This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9297.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2899.86 997.52 599.67 699.75 5
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 8997.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3698.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
IU-MVS99.42 795.39 1197.94 10690.40 18598.94 597.41 1299.66 1099.74 7
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 8997.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 4898.32 2292.57 11897.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8895.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8495.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11796.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15098.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13798.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11496.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16096.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9698.98 192.22 12597.14 4798.44 3291.17 7199.85 1894.35 10499.46 4499.57 24
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9896.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18196.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15298.07 7493.54 7696.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
test_part299.28 2795.74 898.10 21
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25895.17 11898.03 7487.09 12599.61 6693.51 12199.42 4999.02 92
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5397.85 11893.72 6898.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21793.97 14197.57 11492.62 3399.76 3494.66 10099.27 6899.15 81
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3698.81 392.99 9894.56 12798.39 3988.96 9699.85 1894.57 10397.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16698.06 7790.67 17295.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15498.08 6888.35 24195.09 11997.65 10589.97 8999.48 10392.08 15098.59 10598.44 148
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14498.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6398.04 8593.79 6697.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 7998.22 4392.74 11397.59 2998.20 6591.96 4999.86 994.21 10799.25 7299.63 14
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 5898.07 7493.75 6797.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10398.19 4892.82 10997.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 10997.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 11997.96 10477.99 35793.00 16297.57 11486.14 13999.33 11889.22 20699.15 8198.94 104
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6498.18 5090.57 18198.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-296.83 4397.44 995.01 17399.05 4385.39 29696.98 16498.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
ZD-MVS99.05 4394.59 3298.08 6889.22 21297.03 5498.10 6892.52 3799.65 5794.58 10299.31 62
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8798.10 6591.50 14698.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 5898.03 8893.52 7897.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
RE-MVS-def96.72 4099.02 4692.34 9897.98 5898.03 8893.52 7897.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4098.27 3192.37 12398.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 5898.06 7793.11 9597.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
dcpmvs_296.37 6197.05 1794.31 21298.96 5084.11 31497.56 10797.51 15393.92 6097.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
9.1496.75 3898.93 5197.73 8498.23 4291.28 15697.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22197.88 11186.98 27796.65 6497.89 8291.99 4899.47 10492.26 14199.46 4499.39 60
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15797.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
save fliter98.91 5394.28 3997.02 15798.02 9295.35 9
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15498.21 4488.16 24796.64 6597.70 9991.18 7099.67 5392.44 14099.47 4299.48 47
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9298.24 3891.57 14497.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13598.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 6898.03 8893.34 8797.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13797.73 12791.80 13992.93 16796.62 17189.13 9599.14 13789.21 20797.78 12798.97 100
OPU-MVS98.55 398.82 6096.86 398.25 3698.26 5896.04 299.24 12695.36 7899.59 1799.56 27
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 12898.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
DP-MVS92.76 17691.51 19696.52 8898.77 6190.99 14997.38 12696.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15798.89 112
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9398.49 1394.66 4397.24 4298.41 3892.31 4298.94 16096.61 2999.46 4498.96 101
TEST998.70 6494.19 4496.41 21398.02 9288.17 24596.03 8997.56 11692.74 2999.59 72
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21398.02 9288.58 23496.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
test_898.67 6694.06 5296.37 22098.01 9588.58 23495.98 9497.55 11892.73 3099.58 75
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 22998.00 9788.76 23195.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22198.00 9792.80 11096.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12098.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25799.13 8398.69 127
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 26995.22 11797.68 10190.25 8499.54 9087.95 22599.12 8698.49 140
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20497.81 12189.87 19292.15 18097.06 13983.62 17199.54 9089.34 20198.07 12097.70 184
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19197.39 17687.29 27291.37 19696.71 15488.39 10599.52 9787.33 24597.13 14897.73 182
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24297.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23599.12 8698.73 123
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6698.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23698.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21197.57 14792.04 13494.77 12397.96 8187.01 12699.09 14491.31 16796.77 15398.36 155
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24297.48 15693.47 8095.67 10798.10 6889.17 9499.25 12591.27 16898.77 9999.13 83
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4398.45 1689.86 19397.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21797.18 14697.29 18787.75 26190.49 21397.10 13785.21 14899.50 10186.70 25496.72 15697.63 186
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20496.88 22590.13 18991.91 18697.24 12985.21 14899.09 14487.64 23897.83 12597.92 172
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16697.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16698.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
TAPA-MVS90.10 792.30 19091.22 20795.56 14698.33 9289.60 19096.79 18197.65 13981.83 33891.52 19397.23 13087.94 10998.91 16371.31 36098.37 11298.17 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17797.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17798.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18196.72 23394.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17696.92 1899.33 5998.94 104
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20295.18 28198.48 1585.60 29893.76 14597.11 13683.15 17999.61 6691.33 16698.72 10199.19 77
PVSNet_BlendedMVS94.06 12193.92 11094.47 20398.27 9789.46 19996.73 18598.36 1790.17 18794.36 13095.24 23888.02 10799.58 7593.44 12390.72 25394.36 320
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 19995.47 26798.36 1788.84 22594.36 13096.09 19788.02 10799.58 7593.44 12398.18 11798.40 151
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16298.05 8489.85 19597.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
Anonymous2023121190.63 26089.42 27194.27 21498.24 10189.19 21398.05 5497.89 10979.95 34988.25 28094.96 24672.56 31698.13 22889.70 19285.14 30695.49 257
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17297.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
test22298.24 10192.21 10495.33 27297.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18394.58 29098.49 1385.06 30793.78 14495.78 21382.86 18998.67 18591.77 15595.71 17699.07 91
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23498.79 493.99 5995.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17397.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13598.25 3690.21 18694.18 13597.27 12787.48 11999.73 3693.53 12097.77 12898.55 132
Anonymous20240521192.07 20190.83 22195.76 13298.19 10888.75 22197.58 10595.00 31686.00 29393.64 14697.45 12066.24 35199.53 9390.68 17792.71 21599.01 96
PatchMatch-RL92.90 16992.02 17695.56 14698.19 10890.80 15895.27 27797.18 19287.96 25191.86 18895.68 22080.44 23398.99 15784.01 29297.54 13296.89 208
testdata95.46 15798.18 11088.90 21997.66 13782.73 33397.03 5498.07 7190.06 8798.85 16789.67 19398.98 9398.64 130
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18297.10 1499.17 7998.90 109
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20197.99 5797.72 13079.63 35193.54 14997.41 12369.94 33299.56 8591.04 17191.11 24598.22 160
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6493.39 34790.57 18196.29 8198.31 5169.00 33499.16 13494.18 10895.87 17199.12 86
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16598.09 11486.63 27696.00 24698.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27797.62 14290.43 18495.55 11097.07 13891.72 5399.50 10189.62 19598.94 9598.82 118
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11298.15 5593.87 6297.52 3097.61 11185.29 14799.53 9395.81 6095.27 18299.16 79
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9397.47 15988.13 24993.00 16295.84 20684.86 15399.51 9887.99 22498.17 11897.83 179
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13398.06 7793.92 6093.38 15498.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17095.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20794.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 20895.54 29185.38 30185.49 31996.77 15270.28 32899.15 13580.02 32392.87 21296.15 227
TestCases93.98 22597.94 12086.64 27395.54 29185.38 30185.49 31996.77 15270.28 32899.15 13580.02 32392.87 21296.15 227
thres100view90092.43 18291.58 19194.98 17697.92 12289.37 20397.71 8994.66 32792.20 12793.31 15694.90 25078.06 27799.08 14681.40 31394.08 19996.48 219
thres600view792.49 18191.60 19095.18 16497.91 12389.47 19797.65 9694.66 32792.18 13193.33 15594.91 24978.06 27799.10 14181.61 31094.06 20296.98 203
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7797.48 15689.19 21394.81 12296.71 15488.84 9899.17 13388.91 21398.76 10096.53 216
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8795.85 27692.43 12195.86 9798.44 3268.42 33899.39 11496.31 3694.85 18898.71 126
tfpn200view992.38 18591.52 19494.95 17997.85 12689.29 20797.41 12094.88 32292.19 12993.27 15894.46 27278.17 27399.08 14681.40 31394.08 19996.48 219
thres40092.42 18391.52 19495.12 16897.85 12689.29 20797.41 12094.88 32292.19 12993.27 15894.46 27278.17 27399.08 14681.40 31394.08 19996.98 203
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10297.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
test_part192.21 19791.10 21195.51 15097.80 12992.66 8998.02 5697.68 13589.79 19888.80 26796.02 19876.85 28698.18 22390.86 17284.11 32395.69 252
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 24898.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 19491.74 18693.73 24097.77 13183.69 32192.88 33696.72 23387.91 25393.00 16294.86 25278.51 26899.05 15286.53 25597.45 13798.47 143
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17497.10 20091.23 15895.71 10296.93 14484.30 16099.31 12193.10 12995.12 18498.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17497.10 20091.23 15895.71 10296.93 14484.30 16099.31 12193.10 12995.12 18498.75 120
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20497.35 18290.61 17894.64 12596.93 14486.41 13399.39 11491.20 17094.71 19498.94 104
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9698.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18097.35 14099.11 87
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26393.21 8993.99 13997.74 9785.55 14598.45 20389.98 18497.86 12499.14 82
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3375.53 38093.43 8295.23 11698.21 6267.21 34499.07 14993.01 13598.49 10799.25 74
ECVR-MVScopyleft93.19 15392.73 15394.57 20197.66 13785.41 29498.21 4388.23 36993.43 8294.70 12498.21 6272.57 31599.07 14993.05 13298.49 10799.25 74
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26397.71 13488.99 21892.34 17695.82 20889.19 9399.11 14086.14 26397.38 13898.90 109
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15797.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
thres20092.23 19591.39 19794.75 19497.61 14189.03 21696.60 20395.09 31392.08 13393.28 15794.00 29578.39 27199.04 15581.26 31794.18 19896.19 224
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17997.61 14187.92 24798.10 5095.80 27892.22 12593.02 16197.45 12084.53 15797.91 27188.24 22197.97 12299.02 92
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19387.65 11499.18 13296.20 4694.82 19098.91 108
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9397.72 13085.17 30590.29 21898.34 4584.60 15599.73 3683.85 29698.27 11498.06 169
test111193.19 15392.82 14794.30 21397.58 14584.56 30998.21 4389.02 36893.53 7794.58 12698.21 6272.69 31499.05 15293.06 13198.48 10999.28 71
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7097.17 19494.39 5096.47 7596.40 18185.89 14099.20 12996.21 4595.11 18698.95 103
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19298.67 1097.00 21390.69 17194.24 13397.62 11089.79 9198.81 17093.39 12696.49 16298.92 107
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27497.48 15693.85 6396.51 7295.70 21988.65 10199.65 5794.80 9798.27 11496.17 225
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 26997.45 16689.81 19793.22 16096.28 18679.62 24999.46 10590.74 17593.11 21198.50 138
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 26897.44 17093.70 7096.46 7696.18 18988.59 10499.53 9394.79 9997.81 12696.17 225
BH-untuned92.94 16792.62 15893.92 23497.22 15086.16 28596.40 21696.25 26290.06 19089.79 23896.17 19183.19 17798.35 21087.19 24897.27 14397.24 200
baseline192.82 17491.90 18095.55 14897.20 15290.77 16097.19 14594.58 33092.20 12792.36 17496.34 18484.16 16398.21 21989.20 20883.90 32897.68 185
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3598.12 6094.38 5194.90 12098.15 6782.28 20398.92 16191.45 16598.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11797.77 12294.55 4596.48 7494.51 26791.23 6998.92 16195.65 6698.19 11697.82 180
BH-RMVSNet92.72 17791.97 17894.97 17797.16 15487.99 24596.15 23895.60 28890.62 17791.87 18797.15 13578.41 27098.57 19583.16 29897.60 13198.36 155
MSDG91.42 22590.24 24494.96 17897.15 15688.91 21893.69 32196.32 25885.72 29786.93 30796.47 17780.24 23798.98 15880.57 31995.05 18796.98 203
iter_conf_final93.60 13893.11 13795.04 17097.13 15791.30 13497.92 6695.65 28792.98 10391.60 19096.64 16279.28 25498.13 22895.34 7991.49 23695.70 251
tttt051792.96 16592.33 16994.87 18397.11 15887.16 26497.97 6292.09 35690.63 17693.88 14397.01 14276.50 28999.06 15190.29 18295.45 17998.38 153
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26196.64 24289.05 21693.00 16295.79 21285.77 14399.45 10789.16 21094.35 19697.96 170
thisisatest053093.03 16292.21 17195.49 15397.07 16089.11 21597.49 11692.19 35590.16 18894.09 13796.41 18076.43 29299.05 15290.38 17995.68 17798.31 157
XVG-OURS93.72 13593.35 13294.80 19097.07 16088.61 22494.79 28697.46 16191.97 13793.99 13997.86 8781.74 21498.88 16692.64 13992.67 21796.92 207
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22598.06 7788.94 22194.50 12896.78 15184.60 15599.27 12491.90 15196.02 16798.68 128
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18897.82 7597.87 11393.57 7293.92 14295.04 24490.61 8198.95 15994.62 10198.68 10298.54 133
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18797.06 16388.53 22995.28 27597.45 16691.68 14294.08 13897.68 10182.41 20198.90 16493.84 11792.47 21996.98 203
1112_ss93.37 14792.42 16796.21 11697.05 16590.99 14996.31 22696.72 23386.87 28089.83 23796.69 15886.51 13199.14 13788.12 22293.67 20598.50 138
Test_1112_low_res92.84 17391.84 18295.85 13097.04 16689.97 18195.53 26596.64 24285.38 30189.65 24395.18 23985.86 14199.10 14187.70 23293.58 21098.49 140
hse-mvs293.45 14592.99 14094.81 18797.02 16788.59 22596.69 19196.47 25295.19 1696.74 5896.16 19283.67 16998.48 20295.85 5779.13 34997.35 198
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 19197.45 999.11 8898.67 129
AUN-MVS91.76 20990.75 22494.81 18797.00 16988.57 22696.65 19596.49 25189.63 20092.15 18096.12 19378.66 26698.50 19990.83 17379.18 34897.36 197
BH-w/o92.14 20091.75 18493.31 26096.99 17085.73 28995.67 25895.69 28388.73 23289.26 25794.82 25582.97 18798.07 24285.26 27896.32 16596.13 229
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18698.24 3996.92 22189.47 20592.12 18297.21 13184.42 15898.39 20887.71 23196.50 16199.01 96
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 12898.96 9499.44 53
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 6997.68 13594.40 4993.00 16296.18 18973.39 31399.61 6691.72 15698.46 11098.13 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 16192.07 17396.02 12496.84 17490.39 17298.08 5295.85 27686.22 29095.79 10098.46 3067.59 34199.19 13094.92 9194.85 18898.47 143
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26296.34 25783.89 32191.38 19597.87 8576.45 29098.78 17287.16 25092.23 22296.20 223
FE-MVS92.05 20291.05 21295.08 16996.83 17687.93 24693.91 31595.70 28186.30 28794.15 13694.97 24576.59 28899.21 12884.10 29096.86 15098.09 168
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19396.70 18997.17 19491.17 16095.60 10996.11 19687.87 11198.76 17593.01 13597.17 14798.72 124
LCM-MVSNet-Re92.50 17992.52 16492.44 28596.82 17881.89 33396.92 17093.71 34392.41 12284.30 32994.60 26585.08 15097.03 32591.51 16297.36 13998.40 151
baseline95.58 8095.42 7896.08 11996.78 17990.41 17197.16 14897.45 16693.69 7195.65 10897.85 8887.29 12298.68 18495.66 6397.25 14499.13 83
FA-MVS(test-final)93.52 14392.92 14395.31 16096.77 18088.54 22894.82 28596.21 26589.61 20194.20 13495.25 23783.24 17699.14 13790.01 18396.16 16698.25 159
Fast-Effi-MVS+93.46 14492.75 15195.59 14596.77 18090.03 17596.81 18097.13 19788.19 24491.30 20094.27 28386.21 13698.63 18887.66 23796.46 16498.12 164
QAPM93.45 14592.27 17096.98 7796.77 18092.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20299.81 3085.40 27698.81 9898.51 137
casdiffmvs95.64 7895.49 7496.08 11996.76 18390.45 16997.29 13497.44 17094.00 5895.46 11497.98 7987.52 11898.73 17895.64 6797.33 14199.08 89
CHOSEN 280x42093.12 15792.72 15494.34 21096.71 18487.27 25890.29 35497.72 13086.61 28491.34 19795.29 23484.29 16298.41 20493.25 12798.94 9597.35 198
iter_conf0593.18 15692.63 15694.83 18496.64 18590.69 16297.60 10395.53 29392.52 11991.58 19196.64 16276.35 29398.13 22895.43 7791.42 23995.68 254
Effi-MVS+94.93 9994.45 10496.36 10596.61 18691.47 12996.41 21397.41 17591.02 16594.50 12895.92 20287.53 11798.78 17293.89 11596.81 15298.84 117
thisisatest051592.29 19191.30 20295.25 16296.60 18788.90 21994.36 29992.32 35487.92 25293.43 15394.57 26677.28 28499.00 15689.42 19995.86 17297.86 176
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18792.52 9492.51 34197.26 18879.41 35288.90 26196.56 17384.04 16599.55 8877.01 34297.30 14297.01 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18991.71 11796.25 23197.35 18292.99 9896.70 6096.63 16882.67 19399.44 10896.22 4197.46 13396.11 230
MVSTER93.20 15292.81 14894.37 20896.56 19289.59 19197.06 15397.12 19891.24 15791.30 20095.96 20082.02 20898.05 24593.48 12290.55 25495.47 261
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19293.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20599.77 3393.41 12599.32 6099.18 78
FMVSNet391.78 20890.69 22795.03 17296.53 19492.27 10397.02 15796.93 21789.79 19889.35 25294.65 26377.01 28597.47 30886.12 26488.82 26995.35 271
GBi-Net91.35 23090.27 24294.59 19696.51 19591.18 14397.50 11296.93 21788.82 22789.35 25294.51 26773.87 30897.29 32086.12 26488.82 26995.31 273
test191.35 23090.27 24294.59 19696.51 19591.18 14397.50 11296.93 21788.82 22789.35 25294.51 26773.87 30897.29 32086.12 26488.82 26995.31 273
FMVSNet291.31 23390.08 25194.99 17496.51 19592.21 10497.41 12096.95 21588.82 22788.62 27094.75 25873.87 30897.42 31385.20 27988.55 27495.35 271
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19886.45 27896.99 16296.68 23988.83 22684.79 32696.22 18870.16 33098.53 19784.42 28988.04 27694.77 309
CANet_DTU94.37 11093.65 11896.55 8796.46 19992.13 10896.21 23596.67 24194.38 5193.53 15097.03 14179.34 25299.71 4290.76 17498.45 11197.82 180
mvs_anonymous93.82 13193.74 11494.06 22096.44 20085.41 29495.81 25497.05 20789.85 19590.09 22996.36 18387.44 12097.75 28493.97 11196.69 15799.02 92
diffmvs95.25 8895.13 8695.63 14296.43 20189.34 20495.99 24797.35 18292.83 10896.31 8097.37 12486.44 13298.67 18596.26 3897.19 14698.87 114
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20291.57 12695.34 27193.48 34690.60 18075.58 36195.49 22980.08 24096.79 33494.25 10689.76 26398.52 135
TR-MVS91.48 22390.59 23094.16 21796.40 20287.33 25695.67 25895.34 30287.68 26391.46 19495.52 22876.77 28798.35 21082.85 30293.61 20896.79 212
ACMP89.59 1092.62 17892.14 17294.05 22196.40 20288.20 23897.36 12797.25 19091.52 14588.30 27796.64 16278.46 26998.72 18191.86 15491.48 23795.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 8495.16 8595.99 12696.34 20591.21 13998.22 4197.57 14791.42 15096.22 8397.32 12586.20 13797.92 26894.07 10999.05 9098.85 115
lupinMVS94.99 9894.56 9896.29 11096.34 20591.21 13995.83 25396.27 26088.93 22296.22 8396.88 14986.20 13798.85 16795.27 8099.05 9098.82 118
ACMM89.79 892.96 16592.50 16594.35 20996.30 20788.71 22297.58 10597.36 18191.40 15290.53 21296.65 16179.77 24698.75 17691.24 16991.64 23295.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 19191.94 17993.34 25996.25 20886.97 26896.57 20797.05 20790.67 17289.50 24994.80 25686.59 12897.64 29289.91 18686.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 13393.43 12994.82 18596.21 20989.99 17897.74 8297.51 15394.85 3091.34 19796.64 16281.32 21998.60 19193.02 13392.23 22295.86 235
plane_prior796.21 20989.98 180
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20987.92 24797.24 13796.94 21688.45 23883.91 33696.27 18771.92 31798.62 19084.43 28889.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21291.46 13096.33 22497.04 20988.97 22093.56 14796.51 17587.55 11697.89 27289.80 18995.95 16998.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21596.18 21289.55 19396.31 22697.09 20287.88 25485.67 31795.91 20378.79 26598.57 19581.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 16792.56 16094.10 21896.16 21488.26 23597.65 9697.46 16191.29 15390.12 22697.16 13379.05 25798.73 17892.25 14391.89 23095.31 273
LGP-MVS_train94.10 21896.16 21488.26 23597.46 16191.29 15390.12 22697.16 13379.05 25798.73 17892.25 14391.89 23095.31 273
TAMVS94.01 12493.46 12695.64 14196.16 21490.45 16996.71 18896.89 22489.27 21193.46 15296.92 14787.29 12297.94 26488.70 21795.74 17498.53 134
plane_prior196.14 217
CLD-MVS92.98 16492.53 16394.32 21196.12 21889.20 21195.28 27597.47 15992.66 11589.90 23495.62 22280.58 23098.40 20592.73 13892.40 22095.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 21990.00 17681.32 219
cl2291.21 23790.56 23293.14 26796.09 22086.80 27094.41 29796.58 24887.80 25788.58 27293.99 29680.85 22797.62 29589.87 18886.93 28694.99 287
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 22183.25 32497.14 15196.72 23393.85 6391.20 20793.44 31483.08 18198.30 21491.69 15995.73 17596.50 218
mvs-test193.63 13793.69 11693.46 25596.02 22184.61 30897.24 13796.72 23393.85 6392.30 17795.76 21483.08 18198.89 16591.69 15996.54 16096.87 209
NP-MVS95.99 22389.81 18595.87 204
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22482.26 33190.93 35094.32 33783.23 33091.28 20491.81 33779.01 26195.99 34279.52 32591.39 24097.84 177
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22484.89 30590.93 35095.07 31483.23 33091.28 20491.81 33779.01 26197.85 27479.52 32591.39 24097.84 177
HQP-NCC95.86 22496.65 19593.55 7390.14 220
ACMP_Plane95.86 22496.65 19593.55 7390.14 220
HQP-MVS93.19 15392.74 15294.54 20295.86 22489.33 20596.65 19597.39 17693.55 7390.14 22095.87 20480.95 22298.50 19992.13 14792.10 22795.78 243
EI-MVSNet93.03 16292.88 14593.48 25395.77 22986.98 26796.44 20997.12 19890.66 17491.30 20097.64 10886.56 12998.05 24589.91 18690.55 25495.41 264
CVMVSNet91.23 23691.75 18489.67 33495.77 22974.69 36596.44 20994.88 32285.81 29592.18 17997.64 10879.07 25695.58 35188.06 22395.86 17298.74 122
FIs94.09 12093.70 11595.27 16195.70 23192.03 11198.10 5098.68 893.36 8690.39 21696.70 15687.63 11597.94 26492.25 14390.50 25695.84 238
VPA-MVSNet93.24 15192.48 16695.51 15095.70 23192.39 9797.86 7098.66 1092.30 12492.09 18495.37 23280.49 23298.40 20593.95 11285.86 29595.75 248
SCA91.84 20791.18 20993.83 23695.59 23384.95 30494.72 28795.58 29090.82 16692.25 17893.69 30575.80 29798.10 23586.20 26195.98 16898.45 145
c3_l91.38 22790.89 21592.88 27595.58 23486.30 28094.68 28896.84 22988.17 24588.83 26694.23 28685.65 14497.47 30889.36 20084.63 31494.89 296
VPNet92.23 19591.31 20194.99 17495.56 23590.96 15197.22 14397.86 11792.96 10590.96 20896.62 17175.06 30298.20 22091.90 15183.65 33095.80 242
miper_ehance_all_eth91.59 21591.13 21092.97 27295.55 23686.57 27794.47 29396.88 22587.77 25988.88 26394.01 29486.22 13597.54 30189.49 19786.93 28694.79 306
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23784.20 31394.30 30296.15 26790.61 17887.39 29794.27 28375.80 29796.44 33787.34 24486.88 29094.82 301
jason94.84 10394.39 10696.18 11795.52 23790.93 15396.09 24096.52 25089.28 21096.01 9397.32 12584.70 15498.77 17495.15 8398.91 9798.85 115
jason: jason.
FC-MVSNet-test93.94 12693.57 11995.04 17095.48 23991.45 13198.12 4998.71 693.37 8490.23 21996.70 15687.66 11397.85 27491.49 16390.39 25795.83 239
IterMVS90.15 27289.67 26791.61 30695.48 23983.72 31994.33 30196.12 26889.99 19187.31 30094.15 29175.78 29996.27 34086.97 25286.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet189.88 27788.31 28694.59 19695.41 24191.18 14397.50 11296.93 21786.62 28387.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
UniMVSNet (Re)93.31 14992.55 16195.61 14495.39 24293.34 7397.39 12498.71 693.14 9490.10 22894.83 25487.71 11298.03 24991.67 16183.99 32495.46 262
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24369.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17892.18 353
PatchmatchNetpermissive91.91 20591.35 19893.59 24895.38 24384.11 31493.15 33295.39 29689.54 20292.10 18393.68 30782.82 19198.13 22884.81 28295.32 18198.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 24990.32 23892.89 27495.37 24586.21 28394.46 29596.64 24287.82 25588.15 28394.18 28982.98 18697.54 30187.70 23285.59 29794.92 294
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24686.19 28494.46 29596.63 24587.82 25588.18 28294.23 28682.99 18597.53 30387.72 22985.57 29894.93 292
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24787.07 26693.97 31196.90 22286.79 28189.17 25993.43 31686.55 13097.64 29289.97 18586.93 28694.74 310
UniMVSNet_NR-MVSNet93.37 14792.67 15595.47 15695.34 24892.83 8497.17 14798.58 1192.98 10390.13 22495.80 20988.37 10697.85 27491.71 15783.93 32595.73 250
ITE_SJBPF92.43 28695.34 24885.37 29795.92 27291.47 14787.75 29196.39 18271.00 32497.96 26182.36 30789.86 26293.97 330
OpenMVScopyleft89.19 1292.86 17191.68 18896.40 10095.34 24892.73 8798.27 3398.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24298.65 10396.73 213
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 25184.35 31094.10 30896.90 22288.56 23688.84 26594.33 27884.08 16497.60 29788.77 21684.37 32095.06 285
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 25183.74 31893.86 31696.70 23887.56 26687.79 28993.81 30283.45 17496.92 33187.39 24384.62 31594.82 301
131492.81 17592.03 17595.14 16695.33 25189.52 19696.04 24297.44 17087.72 26286.25 31395.33 23383.84 16698.79 17189.26 20497.05 14997.11 201
PAPM91.52 22190.30 24095.20 16395.30 25489.83 18493.38 32896.85 22886.26 28988.59 27195.80 20984.88 15298.15 22675.67 34695.93 17097.63 186
Fast-Effi-MVS+-dtu92.29 19191.99 17793.21 26595.27 25585.52 29297.03 15496.63 24592.09 13289.11 26095.14 24180.33 23698.08 23987.54 24194.74 19396.03 233
Patchmatch-test89.42 28287.99 28993.70 24395.27 25585.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20397.50 30674.37 35094.76 19198.48 142
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25579.49 35390.55 35395.60 28883.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
IB-MVS87.33 1789.91 27588.28 28794.79 19195.26 25887.70 25395.12 28393.95 34289.35 20987.03 30492.49 32570.74 32699.19 13089.18 20981.37 34197.49 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 12293.31 13396.27 11195.22 25994.59 3298.34 2797.46 16192.93 10691.21 20696.64 16287.23 12498.22 21894.99 9085.80 29695.98 234
MDTV_nov1_ep1390.76 22395.22 25980.33 34593.03 33595.28 30388.14 24892.84 16893.83 29981.34 21898.08 23982.86 30194.34 197
MVS91.71 21090.44 23495.51 15095.20 26191.59 12496.04 24297.45 16673.44 36487.36 29895.60 22385.42 14699.10 14185.97 26897.46 13395.83 239
tfpnnormal89.70 28088.40 28593.60 24795.15 26290.10 17497.56 10798.16 5487.28 27386.16 31494.63 26477.57 28298.05 24574.48 34884.59 31692.65 346
tpmrst91.44 22491.32 20091.79 30195.15 26279.20 35693.42 32795.37 29888.55 23793.49 15193.67 30882.49 19998.27 21590.41 17889.34 26697.90 173
WR-MVS92.34 18791.53 19394.77 19295.13 26490.83 15796.40 21697.98 10291.88 13889.29 25595.54 22782.50 19897.80 27989.79 19085.27 30495.69 252
tpm cat188.36 29587.21 29891.81 30095.13 26480.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 27998.17 22580.39 32188.74 27296.72 214
WR-MVS_H92.00 20391.35 19893.95 22995.09 26689.47 19798.04 5598.68 891.46 14888.34 27594.68 26185.86 14197.56 29985.77 27184.24 32194.82 301
CP-MVSNet91.89 20691.24 20593.82 23795.05 26788.57 22697.82 7598.19 4891.70 14188.21 28195.76 21481.96 20997.52 30587.86 22684.65 31395.37 270
test_040286.46 30984.79 31791.45 30995.02 26885.55 29196.29 22894.89 32180.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
cascas91.20 23890.08 25194.58 20094.97 26989.16 21493.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20992.14 14694.75 19296.23 222
PS-CasMVS91.55 21990.84 22093.69 24494.96 27088.28 23497.84 7498.24 3891.46 14888.04 28595.80 20979.67 24897.48 30787.02 25184.54 31895.31 273
DU-MVS92.90 16992.04 17495.49 15394.95 27192.83 8497.16 14898.24 3893.02 9790.13 22495.71 21783.47 17297.85 27491.71 15783.93 32595.78 243
NR-MVSNet92.34 18791.27 20495.53 14994.95 27193.05 7997.39 12498.07 7492.65 11684.46 32795.71 21785.00 15197.77 28389.71 19183.52 33195.78 243
tpmvs89.83 27989.15 27791.89 29694.92 27380.30 34693.11 33395.46 29586.28 28888.08 28492.65 32280.44 23398.52 19881.47 31289.92 26196.84 210
PMMVS92.86 17192.34 16894.42 20694.92 27386.73 27294.53 29296.38 25684.78 31294.27 13295.12 24383.13 18098.40 20591.47 16496.49 16298.12 164
tpm289.96 27489.21 27592.23 29094.91 27581.25 33793.78 31894.42 33380.62 34791.56 19293.44 31476.44 29197.94 26485.60 27392.08 22997.49 195
TinyColmap86.82 30785.35 31391.21 31494.91 27582.99 32593.94 31394.02 34183.58 32681.56 34594.68 26162.34 36198.13 22875.78 34487.35 28592.52 348
mvsmamba93.83 13093.46 12694.93 18294.88 27790.85 15698.55 1495.49 29494.24 5491.29 20396.97 14383.04 18498.14 22795.56 7591.17 24495.78 243
UniMVSNet_ETH3D91.34 23290.22 24794.68 19594.86 27887.86 25097.23 14297.46 16187.99 25089.90 23496.92 14766.35 34998.23 21790.30 18190.99 24897.96 170
CostFormer91.18 24190.70 22692.62 28394.84 27981.76 33494.09 30994.43 33284.15 31892.72 16993.77 30379.43 25198.20 22090.70 17692.18 22597.90 173
MIMVSNet88.50 29486.76 30293.72 24294.84 27987.77 25291.39 34594.05 33986.41 28687.99 28792.59 32463.27 35895.82 34777.44 33692.84 21497.57 193
FMVSNet587.29 30485.79 30891.78 30294.80 28187.28 25795.49 26695.28 30384.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
RRT_MVS93.10 15892.83 14693.93 23394.76 28288.04 24398.47 2296.55 24993.44 8190.01 23297.04 14080.64 22997.93 26794.33 10590.21 25995.83 239
TranMVSNet+NR-MVSNet92.50 17991.63 18995.14 16694.76 28292.07 10997.53 11098.11 6392.90 10789.56 24696.12 19383.16 17897.60 29789.30 20283.20 33495.75 248
XXY-MVS92.16 19891.23 20694.95 17994.75 28490.94 15297.47 11797.43 17389.14 21488.90 26196.43 17979.71 24798.24 21689.56 19687.68 27995.67 255
EPMVS90.70 25889.81 26193.37 25894.73 28584.21 31293.67 32288.02 37089.50 20492.38 17393.49 31277.82 28197.78 28186.03 26792.68 21698.11 167
D2MVS91.30 23490.95 21492.35 28794.71 28685.52 29296.18 23798.21 4488.89 22386.60 31093.82 30179.92 24497.95 26389.29 20390.95 24993.56 334
USDC88.94 28687.83 29192.27 28994.66 28784.96 30393.86 31695.90 27487.34 27183.40 33895.56 22567.43 34298.19 22282.64 30689.67 26493.66 333
MVS_030488.79 29087.57 29292.46 28494.65 28886.15 28696.40 21697.17 19486.44 28588.02 28691.71 33956.68 36697.03 32584.47 28792.58 21894.19 326
GA-MVS91.38 22790.31 23994.59 19694.65 28887.62 25494.34 30096.19 26690.73 17090.35 21793.83 29971.84 31897.96 26187.22 24793.61 20898.21 161
OPM-MVS93.28 15092.76 14994.82 18594.63 29090.77 16096.65 19597.18 19293.72 6891.68 18997.26 12879.33 25398.63 18892.13 14792.28 22195.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 22591.19 20892.12 29194.59 29180.66 34094.29 30392.98 34991.11 16290.76 21092.37 32779.02 25998.07 24288.81 21496.74 15497.63 186
test-mter90.19 27189.54 27092.12 29194.59 29180.66 34094.29 30392.98 34987.68 26390.76 21092.37 32767.67 34098.07 24288.81 21496.74 15497.63 186
dp88.90 28888.26 28890.81 32094.58 29376.62 36292.85 33794.93 32085.12 30690.07 23193.07 31875.81 29698.12 23380.53 32087.42 28397.71 183
PEN-MVS91.20 23890.44 23493.48 25394.49 29487.91 24997.76 8098.18 5091.29 15387.78 29095.74 21680.35 23597.33 31885.46 27582.96 33595.19 282
gg-mvs-nofinetune87.82 30085.61 30994.44 20494.46 29589.27 21091.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27297.21 14596.51 217
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28586.89 27992.40 17192.36 33080.91 22497.05 32481.09 31893.95 20397.60 191
RPMNet88.98 28587.05 30094.77 19294.45 29687.19 26290.23 35598.03 8877.87 35992.40 17187.55 36180.17 23999.51 9868.84 36493.95 20397.60 191
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30391.97 35887.28 27390.44 21592.47 32668.79 33597.67 28988.50 22096.60 15997.61 190
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23297.73 8495.23 30787.47 26784.26 33095.29 23479.86 24597.33 31879.44 32974.44 35893.45 337
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26396.73 23286.17 29186.36 31295.28 23671.28 32297.80 27984.09 29198.14 11992.81 343
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25091.64 36089.37 20886.94 30694.69 26081.62 21698.69 18388.64 21894.57 19596.81 211
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27297.26 18891.06 16489.38 25195.44 23168.61 33698.60 19189.46 19891.05 24694.79 306
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18897.79 7896.82 23089.07 21586.12 31595.48 23078.61 26797.78 28186.97 25281.67 33994.46 317
bld_raw_dy_0_6492.37 18691.69 18794.39 20794.28 30489.73 18797.71 8993.65 34492.78 11290.46 21496.67 16075.88 29597.97 25692.92 13790.89 25195.48 258
v891.29 23590.53 23393.57 25094.15 30588.12 24297.34 12897.06 20688.99 21888.32 27694.26 28583.08 18198.01 25187.62 23983.92 32794.57 315
v1091.04 24490.23 24593.49 25294.12 30688.16 24197.32 13197.08 20388.26 24388.29 27894.22 28882.17 20697.97 25686.45 25884.12 32294.33 321
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28580.81 34687.63 29392.36 33080.91 22497.03 32578.86 33185.12 30794.67 312
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32981.92 33792.36 17488.15 35880.05 24197.01 32872.43 35693.65 20697.54 194
V4291.58 21790.87 21693.73 24094.05 30988.50 23097.32 13196.97 21488.80 23089.71 23994.33 27882.54 19798.05 24589.01 21185.07 30894.64 314
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10097.65 13990.74 16987.12 30195.68 22079.97 24397.00 32983.33 29781.66 34094.78 308
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31093.54 34588.28 24291.99 18593.25 31777.51 28397.44 31187.30 24687.94 27798.12 164
PS-MVSNAJss93.74 13493.51 12494.44 20493.91 31289.28 20997.75 8197.56 15092.50 12089.94 23396.54 17488.65 10198.18 22393.83 11890.90 25095.86 235
v114491.37 22990.60 22993.68 24593.89 31388.23 23796.84 17697.03 21188.37 24089.69 24194.39 27482.04 20797.98 25387.80 22885.37 30194.84 298
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24096.94 16996.88 22589.54 20289.53 24794.90 25081.70 21598.02 25089.25 20585.04 31095.20 281
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18396.68 23989.45 20688.75 26993.93 29882.96 18897.82 27887.83 22783.25 33294.80 304
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24497.01 16195.12 31288.42 23989.70 24095.13 24283.47 17297.44 31189.66 19483.24 33393.37 338
EPNet_dtu91.71 21091.28 20392.99 27193.76 31783.71 32096.69 19195.28 30393.15 9387.02 30595.95 20183.37 17597.38 31679.46 32896.84 15197.88 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18597.07 20487.77 25989.58 24494.32 28080.90 22697.97 25686.52 25685.48 29994.95 288
GG-mvs-BLEND93.62 24693.69 31989.20 21192.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 18094.80 304
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17797.07 20487.43 26889.69 24194.28 28281.48 21798.00 25287.18 24984.92 31294.93 292
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18497.04 20987.36 27089.52 24894.34 27780.23 23897.97 25686.27 25985.21 30594.94 290
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9197.37 17988.85 22487.65 29294.08 29381.08 22198.10 23584.68 28483.79 32994.66 313
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20980.74 36679.22 25597.92 26882.76 30391.62 23396.38 221
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20197.02 21287.16 27589.58 24494.31 28179.55 25097.98 25385.52 27485.44 30094.90 295
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22398.22 4197.57 14791.42 15090.08 23095.55 22682.85 19097.92 26894.07 10991.58 23495.40 267
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 18994.70 32690.78 16784.15 33295.57 22471.78 31997.71 28784.63 28585.07 30894.94 290
mvs_tets92.31 18991.76 18393.94 23193.41 32788.29 23397.63 10197.53 15192.04 13488.76 26896.45 17874.62 30498.09 23893.91 11491.48 23795.45 263
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16496.28 25991.68 14286.55 31196.30 18574.20 30797.98 25388.96 21287.40 28495.09 283
pmmvs490.93 25089.85 25994.17 21693.34 32990.79 15994.60 28996.02 27084.62 31387.45 29495.15 24081.88 21297.45 31087.70 23287.87 27894.27 325
jajsoiax92.42 18391.89 18194.03 22393.33 33088.50 23097.73 8497.53 15192.00 13688.85 26496.50 17675.62 30098.11 23493.88 11691.56 23595.48 258
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18787.72 229
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23895.86 25296.27 26086.07 29284.86 32594.76 25777.84 28097.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20094.22 33885.18 30487.32 29995.97 19976.16 29494.98 35585.27 27786.17 29295.41 264
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29195.00 31684.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20192.08 35790.66 17480.25 35394.09 29267.21 34496.65 33685.96 26980.83 34394.83 299
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23095.39 29684.24 31787.12 30194.51 26774.27 30697.36 31787.61 24087.57 28094.86 297
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19494.97 31891.74 14085.52 31895.83 20762.66 36094.47 35976.25 34388.36 27595.48 258
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7394.87 32596.64 192.46 17097.80 9486.23 13499.65 5793.72 11998.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30743.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24196.45 25383.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33153.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 19891.55 19293.97 22792.58 34289.55 19397.51 11197.42 17489.42 20788.40 27494.84 25380.66 22897.88 27391.87 15391.28 24294.48 316
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31290.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28092.70 35291.11 16286.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28385.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31182.12 33667.69 36492.36 33078.16 27595.50 35377.31 33879.73 34594.39 319
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 31082.15 33567.65 36592.33 33378.20 27295.51 35277.33 33779.74 34494.31 323
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29895.25 30687.59 26584.34 32894.74 25964.31 35697.66 29184.83 28187.45 28192.23 351
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 12896.41 25580.59 34884.05 33594.37 27667.37 34397.67 28984.75 28379.51 34794.09 329
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 23995.35 29983.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18595.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25195.20 30888.59 23381.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25794.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19378.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28490.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18396.62 215
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 26995.35 29983.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28296.42 25485.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30696.80 23173.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24292.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31496.22 26386.67 28285.03 32390.80 34478.09 27694.50 35774.92 34771.86 36293.15 339
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27682.17 34489.29 35381.95 21095.60 35088.64 21877.02 35298.41 150
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29395.01 31583.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24778.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27880.63 34989.91 35044.42 37295.84 34685.17 28076.73 35491.50 358
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30985.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
ambc86.56 34583.60 37170.00 37185.69 36594.97 31880.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 21995.35 29984.97 30984.09 33394.94 24765.76 35498.34 21384.60 28674.52 35792.97 340
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 14984.38 1590.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1580.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145290.77 16898.89 898.28 5796.24 198.35 21095.76 6199.58 2299.59 20
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
GSMVS98.45 145
sam_mvs182.76 19298.45 145
sam_mvs81.94 211
MTGPAbinary98.08 68
test_post192.81 33816.58 38080.53 23197.68 28886.20 261
test_post17.58 37981.76 21398.08 239
patchmatchnet-post90.45 34682.65 19698.10 235
MTMP97.86 7082.03 377
test9_res94.81 9699.38 5499.45 51
agg_prior293.94 11399.38 5499.50 43
test_prior493.66 6296.42 212
test_prior296.35 22192.80 11096.03 8997.59 11292.01 4695.01 8799.38 54
旧先验295.94 24981.66 33997.34 4098.82 16992.26 141
新几何295.79 255
无先验95.79 25597.87 11383.87 32399.65 5787.68 23598.89 112
原ACMM295.67 258
testdata299.67 5385.96 269
segment_acmp92.89 26
testdata195.26 27993.10 96
plane_prior597.51 15398.60 19193.02 13392.23 22295.86 235
plane_prior496.64 162
plane_prior390.00 17694.46 4791.34 197
plane_prior297.74 8294.85 30
plane_prior89.99 17897.24 13794.06 5792.16 226
n20.00 388
nn0.00 388
door-mid91.06 363
test1197.88 111
door91.13 362
HQP5-MVS89.33 205
BP-MVS92.13 147
HQP4-MVS90.14 22098.50 19995.78 243
HQP3-MVS97.39 17692.10 227
HQP2-MVS80.95 222
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14882.47 20086.25 26098.38 153
ACMMP++_ref90.30 258
ACMMP++91.02 247
Test By Simon88.73 100