This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12299.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4299.59 15997.21 6899.76 5899.40 100
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 10099.92 597.88 4299.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4899.93 397.71 5299.91 1999.70 26
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14899.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4899.92 597.64 5699.92 1699.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9599.91 1399.27 599.93 1199.73 22
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4499.92 597.79 4899.93 1199.79 10
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7796.50 11099.32 2699.44 1497.43 4199.92 598.73 2299.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15799.35 2599.37 1997.38 4399.90 1498.59 2899.91 1999.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14199.89 1897.95 4199.91 1999.75 19
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6798.05 4799.61 1399.52 793.72 19199.88 2098.72 2499.88 2799.65 33
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14599.82 195.44 16799.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13799.72 8798.12 3499.86 3199.73 22
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5998.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9499.75 299.45 1395.82 12699.92 598.80 1999.96 499.89 1
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10598.49 3199.38 2299.14 4695.44 14399.84 3096.47 9199.80 5199.47 79
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8697.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 18098.23 4699.05 6797.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12399.05 1399.01 4498.65 9195.37 14499.90 1497.57 5799.91 1999.77 12
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17599.73 395.05 18399.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18698.20 5198.87 11398.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14399.05 6798.67 2498.84 5998.45 11097.58 3899.88 2096.45 9299.86 3199.54 53
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7595.88 14497.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
ANet_high98.31 3198.94 696.41 21399.33 5389.64 26397.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 19099.64 1294.99 18699.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7799.00 8698.40 3399.07 4298.98 5896.89 7599.75 6797.19 7199.79 5399.55 52
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8497.82 16699.11 4796.75 8599.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4599.45 20394.08 21799.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9399.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18899.72 7199.32 115
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19398.35 3599.21 3398.43 3298.89 5498.83 7494.30 17699.81 3697.87 4399.91 1999.77 12
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9997.71 6198.85 5799.10 4891.35 24599.83 3298.47 3099.90 2499.64 35
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.60 9399.76 6195.49 14299.20 20899.26 132
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10998.73 15197.69 6397.90 15797.96 17695.81 13099.82 3496.13 10699.61 9899.45 85
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13898.59 8098.69 8696.94 6999.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9398.92 10297.72 5998.25 11898.13 15397.10 5699.75 6795.44 14999.24 20699.32 115
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6795.43 16897.41 18497.50 21697.98 1999.79 4495.58 14099.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26597.19 24196.88 7799.86 2497.50 6099.73 6798.41 253
test_fmvsmvis_n_192098.08 4598.47 2696.93 17899.03 10793.29 18896.32 16599.65 995.59 15999.71 499.01 5497.66 3399.60 15899.44 299.83 4397.90 307
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17999.57 1495.66 15499.52 1598.71 8497.04 6299.64 14099.21 799.87 2998.69 228
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9198.82 32096.38 9599.50 13996.98 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9695.75 15297.91 15698.06 16696.89 7599.76 6195.32 15799.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14698.83 12995.21 17498.36 10498.13 15398.13 1899.62 14996.04 11099.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11598.90 10496.58 10598.08 13897.87 18697.02 6499.76 6195.25 16099.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10598.83 12997.32 8498.06 14197.85 18796.65 8899.77 5695.00 17999.11 22299.32 115
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21596.92 12898.60 17698.58 2898.78 6499.39 1697.80 2599.62 14994.98 18299.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18397.96 6298.25 21598.58 2898.78 6499.39 1698.21 1499.56 16892.65 25299.86 3199.52 58
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10596.62 10198.62 7698.30 12896.97 6799.75 6795.70 12899.25 20399.21 140
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21298.79 2299.23 3298.86 7395.76 13299.61 15695.49 14299.36 17799.23 138
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25197.64 20596.49 9899.72 8795.66 13399.37 17499.45 85
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15197.79 5399.42 2097.83 18894.40 17499.78 4795.91 12099.76 5899.46 81
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11399.08 5996.57 10898.07 14098.38 11896.22 11599.14 28494.71 19599.31 19598.52 245
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30597.99 4999.15 3699.35 2389.84 26999.90 1498.64 2699.90 2499.82 6
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 9098.83 12996.05 13197.46 18297.63 20696.77 8499.76 6195.61 13799.46 15199.49 70
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17498.23 4698.66 16897.41 7999.00 4699.19 3695.47 14199.73 8295.83 12599.76 5899.30 120
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13698.83 12996.11 12899.08 4098.24 14097.87 2399.72 8795.44 14999.51 13599.14 154
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 9098.84 12396.05 13197.49 17797.54 21297.07 5999.70 11095.61 13799.46 15199.30 120
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 12099.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
FIs97.93 6598.07 4597.48 13599.38 4892.95 19698.03 6199.11 5098.04 4898.62 7698.66 8893.75 19099.78 4797.23 6699.84 4099.73 22
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 10098.84 12395.76 15096.93 21797.43 22097.26 5099.79 4496.06 10799.53 12599.45 85
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8898.84 12396.00 13697.22 18997.62 20796.87 7999.76 6195.48 14599.43 16399.46 81
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9696.11 12896.89 22097.45 21896.85 8099.78 4795.19 16399.63 9199.38 106
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28696.92 25996.81 8399.87 2296.87 8299.76 5898.51 246
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 8098.78 14396.04 13397.10 20097.73 20096.53 9599.78 4795.16 16799.50 13999.46 81
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26997.01 25396.99 6699.82 3497.66 5599.64 8998.39 256
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16298.79 13995.07 18297.88 15998.35 12097.24 5299.72 8796.05 10999.58 10599.45 85
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 12099.06 6395.45 16597.55 17297.94 17997.11 5599.78 4794.77 19199.46 15199.48 76
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11898.79 13998.98 1798.74 7098.49 10595.80 13199.49 19195.04 17699.44 15599.11 164
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9299.06 6396.19 12598.48 9098.70 8594.72 16199.24 27094.37 20699.33 19099.17 148
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19897.55 9398.94 9997.10 9098.85 5798.88 7195.03 15499.67 12897.39 6499.65 8799.26 132
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14498.73 15198.66 2598.56 8298.41 11496.84 8199.69 11794.82 18699.81 4898.64 232
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21399.02 7798.11 4498.31 11397.69 20394.65 16699.85 2797.02 7799.71 7499.48 76
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19999.04 7497.51 7298.22 12197.81 19294.68 16499.78 4797.14 7299.75 6599.41 99
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17598.57 16192.10 22395.97 19399.18 3897.67 6699.00 4698.48 10997.64 3499.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11498.79 13995.96 13897.53 17397.40 22296.93 7199.77 5695.04 17699.35 18299.42 97
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17399.02 7793.92 22198.62 7698.99 5797.69 2999.62 14996.18 10599.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20696.57 15099.15 4493.68 22898.89 5499.30 2896.42 10499.37 23499.03 1399.83 4399.66 30
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21598.87 11397.57 6798.31 11397.83 18894.69 16299.85 2797.02 7799.71 7499.46 81
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13998.23 21895.92 14198.40 9898.28 13397.06 6099.71 10295.48 14599.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8697.50 10898.57 4796.24 33797.58 2498.45 3198.85 12098.58 2897.51 17597.94 17995.74 13399.63 14495.19 16398.97 23698.51 246
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11998.98 9295.75 15297.62 17097.59 20997.61 3799.77 5696.34 9799.44 15599.36 112
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18499.09 9791.43 23896.37 16199.11 5094.19 21199.01 4499.25 3196.30 11099.38 22899.00 1499.88 2799.73 22
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 16098.13 4396.93 21798.45 11095.30 14799.62 14995.64 13598.96 23799.24 137
tfpnnormal97.72 9097.97 5596.94 17799.26 5992.23 21497.83 7298.45 19098.25 3999.13 3898.66 8896.65 8899.69 11793.92 22599.62 9298.91 197
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18895.44 22598.86 11698.20 4298.37 10199.24 3294.69 16299.55 17395.98 11699.79 5399.65 33
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23298.99 8992.45 27098.11 13398.31 12497.25 5199.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18195.96 19598.97 9594.55 20298.82 6198.76 8097.31 4699.29 25897.20 7099.44 15599.38 106
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20395.89 20199.41 2493.36 23699.00 4698.44 11296.46 10299.65 13699.09 1199.76 5899.45 85
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20696.25 17199.06 6393.67 22998.64 7499.00 5596.23 11499.36 23798.99 1599.80 5199.53 56
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24598.99 8995.84 14798.78 6498.08 15996.84 8199.81 3693.98 22399.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9697.18 12699.00 999.32 5597.77 1797.49 9998.73 15196.27 11995.59 28497.75 19796.30 11099.78 4793.70 23399.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18898.79 13191.44 23796.14 18099.06 6394.19 21198.82 6198.98 5896.22 11599.38 22898.98 1699.86 3199.58 39
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17898.49 2898.88 11196.86 9697.11 19998.55 10095.82 12699.73 8295.94 11899.42 16699.13 156
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21295.83 20499.32 2593.22 24298.91 5398.49 10596.31 10999.64 14099.07 1299.76 5899.40 100
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12299.10 5295.32 17197.83 16597.88 18596.44 10399.72 8794.59 20099.39 17299.25 136
v897.60 10098.06 4796.23 21998.71 14289.44 26797.43 10398.82 13797.29 8698.74 7099.10 4893.86 18699.68 12298.61 2799.94 899.56 50
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15798.98 9295.05 18398.06 14198.02 17095.86 12299.56 16894.37 20699.64 8999.00 180
v1097.55 10497.97 5596.31 21798.60 15789.64 26397.44 10199.02 7796.60 10398.72 7299.16 4393.48 19599.72 8798.76 2199.92 1699.58 39
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24398.46 18994.58 20198.10 13598.07 16197.09 5899.39 22595.16 16799.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10597.70 8197.07 16999.46 3692.21 21597.22 11299.00 8694.93 18998.58 8198.92 6597.31 4699.41 21994.44 20199.43 16399.59 38
casdiffmvspermissive97.50 10797.81 7196.56 20498.51 17091.04 24395.83 20499.09 5797.23 8798.33 11098.30 12897.03 6399.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 21098.28 4296.97 29498.30 3899.45 1899.35 2388.43 28699.89 1898.01 3999.76 5899.54 53
SMA-MVScopyleft97.48 10997.11 12898.60 4598.83 12696.67 5396.74 13998.73 15191.61 28398.48 9098.36 11996.53 9599.68 12295.17 16599.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 11097.10 12998.55 4999.04 10696.70 5196.24 17298.89 10593.71 22597.97 15197.75 19797.44 4099.63 14493.22 24599.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11196.92 14399.03 599.26 5997.70 1897.66 8498.89 10595.65 15598.51 8596.46 28692.15 22999.81 3695.14 17098.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 32098.31 3697.09 20595.45 32597.17 5498.50 35498.67 2597.45 33496.48 367
baseline97.44 11297.78 7796.43 21098.52 16890.75 25096.84 13199.03 7596.51 10997.86 16398.02 17096.67 8799.36 23797.09 7499.47 14899.19 145
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8798.20 22393.00 25498.16 12898.06 16695.89 12199.72 8795.67 13299.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10898.99 8996.35 11898.13 13295.95 31195.99 11999.66 13494.36 20899.73 6798.59 238
test_fmvs397.38 11697.56 10196.84 18698.63 15392.81 19897.60 8899.61 1390.87 29498.76 6999.66 394.03 18297.90 37899.24 699.68 8299.81 8
XVG-OURS-SEG-HR97.38 11697.07 13298.30 6899.01 10997.41 3494.66 27099.02 7795.20 17598.15 13097.52 21498.83 598.43 35994.87 18496.41 35899.07 171
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12395.61 32498.59 2798.51 8598.72 8292.54 22199.58 16196.02 11299.49 14299.12 161
SD-MVS97.37 11897.70 8196.35 21498.14 21595.13 12296.54 15298.92 10295.94 14099.19 3498.08 15997.74 2895.06 39895.24 16199.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 12097.10 12998.14 8298.91 12096.77 4996.20 17498.63 17493.82 22298.54 8398.33 12293.98 18399.05 29995.99 11599.45 15498.61 237
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12599.65 996.74 9999.47 1798.93 6496.91 7499.84 3090.11 30899.06 23198.32 265
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30392.01 22695.33 23797.65 26997.74 5798.30 11598.14 15195.04 15399.69 11797.55 5899.52 13099.58 39
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 30092.08 22495.34 23697.65 26997.74 5798.29 11698.11 15795.05 15299.68 12297.50 6099.50 13999.56 50
VPNet97.26 12497.49 10996.59 20099.47 3590.58 25296.27 16798.53 18397.77 5498.46 9398.41 11494.59 16799.68 12294.61 19699.29 19899.52 58
sasdasda97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
canonicalmvs97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
MGCFI-Net97.20 12797.23 12297.08 16897.68 27193.71 17397.79 7399.09 5797.40 8096.59 23793.96 35097.67 3199.35 24196.43 9398.50 28498.17 283
AllTest97.20 12796.92 14398.06 8899.08 9896.16 7097.14 11799.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
dcpmvs_297.12 12997.99 5494.51 30499.11 9484.00 36097.75 7899.65 997.38 8299.14 3798.42 11395.16 15099.96 295.52 14199.78 5699.58 39
XVG-OURS97.12 12996.74 15298.26 7098.99 11097.45 3293.82 30599.05 6795.19 17698.32 11197.70 20295.22 14998.41 36094.27 21098.13 30098.93 193
Anonymous2024052197.07 13197.51 10695.76 24199.35 5188.18 29397.78 7498.40 19997.11 8998.34 10799.04 5389.58 27199.79 4498.09 3699.93 1199.30 120
test_vis3_rt97.04 13296.98 13797.23 15798.44 18095.88 8096.82 13399.67 690.30 30399.27 2999.33 2794.04 18196.03 39797.14 7297.83 31299.78 11
V4297.04 13297.16 12796.68 19798.59 15991.05 24296.33 16498.36 20494.60 19897.99 14798.30 12893.32 19799.62 14997.40 6399.53 12599.38 106
APD-MVScopyleft97.00 13496.53 16798.41 5998.55 16496.31 6696.32 16598.77 14492.96 25997.44 18397.58 21195.84 12399.74 7691.96 26399.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 13596.38 17598.81 2798.64 14997.59 2395.97 19398.20 22395.51 16395.06 29696.53 28294.10 18099.70 11094.29 20999.15 21599.13 156
GBi-Net96.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
test196.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
VDDNet96.98 13896.84 14697.41 14399.40 4593.26 19097.94 6495.31 33199.26 798.39 10099.18 3987.85 29599.62 14995.13 17299.09 22599.35 114
PHI-MVS96.96 13996.53 16798.25 7397.48 29096.50 5996.76 13898.85 12093.52 23196.19 26196.85 26295.94 12099.42 21093.79 22999.43 16398.83 210
IS-MVSNet96.93 14096.68 15597.70 11399.25 6294.00 16298.57 2096.74 30398.36 3498.14 13197.98 17588.23 28899.71 10293.10 24899.72 7199.38 106
CNVR-MVS96.92 14196.55 16498.03 9398.00 22895.54 9594.87 26198.17 22994.60 19896.38 24897.05 24995.67 13599.36 23795.12 17399.08 22699.19 145
IterMVS-LS96.92 14197.29 11895.79 24098.51 17088.13 29695.10 24898.66 16896.99 9198.46 9398.68 8792.55 21999.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14396.81 14897.16 15998.56 16392.20 21894.33 27898.12 23897.34 8398.20 12297.33 23392.81 20899.75 6794.79 18899.81 4899.54 53
DeepPCF-MVS94.58 596.90 14396.43 17298.31 6797.48 29097.23 4092.56 33998.60 17692.84 26198.54 8397.40 22296.64 9098.78 32494.40 20599.41 17098.93 193
MM96.87 14596.62 15797.62 11997.72 26893.30 18796.39 15792.61 36397.90 5296.76 22798.64 9290.46 25799.81 3699.16 999.94 899.76 17
v114496.84 14697.08 13196.13 22698.42 18289.28 27095.41 22998.67 16694.21 20997.97 15198.31 12493.06 20299.65 13698.06 3899.62 9299.45 85
VNet96.84 14696.83 14796.88 18298.06 22092.02 22596.35 16397.57 27597.70 6297.88 15997.80 19392.40 22699.54 17694.73 19398.96 23799.08 169
EPP-MVSNet96.84 14696.58 16197.65 11799.18 8093.78 17198.68 1496.34 30897.91 5197.30 18698.06 16688.46 28599.85 2793.85 22799.40 17199.32 115
v119296.83 14997.06 13396.15 22598.28 19289.29 26995.36 23398.77 14493.73 22498.11 13398.34 12193.02 20699.67 12898.35 3299.58 10599.50 62
MVS_111021_LR96.82 15096.55 16497.62 11998.27 19495.34 11093.81 30798.33 20894.59 20096.56 24096.63 27796.61 9198.73 32994.80 18799.34 18598.78 215
Effi-MVS+-dtu96.81 15196.09 18698.99 1096.90 32398.69 496.42 15698.09 24095.86 14695.15 29495.54 32294.26 17799.81 3694.06 21898.51 28398.47 250
UGNet96.81 15196.56 16397.58 12196.64 32693.84 16897.75 7897.12 28896.47 11393.62 33498.88 7193.22 20099.53 17895.61 13799.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 15397.06 13395.95 23398.57 16188.77 28395.36 23398.26 21495.18 17797.85 16498.23 14292.58 21799.63 14497.80 4799.69 7899.45 85
v124096.74 15497.02 13695.91 23698.18 20688.52 28595.39 23198.88 11193.15 25098.46 9398.40 11792.80 20999.71 10298.45 3199.49 14299.49 70
DeepC-MVS_fast94.34 796.74 15496.51 16997.44 13997.69 27094.15 15796.02 18898.43 19393.17 24997.30 18697.38 22895.48 14099.28 26093.74 23099.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 15696.54 16697.27 15298.35 18793.66 17793.42 31798.36 20494.74 19296.58 23896.76 27196.54 9498.99 30694.87 18499.27 20199.15 151
v192192096.72 15796.96 14095.99 22998.21 20088.79 28295.42 22798.79 13993.22 24298.19 12698.26 13892.68 21399.70 11098.34 3399.55 11899.49 70
FMVSNet296.72 15796.67 15696.87 18397.96 23091.88 22897.15 11598.06 24695.59 15998.50 8798.62 9489.51 27599.65 13694.99 18199.60 10199.07 171
PMVScopyleft89.60 1796.71 15996.97 13895.95 23399.51 3097.81 1697.42 10497.49 27697.93 5095.95 26998.58 9696.88 7796.91 39189.59 31699.36 17793.12 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 16096.90 14596.03 22898.25 19688.92 27795.49 22398.77 14493.05 25298.09 13698.29 13292.51 22499.70 11098.11 3599.56 11199.47 79
CPTT-MVS96.69 16096.08 18798.49 5298.89 12196.64 5597.25 10998.77 14492.89 26096.01 26897.13 24392.23 22899.67 12892.24 25899.34 18599.17 148
HQP_MVS96.66 16296.33 17897.68 11698.70 14494.29 15196.50 15398.75 14896.36 11696.16 26296.77 26991.91 23999.46 19992.59 25499.20 20899.28 127
EI-MVSNet96.63 16396.93 14195.74 24297.26 30888.13 29695.29 24197.65 26996.99 9197.94 15498.19 14792.55 21999.58 16196.91 8099.56 11199.50 62
MVS_030496.62 16496.40 17497.28 15197.91 23492.30 21196.47 15589.74 39097.52 7195.38 29098.63 9392.76 21099.81 3699.28 499.93 1199.75 19
patch_mono-296.59 16596.93 14195.55 25298.88 12287.12 31994.47 27599.30 2794.12 21496.65 23598.41 11494.98 15799.87 2295.81 12799.78 5699.66 30
ab-mvs96.59 16596.59 16096.60 19998.64 14992.21 21598.35 3597.67 26594.45 20396.99 21298.79 7594.96 15899.49 19190.39 30599.07 22898.08 287
v14896.58 16796.97 13895.42 25998.63 15387.57 30995.09 24997.90 25195.91 14398.24 11997.96 17693.42 19699.39 22596.04 11099.52 13099.29 126
test20.0396.58 16796.61 15996.48 20898.49 17491.72 23295.68 21297.69 26496.81 9798.27 11797.92 18294.18 17998.71 33290.78 29199.66 8699.00 180
NCCC96.52 16995.99 19198.10 8597.81 24795.68 8995.00 25798.20 22395.39 16995.40 28996.36 29293.81 18899.45 20393.55 23698.42 28999.17 148
pmmvs-eth3d96.49 17096.18 18397.42 14298.25 19694.29 15194.77 26698.07 24589.81 31197.97 15198.33 12293.11 20199.08 29695.46 14899.84 4098.89 201
OMC-MVS96.48 17196.00 19097.91 10098.30 18996.01 7894.86 26298.60 17691.88 27997.18 19497.21 24096.11 11799.04 30090.49 30499.34 18598.69 228
TSAR-MVS + GP.96.47 17296.12 18497.49 13497.74 26695.23 11594.15 28996.90 29693.26 24098.04 14496.70 27394.41 17398.89 31594.77 19199.14 21698.37 258
Fast-Effi-MVS+-dtu96.44 17396.12 18497.39 14597.18 31194.39 14595.46 22498.73 15196.03 13594.72 30494.92 33596.28 11399.69 11793.81 22897.98 30598.09 286
K. test v396.44 17396.28 17996.95 17699.41 4291.53 23497.65 8590.31 38598.89 2098.93 5099.36 2184.57 32099.92 597.81 4699.56 11199.39 104
MSLP-MVS++96.42 17596.71 15395.57 24997.82 24690.56 25495.71 20898.84 12394.72 19396.71 22997.39 22694.91 15998.10 37695.28 15899.02 23398.05 296
test_fmvs296.38 17696.45 17196.16 22497.85 23891.30 23996.81 13499.45 1989.24 31798.49 8899.38 1888.68 28297.62 38398.83 1899.32 19299.57 46
Anonymous20240521196.34 17795.98 19297.43 14098.25 19693.85 16796.74 13994.41 34197.72 5998.37 10198.03 16987.15 30199.53 17894.06 21899.07 22898.92 196
h-mvs3396.29 17895.63 20898.26 7098.50 17396.11 7396.90 12997.09 28996.58 10597.21 19198.19 14784.14 32299.78 4795.89 12196.17 36598.89 201
MVS_Test96.27 17996.79 15194.73 29496.94 32186.63 32796.18 17598.33 20894.94 18796.07 26598.28 13395.25 14899.26 26497.21 6897.90 31098.30 269
MCST-MVS96.24 18095.80 20197.56 12298.75 13694.13 15894.66 27098.17 22990.17 30696.21 25996.10 30595.14 15199.43 20894.13 21698.85 25199.13 156
mvsany_test396.21 18195.93 19697.05 17097.40 29894.33 15095.76 20794.20 34389.10 31899.36 2499.60 693.97 18497.85 37995.40 15698.63 27498.99 183
Effi-MVS+96.19 18296.01 18996.71 19497.43 29692.19 21996.12 18199.10 5295.45 16593.33 34594.71 33897.23 5399.56 16893.21 24697.54 32898.37 258
DELS-MVS96.17 18396.23 18095.99 22997.55 28690.04 25792.38 34898.52 18494.13 21396.55 24297.06 24894.99 15699.58 16195.62 13699.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18496.36 17695.49 25597.68 27187.81 30598.67 1599.02 7796.50 11094.48 31196.15 30086.90 30299.92 598.73 2299.13 21898.74 221
ETV-MVS96.13 18595.90 19796.82 18797.76 26193.89 16595.40 23098.95 9895.87 14595.58 28591.00 38896.36 10899.72 8793.36 23998.83 25496.85 354
testgi96.07 18696.50 17094.80 29099.26 5987.69 30895.96 19598.58 18095.08 18198.02 14696.25 29697.92 2097.60 38488.68 33098.74 26299.11 164
LF4IMVS96.07 18695.63 20897.36 14698.19 20395.55 9495.44 22598.82 13792.29 27395.70 28296.55 28092.63 21698.69 33591.75 27299.33 19097.85 311
EIA-MVS96.04 18895.77 20396.85 18497.80 25192.98 19596.12 18199.16 4094.65 19693.77 32991.69 38295.68 13499.67 12894.18 21398.85 25197.91 306
diffmvspermissive96.04 18896.23 18095.46 25797.35 30188.03 29993.42 31799.08 5994.09 21796.66 23396.93 25793.85 18799.29 25896.01 11498.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 19095.52 21197.50 13197.77 26094.71 13196.07 18496.84 29797.48 7396.78 22694.28 34885.50 31399.40 22196.22 10298.73 26598.40 254
TinyColmap96.00 19196.34 17794.96 28197.90 23687.91 30194.13 29298.49 18794.41 20498.16 12897.76 19496.29 11298.68 33890.52 30199.42 16698.30 269
PVSNet_Blended_VisFu95.95 19295.80 20196.42 21199.28 5790.62 25195.31 23999.08 5988.40 33096.97 21598.17 15092.11 23199.78 4793.64 23499.21 20798.86 208
SSC-MVS95.92 19397.03 13592.58 35499.28 5778.39 39096.68 14695.12 33398.90 1999.11 3998.66 8891.36 24499.68 12295.00 17999.16 21499.67 28
UnsupCasMVSNet_eth95.91 19495.73 20496.44 20998.48 17691.52 23595.31 23998.45 19095.76 15097.48 17997.54 21289.53 27498.69 33594.43 20294.61 38399.13 156
QAPM95.88 19595.57 21096.80 18897.90 23691.84 23098.18 5398.73 15188.41 32996.42 24698.13 15394.73 16099.75 6788.72 32898.94 24098.81 212
CANet95.86 19695.65 20796.49 20796.41 33490.82 24794.36 27798.41 19794.94 18792.62 36396.73 27292.68 21399.71 10295.12 17399.60 10198.94 189
IterMVS-SCA-FT95.86 19696.19 18294.85 28797.68 27185.53 33892.42 34597.63 27396.99 9198.36 10498.54 10187.94 29099.75 6797.07 7699.08 22699.27 131
test_f95.82 19895.88 19995.66 24697.61 28193.21 19295.61 21998.17 22986.98 34598.42 9699.47 1190.46 25794.74 40097.71 5298.45 28799.03 176
test_vis1_n_192095.77 19996.41 17393.85 32098.55 16484.86 35095.91 20099.71 492.72 26497.67 16998.90 6987.44 29898.73 32997.96 4098.85 25197.96 303
hse-mvs295.77 19995.09 22197.79 10797.84 24395.51 9795.66 21395.43 32996.58 10597.21 19196.16 29984.14 32299.54 17695.89 12196.92 34298.32 265
MVP-Stereo95.69 20195.28 21396.92 17998.15 21393.03 19495.64 21898.20 22390.39 30296.63 23697.73 20091.63 24199.10 29491.84 26897.31 33898.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 20195.67 20595.74 24298.48 17688.76 28492.84 32997.25 28196.00 13697.59 17197.95 17891.38 24399.46 19993.16 24796.35 36098.99 183
test_vis1_n95.67 20395.89 19895.03 27698.18 20689.89 26096.94 12799.28 2988.25 33398.20 12298.92 6586.69 30597.19 38697.70 5498.82 25598.00 301
new-patchmatchnet95.67 20396.58 16192.94 34597.48 29080.21 38592.96 32798.19 22894.83 19098.82 6198.79 7593.31 19899.51 18595.83 12599.04 23299.12 161
xiu_mvs_v1_base_debu95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base_debi95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
DP-MVS Recon95.55 20895.13 21996.80 18898.51 17093.99 16394.60 27298.69 16190.20 30595.78 27896.21 29892.73 21298.98 30890.58 30098.86 25097.42 335
WB-MVS95.50 20996.62 15792.11 36399.21 7577.26 39896.12 18195.40 33098.62 2698.84 5998.26 13891.08 24899.50 18693.37 23898.70 26799.58 39
Fast-Effi-MVS+95.49 21095.07 22296.75 19297.67 27592.82 19794.22 28598.60 17691.61 28393.42 34392.90 36496.73 8699.70 11092.60 25397.89 31197.74 319
TAMVS95.49 21094.94 22697.16 15998.31 18893.41 18595.07 25296.82 29991.09 29297.51 17597.82 19189.96 26699.42 21088.42 33399.44 15598.64 232
OpenMVScopyleft94.22 895.48 21295.20 21596.32 21697.16 31291.96 22797.74 8098.84 12387.26 34094.36 31398.01 17293.95 18599.67 12890.70 29798.75 26197.35 338
CLD-MVS95.47 21395.07 22296.69 19698.27 19492.53 20591.36 36398.67 16691.22 29195.78 27894.12 34995.65 13698.98 30890.81 28999.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 21494.66 24297.88 10297.84 24395.23 11593.62 31198.39 20087.04 34393.78 32795.99 30794.58 16899.52 18191.76 27198.90 24498.89 201
CDPH-MVS95.45 21594.65 24397.84 10598.28 19294.96 12693.73 30998.33 20885.03 36695.44 28796.60 27895.31 14699.44 20690.01 31099.13 21899.11 164
IterMVS95.42 21695.83 20094.20 31597.52 28783.78 36292.41 34697.47 27895.49 16498.06 14198.49 10587.94 29099.58 16196.02 11299.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 21796.07 18893.21 33696.29 33681.56 37794.60 27297.66 26793.30 23996.95 21698.91 6893.03 20599.38 22896.60 8697.30 33998.69 228
test_cas_vis1_n_192095.34 21895.67 20594.35 31098.21 20086.83 32595.61 21999.26 3090.45 30198.17 12798.96 6184.43 32198.31 36896.74 8399.17 21397.90 307
MSDG95.33 21995.13 21995.94 23597.40 29891.85 22991.02 37498.37 20395.30 17296.31 25395.99 30794.51 17198.38 36389.59 31697.65 32597.60 327
LFMVS95.32 22094.88 23296.62 19898.03 22191.47 23697.65 8590.72 38199.11 997.89 15898.31 12479.20 34699.48 19493.91 22699.12 22198.93 193
F-COLMAP95.30 22194.38 26098.05 9298.64 14996.04 7595.61 21998.66 16889.00 32193.22 34696.40 29092.90 20799.35 24187.45 34897.53 32998.77 218
Anonymous2023120695.27 22295.06 22495.88 23798.72 13989.37 26895.70 20997.85 25488.00 33696.98 21497.62 20791.95 23699.34 24489.21 32199.53 12598.94 189
FMVSNet395.26 22394.94 22696.22 22196.53 33190.06 25695.99 19197.66 26794.11 21597.99 14797.91 18380.22 34499.63 14494.60 19799.44 15598.96 186
test_fmvs1_n95.21 22495.28 21394.99 27998.15 21389.13 27596.81 13499.43 2186.97 34697.21 19198.92 6583.00 33097.13 38798.09 3698.94 24098.72 224
c3_l95.20 22595.32 21294.83 28996.19 34186.43 33091.83 35798.35 20793.47 23397.36 18597.26 23788.69 28199.28 26095.41 15599.36 17798.78 215
D2MVS95.18 22695.17 21795.21 26697.76 26187.76 30794.15 28997.94 24989.77 31296.99 21297.68 20487.45 29799.14 28495.03 17899.81 4898.74 221
N_pmnet95.18 22694.23 26398.06 8897.85 23896.55 5892.49 34091.63 37189.34 31598.09 13697.41 22190.33 26099.06 29891.58 27399.31 19598.56 240
HQP-MVS95.17 22894.58 25196.92 17997.85 23892.47 20894.26 27998.43 19393.18 24692.86 35495.08 32990.33 26099.23 27290.51 30298.74 26299.05 175
bld_raw_dy_0_6495.16 22995.16 21895.15 27096.54 32889.06 27696.63 14999.54 1789.68 31398.72 7294.50 34488.64 28399.38 22892.24 25899.93 1197.03 345
Vis-MVSNet (Re-imp)95.11 23094.85 23395.87 23899.12 9389.17 27197.54 9894.92 33696.50 11096.58 23897.27 23683.64 32699.48 19488.42 33399.67 8498.97 185
AdaColmapbinary95.11 23094.62 24796.58 20197.33 30594.45 14494.92 25998.08 24193.15 25093.98 32595.53 32394.34 17599.10 29485.69 36098.61 27696.20 372
API-MVS95.09 23295.01 22595.31 26296.61 32794.02 16196.83 13297.18 28595.60 15895.79 27694.33 34794.54 17098.37 36585.70 35998.52 28193.52 393
CL-MVSNet_self_test95.04 23394.79 23995.82 23997.51 28889.79 26191.14 37196.82 29993.05 25296.72 22896.40 29090.82 25299.16 28291.95 26498.66 27198.50 248
CNLPA95.04 23394.47 25696.75 19297.81 24795.25 11494.12 29397.89 25294.41 20494.57 30795.69 31690.30 26398.35 36686.72 35598.76 26096.64 362
Patchmtry95.03 23594.59 25096.33 21594.83 38090.82 24796.38 16097.20 28396.59 10497.49 17798.57 9777.67 35399.38 22892.95 25199.62 9298.80 213
PVSNet_BlendedMVS95.02 23694.93 22895.27 26397.79 25687.40 31494.14 29198.68 16388.94 32294.51 30998.01 17293.04 20399.30 25489.77 31499.49 14299.11 164
TAPA-MVS93.32 1294.93 23794.23 26397.04 17298.18 20694.51 14195.22 24498.73 15181.22 38596.25 25795.95 31193.80 18998.98 30889.89 31298.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 23894.89 23194.99 27997.51 28888.11 29898.27 4495.20 33292.40 27296.68 23098.60 9583.44 32799.28 26093.34 24098.53 28097.59 328
eth_miper_zixun_eth94.89 23994.93 22894.75 29395.99 35086.12 33391.35 36498.49 18793.40 23497.12 19897.25 23886.87 30499.35 24195.08 17598.82 25598.78 215
CDS-MVSNet94.88 24094.12 26897.14 16197.64 27993.57 17993.96 30197.06 29190.05 30896.30 25496.55 28086.10 30799.47 19690.10 30999.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 24194.91 23094.57 30196.81 32487.10 32094.23 28497.34 28088.74 32597.14 19697.11 24591.94 23798.23 37292.99 24997.92 30898.37 258
pmmvs494.82 24294.19 26696.70 19597.42 29792.75 20292.09 35396.76 30186.80 34895.73 28197.22 23989.28 27898.89 31593.28 24399.14 21698.46 252
miper_lstm_enhance94.81 24394.80 23894.85 28796.16 34386.45 32991.14 37198.20 22393.49 23297.03 20997.37 23084.97 31799.26 26495.28 15899.56 11198.83 210
cl____94.73 24494.64 24495.01 27795.85 35687.00 32191.33 36598.08 24193.34 23797.10 20097.33 23384.01 32599.30 25495.14 17099.56 11198.71 227
DIV-MVS_self_test94.73 24494.64 24495.01 27795.86 35587.00 32191.33 36598.08 24193.34 23797.10 20097.34 23284.02 32499.31 25195.15 16999.55 11898.72 224
YYNet194.73 24494.84 23494.41 30897.47 29485.09 34790.29 38195.85 31892.52 26797.53 17397.76 19491.97 23599.18 27793.31 24296.86 34598.95 187
MDA-MVSNet_test_wron94.73 24494.83 23694.42 30797.48 29085.15 34590.28 38295.87 31792.52 26797.48 17997.76 19491.92 23899.17 28193.32 24196.80 35098.94 189
UnsupCasMVSNet_bld94.72 24894.26 26296.08 22798.62 15590.54 25593.38 31998.05 24790.30 30397.02 21096.80 26889.54 27299.16 28288.44 33296.18 36498.56 240
miper_ehance_all_eth94.69 24994.70 24194.64 29595.77 36186.22 33291.32 36798.24 21791.67 28197.05 20796.65 27688.39 28799.22 27494.88 18398.34 29198.49 249
BH-untuned94.69 24994.75 24094.52 30397.95 23387.53 31094.07 29497.01 29293.99 21997.10 20095.65 31892.65 21598.95 31387.60 34396.74 35197.09 342
RPMNet94.68 25194.60 24894.90 28495.44 36988.15 29496.18 17598.86 11697.43 7494.10 31898.49 10579.40 34599.76 6195.69 13095.81 36896.81 358
Patchmatch-RL test94.66 25294.49 25495.19 26798.54 16688.91 27892.57 33898.74 15091.46 28698.32 11197.75 19777.31 35898.81 32296.06 10799.61 9897.85 311
CANet_DTU94.65 25394.21 26595.96 23195.90 35289.68 26293.92 30297.83 25893.19 24590.12 38495.64 31988.52 28499.57 16793.27 24499.47 14898.62 235
pmmvs594.63 25494.34 26195.50 25497.63 28088.34 28994.02 29597.13 28787.15 34295.22 29397.15 24287.50 29699.27 26393.99 22299.26 20298.88 205
PAPM_NR94.61 25594.17 26795.96 23198.36 18691.23 24095.93 19897.95 24892.98 25593.42 34394.43 34690.53 25598.38 36387.60 34396.29 36298.27 273
PatchMatch-RL94.61 25593.81 27597.02 17498.19 20395.72 8693.66 31097.23 28288.17 33494.94 30195.62 32091.43 24298.57 34787.36 34997.68 32296.76 360
BH-RMVSNet94.56 25794.44 25994.91 28297.57 28387.44 31393.78 30896.26 30993.69 22796.41 24796.50 28592.10 23299.00 30485.96 35797.71 31998.31 267
USDC94.56 25794.57 25394.55 30297.78 25986.43 33092.75 33298.65 17385.96 35496.91 21997.93 18190.82 25298.74 32890.71 29699.59 10398.47 250
test111194.53 25994.81 23793.72 32399.06 10181.94 37598.31 3983.87 40496.37 11598.49 8899.17 4281.49 33599.73 8296.64 8499.86 3199.49 70
test_fmvs194.51 26094.60 24894.26 31495.91 35187.92 30095.35 23599.02 7786.56 35096.79 22298.52 10282.64 33297.00 39097.87 4398.71 26697.88 309
ppachtmachnet_test94.49 26194.84 23493.46 32996.16 34382.10 37290.59 37897.48 27790.53 30097.01 21197.59 20991.01 24999.36 23793.97 22499.18 21298.94 189
test_yl94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
DCV-MVSNet94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
jason94.39 26494.04 27095.41 26198.29 19087.85 30492.74 33496.75 30285.38 36395.29 29196.15 30088.21 28999.65 13694.24 21199.34 18598.74 221
jason: jason.
ECVR-MVScopyleft94.37 26594.48 25594.05 31998.95 11283.10 36598.31 3982.48 40696.20 12398.23 12099.16 4381.18 33899.66 13495.95 11799.83 4399.38 106
EU-MVSNet94.25 26694.47 25693.60 32698.14 21582.60 37097.24 11192.72 36085.08 36498.48 9098.94 6382.59 33398.76 32797.47 6299.53 12599.44 95
xiu_mvs_v2_base94.22 26794.63 24692.99 34397.32 30684.84 35192.12 35197.84 25691.96 27794.17 31693.43 35596.07 11899.71 10291.27 27797.48 33194.42 388
sss94.22 26793.72 27695.74 24297.71 26989.95 25993.84 30496.98 29388.38 33193.75 33095.74 31587.94 29098.89 31591.02 28398.10 30198.37 258
MVSTER94.21 26993.93 27495.05 27595.83 35786.46 32895.18 24697.65 26992.41 27197.94 15498.00 17472.39 38099.58 16196.36 9699.56 11199.12 161
MAR-MVS94.21 26993.03 28997.76 10996.94 32197.44 3396.97 12697.15 28687.89 33892.00 36892.73 36992.14 23099.12 28883.92 37497.51 33096.73 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 27194.58 25193.07 33896.16 34381.20 38090.42 38096.84 29790.72 29697.14 19697.13 24390.47 25699.11 29194.04 22198.25 29598.91 197
1112_ss94.12 27293.42 28196.23 21998.59 15990.85 24694.24 28398.85 12085.49 35992.97 35294.94 33386.01 30899.64 14091.78 27097.92 30898.20 279
PS-MVSNAJ94.10 27394.47 25693.00 34297.35 30184.88 34991.86 35697.84 25691.96 27794.17 31692.50 37395.82 12699.71 10291.27 27797.48 33194.40 389
CHOSEN 1792x268894.10 27393.41 28296.18 22399.16 8290.04 25792.15 35098.68 16379.90 39096.22 25897.83 18887.92 29499.42 21089.18 32299.65 8799.08 169
MG-MVS94.08 27594.00 27194.32 31197.09 31585.89 33593.19 32595.96 31592.52 26794.93 30297.51 21589.54 27298.77 32587.52 34797.71 31998.31 267
PLCcopyleft91.02 1694.05 27692.90 29297.51 12798.00 22895.12 12394.25 28298.25 21586.17 35291.48 37395.25 32791.01 24999.19 27685.02 36996.69 35398.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 27793.65 27795.17 26995.76 36293.42 18493.97 30098.33 20884.68 37093.17 34895.89 31392.53 22394.79 39993.50 23794.97 37997.31 339
114514_t93.96 27893.22 28696.19 22299.06 10190.97 24595.99 19198.94 9973.88 40293.43 34296.93 25792.38 22799.37 23489.09 32399.28 19998.25 275
PVSNet_Blended93.96 27893.65 27794.91 28297.79 25687.40 31491.43 36298.68 16384.50 37394.51 30994.48 34593.04 20399.30 25489.77 31498.61 27698.02 299
AUN-MVS93.95 28092.69 30097.74 11097.80 25195.38 10595.57 22295.46 32891.26 29092.64 36196.10 30574.67 36999.55 17393.72 23296.97 34198.30 269
iter_conf05_1193.77 28193.29 28395.24 26496.54 32889.14 27491.55 36095.02 33490.16 30793.21 34793.94 35187.37 29999.56 16892.24 25899.56 11197.03 345
lupinMVS93.77 28193.28 28495.24 26497.68 27187.81 30592.12 35196.05 31184.52 37294.48 31195.06 33186.90 30299.63 14493.62 23599.13 21898.27 273
PatchT93.75 28393.57 27994.29 31395.05 37787.32 31696.05 18592.98 35697.54 7094.25 31498.72 8275.79 36699.24 27095.92 11995.81 36896.32 369
EPNet93.72 28492.62 30397.03 17387.61 41192.25 21396.27 16791.28 37596.74 9987.65 39797.39 22685.00 31699.64 14092.14 26199.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 28492.65 30196.91 18198.93 11691.81 23191.23 36998.52 18482.69 37896.46 24596.52 28480.38 34399.90 1490.36 30698.79 25799.03 176
DPM-MVS93.68 28692.77 29996.42 21197.91 23492.54 20491.17 37097.47 27884.99 36893.08 35094.74 33789.90 26799.00 30487.54 34598.09 30297.72 320
PMMVS293.66 28794.07 26992.45 35897.57 28380.67 38386.46 39696.00 31393.99 21997.10 20097.38 22889.90 26797.82 38088.76 32799.47 14898.86 208
iter_conf0593.65 28893.05 28795.46 25796.13 34887.45 31295.95 19798.22 21992.66 26597.04 20897.89 18463.52 39699.72 8796.19 10499.82 4799.21 140
OpenMVS_ROBcopyleft91.80 1493.64 28993.05 28795.42 25997.31 30791.21 24195.08 25196.68 30681.56 38296.88 22196.41 28890.44 25999.25 26685.39 36597.67 32395.80 376
Patchmatch-test93.60 29093.25 28594.63 29696.14 34787.47 31196.04 18694.50 34093.57 23096.47 24496.97 25476.50 36198.61 34490.67 29898.41 29097.81 315
WTY-MVS93.55 29193.00 29195.19 26797.81 24787.86 30293.89 30396.00 31389.02 32094.07 32095.44 32686.27 30699.33 24687.69 34196.82 34898.39 256
Test_1112_low_res93.53 29292.86 29395.54 25398.60 15788.86 28092.75 33298.69 16182.66 37992.65 36096.92 25984.75 31899.56 16890.94 28597.76 31598.19 280
mvsany_test193.47 29393.03 28994.79 29194.05 39292.12 22090.82 37690.01 38985.02 36797.26 18898.28 13393.57 19397.03 38892.51 25695.75 37395.23 384
MIMVSNet93.42 29492.86 29395.10 27398.17 20988.19 29298.13 5593.69 34692.07 27495.04 29998.21 14680.95 34199.03 30381.42 38498.06 30398.07 289
FMVSNet593.39 29592.35 30596.50 20695.83 35790.81 24997.31 10698.27 21392.74 26396.27 25598.28 13362.23 39799.67 12890.86 28799.36 17799.03 176
SCA93.38 29693.52 28092.96 34496.24 33781.40 37993.24 32394.00 34491.58 28594.57 30796.97 25487.94 29099.42 21089.47 31897.66 32498.06 293
tttt051793.31 29792.56 30495.57 24998.71 14287.86 30297.44 10187.17 39895.79 14997.47 18196.84 26364.12 39499.81 3696.20 10399.32 19299.02 179
CR-MVSNet93.29 29892.79 29694.78 29295.44 36988.15 29496.18 17597.20 28384.94 36994.10 31898.57 9777.67 35399.39 22595.17 16595.81 36896.81 358
cl2293.25 29992.84 29594.46 30694.30 38686.00 33491.09 37396.64 30790.74 29595.79 27696.31 29478.24 35098.77 32594.15 21598.34 29198.62 235
wuyk23d93.25 29995.20 21587.40 38696.07 34995.38 10597.04 12394.97 33595.33 17099.70 698.11 15798.14 1791.94 40477.76 39599.68 8274.89 404
miper_enhance_ethall93.14 30192.78 29894.20 31593.65 39585.29 34289.97 38497.85 25485.05 36596.15 26494.56 34085.74 31099.14 28493.74 23098.34 29198.17 283
baseline193.14 30192.64 30294.62 29797.34 30387.20 31896.67 14893.02 35594.71 19496.51 24395.83 31481.64 33498.60 34690.00 31188.06 40098.07 289
FE-MVS92.95 30392.22 30795.11 27197.21 31088.33 29098.54 2393.66 34989.91 31096.21 25998.14 15170.33 38799.50 18687.79 33998.24 29697.51 331
X-MVStestdata92.86 30490.83 33198.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25136.50 40696.49 9899.72 8795.66 13399.37 17499.45 85
GA-MVS92.83 30592.15 30994.87 28696.97 31887.27 31790.03 38396.12 31091.83 28094.05 32194.57 33976.01 36598.97 31292.46 25797.34 33798.36 263
CMPMVSbinary73.10 2392.74 30691.39 31896.77 19193.57 39794.67 13494.21 28697.67 26580.36 38993.61 33596.60 27882.85 33197.35 38584.86 37098.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 30791.76 31595.56 25198.42 18288.23 29196.03 18787.35 39794.04 21896.56 24095.47 32464.03 39599.77 5694.78 19099.11 22298.68 231
HY-MVS91.43 1592.58 30891.81 31394.90 28496.49 33288.87 27997.31 10694.62 33885.92 35590.50 37996.84 26385.05 31599.40 22183.77 37795.78 37196.43 368
TR-MVS92.54 30992.20 30893.57 32796.49 33286.66 32693.51 31594.73 33789.96 30994.95 30093.87 35290.24 26598.61 34481.18 38594.88 38095.45 382
PMMVS92.39 31091.08 32596.30 21893.12 39992.81 19890.58 37995.96 31579.17 39391.85 37092.27 37490.29 26498.66 34089.85 31396.68 35497.43 334
131492.38 31192.30 30692.64 35395.42 37185.15 34595.86 20296.97 29485.40 36290.62 37693.06 36291.12 24797.80 38186.74 35495.49 37694.97 386
new_pmnet92.34 31291.69 31694.32 31196.23 33989.16 27292.27 34992.88 35784.39 37595.29 29196.35 29385.66 31196.74 39584.53 37297.56 32797.05 343
CVMVSNet92.33 31392.79 29690.95 37097.26 30875.84 40295.29 24192.33 36581.86 38096.27 25598.19 14781.44 33698.46 35894.23 21298.29 29498.55 242
PAPR92.22 31491.27 32295.07 27495.73 36488.81 28191.97 35497.87 25385.80 35790.91 37592.73 36991.16 24698.33 36779.48 38995.76 37298.08 287
DSMNet-mixed92.19 31591.83 31293.25 33396.18 34283.68 36396.27 16793.68 34876.97 39992.54 36499.18 3989.20 28098.55 35083.88 37598.60 27897.51 331
BH-w/o92.14 31691.94 31092.73 35197.13 31485.30 34192.46 34295.64 32189.33 31694.21 31592.74 36889.60 27098.24 37181.68 38394.66 38294.66 387
PCF-MVS89.43 1892.12 31790.64 33496.57 20397.80 25193.48 18289.88 38898.45 19074.46 40196.04 26795.68 31790.71 25499.31 25173.73 40099.01 23596.91 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 31891.80 31492.93 34695.19 37482.65 36892.46 34291.35 37390.67 29891.76 37187.61 40085.64 31298.50 35494.73 19396.84 34697.65 323
dmvs_re92.08 31991.27 32294.51 30497.16 31292.79 20195.65 21592.64 36294.11 21592.74 35790.98 38983.41 32894.44 40280.72 38694.07 38696.29 370
thres600view792.03 32091.43 31793.82 32198.19 20384.61 35396.27 16790.39 38296.81 9796.37 24993.11 35773.44 37899.49 19180.32 38797.95 30797.36 336
PatchmatchNetpermissive91.98 32191.87 31192.30 36094.60 38379.71 38695.12 24793.59 35189.52 31493.61 33597.02 25177.94 35199.18 27790.84 28894.57 38598.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 32291.35 31993.51 32894.27 38785.60 33788.86 39398.61 17579.32 39292.16 36791.44 38489.22 27998.12 37590.80 29097.47 33396.82 357
JIA-IIPM91.79 32390.69 33395.11 27193.80 39490.98 24494.16 28891.78 37096.38 11490.30 38299.30 2872.02 38198.90 31488.28 33590.17 39695.45 382
thres100view90091.76 32491.26 32493.26 33298.21 20084.50 35496.39 15790.39 38296.87 9596.33 25093.08 36173.44 37899.42 21078.85 39297.74 31695.85 374
thres40091.68 32591.00 32693.71 32498.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31697.36 336
tfpn200view991.55 32691.00 32693.21 33698.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31695.85 374
WB-MVSnew91.50 32791.29 32092.14 36294.85 37980.32 38493.29 32288.77 39388.57 32894.03 32292.21 37592.56 21898.28 37080.21 38897.08 34097.81 315
ADS-MVSNet291.47 32890.51 33694.36 30995.51 36785.63 33695.05 25495.70 31983.46 37692.69 35896.84 26379.15 34799.41 21985.66 36190.52 39498.04 297
EPNet_dtu91.39 32990.75 33293.31 33190.48 40882.61 36994.80 26392.88 35793.39 23581.74 40594.90 33681.36 33799.11 29188.28 33598.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 33089.67 34295.47 25696.41 33489.15 27391.54 36190.23 38689.07 31986.78 40192.84 36669.39 38999.44 20694.16 21496.61 35597.82 313
PVSNet86.72 1991.10 33190.97 32891.49 36797.56 28578.04 39287.17 39594.60 33984.65 37192.34 36592.20 37687.37 29998.47 35785.17 36897.69 32197.96 303
tpm91.08 33290.85 33091.75 36695.33 37278.09 39195.03 25691.27 37688.75 32493.53 33897.40 22271.24 38299.30 25491.25 27993.87 38797.87 310
thres20091.00 33390.42 33792.77 35097.47 29483.98 36194.01 29691.18 37795.12 18095.44 28791.21 38673.93 37199.31 25177.76 39597.63 32695.01 385
ADS-MVSNet90.95 33490.26 33893.04 33995.51 36782.37 37195.05 25493.41 35283.46 37692.69 35896.84 26379.15 34798.70 33385.66 36190.52 39498.04 297
tpmvs90.79 33590.87 32990.57 37392.75 40376.30 40095.79 20693.64 35091.04 29391.91 36996.26 29577.19 35998.86 31989.38 32089.85 39796.56 365
thisisatest051590.43 33689.18 34894.17 31797.07 31685.44 33989.75 38987.58 39688.28 33293.69 33391.72 38165.27 39399.58 16190.59 29998.67 26997.50 333
tpmrst90.31 33790.61 33589.41 37894.06 39172.37 40995.06 25393.69 34688.01 33592.32 36696.86 26177.45 35598.82 32091.04 28287.01 40197.04 344
test0.0.03 190.11 33889.21 34592.83 34893.89 39386.87 32491.74 35888.74 39492.02 27594.71 30591.14 38773.92 37294.48 40183.75 37892.94 38997.16 341
MVS90.02 33989.20 34692.47 35794.71 38186.90 32395.86 20296.74 30364.72 40490.62 37692.77 36792.54 22198.39 36279.30 39095.56 37592.12 397
pmmvs390.00 34088.90 35093.32 33094.20 39085.34 34091.25 36892.56 36478.59 39493.82 32695.17 32867.36 39298.69 33589.08 32498.03 30495.92 373
CHOSEN 280x42089.98 34189.19 34792.37 35995.60 36681.13 38186.22 39797.09 28981.44 38487.44 39893.15 35673.99 37099.47 19688.69 32999.07 22896.52 366
test-LLR89.97 34289.90 34090.16 37494.24 38874.98 40389.89 38589.06 39192.02 27589.97 38590.77 39073.92 37298.57 34791.88 26697.36 33596.92 349
FPMVS89.92 34388.63 35193.82 32198.37 18596.94 4591.58 35993.34 35388.00 33690.32 38197.10 24670.87 38591.13 40571.91 40396.16 36693.39 395
test250689.86 34489.16 34991.97 36498.95 11276.83 39998.54 2361.07 41396.20 12397.07 20699.16 4355.19 40799.69 11796.43 9399.83 4399.38 106
CostFormer89.75 34589.25 34391.26 36994.69 38278.00 39395.32 23891.98 36881.50 38390.55 37896.96 25671.06 38498.89 31588.59 33192.63 39196.87 352
testing389.72 34688.26 35594.10 31897.66 27684.30 35894.80 26388.25 39594.66 19595.07 29592.51 37241.15 41399.43 20891.81 26998.44 28898.55 242
testing9189.67 34788.55 35293.04 33995.90 35281.80 37692.71 33693.71 34593.71 22590.18 38390.15 39457.11 39999.22 27487.17 35296.32 36198.12 285
baseline289.65 34888.44 35493.25 33395.62 36582.71 36793.82 30585.94 40188.89 32387.35 39992.54 37171.23 38399.33 24686.01 35694.60 38497.72 320
E-PMN89.52 34989.78 34188.73 38093.14 39877.61 39483.26 40092.02 36794.82 19193.71 33193.11 35775.31 36796.81 39285.81 35896.81 34991.77 399
EPMVS89.26 35088.55 35291.39 36892.36 40479.11 38995.65 21579.86 40788.60 32793.12 34996.53 28270.73 38698.10 37690.75 29289.32 39896.98 347
testing9989.21 35188.04 35792.70 35295.78 36081.00 38292.65 33792.03 36693.20 24489.90 38790.08 39655.25 40599.14 28487.54 34595.95 36797.97 302
EMVS89.06 35289.22 34488.61 38193.00 40077.34 39682.91 40190.92 37894.64 19792.63 36291.81 38076.30 36397.02 38983.83 37696.90 34491.48 400
testing1188.93 35387.63 36192.80 34995.87 35481.49 37892.48 34191.54 37291.62 28288.27 39590.24 39255.12 40899.11 29187.30 35096.28 36397.81 315
KD-MVS_2432*160088.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
miper_refine_blended88.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
IB-MVS85.98 2088.63 35686.95 36693.68 32595.12 37684.82 35290.85 37590.17 38787.55 33988.48 39491.34 38558.01 39899.59 15987.24 35193.80 38896.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 35787.69 36090.79 37194.98 37877.34 39695.09 24991.83 36977.51 39889.40 38996.41 28867.83 39198.73 32983.58 37992.60 39296.29 370
MVS-HIRNet88.40 35890.20 33982.99 38797.01 31760.04 41293.11 32685.61 40284.45 37488.72 39399.09 5084.72 31998.23 37282.52 38196.59 35690.69 402
gg-mvs-nofinetune88.28 35986.96 36592.23 36192.84 40284.44 35598.19 5274.60 40999.08 1087.01 40099.47 1156.93 40098.23 37278.91 39195.61 37494.01 391
dp88.08 36088.05 35688.16 38592.85 40168.81 41194.17 28792.88 35785.47 36091.38 37496.14 30268.87 39098.81 32286.88 35383.80 40496.87 352
tpm cat188.01 36187.33 36290.05 37794.48 38476.28 40194.47 27594.35 34273.84 40389.26 39095.61 32173.64 37498.30 36984.13 37386.20 40295.57 381
test-mter87.92 36287.17 36390.16 37494.24 38874.98 40389.89 38589.06 39186.44 35189.97 38590.77 39054.96 40998.57 34791.88 26697.36 33596.92 349
PAPM87.64 36385.84 37093.04 33996.54 32884.99 34888.42 39495.57 32579.52 39183.82 40293.05 36380.57 34298.41 36062.29 40692.79 39095.71 377
ETVMVS87.62 36485.75 37193.22 33596.15 34683.26 36492.94 32890.37 38491.39 28790.37 38088.45 39851.93 41098.64 34173.76 39996.38 35997.75 318
UWE-MVS87.57 36586.72 36790.13 37695.21 37373.56 40691.94 35583.78 40588.73 32693.00 35192.87 36555.22 40699.25 26681.74 38297.96 30697.59 328
testing22287.35 36685.50 37392.93 34695.79 35982.83 36692.40 34790.10 38892.80 26288.87 39289.02 39748.34 41198.70 33375.40 39896.74 35197.27 340
dmvs_testset87.30 36786.99 36488.24 38396.71 32577.48 39594.68 26986.81 40092.64 26689.61 38887.01 40285.91 30993.12 40361.04 40788.49 39994.13 390
TESTMET0.1,187.20 36886.57 36889.07 37993.62 39672.84 40889.89 38587.01 39985.46 36189.12 39190.20 39356.00 40497.72 38290.91 28696.92 34296.64 362
myMVS_eth3d87.16 36985.61 37291.82 36595.19 37479.32 38792.46 34291.35 37390.67 29891.76 37187.61 40041.96 41298.50 35482.66 38096.84 34697.65 323
MVEpermissive73.61 2286.48 37085.92 36988.18 38496.23 33985.28 34381.78 40275.79 40886.01 35382.53 40491.88 37992.74 21187.47 40771.42 40494.86 38191.78 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 37183.21 37488.34 38295.76 36274.97 40583.49 39992.70 36178.47 39587.94 39686.90 40383.38 32996.63 39673.44 40166.86 40793.40 394
EGC-MVSNET83.08 37277.93 37598.53 5099.57 2097.55 2698.33 3898.57 1814.71 40810.38 40998.90 6995.60 13899.50 18695.69 13099.61 9898.55 242
test_method66.88 37366.13 37669.11 38962.68 41225.73 41549.76 40396.04 31214.32 40764.27 40891.69 38273.45 37788.05 40676.06 39766.94 40693.54 392
tmp_tt57.23 37462.50 37741.44 39034.77 41349.21 41483.93 39860.22 41415.31 40671.11 40779.37 40570.09 38844.86 40964.76 40582.93 40530.25 405
cdsmvs_eth3d_5k24.22 37532.30 3780.00 3930.00 4160.00 4180.00 40498.10 2390.00 4110.00 41295.06 33197.54 390.00 4120.00 4110.00 4100.00 408
test12312.59 37615.49 3793.87 3916.07 4142.55 41690.75 3772.59 4162.52 4095.20 41113.02 4084.96 4141.85 4115.20 4099.09 4087.23 406
testmvs12.33 37715.23 3803.64 3925.77 4152.23 41788.99 3923.62 4152.30 4105.29 41013.09 4074.52 4151.95 4105.16 4108.32 4096.75 407
pcd_1.5k_mvsjas7.98 37810.65 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41195.82 1260.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.91 37910.55 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.94 3330.00 4160.00 4120.00 4110.00 4100.00 408
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.32 38785.41 364
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
PC_three_145287.24 34198.37 10197.44 21997.00 6596.78 39492.01 26299.25 20399.21 140
No_MVS98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
test_one_060199.05 10595.50 10098.87 11397.21 8898.03 14598.30 12896.93 71
eth-test20.00 416
eth-test0.00 416
ZD-MVS98.43 18195.94 7998.56 18290.72 29696.66 23397.07 24795.02 15599.74 7691.08 28198.93 242
RE-MVS-def97.88 6498.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.94 6995.49 14299.20 20899.26 132
IU-MVS99.22 6895.40 10398.14 23685.77 35898.36 10495.23 16299.51 13599.49 70
OPU-MVS97.64 11898.01 22495.27 11396.79 13697.35 23196.97 6798.51 35391.21 28099.25 20399.14 154
test_241102_TWO98.83 12996.11 12898.62 7698.24 14096.92 7399.72 8795.44 14999.49 14299.49 70
test_241102_ONE99.22 6895.35 10898.83 12996.04 13399.08 4098.13 15397.87 2399.33 246
9.1496.69 15498.53 16796.02 18898.98 9293.23 24197.18 19497.46 21796.47 10099.62 14992.99 24999.32 192
save fliter98.48 17694.71 13194.53 27498.41 19795.02 185
test_0728_THIRD96.62 10198.40 9898.28 13397.10 5699.71 10295.70 12899.62 9299.58 39
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13998.89 10599.75 6795.48 14599.52 13099.53 56
test072699.24 6395.51 9796.89 13098.89 10595.92 14198.64 7498.31 12497.06 60
GSMVS98.06 293
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35298.06 293
sam_mvs77.38 356
ambc96.56 20498.23 19991.68 23397.88 6898.13 23798.42 9698.56 9994.22 17899.04 30094.05 22099.35 18298.95 187
MTGPAbinary98.73 151
test_post194.98 25810.37 41076.21 36499.04 30089.47 318
test_post10.87 40976.83 36099.07 297
patchmatchnet-post96.84 26377.36 35799.42 210
GG-mvs-BLEND90.60 37291.00 40684.21 35998.23 4672.63 41282.76 40384.11 40456.14 40396.79 39372.20 40292.09 39390.78 401
MTMP96.55 15174.60 409
gm-plane-assit91.79 40571.40 41081.67 38190.11 39598.99 30684.86 370
test9_res91.29 27698.89 24799.00 180
TEST997.84 24395.23 11593.62 31198.39 20086.81 34793.78 32795.99 30794.68 16499.52 181
test_897.81 24795.07 12493.54 31498.38 20287.04 34393.71 33195.96 31094.58 16899.52 181
agg_prior290.34 30798.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20493.49 33999.53 178
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
test_prior495.38 10593.61 313
test_prior293.33 32194.21 20994.02 32396.25 29693.64 19291.90 26598.96 237
test_prior97.46 13797.79 25694.26 15598.42 19699.34 24498.79 214
旧先验293.35 32077.95 39795.77 28098.67 33990.74 295
新几何293.43 316
新几何197.25 15598.29 19094.70 13397.73 26277.98 39694.83 30396.67 27592.08 23399.45 20388.17 33798.65 27397.61 326
旧先验197.80 25193.87 16697.75 26197.04 25093.57 19398.68 26898.72 224
无先验93.20 32497.91 25080.78 38699.40 22187.71 34097.94 305
原ACMM292.82 330
原ACMM196.58 20198.16 21192.12 22098.15 23585.90 35693.49 33996.43 28792.47 22599.38 22887.66 34298.62 27598.23 276
test22298.17 20993.24 19192.74 33497.61 27475.17 40094.65 30696.69 27490.96 25198.66 27197.66 322
testdata299.46 19987.84 338
segment_acmp95.34 145
testdata95.70 24598.16 21190.58 25297.72 26380.38 38895.62 28397.02 25192.06 23498.98 30889.06 32598.52 28197.54 330
testdata192.77 33193.78 223
test1297.46 13797.61 28194.07 15997.78 26093.57 33793.31 19899.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 239
plane_prior598.75 14899.46 19992.59 25499.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17396.16 262
plane_prior296.50 15396.36 116
plane_prior198.49 174
plane_prior94.29 15195.42 22794.31 20898.93 242
n20.00 417
nn0.00 417
door-mid98.17 229
lessismore_v097.05 17099.36 5092.12 22084.07 40398.77 6898.98 5885.36 31499.74 7697.34 6599.37 17499.30 120
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
test1198.08 241
door97.81 259
HQP5-MVS92.47 208
HQP-NCC97.85 23894.26 27993.18 24692.86 354
ACMP_Plane97.85 23894.26 27993.18 24692.86 354
BP-MVS90.51 302
HQP4-MVS92.87 35399.23 27299.06 173
HQP3-MVS98.43 19398.74 262
HQP2-MVS90.33 260
NP-MVS98.14 21593.72 17295.08 329
MDTV_nov1_ep13_2view57.28 41394.89 26080.59 38794.02 32378.66 34985.50 36397.82 313
MDTV_nov1_ep1391.28 32194.31 38573.51 40794.80 26393.16 35486.75 34993.45 34197.40 22276.37 36298.55 35088.85 32696.43 357
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 171
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18695.63 15697.22 18997.30 23595.52 13998.55 35090.97 28498.90 24498.34 264
DeepMVS_CXcopyleft77.17 38890.94 40785.28 34374.08 41152.51 40580.87 40688.03 39975.25 36870.63 40859.23 40884.94 40375.62 403