This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 2997.78 5186.00 4898.29 197.49 690.75 1897.62 598.06 692.59 299.61 395.64 999.02 1298.86 10
SED-MVS95.91 296.28 294.80 3198.77 585.99 5097.13 1497.44 1590.31 2797.71 198.07 492.31 499.58 995.66 799.13 398.84 13
DVP-MVScopyleft95.67 396.02 394.64 3798.78 385.93 5397.09 1696.73 7790.27 3097.04 1198.05 891.47 899.55 1595.62 1199.08 798.45 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1695.56 8597.51 589.13 6097.14 997.91 1191.64 799.62 194.61 1799.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 2098.26 2886.29 4497.46 697.40 2089.03 6396.20 1798.10 289.39 1699.34 3395.88 699.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1898.49 1786.52 3496.91 2597.47 1191.73 996.10 1896.69 5689.90 1299.30 3994.70 1598.04 6599.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9596.96 5192.09 595.32 2397.08 3989.49 1599.33 3695.10 1498.85 1998.66 19
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4697.28 3085.90 14397.67 398.10 288.41 2099.56 1194.66 1699.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2496.99 7286.33 4097.33 797.30 2891.38 1195.39 2297.46 2088.98 1999.40 2994.12 2198.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6596.96 5191.75 894.02 3696.83 5188.12 2499.55 1593.41 3298.94 1698.28 49
SF-MVS94.97 1194.90 1495.20 1197.84 4787.76 996.65 3497.48 1087.76 10695.71 2097.70 1588.28 2399.35 3293.89 2598.78 2598.48 29
SD-MVS94.96 1295.33 893.88 5597.25 6986.69 2696.19 4997.11 4290.42 2696.95 1397.27 2889.53 1496.91 23894.38 1998.85 1998.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1394.94 1294.58 4098.25 2986.33 4096.11 5596.62 8688.14 9496.10 1896.96 4589.09 1898.94 7494.48 1898.68 3698.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1494.69 1695.17 1397.83 4887.46 1595.66 7996.93 5592.34 393.94 3796.58 6687.74 2799.44 2892.83 4098.40 5198.62 20
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7797.34 2288.28 8795.30 2497.67 1685.90 4499.54 1993.91 2498.95 1598.60 22
test_fmvsm_n_192094.71 1695.11 1093.50 6395.79 11484.62 7396.15 5297.64 289.85 3997.19 897.89 1286.28 4098.71 9197.11 298.08 6497.17 104
MVS_030494.60 1794.38 2195.23 1095.41 12887.49 1496.53 3792.75 26793.82 193.07 5597.84 1483.66 7099.59 797.61 198.76 2898.61 21
HFP-MVS94.52 1894.40 2094.86 2398.61 1086.81 2396.94 2097.34 2288.63 7693.65 4197.21 3286.10 4299.49 2592.35 5198.77 2798.30 46
ZNCC-MVS94.47 1994.28 2595.03 1598.52 1586.96 1896.85 2897.32 2688.24 8893.15 5197.04 4286.17 4199.62 192.40 4998.81 2298.52 25
XVS94.45 2094.32 2294.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5997.16 3785.02 5599.49 2591.99 6498.56 4798.47 32
MCST-MVS94.45 2094.20 3095.19 1298.46 1987.50 1395.00 11597.12 4087.13 11692.51 7396.30 7389.24 1799.34 3393.46 2998.62 4398.73 16
region2R94.43 2294.27 2794.92 1998.65 886.67 2896.92 2497.23 3388.60 7893.58 4397.27 2885.22 5199.54 1992.21 5498.74 3098.56 24
ACMMPR94.43 2294.28 2594.91 2098.63 986.69 2696.94 2097.32 2688.63 7693.53 4697.26 3085.04 5499.54 1992.35 5198.78 2598.50 26
MTAPA94.42 2494.22 2895.00 1798.42 2186.95 1994.36 16096.97 4991.07 1293.14 5297.56 1784.30 6399.56 1193.43 3098.75 2998.47 32
CP-MVS94.34 2594.21 2994.74 3598.39 2386.64 3097.60 497.24 3188.53 8092.73 6797.23 3185.20 5299.32 3792.15 5798.83 2198.25 54
MP-MVScopyleft94.25 2694.07 3494.77 3398.47 1886.31 4296.71 3196.98 4889.04 6291.98 8397.19 3485.43 4999.56 1192.06 6398.79 2398.44 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2794.07 3494.75 3498.06 3986.90 2195.88 6696.94 5485.68 14995.05 2697.18 3587.31 3399.07 5291.90 7098.61 4598.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 2894.17 3294.43 4598.21 3285.78 6096.40 4096.90 5888.20 9294.33 3097.40 2384.75 6099.03 5793.35 3397.99 6698.48 29
GST-MVS94.21 2993.97 3794.90 2298.41 2286.82 2296.54 3697.19 3488.24 8893.26 4896.83 5185.48 4899.59 791.43 7798.40 5198.30 46
MP-MVS-pluss94.21 2994.00 3694.85 2498.17 3386.65 2994.82 12697.17 3886.26 13592.83 6197.87 1385.57 4799.56 1194.37 2098.92 1798.34 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 3194.77 1592.49 10496.52 8780.00 20994.00 18497.08 4390.05 3495.65 2197.29 2789.66 1398.97 7193.95 2398.71 3198.50 26
CS-MVS94.12 3294.44 1993.17 7096.55 8483.08 11997.63 396.95 5391.71 1093.50 4796.21 7685.61 4598.24 12693.64 2798.17 5798.19 57
DeepC-MVS_fast89.43 294.04 3393.79 4094.80 3197.48 6186.78 2495.65 8196.89 5989.40 5292.81 6296.97 4485.37 5099.24 4290.87 8798.69 3498.38 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3494.29 2493.24 6796.69 7883.24 11197.49 596.92 5692.14 492.90 5795.77 9885.02 5598.33 12193.03 3798.62 4398.13 61
HPM-MVScopyleft94.02 3493.88 3894.43 4598.39 2385.78 6097.25 1097.07 4486.90 12492.62 7096.80 5584.85 5999.17 4692.43 4798.65 4198.33 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3693.78 4194.63 3898.50 1685.90 5796.87 2696.91 5788.70 7491.83 9297.17 3683.96 6799.55 1591.44 7698.64 4298.43 37
PGM-MVS93.96 3793.72 4394.68 3698.43 2086.22 4595.30 9397.78 187.45 11293.26 4897.33 2684.62 6199.51 2390.75 8998.57 4698.32 45
PHI-MVS93.89 3893.65 4694.62 3996.84 7586.43 3796.69 3297.49 685.15 16393.56 4596.28 7485.60 4699.31 3892.45 4698.79 2398.12 63
SR-MVS-dyc-post93.82 3993.82 3993.82 5797.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2184.24 6499.01 6292.73 4197.80 7297.88 76
APD-MVS_3200maxsize93.78 4093.77 4293.80 5997.92 4384.19 8896.30 4296.87 6186.96 12093.92 3897.47 1983.88 6898.96 7392.71 4497.87 7098.26 53
patch_mono-293.74 4194.32 2292.01 12097.54 5778.37 24793.40 20897.19 3488.02 9694.99 2797.21 3288.35 2198.44 11294.07 2298.09 6299.23 1
MSLP-MVS++93.72 4294.08 3392.65 9697.31 6583.43 10695.79 7197.33 2490.03 3593.58 4396.96 4584.87 5897.76 16492.19 5698.66 3996.76 121
TSAR-MVS + GP.93.66 4393.41 4894.41 4796.59 8286.78 2494.40 15393.93 24089.77 4494.21 3195.59 10587.35 3298.61 9892.72 4396.15 10197.83 80
CANet93.54 4493.20 5294.55 4195.65 12085.73 6294.94 11896.69 8291.89 790.69 10895.88 9281.99 9399.54 1993.14 3697.95 6898.39 38
dcpmvs_293.49 4594.19 3191.38 15597.69 5476.78 27994.25 16396.29 10288.33 8494.46 2896.88 4888.07 2598.64 9493.62 2898.09 6298.73 16
MVS_111021_HR93.45 4693.31 4993.84 5696.99 7284.84 6993.24 21997.24 3188.76 7191.60 9795.85 9386.07 4398.66 9291.91 6898.16 5898.03 69
test_fmvsmvis_n_192093.44 4793.55 4793.10 7393.67 20784.26 8795.83 6996.14 11589.00 6692.43 7597.50 1883.37 7398.72 9096.61 397.44 7896.32 134
train_agg93.44 4793.08 5394.52 4297.53 5886.49 3594.07 17696.78 7081.86 23692.77 6496.20 7787.63 2999.12 5092.14 5898.69 3497.94 72
EC-MVSNet93.44 4793.71 4492.63 9795.21 13582.43 14097.27 996.71 8090.57 2592.88 5895.80 9683.16 7498.16 13293.68 2698.14 5997.31 97
DELS-MVS93.43 5093.25 5093.97 5295.42 12785.04 6893.06 22697.13 3990.74 2091.84 9095.09 12386.32 3999.21 4491.22 7898.45 4997.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5193.22 5193.94 5498.36 2584.83 7097.15 1396.80 6985.77 14692.47 7497.13 3882.38 8299.07 5290.51 9498.40 5197.92 75
DeepC-MVS88.79 393.31 5292.99 5594.26 5096.07 10285.83 5894.89 12196.99 4789.02 6589.56 12297.37 2582.51 8199.38 3092.20 5598.30 5497.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 5392.75 5994.85 2495.70 11987.66 1196.33 4196.41 9690.00 3694.09 3494.60 14482.33 8498.62 9792.40 4992.86 16398.27 51
ACMMPcopyleft93.24 5492.88 5794.30 4998.09 3885.33 6696.86 2797.45 1488.33 8490.15 11797.03 4381.44 9699.51 2390.85 8895.74 10498.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 5593.05 5493.76 6098.04 4084.07 9096.22 4897.37 2184.15 18090.05 11895.66 10287.77 2699.15 4989.91 9798.27 5598.07 65
alignmvs93.08 5692.50 6394.81 3095.62 12287.61 1295.99 6196.07 12189.77 4494.12 3394.87 12980.56 10298.66 9292.42 4893.10 15998.15 60
EI-MVSNet-Vis-set93.01 5792.92 5693.29 6595.01 14283.51 10594.48 14595.77 14490.87 1492.52 7296.67 5884.50 6299.00 6691.99 6494.44 13497.36 96
casdiffmvs_mvgpermissive92.96 5892.83 5893.35 6494.59 16583.40 10895.00 11596.34 10090.30 2992.05 8196.05 8583.43 7198.15 13392.07 6095.67 10598.49 28
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 5992.54 6293.68 6196.10 10084.71 7295.66 7996.39 9791.92 693.22 5096.49 6983.16 7498.87 7884.47 16495.47 11097.45 95
CDPH-MVS92.83 5992.30 6594.44 4397.79 4986.11 4794.06 17896.66 8380.09 26392.77 6496.63 6386.62 3699.04 5687.40 12698.66 3998.17 59
ETV-MVS92.74 6192.66 6092.97 8195.20 13684.04 9295.07 11196.51 9290.73 2192.96 5691.19 26384.06 6598.34 11991.72 7296.54 9596.54 130
EI-MVSNet-UG-set92.74 6192.62 6193.12 7294.86 15383.20 11394.40 15395.74 14790.71 2292.05 8196.60 6584.00 6698.99 6891.55 7493.63 14497.17 104
DPM-MVS92.58 6391.74 7195.08 1496.19 9589.31 592.66 23796.56 9183.44 19891.68 9695.04 12486.60 3898.99 6885.60 15097.92 6996.93 117
casdiffmvspermissive92.51 6492.43 6492.74 9194.41 17781.98 15094.54 14396.23 10989.57 4891.96 8596.17 8182.58 8098.01 15190.95 8595.45 11298.23 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 6592.29 6692.98 8095.99 10884.43 8493.08 22496.09 11988.20 9291.12 10495.72 10181.33 9897.76 16491.74 7197.37 8096.75 122
3Dnovator+87.14 492.42 6691.37 7495.55 695.63 12188.73 697.07 1896.77 7290.84 1584.02 24896.62 6475.95 15399.34 3387.77 12097.68 7598.59 23
baseline92.39 6792.29 6692.69 9594.46 17481.77 15594.14 16996.27 10489.22 5691.88 8896.00 8682.35 8397.99 15391.05 8095.27 11798.30 46
VNet92.24 6891.91 6993.24 6796.59 8283.43 10694.84 12596.44 9489.19 5894.08 3595.90 9177.85 13798.17 13188.90 10793.38 15398.13 61
CPTT-MVS91.99 6991.80 7092.55 10198.24 3181.98 15096.76 3096.49 9381.89 23590.24 11396.44 7178.59 12698.61 9889.68 9897.85 7197.06 109
EIA-MVS91.95 7091.94 6891.98 12495.16 13780.01 20895.36 8896.73 7788.44 8189.34 12692.16 22983.82 6998.45 11189.35 10197.06 8397.48 93
DP-MVS Recon91.95 7091.28 7693.96 5398.33 2785.92 5594.66 13796.66 8382.69 21790.03 11995.82 9582.30 8599.03 5784.57 16296.48 9896.91 118
EPNet91.79 7291.02 8294.10 5190.10 31785.25 6796.03 6092.05 28792.83 287.39 16195.78 9779.39 11799.01 6288.13 11697.48 7798.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7391.70 7292.00 12397.08 7180.03 20793.60 20295.18 18587.85 10490.89 10696.47 7082.06 9198.36 11685.07 15497.04 8497.62 86
Vis-MVSNetpermissive91.75 7491.23 7793.29 6595.32 13083.78 9796.14 5395.98 12789.89 3790.45 11096.58 6675.09 16598.31 12484.75 16096.90 8797.78 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 7590.82 8694.44 4394.59 16586.37 3997.18 1297.02 4689.20 5784.31 24496.66 5973.74 18999.17 4686.74 13697.96 6797.79 82
EPP-MVSNet91.70 7691.56 7392.13 11995.88 11180.50 19197.33 795.25 18186.15 13989.76 12195.60 10483.42 7298.32 12387.37 12893.25 15697.56 91
MVSFormer91.68 7791.30 7592.80 8793.86 19883.88 9595.96 6395.90 13584.66 17591.76 9394.91 12777.92 13497.30 20889.64 9997.11 8197.24 100
Effi-MVS+91.59 7891.11 7993.01 7994.35 18183.39 10994.60 13995.10 18987.10 11790.57 10993.10 20181.43 9798.07 14789.29 10394.48 13297.59 89
IS-MVSNet91.43 7991.09 8192.46 10595.87 11381.38 16796.95 1993.69 25089.72 4689.50 12495.98 8878.57 12797.77 16383.02 18296.50 9798.22 56
PVSNet_Blended_VisFu91.38 8090.91 8492.80 8796.39 9083.17 11494.87 12396.66 8383.29 20289.27 12794.46 14880.29 10499.17 4687.57 12495.37 11396.05 149
diffmvspermissive91.37 8191.23 7791.77 14093.09 22180.27 19592.36 24695.52 16487.03 11991.40 10194.93 12680.08 10697.44 19292.13 5994.56 12997.61 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 8291.11 7991.93 12894.37 17880.14 20093.46 20795.80 14286.46 13191.35 10293.77 18082.21 8798.09 14487.57 12494.95 12097.55 92
OMC-MVS91.23 8390.62 8893.08 7596.27 9384.07 9093.52 20495.93 13186.95 12189.51 12396.13 8378.50 12898.35 11885.84 14892.90 16296.83 120
PAPM_NR91.22 8490.78 8792.52 10397.60 5681.46 16494.37 15996.24 10886.39 13387.41 15894.80 13582.06 9198.48 10582.80 18895.37 11397.61 87
PS-MVSNAJ91.18 8590.92 8391.96 12695.26 13382.60 13992.09 25895.70 14986.27 13491.84 9092.46 21979.70 11298.99 6889.08 10595.86 10394.29 223
xiu_mvs_v2_base91.13 8690.89 8591.86 13494.97 14582.42 14192.24 25295.64 15686.11 14291.74 9593.14 19979.67 11598.89 7789.06 10695.46 11194.28 224
nrg03091.08 8790.39 8993.17 7093.07 22286.91 2096.41 3896.26 10588.30 8688.37 14194.85 13282.19 8897.64 17591.09 7982.95 27694.96 187
lupinMVS90.92 8890.21 9293.03 7893.86 19883.88 9592.81 23493.86 24479.84 26591.76 9394.29 15477.92 13498.04 14990.48 9597.11 8197.17 104
h-mvs3390.80 8990.15 9592.75 9096.01 10482.66 13695.43 8795.53 16389.80 4093.08 5395.64 10375.77 15499.00 6692.07 6078.05 33196.60 126
jason90.80 8990.10 9692.90 8493.04 22483.53 10493.08 22494.15 23380.22 26091.41 10094.91 12776.87 14197.93 15890.28 9696.90 8797.24 100
jason: jason.
VDD-MVS90.74 9189.92 10393.20 6996.27 9383.02 12195.73 7493.86 24488.42 8392.53 7196.84 5062.09 30498.64 9490.95 8592.62 16697.93 74
PVSNet_Blended90.73 9290.32 9191.98 12496.12 9781.25 16992.55 24196.83 6582.04 22989.10 12992.56 21781.04 10098.85 8286.72 13895.91 10295.84 156
test_yl90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
DCV-MVSNet90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
API-MVS90.66 9590.07 9792.45 10696.36 9184.57 7596.06 5995.22 18482.39 22089.13 12894.27 15780.32 10398.46 10880.16 23596.71 9294.33 220
xiu_mvs_v1_base_debu90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base_debi90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
HQP_MVS90.60 9990.19 9391.82 13794.70 16182.73 13295.85 6796.22 11090.81 1686.91 17094.86 13074.23 17798.12 13488.15 11489.99 19094.63 199
FIs90.51 10090.35 9090.99 17693.99 19480.98 17795.73 7497.54 489.15 5986.72 17794.68 14081.83 9597.24 21685.18 15388.31 22694.76 197
MAR-MVS90.30 10189.37 11493.07 7796.61 8184.48 8095.68 7795.67 15182.36 22287.85 14992.85 20676.63 14798.80 8680.01 23696.68 9395.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 10290.18 9490.53 18893.71 20479.85 21495.77 7297.59 389.31 5486.27 18694.67 14181.93 9497.01 23284.26 16688.09 22994.71 198
CANet_DTU90.26 10389.41 11392.81 8693.46 21383.01 12293.48 20594.47 22089.43 5187.76 15394.23 15870.54 22999.03 5784.97 15596.39 9996.38 133
SDMVSNet90.19 10489.61 10791.93 12896.00 10583.09 11892.89 23195.98 12788.73 7286.85 17495.20 11872.09 20997.08 22688.90 10789.85 19695.63 166
OPM-MVS90.12 10589.56 10891.82 13793.14 21983.90 9494.16 16895.74 14788.96 6787.86 14895.43 10972.48 20597.91 15988.10 11890.18 18993.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 10689.13 12092.95 8296.71 7782.32 14596.08 5689.91 33786.79 12592.15 8096.81 5362.60 30298.34 11987.18 13093.90 14098.19 57
GeoE90.05 10789.43 11291.90 13395.16 13780.37 19495.80 7094.65 21783.90 18587.55 15794.75 13778.18 13297.62 17781.28 21593.63 14497.71 84
PAPR90.02 10889.27 11992.29 11595.78 11580.95 17992.68 23696.22 11081.91 23386.66 17893.75 18282.23 8698.44 11279.40 24794.79 12297.48 93
PVSNet_BlendedMVS89.98 10989.70 10590.82 18196.12 9781.25 16993.92 18996.83 6583.49 19789.10 12992.26 22781.04 10098.85 8286.72 13887.86 23392.35 305
PS-MVSNAJss89.97 11089.62 10691.02 17391.90 25480.85 18295.26 9895.98 12786.26 13586.21 18794.29 15479.70 11297.65 17288.87 10988.10 22794.57 204
mvsmamba89.96 11189.50 10991.33 15892.90 23181.82 15396.68 3392.37 27589.03 6387.00 16694.85 13273.05 19797.65 17291.03 8188.63 21794.51 209
XVG-OURS-SEG-HR89.95 11289.45 11091.47 15294.00 19381.21 17291.87 26196.06 12385.78 14588.55 13795.73 10074.67 17397.27 21288.71 11089.64 20195.91 152
UGNet89.95 11288.95 12492.95 8294.51 17183.31 11095.70 7695.23 18289.37 5387.58 15593.94 17064.00 29398.78 8783.92 17196.31 10096.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11489.29 11791.81 13993.39 21483.72 9894.43 15197.12 4089.80 4086.46 18093.32 19083.16 7497.23 21784.92 15681.02 30594.49 214
AdaColmapbinary89.89 11589.07 12192.37 11097.41 6283.03 12094.42 15295.92 13282.81 21486.34 18594.65 14273.89 18599.02 6080.69 22695.51 10895.05 182
hse-mvs289.88 11689.34 11591.51 14994.83 15581.12 17493.94 18793.91 24389.80 4093.08 5393.60 18475.77 15497.66 17192.07 6077.07 33895.74 161
UniMVSNet (Re)89.80 11789.07 12192.01 12093.60 20984.52 7894.78 12997.47 1189.26 5586.44 18392.32 22482.10 8997.39 20484.81 15980.84 30994.12 229
HQP-MVS89.80 11789.28 11891.34 15794.17 18481.56 15894.39 15596.04 12488.81 6885.43 21193.97 16973.83 18797.96 15587.11 13389.77 19994.50 212
FA-MVS(test-final)89.66 11988.91 12691.93 12894.57 16880.27 19591.36 27294.74 21384.87 16889.82 12092.61 21674.72 17298.47 10783.97 17093.53 14797.04 111
VPA-MVSNet89.62 12088.96 12391.60 14593.86 19882.89 12795.46 8697.33 2487.91 9988.43 14093.31 19174.17 18097.40 20187.32 12982.86 28194.52 207
WTY-MVS89.60 12188.92 12591.67 14395.47 12681.15 17392.38 24594.78 21183.11 20689.06 13194.32 15278.67 12596.61 25281.57 21290.89 18397.24 100
Vis-MVSNet (Re-imp)89.59 12289.44 11190.03 21595.74 11675.85 29295.61 8390.80 32287.66 10987.83 15095.40 11076.79 14396.46 26578.37 25296.73 9197.80 81
VDDNet89.56 12388.49 14192.76 8995.07 14182.09 14796.30 4293.19 25781.05 25591.88 8896.86 4961.16 31698.33 12188.43 11392.49 16997.84 79
114514_t89.51 12488.50 13992.54 10298.11 3681.99 14995.16 10696.36 9970.19 35485.81 19295.25 11476.70 14598.63 9682.07 20096.86 9097.00 114
QAPM89.51 12488.15 15093.59 6294.92 14984.58 7496.82 2996.70 8178.43 28783.41 26396.19 8073.18 19699.30 3977.11 26896.54 9596.89 119
CLD-MVS89.47 12688.90 12791.18 16394.22 18382.07 14892.13 25696.09 11987.90 10085.37 21792.45 22074.38 17597.56 18087.15 13190.43 18593.93 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 12788.90 12791.12 16594.47 17281.49 16295.30 9396.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
CDS-MVSNet89.45 12788.51 13892.29 11593.62 20883.61 10393.01 22794.68 21681.95 23187.82 15193.24 19578.69 12496.99 23380.34 23293.23 15796.28 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 12988.69 13291.60 14595.12 14082.93 12595.75 7392.14 28487.32 11487.12 16594.07 16067.09 26797.55 18190.61 9189.01 21294.32 221
Fast-Effi-MVS+89.41 13088.64 13391.71 14294.74 15780.81 18393.54 20395.10 18983.11 20686.82 17690.67 28079.74 11197.75 16780.51 23093.55 14696.57 128
ab-mvs89.41 13088.35 14392.60 9895.15 13982.65 13792.20 25495.60 15883.97 18488.55 13793.70 18374.16 18198.21 13082.46 19389.37 20496.94 116
XVG-OURS89.40 13288.70 13191.52 14894.06 18781.46 16491.27 27496.07 12186.14 14088.89 13395.77 9868.73 25597.26 21487.39 12789.96 19295.83 157
test_vis1_n_192089.39 13389.84 10488.04 27392.97 22872.64 32294.71 13496.03 12686.18 13891.94 8796.56 6861.63 30795.74 29893.42 3195.11 11995.74 161
mvs_anonymous89.37 13489.32 11689.51 23893.47 21274.22 30591.65 26894.83 20782.91 21285.45 20893.79 17881.23 9996.36 27286.47 14094.09 13797.94 72
DU-MVS89.34 13588.50 13991.85 13693.04 22483.72 9894.47 14896.59 8889.50 4986.46 18093.29 19377.25 13997.23 21784.92 15681.02 30594.59 202
TAMVS89.21 13688.29 14791.96 12693.71 20482.62 13893.30 21494.19 23182.22 22487.78 15293.94 17078.83 12196.95 23577.70 26192.98 16196.32 134
ACMM84.12 989.14 13788.48 14291.12 16594.65 16481.22 17195.31 9196.12 11885.31 15985.92 19194.34 15070.19 23398.06 14885.65 14988.86 21594.08 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 13888.64 13390.48 19495.53 12574.97 29896.08 5684.89 35988.13 9590.16 11696.65 6063.29 29898.10 13686.14 14196.90 8798.39 38
EI-MVSNet89.10 13888.86 12989.80 22791.84 25678.30 24993.70 19995.01 19285.73 14787.15 16395.28 11279.87 10997.21 21983.81 17387.36 23993.88 241
ECVR-MVScopyleft89.09 14088.53 13790.77 18395.62 12275.89 29196.16 5084.22 36187.89 10290.20 11496.65 6063.19 30098.10 13685.90 14696.94 8598.33 42
RRT_MVS89.09 14088.62 13690.49 19292.85 23279.65 21896.41 3894.41 22388.22 9085.50 20494.77 13669.36 24397.31 20789.33 10286.73 24694.51 209
CNLPA89.07 14287.98 15492.34 11196.87 7484.78 7194.08 17593.24 25581.41 24684.46 23495.13 12275.57 16196.62 24977.21 26693.84 14295.61 168
PLCcopyleft84.53 789.06 14388.03 15392.15 11897.27 6882.69 13594.29 16195.44 17179.71 26784.01 24994.18 15976.68 14698.75 8877.28 26593.41 15295.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 14488.64 13390.21 20590.74 30379.28 23095.96 6395.90 13584.66 17585.33 21992.94 20574.02 18397.30 20889.64 9988.53 21994.05 235
HY-MVS83.01 1289.03 14487.94 15692.29 11594.86 15382.77 12892.08 25994.49 21981.52 24586.93 16892.79 21278.32 13198.23 12779.93 23790.55 18495.88 154
ACMP84.23 889.01 14688.35 14390.99 17694.73 15881.27 16895.07 11195.89 13786.48 13083.67 25694.30 15369.33 24497.99 15387.10 13588.55 21893.72 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 14788.26 14990.94 17994.05 18880.78 18491.71 26595.38 17581.55 24488.63 13693.91 17475.04 16695.47 30882.47 19291.61 17496.57 128
iter_conf0588.85 14888.08 15291.17 16494.27 18281.64 15795.18 10392.15 28386.23 13787.28 16294.07 16063.89 29697.55 18190.63 9089.00 21394.32 221
TranMVSNet+NR-MVSNet88.84 14987.95 15591.49 15092.68 23683.01 12294.92 12096.31 10189.88 3885.53 20193.85 17776.63 14796.96 23481.91 20479.87 32294.50 212
CHOSEN 1792x268888.84 14987.69 16092.30 11496.14 9681.42 16690.01 29995.86 13974.52 32687.41 15893.94 17075.46 16298.36 11680.36 23195.53 10797.12 108
MVSTER88.84 14988.29 14790.51 19192.95 22980.44 19293.73 19695.01 19284.66 17587.15 16393.12 20072.79 20197.21 21987.86 11987.36 23993.87 242
test_cas_vis1_n_192088.83 15288.85 13088.78 25291.15 28476.72 28093.85 19294.93 19983.23 20592.81 6296.00 8661.17 31594.45 31891.67 7394.84 12195.17 179
OpenMVScopyleft83.78 1188.74 15387.29 17093.08 7592.70 23585.39 6596.57 3596.43 9578.74 28280.85 29396.07 8469.64 23999.01 6278.01 25996.65 9494.83 194
thisisatest053088.67 15487.61 16291.86 13494.87 15280.07 20394.63 13889.90 33884.00 18388.46 13993.78 17966.88 27198.46 10883.30 17892.65 16597.06 109
Effi-MVS+-dtu88.65 15588.35 14389.54 23593.33 21576.39 28694.47 14894.36 22587.70 10785.43 21189.56 30273.45 19297.26 21485.57 15191.28 17694.97 184
tttt051788.61 15687.78 15991.11 16894.96 14677.81 26295.35 8989.69 34185.09 16588.05 14694.59 14566.93 26998.48 10583.27 17992.13 17297.03 112
BH-untuned88.60 15788.13 15190.01 21895.24 13478.50 24393.29 21594.15 23384.75 17284.46 23493.40 18775.76 15697.40 20177.59 26294.52 13194.12 229
sd_testset88.59 15887.85 15890.83 18096.00 10580.42 19392.35 24794.71 21488.73 7286.85 17495.20 11867.31 26296.43 26779.64 24189.85 19695.63 166
NR-MVSNet88.58 15987.47 16691.93 12893.04 22484.16 8994.77 13096.25 10789.05 6180.04 30693.29 19379.02 12097.05 23081.71 21180.05 31994.59 202
1112_ss88.42 16087.33 16991.72 14194.92 14980.98 17792.97 22994.54 21878.16 29383.82 25293.88 17578.78 12397.91 15979.45 24389.41 20396.26 138
WR-MVS88.38 16187.67 16190.52 19093.30 21680.18 19893.26 21795.96 13088.57 7985.47 20792.81 21076.12 14996.91 23881.24 21682.29 28594.47 217
BH-RMVSNet88.37 16287.48 16591.02 17395.28 13179.45 22292.89 23193.07 25985.45 15686.91 17094.84 13470.35 23097.76 16473.97 29594.59 12895.85 155
IterMVS-LS88.36 16387.91 15789.70 23193.80 20178.29 25093.73 19695.08 19185.73 14784.75 22691.90 24379.88 10896.92 23783.83 17282.51 28293.89 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 16486.13 21094.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5923.41 38185.02 5599.49 2591.99 6498.56 4798.47 32
LCM-MVSNet-Re88.30 16588.32 14688.27 26694.71 16072.41 32793.15 22090.98 31787.77 10579.25 31491.96 24178.35 13095.75 29783.04 18195.62 10696.65 125
jajsoiax88.24 16687.50 16490.48 19490.89 29780.14 20095.31 9195.65 15584.97 16784.24 24594.02 16565.31 28697.42 19488.56 11188.52 22093.89 239
VPNet88.20 16787.47 16690.39 19993.56 21079.46 22194.04 17995.54 16288.67 7586.96 16794.58 14669.33 24497.15 22184.05 16980.53 31494.56 205
TAPA-MVS84.62 688.16 16887.01 17891.62 14496.64 8080.65 18694.39 15596.21 11376.38 30686.19 18895.44 10779.75 11098.08 14662.75 35395.29 11596.13 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16987.28 17190.57 18694.96 14680.07 20394.27 16291.29 31086.74 12687.41 15894.00 16776.77 14496.20 27780.77 22479.31 32795.44 170
Anonymous2024052988.09 17086.59 19492.58 10096.53 8681.92 15295.99 6195.84 14074.11 33089.06 13195.21 11761.44 31098.81 8583.67 17687.47 23697.01 113
HyFIR lowres test88.09 17086.81 18291.93 12896.00 10580.63 18790.01 29995.79 14373.42 33687.68 15492.10 23573.86 18697.96 15580.75 22591.70 17397.19 103
mvs_tets88.06 17287.28 17190.38 20190.94 29379.88 21295.22 10095.66 15385.10 16484.21 24693.94 17063.53 29797.40 20188.50 11288.40 22493.87 242
F-COLMAP87.95 17386.80 18391.40 15496.35 9280.88 18194.73 13295.45 16979.65 26882.04 28094.61 14371.13 21698.50 10476.24 27791.05 18194.80 196
LS3D87.89 17486.32 20492.59 9996.07 10282.92 12695.23 9994.92 20075.66 31382.89 27095.98 8872.48 20599.21 4468.43 32795.23 11895.64 165
anonymousdsp87.84 17587.09 17490.12 21189.13 32980.54 19094.67 13695.55 16082.05 22783.82 25292.12 23271.47 21497.15 22187.15 13187.80 23592.67 293
v2v48287.84 17587.06 17590.17 20790.99 28979.23 23394.00 18495.13 18684.87 16885.53 20192.07 23874.45 17497.45 19084.71 16181.75 29393.85 245
WR-MVS_H87.80 17787.37 16889.10 24693.23 21778.12 25395.61 8397.30 2887.90 10083.72 25492.01 24079.65 11696.01 28576.36 27480.54 31393.16 278
AUN-MVS87.78 17886.54 19691.48 15194.82 15681.05 17593.91 19193.93 24083.00 20986.93 16893.53 18569.50 24197.67 16986.14 14177.12 33795.73 163
PCF-MVS84.11 1087.74 17986.08 21492.70 9494.02 18984.43 8489.27 30995.87 13873.62 33584.43 23694.33 15178.48 12998.86 8070.27 31394.45 13394.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 18086.13 21092.31 11396.66 7980.74 18594.87 12391.49 30580.47 25989.46 12595.44 10754.72 34398.23 12782.19 19889.89 19497.97 71
V4287.68 18086.86 18090.15 20990.58 30880.14 20094.24 16595.28 18083.66 19185.67 19591.33 25874.73 17197.41 19984.43 16581.83 29192.89 288
thres600view787.65 18286.67 18990.59 18596.08 10178.72 23694.88 12291.58 30187.06 11888.08 14492.30 22568.91 25298.10 13670.05 32091.10 17794.96 187
XXY-MVS87.65 18286.85 18190.03 21592.14 24680.60 18993.76 19595.23 18282.94 21184.60 22994.02 16574.27 17695.49 30781.04 21883.68 26994.01 237
Test_1112_low_res87.65 18286.51 19791.08 16994.94 14879.28 23091.77 26394.30 22776.04 31183.51 26192.37 22277.86 13697.73 16878.69 25189.13 21096.22 139
thres100view90087.63 18586.71 18790.38 20196.12 9778.55 24095.03 11491.58 30187.15 11588.06 14592.29 22668.91 25298.10 13670.13 31791.10 17794.48 215
CP-MVSNet87.63 18587.26 17388.74 25693.12 22076.59 28395.29 9596.58 8988.43 8283.49 26292.98 20475.28 16395.83 29378.97 24981.15 30193.79 247
thres40087.62 18786.64 19090.57 18695.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.96 187
v114487.61 18886.79 18490.06 21491.01 28879.34 22693.95 18695.42 17483.36 20185.66 19691.31 26174.98 16797.42 19483.37 17782.06 28793.42 268
bld_raw_dy_0_6487.60 18986.73 18590.21 20591.72 26180.26 19795.09 11088.61 34685.68 14985.55 19894.38 14963.93 29596.66 24687.73 12187.84 23493.72 256
tfpn200view987.58 19086.64 19090.41 19895.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.48 215
BH-w/o87.57 19187.05 17689.12 24594.90 15177.90 25892.41 24393.51 25282.89 21383.70 25591.34 25775.75 15797.07 22875.49 28193.49 14992.39 303
UniMVSNet_ETH3D87.53 19286.37 20191.00 17592.44 23978.96 23594.74 13195.61 15784.07 18285.36 21894.52 14759.78 32497.34 20682.93 18387.88 23296.71 124
ET-MVSNet_ETH3D87.51 19385.91 22292.32 11293.70 20683.93 9392.33 24990.94 31884.16 17972.09 35292.52 21869.90 23495.85 29289.20 10488.36 22597.17 104
131487.51 19386.57 19590.34 20392.42 24079.74 21692.63 23895.35 17978.35 28880.14 30391.62 25274.05 18297.15 22181.05 21793.53 14794.12 229
v887.50 19586.71 18789.89 22191.37 27479.40 22394.50 14495.38 17584.81 17183.60 25991.33 25876.05 15097.42 19482.84 18680.51 31692.84 290
Fast-Effi-MVS+-dtu87.44 19686.72 18689.63 23392.04 25077.68 26894.03 18093.94 23985.81 14482.42 27491.32 26070.33 23197.06 22980.33 23390.23 18894.14 228
MVS87.44 19686.10 21391.44 15392.61 23783.62 10292.63 23895.66 15367.26 35881.47 28592.15 23077.95 13398.22 12979.71 23995.48 10992.47 299
FE-MVS87.40 19886.02 21691.57 14794.56 16979.69 21790.27 28893.72 24980.57 25888.80 13491.62 25265.32 28598.59 10074.97 28994.33 13696.44 131
FMVSNet387.40 19886.11 21291.30 15993.79 20383.64 10194.20 16794.81 20983.89 18684.37 23791.87 24468.45 25896.56 25778.23 25685.36 25493.70 258
test_fmvs187.34 20087.56 16386.68 30690.59 30771.80 33194.01 18294.04 23878.30 28991.97 8495.22 11556.28 33693.71 33292.89 3994.71 12394.52 207
thisisatest051587.33 20185.99 21791.37 15693.49 21179.55 21990.63 28489.56 34480.17 26187.56 15690.86 27467.07 26898.28 12581.50 21393.02 16096.29 136
PS-CasMVS87.32 20286.88 17988.63 25992.99 22776.33 28895.33 9096.61 8788.22 9083.30 26793.07 20273.03 19995.79 29678.36 25381.00 30793.75 254
GBi-Net87.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
test187.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
v119287.25 20586.33 20390.00 21990.76 30279.04 23493.80 19395.48 16582.57 21885.48 20691.18 26573.38 19597.42 19482.30 19682.06 28793.53 262
v1087.25 20586.38 20089.85 22291.19 28079.50 22094.48 14595.45 16983.79 18983.62 25891.19 26375.13 16497.42 19481.94 20380.60 31192.63 295
DP-MVS87.25 20585.36 23792.90 8497.65 5583.24 11194.81 12792.00 28974.99 32181.92 28295.00 12572.66 20299.05 5466.92 33892.33 17096.40 132
miper_ehance_all_eth87.22 20886.62 19389.02 24992.13 24777.40 27290.91 28094.81 20981.28 24984.32 24290.08 29179.26 11896.62 24983.81 17382.94 27793.04 283
test250687.21 20986.28 20690.02 21795.62 12273.64 31096.25 4771.38 38187.89 10290.45 11096.65 6055.29 34198.09 14486.03 14596.94 8598.33 42
thres20087.21 20986.24 20890.12 21195.36 12978.53 24193.26 21792.10 28586.42 13288.00 14791.11 26969.24 24898.00 15269.58 32191.04 18293.83 246
v14419287.19 21186.35 20289.74 22890.64 30678.24 25193.92 18995.43 17281.93 23285.51 20391.05 27174.21 17997.45 19082.86 18581.56 29593.53 262
FMVSNet287.19 21185.82 22491.30 15994.01 19083.67 10094.79 12894.94 19583.57 19383.88 25192.05 23966.59 27696.51 26077.56 26385.01 25793.73 255
c3_l87.14 21386.50 19889.04 24892.20 24477.26 27391.22 27694.70 21582.01 23084.34 24190.43 28478.81 12296.61 25283.70 17581.09 30293.25 273
Baseline_NR-MVSNet87.07 21486.63 19288.40 26291.44 26977.87 26094.23 16692.57 27284.12 18185.74 19492.08 23677.25 13996.04 28282.29 19779.94 32091.30 323
v14887.04 21586.32 20489.21 24290.94 29377.26 27393.71 19894.43 22184.84 17084.36 24090.80 27776.04 15197.05 23082.12 19979.60 32493.31 270
test_fmvs1_n87.03 21687.04 17786.97 29889.74 32571.86 32994.55 14294.43 22178.47 28591.95 8695.50 10651.16 35393.81 33093.02 3894.56 12995.26 176
v192192086.97 21786.06 21589.69 23290.53 31178.11 25493.80 19395.43 17281.90 23485.33 21991.05 27172.66 20297.41 19982.05 20181.80 29293.53 262
tt080586.92 21885.74 23090.48 19492.22 24379.98 21095.63 8294.88 20383.83 18884.74 22792.80 21157.61 33297.67 16985.48 15284.42 26193.79 247
miper_enhance_ethall86.90 21986.18 20989.06 24791.66 26677.58 27090.22 29494.82 20879.16 27484.48 23389.10 30679.19 11996.66 24684.06 16882.94 27792.94 286
v7n86.81 22085.76 22889.95 22090.72 30479.25 23295.07 11195.92 13284.45 17882.29 27590.86 27472.60 20497.53 18479.42 24680.52 31593.08 282
PEN-MVS86.80 22186.27 20788.40 26292.32 24275.71 29495.18 10396.38 9887.97 9782.82 27193.15 19873.39 19495.92 28876.15 27879.03 32993.59 260
cl2286.78 22285.98 21889.18 24492.34 24177.62 26990.84 28194.13 23581.33 24883.97 25090.15 28973.96 18496.60 25484.19 16782.94 27793.33 269
v124086.78 22285.85 22389.56 23490.45 31277.79 26493.61 20195.37 17781.65 24085.43 21191.15 26771.50 21397.43 19381.47 21482.05 28993.47 266
TR-MVS86.78 22285.76 22889.82 22494.37 17878.41 24592.47 24292.83 26481.11 25486.36 18492.40 22168.73 25597.48 18773.75 29889.85 19693.57 261
PatchMatch-RL86.77 22585.54 23190.47 19795.88 11182.71 13490.54 28592.31 27879.82 26684.32 24291.57 25668.77 25496.39 26973.16 30093.48 15192.32 306
PAPM86.68 22685.39 23590.53 18893.05 22379.33 22989.79 30294.77 21278.82 27981.95 28193.24 19576.81 14297.30 20866.94 33693.16 15894.95 190
pm-mvs186.61 22785.54 23189.82 22491.44 26980.18 19895.28 9794.85 20583.84 18781.66 28392.62 21572.45 20796.48 26279.67 24078.06 33092.82 291
GA-MVS86.61 22785.27 23990.66 18491.33 27778.71 23790.40 28793.81 24785.34 15885.12 22189.57 30161.25 31297.11 22580.99 22189.59 20296.15 140
Anonymous2023121186.59 22985.13 24190.98 17896.52 8781.50 16096.14 5396.16 11473.78 33383.65 25792.15 23063.26 29997.37 20582.82 18781.74 29494.06 234
test_vis1_n86.56 23086.49 19986.78 30588.51 33472.69 31994.68 13593.78 24879.55 26990.70 10795.31 11148.75 35893.28 33893.15 3593.99 13894.38 219
DIV-MVS_self_test86.53 23185.78 22588.75 25492.02 25276.45 28590.74 28294.30 22781.83 23883.34 26590.82 27675.75 15796.57 25581.73 21081.52 29793.24 274
cl____86.52 23285.78 22588.75 25492.03 25176.46 28490.74 28294.30 22781.83 23883.34 26590.78 27875.74 15996.57 25581.74 20981.54 29693.22 275
eth_miper_zixun_eth86.50 23385.77 22788.68 25791.94 25375.81 29390.47 28694.89 20182.05 22784.05 24790.46 28375.96 15296.77 24282.76 18979.36 32693.46 267
baseline286.50 23385.39 23589.84 22391.12 28576.70 28191.88 26088.58 34782.35 22379.95 30790.95 27373.42 19397.63 17680.27 23489.95 19395.19 178
EPNet_dtu86.49 23585.94 22188.14 27190.24 31572.82 31794.11 17192.20 28186.66 12979.42 31392.36 22373.52 19095.81 29571.26 30793.66 14395.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 23684.98 24490.80 18292.10 24980.92 18090.24 29295.91 13473.10 33983.57 26088.39 31765.15 28797.46 18984.90 15891.43 17594.03 236
SCA86.32 23785.18 24089.73 23092.15 24576.60 28291.12 27791.69 29883.53 19685.50 20488.81 31066.79 27296.48 26276.65 27190.35 18796.12 143
LTVRE_ROB82.13 1386.26 23884.90 24790.34 20394.44 17681.50 16092.31 25194.89 20183.03 20879.63 31192.67 21369.69 23897.79 16271.20 30886.26 24991.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23985.48 23387.98 27491.65 26774.92 29994.93 11995.75 14687.36 11382.26 27693.04 20372.85 20095.82 29474.04 29477.46 33593.20 276
XVG-ACMP-BASELINE86.00 24084.84 24989.45 23991.20 27978.00 25591.70 26695.55 16085.05 16682.97 26992.25 22854.49 34497.48 18782.93 18387.45 23892.89 288
MVP-Stereo85.97 24184.86 24889.32 24090.92 29582.19 14692.11 25794.19 23178.76 28178.77 31791.63 25168.38 25996.56 25775.01 28893.95 13989.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 24285.09 24288.35 26490.79 30077.42 27191.83 26295.70 14980.77 25780.08 30590.02 29266.74 27496.37 27081.88 20587.97 23191.26 324
test-LLR85.87 24385.41 23487.25 29090.95 29171.67 33389.55 30389.88 33983.41 19984.54 23187.95 32467.25 26495.11 31381.82 20693.37 15494.97 184
FMVSNet185.85 24484.11 25891.08 16992.81 23383.10 11595.14 10794.94 19581.64 24182.68 27291.64 24859.01 32896.34 27375.37 28383.78 26693.79 247
PatchmatchNetpermissive85.85 24484.70 25189.29 24191.76 26075.54 29588.49 32191.30 30981.63 24285.05 22288.70 31471.71 21096.24 27674.61 29289.05 21196.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 24684.94 24688.26 26791.16 28372.58 32589.47 30791.04 31676.26 30986.45 18289.97 29470.74 22396.86 24182.35 19587.07 24495.34 175
PMMVS85.71 24784.96 24587.95 27588.90 33277.09 27588.68 31990.06 33372.32 34586.47 17990.76 27972.15 20894.40 32081.78 20893.49 14992.36 304
PVSNet78.82 1885.55 24884.65 25288.23 26994.72 15971.93 32887.12 33692.75 26778.80 28084.95 22490.53 28264.43 29196.71 24574.74 29093.86 14196.06 148
IterMVS-SCA-FT85.45 24984.53 25588.18 27091.71 26376.87 27890.19 29592.65 27185.40 15781.44 28690.54 28166.79 27295.00 31681.04 21881.05 30392.66 294
pmmvs485.43 25083.86 26390.16 20890.02 32082.97 12490.27 28892.67 27075.93 31280.73 29491.74 24771.05 21795.73 29978.85 25083.46 27391.78 314
mvsany_test185.42 25185.30 23885.77 31687.95 34575.41 29787.61 33380.97 36976.82 30388.68 13595.83 9477.44 13890.82 35785.90 14686.51 24791.08 331
ACMH80.38 1785.36 25283.68 26590.39 19994.45 17580.63 18794.73 13294.85 20582.09 22677.24 32592.65 21460.01 32297.58 17872.25 30484.87 25892.96 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 25384.64 25387.49 28490.77 30172.59 32494.01 18294.40 22484.72 17379.62 31293.17 19761.91 30696.72 24381.99 20281.16 29993.16 278
CR-MVSNet85.35 25383.76 26490.12 21190.58 30879.34 22685.24 34991.96 29378.27 29085.55 19887.87 32771.03 21895.61 30073.96 29689.36 20595.40 172
tpmrst85.35 25384.99 24386.43 30890.88 29867.88 35488.71 31891.43 30780.13 26286.08 19088.80 31273.05 19796.02 28482.48 19183.40 27595.40 172
miper_lstm_enhance85.27 25684.59 25487.31 28791.28 27874.63 30087.69 33094.09 23781.20 25381.36 28889.85 29774.97 16894.30 32381.03 22079.84 32393.01 284
IB-MVS80.51 1585.24 25783.26 26991.19 16292.13 24779.86 21391.75 26491.29 31083.28 20380.66 29688.49 31661.28 31198.46 10880.99 22179.46 32595.25 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 25883.99 26188.65 25892.47 23878.40 24679.68 36992.76 26674.90 32381.41 28789.59 30069.85 23795.51 30479.92 23895.29 11592.03 310
RPSCF85.07 25984.27 25687.48 28592.91 23070.62 34391.69 26792.46 27376.20 31082.67 27395.22 11563.94 29497.29 21177.51 26485.80 25194.53 206
MS-PatchMatch85.05 26084.16 25787.73 27891.42 27278.51 24291.25 27593.53 25177.50 29680.15 30291.58 25461.99 30595.51 30475.69 28094.35 13589.16 348
ACMH+81.04 1485.05 26083.46 26889.82 22494.66 16379.37 22494.44 15094.12 23682.19 22578.04 32092.82 20958.23 33097.54 18373.77 29782.90 28092.54 296
IterMVS84.88 26283.98 26287.60 28091.44 26976.03 29090.18 29692.41 27483.24 20481.06 29290.42 28566.60 27594.28 32479.46 24280.98 30892.48 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 26383.09 27290.14 21093.80 20180.05 20589.18 31293.09 25878.89 27778.19 31891.91 24265.86 28497.27 21268.47 32688.45 22293.11 280
tpm84.73 26484.02 26086.87 30390.33 31368.90 35089.06 31489.94 33680.85 25685.75 19389.86 29668.54 25795.97 28677.76 26084.05 26595.75 160
tfpnnormal84.72 26583.23 27089.20 24392.79 23480.05 20594.48 14595.81 14182.38 22181.08 29191.21 26269.01 25196.95 23561.69 35580.59 31290.58 337
CVMVSNet84.69 26684.79 25084.37 32791.84 25664.92 36393.70 19991.47 30666.19 36086.16 18995.28 11267.18 26693.33 33780.89 22390.42 18694.88 192
test-mter84.54 26783.64 26687.25 29090.95 29171.67 33389.55 30389.88 33979.17 27384.54 23187.95 32455.56 33895.11 31381.82 20693.37 15494.97 184
TransMVSNet (Re)84.43 26883.06 27388.54 26091.72 26178.44 24495.18 10392.82 26582.73 21679.67 31092.12 23273.49 19195.96 28771.10 31268.73 36091.21 325
pmmvs584.21 26982.84 27788.34 26588.95 33176.94 27792.41 24391.91 29575.63 31480.28 30091.18 26564.59 29095.57 30177.09 26983.47 27292.53 297
dmvs_re84.20 27083.22 27187.14 29691.83 25877.81 26290.04 29890.19 32984.70 17481.49 28489.17 30564.37 29291.13 35571.58 30685.65 25392.46 300
tpm284.08 27182.94 27487.48 28591.39 27371.27 33589.23 31190.37 32671.95 34784.64 22889.33 30367.30 26396.55 25975.17 28587.09 24394.63 199
test_fmvs283.98 27284.03 25983.83 33287.16 34867.53 35793.93 18892.89 26277.62 29586.89 17393.53 18547.18 36292.02 34990.54 9286.51 24791.93 312
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 22895.28 13179.75 21594.25 16392.28 27975.17 31978.02 32193.77 18058.60 32997.84 16165.06 34685.92 25091.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 27481.53 28391.21 16190.58 30879.34 22685.24 34996.76 7371.44 34985.55 19882.97 35770.87 22198.91 7661.01 35789.36 20595.40 172
SixPastTwentyTwo83.91 27582.90 27586.92 30090.99 28970.67 34293.48 20591.99 29085.54 15477.62 32492.11 23460.59 31896.87 24076.05 27977.75 33293.20 276
EPMVS83.90 27682.70 27887.51 28290.23 31672.67 32088.62 32081.96 36781.37 24785.01 22388.34 31866.31 27994.45 31875.30 28487.12 24295.43 171
TESTMET0.1,183.74 27782.85 27686.42 30989.96 32171.21 33789.55 30387.88 34977.41 29783.37 26487.31 33256.71 33493.65 33480.62 22892.85 16494.40 218
pmmvs683.42 27881.60 28288.87 25188.01 34377.87 26094.96 11794.24 23074.67 32578.80 31691.09 27060.17 32196.49 26177.06 27075.40 34492.23 308
AllTest83.42 27881.39 28489.52 23695.01 14277.79 26493.12 22190.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
tpmvs83.35 28082.07 27987.20 29491.07 28771.00 34088.31 32491.70 29778.91 27680.49 29987.18 33469.30 24797.08 22668.12 33183.56 27193.51 265
USDC82.76 28181.26 28687.26 28991.17 28174.55 30189.27 30993.39 25478.26 29175.30 33892.08 23654.43 34596.63 24871.64 30585.79 25290.61 334
Patchmtry82.71 28280.93 28888.06 27290.05 31976.37 28784.74 35491.96 29372.28 34681.32 28987.87 32771.03 21895.50 30668.97 32380.15 31892.32 306
PatchT82.68 28381.27 28586.89 30290.09 31870.94 34184.06 35690.15 33074.91 32285.63 19783.57 35369.37 24294.87 31765.19 34388.50 22194.84 193
MIMVSNet82.59 28480.53 28988.76 25391.51 26878.32 24886.57 34090.13 33179.32 27080.70 29588.69 31552.98 35093.07 34266.03 34188.86 21594.90 191
test0.0.03 182.41 28581.69 28184.59 32588.23 34072.89 31690.24 29287.83 35083.41 19979.86 30889.78 29867.25 26488.99 36565.18 34483.42 27491.90 313
EG-PatchMatch MVS82.37 28680.34 29288.46 26190.27 31479.35 22592.80 23594.33 22677.14 30173.26 34990.18 28847.47 36196.72 24370.25 31487.32 24189.30 345
tpm cat181.96 28780.27 29387.01 29791.09 28671.02 33987.38 33491.53 30466.25 35980.17 30186.35 34068.22 26096.15 28069.16 32282.29 28593.86 244
our_test_381.93 28880.46 29186.33 31088.46 33773.48 31288.46 32291.11 31276.46 30476.69 32988.25 32066.89 27094.36 32168.75 32479.08 32891.14 327
ppachtmachnet_test81.84 28980.07 29787.15 29588.46 33774.43 30489.04 31592.16 28275.33 31777.75 32288.99 30766.20 28095.37 30965.12 34577.60 33391.65 316
gg-mvs-nofinetune81.77 29079.37 30388.99 25090.85 29977.73 26786.29 34179.63 37274.88 32483.19 26869.05 37160.34 31996.11 28175.46 28294.64 12793.11 280
CL-MVSNet_self_test81.74 29180.53 28985.36 31985.96 35472.45 32690.25 29093.07 25981.24 25179.85 30987.29 33370.93 22092.52 34566.95 33569.23 35691.11 329
Patchmatch-RL test81.67 29279.96 29886.81 30485.42 35971.23 33682.17 36387.50 35378.47 28577.19 32682.50 35870.81 22293.48 33582.66 19072.89 34895.71 164
ADS-MVSNet281.66 29379.71 30187.50 28391.35 27574.19 30683.33 35988.48 34872.90 34182.24 27785.77 34464.98 28893.20 34064.57 34783.74 26795.12 180
K. test v381.59 29480.15 29685.91 31589.89 32369.42 34992.57 24087.71 35185.56 15373.44 34889.71 29955.58 33795.52 30377.17 26769.76 35492.78 292
ADS-MVSNet81.56 29579.78 29986.90 30191.35 27571.82 33083.33 35989.16 34572.90 34182.24 27785.77 34464.98 28893.76 33164.57 34783.74 26795.12 180
FMVSNet581.52 29679.60 30287.27 28891.17 28177.95 25691.49 27092.26 28076.87 30276.16 33287.91 32651.67 35192.34 34667.74 33281.16 29991.52 318
dp81.47 29780.23 29485.17 32289.92 32265.49 36186.74 33890.10 33276.30 30881.10 29087.12 33562.81 30195.92 28868.13 33079.88 32194.09 232
Patchmatch-test81.37 29879.30 30487.58 28190.92 29574.16 30780.99 36587.68 35270.52 35376.63 33088.81 31071.21 21592.76 34460.01 36186.93 24595.83 157
EU-MVSNet81.32 29980.95 28782.42 33888.50 33663.67 36493.32 21091.33 30864.02 36380.57 29892.83 20861.21 31492.27 34776.34 27580.38 31791.32 322
test_040281.30 30079.17 30887.67 27993.19 21878.17 25292.98 22891.71 29675.25 31876.02 33590.31 28659.23 32696.37 27050.22 36983.63 27088.47 354
JIA-IIPM81.04 30178.98 31187.25 29088.64 33373.48 31281.75 36489.61 34373.19 33882.05 27973.71 36866.07 28395.87 29171.18 31084.60 26092.41 302
Anonymous2023120681.03 30279.77 30084.82 32487.85 34670.26 34591.42 27192.08 28673.67 33477.75 32289.25 30462.43 30393.08 34161.50 35682.00 29091.12 328
pmmvs-eth3d80.97 30378.72 31287.74 27784.99 36179.97 21190.11 29791.65 29975.36 31673.51 34786.03 34159.45 32593.96 32975.17 28572.21 34989.29 346
testgi80.94 30480.20 29583.18 33387.96 34466.29 35891.28 27390.70 32483.70 19078.12 31992.84 20751.37 35290.82 35763.34 35082.46 28392.43 301
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32683.98 36267.63 35689.95 30193.84 24664.79 36266.81 36391.14 26857.93 33195.17 31176.25 27688.10 22790.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 30679.21 30684.11 33085.75 35767.89 35392.86 23393.23 25675.61 31575.59 33787.47 33150.03 35494.33 32271.14 31181.21 29890.12 339
LF4IMVS80.37 30779.07 31084.27 32986.64 35069.87 34889.39 30891.05 31576.38 30674.97 34090.00 29347.85 36094.25 32574.55 29380.82 31088.69 352
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35865.29 36291.01 27993.93 24078.71 28376.32 33186.40 33959.20 32792.93 34372.59 30269.35 35591.00 332
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31885.24 36072.63 32388.45 32394.87 20482.99 21071.64 35588.07 32356.34 33591.75 35273.48 29963.36 36792.01 311
test20.0379.95 31079.08 30982.55 33685.79 35667.74 35591.09 27891.08 31381.23 25274.48 34489.96 29561.63 30790.15 35960.08 35976.38 34089.76 340
TDRefinement79.81 31177.34 31587.22 29379.24 37175.48 29693.12 22192.03 28876.45 30575.01 33991.58 25449.19 35796.44 26670.22 31669.18 35789.75 341
TinyColmap79.76 31277.69 31485.97 31291.71 26373.12 31489.55 30390.36 32775.03 32072.03 35390.19 28746.22 36396.19 27963.11 35181.03 30488.59 353
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 32086.93 29987.00 34976.23 28992.33 24990.74 32368.93 35674.52 34388.23 32149.58 35696.62 24957.64 36384.29 26287.94 357
MIMVSNet179.38 31477.28 31685.69 31786.35 35173.67 30991.61 26992.75 26778.11 29472.64 35188.12 32248.16 35991.97 35160.32 35877.49 33491.43 321
YYNet179.22 31577.20 31785.28 32188.20 34272.66 32185.87 34390.05 33574.33 32862.70 36587.61 32966.09 28292.03 34866.94 33672.97 34791.15 326
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32088.22 34172.77 31885.87 34390.06 33374.34 32762.62 36687.56 33066.14 28191.99 35066.90 33973.01 34691.10 330
MDA-MVSNet-bldmvs78.85 31776.31 32286.46 30789.76 32473.88 30888.79 31790.42 32579.16 27459.18 36788.33 31960.20 32094.04 32662.00 35468.96 35891.48 320
KD-MVS_2432*160078.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
miper_refine_blended78.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
PM-MVS78.11 32076.12 32484.09 33183.54 36470.08 34688.97 31685.27 35879.93 26474.73 34286.43 33834.70 37093.48 33579.43 24572.06 35088.72 351
test_vis1_rt77.96 32176.46 32182.48 33785.89 35571.74 33290.25 29078.89 37371.03 35271.30 35681.35 36042.49 36691.05 35684.55 16382.37 28484.65 360
test_fmvs377.67 32277.16 31979.22 34279.52 37061.14 36892.34 24891.64 30073.98 33178.86 31586.59 33627.38 37487.03 36788.12 11775.97 34289.50 342
PVSNet_073.20 2077.22 32374.83 32984.37 32790.70 30571.10 33883.09 36189.67 34272.81 34373.93 34683.13 35560.79 31793.70 33368.54 32550.84 37588.30 355
DSMNet-mixed76.94 32476.29 32378.89 34383.10 36556.11 37887.78 32879.77 37160.65 36675.64 33688.71 31361.56 30988.34 36660.07 36089.29 20792.21 309
new-patchmatchnet76.41 32575.17 32880.13 34082.65 36759.61 37087.66 33191.08 31378.23 29269.85 35983.22 35454.76 34291.63 35464.14 34964.89 36589.16 348
UnsupCasMVSNet_bld76.23 32673.27 33085.09 32383.79 36372.92 31585.65 34693.47 25371.52 34868.84 36179.08 36349.77 35593.21 33966.81 34060.52 36989.13 350
mvsany_test374.95 32773.26 33180.02 34174.61 37363.16 36685.53 34778.42 37474.16 32974.89 34186.46 33736.02 36989.09 36482.39 19466.91 36187.82 358
dmvs_testset74.57 32875.81 32770.86 35387.72 34740.47 38487.05 33777.90 37782.75 21571.15 35785.47 34667.98 26184.12 37345.26 37176.98 33988.00 356
MVS-HIRNet73.70 32972.20 33278.18 34691.81 25956.42 37782.94 36282.58 36555.24 36868.88 36066.48 37255.32 34095.13 31258.12 36288.42 22383.01 363
new_pmnet72.15 33070.13 33478.20 34582.95 36665.68 35983.91 35782.40 36662.94 36564.47 36479.82 36242.85 36586.26 36957.41 36474.44 34582.65 365
test_f71.95 33170.87 33375.21 34974.21 37559.37 37185.07 35185.82 35565.25 36170.42 35883.13 35523.62 37582.93 37578.32 25471.94 35183.33 362
pmmvs371.81 33268.71 33581.11 33975.86 37270.42 34486.74 33883.66 36258.95 36768.64 36280.89 36136.93 36889.52 36263.10 35263.59 36683.39 361
APD_test169.04 33366.26 33777.36 34880.51 36862.79 36785.46 34883.51 36354.11 37059.14 36884.79 34923.40 37789.61 36155.22 36570.24 35379.68 368
N_pmnet68.89 33468.44 33670.23 35489.07 33028.79 38888.06 32519.50 38969.47 35571.86 35484.93 34761.24 31391.75 35254.70 36677.15 33690.15 338
LCM-MVSNet66.00 33562.16 34077.51 34764.51 38358.29 37283.87 35890.90 31948.17 37254.69 36973.31 36916.83 38386.75 36865.47 34261.67 36887.48 359
test_vis3_rt65.12 33662.60 33872.69 35171.44 37660.71 36987.17 33565.55 38263.80 36453.22 37065.65 37414.54 38489.44 36376.65 27165.38 36367.91 373
FPMVS64.63 33762.55 33970.88 35270.80 37756.71 37384.42 35584.42 36051.78 37149.57 37181.61 35923.49 37681.48 37640.61 37776.25 34174.46 369
EGC-MVSNET61.97 33856.37 34278.77 34489.63 32773.50 31189.12 31382.79 3640.21 3861.24 38784.80 34839.48 36790.04 36044.13 37275.94 34372.79 370
PMMVS259.60 33956.40 34169.21 35768.83 38046.58 38273.02 37477.48 37855.07 36949.21 37272.95 37017.43 38280.04 37749.32 37044.33 37780.99 367
testf159.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
APD_test259.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
ANet_high58.88 34254.22 34672.86 35056.50 38656.67 37480.75 36686.00 35473.09 34037.39 37864.63 37522.17 37879.49 37843.51 37323.96 38082.43 366
Gipumacopyleft57.99 34354.91 34567.24 35888.51 33465.59 36052.21 37790.33 32843.58 37442.84 37751.18 37820.29 38085.07 37034.77 37870.45 35251.05 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 34448.46 34863.48 35945.72 38846.20 38373.41 37378.31 37541.03 37730.06 38065.68 3736.05 38783.43 37430.04 37965.86 36260.80 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 34548.47 34756.66 36152.26 38718.98 39041.51 37981.40 36810.10 38144.59 37675.01 36728.51 37268.16 37953.54 36749.31 37682.83 364
MVEpermissive39.65 2343.39 34638.59 35257.77 36056.52 38548.77 38155.38 37658.64 38629.33 38028.96 38152.65 3774.68 38864.62 38228.11 38033.07 37859.93 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 34742.29 34946.03 36365.58 38237.41 38573.51 37264.62 38333.99 37828.47 38247.87 37919.90 38167.91 38022.23 38124.45 37932.77 378
EMVS42.07 34841.12 35044.92 36463.45 38435.56 38773.65 37163.48 38433.05 37926.88 38345.45 38021.27 37967.14 38119.80 38223.02 38132.06 379
tmp_tt35.64 34939.24 35124.84 36514.87 38923.90 38962.71 37551.51 3886.58 38336.66 37962.08 37644.37 36430.34 38552.40 36822.00 38220.27 380
cdsmvs_eth3d_5k22.14 35029.52 3530.00 3690.00 3920.00 3930.00 38095.76 1450.00 3870.00 38894.29 15475.66 1600.00 3880.00 3860.00 3860.00 384
wuyk23d21.27 35120.48 35423.63 36668.59 38136.41 38649.57 3786.85 3909.37 3827.89 3844.46 3864.03 38931.37 38417.47 38316.07 3833.12 381
testmvs8.92 35211.52 3551.12 3681.06 3900.46 39286.02 3420.65 3910.62 3842.74 3859.52 3840.31 3910.45 3872.38 3840.39 3842.46 383
test1238.76 35311.22 3561.39 3670.85 3910.97 39185.76 3450.35 3920.54 3852.45 3868.14 3850.60 3900.48 3862.16 3850.17 3852.71 382
ab-mvs-re7.82 35410.43 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38893.88 1750.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.64 3558.86 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38779.70 1120.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS198.86 185.54 6498.29 197.49 689.79 4396.29 16
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
PC_three_145282.47 21997.09 1097.07 4192.72 198.04 14992.70 4599.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
test_one_060198.58 1185.83 5897.44 1591.05 1396.78 1498.06 691.45 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS98.15 3486.62 3197.07 4483.63 19294.19 3296.91 4787.57 3199.26 4191.99 6498.44 50
RE-MVS-def93.68 4597.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2182.94 7792.73 4197.80 7297.88 76
IU-MVS98.77 586.00 4896.84 6481.26 25097.26 795.50 1399.13 399.03 7
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3992.59 298.94 7492.25 5398.99 1498.84 13
test_241102_TWO97.44 1590.31 2797.62 598.07 491.46 1099.58 995.66 799.12 698.98 9
test_241102_ONE98.77 585.99 5097.44 1590.26 3297.71 197.96 1092.31 499.38 30
9.1494.47 1897.79 4996.08 5697.44 1586.13 14195.10 2597.40 2388.34 2299.22 4393.25 3498.70 33
save fliter97.85 4685.63 6395.21 10196.82 6789.44 50
test_0728_THIRD90.75 1897.04 1198.05 892.09 699.55 1595.64 999.13 399.13 2
test_0728_SECOND95.01 1698.79 286.43 3797.09 1697.49 699.61 395.62 1199.08 798.99 8
test072698.78 385.93 5397.19 1197.47 1190.27 3097.64 498.13 191.47 8
GSMVS96.12 143
test_part298.55 1287.22 1796.40 15
sam_mvs171.70 21196.12 143
sam_mvs70.60 224
ambc83.06 33579.99 36963.51 36577.47 37092.86 26374.34 34584.45 35028.74 37195.06 31573.06 30168.89 35990.61 334
MTGPAbinary96.97 49
test_post188.00 3269.81 38369.31 24695.53 30276.65 271
test_post10.29 38270.57 22895.91 290
patchmatchnet-post83.76 35271.53 21296.48 262
GG-mvs-BLEND87.94 27689.73 32677.91 25787.80 32778.23 37680.58 29783.86 35159.88 32395.33 31071.20 30892.22 17190.60 336
MTMP96.16 5060.64 385
gm-plane-assit89.60 32868.00 35277.28 30088.99 30797.57 17979.44 244
test9_res91.91 6898.71 3198.07 65
TEST997.53 5886.49 3594.07 17696.78 7081.61 24392.77 6496.20 7787.71 2899.12 50
test_897.49 6086.30 4394.02 18196.76 7381.86 23692.70 6896.20 7787.63 2999.02 60
agg_prior290.54 9298.68 3698.27 51
agg_prior97.38 6385.92 5596.72 7992.16 7998.97 71
TestCases89.52 23695.01 14277.79 26490.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
test_prior485.96 5294.11 171
test_prior294.12 17087.67 10892.63 6996.39 7286.62 3691.50 7598.67 38
test_prior93.82 5797.29 6784.49 7996.88 6098.87 7898.11 64
旧先验293.36 20971.25 35094.37 2997.13 22486.74 136
新几何293.11 223
新几何193.10 7397.30 6684.35 8695.56 15971.09 35191.26 10396.24 7582.87 7898.86 8079.19 24898.10 6196.07 147
旧先验196.79 7681.81 15495.67 15196.81 5386.69 3597.66 7696.97 115
无先验93.28 21696.26 10573.95 33299.05 5480.56 22996.59 127
原ACMM292.94 230
原ACMM192.01 12097.34 6481.05 17596.81 6878.89 27790.45 11095.92 9082.65 7998.84 8480.68 22798.26 5696.14 141
test22296.55 8481.70 15692.22 25395.01 19268.36 35790.20 11496.14 8280.26 10597.80 7296.05 149
testdata298.75 8878.30 255
segment_acmp87.16 34
testdata90.49 19296.40 8977.89 25995.37 17772.51 34493.63 4296.69 5682.08 9097.65 17283.08 18097.39 7995.94 151
testdata192.15 25587.94 98
test1294.34 4897.13 7086.15 4696.29 10291.04 10585.08 5399.01 6298.13 6097.86 78
plane_prior794.70 16182.74 131
plane_prior694.52 17082.75 12974.23 177
plane_prior596.22 11098.12 13488.15 11489.99 19094.63 199
plane_prior494.86 130
plane_prior382.75 12990.26 3286.91 170
plane_prior295.85 6790.81 16
plane_prior194.59 165
plane_prior82.73 13295.21 10189.66 4789.88 195
n20.00 393
nn0.00 393
door-mid85.49 356
lessismore_v086.04 31188.46 33768.78 35180.59 37073.01 35090.11 29055.39 33996.43 26775.06 28765.06 36492.90 287
LGP-MVS_train91.12 16594.47 17281.49 16296.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
test1196.57 90
door85.33 357
HQP5-MVS81.56 158
HQP-NCC94.17 18494.39 15588.81 6885.43 211
ACMP_Plane94.17 18494.39 15588.81 6885.43 211
BP-MVS87.11 133
HQP4-MVS85.43 21197.96 15594.51 209
HQP3-MVS96.04 12489.77 199
HQP2-MVS73.83 187
NP-MVS94.37 17882.42 14193.98 168
MDTV_nov1_ep13_2view55.91 37987.62 33273.32 33784.59 23070.33 23174.65 29195.50 169
MDTV_nov1_ep1383.56 26791.69 26569.93 34787.75 32991.54 30378.60 28484.86 22588.90 30969.54 24096.03 28370.25 31488.93 214
ACMMP++_ref87.47 236
ACMMP++88.01 230
Test By Simon80.02 107
ITE_SJBPF88.24 26891.88 25577.05 27692.92 26185.54 15480.13 30493.30 19257.29 33396.20 27772.46 30384.71 25991.49 319
DeepMVS_CXcopyleft56.31 36274.23 37451.81 38056.67 38744.85 37348.54 37375.16 36627.87 37358.74 38340.92 37652.22 37458.39 376