This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MM97.62 12093.30 18696.39 15692.61 36097.90 5296.76 22898.64 9390.46 25499.81 3799.16 999.94 899.76 17
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 26999.79 4598.09 3799.93 1199.30 121
MVS_030496.62 16296.40 17297.28 15197.91 23592.30 21096.47 15489.74 38397.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26799.84 3098.43 3299.91 1899.62 36
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26699.90 1498.64 2699.90 2499.82 6
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24299.83 3398.47 3099.90 2499.64 35
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
test111194.53 25794.81 23493.72 32199.06 10281.94 37198.31 3983.87 39696.37 11498.49 8899.17 4281.49 33199.73 8396.64 8699.86 3199.49 71
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
pmmvs-eth3d96.49 16896.18 18197.42 14398.25 19794.29 15094.77 26598.07 24489.81 30597.97 15198.33 12393.11 19999.08 29095.46 14899.84 4098.89 203
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22798.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 305
test250689.86 34089.16 34591.97 35698.95 11376.83 39198.54 2361.07 40496.20 12297.07 20699.16 4355.19 40199.69 11996.43 9599.83 4399.38 107
ECVR-MVScopyleft94.37 26394.48 25294.05 31798.95 11383.10 36298.31 3982.48 39796.20 12298.23 12099.16 4381.18 33499.66 13695.95 11799.83 4399.38 107
iter_conf0593.65 28593.05 28495.46 25796.13 34487.45 31095.95 19698.22 21792.66 26297.04 20897.89 18563.52 39399.72 8896.19 10499.82 4799.21 141
D2MVS95.18 22495.17 21595.21 26597.76 26287.76 30594.15 28897.94 24889.77 30696.99 21297.68 20687.45 29499.14 28095.03 17899.81 4898.74 223
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22898.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21699.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
patch_mono-296.59 16396.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
iter_conf_final94.54 25693.91 27296.43 20997.23 30890.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38799.72 8896.73 8599.77 5899.18 149
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24198.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23599.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28399.89 1898.01 4099.76 5999.54 54
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28599.71 10493.10 24899.72 7299.38 107
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
CLD-MVS95.47 21195.07 21996.69 19598.27 19592.53 20491.36 35498.67 16391.22 28695.78 27794.12 35095.65 13498.98 30290.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
v2v48296.78 15197.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
UGNet96.81 14996.56 16197.58 12296.64 32593.84 16897.75 7797.12 28796.47 11293.62 33298.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 28998.76 7099.66 394.03 18097.90 36999.24 699.68 8399.81 8
wuyk23d93.25 29695.20 21387.40 37796.07 34595.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 39577.76 38899.68 8374.89 395
Vis-MVSNet (Re-imp)95.11 22794.85 23095.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32299.48 19588.42 33199.67 8598.97 187
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0396.58 16596.61 15796.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 32690.78 28999.66 8799.00 182
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
CHOSEN 1792x268894.10 27193.41 28096.18 22399.16 8390.04 25792.15 34398.68 16079.90 38196.22 25797.83 19087.92 29199.42 21189.18 32099.65 8899.08 171
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 26798.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 14497.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
Patchmtry95.03 23294.59 24796.33 21594.83 37090.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 34999.38 22992.95 25199.62 9398.80 215
EGC-MVSNET83.08 36277.93 36598.53 5099.57 2097.55 2698.33 3898.57 1794.71 39910.38 40098.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
Patchmatch-RL test94.66 24994.49 25195.19 26698.54 16788.91 27692.57 33398.74 14791.46 28298.32 11197.75 19977.31 35498.81 31696.06 10799.61 9997.85 309
CANet95.86 19495.65 20596.49 20696.41 33190.82 24694.36 27698.41 19594.94 18692.62 35996.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
FMVSNet296.72 15596.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27399.65 13894.99 18199.60 10299.07 173
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
USDC94.56 25494.57 25094.55 30097.78 26086.43 32892.75 32998.65 17085.96 34596.91 21997.93 18290.82 24998.74 32290.71 29499.59 10498.47 252
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
v119296.83 14797.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cl____94.73 24194.64 24195.01 27595.85 35087.00 31991.33 35698.08 24093.34 23697.10 20097.33 23584.01 32199.30 25295.14 17099.56 11298.71 229
miper_lstm_enhance94.81 24094.80 23594.85 28596.16 34086.45 32791.14 36298.20 22193.49 23197.03 20997.37 23284.97 31399.26 26295.28 15899.56 11298.83 212
v14419296.69 15896.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25098.09 13698.29 13392.51 22199.70 11298.11 3699.56 11299.47 80
EI-MVSNet96.63 16196.93 14095.74 24297.26 30688.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21699.58 16396.91 8199.56 11299.50 63
K. test v396.44 17196.28 17796.95 17599.41 4391.53 23397.65 8490.31 37998.89 2098.93 5099.36 2184.57 31699.92 597.81 4799.56 11299.39 105
MVSTER94.21 26793.93 27195.05 27395.83 35186.46 32695.18 24597.65 26892.41 26897.94 15498.00 17572.39 37699.58 16396.36 9799.56 11299.12 163
DIV-MVS_self_test94.73 24194.64 24195.01 27595.86 34987.00 31991.33 35698.08 24093.34 23697.10 20097.34 23484.02 32099.31 24995.15 16999.55 11898.72 226
v192192096.72 15596.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24198.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
ACMMP++99.55 118
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 27998.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 38995.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
Anonymous2023120695.27 22095.06 22195.88 23798.72 14089.37 26895.70 20897.85 25388.00 32796.98 21497.62 20991.95 23399.34 24389.21 31999.53 12598.94 191
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
EU-MVSNet94.25 26494.47 25393.60 32498.14 21682.60 36697.24 11092.72 35785.08 35598.48 9098.94 6482.59 32998.76 32197.47 6399.53 12599.44 96
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
v14896.58 16596.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30192.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
ACMMP++_ref99.52 130
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
IU-MVS99.22 6995.40 10398.14 23485.77 34998.36 10495.23 16299.51 13599.49 71
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29892.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31496.38 9699.50 13996.98 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
v124096.74 15297.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 24898.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21899.58 16396.02 11299.49 14299.12 163
PVSNet_BlendedMVS95.02 23394.93 22595.27 26397.79 25787.40 31294.14 29098.68 16088.94 31594.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet93.72 28192.62 30097.03 17287.61 40192.25 21296.27 16691.28 37096.74 9787.65 38897.39 22885.00 31299.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU94.65 25094.21 26295.96 23195.90 34889.68 26293.92 30197.83 25793.19 24390.12 37895.64 32188.52 28199.57 16993.27 24499.47 14898.62 237
PMMVS293.66 28494.07 26692.45 35197.57 28180.67 37686.46 38796.00 31293.99 21897.10 20097.38 23089.90 26497.82 37188.76 32599.47 14898.86 210
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29395.99 11599.45 15498.61 239
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
FMVSNet395.26 22194.94 22396.22 22196.53 32890.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34099.63 14694.60 19799.44 15598.96 188
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
TAMVS95.49 20894.94 22397.16 15998.31 18993.41 18495.07 25196.82 29891.09 28797.51 17597.82 19389.96 26399.42 21188.42 33199.44 15598.64 234
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
PHI-MVS96.96 13896.53 16598.25 7397.48 28896.50 5996.76 13898.85 11793.52 23096.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TinyColmap96.00 18996.34 17594.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33190.52 29999.42 16698.30 271
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
DeepPCF-MVS94.58 596.90 14296.43 17098.31 6797.48 28897.23 4092.56 33498.60 17392.84 25998.54 8397.40 22496.64 8898.78 31894.40 20599.41 17098.93 195
EPP-MVSNet96.84 14496.58 15997.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28299.85 2793.85 22799.40 17199.32 116
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
X-MVStestdata92.86 30190.83 32798.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 39796.49 9699.72 8895.66 13399.37 17499.45 86
lessismore_v097.05 16999.36 5192.12 21984.07 39598.77 6998.98 5885.36 31099.74 7797.34 6699.37 17499.30 121
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
c3_l95.20 22395.32 21094.83 28796.19 33886.43 32891.83 34998.35 20593.47 23297.36 18597.26 23988.69 27999.28 25895.41 15599.36 17798.78 217
FMVSNet593.39 29292.35 30296.50 20595.83 35190.81 24897.31 10598.27 21192.74 26096.27 25498.28 13462.23 39499.67 13090.86 28599.36 17799.03 178
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMVScopyleft89.60 1796.71 15796.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38289.59 31499.36 17793.12 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29494.05 22099.35 18298.95 189
APD-MVScopyleft97.00 13396.53 16598.41 5998.55 16596.31 6696.32 16498.77 14192.96 25797.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jason94.39 26294.04 26795.41 26198.29 19187.85 30292.74 33196.75 30185.38 35495.29 29096.15 30288.21 28699.65 13894.24 21199.34 18598.74 223
jason: jason.
CPTT-MVS96.69 15896.08 18598.49 5298.89 12296.64 5597.25 10898.77 14192.89 25896.01 26797.13 24592.23 22599.67 13092.24 25899.34 18599.17 150
MVS_111021_LR96.82 14896.55 16297.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32394.80 18799.34 18598.78 217
OMC-MVS96.48 16996.00 18897.91 10098.30 19096.01 7894.86 26198.60 17391.88 27697.18 19497.21 24296.11 11599.04 29490.49 30299.34 18598.69 230
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 14097.69 27094.15 15796.02 18798.43 19193.17 24797.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26794.37 20699.33 19099.17 150
LF4IMVS96.07 18495.63 20697.36 14798.19 20495.55 9495.44 22498.82 13492.29 27095.70 28196.55 28292.63 21498.69 32891.75 27099.33 19097.85 309
test_fmvs296.38 17496.45 16996.16 22497.85 23991.30 23896.81 13399.45 1889.24 31098.49 8899.38 1888.68 28097.62 37498.83 1899.32 19299.57 47
9.1496.69 15398.53 16896.02 18798.98 8993.23 24097.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
tttt051793.31 29492.56 30195.57 24998.71 14387.86 30097.44 10087.17 39095.79 14897.47 18196.84 26564.12 39199.81 3796.20 10399.32 19299.02 181
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28094.71 19599.31 19598.52 247
N_pmnet95.18 22494.23 26098.06 8897.85 23996.55 5892.49 33591.63 36789.34 30898.09 13697.41 22390.33 25799.06 29291.58 27199.31 19598.56 242
CDS-MVSNet94.88 23794.12 26597.14 16197.64 27793.57 17893.96 30097.06 29090.05 30296.30 25396.55 28286.10 30399.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
114514_t93.96 27693.22 28396.19 22299.06 10290.97 24495.99 19098.94 9673.88 39393.43 34096.93 25992.38 22499.37 23489.09 32199.28 19998.25 277
DELS-MVS96.17 18196.23 17895.99 22997.55 28490.04 25792.38 34198.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.73 15496.54 16497.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30094.87 18499.27 20199.15 153
pmmvs594.63 25194.34 25895.50 25497.63 27888.34 28794.02 29497.13 28687.15 33395.22 29297.15 24487.50 29399.27 26193.99 22299.26 20298.88 207
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
PC_three_145287.24 33298.37 10197.44 22197.00 6396.78 38592.01 26099.25 20399.21 141
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 34591.21 27899.25 20399.14 156
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
PVSNet_Blended_VisFu95.95 19095.80 19996.42 21199.28 5890.62 25095.31 23899.08 5788.40 32196.97 21598.17 15192.11 22899.78 4893.64 23499.21 20798.86 210
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
HQP_MVS96.66 16096.33 17697.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23699.46 20092.59 25499.20 20899.28 128
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
ppachtmachnet_test94.49 25994.84 23193.46 32796.16 34082.10 36890.59 36997.48 27690.53 29597.01 21197.59 21191.01 24699.36 23793.97 22499.18 21298.94 191
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20186.83 32395.61 21899.26 2990.45 29698.17 12798.96 6184.43 31798.31 36096.74 8499.17 21397.90 305
SSC-MVS95.92 19197.03 13492.58 34799.28 5878.39 38296.68 14695.12 33298.90 1999.11 3998.66 8991.36 24199.68 12495.00 17999.16 21499.67 28
HPM-MVS++copyleft96.99 13496.38 17398.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
pmmvs494.82 23994.19 26396.70 19497.42 29592.75 20192.09 34696.76 30086.80 33995.73 28097.22 24189.28 27698.89 30993.28 24399.14 21698.46 254
TSAR-MVS + GP.96.47 17096.12 18297.49 13597.74 26795.23 11594.15 28896.90 29593.26 23998.04 14496.70 27594.41 17198.89 30994.77 19199.14 21698.37 260
CDPH-MVS95.45 21394.65 24097.84 10698.28 19394.96 12693.73 30898.33 20685.03 35795.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
MVSFormer96.14 18296.36 17495.49 25597.68 27187.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29899.92 598.73 2299.13 21898.74 223
lupinMVS93.77 27993.28 28195.24 26497.68 27187.81 30392.12 34496.05 31084.52 36394.48 31095.06 33386.90 29899.63 14693.62 23599.13 21898.27 275
LFMVS95.32 21894.88 22996.62 19798.03 22291.47 23597.65 8490.72 37699.11 997.89 15898.31 12579.20 34299.48 19593.91 22699.12 22198.93 195
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
thisisatest053092.71 30491.76 31295.56 25198.42 18388.23 28996.03 18687.35 38994.04 21796.56 23995.47 32664.03 39299.77 5794.78 19099.11 22298.68 233
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25298.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29299.62 15195.13 17299.09 22599.35 115
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 33997.63 27296.99 8998.36 10498.54 10287.94 28799.75 6897.07 7799.08 22699.27 132
CNVR-MVS96.92 14096.55 16298.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
Anonymous20240521196.34 17595.98 19097.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29799.53 17994.06 21899.07 22898.92 198
CHOSEN 280x42089.98 33789.19 34392.37 35295.60 35881.13 37586.22 38897.09 28881.44 37587.44 38993.15 35473.99 36699.47 19788.69 32799.07 22896.52 357
ab-mvs96.59 16396.59 15896.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 286
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
new-patchmatchnet95.67 20196.58 15992.94 34197.48 28880.21 37792.96 32598.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
MSLP-MVS++96.42 17396.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 36795.28 15899.02 23398.05 295
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34097.47 27795.49 16398.06 14198.49 10687.94 28799.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.43 1892.12 31490.64 33096.57 20297.80 25293.48 18189.88 37998.45 18874.46 39296.04 26695.68 31990.71 25199.31 24973.73 39199.01 23596.91 342
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D97.77 8697.50 10998.57 4796.24 33497.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
test_prior293.33 32094.21 20894.02 32196.25 29893.64 19091.90 26398.96 237
VNet96.84 14496.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22399.54 17794.73 19398.96 23799.08 171
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21489.13 27496.81 13399.43 2086.97 33797.21 19198.92 6683.00 32697.13 37898.09 3798.94 24098.72 226
QAPM95.88 19395.57 20896.80 18797.90 23791.84 22998.18 5398.73 14888.41 32096.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
ZD-MVS98.43 18295.94 7998.56 18090.72 29196.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
plane_prior94.29 15095.42 22694.31 20798.93 242
train_agg95.46 21294.66 23997.88 10397.84 24495.23 11593.62 31098.39 19887.04 33493.78 32595.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
agg_prior290.34 30598.90 24499.10 170
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34290.97 28298.90 24498.34 266
test9_res91.29 27498.89 24799.00 182
EPNet_dtu91.39 32590.75 32893.31 32990.48 39882.61 36594.80 26292.88 35493.39 23481.74 39694.90 33881.36 33399.11 28688.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.32 1294.93 23494.23 26097.04 17198.18 20794.51 14195.22 24398.73 14881.22 37696.25 25695.95 31393.80 18798.98 30289.89 31098.87 24897.62 320
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon95.55 20695.13 21696.80 18798.51 17193.99 16394.60 27198.69 15890.20 30095.78 27796.21 30092.73 21098.98 30290.58 29898.86 25097.42 329
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16584.86 34895.91 19999.71 492.72 26197.67 16998.90 7087.44 29598.73 32397.96 4198.85 25197.96 301
EIA-MVS96.04 18695.77 20196.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32791.69 37895.68 13299.67 13094.18 21398.85 25197.91 304
MCST-MVS96.24 17895.80 19997.56 12398.75 13794.13 15894.66 26998.17 22790.17 30196.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
ETV-MVS96.13 18395.90 19596.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38496.36 10699.72 8893.36 23998.83 25496.85 345
test_vis1_n95.67 20195.89 19695.03 27498.18 20789.89 26096.94 12699.28 2888.25 32498.20 12298.92 6686.69 30197.19 37797.70 5598.82 25598.00 300
eth_miper_zixun_eth94.89 23694.93 22594.75 29195.99 34686.12 33191.35 35598.49 18593.40 23397.12 19897.25 24086.87 30099.35 24195.08 17598.82 25598.78 217
HyFIR lowres test93.72 28192.65 29896.91 18098.93 11791.81 23091.23 36098.52 18282.69 36996.46 24496.52 28680.38 33999.90 1490.36 30498.79 25799.03 178
test1297.46 13897.61 27994.07 15997.78 25993.57 33593.31 19699.42 21198.78 25898.89 203
CMPMVSbinary73.10 2392.74 30391.39 31596.77 19093.57 38794.67 13494.21 28597.67 26480.36 38093.61 33396.60 28082.85 32797.35 37684.86 36598.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CNLPA95.04 23094.47 25396.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26098.35 35886.72 35098.76 26096.64 353
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21697.16 31191.96 22697.74 7998.84 12087.26 33194.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 332
testgi96.07 18496.50 16894.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 37588.68 32898.74 26299.11 166
HQP3-MVS98.43 19198.74 262
HQP-MVS95.17 22694.58 24896.92 17897.85 23992.47 20794.26 27898.43 19193.18 24492.86 35095.08 33190.33 25799.23 26990.51 30098.74 26299.05 177
alignmvs96.01 18895.52 20997.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 30999.40 22296.22 10298.73 26598.40 256
test_fmvs194.51 25894.60 24594.26 31295.91 34787.92 29895.35 23499.02 7486.56 34196.79 22398.52 10382.64 32897.00 38197.87 4498.71 26697.88 307
WB-MVS95.50 20796.62 15692.11 35599.21 7677.26 39096.12 18095.40 32998.62 2698.84 5998.26 13991.08 24599.50 18793.37 23898.70 26799.58 40
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
thisisatest051590.43 33289.18 34494.17 31597.07 31585.44 33789.75 38087.58 38888.28 32393.69 33191.72 37765.27 39099.58 16390.59 29798.67 26997.50 327
diffmvspermissive96.04 18696.23 17895.46 25797.35 29988.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test95.04 23094.79 23695.82 23997.51 28689.79 26191.14 36296.82 29893.05 25096.72 22996.40 29290.82 24999.16 27891.95 26298.66 27198.50 250
test22298.17 21093.24 19092.74 33197.61 27375.17 39194.65 30596.69 27690.96 24898.66 27197.66 317
新几何197.25 15598.29 19194.70 13397.73 26177.98 38794.83 30296.67 27792.08 23099.45 20488.17 33598.65 27397.61 321
mvsany_test396.21 17995.93 19497.05 16997.40 29694.33 14995.76 20694.20 34189.10 31199.36 2499.60 693.97 18297.85 37095.40 15698.63 27498.99 185
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 34793.49 33796.43 28992.47 22299.38 22987.66 34098.62 27598.23 278
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25787.40 31291.43 35398.68 16084.50 36494.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 298
AdaColmapbinary95.11 22794.62 24496.58 20097.33 30394.45 14494.92 25898.08 24093.15 24893.98 32395.53 32594.34 17399.10 28885.69 35598.61 27696.20 363
DSMNet-mixed92.19 31291.83 30993.25 33196.18 33983.68 36196.27 16693.68 34576.97 39092.54 36099.18 3989.20 27898.55 34283.88 37098.60 27897.51 325
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22699.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)94.91 23594.89 22894.99 27797.51 28688.11 29698.27 4495.20 33192.40 26996.68 23198.60 9683.44 32399.28 25893.34 24098.53 28097.59 323
testdata95.70 24598.16 21290.58 25197.72 26280.38 37995.62 28297.02 25392.06 23198.98 30289.06 32398.52 28197.54 324
API-MVS95.09 22995.01 22295.31 26296.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 35785.70 35498.52 28193.52 384
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
canonicalmvs97.23 12697.21 12497.30 15097.65 27694.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
test_f95.82 19695.88 19795.66 24697.61 27993.21 19195.61 21898.17 22786.98 33698.42 9699.47 1190.46 25494.74 39197.71 5398.45 28599.03 178
testing389.72 34288.26 35094.10 31697.66 27584.30 35694.80 26288.25 38794.66 19495.07 29492.51 36941.15 40499.43 20991.81 26798.44 28698.55 244
NCCC96.52 16795.99 18998.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
Patchmatch-test93.60 28793.25 28294.63 29496.14 34387.47 30996.04 18594.50 33893.57 22996.47 24396.97 25676.50 35798.61 33690.67 29698.41 28897.81 313
cl2293.25 29692.84 29294.46 30494.30 37686.00 33291.09 36496.64 30690.74 29095.79 27596.31 29678.24 34698.77 31994.15 21598.34 28998.62 237
miper_ehance_all_eth94.69 24694.70 23894.64 29395.77 35386.22 33091.32 35898.24 21591.67 27897.05 20796.65 27888.39 28499.22 27194.88 18398.34 28998.49 251
miper_enhance_ethall93.14 29892.78 29594.20 31393.65 38585.29 34089.97 37597.85 25385.05 35696.15 26394.56 34285.74 30699.14 28093.74 23098.34 28998.17 284
CVMVSNet92.33 31092.79 29390.95 36297.26 30675.84 39495.29 24092.33 36281.86 37196.27 25498.19 14881.44 33298.46 35094.23 21298.29 29298.55 244
our_test_394.20 26994.58 24893.07 33596.16 34081.20 37490.42 37196.84 29690.72 29197.14 19697.13 24590.47 25399.11 28694.04 22198.25 29398.91 199
FE-MVS92.95 30092.22 30495.11 26997.21 30988.33 28898.54 2393.66 34689.91 30496.21 25898.14 15270.33 38399.50 18787.79 33798.24 29497.51 325
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35294.27 21098.13 29898.93 195
sss94.22 26593.72 27495.74 24297.71 26989.95 25993.84 30396.98 29288.38 32293.75 32895.74 31787.94 28798.89 30991.02 28198.10 29998.37 260
DPM-MVS93.68 28392.77 29696.42 21197.91 23592.54 20391.17 36197.47 27784.99 35993.08 34794.74 33989.90 26499.00 29887.54 34398.09 30097.72 315
MIMVSNet93.42 29192.86 29095.10 27198.17 21088.19 29098.13 5593.69 34392.07 27195.04 29898.21 14780.95 33799.03 29781.42 37898.06 30198.07 288
pmmvs390.00 33688.90 34693.32 32894.20 38085.34 33891.25 35992.56 36178.59 38593.82 32495.17 33067.36 38998.69 32889.08 32298.03 30295.92 364
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14697.18 31094.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 285
thres600view792.03 31791.43 31493.82 31998.19 20484.61 35196.27 16690.39 37796.81 9596.37 24893.11 35573.44 37499.49 19280.32 38197.95 30497.36 330
MS-PatchMatch94.83 23894.91 22794.57 29996.81 32387.10 31894.23 28397.34 27988.74 31897.14 19697.11 24791.94 23498.23 36392.99 24997.92 30598.37 260
1112_ss94.12 27093.42 27996.23 21998.59 16090.85 24594.24 28298.85 11785.49 35092.97 34894.94 33586.01 30499.64 14291.78 26897.92 30598.20 281
MVS_Test96.27 17796.79 15094.73 29296.94 32086.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30798.30 271
Fast-Effi-MVS+95.49 20895.07 21996.75 19197.67 27492.82 19694.22 28498.60 17391.61 27993.42 34192.90 36296.73 8499.70 11292.60 25397.89 30897.74 314
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 29899.27 2999.33 2794.04 17996.03 38897.14 7397.83 30999.78 11
test_yl94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
DCV-MVSNet94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
Test_1112_low_res93.53 28992.86 29095.54 25398.60 15888.86 27892.75 32998.69 15882.66 37092.65 35696.92 26184.75 31499.56 17090.94 28397.76 31298.19 282
thres100view90091.76 32191.26 32093.26 33098.21 20184.50 35296.39 15690.39 37796.87 9396.33 24993.08 35973.44 37499.42 21178.85 38597.74 31395.85 365
tfpn200view991.55 32391.00 32293.21 33398.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31395.85 365
thres40091.68 32291.00 32293.71 32298.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31397.36 330
BH-RMVSNet94.56 25494.44 25694.91 28097.57 28187.44 31193.78 30796.26 30893.69 22696.41 24696.50 28792.10 22999.00 29885.96 35297.71 31698.31 269
MG-MVS94.08 27394.00 26894.32 30997.09 31485.89 33393.19 32395.96 31492.52 26494.93 30197.51 21789.54 27098.77 31987.52 34497.71 31698.31 269
PVSNet86.72 1991.10 32790.97 32491.49 35997.56 28378.04 38487.17 38694.60 33784.65 36292.34 36192.20 37287.37 29698.47 34985.17 36397.69 31897.96 301
PatchMatch-RL94.61 25293.81 27397.02 17398.19 20495.72 8693.66 30997.23 28188.17 32594.94 30095.62 32291.43 23998.57 33987.36 34697.68 31996.76 351
OpenMVS_ROBcopyleft91.80 1493.64 28693.05 28495.42 25997.31 30591.21 24095.08 25096.68 30581.56 37396.88 22196.41 29090.44 25699.25 26485.39 36097.67 32095.80 367
SCA93.38 29393.52 27892.96 34096.24 33481.40 37393.24 32194.00 34291.58 28194.57 30696.97 25687.94 28799.42 21189.47 31697.66 32198.06 292
MSDG95.33 21795.13 21695.94 23597.40 29691.85 22891.02 36598.37 20195.30 17196.31 25295.99 30994.51 16998.38 35589.59 31497.65 32297.60 322
thres20091.00 32990.42 33392.77 34497.47 29283.98 35994.01 29591.18 37295.12 17995.44 28691.21 38273.93 36799.31 24977.76 38897.63 32395.01 376
new_pmnet92.34 30991.69 31394.32 30996.23 33689.16 27292.27 34292.88 35484.39 36695.29 29096.35 29585.66 30796.74 38684.53 36797.56 32497.05 336
Effi-MVS+96.19 18096.01 18796.71 19397.43 29492.19 21896.12 18099.10 5195.45 16493.33 34394.71 34097.23 5199.56 17093.21 24697.54 32598.37 260
F-COLMAP95.30 21994.38 25798.05 9298.64 15096.04 7595.61 21898.66 16589.00 31493.22 34496.40 29292.90 20599.35 24187.45 34597.53 32698.77 220
MAR-MVS94.21 26793.03 28697.76 11096.94 32097.44 3396.97 12597.15 28587.89 32992.00 36492.73 36692.14 22799.12 28383.92 36997.51 32796.73 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base94.22 26594.63 24392.99 33997.32 30484.84 34992.12 34497.84 25591.96 27494.17 31593.43 35396.07 11699.71 10491.27 27597.48 32894.42 379
PS-MVSNAJ94.10 27194.47 25393.00 33897.35 29984.88 34791.86 34897.84 25591.96 27494.17 31592.50 37095.82 12499.71 10491.27 27597.48 32894.40 380
cascas91.89 31991.35 31693.51 32694.27 37785.60 33588.86 38498.61 17279.32 38392.16 36391.44 38089.22 27798.12 36690.80 28897.47 33096.82 348
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 34698.67 2597.45 33196.48 358
test-LLR89.97 33889.90 33690.16 36694.24 37874.98 39589.89 37689.06 38492.02 27289.97 37990.77 38673.92 36898.57 33991.88 26497.36 33296.92 340
test-mter87.92 35587.17 35690.16 36694.24 37874.98 39589.89 37689.06 38486.44 34289.97 37990.77 38654.96 40298.57 33991.88 26497.36 33296.92 340
GA-MVS92.83 30292.15 30694.87 28496.97 31787.27 31590.03 37496.12 30991.83 27794.05 32094.57 34176.01 36198.97 30692.46 25797.34 33498.36 265
MVP-Stereo95.69 19995.28 21196.92 17898.15 21493.03 19395.64 21798.20 22190.39 29796.63 23697.73 20291.63 23899.10 28891.84 26697.31 33598.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous95.36 21596.07 18693.21 33396.29 33381.56 37294.60 27197.66 26693.30 23896.95 21698.91 6993.03 20399.38 22996.60 8897.30 33698.69 230
AUN-MVS93.95 27892.69 29797.74 11197.80 25295.38 10595.57 22195.46 32791.26 28592.64 35796.10 30774.67 36599.55 17493.72 23296.97 33798.30 271
hse-mvs295.77 19795.09 21897.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31899.54 17795.89 12196.92 33898.32 267
TESTMET0.1,187.20 35886.57 36089.07 37093.62 38672.84 39989.89 37687.01 39185.46 35289.12 38490.20 38856.00 40097.72 37390.91 28496.92 33896.64 353
EMVS89.06 34689.22 34088.61 37293.00 39077.34 38882.91 39290.92 37394.64 19692.63 35891.81 37676.30 35997.02 38083.83 37196.90 34091.48 391
YYNet194.73 24194.84 23194.41 30697.47 29285.09 34590.29 37295.85 31792.52 26497.53 17397.76 19691.97 23299.18 27393.31 24296.86 34198.95 189
Syy-MVS92.09 31591.80 31192.93 34295.19 36582.65 36492.46 33691.35 36890.67 29391.76 36787.61 39185.64 30898.50 34694.73 19396.84 34297.65 318
myMVS_eth3d87.16 35985.61 36391.82 35795.19 36579.32 37992.46 33691.35 36890.67 29391.76 36787.61 39141.96 40398.50 34682.66 37596.84 34297.65 318
WTY-MVS93.55 28893.00 28895.19 26697.81 24887.86 30093.89 30296.00 31289.02 31394.07 31995.44 32886.27 30299.33 24587.69 33996.82 34498.39 258
E-PMN89.52 34489.78 33788.73 37193.14 38877.61 38683.26 39192.02 36394.82 19093.71 32993.11 35575.31 36396.81 38385.81 35396.81 34591.77 390
MDA-MVSNet_test_wron94.73 24194.83 23394.42 30597.48 28885.15 34390.28 37395.87 31692.52 26497.48 17997.76 19691.92 23599.17 27793.32 24196.80 34698.94 191
BH-untuned94.69 24694.75 23794.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 30787.60 34196.74 34797.09 335
PLCcopyleft91.02 1694.05 27492.90 28997.51 12898.00 22995.12 12394.25 28198.25 21386.17 34391.48 36995.25 32991.01 24699.19 27285.02 36496.69 34898.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMMVS92.39 30791.08 32196.30 21893.12 38992.81 19790.58 37095.96 31479.17 38491.85 36692.27 37190.29 26198.66 33389.85 31196.68 34997.43 328
ET-MVSNet_ETH3D91.12 32689.67 33895.47 25696.41 33189.15 27391.54 35290.23 38089.07 31286.78 39292.84 36369.39 38599.44 20794.16 21496.61 35097.82 311
MVS-HIRNet88.40 35190.20 33582.99 37897.01 31660.04 40393.11 32485.61 39484.45 36588.72 38599.09 5084.72 31598.23 36382.52 37696.59 35190.69 393
MDTV_nov1_ep1391.28 31794.31 37573.51 39894.80 26293.16 35186.75 34093.45 33997.40 22476.37 35898.55 34288.85 32496.43 352
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35194.87 18496.41 35399.07 173
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24298.48 17788.76 28292.84 32697.25 28096.00 13597.59 17197.95 17991.38 24099.46 20093.16 24796.35 35498.99 185
PAPM_NR94.61 25294.17 26495.96 23198.36 18791.23 23995.93 19797.95 24792.98 25393.42 34194.43 34790.53 25298.38 35587.60 34196.29 35598.27 275
UnsupCasMVSNet_bld94.72 24594.26 25996.08 22798.62 15690.54 25493.38 31898.05 24690.30 29897.02 21096.80 27089.54 27099.16 27888.44 33096.18 35698.56 242
h-mvs3396.29 17695.63 20698.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31899.78 4895.89 12196.17 35798.89 203
FPMVS89.92 33988.63 34793.82 31998.37 18696.94 4591.58 35193.34 35088.00 32790.32 37697.10 24870.87 38191.13 39671.91 39496.16 35893.39 386
CR-MVSNet93.29 29592.79 29394.78 29095.44 36188.15 29296.18 17497.20 28284.94 36094.10 31798.57 9877.67 34999.39 22695.17 16595.81 35996.81 349
PatchT93.75 28093.57 27794.29 31195.05 36887.32 31496.05 18492.98 35397.54 7094.25 31398.72 8375.79 36299.24 26795.92 11995.81 35996.32 360
RPMNet94.68 24894.60 24594.90 28295.44 36188.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34199.76 6295.69 13095.81 35996.81 349
HY-MVS91.43 1592.58 30591.81 31094.90 28296.49 32988.87 27797.31 10594.62 33685.92 34690.50 37596.84 26585.05 31199.40 22283.77 37295.78 36296.43 359
PAPR92.22 31191.27 31895.07 27295.73 35688.81 27991.97 34797.87 25285.80 34890.91 37192.73 36691.16 24398.33 35979.48 38295.76 36398.08 286
mvsany_test193.47 29093.03 28694.79 28994.05 38292.12 21990.82 36790.01 38285.02 35897.26 18898.28 13493.57 19197.03 37992.51 25695.75 36495.23 375
gg-mvs-nofinetune88.28 35286.96 35892.23 35492.84 39284.44 35398.19 5274.60 40099.08 1087.01 39199.47 1156.93 39698.23 36378.91 38495.61 36594.01 382
MVS90.02 33589.20 34292.47 35094.71 37186.90 32195.86 20196.74 30264.72 39590.62 37292.77 36492.54 21898.39 35479.30 38395.56 36692.12 388
131492.38 30892.30 30392.64 34695.42 36385.15 34395.86 20196.97 29385.40 35390.62 37293.06 36091.12 24497.80 37286.74 34995.49 36794.97 377
KD-MVS_2432*160088.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
miper_refine_blended88.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
test_vis1_rt94.03 27593.65 27595.17 26895.76 35493.42 18393.97 29998.33 20684.68 36193.17 34595.89 31592.53 22094.79 39093.50 23794.97 37097.31 333
TR-MVS92.54 30692.20 30593.57 32596.49 32986.66 32493.51 31494.73 33589.96 30394.95 29993.87 35190.24 26298.61 33681.18 37994.88 37195.45 373
MVEpermissive73.61 2286.48 36085.92 36188.18 37596.23 33685.28 34181.78 39375.79 39986.01 34482.53 39591.88 37592.74 20987.47 39871.42 39594.86 37291.78 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-w/o92.14 31391.94 30792.73 34597.13 31385.30 33992.46 33695.64 32089.33 30994.21 31492.74 36589.60 26898.24 36281.68 37794.66 37394.66 378
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27298.69 32894.43 20294.61 37499.13 158
baseline289.65 34388.44 34993.25 33195.62 35782.71 36393.82 30485.94 39388.89 31687.35 39092.54 36871.23 37999.33 24586.01 35194.60 37597.72 315
PatchmatchNetpermissive91.98 31891.87 30892.30 35394.60 37379.71 37895.12 24693.59 34889.52 30793.61 33397.02 25377.94 34799.18 27390.84 28694.57 37698.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_re92.08 31691.27 31894.51 30297.16 31192.79 20095.65 21492.64 35994.11 21492.74 35390.98 38583.41 32494.44 39380.72 38094.07 37796.29 361
tpm91.08 32890.85 32691.75 35895.33 36478.09 38395.03 25591.27 37188.75 31793.53 33697.40 22471.24 37899.30 25291.25 27793.87 37897.87 308
IB-MVS85.98 2088.63 34986.95 35993.68 32395.12 36784.82 35090.85 36690.17 38187.55 33088.48 38691.34 38158.01 39599.59 16187.24 34793.80 37996.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 190.11 33489.21 34192.83 34393.89 38386.87 32291.74 35088.74 38692.02 27294.71 30491.14 38373.92 36894.48 39283.75 37392.94 38097.16 334
PAPM87.64 35685.84 36293.04 33696.54 32784.99 34688.42 38595.57 32479.52 38283.82 39393.05 36180.57 33898.41 35262.29 39792.79 38195.71 368
CostFormer89.75 34189.25 33991.26 36194.69 37278.00 38595.32 23791.98 36481.50 37490.55 37496.96 25871.06 38098.89 30988.59 32992.63 38296.87 343
tpm288.47 35087.69 35490.79 36394.98 36977.34 38895.09 24891.83 36577.51 38989.40 38296.41 29067.83 38898.73 32383.58 37492.60 38396.29 361
GG-mvs-BLEND90.60 36491.00 39684.21 35798.23 4672.63 40382.76 39484.11 39556.14 39996.79 38472.20 39392.09 38490.78 392
ADS-MVSNet291.47 32490.51 33294.36 30795.51 35985.63 33495.05 25395.70 31883.46 36792.69 35496.84 26579.15 34399.41 22085.66 35690.52 38598.04 296
ADS-MVSNet90.95 33090.26 33493.04 33695.51 35982.37 36795.05 25393.41 34983.46 36792.69 35496.84 26579.15 34398.70 32785.66 35690.52 38598.04 296
JIA-IIPM91.79 32090.69 32995.11 26993.80 38490.98 24394.16 28791.78 36696.38 11390.30 37799.30 2872.02 37798.90 30888.28 33390.17 38795.45 373
tpmvs90.79 33190.87 32590.57 36592.75 39376.30 39295.79 20593.64 34791.04 28891.91 36596.26 29777.19 35598.86 31389.38 31889.85 38896.56 356
EPMVS89.26 34588.55 34891.39 36092.36 39479.11 38195.65 21479.86 39888.60 31993.12 34696.53 28470.73 38298.10 36790.75 29089.32 38996.98 338
dmvs_testset87.30 35786.99 35788.24 37496.71 32477.48 38794.68 26886.81 39292.64 26389.61 38187.01 39385.91 30593.12 39461.04 39888.49 39094.13 381
baseline193.14 29892.64 29994.62 29597.34 30187.20 31696.67 14893.02 35294.71 19396.51 24295.83 31681.64 33098.60 33890.00 30988.06 39198.07 288
tpmrst90.31 33390.61 33189.41 36994.06 38172.37 40095.06 25293.69 34388.01 32692.32 36296.86 26377.45 35198.82 31491.04 28087.01 39297.04 337
tpm cat188.01 35487.33 35590.05 36894.48 37476.28 39394.47 27494.35 34073.84 39489.26 38395.61 32373.64 37098.30 36184.13 36886.20 39395.57 372
DeepMVS_CXcopyleft77.17 37990.94 39785.28 34174.08 40252.51 39680.87 39788.03 39075.25 36470.63 39959.23 39984.94 39475.62 394
dp88.08 35388.05 35188.16 37692.85 39168.81 40294.17 28692.88 35485.47 35191.38 37096.14 30468.87 38698.81 31686.88 34883.80 39596.87 343
tmp_tt57.23 36462.50 36741.44 38134.77 40349.21 40583.93 38960.22 40515.31 39771.11 39879.37 39670.09 38444.86 40064.76 39682.93 39630.25 396
test_method66.88 36366.13 36669.11 38062.68 40225.73 40649.76 39496.04 31114.32 39864.27 39991.69 37873.45 37388.05 39776.06 39066.94 39793.54 383
PVSNet_081.89 2184.49 36183.21 36488.34 37395.76 35474.97 39783.49 39092.70 35878.47 38687.94 38786.90 39483.38 32596.63 38773.44 39266.86 39893.40 385
test12312.59 36615.49 3693.87 3826.07 4042.55 40790.75 3682.59 4072.52 4005.20 40213.02 3994.96 4051.85 4025.20 4009.09 3997.23 397
testmvs12.33 36715.23 3703.64 3835.77 4052.23 40888.99 3833.62 4062.30 4015.29 40113.09 3984.52 4061.95 4015.16 4018.32 4006.75 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.22 36532.30 3680.00 3840.00 4060.00 4090.00 39598.10 2370.00 4020.00 40395.06 33397.54 370.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.98 36810.65 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40295.82 1240.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.91 36910.55 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.94 3350.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.32 37985.41 359
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
GSMVS98.06 292
test_part299.03 10896.07 7498.08 138
sam_mvs177.80 34898.06 292
sam_mvs77.38 352
MTGPAbinary98.73 148
test_post194.98 25710.37 40176.21 36099.04 29489.47 316
test_post10.87 40076.83 35699.07 291
patchmatchnet-post96.84 26577.36 35399.42 211
MTMP96.55 15074.60 400
gm-plane-assit91.79 39571.40 40181.67 37290.11 38998.99 30084.86 365
TEST997.84 24495.23 11593.62 31098.39 19886.81 33893.78 32595.99 30994.68 16299.52 182
test_897.81 24895.07 12493.54 31398.38 20087.04 33493.71 32995.96 31294.58 16699.52 182
agg_prior97.80 25294.96 12698.36 20293.49 33799.53 179
test_prior495.38 10593.61 312
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
旧先验293.35 31977.95 38895.77 27998.67 33290.74 293
新几何293.43 315
无先验93.20 32297.91 24980.78 37799.40 22287.71 33897.94 303
原ACMM292.82 327
testdata299.46 20087.84 336
segment_acmp95.34 143
testdata192.77 32893.78 223
plane_prior798.70 14594.67 134
plane_prior698.38 18594.37 14791.91 236
plane_prior496.77 271
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
n20.00 408
nn0.00 408
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24492.86 350
ACMP_Plane97.85 23994.26 27893.18 24492.86 350
BP-MVS90.51 300
HQP4-MVS92.87 34999.23 26999.06 175
HQP2-MVS90.33 257
NP-MVS98.14 21693.72 17295.08 331
MDTV_nov1_ep13_2view57.28 40494.89 25980.59 37894.02 32178.66 34585.50 35897.82 311
Test By Simon94.51 169