This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2099.50 3699.72 11
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7099.90 296.18 6699.50 3699.58 25
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4399.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7499.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6699.88 495.20 9799.57 2599.60 21
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5399.87 795.46 9499.59 1999.64 16
MM97.29 1996.98 2698.23 1198.01 10895.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2899.58 2399.59 22
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2499.67 699.75 6
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
MVS_030497.04 2896.73 4297.96 2397.60 13794.36 3698.01 5994.09 35197.33 296.29 8898.79 2489.73 8499.86 899.36 299.42 4999.67 13
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18595.55 11798.78 2591.07 6599.86 896.58 4699.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5899.86 895.63 8799.59 1999.62 18
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2499.66 1199.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2499.65 1399.74 8
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13197.14 5398.44 4491.17 6499.85 1894.35 11899.46 4299.57 26
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
ACMMPcopyleft96.27 6395.93 6897.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9299.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2499.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2899.72 299.77 2
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4299.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
CANet96.39 5996.02 6797.50 4797.62 13493.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3899.20 7499.29 63
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14692.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11098.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 8099.78 3599.06 799.41 5299.59 22
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
test_fmvsmconf0.01_n96.15 6695.85 7297.03 6992.66 36091.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6398.30 3296.19 596.10 9798.95 889.42 8599.76 3898.90 1099.08 8597.43 205
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13687.48 12399.73 4293.53 13297.77 13598.55 129
DeepC-MVS93.07 396.06 6895.66 7497.29 5597.96 11193.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D93.57 14892.61 16696.47 9097.59 13891.61 11797.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
CANet_DTU94.37 11593.65 12596.55 8096.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4799.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
DELS-MVS96.61 5296.38 5997.30 5497.79 12293.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS92.76 18391.51 20496.52 8298.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3599.49 3999.57 26
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 7999.67 5686.50 27399.13 8198.69 122
testdata299.67 5685.96 285
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9599.65 5899.06 798.63 10498.18 162
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3699.65 5894.58 11699.31 63
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9698.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4499.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14890.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9899.65 5894.80 10998.27 12096.17 244
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 6199.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13190.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25290.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
h-mvs3394.15 12393.52 13296.04 12497.81 12190.22 17597.62 11497.58 15095.19 2096.74 6697.45 12583.67 17599.61 6995.85 7679.73 36898.29 155
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 7997.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
train_agg96.30 6295.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
EI-MVSNet-UG-set96.34 6196.30 6096.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7599.58 7796.23 5797.96 13098.90 104
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7099.58 7796.44 5198.32 11899.13 77
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 16896.40 8597.99 8490.99 6799.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15398.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15997.41 12969.94 34299.56 8591.04 18491.11 26598.22 158
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6899.55 8796.06 6799.25 6999.51 37
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7699.54 8987.95 24199.12 8398.49 137
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15697.45 12566.24 36799.53 9190.68 19092.71 23799.01 89
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15090.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10199.53 9194.79 11197.81 13396.17 244
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19496.77 6598.35 5190.21 7799.53 9194.80 10999.63 1699.38 58
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net95.95 7595.53 7697.20 6397.67 12792.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9399.51 9690.36 19497.35 14799.11 81
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
MAR-MVS94.22 11993.46 13596.51 8598.00 11092.19 9997.67 10397.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19795.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8199.48 10192.08 16198.59 10798.44 145
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 6999.46 10399.25 6999.22 70
ab-mvs93.57 14892.55 16896.64 7497.28 14991.96 10695.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15892.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3499.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS93.82 14093.08 14696.02 12697.88 11889.96 18497.72 9995.85 28492.43 12795.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
WTY-MVS94.71 11194.02 11696.79 7297.71 12692.05 10296.59 21697.35 18990.61 19194.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4099.48 4099.45 47
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 3997.76 13699.08 83
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14782.02 34397.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1798.82 9797.40 207
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32297.56 11897.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3299.50 3699.51 37
test_yl94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11287.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sss94.51 11393.80 12196.64 7497.07 15991.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8899.25 12391.27 17998.77 9999.13 77
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
MVS_111021_LR96.24 6496.19 6396.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8299.24 12495.87 7499.20 7498.58 128
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
alignmvs95.87 7895.23 8897.78 3197.56 14395.19 2197.86 8097.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
iter_conf0596.12 6796.06 6696.29 10798.07 10591.48 12497.25 15397.65 13990.43 19794.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5395.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
sasdasda96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
canonicalmvs96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
MGCFI-Net95.94 7695.40 8397.56 4697.59 13894.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13396.19 6594.73 20498.91 101
API-MVS94.84 10794.49 10995.90 13197.90 11792.00 10497.80 9097.48 16289.19 23094.81 13096.71 16488.84 9499.17 13388.91 22998.76 10096.53 233
LFMVS93.60 14692.63 16496.52 8298.13 10091.27 13397.94 7393.39 36490.57 19496.29 8898.31 6069.00 34699.16 13594.18 12095.87 17899.12 80
AllTest90.23 28288.98 29493.98 23497.94 11386.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
TestCases93.98 23497.94 11386.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13890.01 19896.16 17398.25 156
1112_ss93.37 15492.42 17596.21 11497.05 16490.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13888.12 23893.67 22598.50 135
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14592.93 17796.62 17889.13 8999.14 13889.21 22297.78 13498.97 93
PAPR94.18 12093.42 14096.48 8997.64 13191.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8799.11 14186.14 27997.38 14598.90 104
iter_conf05_1196.17 6596.16 6496.21 11497.48 14590.74 16098.14 4997.80 12292.80 11997.34 4897.29 13388.54 10299.10 14296.40 5299.64 1498.80 115
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14285.97 28497.46 14095.83 258
thres600view792.49 18991.60 19895.18 16897.91 11689.47 19897.65 10694.66 33792.18 13793.33 16594.91 25878.06 28299.10 14281.61 32994.06 22096.98 220
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16589.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14287.70 24893.58 23098.49 137
mamv494.66 11296.10 6590.37 34298.01 10873.41 38896.82 19097.78 12389.95 20794.52 13797.43 12892.91 2799.09 14698.28 1499.16 7898.60 126
CNLPA94.28 11893.53 13096.52 8298.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13885.21 15399.09 14687.64 25397.83 13297.92 179
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14094.77 13197.96 8787.01 13199.09 14691.31 17896.77 16198.36 152
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14996.73 4199.05 8797.31 212
thres100view90092.43 19091.58 19994.98 18097.92 11589.37 20497.71 10194.66 33792.20 13393.31 16694.90 25978.06 28299.08 14981.40 33294.08 21696.48 236
tfpn200view992.38 19391.52 20294.95 18397.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.98 220
MVSMamba_pp96.06 6895.92 6996.50 8897.00 16891.81 10997.33 14697.77 12492.49 12696.78 6497.19 14188.50 10399.07 15396.54 4899.67 698.60 126
test250691.60 22490.78 23094.04 23197.66 12983.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15393.01 14898.49 11099.25 68
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12985.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15393.05 14598.49 11099.25 68
tttt051792.96 17292.33 17794.87 18797.11 15787.16 26897.97 6992.09 37690.63 18993.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
test111193.19 16192.82 15594.30 22097.58 14284.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
thisisatest053093.03 16992.21 18095.49 15797.07 15989.11 21797.49 12992.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12383.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13190.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9099.04 16096.27 5499.00 9196.85 226
thres20092.23 20391.39 20594.75 19797.61 13589.03 21896.60 21595.09 32192.08 13993.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
MSDG91.42 23590.24 25494.96 18297.15 15688.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
EIA-MVS95.53 8695.47 7895.71 14397.06 16289.63 18997.82 8797.87 11193.57 8193.92 15295.04 25390.61 7398.95 16594.62 11498.68 10298.54 130
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10398.49 1994.66 4897.24 5098.41 4792.31 4198.94 16696.61 4599.46 4298.96 94
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13479.13 26098.93 16794.61 11592.84 23497.28 213
ETV-MVS96.02 7195.89 7196.40 9697.16 15492.44 8897.47 13097.77 12494.55 5096.48 8194.51 27891.23 6398.92 16895.65 8598.19 12397.82 187
Vis-MVSNetpermissive95.23 9394.81 9696.51 8597.18 15391.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13987.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16288.53 23195.28 29197.45 17391.68 14994.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
XVG-OURS93.72 14493.35 14194.80 19397.07 15988.61 22694.79 30697.46 16891.97 14393.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14691.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17291.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7898.85 17589.67 20898.98 9298.64 125
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15191.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14489.56 19398.67 1097.00 21990.69 18394.24 14397.62 11689.79 8398.81 17993.39 13896.49 16998.92 100
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17494.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8596.87 17391.49 12397.50 12497.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13184.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16895.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6097.97 8691.24 6198.75 18696.92 3799.33 6198.94 97
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11697.36 18891.40 15990.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10697.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14197.25 19791.52 15288.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4798.71 19297.10 3399.17 7698.90 104
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13086.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13475.35 30698.65 19788.99 22792.84 23497.28 213
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13779.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9497.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17389.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
EC-MVSNet96.42 5796.47 5396.26 11097.01 16791.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8698.60 20297.45 2899.11 8498.67 124
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15487.99 24796.15 24895.60 29790.62 19091.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
AUN-MVS91.76 21790.75 23294.81 19097.00 16888.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
HQP4-MVS90.14 23798.50 21095.78 262
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
hse-mvs293.45 15292.99 14894.81 19097.02 16688.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6397.08 20890.72 18296.79 6398.18 7063.07 37698.45 21497.62 2298.42 11597.36 208
IS-MVSNet94.90 10494.52 10896.05 12397.67 12790.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13796.96 22190.68 18496.80 6298.04 7969.25 34598.40 21797.58 2398.50 10997.16 217
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8098.66 1692.30 13092.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14084.42 16398.39 22187.71 24796.50 16899.01 89
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
BH-untuned92.94 17492.62 16593.92 24297.22 15086.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5896.80 23891.18 16797.77 3797.93 8858.02 38498.29 22997.63 2198.21 12297.23 216
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
baseline192.82 18191.90 18995.55 15397.20 15290.77 15897.19 16194.58 34092.20 13392.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15592.50 12589.94 24996.54 18188.65 9898.18 23893.83 13090.90 27095.86 254
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9697.53 15792.00 14288.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
patchmatchnet-post90.45 36782.65 20198.10 247
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17792.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10297.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11297.53 15792.04 14088.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6198.49 3888.98 9198.08 25195.03 10195.62 18596.46 238
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13889.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
test_post17.58 41181.76 21898.08 251
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 17090.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18791.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16491.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14397.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17591.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14986.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18190.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15487.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15796.22 9297.32 13186.20 14297.92 28294.07 12199.05 8798.85 110
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15790.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13587.92 24998.10 5195.80 28692.22 13193.02 17197.45 12584.53 16297.91 28588.24 23797.97 12999.02 86
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12397.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14489.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9196.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17884.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18589.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5798.68 1391.46 15588.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8798.19 5591.70 14888.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8498.24 4791.46 15588.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13396.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3699.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9298.18 5791.29 16087.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12496.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11097.65 13990.74 18087.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19375.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18780.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19187.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17688.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14785.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 17086.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 980.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36875.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7296.05 6899.26 6799.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3199.66 1199.74 8
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
MTMP97.86 8082.03 406
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
新几何295.79 267
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
原ACMM295.67 272
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9599.15 7998.72 119
segment_acmp92.89 28
testdata195.26 29593.10 106
plane_prior796.21 21889.98 182
plane_prior696.10 22990.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 226
plane_prior89.99 18097.24 15494.06 6792.16 247
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP3-MVS97.39 18392.10 248
HQP2-MVS80.95 227
NP-MVS95.99 23389.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 97