This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MSC_two_6792asdad79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
No_MVS79.95 387.24 1461.04 3185.62 2390.96 179.31 890.65 887.85 26
DVP-MVS++81.67 182.40 179.47 987.24 1459.15 5988.18 187.15 365.04 1584.26 591.86 667.01 190.84 379.48 591.38 288.42 10
test_0728_SECOND79.19 1587.82 359.11 6287.85 587.15 390.84 378.66 1490.61 1187.62 36
SED-MVS81.56 282.30 279.32 1287.77 458.90 6887.82 786.78 1064.18 3185.97 191.84 866.87 390.83 578.63 1690.87 588.23 15
test_241102_TWO86.73 1264.18 3184.26 591.84 865.19 690.83 578.63 1690.70 787.65 34
test_241102_ONE87.77 458.90 6886.78 1064.20 3085.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3387.75 759.07 6387.85 585.03 3464.26 2883.82 892.00 364.82 890.75 878.66 1490.61 1185.45 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1583.82 892.00 364.69 1090.75 879.48 590.63 1088.09 20
DPE-MVScopyleft80.56 580.98 579.29 1487.27 1360.56 4185.71 2586.42 1463.28 4383.27 1391.83 1064.96 790.47 1076.41 2589.67 1886.84 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPU-MVS79.83 687.54 1160.93 3587.82 789.89 4167.01 190.33 1173.16 4491.15 488.23 15
SteuartSystems-ACMMP79.48 1079.31 1079.98 283.01 7262.18 1687.60 985.83 1966.69 878.03 2690.98 1554.26 5190.06 1278.42 1889.02 2387.69 32
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS69.38 278.56 1778.14 2179.83 683.60 6361.62 2384.17 4186.85 663.23 4573.84 5790.25 3157.68 2789.96 1374.62 3389.03 2287.89 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS80.16 780.59 678.86 2786.64 2160.02 4588.12 386.42 1462.94 5082.40 1492.12 259.64 1889.76 1478.70 1288.32 3186.79 60
SMA-MVScopyleft80.28 680.39 779.95 386.60 2361.95 1986.33 1385.75 2162.49 6182.20 1592.28 156.53 3389.70 1579.85 491.48 188.19 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030478.73 1578.75 1478.66 2980.82 10057.62 8285.31 2981.31 11170.51 174.17 5291.24 1454.99 4489.56 1682.29 188.13 3488.80 6
PC_three_145255.09 19684.46 489.84 4266.68 589.41 1774.24 3491.38 288.42 10
3Dnovator+66.72 475.84 4474.57 5279.66 882.40 7659.92 4785.83 2186.32 1666.92 667.80 14789.24 5042.03 18789.38 1864.07 10686.50 5489.69 2
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1786.83 865.51 1183.81 1090.51 2263.71 1289.23 1981.51 288.44 2788.09 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC78.58 1678.31 1879.39 1187.51 1262.61 1385.20 3084.42 4266.73 774.67 4789.38 4855.30 4189.18 2074.19 3687.34 4286.38 68
CNVR-MVS79.84 979.97 979.45 1087.90 262.17 1784.37 3585.03 3466.96 477.58 2790.06 3559.47 2089.13 2178.67 1389.73 1687.03 52
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 1986.15 3460.86 3684.71 3284.85 3861.98 7373.06 7088.88 5453.72 5889.06 2268.27 6888.04 3787.42 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1884.92 5660.32 4483.03 5685.33 2762.86 5380.17 1790.03 3761.76 1488.95 2374.21 3588.67 2688.12 19
CANet76.46 3675.93 3978.06 3881.29 9257.53 8482.35 6883.31 7367.78 270.09 9986.34 9454.92 4688.90 2472.68 4784.55 6487.76 31
ZD-MVS86.64 2160.38 4382.70 8557.95 14178.10 2490.06 3556.12 3788.84 2574.05 3787.00 47
ZNCC-MVS78.82 1278.67 1679.30 1386.43 2862.05 1886.62 1186.01 1863.32 4275.08 3890.47 2553.96 5588.68 2676.48 2489.63 2087.16 50
PHI-MVS75.87 4375.36 4477.41 4580.62 10655.91 11284.28 3885.78 2056.08 17473.41 6186.58 8950.94 9288.54 2770.79 5889.71 1787.79 30
GST-MVS78.14 2177.85 2378.99 2486.05 3861.82 2285.84 2085.21 2963.56 4074.29 5190.03 3752.56 6888.53 2874.79 3288.34 2986.63 64
ACMMP_NAP78.77 1478.78 1378.74 2885.44 4561.04 3183.84 4885.16 3062.88 5278.10 2491.26 1352.51 6988.39 2979.34 790.52 1386.78 61
HFP-MVS78.01 2377.65 2479.10 2086.71 1962.81 886.29 1484.32 4462.82 5473.96 5590.50 2353.20 6488.35 3074.02 3887.05 4386.13 82
APD-MVScopyleft78.02 2278.04 2277.98 4086.44 2760.81 3885.52 2684.36 4360.61 8879.05 2190.30 2955.54 4088.32 3173.48 4387.03 4484.83 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR77.71 2477.23 2779.16 1686.75 1862.93 786.29 1484.24 4562.82 5473.55 6090.56 2149.80 9988.24 3274.02 3887.03 4486.32 76
region2R77.67 2677.18 2879.15 1786.76 1762.95 686.29 1484.16 4762.81 5673.30 6290.58 2049.90 9788.21 3373.78 4087.03 4486.29 79
PGM-MVS76.77 3476.06 3778.88 2686.14 3562.73 982.55 6683.74 5961.71 7572.45 8190.34 2848.48 11588.13 3472.32 4886.85 4985.78 93
DP-MVS Recon72.15 8370.73 9476.40 5786.57 2457.99 7881.15 8882.96 8057.03 15366.78 16585.56 11344.50 16688.11 3551.77 20580.23 10983.10 186
test1277.76 4284.52 5858.41 7483.36 7172.93 7254.61 4988.05 3688.12 3586.81 59
XVS77.17 3076.56 3379.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 8290.01 3947.95 11988.01 3771.55 5586.74 5186.37 70
X-MVStestdata70.21 11367.28 16179.00 2286.32 2962.62 1185.83 2183.92 5164.55 2272.17 826.49 38147.95 11988.01 3771.55 5586.74 5186.37 70
EC-MVSNet75.84 4475.87 4175.74 6878.86 14152.65 15883.73 4986.08 1763.47 4172.77 7487.25 7653.13 6587.93 3971.97 5185.57 5986.66 63
CDPH-MVS76.31 3775.67 4378.22 3685.35 4859.14 6181.31 8684.02 4856.32 16874.05 5388.98 5353.34 6387.92 4069.23 6688.42 2887.59 37
ETV-MVS74.46 5773.84 6076.33 5979.27 13155.24 12579.22 11485.00 3664.97 2072.65 7679.46 23853.65 6287.87 4167.45 8082.91 8085.89 90
DPM-MVS75.47 4775.00 4876.88 5081.38 9159.16 5879.94 10185.71 2256.59 16472.46 7986.76 8056.89 3187.86 4266.36 8788.91 2583.64 173
API-MVS72.17 8171.41 8174.45 9981.95 8257.22 8884.03 4480.38 13159.89 10868.40 12982.33 17849.64 10087.83 4351.87 20384.16 7078.30 256
MG-MVS73.96 6173.89 5974.16 10485.65 4249.69 20781.59 8381.29 11361.45 7771.05 9188.11 6151.77 8187.73 4461.05 13683.09 7585.05 125
MCST-MVS77.48 2777.45 2677.54 4486.67 2058.36 7583.22 5486.93 556.91 15674.91 4288.19 6059.15 2287.68 4573.67 4187.45 4186.57 65
TSAR-MVS + MP.78.44 1878.28 1978.90 2584.96 5261.41 2684.03 4483.82 5859.34 11679.37 1989.76 4459.84 1687.62 4676.69 2386.74 5187.68 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba71.15 9569.54 11275.99 6277.61 18353.46 14481.95 7775.11 22257.73 14666.95 16385.96 10537.14 24087.56 4767.94 7375.49 16686.97 53
HPM-MVScopyleft77.28 2876.85 2978.54 3185.00 5160.81 3882.91 5985.08 3162.57 5973.09 6989.97 4050.90 9387.48 4875.30 2886.85 4987.33 48
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS77.12 3176.68 3178.43 3286.05 3863.18 587.55 1083.45 6762.44 6372.68 7590.50 2348.18 11787.34 4973.59 4285.71 5784.76 135
HPM-MVS++copyleft79.88 880.14 879.10 2088.17 164.80 186.59 1283.70 6065.37 1278.78 2290.64 1858.63 2487.24 5079.00 1190.37 1485.26 120
TSAR-MVS + GP.74.90 4974.15 5677.17 4882.00 8058.77 7181.80 7878.57 16158.58 12774.32 5084.51 13355.94 3887.22 5167.11 8284.48 6685.52 106
HQP_MVS74.31 5873.73 6176.06 6181.41 8956.31 10184.22 3984.01 4964.52 2469.27 11786.10 9945.26 16087.21 5268.16 7180.58 10284.65 136
plane_prior584.01 4987.21 5268.16 7180.58 10284.65 136
iter_conf_final69.82 12168.02 14075.23 8079.38 12852.91 15580.11 9873.96 23954.99 20268.04 13983.59 15129.05 31087.16 5465.41 9877.62 14285.63 103
iter_conf0569.40 13667.62 14674.73 8677.84 17251.13 18079.28 11373.71 24254.62 20668.17 13483.59 15128.68 31587.16 5465.74 9576.95 15285.91 88
ACMMPcopyleft76.02 4275.33 4578.07 3785.20 4961.91 2085.49 2884.44 4163.04 4869.80 10989.74 4545.43 15687.16 5472.01 5082.87 8285.14 121
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS73.33 6572.68 6975.29 7978.82 14353.33 14878.23 12684.79 3961.30 8070.41 9681.04 20652.41 7287.12 5764.61 10582.49 8785.41 114
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t70.83 10169.56 11174.64 9286.21 3154.63 13282.34 6981.81 9648.22 27363.01 22985.83 10940.92 20487.10 5857.91 15479.79 11182.18 200
SF-MVS78.82 1279.22 1177.60 4382.88 7457.83 7984.99 3188.13 261.86 7479.16 2090.75 1757.96 2587.09 5977.08 2290.18 1587.87 25
AdaColmapbinary69.99 11768.66 12873.97 10784.94 5457.83 7982.63 6478.71 15756.28 17064.34 21484.14 13841.57 19487.06 6046.45 24678.88 12777.02 273
HQP4-MVS67.85 14286.93 6184.32 143
HQP-MVS73.45 6472.80 6875.40 7580.66 10254.94 12782.31 7083.90 5362.10 6767.85 14285.54 11645.46 15486.93 6167.04 8380.35 10684.32 143
9.1478.75 1483.10 6984.15 4288.26 159.90 10578.57 2390.36 2657.51 3086.86 6377.39 1989.52 21
RRT_MVS69.42 13567.49 15375.21 8178.01 16852.56 16282.23 7478.15 17555.84 17865.65 18885.07 12030.86 29686.83 6461.56 13470.00 23586.24 81
DELS-MVS74.76 5174.46 5375.65 7177.84 17252.25 16875.59 18284.17 4663.76 3773.15 6682.79 16459.58 1986.80 6567.24 8186.04 5687.89 23
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss78.35 1978.46 1778.03 3984.96 5259.52 5282.93 5885.39 2662.15 6676.41 3291.51 1152.47 7186.78 6680.66 389.64 1987.80 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 1978.26 2078.64 3086.54 2563.47 486.02 1983.55 6463.89 3673.60 5990.60 1954.85 4786.72 6777.20 2188.06 3685.74 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS71.78 8670.60 9575.30 7879.85 11953.54 14277.27 14983.26 7657.92 14266.49 17179.39 23952.07 7786.69 6860.05 14279.14 12585.66 101
MTAPA76.90 3376.42 3478.35 3486.08 3763.57 274.92 19880.97 12265.13 1475.77 3490.88 1648.63 11286.66 6977.23 2088.17 3384.81 132
LPG-MVS_test72.74 7171.74 7675.76 6680.22 11057.51 8582.55 6683.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
LGP-MVS_train75.76 6680.22 11057.51 8583.40 6961.32 7866.67 16987.33 7339.15 21786.59 7067.70 7677.30 14883.19 183
CSCG76.92 3276.75 3077.41 4583.96 6259.60 5082.95 5786.50 1360.78 8675.27 3684.83 12360.76 1586.56 7267.86 7487.87 4086.06 84
mPP-MVS76.54 3575.93 3978.34 3586.47 2663.50 385.74 2482.28 8962.90 5171.77 8590.26 3046.61 14386.55 7371.71 5385.66 5884.97 128
SR-MVS76.13 4175.70 4277.40 4785.87 4061.20 2985.52 2682.19 9059.99 10475.10 3790.35 2747.66 12486.52 7471.64 5482.99 7784.47 141
原ACMM174.69 8885.39 4759.40 5383.42 6851.47 24070.27 9886.61 8748.61 11386.51 7553.85 18787.96 3878.16 258
QAPM70.05 11568.81 12573.78 11176.54 20753.43 14583.23 5383.48 6552.89 22565.90 18386.29 9541.55 19686.49 7651.01 21078.40 13681.42 211
test_prior76.69 5284.20 6157.27 8784.88 3786.43 7786.38 68
FE-MVS65.91 20263.33 21973.63 12277.36 18951.95 17572.62 23575.81 20853.70 21765.31 19478.96 24528.81 31486.39 7843.93 26973.48 18682.55 193
EPP-MVSNet72.16 8271.31 8574.71 8778.68 14749.70 20582.10 7581.65 9860.40 9265.94 18185.84 10851.74 8286.37 7955.93 16679.55 11788.07 22
CS-MVS-test75.62 4675.31 4676.56 5680.63 10555.13 12683.88 4785.22 2862.05 7071.49 8986.03 10253.83 5786.36 8067.74 7586.91 4888.19 17
IB-MVS56.42 1265.40 21062.73 22773.40 13274.89 22852.78 15773.09 22975.13 22155.69 18358.48 28073.73 30332.86 28086.32 8150.63 21370.11 23381.10 223
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS76.25 3975.98 3877.06 4980.15 11555.63 11784.51 3483.90 5363.24 4473.30 6287.27 7555.06 4386.30 8271.78 5284.58 6389.25 4
PAPM_NR72.63 7371.80 7575.13 8281.72 8453.42 14679.91 10383.28 7559.14 11866.31 17685.90 10751.86 7986.06 8357.45 15780.62 10085.91 88
PAPR71.72 8970.82 9374.41 10081.20 9651.17 17979.55 11183.33 7255.81 18066.93 16484.61 12950.95 9186.06 8355.79 16979.20 12386.00 85
ACMP63.53 672.30 7871.20 8775.59 7480.28 10857.54 8382.74 6282.84 8460.58 8965.24 20086.18 9639.25 21586.03 8566.95 8576.79 15583.22 181
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVS_3200maxsize74.96 4874.39 5476.67 5382.20 7858.24 7683.67 5083.29 7458.41 13073.71 5890.14 3245.62 14985.99 8669.64 6282.85 8385.78 93
Effi-MVS+73.31 6672.54 7075.62 7277.87 17153.64 13979.62 11079.61 14061.63 7672.02 8482.61 16956.44 3485.97 8763.99 10979.07 12687.25 49
DP-MVS65.68 20463.66 21471.75 16084.93 5556.87 9880.74 9273.16 24753.06 22259.09 27382.35 17736.79 24685.94 8832.82 33569.96 23772.45 316
OPM-MVS74.73 5274.25 5576.19 6080.81 10159.01 6682.60 6583.64 6163.74 3872.52 7887.49 7047.18 13485.88 8969.47 6480.78 9883.66 171
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SR-MVS-dyc-post74.57 5573.90 5876.58 5583.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3344.74 16385.84 9068.20 6981.76 9384.03 151
cascas65.98 20163.42 21773.64 12177.26 19152.58 16172.26 24277.21 19248.56 26861.21 25274.60 29832.57 28985.82 9150.38 21576.75 15682.52 195
h-mvs3372.71 7271.49 7976.40 5781.99 8159.58 5176.92 15776.74 19960.40 9274.81 4385.95 10645.54 15285.76 9270.41 6070.61 22483.86 160
FA-MVS(test-final)69.82 12168.48 13073.84 10978.44 15350.04 20075.58 18478.99 15158.16 13467.59 15182.14 18542.66 18085.63 9356.60 16176.19 15985.84 91
IS-MVSNet71.57 9071.00 9173.27 13578.86 14145.63 25580.22 9678.69 15864.14 3466.46 17287.36 7249.30 10385.60 9450.26 21683.71 7388.59 8
HPM-MVS_fast74.30 5973.46 6476.80 5184.45 6059.04 6583.65 5181.05 11960.15 10170.43 9589.84 4241.09 20385.59 9567.61 7882.90 8185.77 96
SD-MVS77.70 2577.62 2577.93 4184.47 5961.88 2184.55 3383.87 5660.37 9579.89 1889.38 4854.97 4585.58 9676.12 2684.94 6186.33 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator64.47 572.49 7571.39 8275.79 6577.70 17558.99 6780.66 9383.15 7862.24 6565.46 19286.59 8842.38 18585.52 9759.59 14884.72 6282.85 191
MAR-MVS71.51 9170.15 10475.60 7381.84 8359.39 5481.38 8582.90 8254.90 20468.08 13878.70 24747.73 12285.51 9851.68 20784.17 6981.88 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053067.92 16665.78 19174.33 10276.29 21051.03 18176.89 15874.25 23553.67 21865.59 19081.76 19335.15 25685.50 9955.94 16572.47 20286.47 67
tttt051767.83 16865.66 19374.33 10276.69 20250.82 18677.86 13273.99 23854.54 21064.64 21282.53 17435.06 25785.50 9955.71 17069.91 23886.67 62
MVS67.37 17566.33 18170.51 19175.46 22350.94 18273.95 21581.85 9541.57 33062.54 23778.57 25247.98 11885.47 10152.97 19482.05 8975.14 289
EPNet73.09 6872.16 7275.90 6475.95 21556.28 10383.05 5572.39 25266.53 965.27 19687.00 7750.40 9585.47 10162.48 12386.32 5585.94 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet61.53 25058.42 26170.86 18369.96 30052.07 17165.31 30081.36 10643.20 32059.36 26970.15 32735.37 25485.47 10136.42 32064.65 28875.06 290
v1070.21 11369.02 12273.81 11073.51 25050.92 18478.74 11881.39 10460.05 10366.39 17481.83 19247.58 12685.41 10462.80 12068.86 25785.09 124
v119269.97 11868.68 12773.85 10873.19 25250.94 18277.68 13681.36 10657.51 14868.95 12380.85 21345.28 15985.33 10562.97 11970.37 22885.27 119
v114470.42 10969.31 11773.76 11373.22 25150.64 18977.83 13381.43 10358.58 12769.40 11581.16 20347.53 12785.29 10664.01 10870.64 22285.34 116
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7076.46 20951.83 17679.67 10885.08 3165.02 1875.84 3388.58 5959.42 2185.08 10772.75 4683.93 7190.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v124069.24 13967.91 14173.25 13773.02 25749.82 20377.21 15080.54 12856.43 16768.34 13180.51 21743.33 17684.99 10862.03 12869.77 24384.95 129
PAPM67.92 16666.69 17171.63 16578.09 16449.02 21577.09 15281.24 11651.04 24860.91 25383.98 14347.71 12384.99 10840.81 29279.32 12180.90 226
v192192069.47 13368.17 13773.36 13373.06 25550.10 19977.39 14380.56 12756.58 16568.59 12580.37 21844.72 16484.98 11062.47 12469.82 24085.00 126
v870.33 11169.28 11873.49 12773.15 25350.22 19678.62 12180.78 12560.79 8566.45 17382.11 18749.35 10284.98 11063.58 11468.71 25885.28 118
v14419269.71 12468.51 12973.33 13473.10 25450.13 19877.54 14080.64 12656.65 15868.57 12780.55 21646.87 14184.96 11262.98 11869.66 24584.89 130
EI-MVSNet-Vis-set72.42 7771.59 7774.91 8378.47 15254.02 13577.05 15379.33 14665.03 1771.68 8779.35 24152.75 6784.89 11366.46 8674.23 17385.83 92
PCF-MVS61.88 870.95 9969.49 11475.35 7677.63 17855.71 11476.04 17581.81 9650.30 25469.66 11085.40 11952.51 6984.89 11351.82 20480.24 10885.45 110
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 10869.45 11673.66 11972.62 26350.03 20177.58 13780.51 12959.90 10569.52 11182.14 18547.53 12784.88 11565.07 10170.17 23286.09 83
thisisatest051565.83 20363.50 21672.82 14473.75 24849.50 21071.32 25373.12 24849.39 26063.82 22176.50 28034.95 25984.84 11653.20 19375.49 16684.13 150
TEST985.58 4361.59 2481.62 8181.26 11455.65 18574.93 4088.81 5553.70 5984.68 117
train_agg76.27 3876.15 3676.64 5485.58 4361.59 2481.62 8181.26 11455.86 17674.93 4088.81 5553.70 5984.68 11775.24 3088.33 3083.65 172
EI-MVSNet-UG-set71.92 8471.06 9074.52 9877.98 16953.56 14176.62 16179.16 14764.40 2671.18 9078.95 24652.19 7584.66 11965.47 9773.57 18385.32 117
v7n69.01 14267.36 15873.98 10672.51 26752.65 15878.54 12481.30 11260.26 10062.67 23381.62 19543.61 17384.49 12057.01 15968.70 25984.79 133
test_885.40 4660.96 3481.54 8481.18 11755.86 17674.81 4388.80 5753.70 5984.45 121
test_040263.25 23361.01 24669.96 19880.00 11754.37 13476.86 15972.02 25654.58 20958.71 27680.79 21535.00 25884.36 12226.41 36364.71 28771.15 332
PS-MVSNAJss72.24 7971.21 8675.31 7778.50 15055.93 11181.63 8082.12 9156.24 17170.02 10385.68 11247.05 13684.34 12365.27 9974.41 17285.67 100
ACMH+57.40 1166.12 20064.06 20772.30 15577.79 17452.83 15680.39 9478.03 17757.30 14957.47 28682.55 17127.68 32184.17 12445.54 25669.78 24179.90 241
OpenMVScopyleft61.03 968.85 14367.56 14772.70 14674.26 24553.99 13681.21 8781.34 11052.70 22662.75 23285.55 11538.86 22084.14 12548.41 23283.01 7679.97 240
Fast-Effi-MVS+70.28 11269.12 12173.73 11678.50 15051.50 17875.01 19579.46 14456.16 17368.59 12579.55 23653.97 5484.05 12653.34 19177.53 14485.65 102
agg_prior85.04 5059.96 4681.04 12074.68 4684.04 127
EG-PatchMatch MVS64.71 21862.87 22470.22 19377.68 17653.48 14377.99 13078.82 15353.37 22156.03 29577.41 26724.75 34084.04 12746.37 24773.42 18873.14 308
Effi-MVS+-dtu69.64 12967.53 15075.95 6376.10 21362.29 1580.20 9776.06 20759.83 10965.26 19977.09 26841.56 19584.02 12960.60 13971.09 22081.53 210
MVS_111021_HR74.02 6073.46 6475.69 6983.01 7260.63 4077.29 14878.40 17261.18 8170.58 9485.97 10454.18 5384.00 13067.52 7982.98 7982.45 197
VDDNet71.81 8571.33 8473.26 13682.80 7547.60 23578.74 11875.27 21659.59 11372.94 7189.40 4741.51 19783.91 13158.75 15282.99 7788.26 13
BH-RMVSNet68.81 14467.42 15572.97 13980.11 11652.53 16374.26 20976.29 20258.48 12968.38 13084.20 13642.59 18183.83 13246.53 24575.91 16182.56 192
baseline74.61 5474.70 5174.34 10175.70 21749.99 20277.54 14084.63 4062.73 5873.98 5487.79 6957.67 2883.82 13369.49 6382.74 8589.20 5
LFMVS71.78 8671.59 7772.32 15483.40 6746.38 24479.75 10671.08 26164.18 3172.80 7388.64 5842.58 18283.72 13457.41 15884.49 6586.86 57
TR-MVS66.59 19665.07 20171.17 17879.18 13449.63 20973.48 22475.20 22052.95 22367.90 14080.33 22139.81 20983.68 13543.20 27773.56 18480.20 236
MSLP-MVS++73.77 6373.47 6374.66 9083.02 7159.29 5782.30 7381.88 9459.34 11671.59 8886.83 7845.94 14783.65 13665.09 10085.22 6081.06 224
casdiffmvspermissive74.80 5074.89 5074.53 9775.59 22150.37 19478.17 12785.06 3362.80 5774.40 4987.86 6757.88 2683.61 13769.46 6582.79 8489.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet69.54 13168.85 12471.59 16678.05 16643.81 27174.20 21080.86 12465.18 1362.76 23184.52 13152.35 7483.59 13850.96 21270.78 22187.37 45
BH-untuned68.27 15767.29 16071.21 17679.74 12053.22 15076.06 17377.46 18857.19 15166.10 17881.61 19645.37 15883.50 13945.42 26076.68 15776.91 277
UniMVSNet (Re)70.63 10570.20 10271.89 15778.55 14945.29 25875.94 17782.92 8163.68 3968.16 13583.59 15153.89 5683.49 14053.97 18571.12 21986.89 56
VDD-MVS72.50 7472.09 7373.75 11581.58 8549.69 20777.76 13577.63 18463.21 4673.21 6589.02 5242.14 18683.32 14161.72 13082.50 8688.25 14
UA-Net73.13 6772.93 6773.76 11383.58 6451.66 17778.75 11777.66 18367.75 372.61 7789.42 4649.82 9883.29 14253.61 18983.14 7486.32 76
MVSFormer71.50 9270.38 10074.88 8478.76 14457.15 9382.79 6078.48 16551.26 24469.49 11283.22 15843.99 17183.24 14366.06 8979.37 11884.23 146
test_djsdf69.45 13467.74 14274.58 9574.57 23854.92 12982.79 6078.48 16551.26 24465.41 19383.49 15638.37 22483.24 14366.06 8969.25 25185.56 105
ACMM61.98 770.80 10369.73 10974.02 10580.59 10758.59 7382.68 6382.02 9355.46 18867.18 15884.39 13538.51 22283.17 14560.65 13876.10 16080.30 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TranMVSNet+NR-MVSNet70.36 11070.10 10671.17 17878.64 14842.97 27976.53 16381.16 11866.95 568.53 12885.42 11851.61 8383.07 14652.32 19769.70 24487.46 40
V4268.65 14867.35 15972.56 14768.93 31250.18 19772.90 23179.47 14356.92 15569.45 11480.26 22246.29 14582.99 14764.07 10667.82 26484.53 138
SixPastTwentyTwo61.65 24958.80 25870.20 19575.80 21647.22 23875.59 18269.68 27054.61 20754.11 31579.26 24227.07 32682.96 14843.27 27549.79 35380.41 233
BH-w/o66.85 18865.83 19069.90 20279.29 12952.46 16574.66 20476.65 20054.51 21164.85 20978.12 25445.59 15182.95 14943.26 27675.54 16574.27 302
hse-mvs271.04 9769.86 10774.60 9479.58 12357.12 9573.96 21475.25 21760.40 9274.81 4381.95 18945.54 15282.90 15070.41 6066.83 27283.77 165
AUN-MVS68.45 15566.41 17874.57 9679.53 12557.08 9673.93 21775.23 21854.44 21266.69 16881.85 19137.10 24282.89 15162.07 12666.84 27183.75 166
eth_miper_zixun_eth67.63 17166.28 18471.67 16371.60 27848.33 22573.68 22377.88 17855.80 18165.91 18278.62 25147.35 13382.88 15259.45 14966.25 27683.81 161
test_yl69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
DCV-MVSNet69.69 12569.13 11971.36 17278.37 15545.74 25174.71 20280.20 13357.91 14370.01 10483.83 14642.44 18382.87 15354.97 17679.72 11285.48 108
PVSNet_BlendedMVS68.56 15367.72 14371.07 18177.03 19750.57 19074.50 20681.52 9953.66 21964.22 21979.72 23249.13 10782.87 15355.82 16773.92 17679.77 245
PVSNet_Blended68.59 14967.72 14371.19 17777.03 19750.57 19072.51 23881.52 9951.91 23364.22 21977.77 26449.13 10782.87 15355.82 16779.58 11580.14 238
UniMVSNet_NR-MVSNet71.11 9671.00 9171.44 16879.20 13344.13 26776.02 17682.60 8666.48 1068.20 13284.60 13056.82 3282.82 15754.62 18070.43 22687.36 47
DU-MVS70.01 11669.53 11371.44 16878.05 16644.13 26775.01 19581.51 10164.37 2768.20 13284.52 13149.12 10982.82 15754.62 18070.43 22687.37 45
GeoE71.01 9870.15 10473.60 12479.57 12452.17 16978.93 11678.12 17658.02 13867.76 15083.87 14552.36 7382.72 15956.90 16075.79 16285.92 87
MVP-Stereo65.41 20963.80 21270.22 19377.62 18255.53 12076.30 16778.53 16350.59 25256.47 29378.65 24939.84 20882.68 16044.10 26872.12 21072.44 317
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNetpermissive72.18 8071.37 8374.61 9381.29 9255.41 12280.90 8978.28 17460.73 8769.23 12088.09 6244.36 16882.65 16157.68 15581.75 9585.77 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D67.96 16565.72 19274.68 8976.67 20355.62 11975.11 19274.74 22752.91 22460.03 25980.12 22433.68 27182.64 16261.86 12976.34 15885.78 93
PVSNet_Blended_VisFu71.45 9370.39 9974.65 9182.01 7958.82 7079.93 10280.35 13255.09 19665.82 18782.16 18449.17 10682.64 16260.34 14078.62 13482.50 196
tt080567.77 16967.24 16569.34 21274.87 23040.08 29977.36 14481.37 10555.31 19066.33 17584.65 12737.35 23582.55 16455.65 17272.28 20885.39 115
EI-MVSNet69.27 13868.44 13471.73 16174.47 23949.39 21275.20 19078.45 16859.60 11069.16 12176.51 27851.29 8582.50 16559.86 14771.45 21783.30 178
MVSTER67.16 18265.58 19571.88 15870.37 29449.70 20570.25 27078.45 16851.52 23869.16 12180.37 21838.45 22382.50 16560.19 14171.46 21683.44 176
gm-plane-assit71.40 28341.72 29148.85 26773.31 30582.48 16748.90 228
Anonymous2023121169.28 13768.47 13271.73 16180.28 10847.18 23979.98 10082.37 8854.61 20767.24 15684.01 14239.43 21282.41 16855.45 17472.83 19785.62 104
LS3D64.71 21862.50 22971.34 17479.72 12255.71 11479.82 10474.72 22848.50 27056.62 29184.62 12833.59 27382.34 16929.65 35475.23 16875.97 281
PS-MVSNAJ70.51 10769.70 11072.93 14081.52 8655.79 11374.92 19879.00 15055.04 20169.88 10778.66 24847.05 13682.19 17061.61 13179.58 11580.83 227
Anonymous2024052969.91 11969.02 12272.56 14780.19 11347.65 23377.56 13980.99 12155.45 18969.88 10786.76 8039.24 21682.18 17154.04 18477.10 15187.85 26
xiu_mvs_v2_base70.52 10669.75 10872.84 14281.21 9555.63 11775.11 19278.92 15254.92 20369.96 10679.68 23347.00 14082.09 17261.60 13279.37 11880.81 228
canonicalmvs74.67 5374.98 4973.71 11778.94 14050.56 19280.23 9583.87 5660.30 9977.15 2986.56 9059.65 1782.00 17366.01 9182.12 8888.58 9
v14868.24 15967.19 16771.40 17170.43 29247.77 23275.76 18077.03 19458.91 12067.36 15480.10 22548.60 11481.89 17460.01 14366.52 27584.53 138
CPTT-MVS72.78 7072.08 7474.87 8584.88 5761.41 2684.15 4277.86 17955.27 19167.51 15388.08 6341.93 18981.85 17569.04 6780.01 11081.35 217
mvs_tets68.18 16066.36 18073.63 12275.61 22055.35 12480.77 9178.56 16252.48 22964.27 21784.10 14027.45 32381.84 17663.45 11670.56 22583.69 168
jajsoiax68.25 15866.45 17473.66 11975.62 21955.49 12180.82 9078.51 16452.33 23064.33 21584.11 13928.28 31781.81 17763.48 11570.62 22383.67 169
FIs70.82 10271.43 8068.98 21778.33 15738.14 31576.96 15583.59 6361.02 8267.33 15586.73 8255.07 4281.64 17854.61 18279.22 12287.14 51
HyFIR lowres test65.67 20563.01 22373.67 11879.97 11855.65 11669.07 27875.52 21342.68 32463.53 22477.95 25640.43 20581.64 17846.01 25071.91 21183.73 167
K. test v360.47 25757.11 26970.56 18973.74 24948.22 22675.10 19462.55 31758.27 13353.62 32176.31 28127.81 32081.59 18047.42 23639.18 36681.88 207
IterMVS-LS69.22 14068.48 13071.43 17074.44 24149.40 21176.23 16977.55 18559.60 11065.85 18681.59 19851.28 8681.58 18159.87 14669.90 23983.30 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB55.42 1663.15 23561.23 24468.92 21876.57 20647.80 23059.92 32876.39 20154.35 21358.67 27782.46 17629.44 30881.49 18242.12 28571.14 21877.46 266
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
c3_l68.33 15667.56 14770.62 18870.87 28746.21 24774.47 20778.80 15556.22 17266.19 17778.53 25351.88 7881.40 18362.08 12569.04 25484.25 145
ECVR-MVScopyleft67.72 17067.51 15168.35 22579.46 12636.29 33874.79 20166.93 29058.72 12367.19 15788.05 6436.10 24881.38 18452.07 20084.25 6787.39 43
lessismore_v069.91 20171.42 28247.80 23050.90 35650.39 33775.56 28927.43 32481.33 18545.91 25134.10 37280.59 230
miper_ehance_all_eth68.03 16267.24 16570.40 19270.54 29046.21 24773.98 21378.68 15955.07 19966.05 17977.80 26252.16 7681.31 18661.53 13569.32 24883.67 169
miper_enhance_ethall67.11 18366.09 18770.17 19669.21 30945.98 24972.85 23278.41 17151.38 24165.65 18875.98 28651.17 8881.25 18760.82 13769.32 24883.29 180
OurMVSNet-221017-061.37 25358.63 26069.61 20672.05 27348.06 22873.93 21772.51 25147.23 28854.74 30880.92 21021.49 35081.24 18848.57 23156.22 33579.53 247
alignmvs73.86 6273.99 5773.45 12978.20 16050.50 19378.57 12282.43 8759.40 11476.57 3086.71 8456.42 3581.23 18965.84 9381.79 9288.62 7
MVS_Test72.45 7672.46 7172.42 15374.88 22948.50 22376.28 16883.14 7959.40 11472.46 7984.68 12555.66 3981.12 19065.98 9279.66 11487.63 35
cl2267.47 17466.45 17470.54 19069.85 30246.49 24373.85 22077.35 19055.07 19965.51 19177.92 25847.64 12581.10 19161.58 13369.32 24884.01 153
GA-MVS65.53 20763.70 21371.02 18270.87 28748.10 22770.48 26674.40 23156.69 15764.70 21176.77 27333.66 27281.10 19155.42 17570.32 23083.87 159
MSDG61.81 24859.23 25469.55 21072.64 26252.63 16070.45 26775.81 20851.38 24153.70 31876.11 28229.52 30681.08 19337.70 30765.79 28074.93 294
baseline263.42 22961.26 24369.89 20372.55 26547.62 23471.54 25068.38 28250.11 25554.82 30775.55 29043.06 17880.96 19448.13 23367.16 27081.11 222
ambc65.13 26563.72 34237.07 32747.66 36078.78 15654.37 31471.42 31611.24 36780.94 19545.64 25453.85 34377.38 267
ACMH55.70 1565.20 21363.57 21570.07 19778.07 16552.01 17479.48 11279.69 13755.75 18256.59 29280.98 20827.12 32580.94 19542.90 28171.58 21577.25 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250665.33 21164.61 20467.50 23279.46 12634.19 34874.43 20851.92 35158.72 12366.75 16788.05 6425.99 33380.92 19751.94 20284.25 6787.39 43
UGNet68.81 14467.39 15673.06 13878.33 15754.47 13379.77 10575.40 21560.45 9163.22 22684.40 13432.71 28580.91 19851.71 20680.56 10483.81 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
nrg03072.96 6973.01 6672.84 14275.41 22450.24 19580.02 9982.89 8358.36 13274.44 4886.73 8258.90 2380.83 19965.84 9374.46 17087.44 41
tpm262.07 24460.10 25267.99 22872.79 26043.86 27071.05 26166.85 29143.14 32162.77 23075.39 29238.32 22580.80 20041.69 28868.88 25679.32 249
无先验79.66 10974.30 23448.40 27280.78 20153.62 18879.03 252
FC-MVSNet-test69.80 12370.58 9767.46 23377.61 18334.73 34476.05 17483.19 7760.84 8465.88 18586.46 9154.52 5080.76 20252.52 19678.12 13786.91 55
OMC-MVS71.40 9470.60 9573.78 11176.60 20553.15 15179.74 10779.78 13658.37 13168.75 12486.45 9245.43 15680.60 20362.58 12177.73 14187.58 38
test111167.21 17767.14 16867.42 23479.24 13234.76 34373.89 21965.65 29758.71 12566.96 16287.95 6636.09 24980.53 20452.03 20183.79 7286.97 53
cl____67.18 18066.26 18569.94 19970.20 29545.74 25173.30 22576.83 19755.10 19465.27 19679.57 23547.39 13180.53 20459.41 15169.22 25283.53 175
DIV-MVS_self_test67.18 18066.26 18569.94 19970.20 29545.74 25173.29 22676.83 19755.10 19465.27 19679.58 23447.38 13280.53 20459.43 15069.22 25283.54 174
Fast-Effi-MVS+-dtu67.37 17565.33 19873.48 12872.94 25857.78 8177.47 14276.88 19557.60 14761.97 24476.85 27239.31 21380.49 20754.72 17970.28 23182.17 202
anonymousdsp67.00 18664.82 20373.57 12570.09 29856.13 10676.35 16677.35 19048.43 27164.99 20880.84 21433.01 27880.34 20864.66 10367.64 26684.23 146
GBi-Net67.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
test167.21 17766.55 17269.19 21377.63 17843.33 27477.31 14577.83 18056.62 16165.04 20582.70 16541.85 19080.33 20947.18 24072.76 19883.92 156
FMVSNet166.70 19265.87 18969.19 21377.49 18643.33 27477.31 14577.83 18056.45 16664.60 21382.70 16538.08 22980.33 20946.08 24972.31 20783.92 156
FMVSNet266.93 18766.31 18368.79 22077.63 17842.98 27876.11 17177.47 18656.62 16165.22 20282.17 18341.85 19080.18 21247.05 24372.72 20183.20 182
FMVSNet366.32 19965.61 19468.46 22376.48 20842.34 28274.98 19777.15 19355.83 17965.04 20581.16 20339.91 20780.14 21347.18 24072.76 19882.90 190
PLCcopyleft56.13 1465.09 21463.21 22170.72 18781.04 9854.87 13078.57 12277.47 18648.51 26955.71 29681.89 19033.71 27079.71 21441.66 28970.37 22877.58 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous20240521166.84 18965.99 18869.40 21180.19 11342.21 28571.11 25971.31 26058.80 12267.90 14086.39 9329.83 30579.65 21549.60 22378.78 13086.33 74
OpenMVS_ROBcopyleft52.78 1860.03 25858.14 26565.69 25970.47 29144.82 26075.33 18670.86 26445.04 30356.06 29476.00 28326.89 32879.65 21535.36 32567.29 26872.60 313
CostFormer64.04 22462.51 22868.61 22271.88 27545.77 25071.30 25470.60 26647.55 28264.31 21676.61 27641.63 19379.62 21749.74 21969.00 25580.42 232
WR-MVS_H67.02 18566.92 17067.33 23777.95 17037.75 31977.57 13882.11 9262.03 7262.65 23482.48 17550.57 9479.46 21842.91 28064.01 29184.79 133
COLMAP_ROBcopyleft52.97 1761.27 25458.81 25768.64 22174.63 23652.51 16478.42 12573.30 24549.92 25850.96 33181.51 19923.06 34479.40 21931.63 34365.85 27874.01 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
131464.61 22063.21 22168.80 21971.87 27647.46 23673.95 21578.39 17342.88 32359.97 26076.60 27738.11 22879.39 22054.84 17872.32 20679.55 246
XVG-ACMP-BASELINE64.36 22362.23 23270.74 18672.35 26952.45 16670.80 26378.45 16853.84 21659.87 26281.10 20516.24 35679.32 22155.64 17371.76 21280.47 231
lupinMVS69.57 13068.28 13673.44 13078.76 14457.15 9376.57 16273.29 24646.19 29569.49 11282.18 18143.99 17179.23 22264.66 10379.37 11883.93 155
jason69.65 12868.39 13573.43 13178.27 15956.88 9777.12 15173.71 24246.53 29269.34 11683.22 15843.37 17579.18 22364.77 10279.20 12384.23 146
jason: jason.
thres100view90063.28 23262.41 23065.89 25677.31 19038.66 31172.65 23369.11 27857.07 15262.45 24081.03 20737.01 24479.17 22431.84 33973.25 19179.83 243
tfpn200view963.18 23462.18 23366.21 24876.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19179.83 243
thres40063.31 23062.18 23366.72 24076.85 20039.62 30371.96 24769.44 27456.63 15962.61 23579.83 22837.18 23779.17 22431.84 33973.25 19181.36 215
DTE-MVSNet65.58 20665.34 19766.31 24576.06 21434.79 34176.43 16579.38 14562.55 6061.66 24883.83 14645.60 15079.15 22741.64 29160.88 31585.00 126
WR-MVS68.47 15468.47 13268.44 22480.20 11239.84 30173.75 22276.07 20664.68 2168.11 13783.63 15050.39 9679.14 22849.78 21769.66 24586.34 72
PEN-MVS66.60 19466.45 17467.04 23877.11 19536.56 33277.03 15480.42 13062.95 4962.51 23984.03 14146.69 14279.07 22944.22 26463.08 30185.51 107
xiu_mvs_v1_base_debu68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
xiu_mvs_v1_base_debi68.58 15067.28 16172.48 14978.19 16157.19 9075.28 18775.09 22351.61 23570.04 10081.41 20032.79 28179.02 23063.81 11177.31 14581.22 219
thres600view763.30 23162.27 23166.41 24477.18 19238.87 30972.35 24069.11 27856.98 15462.37 24280.96 20937.01 24479.00 23331.43 34673.05 19581.36 215
thres20062.20 24361.16 24565.34 26375.38 22539.99 30069.60 27469.29 27655.64 18661.87 24676.99 26937.07 24378.96 23431.28 34773.28 19077.06 272
UniMVSNet_ETH3D67.60 17267.07 16969.18 21677.39 18842.29 28374.18 21175.59 21260.37 9566.77 16686.06 10137.64 23178.93 23552.16 19973.49 18586.32 76
TAPA-MVS59.36 1066.60 19465.20 20070.81 18476.63 20448.75 21976.52 16480.04 13550.64 25165.24 20084.93 12239.15 21778.54 23636.77 31376.88 15485.14 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS66.42 19866.32 18266.70 24277.60 18536.30 33776.94 15679.61 14062.36 6462.43 24183.66 14945.69 14878.37 23745.35 26163.26 29985.42 113
CP-MVSNet66.49 19766.41 17866.72 24077.67 17736.33 33576.83 16079.52 14262.45 6262.54 23783.47 15746.32 14478.37 23745.47 25963.43 29885.45 110
XVG-OURS68.76 14767.37 15772.90 14174.32 24457.22 8870.09 27178.81 15455.24 19267.79 14885.81 11136.54 24778.28 23962.04 12775.74 16383.19 183
XVG-OURS-SEG-HR68.81 14467.47 15472.82 14474.40 24256.87 9870.59 26479.04 14954.77 20566.99 16186.01 10339.57 21178.21 24062.54 12273.33 18983.37 177
F-COLMAP63.05 23660.87 24969.58 20976.99 19953.63 14078.12 12976.16 20347.97 27852.41 32681.61 19627.87 31978.11 24140.07 29566.66 27377.00 274
TransMVSNet (Re)64.72 21764.33 20665.87 25775.22 22638.56 31274.66 20475.08 22658.90 12161.79 24782.63 16851.18 8778.07 24243.63 27355.87 33680.99 225
mvs_anonymous68.03 16267.51 15169.59 20772.08 27244.57 26571.99 24575.23 21851.67 23467.06 16082.57 17054.68 4877.94 24356.56 16275.71 16486.26 80
diffmvspermissive70.69 10470.43 9871.46 16769.45 30648.95 21772.93 23078.46 16757.27 15071.69 8683.97 14451.48 8477.92 24470.70 5977.95 14087.53 39
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND62.34 28371.36 28437.04 32869.20 27757.33 33754.73 30965.48 34930.37 29977.82 24534.82 32674.93 16972.17 322
CHOSEN 1792x268865.08 21562.84 22571.82 15981.49 8856.26 10466.32 29074.20 23640.53 33563.16 22878.65 24941.30 19877.80 24645.80 25274.09 17481.40 214
dcpmvs_274.55 5675.23 4772.48 14982.34 7753.34 14777.87 13181.46 10257.80 14575.49 3586.81 7962.22 1377.75 24771.09 5782.02 9086.34 72
D2MVS62.30 24260.29 25168.34 22666.46 32848.42 22465.70 29373.42 24447.71 28058.16 28275.02 29430.51 29877.71 24853.96 18671.68 21478.90 254
VPA-MVSNet69.02 14169.47 11567.69 23177.42 18741.00 29774.04 21279.68 13860.06 10269.26 11984.81 12451.06 9077.58 24954.44 18374.43 17184.48 140
MS-PatchMatch62.42 24061.46 24065.31 26475.21 22752.10 17072.05 24474.05 23746.41 29357.42 28874.36 29934.35 26577.57 25045.62 25573.67 18066.26 349
test_fmvsm_n_192071.73 8871.14 8873.50 12672.52 26656.53 10075.60 18176.16 20348.11 27577.22 2885.56 11353.10 6677.43 25174.86 3177.14 15086.55 66
CANet_DTU68.18 16067.71 14569.59 20774.83 23146.24 24678.66 12076.85 19659.60 11063.45 22582.09 18835.25 25577.41 25259.88 14578.76 13185.14 121
TAMVS66.78 19165.27 19971.33 17579.16 13653.67 13873.84 22169.59 27252.32 23165.28 19581.72 19444.49 16777.40 25342.32 28478.66 13382.92 188
test_fmvsmvis_n_192070.84 10070.38 10072.22 15671.16 28555.39 12375.86 17872.21 25449.03 26473.28 6486.17 9751.83 8077.29 25475.80 2778.05 13883.98 154
Baseline_NR-MVSNet67.05 18467.56 14765.50 26075.65 21837.70 32175.42 18574.65 22959.90 10568.14 13683.15 16149.12 10977.20 25552.23 19869.78 24181.60 209
CDS-MVSNet66.80 19065.37 19671.10 18078.98 13953.13 15373.27 22771.07 26252.15 23264.72 21080.23 22343.56 17477.10 25645.48 25878.88 12783.05 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VNet69.68 12770.19 10368.16 22779.73 12141.63 29270.53 26577.38 18960.37 9570.69 9386.63 8651.08 8977.09 25753.61 18981.69 9785.75 98
pmmvs663.69 22762.82 22666.27 24770.63 28939.27 30773.13 22875.47 21452.69 22759.75 26682.30 17939.71 21077.03 25847.40 23764.35 29082.53 194
tfpnnormal62.47 23961.63 23864.99 26674.81 23239.01 30871.22 25573.72 24155.22 19360.21 25680.09 22641.26 20176.98 25930.02 35268.09 26278.97 253
LCM-MVSNet-Re61.88 24761.35 24163.46 27474.58 23731.48 36061.42 31958.14 33358.71 12553.02 32579.55 23643.07 17776.80 26045.69 25377.96 13982.11 203
HY-MVS56.14 1364.55 22163.89 20966.55 24374.73 23541.02 29469.96 27274.43 23049.29 26161.66 24880.92 21047.43 13076.68 26144.91 26371.69 21381.94 205
VPNet67.52 17368.11 13865.74 25879.18 13436.80 33072.17 24372.83 24962.04 7167.79 14885.83 10948.88 11176.60 26251.30 20872.97 19683.81 161
pm-mvs165.24 21264.97 20266.04 25372.38 26839.40 30672.62 23575.63 21155.53 18762.35 24383.18 16047.45 12976.47 26349.06 22766.54 27482.24 199
gg-mvs-nofinetune57.86 27256.43 27862.18 28472.62 26335.35 34066.57 28756.33 34050.65 25057.64 28557.10 36130.65 29776.36 26437.38 30978.88 12774.82 296
MVS_111021_LR69.50 13268.78 12671.65 16478.38 15459.33 5574.82 20070.11 26858.08 13567.83 14684.68 12541.96 18876.34 26565.62 9677.54 14379.30 250
tpmvs58.47 26656.95 27263.03 28070.20 29541.21 29367.90 28367.23 28849.62 25954.73 30970.84 32034.14 26676.24 26636.64 31761.29 31371.64 326
ab-mvs66.65 19366.42 17767.37 23576.17 21241.73 28970.41 26876.14 20553.99 21465.98 18083.51 15549.48 10176.24 26648.60 23073.46 18784.14 149
Vis-MVSNet (Re-imp)63.69 22763.88 21063.14 27874.75 23431.04 36171.16 25763.64 31056.32 16859.80 26484.99 12144.51 16575.46 26839.12 30180.62 10082.92 188
新几何170.76 18585.66 4161.13 3066.43 29344.68 30670.29 9786.64 8541.29 19975.23 26949.72 22081.75 9575.93 282
USDC56.35 28354.24 29462.69 28164.74 33640.31 29865.05 30273.83 24043.93 31547.58 34377.71 26515.36 35875.05 27038.19 30661.81 31072.70 312
pmmvs461.48 25259.39 25367.76 23071.57 27953.86 13771.42 25165.34 29944.20 31159.46 26877.92 25835.90 25074.71 27143.87 27164.87 28674.71 298
tpm cat159.25 26356.95 27266.15 25072.19 27146.96 24068.09 28165.76 29640.03 33957.81 28470.56 32238.32 22574.51 27238.26 30561.50 31277.00 274
baseline163.81 22663.87 21163.62 27376.29 21036.36 33371.78 24967.29 28756.05 17564.23 21882.95 16347.11 13574.41 27347.30 23961.85 30980.10 239
patchmatchnet-post64.03 35134.50 26274.27 274
SCA60.49 25658.38 26266.80 23974.14 24748.06 22863.35 30963.23 31349.13 26359.33 27272.10 31037.45 23374.27 27444.17 26562.57 30478.05 260
bld_raw_dy_0_6464.87 21663.22 22069.83 20474.79 23353.32 14978.15 12862.02 32151.20 24660.17 25783.12 16224.15 34274.20 27663.08 11772.33 20581.96 204
SDMVSNet68.03 16268.10 13967.84 22977.13 19348.72 22165.32 29979.10 14858.02 13865.08 20382.55 17147.83 12173.40 27763.92 11073.92 17681.41 212
1112_ss64.00 22563.36 21865.93 25579.28 13042.58 28171.35 25272.36 25346.41 29360.55 25577.89 26046.27 14673.28 27846.18 24869.97 23681.92 206
TinyColmap54.14 29451.72 30561.40 28966.84 32441.97 28666.52 28868.51 28144.81 30442.69 35975.77 28711.66 36472.94 27931.96 33756.77 33369.27 345
pmmvs-eth3d58.81 26556.31 27966.30 24667.61 31952.42 16772.30 24164.76 30343.55 31754.94 30674.19 30128.95 31172.60 28043.31 27457.21 33073.88 306
IterMVS62.79 23761.27 24267.35 23669.37 30752.04 17371.17 25668.24 28352.63 22859.82 26376.91 27137.32 23672.36 28152.80 19563.19 30077.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ppachtmachnet_test58.06 27155.38 28466.10 25269.51 30448.99 21668.01 28266.13 29544.50 30854.05 31670.74 32132.09 29272.34 28236.68 31656.71 33476.99 276
Patchmatch-RL test58.16 26955.49 28366.15 25067.92 31848.89 21860.66 32651.07 35547.86 27959.36 26962.71 35534.02 26872.27 28356.41 16359.40 32277.30 268
CL-MVSNet_self_test61.53 25060.94 24763.30 27668.95 31136.93 32967.60 28472.80 25055.67 18459.95 26176.63 27445.01 16272.22 28439.74 29962.09 30880.74 229
testdata272.18 28546.95 244
CMPMVSbinary42.80 2157.81 27355.97 28063.32 27560.98 35347.38 23764.66 30469.50 27332.06 35146.83 34777.80 26229.50 30771.36 28648.68 22973.75 17971.21 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res62.32 24161.77 23664.00 27279.08 13839.53 30568.17 28070.17 26743.25 31959.03 27479.90 22744.08 16971.24 28743.79 27268.42 26081.25 218
CNLPA65.43 20864.02 20869.68 20578.73 14658.07 7777.82 13470.71 26551.49 23961.57 25083.58 15438.23 22770.82 28843.90 27070.10 23480.16 237
CR-MVSNet59.91 25957.90 26765.96 25469.96 30052.07 17165.31 30063.15 31442.48 32559.36 26974.84 29535.83 25170.75 28945.50 25764.65 28875.06 290
MDTV_nov1_ep1357.00 27172.73 26138.26 31465.02 30364.73 30444.74 30555.46 29872.48 30832.61 28870.47 29037.47 30867.75 265
KD-MVS_2432*160053.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
miper_refine_blended53.45 29951.50 30759.30 29362.82 34337.14 32555.33 34371.79 25847.34 28655.09 30470.52 32321.91 34870.45 29135.72 32342.97 36170.31 337
KD-MVS_self_test55.22 29153.89 29759.21 29657.80 36127.47 37057.75 33774.32 23247.38 28450.90 33270.00 32828.45 31670.30 29340.44 29457.92 32779.87 242
JIA-IIPM51.56 30847.68 32263.21 27764.61 33750.73 18847.71 35958.77 33142.90 32248.46 34251.72 36524.97 33870.24 29436.06 32253.89 34268.64 347
sd_testset64.46 22264.45 20564.51 26977.13 19342.25 28462.67 31272.11 25558.02 13865.08 20382.55 17141.22 20269.88 29547.32 23873.92 17681.41 212
test_post168.67 2793.64 38232.39 29069.49 29644.17 265
PatchmatchNetpermissive59.84 26058.24 26364.65 26873.05 25646.70 24269.42 27662.18 31947.55 28258.88 27571.96 31234.49 26369.16 29742.99 27963.60 29578.07 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet55.61 28854.41 29159.19 29765.41 33433.42 35272.44 23971.91 25728.81 35451.27 32973.87 30224.76 33969.08 29843.04 27858.20 32675.06 290
Patchmtry57.16 27656.47 27759.23 29569.17 31034.58 34562.98 31063.15 31444.53 30756.83 29074.84 29535.83 25168.71 29940.03 29660.91 31474.39 301
CVMVSNet59.63 26259.14 25561.08 29174.47 23938.84 31075.20 19068.74 28031.15 35258.24 28176.51 27832.39 29068.58 30049.77 21865.84 27975.81 283
our_test_356.49 28054.42 29062.68 28269.51 30445.48 25666.08 29161.49 32344.11 31450.73 33569.60 33233.05 27768.15 30138.38 30456.86 33174.40 300
miper_lstm_enhance62.03 24560.88 24865.49 26166.71 32546.25 24556.29 34275.70 21050.68 24961.27 25175.48 29140.21 20668.03 30256.31 16465.25 28382.18 200
MDA-MVSNet-bldmvs53.87 29750.81 30963.05 27966.25 32948.58 22256.93 34063.82 30948.09 27641.22 36070.48 32530.34 30068.00 30334.24 32845.92 35872.57 314
AllTest57.08 27754.65 28864.39 27071.44 28049.03 21369.92 27367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
TestCases64.39 27071.44 28049.03 21367.30 28545.97 29847.16 34579.77 23017.47 35267.56 30433.65 33059.16 32376.57 278
pmmvs556.47 28155.68 28258.86 29961.41 35036.71 33166.37 28962.75 31640.38 33653.70 31876.62 27534.56 26167.05 30640.02 29765.27 28272.83 311
EPNet_dtu61.90 24661.97 23561.68 28672.89 25939.78 30275.85 17965.62 29855.09 19654.56 31179.36 24037.59 23267.02 30739.80 29876.95 15278.25 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL56.25 28454.55 28961.32 29077.06 19656.07 10865.57 29554.10 34844.13 31353.49 32471.27 31925.20 33766.78 30836.52 31963.66 29461.12 353
test_post3.55 38333.90 26966.52 309
EGC-MVSNET42.47 32738.48 33454.46 32274.33 24348.73 22070.33 26951.10 3540.03 3840.18 38567.78 34013.28 36166.49 31018.91 37050.36 35148.15 366
TDRefinement53.44 30150.72 31061.60 28764.31 33946.96 24070.89 26265.27 30141.78 32644.61 35477.98 25511.52 36666.36 31128.57 35851.59 34771.49 329
testdata64.66 26781.52 8652.93 15465.29 30046.09 29673.88 5687.46 7138.08 22966.26 31253.31 19278.48 13574.78 297
IterMVS-SCA-FT62.49 23861.52 23965.40 26271.99 27450.80 18771.15 25869.63 27145.71 30160.61 25477.93 25737.45 23365.99 31355.67 17163.50 29779.42 248
PM-MVS52.33 30550.19 31358.75 30062.10 34745.14 25965.75 29240.38 37243.60 31653.52 32272.65 3079.16 37265.87 31450.41 21454.18 34165.24 351
旧先验276.08 17245.32 30276.55 3165.56 31558.75 152
PVSNet50.76 1958.40 26757.39 26861.42 28875.53 22244.04 26961.43 31863.45 31147.04 29056.91 28973.61 30427.00 32764.76 31639.12 30172.40 20375.47 287
MVS-HIRNet45.52 32344.48 32648.65 34168.49 31534.05 34959.41 33144.50 36827.03 35937.96 36650.47 36926.16 33264.10 31726.74 36259.52 32147.82 368
FMVSNet555.86 28654.93 28658.66 30171.05 28636.35 33464.18 30762.48 31846.76 29150.66 33674.73 29725.80 33464.04 31833.11 33365.57 28175.59 286
MIMVSNet155.17 29254.31 29357.77 30870.03 29932.01 35865.68 29464.81 30249.19 26246.75 34876.00 28325.53 33664.04 31828.65 35762.13 30777.26 270
patch_mono-269.85 12071.09 8966.16 24979.11 13754.80 13171.97 24674.31 23353.50 22070.90 9284.17 13757.63 2963.31 32066.17 8882.02 9080.38 234
ADS-MVSNet251.33 31048.76 31759.07 29866.02 33244.60 26450.90 35359.76 32836.90 34350.74 33366.18 34726.38 32963.11 32127.17 35954.76 33969.50 343
Gipumacopyleft34.77 33731.91 34143.33 34962.05 34837.87 31620.39 37667.03 28923.23 36418.41 37725.84 3774.24 37862.73 32214.71 37351.32 34829.38 376
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF62.09 28566.16 33044.55 26664.32 30647.36 28555.31 30180.34 22019.27 35162.68 32336.29 32162.39 30679.04 251
ANet_high41.38 32937.47 33653.11 33039.73 38024.45 37656.94 33969.69 26947.65 28126.04 37252.32 36412.44 36262.38 32421.80 36710.61 38172.49 315
MIMVSNet57.35 27457.07 27058.22 30374.21 24637.18 32462.46 31360.88 32648.88 26655.29 30275.99 28531.68 29362.04 32531.87 33872.35 20475.43 288
LCM-MVSNet40.30 33135.88 33753.57 32742.24 37529.15 36545.21 36560.53 32722.23 36828.02 37050.98 3683.72 38161.78 32631.22 34838.76 36769.78 342
PatchT53.17 30353.44 30052.33 33468.29 31725.34 37558.21 33454.41 34644.46 30954.56 31169.05 33533.32 27560.94 32736.93 31261.76 31170.73 335
WTY-MVS59.75 26160.39 25057.85 30772.32 27037.83 31861.05 32464.18 30745.95 30061.91 24579.11 24447.01 13960.88 32842.50 28369.49 24774.83 295
XXY-MVS60.68 25561.67 23757.70 30970.43 29238.45 31364.19 30666.47 29248.05 27763.22 22680.86 21249.28 10460.47 32945.25 26267.28 26974.19 303
tpmrst58.24 26858.70 25956.84 31166.97 32234.32 34669.57 27561.14 32547.17 28958.58 27971.60 31541.28 20060.41 33049.20 22562.84 30275.78 284
dmvs_testset50.16 31451.90 30444.94 34766.49 32711.78 38461.01 32551.50 35251.17 24750.30 33967.44 34139.28 21460.29 33122.38 36657.49 32962.76 352
PMVScopyleft28.69 2236.22 33633.29 34045.02 34636.82 38235.98 33954.68 34648.74 35926.31 36021.02 37551.61 3662.88 38460.10 3329.99 38047.58 35638.99 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS53.96 29553.26 30156.04 31462.60 34650.92 18461.17 32256.09 34232.81 35053.51 32366.84 34534.04 26759.93 33344.14 26768.18 26157.27 359
test_vis1_n_192058.86 26459.06 25658.25 30263.76 34043.14 27767.49 28566.36 29440.22 33765.89 18471.95 31331.04 29459.75 33459.94 14464.90 28571.85 325
UnsupCasMVSNet_bld50.07 31548.87 31653.66 32660.97 35433.67 35157.62 33864.56 30539.47 34147.38 34464.02 35327.47 32259.32 33534.69 32743.68 36067.98 348
Anonymous2024052155.30 28954.41 29157.96 30660.92 35541.73 28971.09 26071.06 26341.18 33148.65 34173.31 30516.93 35459.25 33642.54 28264.01 29172.90 310
dmvs_re56.77 27956.83 27456.61 31269.23 30841.02 29458.37 33364.18 30750.59 25257.45 28771.42 31635.54 25358.94 33737.23 31067.45 26769.87 341
PVSNet_043.31 2047.46 32245.64 32552.92 33167.60 32044.65 26354.06 34754.64 34441.59 32946.15 35058.75 35830.99 29558.66 33832.18 33624.81 37455.46 361
test20.0353.87 29754.02 29653.41 32961.47 34928.11 36861.30 32059.21 32951.34 24352.09 32777.43 26633.29 27658.55 33929.76 35360.27 32073.58 307
UnsupCasMVSNet_eth53.16 30452.47 30255.23 31759.45 35733.39 35359.43 33069.13 27745.98 29750.35 33872.32 30929.30 30958.26 34042.02 28744.30 35974.05 304
pmmvs344.92 32441.95 32953.86 32452.58 36643.55 27362.11 31646.90 36626.05 36140.63 36160.19 35711.08 36957.91 34131.83 34246.15 35760.11 354
test-LLR58.15 27058.13 26658.22 30368.57 31344.80 26165.46 29657.92 33450.08 25655.44 29969.82 32932.62 28657.44 34249.66 22173.62 18172.41 318
test-mter56.42 28255.82 28158.22 30368.57 31344.80 26165.46 29657.92 33439.94 34055.44 29969.82 32921.92 34757.44 34249.66 22173.62 18172.41 318
new-patchmatchnet47.56 32147.73 32147.06 34258.81 3599.37 38648.78 35759.21 32943.28 31844.22 35568.66 33625.67 33557.20 34431.57 34549.35 35474.62 299
EPMVS53.96 29553.69 29854.79 32066.12 33131.96 35962.34 31549.05 35844.42 31055.54 29771.33 31830.22 30156.70 34541.65 29062.54 30575.71 285
test_cas_vis1_n_192056.91 27856.71 27557.51 31059.13 35845.40 25763.58 30861.29 32436.24 34667.14 15971.85 31429.89 30456.69 34657.65 15663.58 29670.46 336
dp51.89 30751.60 30652.77 33268.44 31632.45 35762.36 31454.57 34544.16 31249.31 34067.91 33728.87 31356.61 34733.89 32954.89 33869.24 346
Anonymous2023120655.10 29355.30 28554.48 32169.81 30333.94 35062.91 31162.13 32041.08 33255.18 30375.65 28832.75 28456.59 34830.32 35167.86 26372.91 309
sss56.17 28556.57 27654.96 31866.93 32336.32 33657.94 33561.69 32241.67 32858.64 27875.32 29338.72 22156.25 34942.04 28666.19 27772.31 321
RPSCF55.80 28754.22 29560.53 29265.13 33542.91 28064.30 30557.62 33636.84 34558.05 28382.28 18028.01 31856.24 35037.14 31158.61 32582.44 198
test0.0.03 153.32 30253.59 29952.50 33362.81 34529.45 36459.51 32954.11 34750.08 25654.40 31374.31 30032.62 28655.92 35130.50 35063.95 29372.15 323
testgi51.90 30652.37 30350.51 33960.39 35623.55 37858.42 33258.15 33249.03 26451.83 32879.21 24322.39 34555.59 35229.24 35662.64 30372.40 320
TESTMET0.1,155.28 29054.90 28756.42 31366.56 32643.67 27265.46 29656.27 34139.18 34253.83 31767.44 34124.21 34155.46 35348.04 23473.11 19470.13 339
YYNet150.73 31248.96 31456.03 31561.10 35241.78 28851.94 35156.44 33940.94 33444.84 35267.80 33930.08 30255.08 35436.77 31350.71 34971.22 330
MDA-MVSNet_test_wron50.71 31348.95 31556.00 31661.17 35141.84 28751.90 35256.45 33840.96 33344.79 35367.84 33830.04 30355.07 35536.71 31550.69 35071.11 333
test_fmvs1_n51.37 30950.35 31254.42 32352.85 36437.71 32061.16 32351.93 35028.15 35663.81 22269.73 33113.72 35953.95 35651.16 20960.65 31871.59 327
test_fmvs151.32 31150.48 31153.81 32553.57 36337.51 32260.63 32751.16 35328.02 35863.62 22369.23 33416.41 35553.93 35751.01 21060.70 31769.99 340
tpm57.34 27558.16 26454.86 31971.80 27734.77 34267.47 28656.04 34348.20 27460.10 25876.92 27037.17 23953.41 35840.76 29365.01 28476.40 280
APD_test137.39 33534.94 33844.72 34848.88 36933.19 35452.95 35044.00 36919.49 37027.28 37158.59 3593.18 38352.84 35918.92 36941.17 36448.14 367
ADS-MVSNet48.48 31947.77 32050.63 33866.02 33229.92 36350.90 35350.87 35736.90 34350.74 33366.18 34726.38 32952.47 36027.17 35954.76 33969.50 343
test_vis1_n49.89 31648.69 31853.50 32853.97 36237.38 32361.53 31747.33 36428.54 35559.62 26767.10 34413.52 36052.27 36149.07 22657.52 32870.84 334
test_fmvs248.69 31847.49 32352.29 33548.63 37033.06 35557.76 33648.05 36225.71 36259.76 26569.60 33211.57 36552.23 36249.45 22456.86 33171.58 328
FPMVS42.18 32841.11 33045.39 34458.03 36041.01 29649.50 35553.81 34930.07 35333.71 36764.03 35111.69 36352.08 36314.01 37455.11 33743.09 370
test_fmvs344.30 32542.55 32749.55 34042.83 37427.15 37153.03 34944.93 36722.03 36953.69 32064.94 3504.21 37949.63 36447.47 23549.82 35271.88 324
CHOSEN 280x42047.83 32046.36 32452.24 33667.37 32149.78 20438.91 37143.11 37035.00 34843.27 35863.30 35428.95 31149.19 36536.53 31860.80 31657.76 358
testf131.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
APD_test231.46 34228.89 34539.16 35241.99 37728.78 36646.45 36137.56 37414.28 37721.10 37348.96 3701.48 38747.11 36613.63 37534.56 37041.60 371
Patchmatch-test49.08 31748.28 31951.50 33764.40 33830.85 36245.68 36348.46 36135.60 34746.10 35172.10 31034.47 26446.37 36827.08 36160.65 31877.27 269
DSMNet-mixed39.30 33438.72 33341.03 35151.22 36719.66 38145.53 36431.35 37915.83 37639.80 36467.42 34322.19 34645.13 36922.43 36552.69 34558.31 357
test_vis1_rt41.35 33039.45 33247.03 34346.65 37337.86 31747.76 35838.65 37323.10 36544.21 35651.22 36711.20 36844.08 37039.27 30053.02 34459.14 355
LF4IMVS42.95 32642.26 32845.04 34548.30 37132.50 35654.80 34548.49 36028.03 35740.51 36270.16 3269.24 37143.89 37131.63 34349.18 35558.72 356
N_pmnet39.35 33340.28 33136.54 35663.76 3401.62 39049.37 3560.76 39034.62 34943.61 35766.38 34626.25 33142.57 37226.02 36451.77 34665.44 350
E-PMN23.77 34522.73 34926.90 36142.02 37620.67 38042.66 36835.70 37617.43 37210.28 38225.05 3786.42 37442.39 37310.28 37914.71 37817.63 377
EMVS22.97 34621.84 35026.36 36240.20 37919.53 38241.95 36934.64 37717.09 3739.73 38322.83 3797.29 37342.22 3749.18 38113.66 37917.32 378
mvsany_test139.38 33238.16 33543.02 35049.05 36834.28 34744.16 36725.94 38322.74 36746.57 34962.21 35623.85 34341.16 37533.01 33435.91 36953.63 362
PMMVS227.40 34425.91 34731.87 36039.46 3816.57 38731.17 37428.52 38123.96 36320.45 37648.94 3724.20 38037.94 37616.51 37119.97 37651.09 363
test_vis3_rt32.09 34030.20 34437.76 35535.36 38427.48 36940.60 37028.29 38216.69 37432.52 36840.53 3731.96 38537.40 37733.64 33242.21 36348.39 365
mvsany_test332.62 33930.57 34338.77 35436.16 38324.20 37738.10 37220.63 38519.14 37140.36 36357.43 3605.06 37636.63 37829.59 35528.66 37355.49 360
new_pmnet34.13 33834.29 33933.64 35852.63 36518.23 38344.43 36633.90 37822.81 36630.89 36953.18 36310.48 37035.72 37920.77 36839.51 36546.98 369
test_f31.86 34131.05 34234.28 35732.33 38621.86 37932.34 37330.46 38016.02 37539.78 36555.45 3624.80 37732.36 38030.61 34937.66 36848.64 364
MVEpermissive17.77 2321.41 34717.77 35232.34 35934.34 38525.44 37416.11 37724.11 38411.19 37913.22 37931.92 3751.58 38630.95 38110.47 37817.03 37740.62 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 34818.10 35124.41 36313.68 3883.11 38912.06 37942.37 3712.00 38211.97 38036.38 3745.77 37529.35 38215.06 37223.65 37540.76 373
wuyk23d13.32 35012.52 35315.71 36447.54 37226.27 37231.06 3751.98 3894.93 3815.18 3841.94 3840.45 38918.54 3836.81 38312.83 3802.33 381
DeepMVS_CXcopyleft12.03 36517.97 38710.91 38510.60 3887.46 38011.07 38128.36 3763.28 38211.29 3848.01 3829.74 38313.89 379
tmp_tt9.43 35111.14 3544.30 3662.38 3894.40 38813.62 37816.08 3870.39 38315.89 37813.06 38015.80 3575.54 38512.63 37710.46 3822.95 380
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
cdsmvs_eth3d_5k17.50 34923.34 3480.00 3690.00 3920.00 3920.00 38078.63 1600.00 3870.00 38882.18 18149.25 1050.00 3860.00 3860.00 3840.00 384
pcd_1.5k_mvsjas3.92 3555.23 3580.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 38747.05 1360.00 3860.00 3860.00 3840.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
testmvs4.52 3546.03 3570.01 3680.01 3900.00 39253.86 3480.00 3910.01 3850.04 3860.27 3850.00 3910.00 3860.04 3840.00 3840.03 383
test1234.73 3536.30 3560.02 3670.01 3900.01 39156.36 3410.00 3910.01 3850.04 3860.21 3860.01 3900.00 3860.03 3850.00 3840.04 382
ab-mvs-re6.49 3528.65 3550.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 38877.89 2600.00 3910.00 3860.00 3860.00 3840.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3920.00 3800.00 3910.00 3870.00 3880.00 3870.00 3910.00 3860.00 3860.00 3840.00 384
FOURS186.12 3660.82 3788.18 183.61 6260.87 8381.50 16
test_one_060187.58 959.30 5686.84 765.01 1983.80 1191.86 664.03 11
eth-test20.00 392
eth-test0.00 392
RE-MVS-def73.71 6283.49 6559.87 4884.29 3681.36 10658.07 13673.14 6790.07 3343.06 17868.20 6981.76 9384.03 151
IU-MVS87.77 459.15 5985.53 2553.93 21584.64 379.07 1090.87 588.37 12
save fliter86.17 3361.30 2883.98 4679.66 13959.00 119
test072687.75 759.07 6387.86 486.83 864.26 2884.19 791.92 564.82 8
GSMVS78.05 260
test_part287.58 960.47 4283.42 12
sam_mvs134.74 26078.05 260
sam_mvs33.43 274
MTGPAbinary80.97 122
MTMP86.03 1817.08 386
test9_res75.28 2988.31 3283.81 161
agg_prior273.09 4587.93 3984.33 142
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9575.01 3989.06 5156.22 3672.19 4988.96 24
新几何276.12 170
旧先验183.04 7053.15 15167.52 28487.85 6844.08 16980.76 9978.03 263
原ACMM279.02 115
test22283.14 6858.68 7272.57 23763.45 31141.78 32667.56 15286.12 9837.13 24178.73 13274.98 293
segment_acmp54.23 52
testdata172.65 23360.50 90
plane_prior781.41 8955.96 110
plane_prior681.20 9656.24 10545.26 160
plane_prior486.10 99
plane_prior356.09 10763.92 3569.27 117
plane_prior284.22 3964.52 24
plane_prior181.27 94
plane_prior56.31 10183.58 5263.19 4780.48 105
n20.00 391
nn0.00 391
door-mid47.19 365
test1183.47 66
door47.60 363
HQP5-MVS54.94 127
HQP-NCC80.66 10282.31 7062.10 6767.85 142
ACMP_Plane80.66 10282.31 7062.10 6767.85 142
BP-MVS67.04 83
HQP3-MVS83.90 5380.35 106
HQP2-MVS45.46 154
NP-MVS80.98 9956.05 10985.54 116
MDTV_nov1_ep13_2view25.89 37361.22 32140.10 33851.10 33032.97 27938.49 30378.61 255
ACMMP++_ref74.07 175
ACMMP++72.16 209
Test By Simon48.33 116