86 86 | 95.92 208 | 99.04 79 | 97.51 76 | 98.22 124 | 97.81 203 | 94.68 169 | 99.78 53 | 97.14 77 | 99.75 64 | 99.41 104 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 82 | 97.65 93 | 98.37 64 | 98.72 144 | 95.78 87 | 95.66 224 | 99.02 82 | 98.11 51 | 98.31 116 | 97.69 214 | 94.65 171 | 99.85 29 | 97.02 84 | 99.71 73 | 99.48 81 |
|
| DU-MVS | | | 97.79 88 | 97.60 102 | 98.36 65 | 98.73 142 | 95.78 87 | 95.65 226 | 98.87 120 | 97.57 72 | 98.31 116 | 97.83 198 | 94.69 167 | 99.85 29 | 97.02 84 | 99.71 73 | 99.46 86 |
|
| PatchMatch-RL | | | 94.61 264 | 93.81 286 | 97.02 177 | 98.19 210 | 95.72 89 | 93.66 322 | 97.23 289 | 88.17 347 | 94.94 313 | 95.62 334 | 91.43 249 | 98.57 357 | 87.36 361 | 97.68 332 | 96.76 372 |
|
| DeepC-MVS | | 95.41 4 | 97.82 85 | 97.70 86 | 98.16 81 | 98.78 139 | 95.72 89 | 96.23 182 | 99.02 82 | 93.92 232 | 98.62 78 | 98.99 61 | 97.69 29 | 99.62 158 | 96.18 114 | 99.87 26 | 99.15 157 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 97.60 104 | 97.39 117 | 98.22 77 | 98.93 120 | 95.69 91 | 97.05 128 | 99.10 56 | 95.32 180 | 97.83 169 | 97.88 195 | 96.44 106 | 99.72 95 | 94.59 210 | 99.39 178 | 99.25 143 |
|
| NCCC | | | 96.52 174 | 95.99 197 | 98.10 87 | 97.81 253 | 95.68 92 | 95.00 269 | 98.20 230 | 95.39 177 | 95.40 302 | 96.36 306 | 93.81 193 | 99.45 212 | 93.55 246 | 98.42 297 | 99.17 154 |
|
| PEN-MVS | | | 98.75 11 | 98.85 11 | 98.44 59 | 99.58 18 | 95.67 93 | 98.45 31 | 99.15 47 | 99.33 6 | 99.30 28 | 99.00 59 | 97.27 48 | 99.92 6 | 97.64 60 | 99.92 14 | 99.75 20 |
|
| nrg030 | | | 98.54 22 | 98.62 23 | 98.32 67 | 99.22 66 | 95.66 94 | 97.90 71 | 99.08 64 | 98.31 41 | 99.02 44 | 98.74 85 | 97.68 30 | 99.61 165 | 97.77 53 | 99.85 36 | 99.70 26 |
|
| 3Dnovator+ | | 96.13 3 | 97.73 92 | 97.59 103 | 98.15 83 | 98.11 226 | 95.60 95 | 98.04 59 | 98.70 168 | 98.13 50 | 96.93 222 | 98.45 118 | 95.30 152 | 99.62 158 | 95.64 144 | 98.96 244 | 99.24 144 |
|
| LF4IMVS | | | 96.07 191 | 95.63 214 | 97.36 149 | 98.19 210 | 95.55 96 | 95.44 236 | 98.82 145 | 92.29 283 | 95.70 293 | 96.55 293 | 92.63 222 | 98.69 345 | 91.75 281 | 99.33 196 | 97.85 322 |
|
| NR-MVSNet | | | 97.96 59 | 97.86 71 | 98.26 72 | 98.73 142 | 95.54 97 | 98.14 54 | 98.73 159 | 97.79 59 | 99.42 21 | 97.83 198 | 94.40 179 | 99.78 53 | 95.91 129 | 99.76 57 | 99.46 86 |
|
| CNVR-MVS | | | 96.92 146 | 96.55 170 | 98.03 95 | 98.00 235 | 95.54 97 | 94.87 273 | 98.17 236 | 94.60 208 | 96.38 256 | 97.05 262 | 95.67 139 | 99.36 245 | 95.12 183 | 99.08 233 | 99.19 151 |
|
| hse-mvs2 | | | 95.77 205 | 95.09 227 | 97.79 109 | 97.84 249 | 95.51 99 | 95.66 224 | 95.43 338 | 96.58 110 | 97.21 197 | 96.16 313 | 84.14 328 | 99.54 184 | 95.89 130 | 96.92 353 | 98.32 275 |
|
| DVP-MVS |  | | 97.78 89 | 97.65 93 | 98.16 81 | 99.24 61 | 95.51 99 | 96.74 149 | 98.23 226 | 95.92 148 | 98.40 100 | 98.28 144 | 97.06 62 | 99.71 109 | 95.48 155 | 99.52 135 | 99.26 139 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.24 61 | 95.51 99 | 96.89 137 | 98.89 111 | 95.92 148 | 98.64 76 | 98.31 135 | 97.06 62 | | | | |
|
| test_one_0601 | | | | | | 99.05 105 | 95.50 102 | | 98.87 120 | 97.21 93 | 98.03 148 | 98.30 139 | 96.93 73 | | | | |
|
| test_0728_SECOND | | | | | 98.25 75 | 99.23 63 | 95.49 103 | 96.74 149 | 98.89 111 | | | | | 99.75 74 | 95.48 155 | 99.52 135 | 99.53 57 |
|
| PS-CasMVS | | | 98.73 12 | 98.85 11 | 98.39 63 | 99.55 22 | 95.47 104 | 98.49 28 | 99.13 51 | 99.22 10 | 99.22 34 | 98.96 65 | 97.35 44 | 99.92 6 | 97.79 51 | 99.93 11 | 99.79 11 |
|
| DVP-MVS++ | | | 97.96 59 | 97.90 65 | 98.12 86 | 97.75 269 | 95.40 105 | 99.03 8 | 98.89 111 | 96.62 106 | 98.62 78 | 98.30 139 | 96.97 69 | 99.75 74 | 95.70 137 | 99.25 210 | 99.21 147 |
|
| IU-MVS | | | | | | 99.22 66 | 95.40 105 | | 98.14 243 | 85.77 371 | 98.36 106 | | | | 95.23 172 | 99.51 140 | 99.49 75 |
|
| AUN-MVS | | | 93.95 290 | 92.69 309 | 97.74 112 | 97.80 257 | 95.38 107 | 95.57 233 | 95.46 337 | 91.26 304 | 92.64 373 | 96.10 319 | 74.67 379 | 99.55 181 | 93.72 242 | 96.97 352 | 98.30 279 |
|
| test_prior4 | | | | | | | 95.38 107 | 93.61 325 | | | | | | | | | |
|
| wuyk23d | | | 93.25 308 | 95.20 221 | 87.40 399 | 96.07 356 | 95.38 107 | 97.04 129 | 94.97 346 | 95.33 179 | 99.70 7 | 98.11 168 | 98.14 17 | 91.94 417 | 77.76 408 | 99.68 81 | 74.89 417 |
|
| SED-MVS | | | 97.94 66 | 97.90 65 | 98.07 88 | 99.22 66 | 95.35 110 | 96.79 145 | 98.83 137 | 96.11 134 | 99.08 40 | 98.24 151 | 97.87 23 | 99.72 95 | 95.44 159 | 99.51 140 | 99.14 161 |
|
| test_241102_ONE | | | | | | 99.22 66 | 95.35 110 | | 98.83 137 | 96.04 139 | 99.08 40 | 98.13 164 | 97.87 23 | 99.33 254 | | | |
|
| MSC_two_6792asdad | | | | | 98.22 77 | 97.75 269 | 95.34 112 | | 98.16 240 | | | | | 99.75 74 | 95.87 132 | 99.51 140 | 99.57 46 |
|
| No_MVS | | | | | 98.22 77 | 97.75 269 | 95.34 112 | | 98.16 240 | | | | | 99.75 74 | 95.87 132 | 99.51 140 | 99.57 46 |
|
| MVS_111021_LR | | | 96.82 156 | 96.55 170 | 97.62 122 | 98.27 200 | 95.34 112 | 93.81 319 | 98.33 216 | 94.59 210 | 96.56 247 | 96.63 290 | 96.61 94 | 98.73 339 | 94.80 197 | 99.34 191 | 98.78 225 |
|
| OPU-MVS | | | | | 97.64 121 | 98.01 231 | 95.27 115 | 96.79 145 | | | | 97.35 242 | 96.97 69 | 98.51 363 | 91.21 289 | 99.25 210 | 99.14 161 |
|
| CNLPA | | | 95.04 241 | 94.47 264 | 96.75 197 | 97.81 253 | 95.25 116 | 94.12 305 | 97.89 259 | 94.41 215 | 94.57 319 | 95.69 330 | 90.30 269 | 98.35 376 | 86.72 367 | 98.76 267 | 96.64 374 |
|
| TEST9 | | | | | | 97.84 249 | 95.23 117 | 93.62 323 | 98.39 208 | 86.81 360 | 93.78 340 | 95.99 321 | 94.68 169 | 99.52 189 | | | |
|
| train_agg | | | 95.46 221 | 94.66 250 | 97.88 104 | 97.84 249 | 95.23 117 | 93.62 323 | 98.39 208 | 87.04 356 | 93.78 340 | 95.99 321 | 94.58 173 | 99.52 189 | 91.76 280 | 98.90 251 | 98.89 209 |
|
| TSAR-MVS + GP. | | | 96.47 177 | 96.12 190 | 97.49 137 | 97.74 272 | 95.23 117 | 94.15 301 | 96.90 304 | 93.26 251 | 98.04 147 | 96.70 286 | 94.41 178 | 98.89 325 | 94.77 201 | 99.14 223 | 98.37 268 |
|
| CP-MVSNet | | | 98.42 30 | 98.46 30 | 98.30 70 | 99.46 34 | 95.22 120 | 98.27 44 | 98.84 131 | 99.05 17 | 99.01 45 | 98.65 97 | 95.37 149 | 99.90 16 | 97.57 61 | 99.91 17 | 99.77 13 |
|
| ACMH+ | | 93.58 10 | 98.23 41 | 98.31 39 | 97.98 99 | 99.39 44 | 95.22 120 | 97.55 99 | 99.20 38 | 98.21 48 | 99.25 32 | 98.51 112 | 98.21 14 | 99.40 230 | 94.79 198 | 99.72 70 | 99.32 122 |
|
| Vis-MVSNet |  | | 98.27 38 | 98.34 37 | 98.07 88 | 99.33 51 | 95.21 122 | 98.04 59 | 99.46 20 | 97.32 88 | 97.82 170 | 99.11 51 | 96.75 88 | 99.86 26 | 97.84 48 | 99.36 183 | 99.15 157 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| EC-MVSNet | | | 97.90 75 | 97.94 64 | 97.79 109 | 98.66 153 | 95.14 123 | 98.31 39 | 99.66 11 | 97.57 72 | 95.95 279 | 97.01 266 | 96.99 68 | 99.82 36 | 97.66 59 | 99.64 88 | 98.39 266 |
|
| SD-MVS | | | 97.37 123 | 97.70 86 | 96.35 221 | 98.14 222 | 95.13 124 | 96.54 161 | 98.92 108 | 95.94 146 | 99.19 35 | 98.08 170 | 97.74 28 | 95.06 411 | 95.24 171 | 99.54 126 | 98.87 215 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PLC |  | 91.02 16 | 94.05 285 | 92.90 301 | 97.51 130 | 98.00 235 | 95.12 125 | 94.25 294 | 98.25 223 | 86.17 365 | 91.48 385 | 95.25 341 | 91.01 255 | 99.19 284 | 85.02 381 | 96.69 365 | 98.22 288 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test_8 | | | | | | 97.81 253 | 95.07 126 | 93.54 326 | 98.38 210 | 87.04 356 | 93.71 344 | 95.96 324 | 94.58 173 | 99.52 189 | | | |
|
| TSAR-MVS + MP. | | | 97.42 119 | 97.23 128 | 98.00 97 | 99.38 46 | 95.00 127 | 97.63 93 | 98.20 230 | 93.00 265 | 98.16 131 | 98.06 177 | 95.89 125 | 99.72 95 | 95.67 141 | 99.10 231 | 99.28 134 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| agg_prior | | | | | | 97.80 257 | 94.96 128 | | 98.36 212 | | 93.49 352 | | | 99.53 186 | | | |
|
| CDPH-MVS | | | 95.45 222 | 94.65 251 | 97.84 107 | 98.28 198 | 94.96 128 | 93.73 321 | 98.33 216 | 85.03 379 | 95.44 300 | 96.60 291 | 95.31 151 | 99.44 215 | 90.01 321 | 99.13 225 | 99.11 171 |
|
| CSCG | | | 97.40 120 | 97.30 122 | 97.69 118 | 98.95 115 | 94.83 130 | 97.28 114 | 98.99 96 | 96.35 124 | 98.13 135 | 95.95 325 | 95.99 122 | 99.66 143 | 94.36 218 | 99.73 66 | 98.59 248 |
|
| PS-MVSNAJss | | | 98.53 24 | 98.63 21 | 98.21 80 | 99.68 11 | 94.82 131 | 98.10 56 | 99.21 36 | 96.91 99 | 99.75 3 | 99.45 15 | 95.82 130 | 99.92 6 | 98.80 19 | 99.96 4 | 99.89 3 |
|
| DP-MVS | | | 97.87 78 | 97.89 68 | 97.81 108 | 98.62 160 | 94.82 131 | 97.13 124 | 98.79 147 | 98.98 21 | 98.74 73 | 98.49 113 | 95.80 135 | 99.49 199 | 95.04 186 | 99.44 160 | 99.11 171 |
|
| save fliter | | | | | | 98.48 181 | 94.71 133 | 94.53 286 | 98.41 205 | 95.02 195 | | | | | | | |
|
| alignmvs | | | 96.01 195 | 95.52 217 | 97.50 134 | 97.77 266 | 94.71 133 | 96.07 193 | 96.84 305 | 97.48 77 | 96.78 232 | 94.28 361 | 85.50 319 | 99.40 230 | 96.22 112 | 98.73 272 | 98.40 264 |
|
| 新几何1 | | | | | 97.25 158 | 98.29 196 | 94.70 135 | | 97.73 269 | 77.98 409 | 94.83 315 | 96.67 288 | 92.08 240 | 99.45 212 | 88.17 349 | 98.65 280 | 97.61 340 |
|
| plane_prior7 | | | | | | 98.70 149 | 94.67 136 | | | | | | | | | | |
|
| CMPMVS |  | 73.10 23 | 92.74 315 | 91.39 329 | 96.77 196 | 93.57 409 | 94.67 136 | 94.21 298 | 97.67 272 | 80.36 402 | 93.61 348 | 96.60 291 | 82.85 339 | 97.35 395 | 84.86 382 | 98.78 265 | 98.29 282 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_fmvsmconf0.01_n | | | 98.57 18 | 98.74 17 | 98.06 90 | 99.39 44 | 94.63 138 | 96.70 155 | 99.82 1 | 95.44 175 | 99.64 11 | 99.52 9 | 98.96 4 | 99.74 83 | 99.38 3 | 99.86 28 | 99.81 9 |
|
| test_fmvsmconf0.1_n | | | 98.41 31 | 98.54 27 | 98.03 95 | 99.16 80 | 94.61 139 | 96.18 184 | 99.73 5 | 95.05 193 | 99.60 15 | 99.34 26 | 98.68 8 | 99.72 95 | 99.21 7 | 99.85 36 | 99.76 18 |
|
| test_fmvsmconf_n | | | 98.30 37 | 98.41 35 | 97.99 98 | 98.94 118 | 94.60 140 | 96.00 199 | 99.64 15 | 94.99 196 | 99.43 20 | 99.18 42 | 98.51 10 | 99.71 109 | 99.13 10 | 99.84 38 | 99.67 28 |
|
| pm-mvs1 | | | 98.47 28 | 98.67 19 | 97.86 105 | 99.52 27 | 94.58 141 | 98.28 42 | 99.00 93 | 97.57 72 | 99.27 30 | 99.22 35 | 98.32 12 | 99.50 194 | 97.09 79 | 99.75 64 | 99.50 67 |
|
| GeoE | | | 97.75 91 | 97.70 86 | 97.89 103 | 98.88 126 | 94.53 142 | 97.10 125 | 98.98 99 | 95.75 159 | 97.62 175 | 97.59 220 | 97.61 37 | 99.77 63 | 96.34 107 | 99.44 160 | 99.36 118 |
|
| plane_prior3 | | | | | | | 94.51 143 | | | 95.29 182 | 96.16 272 | | | | | | |
|
| TAPA-MVS | | 93.32 12 | 94.93 245 | 94.23 272 | 97.04 175 | 98.18 213 | 94.51 143 | 95.22 256 | 98.73 159 | 81.22 398 | 96.25 266 | 95.95 325 | 93.80 194 | 98.98 317 | 89.89 324 | 98.87 255 | 97.62 339 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| VDD-MVS | | | 97.37 123 | 97.25 126 | 97.74 112 | 98.69 151 | 94.50 145 | 97.04 129 | 95.61 333 | 98.59 31 | 98.51 87 | 98.72 86 | 92.54 227 | 99.58 170 | 96.02 121 | 99.49 147 | 99.12 168 |
|
| AdaColmap |  | | 95.11 238 | 94.62 255 | 96.58 206 | 97.33 313 | 94.45 146 | 94.92 271 | 98.08 248 | 93.15 261 | 93.98 338 | 95.53 337 | 94.34 180 | 99.10 302 | 85.69 372 | 98.61 283 | 96.20 384 |
|
| sasdasda | | | 97.23 130 | 97.21 130 | 97.30 153 | 97.65 284 | 94.39 147 | 97.84 74 | 99.05 72 | 97.42 79 | 96.68 236 | 93.85 365 | 97.63 35 | 99.33 254 | 96.29 108 | 98.47 293 | 98.18 292 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 178 | 96.12 190 | 97.39 148 | 97.18 319 | 94.39 147 | 95.46 235 | 98.73 159 | 96.03 141 | 94.72 316 | 94.92 349 | 96.28 116 | 99.69 124 | 93.81 238 | 97.98 314 | 98.09 297 |
|
| canonicalmvs | | | 97.23 130 | 97.21 130 | 97.30 153 | 97.65 284 | 94.39 147 | 97.84 74 | 99.05 72 | 97.42 79 | 96.68 236 | 93.85 365 | 97.63 35 | 99.33 254 | 96.29 108 | 98.47 293 | 98.18 292 |
|
| Anonymous20231211 | | | 98.55 21 | 98.76 14 | 97.94 101 | 98.79 136 | 94.37 150 | 98.84 11 | 99.15 47 | 99.37 4 | 99.67 8 | 99.43 17 | 95.61 141 | 99.72 95 | 98.12 36 | 99.86 28 | 99.73 22 |
|
| plane_prior6 | | | | | | 98.38 189 | 94.37 150 | | | | | | 91.91 246 | | | | |
|
| mvsany_test3 | | | 96.21 186 | 95.93 202 | 97.05 173 | 97.40 306 | 94.33 152 | 95.76 217 | 94.20 355 | 89.10 331 | 99.36 25 | 99.60 8 | 93.97 189 | 97.85 389 | 95.40 166 | 98.63 281 | 98.99 190 |
|
| pmmvs-eth3d | | | 96.49 175 | 96.18 189 | 97.42 145 | 98.25 203 | 94.29 153 | 94.77 278 | 98.07 252 | 89.81 324 | 97.97 154 | 98.33 133 | 93.11 207 | 99.08 304 | 95.46 158 | 99.84 38 | 98.89 209 |
|
| HQP_MVS | | | 96.66 168 | 96.33 183 | 97.68 119 | 98.70 149 | 94.29 153 | 96.50 162 | 98.75 156 | 96.36 122 | 96.16 272 | 96.77 282 | 91.91 246 | 99.46 207 | 92.59 264 | 99.20 215 | 99.28 134 |
|
| plane_prior | | | | | | | 94.29 153 | 95.42 238 | | 94.31 219 | | | | | | 98.93 249 | |
|
| Anonymous20240529 | | | 97.96 59 | 98.04 54 | 97.71 114 | 98.69 151 | 94.28 156 | 97.86 73 | 98.31 220 | 98.79 26 | 99.23 33 | 98.86 77 | 95.76 136 | 99.61 165 | 95.49 151 | 99.36 183 | 99.23 145 |
|
| test_prior | | | | | 97.46 140 | 97.79 262 | 94.26 157 | | 98.42 204 | | | | | 99.34 252 | | | 98.79 224 |
|
| v7n | | | 98.73 12 | 98.99 5 | 97.95 100 | 99.64 13 | 94.20 158 | 98.67 15 | 99.14 50 | 99.08 14 | 99.42 21 | 99.23 34 | 96.53 98 | 99.91 14 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 160 | 96.51 175 | 97.44 142 | 97.69 276 | 94.15 159 | 96.02 197 | 98.43 201 | 93.17 260 | 97.30 191 | 97.38 239 | 95.48 144 | 99.28 268 | 93.74 240 | 99.34 191 | 98.88 213 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MCST-MVS | | | 96.24 185 | 95.80 207 | 97.56 125 | 98.75 141 | 94.13 160 | 94.66 282 | 98.17 236 | 90.17 320 | 96.21 269 | 96.10 319 | 95.14 156 | 99.43 217 | 94.13 226 | 98.85 258 | 99.13 163 |
|
| test12 | | | | | 97.46 140 | 97.61 289 | 94.07 161 | | 97.78 267 | | 93.57 350 | | 93.31 203 | 99.42 219 | | 98.78 265 | 98.89 209 |
|
| test_0402 | | | 97.84 81 | 97.97 61 | 97.47 139 | 99.19 77 | 94.07 161 | 96.71 154 | 98.73 159 | 98.66 29 | 98.56 84 | 98.41 123 | 96.84 84 | 99.69 124 | 94.82 196 | 99.81 47 | 98.64 242 |
|
| API-MVS | | | 95.09 240 | 95.01 231 | 95.31 270 | 96.61 336 | 94.02 163 | 96.83 139 | 97.18 292 | 95.60 165 | 95.79 287 | 94.33 360 | 94.54 175 | 98.37 375 | 85.70 371 | 98.52 288 | 93.52 406 |
|
| IS-MVSNet | | | 96.93 145 | 96.68 161 | 97.70 116 | 99.25 60 | 94.00 164 | 98.57 20 | 96.74 311 | 98.36 39 | 98.14 134 | 97.98 186 | 88.23 293 | 99.71 109 | 93.10 258 | 99.72 70 | 99.38 112 |
|
| DP-MVS Recon | | | 95.55 215 | 95.13 225 | 96.80 193 | 98.51 175 | 93.99 165 | 94.60 284 | 98.69 169 | 90.20 319 | 95.78 289 | 96.21 312 | 92.73 218 | 98.98 317 | 90.58 311 | 98.86 257 | 97.42 349 |
|
| test_fmvsm_n_1920 | | | 98.08 49 | 98.29 42 | 97.43 143 | 98.88 126 | 93.95 166 | 96.17 188 | 99.57 17 | 95.66 161 | 99.52 16 | 98.71 89 | 97.04 64 | 99.64 149 | 99.21 7 | 99.87 26 | 98.69 238 |
|
| ETV-MVS | | | 96.13 190 | 95.90 203 | 96.82 192 | 97.76 267 | 93.89 167 | 95.40 241 | 98.95 105 | 95.87 152 | 95.58 297 | 91.00 400 | 96.36 111 | 99.72 95 | 93.36 249 | 98.83 261 | 96.85 366 |
|
| 旧先验1 | | | | | | 97.80 257 | 93.87 168 | | 97.75 268 | | | 97.04 263 | 93.57 198 | | | 98.68 275 | 98.72 234 |
|
| Anonymous202405211 | | | 96.34 182 | 95.98 198 | 97.43 143 | 98.25 203 | 93.85 169 | 96.74 149 | 94.41 353 | 97.72 65 | 98.37 103 | 98.03 180 | 87.15 305 | 99.53 186 | 94.06 228 | 99.07 235 | 98.92 204 |
|
| UGNet | | | 96.81 157 | 96.56 169 | 97.58 124 | 96.64 335 | 93.84 170 | 97.75 82 | 97.12 295 | 96.47 119 | 93.62 347 | 98.88 75 | 93.22 205 | 99.53 186 | 95.61 146 | 99.69 77 | 99.36 118 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VPA-MVSNet | | | 98.27 38 | 98.46 30 | 97.70 116 | 99.06 100 | 93.80 171 | 97.76 81 | 99.00 93 | 98.40 38 | 99.07 42 | 98.98 62 | 96.89 78 | 99.75 74 | 97.19 75 | 99.79 52 | 99.55 53 |
|
| LCM-MVSNet-Re | | | 97.33 126 | 97.33 121 | 97.32 152 | 98.13 225 | 93.79 172 | 96.99 132 | 99.65 12 | 96.74 104 | 99.47 18 | 98.93 68 | 96.91 77 | 99.84 32 | 90.11 319 | 99.06 238 | 98.32 275 |
|
| EPP-MVSNet | | | 96.84 152 | 96.58 167 | 97.65 120 | 99.18 78 | 93.78 173 | 98.68 14 | 96.34 316 | 97.91 57 | 97.30 191 | 98.06 177 | 88.46 289 | 99.85 29 | 93.85 237 | 99.40 177 | 99.32 122 |
|
| NP-MVS | | | | | | 98.14 222 | 93.72 174 | | | | | 95.08 343 | | | | | |
|
| MGCFI-Net | | | 97.20 132 | 97.23 128 | 97.08 171 | 97.68 277 | 93.71 175 | 97.79 77 | 99.09 61 | 97.40 84 | 96.59 244 | 93.96 363 | 97.67 31 | 99.35 249 | 96.43 102 | 98.50 292 | 98.17 294 |
|
| GBi-Net | | | 96.99 140 | 96.80 155 | 97.56 125 | 97.96 237 | 93.67 176 | 98.23 46 | 98.66 176 | 95.59 166 | 97.99 150 | 99.19 38 | 89.51 280 | 99.73 89 | 94.60 207 | 99.44 160 | 99.30 127 |
|
| test1 | | | 96.99 140 | 96.80 155 | 97.56 125 | 97.96 237 | 93.67 176 | 98.23 46 | 98.66 176 | 95.59 166 | 97.99 150 | 99.19 38 | 89.51 280 | 99.73 89 | 94.60 207 | 99.44 160 | 99.30 127 |
|
| FMVSNet1 | | | 97.95 63 | 98.08 50 | 97.56 125 | 99.14 90 | 93.67 176 | 98.23 46 | 98.66 176 | 97.41 83 | 99.00 47 | 99.19 38 | 95.47 145 | 99.73 89 | 95.83 134 | 99.76 57 | 99.30 127 |
|
| MVS_111021_HR | | | 96.73 162 | 96.54 172 | 97.27 155 | 98.35 192 | 93.66 179 | 93.42 329 | 98.36 212 | 94.74 202 | 96.58 245 | 96.76 284 | 96.54 97 | 98.99 315 | 94.87 194 | 99.27 207 | 99.15 157 |
|
| 3Dnovator | | 96.53 2 | 97.61 103 | 97.64 96 | 97.50 134 | 97.74 272 | 93.65 180 | 98.49 28 | 98.88 118 | 96.86 101 | 97.11 205 | 98.55 107 | 95.82 130 | 99.73 89 | 95.94 127 | 99.42 172 | 99.13 163 |
|
| CDS-MVSNet | | | 94.88 249 | 94.12 278 | 97.14 164 | 97.64 287 | 93.57 181 | 93.96 313 | 97.06 298 | 90.05 321 | 96.30 263 | 96.55 293 | 86.10 312 | 99.47 204 | 90.10 320 | 99.31 201 | 98.40 264 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMH | | 93.61 9 | 98.44 29 | 98.76 14 | 97.51 130 | 99.43 37 | 93.54 182 | 98.23 46 | 99.05 72 | 97.40 84 | 99.37 24 | 99.08 55 | 98.79 6 | 99.47 204 | 97.74 55 | 99.71 73 | 99.50 67 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 97.69 96 | 97.79 79 | 97.40 147 | 99.06 100 | 93.52 183 | 95.96 205 | 98.97 102 | 94.55 212 | 98.82 63 | 98.76 84 | 97.31 46 | 99.29 266 | 97.20 74 | 99.44 160 | 99.38 112 |
|
| PCF-MVS | | 89.43 18 | 92.12 326 | 90.64 346 | 96.57 208 | 97.80 257 | 93.48 184 | 89.88 401 | 98.45 198 | 74.46 415 | 96.04 277 | 95.68 331 | 90.71 260 | 99.31 259 | 73.73 413 | 99.01 242 | 96.91 363 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| mmtdpeth | | | 98.33 33 | 98.53 28 | 97.71 114 | 99.07 98 | 93.44 185 | 98.80 12 | 99.78 4 | 99.10 13 | 96.61 243 | 99.63 7 | 95.42 148 | 99.73 89 | 98.53 29 | 99.86 28 | 99.95 2 |
|
| sd_testset | | | 97.97 57 | 98.12 47 | 97.51 130 | 99.41 40 | 93.44 185 | 97.96 64 | 98.25 223 | 98.58 32 | 98.78 66 | 99.39 18 | 98.21 14 | 99.56 177 | 92.65 262 | 99.86 28 | 99.52 60 |
|
| test_vis1_rt | | | 94.03 287 | 93.65 288 | 95.17 276 | 95.76 371 | 93.42 187 | 93.97 312 | 98.33 216 | 84.68 383 | 93.17 360 | 95.89 327 | 92.53 229 | 94.79 412 | 93.50 247 | 94.97 391 | 97.31 353 |
|
| TAMVS | | | 95.49 217 | 94.94 232 | 97.16 162 | 98.31 194 | 93.41 188 | 95.07 264 | 96.82 307 | 91.09 306 | 97.51 180 | 97.82 201 | 89.96 272 | 99.42 219 | 88.42 345 | 99.44 160 | 98.64 242 |
|
| TransMVSNet (Re) | | | 98.38 32 | 98.67 19 | 97.51 130 | 99.51 28 | 93.39 189 | 98.20 51 | 98.87 120 | 98.23 47 | 99.48 17 | 99.27 31 | 98.47 11 | 99.55 181 | 96.52 98 | 99.53 130 | 99.60 37 |
|
| MM | | | 96.87 151 | 96.62 163 | 97.62 122 | 97.72 274 | 93.30 190 | 96.39 166 | 92.61 375 | 97.90 58 | 96.76 233 | 98.64 98 | 90.46 263 | 99.81 41 | 99.16 9 | 99.94 8 | 99.76 18 |
|
| test_fmvsmvis_n_1920 | | | 98.08 49 | 98.47 29 | 96.93 181 | 99.03 107 | 93.29 191 | 96.32 174 | 99.65 12 | 95.59 166 | 99.71 5 | 99.01 58 | 97.66 33 | 99.60 167 | 99.44 2 | 99.83 42 | 97.90 318 |
|
| Baseline_NR-MVSNet | | | 97.72 94 | 97.79 79 | 97.50 134 | 99.56 20 | 93.29 191 | 95.44 236 | 98.86 123 | 98.20 49 | 98.37 103 | 99.24 33 | 94.69 167 | 99.55 181 | 95.98 125 | 99.79 52 | 99.65 33 |
|
| VDDNet | | | 96.98 143 | 96.84 152 | 97.41 146 | 99.40 43 | 93.26 193 | 97.94 67 | 95.31 341 | 99.26 9 | 98.39 102 | 99.18 42 | 87.85 300 | 99.62 158 | 95.13 182 | 99.09 232 | 99.35 120 |
|
| test222 | | | | | | 98.17 216 | 93.24 194 | 92.74 346 | 97.61 281 | 75.17 414 | 94.65 318 | 96.69 287 | 90.96 257 | | | 98.66 278 | 97.66 336 |
|
| test_f | | | 95.82 203 | 95.88 205 | 95.66 254 | 97.61 289 | 93.21 195 | 95.61 230 | 98.17 236 | 86.98 358 | 98.42 98 | 99.47 13 | 90.46 263 | 94.74 413 | 97.71 56 | 98.45 295 | 99.03 183 |
|
| FC-MVSNet-test | | | 98.16 42 | 98.37 36 | 97.56 125 | 99.49 32 | 93.10 196 | 98.35 35 | 99.21 36 | 98.43 36 | 98.89 57 | 98.83 78 | 94.30 181 | 99.81 41 | 97.87 46 | 99.91 17 | 99.77 13 |
|
| MVP-Stereo | | | 95.69 208 | 95.28 219 | 96.92 182 | 98.15 220 | 93.03 197 | 95.64 229 | 98.20 230 | 90.39 316 | 96.63 242 | 97.73 211 | 91.63 248 | 99.10 302 | 91.84 277 | 97.31 349 | 98.63 244 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EIA-MVS | | | 96.04 193 | 95.77 209 | 96.85 189 | 97.80 257 | 92.98 198 | 96.12 190 | 99.16 43 | 94.65 206 | 93.77 342 | 91.69 394 | 95.68 138 | 99.67 137 | 94.18 223 | 98.85 258 | 97.91 317 |
|
| FIs | | | 97.93 69 | 98.07 51 | 97.48 138 | 99.38 46 | 92.95 199 | 98.03 61 | 99.11 53 | 98.04 55 | 98.62 78 | 98.66 94 | 93.75 195 | 99.78 53 | 97.23 70 | 99.84 38 | 99.73 22 |
|
| MVS_0304 | | | 95.71 207 | 95.18 223 | 97.33 151 | 94.85 389 | 92.82 200 | 95.36 244 | 90.89 392 | 95.51 170 | 95.61 295 | 97.82 201 | 88.39 291 | 99.78 53 | 98.23 35 | 99.91 17 | 99.40 105 |
|
| Fast-Effi-MVS+ | | | 95.49 217 | 95.07 228 | 96.75 197 | 97.67 281 | 92.82 200 | 94.22 297 | 98.60 184 | 91.61 295 | 93.42 356 | 92.90 376 | 96.73 89 | 99.70 117 | 92.60 263 | 97.89 320 | 97.74 331 |
|
| test_fmvs3 | | | 97.38 121 | 97.56 106 | 96.84 191 | 98.63 158 | 92.81 202 | 97.60 94 | 99.61 16 | 90.87 308 | 98.76 71 | 99.66 4 | 94.03 187 | 97.90 388 | 99.24 6 | 99.68 81 | 99.81 9 |
|
| KD-MVS_self_test | | | 97.86 80 | 98.07 51 | 97.25 158 | 99.22 66 | 92.81 202 | 97.55 99 | 98.94 106 | 97.10 95 | 98.85 60 | 98.88 75 | 95.03 159 | 99.67 137 | 97.39 68 | 99.65 86 | 99.26 139 |
|
| PMMVS | | | 92.39 319 | 91.08 336 | 96.30 225 | 93.12 411 | 92.81 202 | 90.58 392 | 95.96 323 | 79.17 406 | 91.85 382 | 92.27 386 | 90.29 270 | 98.66 350 | 89.85 325 | 96.68 366 | 97.43 348 |
|
| dmvs_re | | | 92.08 328 | 91.27 333 | 94.51 310 | 97.16 320 | 92.79 205 | 95.65 226 | 92.64 374 | 94.11 226 | 92.74 369 | 90.98 401 | 83.41 335 | 94.44 415 | 80.72 399 | 94.07 398 | 96.29 382 |
|
| pmmvs4 | | | 94.82 251 | 94.19 275 | 96.70 200 | 97.42 305 | 92.75 206 | 92.09 365 | 96.76 309 | 86.80 361 | 95.73 292 | 97.22 250 | 89.28 283 | 98.89 325 | 93.28 253 | 99.14 223 | 98.46 262 |
|
| fmvsm_l_conf0.5_n | | | 97.68 98 | 97.81 77 | 97.27 155 | 98.92 122 | 92.71 207 | 95.89 210 | 99.41 26 | 93.36 247 | 99.00 47 | 98.44 120 | 96.46 105 | 99.65 145 | 99.09 11 | 99.76 57 | 99.45 90 |
|
| DPM-MVS | | | 93.68 295 | 92.77 308 | 96.42 217 | 97.91 241 | 92.54 208 | 91.17 383 | 97.47 285 | 84.99 381 | 93.08 362 | 94.74 351 | 89.90 273 | 99.00 313 | 87.54 357 | 98.09 311 | 97.72 334 |
|
| CLD-MVS | | | 95.47 220 | 95.07 228 | 96.69 201 | 98.27 200 | 92.53 209 | 91.36 376 | 98.67 174 | 91.22 305 | 95.78 289 | 94.12 362 | 95.65 140 | 98.98 317 | 90.81 299 | 99.72 70 | 98.57 249 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| fmvsm_s_conf0.1_n_a | | | 97.80 87 | 98.01 57 | 97.18 161 | 99.17 79 | 92.51 210 | 96.57 159 | 99.15 47 | 93.68 239 | 98.89 57 | 99.30 29 | 96.42 107 | 99.37 242 | 99.03 13 | 99.83 42 | 99.66 30 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 99 | 97.83 75 | 97.13 165 | 98.80 134 | 92.51 210 | 96.25 180 | 99.06 68 | 93.67 240 | 98.64 76 | 99.00 59 | 96.23 117 | 99.36 245 | 98.99 15 | 99.80 50 | 99.53 57 |
|
| HQP5-MVS | | | | | | | 92.47 212 | | | | | | | | | | |
|
| HQP-MVS | | | 95.17 237 | 94.58 259 | 96.92 182 | 97.85 244 | 92.47 212 | 94.26 291 | 98.43 201 | 93.18 257 | 92.86 366 | 95.08 343 | 90.33 266 | 99.23 280 | 90.51 313 | 98.74 269 | 99.05 182 |
|
| SixPastTwentyTwo | | | 97.49 112 | 97.57 105 | 97.26 157 | 99.56 20 | 92.33 214 | 98.28 42 | 96.97 302 | 98.30 43 | 99.45 19 | 99.35 25 | 88.43 290 | 99.89 19 | 98.01 41 | 99.76 57 | 99.54 54 |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 104 | 97.76 83 | 97.11 166 | 98.92 122 | 92.28 215 | 95.83 213 | 99.32 27 | 93.22 253 | 98.91 56 | 98.49 113 | 96.31 112 | 99.64 149 | 99.07 12 | 99.76 57 | 99.40 105 |
|
| EPNet | | | 93.72 293 | 92.62 312 | 97.03 176 | 87.61 424 | 92.25 216 | 96.27 176 | 91.28 388 | 96.74 104 | 87.65 410 | 97.39 237 | 85.00 322 | 99.64 149 | 92.14 270 | 99.48 151 | 99.20 150 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpnnormal | | | 97.72 94 | 97.97 61 | 96.94 180 | 99.26 57 | 92.23 217 | 97.83 76 | 98.45 198 | 98.25 46 | 99.13 38 | 98.66 94 | 96.65 91 | 99.69 124 | 93.92 235 | 99.62 92 | 98.91 205 |
|
| SDMVSNet | | | 97.97 57 | 98.26 45 | 97.11 166 | 99.41 40 | 92.21 218 | 96.92 135 | 98.60 184 | 98.58 32 | 98.78 66 | 99.39 18 | 97.80 25 | 99.62 158 | 94.98 192 | 99.86 28 | 99.52 60 |
|
| XXY-MVS | | | 97.54 109 | 97.70 86 | 97.07 172 | 99.46 34 | 92.21 218 | 97.22 118 | 99.00 93 | 94.93 199 | 98.58 83 | 98.92 69 | 97.31 46 | 99.41 228 | 94.44 211 | 99.43 169 | 99.59 38 |
|
| ab-mvs | | | 96.59 170 | 96.59 166 | 96.60 204 | 98.64 154 | 92.21 218 | 98.35 35 | 97.67 272 | 94.45 214 | 96.99 217 | 98.79 79 | 94.96 163 | 99.49 199 | 90.39 316 | 99.07 235 | 98.08 298 |
|
| WR-MVS | | | 96.90 148 | 96.81 154 | 97.16 162 | 98.56 168 | 92.20 221 | 94.33 290 | 98.12 245 | 97.34 87 | 98.20 125 | 97.33 244 | 92.81 215 | 99.75 74 | 94.79 198 | 99.81 47 | 99.54 54 |
|
| Effi-MVS+ | | | 96.19 187 | 96.01 195 | 96.71 199 | 97.43 304 | 92.19 222 | 96.12 190 | 99.10 56 | 95.45 173 | 93.33 358 | 94.71 352 | 97.23 55 | 99.56 177 | 93.21 256 | 97.54 339 | 98.37 268 |
|
| mvsany_test1 | | | 93.47 301 | 93.03 298 | 94.79 297 | 94.05 404 | 92.12 223 | 90.82 389 | 90.01 403 | 85.02 380 | 97.26 194 | 98.28 144 | 93.57 198 | 97.03 398 | 92.51 266 | 95.75 385 | 95.23 397 |
|
| 原ACMM1 | | | | | 96.58 206 | 98.16 218 | 92.12 223 | | 98.15 242 | 85.90 369 | 93.49 352 | 96.43 301 | 92.47 231 | 99.38 237 | 87.66 354 | 98.62 282 | 98.23 286 |
|
| lessismore_v0 | | | | | 97.05 173 | 99.36 48 | 92.12 223 | | 84.07 416 | | 98.77 70 | 98.98 62 | 85.36 320 | 99.74 83 | 97.34 69 | 99.37 180 | 99.30 127 |
|
| casdiffmvs_mvg |  | | 97.83 82 | 98.11 48 | 97.00 178 | 98.57 166 | 92.10 226 | 95.97 203 | 99.18 41 | 97.67 71 | 99.00 47 | 98.48 117 | 97.64 34 | 99.50 194 | 96.96 86 | 99.54 126 | 99.40 105 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EI-MVSNet-Vis-set | | | 97.32 127 | 97.39 117 | 97.11 166 | 97.36 308 | 92.08 227 | 95.34 248 | 97.65 276 | 97.74 63 | 98.29 119 | 98.11 168 | 95.05 157 | 99.68 129 | 97.50 64 | 99.50 144 | 99.56 50 |
|
| VNet | | | 96.84 152 | 96.83 153 | 96.88 187 | 98.06 227 | 92.02 228 | 96.35 172 | 97.57 282 | 97.70 67 | 97.88 163 | 97.80 204 | 92.40 232 | 99.54 184 | 94.73 203 | 98.96 244 | 99.08 176 |
|
| EI-MVSNet-UG-set | | | 97.32 127 | 97.40 116 | 97.09 170 | 97.34 311 | 92.01 229 | 95.33 249 | 97.65 276 | 97.74 63 | 98.30 118 | 98.14 162 | 95.04 158 | 99.69 124 | 97.55 62 | 99.52 135 | 99.58 39 |
|
| OpenMVS |  | 94.22 8 | 95.48 219 | 95.20 221 | 96.32 223 | 97.16 320 | 91.96 230 | 97.74 84 | 98.84 131 | 87.26 353 | 94.36 325 | 98.01 183 | 93.95 190 | 99.67 137 | 90.70 308 | 98.75 268 | 97.35 352 |
|
| GDP-MVS | | | 95.39 224 | 94.89 237 | 96.90 185 | 98.26 202 | 91.91 231 | 96.48 164 | 99.28 31 | 95.06 192 | 96.54 250 | 97.12 257 | 74.83 378 | 99.82 36 | 97.19 75 | 99.27 207 | 98.96 193 |
|
| FMVSNet2 | | | 96.72 163 | 96.67 162 | 96.87 188 | 97.96 237 | 91.88 232 | 97.15 121 | 98.06 253 | 95.59 166 | 98.50 89 | 98.62 99 | 89.51 280 | 99.65 145 | 94.99 191 | 99.60 104 | 99.07 178 |
|
| MSDG | | | 95.33 228 | 95.13 225 | 95.94 242 | 97.40 306 | 91.85 233 | 91.02 387 | 98.37 211 | 95.30 181 | 96.31 262 | 95.99 321 | 94.51 176 | 98.38 373 | 89.59 328 | 97.65 336 | 97.60 341 |
|
| QAPM | | | 95.88 200 | 95.57 216 | 96.80 193 | 97.90 242 | 91.84 234 | 98.18 53 | 98.73 159 | 88.41 342 | 96.42 254 | 98.13 164 | 94.73 165 | 99.75 74 | 88.72 340 | 98.94 247 | 98.81 221 |
|
| HyFIR lowres test | | | 93.72 293 | 92.65 310 | 96.91 184 | 98.93 120 | 91.81 235 | 91.23 382 | 98.52 192 | 82.69 391 | 96.46 253 | 96.52 297 | 80.38 351 | 99.90 16 | 90.36 317 | 98.79 264 | 99.03 183 |
|
| BP-MVS1 | | | 95.36 225 | 94.86 240 | 96.89 186 | 98.35 192 | 91.72 236 | 96.76 147 | 95.21 342 | 96.48 118 | 96.23 267 | 97.19 252 | 75.97 374 | 99.80 48 | 97.91 44 | 99.60 104 | 99.15 157 |
|
| test20.03 | | | 96.58 172 | 96.61 165 | 96.48 214 | 98.49 179 | 91.72 236 | 95.68 222 | 97.69 271 | 96.81 102 | 98.27 120 | 97.92 193 | 94.18 184 | 98.71 342 | 90.78 301 | 99.66 85 | 99.00 187 |
|
| ambc | | | | | 96.56 209 | 98.23 206 | 91.68 238 | 97.88 72 | 98.13 244 | | 98.42 98 | 98.56 106 | 94.22 183 | 99.04 309 | 94.05 230 | 99.35 188 | 98.95 195 |
|
| K. test v3 | | | 96.44 178 | 96.28 184 | 96.95 179 | 99.41 40 | 91.53 239 | 97.65 91 | 90.31 399 | 98.89 24 | 98.93 53 | 99.36 23 | 84.57 326 | 99.92 6 | 97.81 49 | 99.56 116 | 99.39 110 |
|
| UnsupCasMVSNet_eth | | | 95.91 199 | 95.73 210 | 96.44 215 | 98.48 181 | 91.52 240 | 95.31 251 | 98.45 198 | 95.76 157 | 97.48 184 | 97.54 223 | 89.53 279 | 98.69 345 | 94.43 212 | 94.61 395 | 99.13 163 |
|
| LFMVS | | | 95.32 229 | 94.88 239 | 96.62 203 | 98.03 228 | 91.47 241 | 97.65 91 | 90.72 395 | 99.11 12 | 97.89 162 | 98.31 135 | 79.20 354 | 99.48 202 | 93.91 236 | 99.12 228 | 98.93 201 |
|
| fmvsm_s_conf0.5_n | | | 97.62 102 | 97.89 68 | 96.80 193 | 98.79 136 | 91.44 242 | 96.14 189 | 99.06 68 | 94.19 222 | 98.82 63 | 98.98 62 | 96.22 118 | 99.38 237 | 98.98 16 | 99.86 28 | 99.58 39 |
|
| fmvsm_s_conf0.1_n | | | 97.73 92 | 98.02 56 | 96.85 189 | 99.09 95 | 91.43 243 | 96.37 170 | 99.11 53 | 94.19 222 | 99.01 45 | 99.25 32 | 96.30 113 | 99.38 237 | 99.00 14 | 99.88 24 | 99.73 22 |
|
| test_fmvs2 | | | 96.38 181 | 96.45 177 | 96.16 231 | 97.85 244 | 91.30 244 | 96.81 141 | 99.45 21 | 89.24 330 | 98.49 90 | 99.38 20 | 88.68 287 | 97.62 393 | 98.83 18 | 99.32 198 | 99.57 46 |
|
| mvsmamba | | | 94.91 246 | 94.41 268 | 96.40 220 | 97.65 284 | 91.30 244 | 97.92 69 | 95.32 340 | 91.50 298 | 95.54 298 | 98.38 127 | 83.06 337 | 99.68 129 | 92.46 267 | 97.84 321 | 98.23 286 |
|
| PAPM_NR | | | 94.61 264 | 94.17 276 | 95.96 238 | 98.36 191 | 91.23 246 | 95.93 207 | 97.95 255 | 92.98 266 | 93.42 356 | 94.43 359 | 90.53 261 | 98.38 373 | 87.60 355 | 96.29 374 | 98.27 283 |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 297 | 93.05 297 | 95.42 267 | 97.31 315 | 91.21 247 | 95.08 263 | 96.68 314 | 81.56 395 | 96.88 226 | 96.41 302 | 90.44 265 | 99.25 274 | 85.39 377 | 97.67 333 | 95.80 389 |
|
| V42 | | | 97.04 137 | 97.16 133 | 96.68 202 | 98.59 164 | 91.05 248 | 96.33 173 | 98.36 212 | 94.60 208 | 97.99 150 | 98.30 139 | 93.32 202 | 99.62 158 | 97.40 67 | 99.53 130 | 99.38 112 |
|
| casdiffmvs |  | | 97.50 111 | 97.81 77 | 96.56 209 | 98.51 175 | 91.04 249 | 95.83 213 | 99.09 61 | 97.23 91 | 98.33 113 | 98.30 139 | 97.03 65 | 99.37 242 | 96.58 97 | 99.38 179 | 99.28 134 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| JIA-IIPM | | | 91.79 334 | 90.69 345 | 95.11 277 | 93.80 406 | 90.98 250 | 94.16 300 | 91.78 382 | 96.38 120 | 90.30 394 | 99.30 29 | 72.02 391 | 98.90 324 | 88.28 347 | 90.17 409 | 95.45 395 |
|
| 114514_t | | | 93.96 288 | 93.22 296 | 96.19 229 | 99.06 100 | 90.97 251 | 95.99 201 | 98.94 106 | 73.88 416 | 93.43 355 | 96.93 270 | 92.38 233 | 99.37 242 | 89.09 335 | 99.28 205 | 98.25 285 |
|
| 1112_ss | | | 94.12 281 | 93.42 292 | 96.23 226 | 98.59 164 | 90.85 252 | 94.24 295 | 98.85 127 | 85.49 372 | 92.97 364 | 94.94 347 | 86.01 313 | 99.64 149 | 91.78 279 | 97.92 317 | 98.20 290 |
|
| CANet | | | 95.86 201 | 95.65 213 | 96.49 213 | 96.41 341 | 90.82 253 | 94.36 289 | 98.41 205 | 94.94 197 | 92.62 375 | 96.73 285 | 92.68 219 | 99.71 109 | 95.12 183 | 99.60 104 | 98.94 197 |
|
| Patchmtry | | | 95.03 243 | 94.59 258 | 96.33 222 | 94.83 391 | 90.82 253 | 96.38 169 | 97.20 290 | 96.59 109 | 97.49 182 | 98.57 104 | 77.67 361 | 99.38 237 | 92.95 261 | 99.62 92 | 98.80 222 |
|
| FMVSNet5 | | | 93.39 303 | 92.35 314 | 96.50 212 | 95.83 365 | 90.81 255 | 97.31 112 | 98.27 221 | 92.74 274 | 96.27 264 | 98.28 144 | 62.23 406 | 99.67 137 | 90.86 297 | 99.36 183 | 99.03 183 |
|
| baseline | | | 97.44 116 | 97.78 82 | 96.43 216 | 98.52 173 | 90.75 256 | 96.84 138 | 99.03 80 | 96.51 114 | 97.86 167 | 98.02 181 | 96.67 90 | 99.36 245 | 97.09 79 | 99.47 153 | 99.19 151 |
|
| PVSNet_Blended_VisFu | | | 95.95 197 | 95.80 207 | 96.42 217 | 99.28 55 | 90.62 257 | 95.31 251 | 99.08 64 | 88.40 343 | 96.97 220 | 98.17 161 | 92.11 238 | 99.78 53 | 93.64 244 | 99.21 214 | 98.86 216 |
|
| testdata | | | | | 95.70 253 | 98.16 218 | 90.58 258 | | 97.72 270 | 80.38 401 | 95.62 294 | 97.02 264 | 92.06 241 | 98.98 317 | 89.06 337 | 98.52 288 | 97.54 344 |
|
| VPNet | | | 97.26 129 | 97.49 114 | 96.59 205 | 99.47 33 | 90.58 258 | 96.27 176 | 98.53 191 | 97.77 60 | 98.46 95 | 98.41 123 | 94.59 172 | 99.68 129 | 94.61 206 | 99.29 204 | 99.52 60 |
|
| MSLP-MVS++ | | | 96.42 180 | 96.71 159 | 95.57 258 | 97.82 252 | 90.56 260 | 95.71 218 | 98.84 131 | 94.72 203 | 96.71 235 | 97.39 237 | 94.91 164 | 98.10 386 | 95.28 168 | 99.02 240 | 98.05 307 |
|
| UnsupCasMVSNet_bld | | | 94.72 257 | 94.26 271 | 96.08 234 | 98.62 160 | 90.54 261 | 93.38 331 | 98.05 254 | 90.30 317 | 97.02 215 | 96.80 281 | 89.54 277 | 99.16 290 | 88.44 344 | 96.18 376 | 98.56 250 |
|
| FMVSNet3 | | | 95.26 232 | 94.94 232 | 96.22 228 | 96.53 338 | 90.06 262 | 95.99 201 | 97.66 274 | 94.11 226 | 97.99 150 | 97.91 194 | 80.22 352 | 99.63 153 | 94.60 207 | 99.44 160 | 98.96 193 |
|
| CHOSEN 1792x2688 | | | 94.10 282 | 93.41 293 | 96.18 230 | 99.16 80 | 90.04 263 | 92.15 362 | 98.68 171 | 79.90 403 | 96.22 268 | 97.83 198 | 87.92 299 | 99.42 219 | 89.18 334 | 99.65 86 | 99.08 176 |
|
| DELS-MVS | | | 96.17 188 | 96.23 186 | 95.99 236 | 97.55 294 | 90.04 263 | 92.38 360 | 98.52 192 | 94.13 224 | 96.55 249 | 97.06 261 | 94.99 161 | 99.58 170 | 95.62 145 | 99.28 205 | 98.37 268 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| sss | | | 94.22 276 | 93.72 287 | 95.74 250 | 97.71 275 | 89.95 265 | 93.84 316 | 96.98 301 | 88.38 344 | 93.75 343 | 95.74 329 | 87.94 295 | 98.89 325 | 91.02 292 | 98.10 310 | 98.37 268 |
|
| test_vis1_n | | | 95.67 210 | 95.89 204 | 95.03 282 | 98.18 213 | 89.89 266 | 96.94 134 | 99.28 31 | 88.25 346 | 98.20 125 | 98.92 69 | 86.69 309 | 97.19 396 | 97.70 58 | 98.82 262 | 98.00 312 |
|
| CL-MVSNet_self_test | | | 95.04 241 | 94.79 247 | 95.82 246 | 97.51 296 | 89.79 267 | 91.14 384 | 96.82 307 | 93.05 263 | 96.72 234 | 96.40 304 | 90.82 258 | 99.16 290 | 91.95 273 | 98.66 278 | 98.50 258 |
|
| MVSMamba_PlusPlus | | | 97.43 118 | 97.98 60 | 95.78 248 | 98.88 126 | 89.70 268 | 98.03 61 | 98.85 127 | 99.18 11 | 96.84 227 | 99.12 50 | 93.04 209 | 99.91 14 | 98.38 32 | 99.55 122 | 97.73 332 |
|
| CANet_DTU | | | 94.65 262 | 94.21 274 | 95.96 238 | 95.90 360 | 89.68 269 | 93.92 314 | 97.83 265 | 93.19 256 | 90.12 396 | 95.64 333 | 88.52 288 | 99.57 176 | 93.27 254 | 99.47 153 | 98.62 245 |
|
| mvs5depth | | | 98.06 52 | 98.58 26 | 96.51 211 | 98.97 114 | 89.65 270 | 99.43 4 | 99.81 2 | 99.30 7 | 98.36 106 | 99.86 2 | 93.15 206 | 99.88 21 | 98.50 30 | 99.84 38 | 99.99 1 |
|
| v10 | | | 97.55 108 | 97.97 61 | 96.31 224 | 98.60 162 | 89.64 271 | 97.44 107 | 99.02 82 | 96.60 108 | 98.72 75 | 99.16 46 | 93.48 200 | 99.72 95 | 98.76 21 | 99.92 14 | 99.58 39 |
|
| ANet_high | | | 98.31 36 | 98.94 6 | 96.41 219 | 99.33 51 | 89.64 271 | 97.92 69 | 99.56 19 | 99.27 8 | 99.66 10 | 99.50 11 | 97.67 31 | 99.83 34 | 97.55 62 | 99.98 2 | 99.77 13 |
|
| test_yl | | | 94.40 271 | 94.00 281 | 95.59 256 | 96.95 327 | 89.52 273 | 94.75 279 | 95.55 335 | 96.18 132 | 96.79 228 | 96.14 316 | 81.09 347 | 99.18 285 | 90.75 303 | 97.77 323 | 98.07 300 |
|
| DCV-MVSNet | | | 94.40 271 | 94.00 281 | 95.59 256 | 96.95 327 | 89.52 273 | 94.75 279 | 95.55 335 | 96.18 132 | 96.79 228 | 96.14 316 | 81.09 347 | 99.18 285 | 90.75 303 | 97.77 323 | 98.07 300 |
|
| balanced_conf03 | | | 96.88 150 | 97.29 123 | 95.63 255 | 97.66 282 | 89.47 275 | 97.95 66 | 98.89 111 | 95.94 146 | 97.77 173 | 98.55 107 | 92.23 234 | 99.68 129 | 97.05 83 | 99.61 98 | 97.73 332 |
|
| v8 | | | 97.60 104 | 98.06 53 | 96.23 226 | 98.71 147 | 89.44 276 | 97.43 109 | 98.82 145 | 97.29 90 | 98.74 73 | 99.10 52 | 93.86 191 | 99.68 129 | 98.61 26 | 99.94 8 | 99.56 50 |
|
| Anonymous20231206 | | | 95.27 231 | 95.06 230 | 95.88 244 | 98.72 144 | 89.37 277 | 95.70 219 | 97.85 261 | 88.00 349 | 96.98 219 | 97.62 218 | 91.95 243 | 99.34 252 | 89.21 333 | 99.53 130 | 98.94 197 |
|
| v1192 | | | 96.83 155 | 97.06 139 | 96.15 232 | 98.28 198 | 89.29 278 | 95.36 244 | 98.77 152 | 93.73 235 | 98.11 136 | 98.34 132 | 93.02 213 | 99.67 137 | 98.35 33 | 99.58 110 | 99.50 67 |
|
| v1144 | | | 96.84 152 | 97.08 137 | 96.13 233 | 98.42 187 | 89.28 279 | 95.41 240 | 98.67 174 | 94.21 220 | 97.97 154 | 98.31 135 | 93.06 208 | 99.65 145 | 98.06 40 | 99.62 92 | 99.45 90 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 238 | 94.85 241 | 95.87 245 | 99.12 91 | 89.17 280 | 97.54 104 | 94.92 348 | 96.50 115 | 96.58 245 | 97.27 247 | 83.64 333 | 99.48 202 | 88.42 345 | 99.67 83 | 98.97 192 |
|
| new_pmnet | | | 92.34 321 | 91.69 326 | 94.32 318 | 96.23 346 | 89.16 281 | 92.27 361 | 92.88 369 | 84.39 388 | 95.29 303 | 96.35 307 | 85.66 317 | 96.74 406 | 84.53 384 | 97.56 338 | 97.05 357 |
|
| ET-MVSNet_ETH3D | | | 91.12 341 | 89.67 354 | 95.47 265 | 96.41 341 | 89.15 282 | 91.54 373 | 90.23 400 | 89.07 332 | 86.78 414 | 92.84 378 | 69.39 399 | 99.44 215 | 94.16 224 | 96.61 367 | 97.82 324 |
|
| test_fmvs1_n | | | 95.21 233 | 95.28 219 | 94.99 285 | 98.15 220 | 89.13 283 | 96.81 141 | 99.43 23 | 86.97 359 | 97.21 197 | 98.92 69 | 83.00 338 | 97.13 397 | 98.09 38 | 98.94 247 | 98.72 234 |
|
| v144192 | | | 96.69 166 | 96.90 151 | 96.03 235 | 98.25 203 | 88.92 284 | 95.49 234 | 98.77 152 | 93.05 263 | 98.09 139 | 98.29 143 | 92.51 230 | 99.70 117 | 98.11 37 | 99.56 116 | 99.47 84 |
|
| Patchmatch-RL test | | | 94.66 261 | 94.49 262 | 95.19 274 | 98.54 171 | 88.91 285 | 92.57 350 | 98.74 158 | 91.46 300 | 98.32 114 | 97.75 208 | 77.31 366 | 98.81 332 | 96.06 116 | 99.61 98 | 97.85 322 |
|
| HY-MVS | | 91.43 15 | 92.58 317 | 91.81 323 | 94.90 290 | 96.49 339 | 88.87 286 | 97.31 112 | 94.62 350 | 85.92 368 | 90.50 391 | 96.84 276 | 85.05 321 | 99.40 230 | 83.77 389 | 95.78 383 | 96.43 380 |
|
| Test_1112_low_res | | | 93.53 300 | 92.86 302 | 95.54 262 | 98.60 162 | 88.86 287 | 92.75 344 | 98.69 169 | 82.66 392 | 92.65 372 | 96.92 272 | 84.75 324 | 99.56 177 | 90.94 295 | 97.76 325 | 98.19 291 |
|
| PAPR | | | 92.22 323 | 91.27 333 | 95.07 280 | 95.73 373 | 88.81 288 | 91.97 366 | 97.87 260 | 85.80 370 | 90.91 387 | 92.73 381 | 91.16 252 | 98.33 377 | 79.48 402 | 95.76 384 | 98.08 298 |
|
| v1921920 | | | 96.72 163 | 96.96 146 | 95.99 236 | 98.21 207 | 88.79 289 | 95.42 238 | 98.79 147 | 93.22 253 | 98.19 129 | 98.26 149 | 92.68 219 | 99.70 117 | 98.34 34 | 99.55 122 | 99.49 75 |
|
| v2v482 | | | 96.78 159 | 97.06 139 | 95.95 240 | 98.57 166 | 88.77 290 | 95.36 244 | 98.26 222 | 95.18 186 | 97.85 168 | 98.23 153 | 92.58 223 | 99.63 153 | 97.80 50 | 99.69 77 | 99.45 90 |
|
| MDA-MVSNet-bldmvs | | | 95.69 208 | 95.67 211 | 95.74 250 | 98.48 181 | 88.76 291 | 92.84 341 | 97.25 288 | 96.00 142 | 97.59 176 | 97.95 189 | 91.38 250 | 99.46 207 | 93.16 257 | 96.35 372 | 98.99 190 |
|
| v1240 | | | 96.74 160 | 97.02 142 | 95.91 243 | 98.18 213 | 88.52 292 | 95.39 242 | 98.88 118 | 93.15 261 | 98.46 95 | 98.40 126 | 92.80 216 | 99.71 109 | 98.45 31 | 99.49 147 | 99.49 75 |
|
| xiu_mvs_v1_base_debu | | | 95.62 212 | 95.96 199 | 94.60 304 | 98.01 231 | 88.42 293 | 93.99 309 | 98.21 227 | 92.98 266 | 95.91 281 | 94.53 355 | 96.39 108 | 99.72 95 | 95.43 162 | 98.19 306 | 95.64 391 |
|
| xiu_mvs_v1_base | | | 95.62 212 | 95.96 199 | 94.60 304 | 98.01 231 | 88.42 293 | 93.99 309 | 98.21 227 | 92.98 266 | 95.91 281 | 94.53 355 | 96.39 108 | 99.72 95 | 95.43 162 | 98.19 306 | 95.64 391 |
|
| xiu_mvs_v1_base_debi | | | 95.62 212 | 95.96 199 | 94.60 304 | 98.01 231 | 88.42 293 | 93.99 309 | 98.21 227 | 92.98 266 | 95.91 281 | 94.53 355 | 96.39 108 | 99.72 95 | 95.43 162 | 98.19 306 | 95.64 391 |
|
| pmmvs5 | | | 94.63 263 | 94.34 270 | 95.50 263 | 97.63 288 | 88.34 296 | 94.02 307 | 97.13 294 | 87.15 355 | 95.22 305 | 97.15 254 | 87.50 301 | 99.27 271 | 93.99 232 | 99.26 209 | 98.88 213 |
|
| FE-MVS | | | 92.95 312 | 92.22 317 | 95.11 277 | 97.21 318 | 88.33 297 | 98.54 23 | 93.66 361 | 89.91 323 | 96.21 269 | 98.14 162 | 70.33 397 | 99.50 194 | 87.79 351 | 98.24 305 | 97.51 345 |
|
| thisisatest0530 | | | 92.71 316 | 91.76 325 | 95.56 260 | 98.42 187 | 88.23 298 | 96.03 196 | 87.35 410 | 94.04 229 | 96.56 247 | 95.47 338 | 64.03 405 | 99.77 63 | 94.78 200 | 99.11 229 | 98.68 241 |
|
| MIMVSNet | | | 93.42 302 | 92.86 302 | 95.10 279 | 98.17 216 | 88.19 299 | 98.13 55 | 93.69 358 | 92.07 284 | 95.04 311 | 98.21 157 | 80.95 349 | 99.03 312 | 81.42 396 | 98.06 312 | 98.07 300 |
|
| Anonymous20240521 | | | 97.07 136 | 97.51 111 | 95.76 249 | 99.35 49 | 88.18 300 | 97.78 78 | 98.40 207 | 97.11 94 | 98.34 110 | 99.04 57 | 89.58 276 | 99.79 49 | 98.09 38 | 99.93 11 | 99.30 127 |
|
| CR-MVSNet | | | 93.29 307 | 92.79 305 | 94.78 298 | 95.44 378 | 88.15 301 | 96.18 184 | 97.20 290 | 84.94 382 | 94.10 331 | 98.57 104 | 77.67 361 | 99.39 234 | 95.17 175 | 95.81 380 | 96.81 370 |
|
| RPMNet | | | 94.68 260 | 94.60 256 | 94.90 290 | 95.44 378 | 88.15 301 | 96.18 184 | 98.86 123 | 97.43 78 | 94.10 331 | 98.49 113 | 79.40 353 | 99.76 68 | 95.69 139 | 95.81 380 | 96.81 370 |
|
| EI-MVSNet | | | 96.63 169 | 96.93 147 | 95.74 250 | 97.26 316 | 88.13 303 | 95.29 253 | 97.65 276 | 96.99 96 | 97.94 158 | 98.19 158 | 92.55 225 | 99.58 170 | 96.91 87 | 99.56 116 | 99.50 67 |
|
| IterMVS-LS | | | 96.92 146 | 97.29 123 | 95.79 247 | 98.51 175 | 88.13 303 | 95.10 260 | 98.66 176 | 96.99 96 | 98.46 95 | 98.68 93 | 92.55 225 | 99.74 83 | 96.91 87 | 99.79 52 | 99.50 67 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| FA-MVS(test-final) | | | 94.91 246 | 94.89 237 | 94.99 285 | 97.51 296 | 88.11 305 | 98.27 44 | 95.20 343 | 92.40 282 | 96.68 236 | 98.60 102 | 83.44 334 | 99.28 268 | 93.34 250 | 98.53 287 | 97.59 342 |
|
| diffmvs |  | | 96.04 193 | 96.23 186 | 95.46 266 | 97.35 309 | 88.03 306 | 93.42 329 | 99.08 64 | 94.09 228 | 96.66 239 | 96.93 270 | 93.85 192 | 99.29 266 | 96.01 123 | 98.67 276 | 99.06 180 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvs1 | | | 94.51 269 | 94.60 256 | 94.26 321 | 95.91 359 | 87.92 307 | 95.35 247 | 99.02 82 | 86.56 363 | 96.79 228 | 98.52 110 | 82.64 340 | 97.00 400 | 97.87 46 | 98.71 273 | 97.88 320 |
|
| TinyColmap | | | 96.00 196 | 96.34 182 | 94.96 287 | 97.90 242 | 87.91 308 | 94.13 304 | 98.49 195 | 94.41 215 | 98.16 131 | 97.76 205 | 96.29 115 | 98.68 348 | 90.52 312 | 99.42 172 | 98.30 279 |
|
| tttt0517 | | | 93.31 305 | 92.56 313 | 95.57 258 | 98.71 147 | 87.86 309 | 97.44 107 | 87.17 411 | 95.79 156 | 97.47 186 | 96.84 276 | 64.12 404 | 99.81 41 | 96.20 113 | 99.32 198 | 99.02 186 |
|
| WTY-MVS | | | 93.55 299 | 93.00 300 | 95.19 274 | 97.81 253 | 87.86 309 | 93.89 315 | 96.00 321 | 89.02 333 | 94.07 333 | 95.44 340 | 86.27 311 | 99.33 254 | 87.69 353 | 96.82 359 | 98.39 266 |
|
| jason | | | 94.39 273 | 94.04 280 | 95.41 269 | 98.29 196 | 87.85 311 | 92.74 346 | 96.75 310 | 85.38 376 | 95.29 303 | 96.15 314 | 88.21 294 | 99.65 145 | 94.24 221 | 99.34 191 | 98.74 231 |
| jason: jason. |
| MVSFormer | | | 96.14 189 | 96.36 181 | 95.49 264 | 97.68 277 | 87.81 312 | 98.67 15 | 99.02 82 | 96.50 115 | 94.48 323 | 96.15 314 | 86.90 306 | 99.92 6 | 98.73 22 | 99.13 225 | 98.74 231 |
|
| lupinMVS | | | 93.77 291 | 93.28 294 | 95.24 272 | 97.68 277 | 87.81 312 | 92.12 363 | 96.05 319 | 84.52 385 | 94.48 323 | 95.06 345 | 86.90 306 | 99.63 153 | 93.62 245 | 99.13 225 | 98.27 283 |
|
| D2MVS | | | 95.18 235 | 95.17 224 | 95.21 273 | 97.76 267 | 87.76 314 | 94.15 301 | 97.94 256 | 89.77 325 | 96.99 217 | 97.68 215 | 87.45 302 | 99.14 292 | 95.03 188 | 99.81 47 | 98.74 231 |
|
| testgi | | | 96.07 191 | 96.50 176 | 94.80 296 | 99.26 57 | 87.69 315 | 95.96 205 | 98.58 188 | 95.08 190 | 98.02 149 | 96.25 310 | 97.92 20 | 97.60 394 | 88.68 342 | 98.74 269 | 99.11 171 |
|
| v148 | | | 96.58 172 | 96.97 144 | 95.42 267 | 98.63 158 | 87.57 316 | 95.09 261 | 97.90 258 | 95.91 150 | 98.24 122 | 97.96 187 | 93.42 201 | 99.39 234 | 96.04 119 | 99.52 135 | 99.29 133 |
|
| BH-untuned | | | 94.69 258 | 94.75 248 | 94.52 309 | 97.95 240 | 87.53 317 | 94.07 306 | 97.01 300 | 93.99 230 | 97.10 206 | 95.65 332 | 92.65 221 | 98.95 322 | 87.60 355 | 96.74 362 | 97.09 356 |
|
| Patchmatch-test | | | 93.60 298 | 93.25 295 | 94.63 302 | 96.14 354 | 87.47 318 | 96.04 195 | 94.50 352 | 93.57 241 | 96.47 252 | 96.97 267 | 76.50 369 | 98.61 354 | 90.67 309 | 98.41 298 | 97.81 326 |
|
| BH-RMVSNet | | | 94.56 266 | 94.44 267 | 94.91 288 | 97.57 291 | 87.44 319 | 93.78 320 | 96.26 317 | 93.69 238 | 96.41 255 | 96.50 298 | 92.10 239 | 99.00 313 | 85.96 369 | 97.71 329 | 98.31 277 |
|
| PVSNet_BlendedMVS | | | 95.02 244 | 94.93 234 | 95.27 271 | 97.79 262 | 87.40 320 | 94.14 303 | 98.68 171 | 88.94 335 | 94.51 321 | 98.01 183 | 93.04 209 | 99.30 262 | 89.77 326 | 99.49 147 | 99.11 171 |
|
| PVSNet_Blended | | | 93.96 288 | 93.65 288 | 94.91 288 | 97.79 262 | 87.40 320 | 91.43 375 | 98.68 171 | 84.50 386 | 94.51 321 | 94.48 358 | 93.04 209 | 99.30 262 | 89.77 326 | 98.61 283 | 98.02 310 |
|
| PatchT | | | 93.75 292 | 93.57 290 | 94.29 320 | 95.05 387 | 87.32 322 | 96.05 194 | 92.98 368 | 97.54 75 | 94.25 326 | 98.72 86 | 75.79 375 | 99.24 278 | 95.92 128 | 95.81 380 | 96.32 381 |
|
| GA-MVS | | | 92.83 314 | 92.15 319 | 94.87 292 | 96.97 326 | 87.27 323 | 90.03 396 | 96.12 318 | 91.83 291 | 94.05 334 | 94.57 353 | 76.01 373 | 98.97 321 | 92.46 267 | 97.34 348 | 98.36 273 |
|
| baseline1 | | | 93.14 310 | 92.64 311 | 94.62 303 | 97.34 311 | 87.20 324 | 96.67 158 | 93.02 367 | 94.71 204 | 96.51 251 | 95.83 328 | 81.64 342 | 98.60 356 | 90.00 322 | 88.06 413 | 98.07 300 |
|
| patch_mono-2 | | | 96.59 170 | 96.93 147 | 95.55 261 | 98.88 126 | 87.12 325 | 94.47 287 | 99.30 29 | 94.12 225 | 96.65 241 | 98.41 123 | 94.98 162 | 99.87 24 | 95.81 136 | 99.78 55 | 99.66 30 |
|
| MS-PatchMatch | | | 94.83 250 | 94.91 236 | 94.57 307 | 96.81 332 | 87.10 326 | 94.23 296 | 97.34 287 | 88.74 338 | 97.14 202 | 97.11 258 | 91.94 244 | 98.23 382 | 92.99 259 | 97.92 317 | 98.37 268 |
|
| cl____ | | | 94.73 253 | 94.64 252 | 95.01 283 | 95.85 364 | 87.00 327 | 91.33 378 | 98.08 248 | 93.34 248 | 97.10 206 | 97.33 244 | 84.01 332 | 99.30 262 | 95.14 180 | 99.56 116 | 98.71 237 |
|
| DIV-MVS_self_test | | | 94.73 253 | 94.64 252 | 95.01 283 | 95.86 363 | 87.00 327 | 91.33 378 | 98.08 248 | 93.34 248 | 97.10 206 | 97.34 243 | 84.02 331 | 99.31 259 | 95.15 179 | 99.55 122 | 98.72 234 |
|
| MVS | | | 90.02 351 | 89.20 358 | 92.47 366 | 94.71 392 | 86.90 329 | 95.86 211 | 96.74 311 | 64.72 418 | 90.62 388 | 92.77 379 | 92.54 227 | 98.39 372 | 79.30 403 | 95.56 387 | 92.12 410 |
|
| test0.0.03 1 | | | 90.11 350 | 89.21 357 | 92.83 357 | 93.89 405 | 86.87 330 | 91.74 370 | 88.74 407 | 92.02 286 | 94.71 317 | 91.14 399 | 73.92 382 | 94.48 414 | 83.75 390 | 92.94 401 | 97.16 355 |
|
| test_cas_vis1_n_1920 | | | 95.34 227 | 95.67 211 | 94.35 316 | 98.21 207 | 86.83 331 | 95.61 230 | 99.26 33 | 90.45 315 | 98.17 130 | 98.96 65 | 84.43 327 | 98.31 378 | 96.74 92 | 99.17 220 | 97.90 318 |
|
| TR-MVS | | | 92.54 318 | 92.20 318 | 93.57 335 | 96.49 339 | 86.66 332 | 93.51 327 | 94.73 349 | 89.96 322 | 94.95 312 | 93.87 364 | 90.24 271 | 98.61 354 | 81.18 398 | 94.88 392 | 95.45 395 |
|
| MVS_Test | | | 96.27 184 | 96.79 157 | 94.73 300 | 96.94 329 | 86.63 333 | 96.18 184 | 98.33 216 | 94.94 197 | 96.07 275 | 98.28 144 | 95.25 153 | 99.26 272 | 97.21 72 | 97.90 319 | 98.30 279 |
|
| MVSTER | | | 94.21 278 | 93.93 285 | 95.05 281 | 95.83 365 | 86.46 334 | 95.18 258 | 97.65 276 | 92.41 281 | 97.94 158 | 98.00 185 | 72.39 390 | 99.58 170 | 96.36 105 | 99.56 116 | 99.12 168 |
|
| miper_lstm_enhance | | | 94.81 252 | 94.80 246 | 94.85 293 | 96.16 350 | 86.45 335 | 91.14 384 | 98.20 230 | 93.49 243 | 97.03 214 | 97.37 241 | 84.97 323 | 99.26 272 | 95.28 168 | 99.56 116 | 98.83 218 |
|
| c3_l | | | 95.20 234 | 95.32 218 | 94.83 295 | 96.19 348 | 86.43 336 | 91.83 369 | 98.35 215 | 93.47 244 | 97.36 190 | 97.26 248 | 88.69 286 | 99.28 268 | 95.41 165 | 99.36 183 | 98.78 225 |
|
| USDC | | | 94.56 266 | 94.57 261 | 94.55 308 | 97.78 265 | 86.43 336 | 92.75 344 | 98.65 181 | 85.96 367 | 96.91 224 | 97.93 192 | 90.82 258 | 98.74 338 | 90.71 307 | 99.59 107 | 98.47 260 |
|
| miper_ehance_all_eth | | | 94.69 258 | 94.70 249 | 94.64 301 | 95.77 370 | 86.22 338 | 91.32 380 | 98.24 225 | 91.67 292 | 97.05 213 | 96.65 289 | 88.39 291 | 99.22 282 | 94.88 193 | 98.34 300 | 98.49 259 |
|
| eth_miper_zixun_eth | | | 94.89 248 | 94.93 234 | 94.75 299 | 95.99 357 | 86.12 339 | 91.35 377 | 98.49 195 | 93.40 245 | 97.12 204 | 97.25 249 | 86.87 308 | 99.35 249 | 95.08 185 | 98.82 262 | 98.78 225 |
|
| cl22 | | | 93.25 308 | 92.84 304 | 94.46 312 | 94.30 397 | 86.00 340 | 91.09 386 | 96.64 315 | 90.74 309 | 95.79 287 | 96.31 308 | 78.24 358 | 98.77 335 | 94.15 225 | 98.34 300 | 98.62 245 |
|
| MG-MVS | | | 94.08 284 | 94.00 281 | 94.32 318 | 97.09 323 | 85.89 341 | 93.19 337 | 95.96 323 | 92.52 277 | 94.93 314 | 97.51 226 | 89.54 277 | 98.77 335 | 87.52 359 | 97.71 329 | 98.31 277 |
|
| ADS-MVSNet2 | | | 91.47 339 | 90.51 348 | 94.36 315 | 95.51 376 | 85.63 342 | 95.05 266 | 95.70 328 | 83.46 389 | 92.69 370 | 96.84 276 | 79.15 355 | 99.41 228 | 85.66 373 | 90.52 407 | 98.04 308 |
|
| cascas | | | 91.89 332 | 91.35 330 | 93.51 336 | 94.27 398 | 85.60 343 | 88.86 406 | 98.61 183 | 79.32 405 | 92.16 379 | 91.44 396 | 89.22 284 | 98.12 385 | 90.80 300 | 97.47 344 | 96.82 369 |
|
| IterMVS-SCA-FT | | | 95.86 201 | 96.19 188 | 94.85 293 | 97.68 277 | 85.53 344 | 92.42 357 | 97.63 280 | 96.99 96 | 98.36 106 | 98.54 109 | 87.94 295 | 99.75 74 | 97.07 82 | 99.08 233 | 99.27 138 |
|
| thisisatest0515 | | | 90.43 348 | 89.18 360 | 94.17 324 | 97.07 324 | 85.44 345 | 89.75 402 | 87.58 409 | 88.28 345 | 93.69 346 | 91.72 393 | 65.27 403 | 99.58 170 | 90.59 310 | 98.67 276 | 97.50 347 |
|
| pmmvs3 | | | 90.00 352 | 88.90 362 | 93.32 338 | 94.20 401 | 85.34 346 | 91.25 381 | 92.56 376 | 78.59 407 | 93.82 339 | 95.17 342 | 67.36 402 | 98.69 345 | 89.08 336 | 98.03 313 | 95.92 385 |
|
| ttmdpeth | | | 94.05 285 | 94.15 277 | 93.75 330 | 95.81 367 | 85.32 347 | 96.00 199 | 94.93 347 | 92.07 284 | 94.19 328 | 99.09 53 | 85.73 316 | 96.41 408 | 90.98 293 | 98.52 288 | 99.53 57 |
|
| BH-w/o | | | 92.14 325 | 91.94 320 | 92.73 360 | 97.13 322 | 85.30 348 | 92.46 354 | 95.64 330 | 89.33 329 | 94.21 327 | 92.74 380 | 89.60 275 | 98.24 381 | 81.68 395 | 94.66 394 | 94.66 400 |
|
| miper_enhance_ethall | | | 93.14 310 | 92.78 307 | 94.20 322 | 93.65 407 | 85.29 349 | 89.97 397 | 97.85 261 | 85.05 378 | 96.15 274 | 94.56 354 | 85.74 315 | 99.14 292 | 93.74 240 | 98.34 300 | 98.17 294 |
|
| DeepMVS_CX |  | | | | 77.17 401 | 90.94 419 | 85.28 350 | | 74.08 424 | 52.51 420 | 80.87 420 | 88.03 412 | 75.25 377 | 70.63 422 | 59.23 421 | 84.94 416 | 75.62 416 |
|
| MVE |  | 73.61 22 | 86.48 383 | 85.92 382 | 88.18 397 | 96.23 346 | 85.28 350 | 81.78 417 | 75.79 421 | 86.01 366 | 82.53 417 | 91.88 391 | 92.74 217 | 87.47 420 | 71.42 417 | 94.86 393 | 91.78 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| 1314 | | | 92.38 320 | 92.30 315 | 92.64 362 | 95.42 380 | 85.15 352 | 95.86 211 | 96.97 302 | 85.40 375 | 90.62 388 | 93.06 374 | 91.12 253 | 97.80 391 | 86.74 366 | 95.49 388 | 94.97 399 |
|
| MDA-MVSNet_test_wron | | | 94.73 253 | 94.83 244 | 94.42 313 | 97.48 298 | 85.15 352 | 90.28 395 | 95.87 326 | 92.52 277 | 97.48 184 | 97.76 205 | 91.92 245 | 99.17 289 | 93.32 251 | 96.80 361 | 98.94 197 |
|
| YYNet1 | | | 94.73 253 | 94.84 242 | 94.41 314 | 97.47 302 | 85.09 354 | 90.29 394 | 95.85 327 | 92.52 277 | 97.53 178 | 97.76 205 | 91.97 242 | 99.18 285 | 93.31 252 | 96.86 356 | 98.95 195 |
|
| PAPM | | | 87.64 376 | 85.84 383 | 93.04 348 | 96.54 337 | 84.99 355 | 88.42 407 | 95.57 334 | 79.52 404 | 83.82 415 | 93.05 375 | 80.57 350 | 98.41 370 | 62.29 419 | 92.79 402 | 95.71 390 |
|
| PS-MVSNAJ | | | 94.10 282 | 94.47 264 | 93.00 351 | 97.35 309 | 84.88 356 | 91.86 368 | 97.84 263 | 91.96 288 | 94.17 329 | 92.50 385 | 95.82 130 | 99.71 109 | 91.27 286 | 97.48 342 | 94.40 402 |
|
| MVStest1 | | | 91.89 332 | 91.45 327 | 93.21 344 | 89.01 421 | 84.87 357 | 95.82 215 | 95.05 345 | 91.50 298 | 98.75 72 | 99.19 38 | 57.56 410 | 95.11 410 | 97.78 52 | 98.37 299 | 99.64 35 |
|
| test_vis1_n_1920 | | | 95.77 205 | 96.41 179 | 93.85 327 | 98.55 169 | 84.86 358 | 95.91 209 | 99.71 6 | 92.72 275 | 97.67 174 | 98.90 73 | 87.44 303 | 98.73 339 | 97.96 42 | 98.85 258 | 97.96 314 |
|
| xiu_mvs_v2_base | | | 94.22 276 | 94.63 254 | 92.99 352 | 97.32 314 | 84.84 359 | 92.12 363 | 97.84 263 | 91.96 288 | 94.17 329 | 93.43 367 | 96.07 121 | 99.71 109 | 91.27 286 | 97.48 342 | 94.42 401 |
|
| IB-MVS | | 85.98 20 | 88.63 368 | 86.95 379 | 93.68 333 | 95.12 386 | 84.82 360 | 90.85 388 | 90.17 401 | 87.55 352 | 88.48 407 | 91.34 397 | 58.01 409 | 99.59 168 | 87.24 363 | 93.80 400 | 96.63 376 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres600view7 | | | 92.03 330 | 91.43 328 | 93.82 328 | 98.19 210 | 84.61 361 | 96.27 176 | 90.39 396 | 96.81 102 | 96.37 257 | 93.11 369 | 73.44 388 | 99.49 199 | 80.32 400 | 97.95 316 | 97.36 350 |
|
| thres100view900 | | | 91.76 335 | 91.26 335 | 93.26 340 | 98.21 207 | 84.50 362 | 96.39 166 | 90.39 396 | 96.87 100 | 96.33 258 | 93.08 373 | 73.44 388 | 99.42 219 | 78.85 405 | 97.74 326 | 95.85 387 |
|
| RRT-MVS | | | 95.78 204 | 96.25 185 | 94.35 316 | 96.68 334 | 84.47 363 | 97.72 86 | 99.11 53 | 97.23 91 | 97.27 193 | 98.72 86 | 86.39 310 | 99.79 49 | 95.49 151 | 97.67 333 | 98.80 222 |
|
| gg-mvs-nofinetune | | | 88.28 372 | 86.96 378 | 92.23 371 | 92.84 414 | 84.44 364 | 98.19 52 | 74.60 422 | 99.08 14 | 87.01 413 | 99.47 13 | 56.93 412 | 98.23 382 | 78.91 404 | 95.61 386 | 94.01 404 |
|
| tfpn200view9 | | | 91.55 337 | 91.00 337 | 93.21 344 | 98.02 229 | 84.35 365 | 95.70 219 | 90.79 393 | 96.26 126 | 95.90 284 | 92.13 389 | 73.62 385 | 99.42 219 | 78.85 405 | 97.74 326 | 95.85 387 |
|
| thres400 | | | 91.68 336 | 91.00 337 | 93.71 332 | 98.02 229 | 84.35 365 | 95.70 219 | 90.79 393 | 96.26 126 | 95.90 284 | 92.13 389 | 73.62 385 | 99.42 219 | 78.85 405 | 97.74 326 | 97.36 350 |
|
| testing3 | | | 89.72 358 | 88.26 367 | 94.10 325 | 97.66 282 | 84.30 367 | 94.80 275 | 88.25 408 | 94.66 205 | 95.07 307 | 92.51 384 | 41.15 426 | 99.43 217 | 91.81 278 | 98.44 296 | 98.55 252 |
|
| GG-mvs-BLEND | | | | | 90.60 385 | 91.00 418 | 84.21 368 | 98.23 46 | 72.63 425 | | 82.76 416 | 84.11 417 | 56.14 415 | 96.79 403 | 72.20 415 | 92.09 406 | 90.78 414 |
|
| dcpmvs_2 | | | 97.12 134 | 97.99 59 | 94.51 310 | 99.11 92 | 84.00 369 | 97.75 82 | 99.65 12 | 97.38 86 | 99.14 37 | 98.42 121 | 95.16 155 | 99.96 2 | 95.52 150 | 99.78 55 | 99.58 39 |
|
| thres200 | | | 91.00 345 | 90.42 349 | 92.77 359 | 97.47 302 | 83.98 370 | 94.01 308 | 91.18 390 | 95.12 189 | 95.44 300 | 91.21 398 | 73.93 381 | 99.31 259 | 77.76 408 | 97.63 337 | 95.01 398 |
|
| IterMVS | | | 95.42 223 | 95.83 206 | 94.20 322 | 97.52 295 | 83.78 371 | 92.41 358 | 97.47 285 | 95.49 172 | 98.06 144 | 98.49 113 | 87.94 295 | 99.58 170 | 96.02 121 | 99.02 240 | 99.23 145 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DSMNet-mixed | | | 92.19 324 | 91.83 322 | 93.25 341 | 96.18 349 | 83.68 372 | 96.27 176 | 93.68 360 | 76.97 413 | 92.54 376 | 99.18 42 | 89.20 285 | 98.55 360 | 83.88 387 | 98.60 285 | 97.51 345 |
|
| ETVMVS | | | 87.62 377 | 85.75 384 | 93.22 343 | 96.15 353 | 83.26 373 | 92.94 340 | 90.37 398 | 91.39 301 | 90.37 392 | 88.45 411 | 51.93 423 | 98.64 351 | 73.76 412 | 96.38 371 | 97.75 330 |
|
| ECVR-MVS |  | | 94.37 274 | 94.48 263 | 94.05 326 | 98.95 115 | 83.10 374 | 98.31 39 | 82.48 419 | 96.20 129 | 98.23 123 | 99.16 46 | 81.18 346 | 99.66 143 | 95.95 126 | 99.83 42 | 99.38 112 |
|
| testing222 | | | 87.35 379 | 85.50 386 | 92.93 355 | 95.79 368 | 82.83 375 | 92.40 359 | 90.10 402 | 92.80 273 | 88.87 405 | 89.02 409 | 48.34 424 | 98.70 343 | 75.40 411 | 96.74 362 | 97.27 354 |
|
| baseline2 | | | 89.65 360 | 88.44 366 | 93.25 341 | 95.62 374 | 82.71 376 | 93.82 317 | 85.94 414 | 88.89 336 | 87.35 412 | 92.54 383 | 71.23 393 | 99.33 254 | 86.01 368 | 94.60 396 | 97.72 334 |
|
| Syy-MVS | | | 92.09 327 | 91.80 324 | 92.93 355 | 95.19 384 | 82.65 377 | 92.46 354 | 91.35 386 | 90.67 312 | 91.76 383 | 87.61 413 | 85.64 318 | 98.50 364 | 94.73 203 | 96.84 357 | 97.65 337 |
|
| EPNet_dtu | | | 91.39 340 | 90.75 343 | 93.31 339 | 90.48 420 | 82.61 378 | 94.80 275 | 92.88 369 | 93.39 246 | 81.74 418 | 94.90 350 | 81.36 345 | 99.11 299 | 88.28 347 | 98.87 255 | 98.21 289 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EU-MVSNet | | | 94.25 275 | 94.47 264 | 93.60 334 | 98.14 222 | 82.60 379 | 97.24 117 | 92.72 372 | 85.08 377 | 98.48 92 | 98.94 67 | 82.59 341 | 98.76 337 | 97.47 66 | 99.53 130 | 99.44 100 |
|
| ADS-MVSNet | | | 90.95 346 | 90.26 350 | 93.04 348 | 95.51 376 | 82.37 380 | 95.05 266 | 93.41 364 | 83.46 389 | 92.69 370 | 96.84 276 | 79.15 355 | 98.70 343 | 85.66 373 | 90.52 407 | 98.04 308 |
|
| ppachtmachnet_test | | | 94.49 270 | 94.84 242 | 93.46 337 | 96.16 350 | 82.10 381 | 90.59 391 | 97.48 284 | 90.53 314 | 97.01 216 | 97.59 220 | 91.01 255 | 99.36 245 | 93.97 234 | 99.18 219 | 98.94 197 |
|
| KD-MVS_2432*1600 | | | 88.93 365 | 87.74 370 | 92.49 364 | 88.04 422 | 81.99 382 | 89.63 403 | 95.62 331 | 91.35 302 | 95.06 308 | 93.11 369 | 56.58 413 | 98.63 352 | 85.19 378 | 95.07 389 | 96.85 366 |
|
| miper_refine_blended | | | 88.93 365 | 87.74 370 | 92.49 364 | 88.04 422 | 81.99 382 | 89.63 403 | 95.62 331 | 91.35 302 | 95.06 308 | 93.11 369 | 56.58 413 | 98.63 352 | 85.19 378 | 95.07 389 | 96.85 366 |
|
| test1111 | | | 94.53 268 | 94.81 245 | 93.72 331 | 99.06 100 | 81.94 384 | 98.31 39 | 83.87 417 | 96.37 121 | 98.49 90 | 99.17 45 | 81.49 343 | 99.73 89 | 96.64 93 | 99.86 28 | 99.49 75 |
|
| testing91 | | | 89.67 359 | 88.55 364 | 93.04 348 | 95.90 360 | 81.80 385 | 92.71 348 | 93.71 357 | 93.71 236 | 90.18 395 | 90.15 406 | 57.11 411 | 99.22 282 | 87.17 364 | 96.32 373 | 98.12 296 |
|
| mvs_anonymous | | | 95.36 225 | 96.07 194 | 93.21 344 | 96.29 343 | 81.56 386 | 94.60 284 | 97.66 274 | 93.30 250 | 96.95 221 | 98.91 72 | 93.03 212 | 99.38 237 | 96.60 95 | 97.30 350 | 98.69 238 |
|
| testing11 | | | 88.93 365 | 87.63 373 | 92.80 358 | 95.87 362 | 81.49 387 | 92.48 353 | 91.54 384 | 91.62 294 | 88.27 408 | 90.24 404 | 55.12 421 | 99.11 299 | 87.30 362 | 96.28 375 | 97.81 326 |
|
| SCA | | | 93.38 304 | 93.52 291 | 92.96 353 | 96.24 344 | 81.40 388 | 93.24 335 | 94.00 356 | 91.58 297 | 94.57 319 | 96.97 267 | 87.94 295 | 99.42 219 | 89.47 330 | 97.66 335 | 98.06 304 |
|
| MonoMVSNet | | | 93.30 306 | 93.96 284 | 91.33 381 | 94.14 402 | 81.33 389 | 97.68 89 | 96.69 313 | 95.38 178 | 96.32 259 | 98.42 121 | 84.12 330 | 96.76 405 | 90.78 301 | 92.12 405 | 95.89 386 |
|
| our_test_3 | | | 94.20 280 | 94.58 259 | 93.07 347 | 96.16 350 | 81.20 390 | 90.42 393 | 96.84 305 | 90.72 310 | 97.14 202 | 97.13 255 | 90.47 262 | 99.11 299 | 94.04 231 | 98.25 304 | 98.91 205 |
|
| CHOSEN 280x420 | | | 89.98 353 | 89.19 359 | 92.37 368 | 95.60 375 | 81.13 391 | 86.22 410 | 97.09 296 | 81.44 397 | 87.44 411 | 93.15 368 | 73.99 380 | 99.47 204 | 88.69 341 | 99.07 235 | 96.52 378 |
|
| testing99 | | | 89.21 363 | 88.04 369 | 92.70 361 | 95.78 369 | 81.00 392 | 92.65 349 | 92.03 378 | 93.20 255 | 89.90 399 | 90.08 408 | 55.25 418 | 99.14 292 | 87.54 357 | 95.95 379 | 97.97 313 |
|
| PMMVS2 | | | 93.66 296 | 94.07 279 | 92.45 367 | 97.57 291 | 80.67 393 | 86.46 409 | 96.00 321 | 93.99 230 | 97.10 206 | 97.38 239 | 89.90 273 | 97.82 390 | 88.76 339 | 99.47 153 | 98.86 216 |
|
| WB-MVSnew | | | 91.50 338 | 91.29 331 | 92.14 372 | 94.85 389 | 80.32 394 | 93.29 334 | 88.77 406 | 88.57 341 | 94.03 335 | 92.21 387 | 92.56 224 | 98.28 380 | 80.21 401 | 97.08 351 | 97.81 326 |
|
| new-patchmatchnet | | | 95.67 210 | 96.58 167 | 92.94 354 | 97.48 298 | 80.21 395 | 92.96 339 | 98.19 235 | 94.83 200 | 98.82 63 | 98.79 79 | 93.31 203 | 99.51 193 | 95.83 134 | 99.04 239 | 99.12 168 |
|
| PatchmatchNet |  | | 91.98 331 | 91.87 321 | 92.30 369 | 94.60 394 | 79.71 396 | 95.12 259 | 93.59 363 | 89.52 327 | 93.61 348 | 97.02 264 | 77.94 359 | 99.18 285 | 90.84 298 | 94.57 397 | 98.01 311 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WAC-MVS | | | | | | | 79.32 397 | | | | | | | | 85.41 376 | | |
|
| myMVS_eth3d | | | 87.16 382 | 85.61 385 | 91.82 375 | 95.19 384 | 79.32 397 | 92.46 354 | 91.35 386 | 90.67 312 | 91.76 383 | 87.61 413 | 41.96 425 | 98.50 364 | 82.66 392 | 96.84 357 | 97.65 337 |
|
| EPMVS | | | 89.26 362 | 88.55 364 | 91.39 380 | 92.36 416 | 79.11 399 | 95.65 226 | 79.86 420 | 88.60 340 | 93.12 361 | 96.53 295 | 70.73 396 | 98.10 386 | 90.75 303 | 89.32 411 | 96.98 359 |
|
| SSC-MVS | | | 95.92 198 | 97.03 141 | 92.58 363 | 99.28 55 | 78.39 400 | 96.68 156 | 95.12 344 | 98.90 23 | 99.11 39 | 98.66 94 | 91.36 251 | 99.68 129 | 95.00 189 | 99.16 221 | 99.67 28 |
|
| UBG | | | 88.29 371 | 87.17 375 | 91.63 377 | 96.08 355 | 78.21 401 | 91.61 371 | 91.50 385 | 89.67 326 | 89.71 400 | 88.97 410 | 59.01 408 | 98.91 323 | 81.28 397 | 96.72 364 | 97.77 329 |
|
| tpm | | | 91.08 344 | 90.85 341 | 91.75 376 | 95.33 382 | 78.09 402 | 95.03 268 | 91.27 389 | 88.75 337 | 93.53 351 | 97.40 233 | 71.24 392 | 99.30 262 | 91.25 288 | 93.87 399 | 97.87 321 |
|
| PVSNet | | 86.72 19 | 91.10 343 | 90.97 339 | 91.49 378 | 97.56 293 | 78.04 403 | 87.17 408 | 94.60 351 | 84.65 384 | 92.34 377 | 92.20 388 | 87.37 304 | 98.47 367 | 85.17 380 | 97.69 331 | 97.96 314 |
|
| CostFormer | | | 89.75 357 | 89.25 355 | 91.26 382 | 94.69 393 | 78.00 404 | 95.32 250 | 91.98 380 | 81.50 396 | 90.55 390 | 96.96 269 | 71.06 394 | 98.89 325 | 88.59 343 | 92.63 403 | 96.87 364 |
|
| WBMVS | | | 91.11 342 | 90.72 344 | 92.26 370 | 95.99 357 | 77.98 405 | 91.47 374 | 95.90 325 | 91.63 293 | 95.90 284 | 96.45 300 | 59.60 407 | 99.46 207 | 89.97 323 | 99.59 107 | 99.33 121 |
|
| E-PMN | | | 89.52 361 | 89.78 353 | 88.73 393 | 93.14 410 | 77.61 406 | 83.26 415 | 92.02 379 | 94.82 201 | 93.71 344 | 93.11 369 | 75.31 376 | 96.81 402 | 85.81 370 | 96.81 360 | 91.77 412 |
|
| dmvs_testset | | | 87.30 380 | 86.99 377 | 88.24 396 | 96.71 333 | 77.48 407 | 94.68 281 | 86.81 413 | 92.64 276 | 89.61 401 | 87.01 415 | 85.91 314 | 93.12 416 | 61.04 420 | 88.49 412 | 94.13 403 |
|
| EMVS | | | 89.06 364 | 89.22 356 | 88.61 394 | 93.00 412 | 77.34 408 | 82.91 416 | 90.92 391 | 94.64 207 | 92.63 374 | 91.81 392 | 76.30 371 | 97.02 399 | 83.83 388 | 96.90 355 | 91.48 413 |
|
| tpm2 | | | 88.47 369 | 87.69 372 | 90.79 384 | 94.98 388 | 77.34 408 | 95.09 261 | 91.83 381 | 77.51 412 | 89.40 402 | 96.41 302 | 67.83 401 | 98.73 339 | 83.58 391 | 92.60 404 | 96.29 382 |
|
| WB-MVS | | | 95.50 216 | 96.62 163 | 92.11 373 | 99.21 73 | 77.26 410 | 96.12 190 | 95.40 339 | 98.62 30 | 98.84 61 | 98.26 149 | 91.08 254 | 99.50 194 | 93.37 248 | 98.70 274 | 99.58 39 |
|
| test2506 | | | 89.86 356 | 89.16 361 | 91.97 374 | 98.95 115 | 76.83 411 | 98.54 23 | 61.07 426 | 96.20 129 | 97.07 212 | 99.16 46 | 55.19 420 | 99.69 124 | 96.43 102 | 99.83 42 | 99.38 112 |
|
| tpmvs | | | 90.79 347 | 90.87 340 | 90.57 386 | 92.75 415 | 76.30 412 | 95.79 216 | 93.64 362 | 91.04 307 | 91.91 381 | 96.26 309 | 77.19 367 | 98.86 329 | 89.38 332 | 89.85 410 | 96.56 377 |
|
| tpm cat1 | | | 88.01 374 | 87.33 374 | 90.05 390 | 94.48 395 | 76.28 413 | 94.47 287 | 94.35 354 | 73.84 417 | 89.26 403 | 95.61 335 | 73.64 384 | 98.30 379 | 84.13 385 | 86.20 415 | 95.57 394 |
|
| CVMVSNet | | | 92.33 322 | 92.79 305 | 90.95 383 | 97.26 316 | 75.84 414 | 95.29 253 | 92.33 377 | 81.86 393 | 96.27 264 | 98.19 158 | 81.44 344 | 98.46 368 | 94.23 222 | 98.29 303 | 98.55 252 |
|
| reproduce_monomvs | | | 92.05 329 | 92.26 316 | 91.43 379 | 95.42 380 | 75.72 415 | 95.68 222 | 97.05 299 | 94.47 213 | 97.95 157 | 98.35 130 | 55.58 417 | 99.05 307 | 96.36 105 | 99.44 160 | 99.51 64 |
|
| test-LLR | | | 89.97 354 | 89.90 352 | 90.16 387 | 94.24 399 | 74.98 416 | 89.89 398 | 89.06 404 | 92.02 286 | 89.97 397 | 90.77 402 | 73.92 382 | 98.57 357 | 91.88 275 | 97.36 346 | 96.92 361 |
|
| test-mter | | | 87.92 375 | 87.17 375 | 90.16 387 | 94.24 399 | 74.98 416 | 89.89 398 | 89.06 404 | 86.44 364 | 89.97 397 | 90.77 402 | 54.96 422 | 98.57 357 | 91.88 275 | 97.36 346 | 96.92 361 |
|
| PVSNet_0 | | 81.89 21 | 84.49 384 | 83.21 387 | 88.34 395 | 95.76 371 | 74.97 418 | 83.49 414 | 92.70 373 | 78.47 408 | 87.94 409 | 86.90 416 | 83.38 336 | 96.63 407 | 73.44 414 | 66.86 420 | 93.40 407 |
|
| UWE-MVS | | | 87.57 378 | 86.72 380 | 90.13 389 | 95.21 383 | 73.56 419 | 91.94 367 | 83.78 418 | 88.73 339 | 93.00 363 | 92.87 377 | 55.22 419 | 99.25 274 | 81.74 394 | 97.96 315 | 97.59 342 |
|
| MDTV_nov1_ep13 | | | | 91.28 332 | | 94.31 396 | 73.51 420 | 94.80 275 | 93.16 366 | 86.75 362 | 93.45 354 | 97.40 233 | 76.37 370 | 98.55 360 | 88.85 338 | 96.43 369 | |
|
| TESTMET0.1,1 | | | 87.20 381 | 86.57 381 | 89.07 392 | 93.62 408 | 72.84 421 | 89.89 398 | 87.01 412 | 85.46 374 | 89.12 404 | 90.20 405 | 56.00 416 | 97.72 392 | 90.91 296 | 96.92 353 | 96.64 374 |
|
| tpmrst | | | 90.31 349 | 90.61 347 | 89.41 391 | 94.06 403 | 72.37 422 | 95.06 265 | 93.69 358 | 88.01 348 | 92.32 378 | 96.86 274 | 77.45 363 | 98.82 330 | 91.04 291 | 87.01 414 | 97.04 358 |
|
| gm-plane-assit | | | | | | 91.79 417 | 71.40 423 | | | 81.67 394 | | 90.11 407 | | 98.99 315 | 84.86 382 | | |
|
| dp | | | 88.08 373 | 88.05 368 | 88.16 398 | 92.85 413 | 68.81 424 | 94.17 299 | 92.88 369 | 85.47 373 | 91.38 386 | 96.14 316 | 68.87 400 | 98.81 332 | 86.88 365 | 83.80 417 | 96.87 364 |
|
| MVS-HIRNet | | | 88.40 370 | 90.20 351 | 82.99 400 | 97.01 325 | 60.04 425 | 93.11 338 | 85.61 415 | 84.45 387 | 88.72 406 | 99.09 53 | 84.72 325 | 98.23 382 | 82.52 393 | 96.59 368 | 90.69 415 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 426 | 94.89 272 | | 80.59 400 | 94.02 336 | | 78.66 357 | | 85.50 375 | | 97.82 324 |
|
| dongtai | | | 63.43 387 | 63.37 390 | 63.60 403 | 83.91 425 | 53.17 427 | 85.14 411 | 43.40 429 | 77.91 411 | 80.96 419 | 79.17 419 | 36.36 427 | 77.10 421 | 37.88 422 | 45.63 421 | 60.54 418 |
|
| kuosan | | | 54.81 389 | 54.94 392 | 54.42 404 | 74.43 426 | 50.03 428 | 84.98 412 | 44.27 428 | 61.80 419 | 62.49 423 | 70.43 420 | 35.16 428 | 58.04 423 | 19.30 423 | 41.61 422 | 55.19 419 |
|
| tmp_tt | | | 57.23 388 | 62.50 391 | 41.44 405 | 34.77 428 | 49.21 429 | 83.93 413 | 60.22 427 | 15.31 421 | 71.11 421 | 79.37 418 | 70.09 398 | 44.86 424 | 64.76 418 | 82.93 418 | 30.25 420 |
|
| test_method | | | 66.88 386 | 66.13 389 | 69.11 402 | 62.68 427 | 25.73 430 | 49.76 418 | 96.04 320 | 14.32 422 | 64.27 422 | 91.69 394 | 73.45 387 | 88.05 419 | 76.06 410 | 66.94 419 | 93.54 405 |
|
| test123 | | | 12.59 391 | 15.49 394 | 3.87 406 | 6.07 429 | 2.55 431 | 90.75 390 | 2.59 431 | 2.52 424 | 5.20 426 | 13.02 423 | 4.96 429 | 1.85 426 | 5.20 424 | 9.09 423 | 7.23 421 |
|
| testmvs | | | 12.33 392 | 15.23 395 | 3.64 407 | 5.77 430 | 2.23 432 | 88.99 405 | 3.62 430 | 2.30 425 | 5.29 425 | 13.09 422 | 4.52 430 | 1.95 425 | 5.16 425 | 8.32 424 | 6.75 422 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 24.22 390 | 32.30 393 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 98.10 246 | 0.00 426 | 0.00 427 | 95.06 345 | 97.54 39 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 7.98 393 | 10.65 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 95.82 130 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 7.91 394 | 10.55 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 94.94 347 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| PC_three_1452 | | | | | | | | | | 87.24 354 | 98.37 103 | 97.44 230 | 97.00 67 | 96.78 404 | 92.01 271 | 99.25 210 | 99.21 147 |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| test_241102_TWO | | | | | | | | | 98.83 137 | 96.11 134 | 98.62 78 | 98.24 151 | 96.92 76 | 99.72 95 | 95.44 159 | 99.49 147 | 99.49 75 |
|
| 9.14 | | | | 96.69 160 | | 98.53 172 | | 96.02 197 | 98.98 99 | 93.23 252 | 97.18 200 | 97.46 228 | 96.47 103 | 99.62 158 | 92.99 259 | 99.32 198 | |
|
| test_0728_THIRD | | | | | | | | | | 96.62 106 | 98.40 100 | 98.28 144 | 97.10 58 | 99.71 109 | 95.70 137 | 99.62 92 | 99.58 39 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 304 |
|
| sam_mvs1 | | | | | | | | | | | | | 77.80 360 | | | | 98.06 304 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 364 | | | | |
|
| MTGPA |  | | | | | | | | 98.73 159 | | | | | | | | |
|
| test_post1 | | | | | | | | 94.98 270 | | | | 10.37 425 | 76.21 372 | 99.04 309 | 89.47 330 | | |
|
| test_post | | | | | | | | | | | | 10.87 424 | 76.83 368 | 99.07 305 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 276 | 77.36 365 | 99.42 219 | | | |
|
| MTMP | | | | | | | | 96.55 160 | 74.60 422 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 285 | 98.89 254 | 99.00 187 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 318 | 98.90 251 | 99.10 175 |
|
| test_prior2 | | | | | | | | 93.33 333 | | 94.21 220 | 94.02 336 | 96.25 310 | 93.64 197 | | 91.90 274 | 98.96 244 | |
|
| 旧先验2 | | | | | | | | 93.35 332 | | 77.95 410 | 95.77 291 | | | 98.67 349 | 90.74 306 | | |
|
| 新几何2 | | | | | | | | 93.43 328 | | | | | | | | | |
|
| 无先验 | | | | | | | | 93.20 336 | 97.91 257 | 80.78 399 | | | | 99.40 230 | 87.71 352 | | 97.94 316 |
|
| 原ACMM2 | | | | | | | | 92.82 342 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.46 207 | 87.84 350 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 150 | | | | |
|
| testdata1 | | | | | | | | 92.77 343 | | 93.78 234 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 156 | | | | | 99.46 207 | 92.59 264 | 99.20 215 | 99.28 134 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 282 | | | | | |
|
| plane_prior2 | | | | | | | | 96.50 162 | | 96.36 122 | | | | | | | |
|
| plane_prior1 | | | | | | 98.49 179 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 236 | | | | | | | | |
|
| test11 | | | | | | | | | 98.08 248 | | | | | | | | |
|
| door | | | | | | | | | 97.81 266 | | | | | | | | |
|
| HQP-NCC | | | | | | 97.85 244 | | 94.26 291 | | 93.18 257 | 92.86 366 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 244 | | 94.26 291 | | 93.18 257 | 92.86 366 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 313 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 365 | | | 99.23 280 | | | 99.06 180 |
|
| HQP3-MVS | | | | | | | | | 98.43 201 | | | | | | | 98.74 269 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 266 | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 135 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 122 | |
|
| Test By Simon | | | | | | | | | | | | | 94.51 176 | | | | |
|