This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11499.39 3294.81 8099.96 497.91 7299.79 2899.77 27
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2798.88 6297.52 2999.41 2898.78 13596.00 3699.79 9897.79 8099.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft98.33 5598.01 6499.28 3299.75 398.18 5199.22 3798.79 9896.13 10397.92 12599.23 6294.54 8399.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2498.81 8696.24 9898.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
HPM-MVS_fast98.38 4798.13 5599.12 5099.75 397.86 6499.44 998.82 8194.46 19098.94 5599.20 6795.16 7199.74 11197.58 9699.85 599.77 27
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10298.94 5599.17 7495.91 4099.94 897.55 10099.79 2899.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10598.93 5999.19 7295.70 4699.94 897.62 9399.79 2899.78 21
HPM-MVScopyleft98.36 5098.10 5999.13 4899.74 797.82 6899.53 698.80 9394.63 18098.61 8298.97 10595.13 7399.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5897.95 6699.09 5299.74 797.62 7399.03 7299.41 695.98 10797.60 14999.36 4294.45 8899.93 2597.14 11498.85 14199.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11798.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4399.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 4399.81 1599.84 12
test072699.72 1299.25 299.06 6498.88 6297.62 2499.56 2099.50 1597.42 9
GST-MVS98.43 4398.12 5699.34 2399.72 1298.38 3599.09 6198.82 8195.71 12198.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
MP-MVS-pluss98.31 5697.92 6899.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 14099.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10598.94 5599.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13399.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4799.81 1599.70 53
IU-MVS99.71 1999.23 798.64 13795.28 14399.63 1898.35 5299.81 1599.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7699.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7699.74 5099.78 21
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5298.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16798.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1698.87 6995.96 10898.60 8399.13 8296.05 3499.94 897.77 8199.86 199.77 27
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5698.81 8692.34 28698.09 10799.08 9493.01 10999.92 3196.06 15899.77 3499.75 35
test_part299.63 2999.18 1099.27 35
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 11699.16 4499.47 2095.37 5799.92 3197.89 7499.75 4599.79 19
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13296.78 1699.83 6997.93 7099.61 7799.74 37
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1199.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
dcpmvs_298.08 6298.59 1496.56 24499.57 3390.34 33299.15 5098.38 19996.82 7399.29 3499.49 1795.78 4499.57 14498.94 2299.86 199.77 27
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2499.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6998.81 8695.12 15199.32 3399.39 3296.22 2799.84 6797.72 8499.73 5399.67 65
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1999.86 199.82 16
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6198.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8899.63 7499.72 45
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10998.94 11395.34 5999.65 12996.04 15999.42 11099.19 145
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 5298.00 6599.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12895.70 4699.92 3197.53 10299.67 6499.66 68
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 5098.81 8696.24 9899.20 3899.37 3895.30 6199.80 8897.73 8399.67 6499.72 45
114514_t96.93 12896.27 14398.92 6499.50 4197.63 7298.85 11998.90 5784.80 38397.77 13199.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13298.63 17498.60 14295.18 14897.06 16598.06 20694.26 9499.57 14493.80 23598.87 14099.52 86
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8499.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.29 6297.72 8499.65 6999.71 49
9.1498.06 6099.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12595.93 3999.72 11395.56 17799.69 6199.68 61
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6499.36 4295.41 5499.78 10198.62 3099.65 6999.80 18
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3299.54 9499.73 42
F-COLMAP97.09 12396.80 11897.97 14199.45 5294.95 20898.55 18798.62 14193.02 26296.17 20498.58 15694.01 9899.81 8193.95 22998.90 13699.14 155
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 11099.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 9099.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 181
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10599.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10498.95 11294.60 8299.89 4791.97 28899.47 10499.59 79
DP-MVS96.59 14195.93 15698.57 8399.34 5796.19 14498.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13899.68 61
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 13096.49 13698.14 12499.33 5995.56 17397.38 31099.65 292.34 28697.61 14898.20 19789.29 19299.10 21496.97 12097.60 19399.77 27
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16198.28 22098.59 14595.52 12997.97 11999.10 8693.28 10799.49 16295.09 19198.88 13899.19 145
原ACMM198.65 7899.32 6296.62 11698.67 12993.27 25197.81 13098.97 10595.18 7099.83 6993.84 23399.46 10799.50 91
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13598.68 14696.20 2999.80 88
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13598.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
PatchMatch-RL96.59 14196.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17298.06 20688.50 21799.65 12991.77 29299.00 13398.66 206
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11999.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
SDMVSNet96.85 13296.42 13798.14 12499.30 6896.38 13399.21 4099.23 2095.92 10995.96 21198.76 14185.88 26899.44 17497.93 7095.59 24798.60 210
sd_testset96.17 15995.76 16197.42 18199.30 6894.34 23898.82 12799.08 3295.92 10995.96 21198.76 14182.83 31899.32 18495.56 17795.59 24798.60 210
agg_prior99.30 6898.38 3598.72 11397.57 15199.81 81
CHOSEN 1792x268897.12 12196.80 11898.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16198.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13998.66 14996.20 2999.80 88
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
PLCcopyleft95.07 497.20 11696.78 12198.44 9999.29 7396.31 14098.14 23998.76 10492.41 28496.39 19998.31 18694.92 7999.78 10194.06 22798.77 14599.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17597.09 263
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 18997.67 14198.88 12292.80 11299.91 3997.11 11599.12 12699.50 91
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7699.62 13797.91 7299.75 4599.50 91
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6499.28 5496.47 2399.40 17698.52 4199.70 5999.47 100
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
PVSNet_BlendedMVS96.73 13696.60 13197.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12297.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12298.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12598.75 10696.96 6796.89 17499.50 1590.46 17099.87 5897.84 7899.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6199.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 18097.24 11299.73 5399.70 53
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10998.96 11094.14 9699.53 9699.61 75
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4198.56 15599.51 89
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 6098.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6299.14 8195.25 6599.15 20398.83 2699.56 9199.20 141
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8999.82 7694.27 21999.44 10899.58 83
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4399.72 5699.74 37
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13497.80 23388.86 20799.69 12494.26 22099.01 13199.15 153
test1299.18 4299.16 9898.19 5098.53 16398.07 10895.13 7399.72 11399.56 9199.63 73
AdaColmapbinary97.15 11996.70 12698.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17598.68 14690.69 16799.76 10794.36 21499.29 12198.98 176
PHI-MVS98.34 5398.06 6099.18 4299.15 10098.12 5799.04 6999.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8899.76 4099.59 79
TAPA-MVS93.98 795.35 20494.56 21997.74 15899.13 10194.83 21498.33 21098.64 13786.62 37196.29 20198.61 15194.00 9999.29 18780.00 38599.41 11199.09 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28598.78 10096.89 7098.46 8899.22 6493.90 10099.68 12594.81 20099.52 9799.67 65
test_vis1_n_192096.71 13796.84 11796.31 26899.11 10489.74 33999.05 6698.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7798.88 6286.43 37392.81 31297.57 25381.66 32398.68 26894.83 19889.02 33996.88 281
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11799.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5599.10 8695.73 4599.13 20698.71 2899.49 10199.09 161
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14196.80 17998.53 16193.32 10499.72 11394.31 21899.31 12099.02 172
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17097.93 12498.58 15695.07 7599.71 11892.60 26799.34 11899.43 109
h-mvs3396.17 15995.62 17297.81 15199.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14489.76 18099.86 6297.95 6881.59 38199.11 159
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6479.47 41396.96 6798.36 9699.26 5777.21 35899.52 15996.78 13899.04 12899.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7291.80 40096.96 6798.10 10699.26 5781.31 32599.51 16096.90 12699.04 12899.59 79
Anonymous2024052995.10 21894.22 23797.75 15799.01 11394.26 24198.87 11498.83 8085.79 37996.64 18398.97 10578.73 34399.85 6396.27 15094.89 25299.12 157
Anonymous20240521195.28 20894.49 22297.67 16699.00 11493.75 25698.70 16097.04 33790.66 33196.49 19498.80 13278.13 35099.83 6996.21 15495.36 25199.44 107
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 11095.32 37798.86 298.53 8699.44 2794.38 9099.94 899.86 199.70 5999.90 3
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7799.88 5698.42 4999.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6992.45 39996.99 6698.03 11299.27 5681.40 32499.48 16796.87 13299.04 12899.63 73
thres100view90095.38 20094.70 21397.41 18298.98 11994.92 20998.87 11496.90 34795.38 13696.61 18696.88 31384.29 29999.56 14788.11 34696.29 22997.76 242
thres600view795.49 19194.77 20997.67 16698.98 11995.02 20198.85 11996.90 34795.38 13696.63 18496.90 31284.29 29999.59 14088.65 34396.33 22598.40 221
mamv497.13 12098.11 5794.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12998.90 11896.25 2699.55 15499.27 1599.76 4099.27 129
MVSMamba_PlusPlus98.31 5698.19 5498.67 7698.96 12297.36 8399.24 3098.57 15294.81 17198.99 5298.90 11895.22 6899.59 14099.15 1799.84 1199.07 169
iter_conf0598.16 6198.02 6398.59 8298.96 12297.07 9898.90 10098.57 15294.81 17197.84 12898.90 11895.22 6899.59 14099.15 1799.84 1199.12 157
test_cas_vis1_n_192097.38 10697.36 9397.45 17898.95 12493.25 27999.00 7998.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3299.66 6699.26 132
tfpn200view995.32 20794.62 21697.43 18098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22997.76 242
thres40095.38 20094.62 21697.65 17098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22998.40 221
MSDG95.93 17095.30 18697.83 14898.90 12795.36 18496.83 35698.37 20191.32 31894.43 24798.73 14390.27 17499.60 13990.05 32198.82 14398.52 216
bld_raw_dy_0_6497.09 12396.76 12598.08 13398.89 12896.54 12598.17 23798.52 16688.80 36295.67 21698.83 12893.32 10499.48 16798.86 2499.75 4598.21 232
RPSCF94.87 23495.40 17593.26 35298.89 12882.06 39098.33 21098.06 26490.30 34096.56 18899.26 5787.09 24699.49 16293.82 23496.32 22698.24 228
test_fmvsmconf_n98.92 798.87 699.04 5598.88 13097.25 9198.82 12799.34 1098.75 399.80 599.61 495.16 7199.95 799.70 699.80 2299.93 1
VNet97.79 7697.40 9198.96 6298.88 13097.55 7598.63 17498.93 5096.74 7899.02 4898.84 12690.33 17399.83 6998.53 3596.66 21499.50 91
LFMVS95.86 17494.98 20198.47 9598.87 13296.32 13898.84 12396.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8497.20 20099.46 104
UA-Net97.96 6797.62 7598.98 5998.86 13397.47 8098.89 10599.08 3296.67 8298.72 7499.54 893.15 10899.81 8194.87 19698.83 14299.65 69
WTY-MVS97.37 10896.92 11498.72 7398.86 13396.89 10798.31 21598.71 11695.26 14497.67 14198.56 16092.21 12699.78 10195.89 16396.85 20999.48 98
IS-MVSNet97.22 11396.88 11598.25 11698.85 13596.36 13699.19 4497.97 26995.39 13597.23 15798.99 10491.11 15998.93 23994.60 20798.59 15399.47 100
VDD-MVS95.82 17795.23 18897.61 17298.84 13693.98 24898.68 16397.40 31695.02 15997.95 12099.34 4874.37 37699.78 10198.64 2996.80 21099.08 165
test_fmvs196.42 14896.67 12995.66 29498.82 13788.53 36298.80 13698.20 22996.39 9499.64 1799.20 6780.35 33599.67 12699.04 2099.57 8598.78 194
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13893.27 27795.78 37699.15 2895.25 14596.79 18098.11 20392.29 12199.07 21798.56 3499.85 599.25 134
thres20095.25 20994.57 21897.28 18898.81 13894.92 20998.20 22897.11 33095.24 14796.54 19296.22 34184.58 29699.53 15687.93 35096.50 22197.39 256
XVG-OURS-SEG-HR96.51 14596.34 14097.02 20598.77 14093.76 25497.79 28398.50 17495.45 13296.94 16999.09 9287.87 23399.55 15496.76 13995.83 24697.74 244
XVG-OURS96.55 14496.41 13896.99 20698.75 14193.76 25497.50 30498.52 16695.67 12396.83 17599.30 5288.95 20699.53 15695.88 16496.26 23497.69 247
test_yl97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
DCV-MVSNet97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
CANet98.05 6497.76 7198.90 6798.73 14297.27 8698.35 20898.78 10097.37 4197.72 13898.96 11091.53 14899.92 3198.79 2799.65 6999.51 89
Vis-MVSNet (Re-imp)96.87 13196.55 13397.83 14898.73 14295.46 17999.20 4298.30 21694.96 16396.60 18798.87 12390.05 17698.59 27593.67 23998.60 15299.46 104
PAPR96.84 13396.24 14598.65 7898.72 14696.92 10497.36 31498.57 15293.33 24696.67 18297.57 25394.30 9299.56 14791.05 30798.59 15399.47 100
sasdasda97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
canonicalmvs97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
API-MVS97.41 10497.25 9797.91 14498.70 14796.80 10998.82 12798.69 12194.53 18598.11 10598.28 18894.50 8799.57 14494.12 22499.49 10197.37 258
MAR-MVS96.91 12996.40 13998.45 9798.69 15096.90 10598.66 16898.68 12492.40 28597.07 16497.96 21691.54 14799.75 10993.68 23798.92 13598.69 201
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7897.77 7097.62 17198.68 15195.58 17297.34 31698.51 16997.29 4498.66 7997.88 22394.51 8499.90 4597.87 7599.17 12597.39 256
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15288.32 36699.26 2798.22 22696.40 9399.67 1499.26 5773.91 37799.70 11999.02 2199.50 9998.87 185
MGCFI-Net97.62 8897.19 10198.92 6498.66 15398.20 4999.32 2198.38 19996.69 8197.58 15097.42 26592.10 13099.50 16198.28 5596.25 23599.08 165
alignmvs97.56 9497.07 10799.01 5698.66 15398.37 4098.83 12598.06 26496.74 7898.00 11897.65 24590.80 16499.48 16798.37 5196.56 21899.19 145
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15396.23 14199.22 3799.00 3996.63 8498.04 11199.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 9797.28 9697.99 14098.64 15695.38 18399.33 2098.31 21093.61 23697.19 15899.07 9594.05 9799.23 19396.89 12798.43 16399.37 114
ab-mvs96.42 14895.71 16698.55 8598.63 15796.75 11297.88 27398.74 10893.84 21496.54 19298.18 19985.34 27899.75 10995.93 16296.35 22499.15 153
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15896.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13498.68 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 8597.70 7397.56 17598.61 15995.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9199.80 8897.84 7898.66 15097.41 254
iter_conf05_1198.04 6597.94 6798.34 10798.60 16096.38 13399.24 3098.57 15295.90 11198.99 5298.79 13492.97 11099.47 17098.58 3199.85 599.17 151
sss97.39 10596.98 11298.61 8098.60 16096.61 11898.22 22598.93 5093.97 20798.01 11798.48 16691.98 13499.85 6396.45 14698.15 17399.39 112
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16295.94 15797.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14794.17 22296.50 22199.58 83
1112_ss96.63 13996.00 15398.50 9198.56 16296.37 13598.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14394.35 21596.51 22099.56 85
BH-untuned95.95 16795.72 16396.65 23098.55 16492.26 29498.23 22497.79 28093.73 22294.62 23798.01 21188.97 20599.00 22893.04 25698.51 15798.68 202
fmvsm_s_conf0.1_n98.18 6098.21 5198.11 13198.54 16595.24 19298.87 11499.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 140
LS3D97.16 11896.66 13098.68 7598.53 16697.19 9498.93 9698.90 5792.83 27095.99 20999.37 3892.12 12999.87 5893.67 23999.57 8598.97 177
hse-mvs295.71 18195.30 18696.93 21298.50 16793.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18099.02 22597.95 6880.91 38698.22 230
AUN-MVS94.53 25593.73 27796.92 21598.50 16793.52 26698.34 20998.10 25293.83 21695.94 21397.98 21585.59 27399.03 22294.35 21580.94 38598.22 230
baseline195.84 17595.12 19498.01 13998.49 16995.98 14998.73 15197.03 33895.37 13896.22 20298.19 19889.96 17899.16 20094.60 20787.48 35398.90 184
HY-MVS93.96 896.82 13496.23 14698.57 8398.46 17097.00 10098.14 23998.21 22793.95 20896.72 18197.99 21391.58 14399.76 10794.51 21196.54 21998.95 180
ETV-MVS97.96 6797.81 6998.40 10498.42 17197.27 8698.73 15198.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13798.58 214
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17196.59 12198.92 9898.44 18596.20 10097.76 13299.20 6791.66 14299.23 19398.27 5898.41 16499.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051796.07 16295.51 17497.78 15398.41 17394.84 21299.28 2494.33 38894.26 19697.64 14698.64 15084.05 30799.47 17095.34 18297.60 19399.03 171
EIA-MVS97.75 7797.58 7798.27 11298.38 17496.44 12999.01 7798.60 14295.88 11397.26 15697.53 25694.97 7799.33 18397.38 10999.20 12399.05 170
thisisatest053096.01 16495.36 18097.97 14198.38 17495.52 17798.88 11094.19 39094.04 20197.64 14698.31 18683.82 31499.46 17295.29 18697.70 19098.93 182
FE-MVS95.62 18794.90 20597.78 15398.37 17694.92 20997.17 33197.38 31890.95 32997.73 13797.70 23985.32 28099.63 13491.18 30098.33 16898.79 191
GeoE96.58 14396.07 14998.10 13298.35 17795.89 16499.34 1698.12 24693.12 25896.09 20598.87 12389.71 18298.97 22992.95 25998.08 17699.43 109
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
baseline97.64 8697.44 8998.25 11698.35 17796.20 14299.00 7998.32 20896.33 9798.03 11299.17 7491.35 15199.16 20098.10 6298.29 17199.39 112
mvsmamba97.25 11296.99 11098.02 13898.34 18295.54 17699.18 4797.47 30795.04 15798.15 10298.57 15989.46 18799.31 18597.68 9099.01 13199.22 138
BH-w/o95.38 20095.08 19696.26 27198.34 18291.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25291.55 29697.70 19098.16 234
EC-MVSNet98.21 5998.11 5798.49 9398.34 18297.26 9099.61 598.43 18996.78 7498.87 6398.84 12693.72 10199.01 22798.91 2399.50 9999.19 145
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18596.15 14598.97 8599.15 2898.55 798.45 9199.55 694.26 9499.97 199.65 799.66 6698.57 215
MVS_Test97.28 11097.00 10998.13 12798.33 18595.97 15498.74 14798.07 25994.27 19598.44 9398.07 20592.48 11699.26 18996.43 14798.19 17299.16 152
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18596.14 14698.82 12798.32 20896.38 9597.95 12099.21 6591.23 15699.23 19398.12 6198.37 16599.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 9297.40 9198.13 12798.32 18895.81 16798.06 25098.37 20196.20 10098.74 7198.89 12191.31 15499.25 19098.16 6098.52 15699.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.92 17195.32 18497.69 16398.32 18894.64 22198.19 23197.45 31294.56 18396.03 20798.61 15185.02 28399.12 20890.68 31299.06 12799.30 125
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 19095.97 15498.58 18098.25 22491.74 30395.29 22497.23 27791.03 16299.15 20392.90 26197.96 17998.97 177
mvsany_test197.69 8297.70 7397.66 16998.24 19194.18 24497.53 30197.53 30195.52 12999.66 1599.51 1394.30 9299.56 14798.38 5098.62 15199.23 136
UGNet96.78 13596.30 14298.19 12398.24 19195.89 16498.88 11098.93 5097.39 3896.81 17897.84 22782.60 31999.90 4596.53 14399.49 10198.79 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 16395.72 16397.08 20298.23 19395.93 16098.73 15198.27 21994.86 16895.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17398.22 19496.20 14297.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 172
FA-MVS(test-final)96.41 15195.94 15597.82 15098.21 19595.20 19497.80 28197.58 29193.21 25297.36 15497.70 23989.47 18699.56 14794.12 22497.99 17798.71 200
GBi-Net94.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet294.47 26293.61 28397.04 20498.21 19596.43 13098.79 14198.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
Effi-MVS+97.12 12196.69 12798.39 10598.19 19996.72 11497.37 31298.43 18993.71 22597.65 14598.02 20992.20 12799.25 19096.87 13297.79 18599.19 145
mvs_anonymous96.70 13896.53 13597.18 19498.19 19993.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 18099.31 122
ETVMVS94.50 25893.44 29197.68 16598.18 20195.35 18698.19 23197.11 33093.73 22296.40 19895.39 36374.53 37398.84 25291.10 30296.31 22798.84 188
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20187.85 37298.75 14495.66 37495.11 15288.96 36096.85 31690.26 17597.65 35195.65 17598.44 16199.22 138
FMVSNet394.97 22994.26 23597.11 20098.18 20196.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
CANet_DTU96.96 12796.55 13398.21 11998.17 20496.07 14897.98 25998.21 22797.24 5097.13 16098.93 11486.88 25199.91 3995.00 19499.37 11798.66 206
thisisatest051595.61 19094.89 20697.76 15698.15 20595.15 19796.77 35794.41 38692.95 26597.18 15997.43 26384.78 28999.45 17394.63 20497.73 18998.68 202
IterMVS-LS95.46 19395.21 18996.22 27298.12 20693.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2294.68 24294.19 23996.13 27598.11 20793.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
VDDNet95.36 20394.53 22097.86 14698.10 20895.13 19898.85 11997.75 28290.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21798.81 190
testing393.19 31092.48 31295.30 30898.07 20992.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20197.63 249
MVSFormer97.57 9397.49 8497.84 14798.07 20995.76 16899.47 798.40 19394.98 16198.79 6798.83 12892.34 11998.41 29896.91 12399.59 8199.34 116
lupinMVS97.44 10197.22 10098.12 13098.07 20995.76 16897.68 29097.76 28194.50 18898.79 6798.61 15192.34 11999.30 18697.58 9699.59 8199.31 122
TAMVS97.02 12596.79 12097.70 16298.06 21295.31 18998.52 18998.31 21093.95 20897.05 16698.61 15193.49 10398.52 28095.33 18397.81 18499.29 127
CDS-MVSNet96.99 12696.69 12797.90 14598.05 21395.98 14998.20 22898.33 20793.67 23296.95 16898.49 16593.54 10298.42 29195.24 18997.74 18899.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
testing22294.12 28693.03 30097.37 18798.02 21494.66 21997.94 26396.65 36094.63 18095.78 21495.76 35371.49 38198.92 24091.17 30195.88 24498.52 216
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21588.74 35896.04 37097.30 32090.15 34196.47 19596.64 32787.89 23197.56 35690.08 31997.06 20299.02 172
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21591.91 30196.04 37097.74 28390.15 34196.47 19596.64 32787.89 23198.96 23390.08 31997.06 20299.02 172
IterMVS94.09 28993.85 26794.80 32597.99 21790.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21787.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 226
tt080594.54 25393.85 26796.63 23497.98 21993.06 28798.77 14397.84 27893.67 23293.80 28098.04 20876.88 36398.96 23394.79 20192.86 28997.86 241
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21990.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
testing1195.00 22394.28 23497.16 19697.96 22193.36 27598.09 24797.06 33694.94 16695.33 22396.15 34376.89 36299.40 17695.77 17096.30 22898.72 197
testing9194.98 22794.25 23697.20 19197.94 22293.41 27098.00 25797.58 29194.99 16095.45 21996.04 34777.20 35999.42 17594.97 19596.02 24298.78 194
testing9994.83 23594.08 24797.07 20397.94 22293.13 28398.10 24697.17 32894.86 16895.34 22096.00 35076.31 36599.40 17695.08 19295.90 24398.68 202
EI-MVSNet95.96 16695.83 15996.36 26497.93 22493.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
CVMVSNet95.43 19696.04 15193.57 34697.93 22483.62 38498.12 24298.59 14595.68 12296.56 18899.02 9887.51 23997.51 35893.56 24397.44 19699.60 77
PMMVS96.60 14096.33 14197.41 18297.90 22693.93 24997.35 31598.41 19192.84 26997.76 13297.45 26191.10 16099.20 19796.26 15197.91 18099.11 159
Effi-MVS+-dtu96.29 15496.56 13295.51 29997.89 22790.22 33398.80 13698.10 25296.57 8796.45 19796.66 32490.81 16398.91 24295.72 17197.99 17797.40 255
QAPM96.29 15495.40 17598.96 6297.85 22897.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
UWE-MVS94.30 27193.89 26495.53 29897.83 22988.95 35597.52 30393.25 39494.44 19196.63 18497.07 29078.70 34499.28 18891.99 28697.56 19598.36 224
3Dnovator+94.38 697.43 10296.78 12199.38 1897.83 22998.52 2899.37 1298.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23192.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21892.75 26592.40 29496.55 320
3Dnovator94.51 597.46 9796.93 11399.07 5397.78 23297.64 7199.35 1599.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
test_vis1_n95.47 19295.13 19296.49 25297.77 23390.41 33099.27 2698.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23490.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17797.78 34892.51 27489.64 32696.56 318
c3_l94.79 23794.43 22995.89 28697.75 23493.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
TR-MVS94.94 23294.20 23897.17 19597.75 23494.14 24597.59 29897.02 34092.28 29095.75 21597.64 24783.88 31198.96 23389.77 32596.15 23998.40 221
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23791.74 30598.69 16298.15 24295.56 12794.92 22997.68 24488.98 20498.79 25993.19 25197.78 18697.20 262
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23897.15 9698.84 12398.97 4298.75 399.43 2799.54 893.29 10699.93 2599.64 999.79 2899.89 5
MIMVSNet93.26 30792.21 31696.41 26197.73 23893.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23798.92 183
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 24093.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
dmvs_re94.48 26194.18 24195.37 30597.68 24190.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 228
SCA95.46 19395.13 19296.46 25897.67 24291.29 31397.33 31797.60 29094.68 17796.92 17297.10 28383.97 30998.89 24692.59 26998.32 17099.20 141
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24293.48 26798.73 15198.44 18594.94 16692.53 32298.53 16184.50 29899.14 20595.48 18194.00 26696.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
fmvsm_s_conf0.1_n_a98.08 6298.04 6298.21 11997.66 24495.39 18298.89 10599.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24591.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 16998.17 32093.38 24589.76 32496.54 321
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24693.26 27898.81 13598.49 17993.43 24389.74 35498.53 16181.91 32199.08 21693.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 18495.38 17996.61 23797.61 24793.84 25298.91 9998.44 18595.25 14594.28 25598.47 16786.04 26799.12 20895.50 18093.95 26896.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 26593.68 28196.63 23497.60 24891.76 30394.83 38697.49 30689.45 35494.14 26397.10 28388.99 20198.83 25585.37 36698.13 17499.29 127
cl____94.51 25794.01 25396.02 27897.58 24993.40 27297.05 33797.96 27191.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
tpm cat193.36 30292.80 30495.07 31597.58 24987.97 37096.76 35897.86 27782.17 39093.53 28796.04 34786.13 26399.13 20689.24 33695.87 24598.10 235
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24982.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14697.43 253
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24990.72 32496.84 35597.52 30294.06 20097.08 16296.96 30789.24 19498.90 24592.03 28598.37 16599.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25393.38 27397.05 33797.94 27291.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
tpmrst95.63 18695.69 16995.44 30397.54 25488.54 36196.97 34197.56 29493.50 23997.52 15296.93 31189.49 18499.16 20095.25 18896.42 22398.64 208
FMVSNet193.19 31092.07 31796.56 24497.54 25495.00 20298.82 12798.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25693.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
CLD-MVS95.62 18795.34 18196.46 25897.52 25793.75 25697.27 32298.46 18195.53 12894.42 24898.00 21286.21 26298.97 22996.25 15394.37 25396.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 17597.48 25888.34 36596.85 35497.29 32193.74 22197.48 15397.26 27389.18 19599.05 21891.92 28997.43 197
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25993.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15694.59 20982.98 37698.62 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs94.60 24894.36 23295.33 30797.46 26088.60 36096.88 35297.68 28491.29 32093.80 28096.42 33488.58 21199.24 19291.06 30596.04 24198.17 233
LPG-MVS_test95.62 18795.34 18196.47 25597.46 26093.54 26398.99 8298.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
LGP-MVS_train96.47 25597.46 26093.54 26398.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
test_vis1_rt91.29 32890.65 32893.19 35497.45 26386.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 21097.48 10595.58 24994.22 377
jason97.32 10997.08 10698.06 13697.45 26395.59 17197.87 27497.91 27594.79 17398.55 8598.83 12891.12 15899.23 19397.58 9699.60 7999.34 116
jason: jason.
HQP_MVS96.14 16195.90 15796.85 21897.42 26594.60 22798.80 13698.56 15797.28 4595.34 22098.28 18887.09 24699.03 22296.07 15594.27 25596.92 272
plane_prior797.42 26594.63 222
ITE_SJBPF95.44 30397.42 26591.32 31297.50 30495.09 15593.59 28498.35 17981.70 32298.88 24889.71 32793.39 28296.12 348
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26894.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22191.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS92.55 31892.61 30992.38 35997.39 26983.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20497.60 250
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26990.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20497.60 250
plane_prior197.37 271
plane_prior697.35 27294.61 22587.09 246
dp94.15 28393.90 26294.90 31997.31 27386.82 37796.97 34197.19 32791.22 32496.02 20896.61 32985.51 27499.02 22590.00 32394.30 25498.85 186
NP-MVS97.28 27494.51 23097.73 236
CostFormer94.95 23094.73 21295.60 29797.28 27489.06 35197.53 30196.89 34989.66 35096.82 17796.72 32286.05 26598.95 23895.53 17996.13 24098.79 191
VPA-MVSNet95.75 17995.11 19597.69 16397.24 27697.27 8698.94 9499.23 2095.13 15095.51 21897.32 27085.73 27098.91 24297.33 11189.55 32996.89 280
tpm294.19 27993.76 27595.46 30297.23 27789.04 35297.31 31996.85 35387.08 37096.21 20396.79 31983.75 31598.74 26292.43 27796.23 23798.59 212
EPMVS94.99 22594.48 22396.52 25097.22 27891.75 30497.23 32391.66 40194.11 19897.28 15596.81 31885.70 27198.84 25293.04 25697.28 19998.97 177
FMVSNet591.81 32390.92 32694.49 33497.21 27992.09 29798.00 25797.55 29989.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
HQP-NCC97.20 28098.05 25196.43 9094.45 243
ACMP_Plane97.20 28098.05 25196.43 9094.45 243
HQP-MVS95.72 18095.40 17596.69 22897.20 28094.25 24298.05 25198.46 18196.43 9094.45 24397.73 23686.75 25298.96 23395.30 18494.18 25996.86 285
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28393.38 27398.74 14798.57 15291.21 32593.81 27998.58 15672.85 38098.77 26195.05 19393.93 26998.77 196
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28497.32 8499.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 245
VPNet94.99 22594.19 23997.40 18497.16 28596.57 12298.71 15698.97 4295.67 12394.84 23198.24 19580.36 33498.67 26996.46 14587.32 35796.96 269
GA-MVS94.81 23694.03 25097.14 19797.15 28693.86 25196.76 35897.58 29194.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23599.09 161
FIs96.51 14596.12 14897.67 16697.13 28797.54 7699.36 1399.22 2395.89 11294.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 266
131496.25 15895.73 16297.79 15297.13 28795.55 17598.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16294.62 20698.44 16198.32 227
D2MVS95.18 21495.08 19695.48 30097.10 28992.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18598.73 26394.48 21293.60 27795.65 359
DeepMVS_CXcopyleft86.78 37297.09 29072.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
PAPM94.95 23094.00 25497.78 15397.04 29195.65 17096.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25182.61 37997.61 19298.84 188
CR-MVSNet94.76 23994.15 24396.59 24097.00 29293.43 26894.96 38297.56 29492.46 27996.93 17096.24 33788.15 22397.88 34587.38 35296.65 21598.46 219
RPMNet92.81 31591.34 32497.24 18997.00 29293.43 26894.96 38298.80 9382.27 38996.93 17092.12 39386.98 24999.82 7676.32 39496.65 21598.46 219
UniMVSNet (Re)95.78 17895.19 19097.58 17396.99 29497.47 8098.79 14199.18 2595.60 12593.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
test_fmvs293.43 30193.58 28492.95 35696.97 29583.91 38299.19 4497.24 32595.74 11895.20 22598.27 19169.65 38398.72 26496.26 15193.73 27296.24 344
FC-MVSNet-test96.42 14896.05 15097.53 17696.95 29697.27 8699.36 1399.23 2095.83 11593.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 267
tfpnnormal93.66 29792.70 30796.55 24896.94 29795.94 15798.97 8599.19 2491.04 32791.38 34097.34 26884.94 28598.61 27285.45 36589.02 33995.11 367
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29889.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 24093.09 25398.50 15898.85 186
TinyColmap92.31 32191.53 32294.65 33096.92 29889.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25786.74 35592.51 29395.41 361
cascas94.63 24793.86 26696.93 21296.91 30094.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24995.80 16896.98 20797.66 248
nrg03096.28 15695.72 16397.96 14396.90 30198.15 5499.39 1098.31 21095.47 13194.42 24898.35 17992.09 13198.69 26597.50 10489.05 33797.04 265
MVS94.67 24593.54 28798.08 13396.88 30296.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16798.04 236
WR-MVS_H95.05 22194.46 22596.81 22196.86 30395.82 16699.24 3099.24 1793.87 21392.53 32296.84 31790.37 17198.24 31793.24 24987.93 34996.38 339
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18496.84 30496.97 10198.74 14799.24 1795.16 14993.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
USDC93.33 30592.71 30695.21 30996.83 30590.83 32296.91 34697.50 30493.84 21490.72 34698.14 20177.69 35398.82 25689.51 33293.21 28695.97 352
WB-MVSnew94.19 27994.04 24994.66 32996.82 30692.14 29597.86 27595.96 37093.50 23995.64 21796.77 32088.06 22797.99 33584.87 36896.86 20893.85 385
test-LLR95.10 21894.87 20795.80 28996.77 30789.70 34096.91 34695.21 37895.11 15294.83 23395.72 35887.71 23598.97 22993.06 25498.50 15898.72 197
test-mter94.08 29093.51 28895.80 28996.77 30789.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22993.06 25498.50 15898.72 197
Patchmtry93.22 30892.35 31495.84 28896.77 30793.09 28694.66 38997.56 29487.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 31095.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16897.88 239
XXY-MVS95.20 21394.45 22797.46 17796.75 31096.56 12398.86 11798.65 13693.30 24993.27 29998.27 19184.85 28798.87 24994.82 19991.26 30896.96 269
CP-MVSNet94.94 23294.30 23396.83 21996.72 31295.56 17399.11 5798.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
PatchT93.06 31391.97 31996.35 26596.69 31392.67 29094.48 39297.08 33286.62 37197.08 16292.23 39287.94 23097.90 34178.89 38996.69 21398.49 218
PS-CasMVS94.67 24593.99 25696.71 22596.68 31495.26 19099.13 5599.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
WR-MVS95.15 21594.46 22597.22 19096.67 31596.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
baseline295.11 21794.52 22196.87 21796.65 31693.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19893.88 23297.41 19897.87 240
test_040291.32 32790.27 33394.48 33596.60 31791.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 10096.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16394.22 25997.90 22079.18 34299.11 21094.05 22893.85 27096.48 334
DU-MVS95.42 19794.76 21097.40 18496.53 32096.97 10198.66 16898.99 4195.43 13393.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
NR-MVSNet94.98 22794.16 24297.44 17996.53 32097.22 9398.74 14798.95 4694.96 16389.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 20096.30 33684.13 30698.30 31193.24 24991.66 30399.14 155
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9198.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20687.33 39887.70 23798.78 26091.35 29895.58 24998.34 225
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7299.03 3795.04 15793.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14497.54 30095.60 12591.63 33997.91 21974.46 37597.02 36586.10 35993.67 27397.72 246
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8298.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6698.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20496.74 294
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8598.09 25692.32 28894.31 25497.06 29488.39 21898.55 27792.90 26188.87 34196.34 340
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4899.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26589.75 32699.38 11695.25 363
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17298.42 29185.57 36398.81 14499.09 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13585.15 28299.05 21895.21 19094.20 25896.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 26992.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 268
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2798.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19893.32 248
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25791.47 29791.92 29995.12 366
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4998.50 17495.87 11493.84 27898.34 18394.51 8498.61 27296.88 12993.45 28097.06 264
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28590.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 798.40 19394.98 16194.58 23897.86 22489.16 19698.41 29896.91 12394.12 26396.88 281
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14496.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6394.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10597.43 31495.29 14292.18 33198.52 16482.86 31798.59 27593.46 24491.76 30096.74 294
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7998.55 15995.73 12093.21 30198.38 17683.45 31698.63 27197.09 11694.00 26696.91 277
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15292.51 32496.66 32487.71 23596.94 36787.03 35493.67 27397.57 252
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9198.60 14298.58 698.93 5999.55 688.57 21299.91 3999.54 1199.61 7799.77 27
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28691.97 29891.66 33896.88 31389.67 18397.93 34088.02 34991.49 30496.48 334
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27690.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5298.52 16695.74 11893.22 30098.36 17883.87 31298.65 27096.95 12294.04 26496.91 277
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30388.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5298.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26596.50 331
EPNet97.28 11096.87 11698.51 9094.98 36896.14 14698.90 10097.02 34098.28 1095.99 20999.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28691.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 27989.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27195.08 368
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18798.59 212
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9497.56 29488.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29493.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27289.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27290.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6696.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21592.79 26477.98 39495.04 369
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15190.60 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 840.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
PC_three_145295.08 15699.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4799.80 2299.83 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4399.86 199.85 10
GSMVS99.20 141
sam_mvs189.45 18899.20 141
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post196.68 36130.43 41287.85 23498.69 26592.59 269
test_post31.83 41188.83 20898.91 242
patchmatchnet-post95.10 36889.42 18998.89 246
MTMP98.89 10594.14 391
test9_res96.39 14999.57 8599.69 56
agg_prior295.87 16599.57 8599.68 61
test_prior498.01 6197.86 275
test_prior297.80 28196.12 10497.89 12798.69 14595.96 3896.89 12799.60 79
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 96
plane_prior598.56 15799.03 22296.07 15594.27 25596.92 272
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 220
plane_prior298.80 13697.28 45
plane_prior94.60 22798.44 20196.74 7894.22 257
n20.00 420
nn0.00 420
door-mid94.37 387
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23396.87 283
HQP3-MVS98.46 18194.18 259
HQP2-MVS86.75 252
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12689.89 17993.91 23199.18 150
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 81