PGM-MVS | | | 96.81 41 | 96.53 45 | 97.65 47 | 99.35 22 | 93.53 67 | 97.65 89 | 98.98 1 | 92.22 116 | 97.14 45 | 98.44 30 | 91.17 67 | 99.85 17 | 94.35 99 | 99.46 42 | 99.57 23 |
|
MVS_111021_HR | | | 96.68 48 | 96.58 43 | 96.99 76 | 98.46 79 | 92.31 102 | 96.20 228 | 98.90 2 | 94.30 50 | 95.86 94 | 97.74 90 | 92.33 38 | 99.38 115 | 96.04 49 | 99.42 47 | 99.28 69 |
|
ACMMP |  | | 96.27 60 | 95.93 63 | 97.28 62 | 99.24 30 | 92.62 92 | 98.25 32 | 98.81 3 | 92.99 91 | 94.56 122 | 98.39 37 | 88.96 94 | 99.85 17 | 94.57 98 | 97.63 125 | 99.36 62 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 96.24 61 | 96.19 59 | 96.39 101 | 98.23 102 | 91.35 133 | 96.24 226 | 98.79 4 | 93.99 55 | 95.80 96 | 97.65 98 | 89.92 88 | 99.24 124 | 95.87 52 | 99.20 74 | 98.58 124 |
|
FC-MVSNet-test | | | 93.94 124 | 93.57 117 | 95.04 169 | 95.48 231 | 91.45 131 | 98.12 43 | 98.71 5 | 93.37 76 | 90.23 210 | 96.70 149 | 87.66 111 | 97.85 265 | 91.49 156 | 90.39 247 | 95.83 234 |
|
UniMVSNet (Re) | | | 93.31 144 | 92.55 152 | 95.61 144 | 95.39 234 | 93.34 74 | 97.39 115 | 98.71 5 | 93.14 86 | 90.10 220 | 94.83 244 | 87.71 110 | 98.03 242 | 91.67 154 | 83.99 315 | 95.46 252 |
|
FIs | | | 94.09 118 | 93.70 113 | 95.27 161 | 95.70 223 | 92.03 112 | 98.10 44 | 98.68 7 | 93.36 78 | 90.39 207 | 96.70 149 | 87.63 113 | 97.94 256 | 92.25 136 | 90.50 246 | 95.84 233 |
|
WR-MVS_H | | | 92.00 193 | 91.35 189 | 93.95 220 | 95.09 258 | 89.47 195 | 98.04 49 | 98.68 7 | 91.46 139 | 88.34 267 | 94.68 252 | 85.86 139 | 97.56 291 | 85.77 264 | 84.24 312 | 94.82 293 |
|
VPA-MVSNet | | | 93.24 146 | 92.48 157 | 95.51 151 | 95.70 223 | 92.39 98 | 97.86 63 | 98.66 9 | 92.30 114 | 92.09 177 | 95.37 224 | 80.49 227 | 98.40 199 | 93.95 107 | 85.86 287 | 95.75 241 |
|
UniMVSNet_NR-MVSNet | | | 93.37 142 | 92.67 147 | 95.47 157 | 95.34 240 | 92.83 85 | 97.17 139 | 98.58 10 | 92.98 96 | 90.13 216 | 95.80 200 | 88.37 104 | 97.85 265 | 91.71 150 | 83.93 316 | 95.73 243 |
|
CSCG | | | 96.05 65 | 95.91 64 | 96.46 96 | 99.24 30 | 90.47 166 | 98.30 27 | 98.57 11 | 89.01 209 | 93.97 134 | 97.57 107 | 92.62 31 | 99.76 33 | 94.66 95 | 99.27 65 | 99.15 76 |
|
MSLP-MVS++ | | | 96.94 33 | 97.06 14 | 96.59 86 | 98.72 61 | 91.86 117 | 97.67 86 | 98.49 12 | 94.66 40 | 97.24 40 | 98.41 36 | 92.31 40 | 98.94 153 | 96.61 26 | 99.46 42 | 98.96 96 |
|
HyFIR lowres test | | | 93.66 133 | 92.92 139 | 95.87 128 | 98.24 98 | 89.88 182 | 94.58 282 | 98.49 12 | 85.06 299 | 93.78 137 | 95.78 204 | 82.86 185 | 98.67 176 | 91.77 148 | 95.71 169 | 99.07 86 |
|
CHOSEN 1792x2688 | | | 94.15 113 | 93.51 122 | 96.06 119 | 98.27 94 | 89.38 200 | 95.18 274 | 98.48 14 | 85.60 290 | 93.76 138 | 97.11 129 | 83.15 176 | 99.61 65 | 91.33 159 | 98.72 98 | 99.19 72 |
|
PHI-MVS | | | 96.77 43 | 96.46 50 | 97.71 44 | 98.40 83 | 94.07 52 | 98.21 39 | 98.45 15 | 89.86 186 | 97.11 48 | 98.01 71 | 92.52 35 | 99.69 47 | 96.03 50 | 99.53 28 | 99.36 62 |
|
PVSNet_BlendedMVS | | | 94.06 119 | 93.92 108 | 94.47 197 | 98.27 94 | 89.46 197 | 96.73 177 | 98.36 16 | 90.17 180 | 94.36 125 | 95.24 229 | 88.02 105 | 99.58 74 | 93.44 119 | 90.72 242 | 94.36 312 |
|
PVSNet_Blended | | | 94.87 100 | 94.56 96 | 95.81 130 | 98.27 94 | 89.46 197 | 95.47 260 | 98.36 16 | 88.84 217 | 94.36 125 | 96.09 188 | 88.02 105 | 99.58 74 | 93.44 119 | 98.18 112 | 98.40 144 |
|
3Dnovator | | 91.36 5 | 95.19 90 | 94.44 103 | 97.44 55 | 96.56 182 | 93.36 73 | 98.65 9 | 98.36 16 | 94.12 52 | 89.25 249 | 98.06 67 | 82.20 201 | 99.77 32 | 93.41 121 | 99.32 57 | 99.18 73 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 74 | 99.29 1 | 98.35 19 | 94.98 25 | 98.49 15 | | | | | | |
|
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 34 | 95.78 7 | 97.21 136 | 98.35 19 | 95.16 16 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 3 | 96.70 24 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HFP-MVS | | | 97.14 20 | 96.92 21 | 97.83 29 | 99.42 7 | 94.12 49 | 98.52 13 | 98.32 21 | 93.21 81 | 97.18 42 | 98.29 52 | 92.08 42 | 99.83 25 | 95.63 65 | 99.59 17 | 99.54 33 |
|
#test# | | | 97.02 27 | 96.75 34 | 97.83 29 | 99.42 7 | 94.12 49 | 98.15 42 | 98.32 21 | 92.57 109 | 97.18 42 | 98.29 52 | 92.08 42 | 99.83 25 | 95.12 79 | 99.59 17 | 99.54 33 |
|
ACMMPR | | | 97.07 23 | 96.84 26 | 97.79 35 | 99.44 6 | 93.88 56 | 98.52 13 | 98.31 23 | 93.21 81 | 97.15 44 | 98.33 46 | 91.35 62 | 99.86 8 | 95.63 65 | 99.59 17 | 99.62 15 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 18 | 99.15 35 | 94.82 29 | 98.81 5 | 98.30 24 | 94.76 37 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 50 | 97.93 1 | 99.69 3 | 99.75 5 |
|
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 26 | 98.29 25 | 94.92 26 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 41 | 99.40 12 | 93.77 62 | 98.53 12 | 98.29 25 | 95.55 5 | 98.56 14 | 97.81 85 | 93.90 15 | 99.65 56 | 96.62 25 | 99.21 73 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++. | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 64 | 95.39 11 | 99.29 1 | 98.28 27 | 94.78 35 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 8 | 97.45 8 | 99.58 22 | 99.59 19 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 39 | 98.28 27 | | | | | 99.86 8 | 97.52 4 | 99.67 6 | 99.75 5 |
|
CP-MVS | | | 97.02 27 | 96.81 29 | 97.64 49 | 99.33 23 | 93.54 66 | 98.80 6 | 98.28 27 | 92.99 91 | 96.45 73 | 98.30 51 | 91.90 48 | 99.85 17 | 95.61 67 | 99.68 4 | 99.54 33 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 18 | 98.25 32 | 98.27 30 | 95.13 17 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 17 | 97.52 4 | 99.66 10 | 99.56 26 |
|
test_241102_TWO | | | | | | | | | 98.27 30 | 95.13 17 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 17 | 97.52 4 | 99.65 12 | 99.74 7 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 18 | | 98.27 30 | 95.09 21 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 56 | | | |
|
SF-MVS | | | 97.39 11 | 97.13 12 | 98.17 14 | 99.02 45 | 95.28 20 | 98.23 36 | 98.27 30 | 92.37 113 | 98.27 18 | 98.65 15 | 93.33 20 | 99.72 38 | 96.49 30 | 99.52 29 | 99.51 38 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 27 | 98.39 85 | 94.25 42 | 98.43 20 | 98.27 30 | 95.34 10 | 98.11 20 | 98.56 19 | 94.53 12 | 99.71 41 | 96.57 28 | 99.62 15 | 99.65 11 |
Skip Steuart: Steuart Systems R&D Blog. |
test_one_0601 | | | | | | 99.32 24 | 95.20 21 | | 98.25 35 | 95.13 17 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
PVSNet_Blended_VisFu | | | 95.27 85 | 94.91 88 | 96.38 102 | 98.20 103 | 90.86 153 | 97.27 127 | 98.25 35 | 90.21 179 | 94.18 129 | 97.27 120 | 87.48 117 | 99.73 35 | 93.53 116 | 97.77 123 | 98.55 125 |
|
ETH3D-3000-0.1 | | | 97.07 23 | 96.71 37 | 98.14 16 | 98.90 53 | 95.33 17 | 97.68 85 | 98.24 37 | 91.57 135 | 97.90 25 | 98.37 38 | 92.61 32 | 99.66 55 | 95.59 70 | 99.51 33 | 99.43 53 |
|
region2R | | | 97.07 23 | 96.84 26 | 97.77 38 | 99.46 2 | 93.79 59 | 98.52 13 | 98.24 37 | 93.19 84 | 97.14 45 | 98.34 43 | 91.59 57 | 99.87 7 | 95.46 73 | 99.59 17 | 99.64 12 |
|
PS-CasMVS | | | 91.55 208 | 90.84 210 | 93.69 234 | 94.96 263 | 88.28 231 | 97.84 67 | 98.24 37 | 91.46 139 | 88.04 277 | 95.80 200 | 79.67 243 | 97.48 299 | 87.02 244 | 84.54 309 | 95.31 264 |
|
DU-MVS | | | 92.90 161 | 92.04 166 | 95.49 154 | 94.95 264 | 92.83 85 | 97.16 140 | 98.24 37 | 93.02 89 | 90.13 216 | 95.71 208 | 83.47 170 | 97.85 265 | 91.71 150 | 83.93 316 | 95.78 237 |
|
9.14 | | | | 96.75 34 | | 98.93 49 | | 97.73 78 | 98.23 41 | 91.28 149 | 97.88 26 | 98.44 30 | 93.00 24 | 99.65 56 | 95.76 58 | 99.47 40 | |
|
testtj | | | 96.93 34 | 96.56 44 | 98.05 20 | 99.10 36 | 94.66 31 | 97.78 72 | 98.22 42 | 92.74 104 | 97.59 28 | 98.20 60 | 91.96 47 | 99.86 8 | 94.21 101 | 99.25 69 | 99.63 13 |
|
ETH3 D test6400 | | | 96.16 63 | 95.52 71 | 98.07 19 | 98.90 53 | 95.06 26 | 97.03 146 | 98.21 43 | 88.16 240 | 96.64 61 | 97.70 92 | 91.18 66 | 99.67 52 | 92.44 133 | 99.47 40 | 99.48 45 |
|
D2MVS | | | 91.30 224 | 90.95 204 | 92.35 279 | 94.71 278 | 85.52 287 | 96.18 229 | 98.21 43 | 88.89 215 | 86.60 302 | 93.82 292 | 79.92 239 | 97.95 255 | 89.29 195 | 90.95 239 | 93.56 326 |
|
XVS | | | 97.18 17 | 96.96 19 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 10 | 98.20 45 | 94.85 28 | 96.59 65 | 98.29 52 | 91.70 53 | 99.80 30 | 95.66 60 | 99.40 49 | 99.62 15 |
|
X-MVStestdata | | | 91.71 200 | 89.67 259 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 10 | 98.20 45 | 94.85 28 | 96.59 65 | 32.69 367 | 91.70 53 | 99.80 30 | 95.66 60 | 99.40 49 | 99.62 15 |
|
ACMMP_NAP | | | 97.20 16 | 96.86 23 | 98.23 11 | 99.09 38 | 95.16 24 | 97.60 96 | 98.19 47 | 92.82 101 | 97.93 24 | 98.74 13 | 91.60 56 | 99.86 8 | 96.26 35 | 99.52 29 | 99.67 10 |
|
CP-MVSNet | | | 91.89 196 | 91.24 196 | 93.82 227 | 95.05 259 | 88.57 224 | 97.82 68 | 98.19 47 | 91.70 132 | 88.21 273 | 95.76 205 | 81.96 205 | 97.52 297 | 87.86 219 | 84.65 305 | 95.37 261 |
|
ZNCC-MVS | | | 96.96 31 | 96.67 39 | 97.85 28 | 99.37 17 | 94.12 49 | 98.49 17 | 98.18 49 | 92.64 108 | 96.39 75 | 98.18 61 | 91.61 55 | 99.88 4 | 95.59 70 | 99.55 25 | 99.57 23 |
|
SMA-MVS |  | | 97.35 13 | 97.03 15 | 98.30 8 | 99.06 42 | 95.42 10 | 97.94 58 | 98.18 49 | 90.57 174 | 98.85 9 | 98.94 1 | 93.33 20 | 99.83 25 | 96.72 23 | 99.68 4 | 99.63 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PEN-MVS | | | 91.20 228 | 90.44 225 | 93.48 243 | 94.49 286 | 87.91 244 | 97.76 74 | 98.18 49 | 91.29 146 | 87.78 282 | 95.74 207 | 80.35 230 | 97.33 310 | 85.46 268 | 82.96 326 | 95.19 274 |
|
DELS-MVS | | | 96.61 49 | 96.38 53 | 97.30 60 | 97.79 126 | 93.19 77 | 95.96 240 | 98.18 49 | 95.23 12 | 95.87 93 | 97.65 98 | 91.45 58 | 99.70 46 | 95.87 52 | 99.44 46 | 99.00 94 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
tfpnnormal | | | 89.70 272 | 88.40 277 | 93.60 237 | 95.15 254 | 90.10 173 | 97.56 99 | 98.16 53 | 87.28 266 | 86.16 306 | 94.63 255 | 77.57 278 | 98.05 238 | 74.48 340 | 84.59 308 | 92.65 338 |
|
VNet | | | 95.89 70 | 95.45 74 | 97.21 68 | 98.07 112 | 92.94 84 | 97.50 103 | 98.15 54 | 93.87 57 | 97.52 29 | 97.61 104 | 85.29 145 | 99.53 92 | 95.81 57 | 95.27 175 | 99.16 74 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 49 | 97.09 13 | 95.15 165 | 98.09 110 | 86.63 271 | 96.00 238 | 98.15 54 | 95.43 6 | 97.95 23 | 98.56 19 | 93.40 19 | 99.36 116 | 96.77 22 | 99.48 39 | 99.45 49 |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 74 | 98.57 77 | 94.46 34 | 97.92 60 | 98.14 56 | 94.82 32 | 99.01 3 | 98.55 21 | 94.18 14 | 97.41 306 | 96.94 14 | 99.64 13 | 99.32 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 96.85 39 | 96.52 46 | 97.82 32 | 99.36 20 | 94.14 48 | 98.29 28 | 98.13 57 | 92.72 105 | 96.70 56 | 98.06 67 | 91.35 62 | 99.86 8 | 94.83 89 | 99.28 63 | 99.47 48 |
|
UA-Net | | | 95.95 69 | 95.53 70 | 97.20 69 | 97.67 131 | 92.98 83 | 97.65 89 | 98.13 57 | 94.81 33 | 96.61 63 | 98.35 40 | 88.87 95 | 99.51 97 | 90.36 173 | 97.35 135 | 99.11 82 |
|
QAPM | | | 93.45 140 | 92.27 162 | 96.98 77 | 96.77 171 | 92.62 92 | 98.39 23 | 98.12 59 | 84.50 307 | 88.27 271 | 97.77 88 | 82.39 198 | 99.81 29 | 85.40 269 | 98.81 95 | 98.51 130 |
|
Vis-MVSNet |  | | 95.23 87 | 94.81 89 | 96.51 91 | 97.18 146 | 91.58 125 | 98.26 31 | 98.12 59 | 94.38 48 | 94.90 117 | 98.15 62 | 82.28 199 | 98.92 154 | 91.45 158 | 98.58 104 | 99.01 91 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OpenMVS |  | 89.19 12 | 92.86 163 | 91.68 179 | 96.40 99 | 95.34 240 | 92.73 88 | 98.27 30 | 98.12 59 | 84.86 302 | 85.78 308 | 97.75 89 | 78.89 259 | 99.74 34 | 87.50 235 | 98.65 101 | 96.73 207 |
|
TranMVSNet+NR-MVSNet | | | 92.50 171 | 91.63 180 | 95.14 166 | 94.76 275 | 92.07 110 | 97.53 101 | 98.11 62 | 92.90 99 | 89.56 237 | 96.12 184 | 83.16 175 | 97.60 289 | 89.30 194 | 83.20 325 | 95.75 241 |
|
CPTT-MVS | | | 95.57 79 | 95.19 82 | 96.70 80 | 99.27 28 | 91.48 128 | 98.33 25 | 98.11 62 | 87.79 251 | 95.17 115 | 98.03 69 | 87.09 123 | 99.61 65 | 93.51 117 | 99.42 47 | 99.02 87 |
|
Regformer-2 | | | 97.16 19 | 96.99 17 | 97.67 46 | 98.32 91 | 93.84 57 | 96.83 169 | 98.10 64 | 95.24 11 | 97.49 30 | 98.25 57 | 92.57 33 | 99.61 65 | 96.80 19 | 99.29 61 | 99.56 26 |
|
APD-MVS |  | | 96.95 32 | 96.60 41 | 98.01 22 | 99.03 44 | 94.93 28 | 97.72 81 | 98.10 64 | 91.50 137 | 98.01 22 | 98.32 48 | 92.33 38 | 99.58 74 | 94.85 87 | 99.51 33 | 99.53 37 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
mPP-MVS | | | 96.86 38 | 96.60 41 | 97.64 49 | 99.40 12 | 93.44 69 | 98.50 16 | 98.09 66 | 93.27 80 | 95.95 92 | 98.33 46 | 91.04 69 | 99.88 4 | 95.20 76 | 99.57 24 | 99.60 18 |
|
ZD-MVS | | | | | | 99.05 43 | 94.59 32 | | 98.08 67 | 89.22 204 | 97.03 51 | 98.10 63 | 92.52 35 | 99.65 56 | 94.58 97 | 99.31 59 | |
|
zzz-MVS | | | 97.07 23 | 96.77 33 | 97.97 25 | 99.37 17 | 94.42 36 | 97.15 142 | 98.08 67 | 95.07 22 | 96.11 82 | 98.59 17 | 90.88 73 | 99.90 1 | 96.18 44 | 99.50 36 | 99.58 21 |
|
MTGPA |  | | | | | | | | 98.08 67 | | | | | | | | |
|
MTAPA | | | 97.08 22 | 96.78 32 | 97.97 25 | 99.37 17 | 94.42 36 | 97.24 129 | 98.08 67 | 95.07 22 | 96.11 82 | 98.59 17 | 90.88 73 | 99.90 1 | 96.18 44 | 99.50 36 | 99.58 21 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 53 | 95.86 6 | 97.27 127 | 98.08 67 | 95.81 3 | 97.87 27 | 98.31 49 | 94.26 13 | 99.68 50 | 97.02 13 | 99.49 38 | 99.57 23 |
|
DP-MVS Recon | | | 95.68 75 | 95.12 85 | 97.37 57 | 99.19 33 | 94.19 44 | 97.03 146 | 98.08 67 | 88.35 233 | 95.09 116 | 97.65 98 | 89.97 87 | 99.48 102 | 92.08 143 | 98.59 103 | 98.44 141 |
|
SR-MVS | | | 97.01 29 | 96.86 23 | 97.47 54 | 99.09 38 | 93.27 76 | 97.98 52 | 98.07 73 | 93.75 62 | 97.45 32 | 98.48 27 | 91.43 59 | 99.59 71 | 96.22 38 | 99.27 65 | 99.54 33 |
|
MCST-MVS | | | 97.18 17 | 96.84 26 | 98.20 13 | 99.30 26 | 95.35 15 | 97.12 144 | 98.07 73 | 93.54 71 | 96.08 84 | 97.69 93 | 93.86 16 | 99.71 41 | 96.50 29 | 99.39 51 | 99.55 30 |
|
NR-MVSNet | | | 92.34 178 | 91.27 195 | 95.53 150 | 94.95 264 | 93.05 80 | 97.39 115 | 98.07 73 | 92.65 107 | 84.46 319 | 95.71 208 | 85.00 149 | 97.77 275 | 89.71 183 | 83.52 322 | 95.78 237 |
|
MP-MVS-pluss | | | 96.70 45 | 96.27 55 | 97.98 24 | 99.23 32 | 94.71 30 | 96.96 157 | 98.06 76 | 90.67 165 | 95.55 107 | 98.78 12 | 91.07 68 | 99.86 8 | 96.58 27 | 99.55 25 | 99.38 60 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
APD-MVS_3200maxsize | | | 96.81 41 | 96.71 37 | 97.12 72 | 99.01 48 | 92.31 102 | 97.98 52 | 98.06 76 | 93.11 87 | 97.44 33 | 98.55 21 | 90.93 71 | 99.55 87 | 96.06 46 | 99.25 69 | 99.51 38 |
|
MP-MVS |  | | 96.77 43 | 96.45 51 | 97.72 42 | 99.39 14 | 93.80 58 | 98.41 21 | 98.06 76 | 93.37 76 | 95.54 109 | 98.34 43 | 90.59 78 | 99.88 4 | 94.83 89 | 99.54 27 | 99.49 43 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
HPM-MVS_fast | | | 96.51 52 | 96.27 55 | 97.22 67 | 99.32 24 | 92.74 87 | 98.74 7 | 98.06 76 | 90.57 174 | 96.77 53 | 98.35 40 | 90.21 82 | 99.53 92 | 94.80 92 | 99.63 14 | 99.38 60 |
|
HPM-MVS |  | | 96.69 46 | 96.45 51 | 97.40 56 | 99.36 20 | 93.11 79 | 98.87 4 | 98.06 76 | 91.17 153 | 96.40 74 | 97.99 72 | 90.99 70 | 99.58 74 | 95.61 67 | 99.61 16 | 99.49 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
sss | | | 94.51 107 | 93.80 111 | 96.64 81 | 97.07 152 | 91.97 115 | 96.32 217 | 98.06 76 | 88.94 213 | 94.50 123 | 96.78 143 | 84.60 153 | 99.27 122 | 91.90 144 | 96.02 160 | 98.68 121 |
|
DeepC-MVS | | 93.07 3 | 96.06 64 | 95.66 69 | 97.29 61 | 97.96 114 | 93.17 78 | 97.30 125 | 98.06 76 | 93.92 56 | 93.38 147 | 98.66 14 | 86.83 125 | 99.73 35 | 95.60 69 | 99.22 72 | 98.96 96 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D cwj APD-0.16 | | | 96.56 51 | 96.06 60 | 98.05 20 | 98.26 97 | 95.19 22 | 96.99 154 | 98.05 83 | 89.85 188 | 97.26 39 | 98.22 59 | 91.80 50 | 99.69 47 | 94.84 88 | 99.28 63 | 99.27 70 |
|
test1172 | | | 96.93 34 | 96.86 23 | 97.15 70 | 99.10 36 | 92.34 99 | 97.96 57 | 98.04 84 | 93.79 61 | 97.35 37 | 98.53 23 | 91.40 60 | 99.56 84 | 96.30 34 | 99.30 60 | 99.55 30 |
|
NCCC | | | 97.30 15 | 97.03 15 | 98.11 17 | 98.77 59 | 95.06 26 | 97.34 119 | 98.04 84 | 95.96 2 | 97.09 49 | 97.88 77 | 93.18 23 | 99.71 41 | 95.84 56 | 99.17 76 | 99.56 26 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 40 | 97.78 36 | 98.64 72 | 94.30 38 | 97.41 111 | 98.04 84 | 94.81 33 | 96.59 65 | 98.37 38 | 91.24 64 | 99.64 64 | 95.16 77 | 99.52 29 | 99.42 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 96.88 37 | 96.80 30 | 97.11 73 | 99.02 45 | 92.34 99 | 97.98 52 | 98.03 87 | 93.52 72 | 97.43 35 | 98.51 24 | 91.40 60 | 99.56 84 | 96.05 47 | 99.26 67 | 99.43 53 |
|
RE-MVS-def | | | | 96.72 36 | | 99.02 45 | 92.34 99 | 97.98 52 | 98.03 87 | 93.52 72 | 97.43 35 | 98.51 24 | 90.71 76 | | 96.05 47 | 99.26 67 | 99.43 53 |
|
abl_6 | | | 96.40 56 | 96.21 57 | 96.98 77 | 98.89 56 | 92.20 107 | 97.89 61 | 98.03 87 | 93.34 79 | 97.22 41 | 98.42 33 | 87.93 108 | 99.72 38 | 95.10 80 | 99.07 86 | 99.02 87 |
|
RPMNet | | | 88.98 277 | 87.05 292 | 94.77 187 | 94.45 288 | 87.19 257 | 90.23 346 | 98.03 87 | 77.87 351 | 92.40 164 | 87.55 352 | 80.17 234 | 99.51 97 | 68.84 356 | 93.95 196 | 97.60 184 |
|
save fliter | | | | | | 98.91 51 | 94.28 39 | 97.02 149 | 98.02 91 | 95.35 8 | | | | | | | |
|
TEST9 | | | | | | 98.70 62 | 94.19 44 | 96.41 205 | 98.02 91 | 88.17 238 | 96.03 86 | 97.56 109 | 92.74 27 | 99.59 71 | | | |
|
train_agg | | | 96.30 59 | 95.83 67 | 97.72 42 | 98.70 62 | 94.19 44 | 96.41 205 | 98.02 91 | 88.58 226 | 96.03 86 | 97.56 109 | 92.73 28 | 99.59 71 | 95.04 81 | 99.37 56 | 99.39 58 |
|
test_8 | | | | | | 98.67 64 | 94.06 53 | 96.37 212 | 98.01 94 | 88.58 226 | 95.98 91 | 97.55 111 | 92.73 28 | 99.58 74 | | | |
|
Regformer-4 | | | 96.97 30 | 96.87 22 | 97.25 64 | 98.34 88 | 92.66 90 | 96.96 157 | 98.01 94 | 95.12 20 | 97.14 45 | 98.42 33 | 91.82 49 | 99.61 65 | 96.90 15 | 99.13 79 | 99.50 41 |
|
agg_prior1 | | | 96.22 62 | 95.77 68 | 97.56 51 | 98.67 64 | 93.79 59 | 96.28 221 | 98.00 96 | 88.76 223 | 95.68 101 | 97.55 111 | 92.70 30 | 99.57 82 | 95.01 82 | 99.32 57 | 99.32 64 |
|
agg_prior | | | | | | 98.67 64 | 93.79 59 | | 98.00 96 | | 95.68 101 | | | 99.57 82 | | | |
|
test_prior3 | | | 96.46 54 | 96.20 58 | 97.23 65 | 98.67 64 | 92.99 81 | 96.35 213 | 98.00 96 | 92.80 102 | 96.03 86 | 97.59 105 | 92.01 44 | 99.41 110 | 95.01 82 | 99.38 52 | 99.29 66 |
|
test_prior | | | | | 97.23 65 | 98.67 64 | 92.99 81 | | 98.00 96 | | | | | 99.41 110 | | | 99.29 66 |
|
Regformer-1 | | | 97.10 21 | 96.96 19 | 97.54 52 | 98.32 91 | 93.48 68 | 96.83 169 | 97.99 100 | 95.20 13 | 97.46 31 | 98.25 57 | 92.48 37 | 99.58 74 | 96.79 21 | 99.29 61 | 99.55 30 |
|
WR-MVS | | | 92.34 178 | 91.53 184 | 94.77 187 | 95.13 256 | 90.83 154 | 96.40 208 | 97.98 101 | 91.88 129 | 89.29 246 | 95.54 219 | 82.50 194 | 97.80 270 | 89.79 182 | 85.27 296 | 95.69 244 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 18 | 98.47 5 | 99.08 40 | 96.16 4 | 97.55 100 | 97.97 102 | 95.59 4 | 96.61 63 | 97.89 75 | 92.57 33 | 99.84 22 | 95.95 51 | 99.51 33 | 99.40 57 |
|
CANet | | | 96.39 57 | 96.02 61 | 97.50 53 | 97.62 134 | 93.38 71 | 97.02 149 | 97.96 103 | 95.42 7 | 94.86 118 | 97.81 85 | 87.38 119 | 99.82 28 | 96.88 16 | 99.20 74 | 99.29 66 |
|
114514_t | | | 93.95 123 | 93.06 135 | 96.63 83 | 99.07 41 | 91.61 122 | 97.46 110 | 97.96 103 | 77.99 349 | 93.00 155 | 97.57 107 | 86.14 137 | 99.33 117 | 89.22 198 | 99.15 77 | 98.94 99 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 105 | 90.40 178 | 98.94 5 | | | | 97.41 11 | 99.66 10 | 99.74 7 |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 64 | 96.94 1 | | 97.93 106 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 64 | 96.94 1 | | 97.93 106 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
Anonymous20231211 | | | 90.63 252 | 89.42 263 | 94.27 206 | 98.24 98 | 89.19 211 | 98.05 48 | 97.89 108 | 79.95 341 | 88.25 272 | 94.96 236 | 72.56 308 | 98.13 222 | 89.70 184 | 85.14 298 | 95.49 248 |
|
原ACMM1 | | | | | 96.38 102 | 98.59 74 | 91.09 146 | | 97.89 108 | 87.41 262 | 95.22 114 | 97.68 94 | 90.25 80 | 99.54 89 | 87.95 218 | 99.12 82 | 98.49 133 |
|
CDPH-MVS | | | 95.97 68 | 95.38 77 | 97.77 38 | 98.93 49 | 94.44 35 | 96.35 213 | 97.88 110 | 86.98 270 | 96.65 60 | 97.89 75 | 91.99 46 | 99.47 103 | 92.26 134 | 99.46 42 | 99.39 58 |
|
test11 | | | | | | | | | 97.88 110 | | | | | | | | |
|
EIA-MVS | | | 95.53 80 | 95.47 73 | 95.71 139 | 97.06 155 | 89.63 186 | 97.82 68 | 97.87 112 | 93.57 67 | 93.92 135 | 95.04 235 | 90.61 77 | 98.95 152 | 94.62 96 | 98.68 100 | 98.54 126 |
|
无先验 | | | | | | | | 95.79 248 | 97.87 112 | 83.87 315 | | | | 99.65 56 | 87.68 228 | | 98.89 105 |
|
3Dnovator+ | | 91.43 4 | 95.40 81 | 94.48 101 | 98.16 15 | 96.90 164 | 95.34 16 | 98.48 18 | 97.87 112 | 94.65 41 | 88.53 265 | 98.02 70 | 83.69 166 | 99.71 41 | 93.18 125 | 98.96 91 | 99.44 51 |
|
VPNet | | | 92.23 186 | 91.31 192 | 94.99 171 | 95.56 227 | 90.96 149 | 97.22 135 | 97.86 115 | 92.96 97 | 90.96 199 | 96.62 161 | 75.06 295 | 98.20 215 | 91.90 144 | 83.65 321 | 95.80 236 |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 39 | 97.85 116 | 94.92 26 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 22 | 97.52 4 | 99.67 6 | 99.48 45 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 97.42 9 | 97.33 10 | 97.69 45 | 99.25 29 | 94.24 43 | 98.07 47 | 97.85 116 | 93.72 63 | 98.57 13 | 98.35 40 | 93.69 18 | 99.40 112 | 97.06 12 | 99.46 42 | 99.44 51 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
AdaColmap |  | | 94.34 109 | 93.68 115 | 96.31 106 | 98.59 74 | 91.68 121 | 96.59 196 | 97.81 118 | 89.87 185 | 92.15 173 | 97.06 132 | 83.62 169 | 99.54 89 | 89.34 193 | 98.07 115 | 97.70 177 |
|
ETV-MVS | | | 96.02 66 | 95.89 65 | 96.40 99 | 97.16 147 | 92.44 97 | 97.47 108 | 97.77 119 | 94.55 42 | 96.48 70 | 94.51 258 | 91.23 65 | 98.92 154 | 95.65 63 | 98.19 111 | 97.82 173 |
|
Regformer-3 | | | 96.85 39 | 96.80 30 | 97.01 75 | 98.34 88 | 92.02 113 | 96.96 157 | 97.76 120 | 95.01 24 | 97.08 50 | 98.42 33 | 91.71 52 | 99.54 89 | 96.80 19 | 99.13 79 | 99.48 45 |
|
新几何1 | | | | | 97.32 59 | 98.60 73 | 93.59 65 | | 97.75 121 | 81.58 332 | 95.75 98 | 97.85 81 | 90.04 85 | 99.67 52 | 86.50 250 | 99.13 79 | 98.69 120 |
|
旧先验1 | | | | | | 98.38 86 | 93.38 71 | | 97.75 121 | | | 98.09 65 | 92.30 41 | | | 99.01 89 | 99.16 74 |
|
DROMVSNet | | | 96.42 55 | 96.47 48 | 96.26 111 | 97.01 160 | 91.52 127 | 98.89 3 | 97.75 121 | 94.42 45 | 96.64 61 | 97.68 94 | 89.32 90 | 98.60 182 | 97.45 8 | 99.11 84 | 98.67 122 |
|
CS-MVS | | | 95.88 71 | 95.98 62 | 95.58 146 | 96.44 190 | 90.56 162 | 97.78 72 | 97.73 124 | 93.01 90 | 96.07 85 | 96.77 144 | 90.13 83 | 98.57 187 | 96.83 18 | 99.10 85 | 97.60 184 |
|
EI-MVSNet-Vis-set | | | 96.51 52 | 96.47 48 | 96.63 83 | 98.24 98 | 91.20 140 | 96.89 164 | 97.73 124 | 94.74 38 | 96.49 69 | 98.49 26 | 90.88 73 | 99.58 74 | 96.44 32 | 98.32 108 | 99.13 78 |
|
1121 | | | 94.71 105 | 93.83 110 | 97.34 58 | 98.57 77 | 93.64 64 | 96.04 234 | 97.73 124 | 81.56 333 | 95.68 101 | 97.85 81 | 90.23 81 | 99.65 56 | 87.68 228 | 99.12 82 | 98.73 116 |
|
PAPM_NR | | | 95.01 92 | 94.59 95 | 96.26 111 | 98.89 56 | 90.68 159 | 97.24 129 | 97.73 124 | 91.80 130 | 92.93 160 | 96.62 161 | 89.13 93 | 99.14 134 | 89.21 199 | 97.78 122 | 98.97 95 |
|
Anonymous20240529 | | | 91.98 194 | 90.73 215 | 95.73 137 | 98.14 108 | 89.40 199 | 97.99 51 | 97.72 128 | 79.63 343 | 93.54 142 | 97.41 116 | 69.94 325 | 99.56 84 | 91.04 164 | 91.11 235 | 98.22 153 |
|
CHOSEN 280x420 | | | 93.12 150 | 92.72 146 | 94.34 204 | 96.71 175 | 87.27 253 | 90.29 345 | 97.72 128 | 86.61 277 | 91.34 188 | 95.29 226 | 84.29 160 | 98.41 198 | 93.25 124 | 98.94 92 | 97.35 192 |
|
EI-MVSNet-UG-set | | | 96.34 58 | 96.30 54 | 96.47 94 | 98.20 103 | 90.93 151 | 96.86 165 | 97.72 128 | 94.67 39 | 96.16 81 | 98.46 28 | 90.43 79 | 99.58 74 | 96.23 37 | 97.96 118 | 98.90 103 |
|
LS3D | | | 93.57 137 | 92.61 150 | 96.47 94 | 97.59 137 | 91.61 122 | 97.67 86 | 97.72 128 | 85.17 297 | 90.29 209 | 98.34 43 | 84.60 153 | 99.73 35 | 83.85 288 | 98.27 109 | 98.06 161 |
|
PAPR | | | 94.18 112 | 93.42 128 | 96.48 93 | 97.64 133 | 91.42 132 | 95.55 256 | 97.71 132 | 88.99 210 | 92.34 169 | 95.82 199 | 89.19 91 | 99.11 136 | 86.14 256 | 97.38 133 | 98.90 103 |
|
test_part1 | | | 92.21 188 | 91.10 202 | 95.51 151 | 97.80 125 | 92.66 90 | 98.02 50 | 97.68 133 | 89.79 191 | 88.80 259 | 96.02 189 | 76.85 282 | 98.18 218 | 90.86 165 | 84.11 314 | 95.69 244 |
|
UGNet | | | 94.04 121 | 93.28 131 | 96.31 106 | 96.85 165 | 91.19 141 | 97.88 62 | 97.68 133 | 94.40 46 | 93.00 155 | 96.18 180 | 73.39 307 | 99.61 65 | 91.72 149 | 98.46 105 | 98.13 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
testdata | | | | | 95.46 158 | 98.18 107 | 88.90 217 | | 97.66 135 | 82.73 325 | 97.03 51 | 98.07 66 | 90.06 84 | 98.85 160 | 89.67 185 | 98.98 90 | 98.64 123 |
|
test12 | | | | | 97.65 47 | 98.46 79 | 94.26 41 | | 97.66 135 | | 95.52 111 | | 90.89 72 | 99.46 104 | | 99.25 69 | 99.22 71 |
|
CS-MVS-test | | | 95.86 73 | 95.88 66 | 95.80 131 | 96.76 173 | 90.59 161 | 98.40 22 | 97.65 137 | 93.52 72 | 95.53 110 | 96.79 142 | 89.98 86 | 98.59 186 | 95.59 70 | 98.69 99 | 98.23 152 |
|
DTE-MVSNet | | | 90.56 253 | 89.75 257 | 93.01 261 | 93.95 301 | 87.25 254 | 97.64 93 | 97.65 137 | 90.74 162 | 87.12 293 | 95.68 211 | 79.97 238 | 97.00 321 | 83.33 289 | 81.66 331 | 94.78 300 |
|
TAPA-MVS | | 90.10 7 | 92.30 181 | 91.22 198 | 95.56 147 | 98.33 90 | 89.60 188 | 96.79 173 | 97.65 137 | 81.83 330 | 91.52 184 | 97.23 123 | 87.94 107 | 98.91 156 | 71.31 352 | 98.37 107 | 98.17 155 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
cdsmvs_eth3d_5k | | | 23.24 337 | 30.99 339 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 97.63 140 | 0.00 373 | 0.00 374 | 96.88 140 | 84.38 157 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
DPM-MVS | | | 95.69 74 | 94.92 87 | 98.01 22 | 98.08 111 | 95.71 9 | 95.27 270 | 97.62 141 | 90.43 177 | 95.55 107 | 97.07 131 | 91.72 51 | 99.50 100 | 89.62 187 | 98.94 92 | 98.82 111 |
|
canonicalmvs | | | 96.02 66 | 95.45 74 | 97.75 40 | 97.59 137 | 95.15 25 | 98.28 29 | 97.60 142 | 94.52 43 | 96.27 78 | 96.12 184 | 87.65 112 | 99.18 129 | 96.20 43 | 94.82 183 | 98.91 102 |
|
test222 | | | | | | 98.24 98 | 92.21 105 | 95.33 265 | 97.60 142 | 79.22 345 | 95.25 113 | 97.84 84 | 88.80 97 | | | 99.15 77 | 98.72 117 |
|
cascas | | | 91.20 228 | 90.08 242 | 94.58 195 | 94.97 262 | 89.16 212 | 93.65 313 | 97.59 144 | 79.90 342 | 89.40 241 | 92.92 311 | 75.36 294 | 98.36 203 | 92.14 139 | 94.75 185 | 96.23 216 |
|
hse-mvs3 | | | 94.15 113 | 93.52 121 | 96.04 121 | 97.81 124 | 90.22 172 | 97.62 95 | 97.58 145 | 95.19 14 | 96.74 54 | 97.45 113 | 83.67 167 | 99.61 65 | 95.85 54 | 79.73 336 | 98.29 151 |
|
MVSFormer | | | 95.37 82 | 95.16 83 | 95.99 124 | 96.34 196 | 91.21 138 | 98.22 37 | 97.57 146 | 91.42 141 | 96.22 79 | 97.32 118 | 86.20 135 | 97.92 259 | 94.07 104 | 99.05 87 | 98.85 108 |
|
test_djsdf | | | 93.07 152 | 92.76 142 | 94.00 215 | 93.49 316 | 88.70 221 | 98.22 37 | 97.57 146 | 91.42 141 | 90.08 222 | 95.55 218 | 82.85 186 | 97.92 259 | 94.07 104 | 91.58 227 | 95.40 258 |
|
OMC-MVS | | | 95.09 91 | 94.70 93 | 96.25 113 | 98.46 79 | 91.28 134 | 96.43 203 | 97.57 146 | 92.04 125 | 94.77 120 | 97.96 74 | 87.01 124 | 99.09 140 | 91.31 160 | 96.77 147 | 98.36 148 |
|
PS-MVSNAJss | | | 93.74 131 | 93.51 122 | 94.44 198 | 93.91 303 | 89.28 207 | 97.75 75 | 97.56 149 | 92.50 110 | 89.94 224 | 96.54 164 | 88.65 99 | 98.18 218 | 93.83 113 | 90.90 240 | 95.86 230 |
|
jajsoiax | | | 92.42 175 | 91.89 173 | 94.03 214 | 93.33 321 | 88.50 227 | 97.73 78 | 97.53 150 | 92.00 127 | 88.85 256 | 96.50 166 | 75.62 293 | 98.11 226 | 93.88 111 | 91.56 228 | 95.48 249 |
|
mvs_tets | | | 92.31 180 | 91.76 175 | 93.94 222 | 93.41 318 | 88.29 230 | 97.63 94 | 97.53 150 | 92.04 125 | 88.76 260 | 96.45 168 | 74.62 297 | 98.09 231 | 93.91 109 | 91.48 229 | 95.45 254 |
|
HQP_MVS | | | 93.78 130 | 93.43 126 | 94.82 180 | 96.21 200 | 89.99 177 | 97.74 76 | 97.51 152 | 94.85 28 | 91.34 188 | 96.64 154 | 81.32 215 | 98.60 182 | 93.02 128 | 92.23 215 | 95.86 230 |
|
plane_prior5 | | | | | | | | | 97.51 152 | | | | | 98.60 182 | 93.02 128 | 92.23 215 | 95.86 230 |
|
PS-MVSNAJ | | | 95.37 82 | 95.33 79 | 95.49 154 | 97.35 141 | 90.66 160 | 95.31 267 | 97.48 154 | 93.85 58 | 96.51 68 | 95.70 210 | 88.65 99 | 99.65 56 | 94.80 92 | 98.27 109 | 96.17 219 |
|
API-MVS | | | 94.84 101 | 94.49 100 | 95.90 127 | 97.90 120 | 92.00 114 | 97.80 70 | 97.48 154 | 89.19 205 | 94.81 119 | 96.71 147 | 88.84 96 | 99.17 130 | 88.91 205 | 98.76 97 | 96.53 210 |
|
MG-MVS | | | 95.61 77 | 95.38 77 | 96.31 106 | 98.42 82 | 90.53 164 | 96.04 234 | 97.48 154 | 93.47 75 | 95.67 104 | 98.10 63 | 89.17 92 | 99.25 123 | 91.27 161 | 98.77 96 | 99.13 78 |
|
MAR-MVS | | | 94.22 111 | 93.46 124 | 96.51 91 | 98.00 113 | 92.19 108 | 97.67 86 | 97.47 157 | 88.13 242 | 93.00 155 | 95.84 197 | 84.86 151 | 99.51 97 | 87.99 217 | 98.17 113 | 97.83 172 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CLD-MVS | | | 92.98 156 | 92.53 154 | 94.32 205 | 96.12 209 | 89.20 209 | 95.28 268 | 97.47 157 | 92.66 106 | 89.90 225 | 95.62 213 | 80.58 225 | 98.40 199 | 92.73 131 | 92.40 213 | 95.38 260 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_ETH3D | | | 91.34 222 | 90.22 238 | 94.68 190 | 94.86 271 | 87.86 245 | 97.23 134 | 97.46 159 | 87.99 243 | 89.90 225 | 96.92 138 | 66.35 341 | 98.23 211 | 90.30 174 | 90.99 238 | 97.96 162 |
|
nrg030 | | | 94.05 120 | 93.31 130 | 96.27 110 | 95.22 251 | 94.59 32 | 98.34 24 | 97.46 159 | 92.93 98 | 91.21 197 | 96.64 154 | 87.23 122 | 98.22 212 | 94.99 85 | 85.80 288 | 95.98 228 |
|
RRT_test8_iter05 | | | 91.19 231 | 90.78 212 | 92.41 278 | 95.76 222 | 83.14 316 | 97.32 122 | 97.46 159 | 91.37 145 | 89.07 252 | 95.57 215 | 70.33 320 | 98.21 213 | 93.56 115 | 86.62 282 | 95.89 229 |
|
XVG-OURS | | | 93.72 132 | 93.35 129 | 94.80 185 | 97.07 152 | 88.61 222 | 94.79 278 | 97.46 159 | 91.97 128 | 93.99 132 | 97.86 80 | 81.74 210 | 98.88 159 | 92.64 132 | 92.67 210 | 96.92 201 |
|
LPG-MVS_test | | | 92.94 159 | 92.56 151 | 94.10 210 | 96.16 205 | 88.26 232 | 97.65 89 | 97.46 159 | 91.29 146 | 90.12 218 | 97.16 126 | 79.05 252 | 98.73 170 | 92.25 136 | 91.89 223 | 95.31 264 |
|
LGP-MVS_train | | | | | 94.10 210 | 96.16 205 | 88.26 232 | | 97.46 159 | 91.29 146 | 90.12 218 | 97.16 126 | 79.05 252 | 98.73 170 | 92.25 136 | 91.89 223 | 95.31 264 |
|
MVS | | | 91.71 200 | 90.44 225 | 95.51 151 | 95.20 253 | 91.59 124 | 96.04 234 | 97.45 165 | 73.44 356 | 87.36 290 | 95.60 214 | 85.42 144 | 99.10 137 | 85.97 261 | 97.46 128 | 95.83 234 |
|
XVG-OURS-SEG-HR | | | 93.86 127 | 93.55 118 | 94.81 182 | 97.06 155 | 88.53 226 | 95.28 268 | 97.45 165 | 91.68 133 | 94.08 131 | 97.68 94 | 82.41 197 | 98.90 157 | 93.84 112 | 92.47 212 | 96.98 197 |
|
baseline | | | 95.58 78 | 95.42 76 | 96.08 117 | 96.78 170 | 90.41 169 | 97.16 140 | 97.45 165 | 93.69 66 | 95.65 105 | 97.85 81 | 87.29 120 | 98.68 175 | 95.66 60 | 97.25 139 | 99.13 78 |
|
ab-mvs | | | 93.57 137 | 92.55 152 | 96.64 81 | 97.28 142 | 91.96 116 | 95.40 262 | 97.45 165 | 89.81 190 | 93.22 153 | 96.28 177 | 79.62 245 | 99.46 104 | 90.74 168 | 93.11 204 | 98.50 131 |
|
xiu_mvs_v2_base | | | 95.32 84 | 95.29 80 | 95.40 159 | 97.22 143 | 90.50 165 | 95.44 261 | 97.44 169 | 93.70 65 | 96.46 72 | 96.18 180 | 88.59 102 | 99.53 92 | 94.79 94 | 97.81 121 | 96.17 219 |
|
1314 | | | 92.81 167 | 92.03 167 | 95.14 166 | 95.33 243 | 89.52 194 | 96.04 234 | 97.44 169 | 87.72 255 | 86.25 305 | 95.33 225 | 83.84 164 | 98.79 164 | 89.26 196 | 97.05 144 | 97.11 195 |
|
casdiffmvs | | | 95.64 76 | 95.49 72 | 96.08 117 | 96.76 173 | 90.45 167 | 97.29 126 | 97.44 169 | 94.00 54 | 95.46 112 | 97.98 73 | 87.52 116 | 98.73 170 | 95.64 64 | 97.33 136 | 99.08 84 |
|
XXY-MVS | | | 92.16 189 | 91.23 197 | 94.95 176 | 94.75 276 | 90.94 150 | 97.47 108 | 97.43 172 | 89.14 206 | 88.90 253 | 96.43 169 | 79.71 242 | 98.24 210 | 89.56 188 | 87.68 270 | 95.67 246 |
|
anonymousdsp | | | 92.16 189 | 91.55 183 | 93.97 218 | 92.58 333 | 89.55 191 | 97.51 102 | 97.42 173 | 89.42 199 | 88.40 266 | 94.84 243 | 80.66 224 | 97.88 264 | 91.87 146 | 91.28 233 | 94.48 308 |
|
Effi-MVS+ | | | 94.93 97 | 94.45 102 | 96.36 104 | 96.61 176 | 91.47 129 | 96.41 205 | 97.41 174 | 91.02 158 | 94.50 123 | 95.92 193 | 87.53 115 | 98.78 165 | 93.89 110 | 96.81 146 | 98.84 110 |
|
HQP3-MVS | | | | | | | | | 97.39 175 | | | | | | | 92.10 220 | |
|
HQP-MVS | | | 93.19 149 | 92.74 145 | 94.54 196 | 95.86 215 | 89.33 203 | 96.65 187 | 97.39 175 | 93.55 68 | 90.14 212 | 95.87 195 | 80.95 218 | 98.50 192 | 92.13 140 | 92.10 220 | 95.78 237 |
|
PLC |  | 91.00 6 | 94.11 117 | 93.43 126 | 96.13 116 | 98.58 76 | 91.15 145 | 96.69 183 | 97.39 175 | 87.29 265 | 91.37 187 | 96.71 147 | 88.39 103 | 99.52 96 | 87.33 238 | 97.13 143 | 97.73 175 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v7n | | | 90.76 245 | 89.86 250 | 93.45 246 | 93.54 313 | 87.60 250 | 97.70 84 | 97.37 178 | 88.85 216 | 87.65 284 | 94.08 284 | 81.08 217 | 98.10 227 | 84.68 277 | 83.79 320 | 94.66 305 |
|
UnsupCasMVSNet_eth | | | 85.99 307 | 84.45 311 | 90.62 316 | 89.97 350 | 82.40 322 | 93.62 314 | 97.37 178 | 89.86 186 | 78.59 350 | 92.37 319 | 65.25 347 | 95.35 346 | 82.27 300 | 70.75 354 | 94.10 319 |
|
ACMM | | 89.79 8 | 92.96 157 | 92.50 156 | 94.35 203 | 96.30 198 | 88.71 220 | 97.58 97 | 97.36 180 | 91.40 144 | 90.53 203 | 96.65 153 | 79.77 241 | 98.75 169 | 91.24 162 | 91.64 225 | 95.59 247 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
xiu_mvs_v1_base_debu | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 179 | 91.71 118 | 96.25 223 | 97.35 181 | 92.99 91 | 96.70 56 | 96.63 158 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 128 | 96.11 224 |
|
xiu_mvs_v1_base | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 179 | 91.71 118 | 96.25 223 | 97.35 181 | 92.99 91 | 96.70 56 | 96.63 158 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 128 | 96.11 224 |
|
xiu_mvs_v1_base_debi | | | 95.01 92 | 94.76 90 | 95.75 134 | 96.58 179 | 91.71 118 | 96.25 223 | 97.35 181 | 92.99 91 | 96.70 56 | 96.63 158 | 82.67 189 | 99.44 107 | 96.22 38 | 97.46 128 | 96.11 224 |
|
diffmvs | | | 95.25 86 | 95.13 84 | 95.63 142 | 96.43 192 | 89.34 202 | 95.99 239 | 97.35 181 | 92.83 100 | 96.31 76 | 97.37 117 | 86.44 130 | 98.67 176 | 96.26 35 | 97.19 141 | 98.87 107 |
|
WTY-MVS | | | 94.71 105 | 94.02 107 | 96.79 79 | 97.71 130 | 92.05 111 | 96.59 196 | 97.35 181 | 90.61 171 | 94.64 121 | 96.93 135 | 86.41 131 | 99.39 113 | 91.20 163 | 94.71 187 | 98.94 99 |
|
F-COLMAP | | | 93.58 136 | 92.98 137 | 95.37 160 | 98.40 83 | 88.98 215 | 97.18 138 | 97.29 186 | 87.75 254 | 90.49 204 | 97.10 130 | 85.21 146 | 99.50 100 | 86.70 247 | 96.72 150 | 97.63 179 |
|
XVG-ACMP-BASELINE | | | 90.93 241 | 90.21 239 | 93.09 259 | 94.31 294 | 85.89 282 | 95.33 265 | 97.26 187 | 91.06 157 | 89.38 242 | 95.44 223 | 68.61 329 | 98.60 182 | 89.46 190 | 91.05 236 | 94.79 298 |
|
PCF-MVS | | 89.48 11 | 91.56 207 | 89.95 247 | 96.36 104 | 96.60 177 | 92.52 95 | 92.51 332 | 97.26 187 | 79.41 344 | 88.90 253 | 96.56 163 | 84.04 163 | 99.55 87 | 77.01 334 | 97.30 137 | 97.01 196 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMP | | 89.59 10 | 92.62 170 | 92.14 164 | 94.05 213 | 96.40 193 | 88.20 235 | 97.36 118 | 97.25 189 | 91.52 136 | 88.30 269 | 96.64 154 | 78.46 264 | 98.72 173 | 91.86 147 | 91.48 229 | 95.23 272 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
xxxxxxxxxxxxxcwj | | | 97.36 12 | 97.20 11 | 97.83 29 | 98.91 51 | 94.28 39 | 97.02 149 | 97.22 190 | 95.35 8 | 98.27 18 | 98.65 15 | 93.33 20 | 99.72 38 | 96.49 30 | 99.52 29 | 99.51 38 |
|
OPM-MVS | | | 93.28 145 | 92.76 142 | 94.82 180 | 94.63 282 | 90.77 157 | 96.65 187 | 97.18 191 | 93.72 63 | 91.68 182 | 97.26 121 | 79.33 249 | 98.63 179 | 92.13 140 | 92.28 214 | 95.07 276 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
PatchMatch-RL | | | 92.90 161 | 92.02 168 | 95.56 147 | 98.19 105 | 90.80 155 | 95.27 270 | 97.18 191 | 87.96 244 | 91.86 181 | 95.68 211 | 80.44 228 | 98.99 150 | 84.01 284 | 97.54 127 | 96.89 202 |
|
MVS_0304 | | | 88.79 282 | 87.57 284 | 92.46 275 | 94.65 280 | 86.15 281 | 96.40 208 | 97.17 193 | 86.44 278 | 88.02 278 | 91.71 331 | 56.68 358 | 97.03 317 | 84.47 280 | 92.58 211 | 94.19 318 |
|
alignmvs | | | 95.87 72 | 95.23 81 | 97.78 36 | 97.56 139 | 95.19 22 | 97.86 63 | 97.17 193 | 94.39 47 | 96.47 71 | 96.40 172 | 85.89 138 | 99.20 126 | 96.21 42 | 95.11 179 | 98.95 98 |
|
MVS_Test | | | 94.89 99 | 94.62 94 | 95.68 140 | 96.83 168 | 89.55 191 | 96.70 181 | 97.17 193 | 91.17 153 | 95.60 106 | 96.11 187 | 87.87 109 | 98.76 168 | 93.01 130 | 97.17 142 | 98.72 117 |
|
Fast-Effi-MVS+ | | | 93.46 139 | 92.75 144 | 95.59 145 | 96.77 171 | 90.03 174 | 96.81 172 | 97.13 196 | 88.19 236 | 91.30 191 | 94.27 274 | 86.21 134 | 98.63 179 | 87.66 230 | 96.46 158 | 98.12 157 |
|
EI-MVSNet | | | 93.03 154 | 92.88 140 | 93.48 243 | 95.77 220 | 86.98 262 | 96.44 201 | 97.12 197 | 90.66 167 | 91.30 191 | 97.64 101 | 86.56 127 | 98.05 238 | 89.91 178 | 90.55 244 | 95.41 255 |
|
MVSTER | | | 93.20 148 | 92.81 141 | 94.37 202 | 96.56 182 | 89.59 189 | 97.06 145 | 97.12 197 | 91.24 150 | 91.30 191 | 95.96 191 | 82.02 204 | 98.05 238 | 93.48 118 | 90.55 244 | 95.47 251 |
|
test_yl | | | 94.78 103 | 94.23 105 | 96.43 97 | 97.74 128 | 91.22 136 | 96.85 166 | 97.10 199 | 91.23 151 | 95.71 99 | 96.93 135 | 84.30 158 | 99.31 119 | 93.10 126 | 95.12 177 | 98.75 113 |
|
DCV-MVSNet | | | 94.78 103 | 94.23 105 | 96.43 97 | 97.74 128 | 91.22 136 | 96.85 166 | 97.10 199 | 91.23 151 | 95.71 99 | 96.93 135 | 84.30 158 | 99.31 119 | 93.10 126 | 95.12 177 | 98.75 113 |
|
LTVRE_ROB | | 88.41 13 | 90.99 237 | 89.92 248 | 94.19 207 | 96.18 203 | 89.55 191 | 96.31 218 | 97.09 201 | 87.88 247 | 85.67 309 | 95.91 194 | 78.79 260 | 98.57 187 | 81.50 303 | 89.98 250 | 94.44 310 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v10 | | | 91.04 235 | 90.23 236 | 93.49 242 | 94.12 297 | 88.16 238 | 97.32 122 | 97.08 202 | 88.26 235 | 88.29 270 | 94.22 279 | 82.17 202 | 97.97 249 | 86.45 251 | 84.12 313 | 94.33 313 |
|
v144192 | | | 91.06 234 | 90.28 232 | 93.39 247 | 93.66 311 | 87.23 256 | 96.83 169 | 97.07 203 | 87.43 261 | 89.69 232 | 94.28 273 | 81.48 213 | 98.00 245 | 87.18 242 | 84.92 304 | 94.93 284 |
|
v1192 | | | 91.07 233 | 90.23 236 | 93.58 239 | 93.70 309 | 87.82 246 | 96.73 177 | 97.07 203 | 87.77 252 | 89.58 235 | 94.32 271 | 80.90 222 | 97.97 249 | 86.52 249 | 85.48 291 | 94.95 280 |
|
v8 | | | 91.29 225 | 90.53 224 | 93.57 240 | 94.15 296 | 88.12 239 | 97.34 119 | 97.06 205 | 88.99 210 | 88.32 268 | 94.26 276 | 83.08 178 | 98.01 244 | 87.62 232 | 83.92 318 | 94.57 307 |
|
mvs_anonymous | | | 93.82 128 | 93.74 112 | 94.06 212 | 96.44 190 | 85.41 289 | 95.81 247 | 97.05 206 | 89.85 188 | 90.09 221 | 96.36 174 | 87.44 118 | 97.75 276 | 93.97 106 | 96.69 151 | 99.02 87 |
|
IterMVS-LS | | | 92.29 182 | 91.94 171 | 93.34 250 | 96.25 199 | 86.97 263 | 96.57 199 | 97.05 206 | 90.67 165 | 89.50 240 | 94.80 246 | 86.59 126 | 97.64 284 | 89.91 178 | 86.11 286 | 95.40 258 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 90.85 243 | 90.03 246 | 93.29 252 | 93.55 312 | 86.96 264 | 96.74 176 | 97.04 208 | 87.36 263 | 89.52 239 | 94.34 268 | 80.23 233 | 97.97 249 | 86.27 252 | 85.21 297 | 94.94 282 |
|
CDS-MVSNet | | | 94.14 116 | 93.54 119 | 95.93 125 | 96.18 203 | 91.46 130 | 96.33 216 | 97.04 208 | 88.97 212 | 93.56 140 | 96.51 165 | 87.55 114 | 97.89 263 | 89.80 181 | 95.95 162 | 98.44 141 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v1144 | | | 91.37 219 | 90.60 219 | 93.68 235 | 93.89 304 | 88.23 234 | 96.84 168 | 97.03 210 | 88.37 232 | 89.69 232 | 94.39 265 | 82.04 203 | 97.98 246 | 87.80 221 | 85.37 293 | 94.84 290 |
|
v1240 | | | 90.70 250 | 89.85 251 | 93.23 254 | 93.51 315 | 86.80 265 | 96.61 193 | 97.02 211 | 87.16 268 | 89.58 235 | 94.31 272 | 79.55 246 | 97.98 246 | 85.52 267 | 85.44 292 | 94.90 287 |
|
EPP-MVSNet | | | 95.22 88 | 95.04 86 | 95.76 132 | 97.49 140 | 89.56 190 | 98.67 8 | 97.00 212 | 90.69 164 | 94.24 128 | 97.62 103 | 89.79 89 | 98.81 163 | 93.39 122 | 96.49 156 | 98.92 101 |
|
V42 | | | 91.58 206 | 90.87 206 | 93.73 230 | 94.05 300 | 88.50 227 | 97.32 122 | 96.97 213 | 88.80 222 | 89.71 230 | 94.33 269 | 82.54 193 | 98.05 238 | 89.01 203 | 85.07 300 | 94.64 306 |
|
FMVSNet2 | | | 91.31 223 | 90.08 242 | 94.99 171 | 96.51 185 | 92.21 105 | 97.41 111 | 96.95 214 | 88.82 219 | 88.62 262 | 94.75 248 | 73.87 301 | 97.42 305 | 85.20 272 | 88.55 264 | 95.35 262 |
|
ACMH | | 87.59 16 | 90.53 254 | 89.42 263 | 93.87 225 | 96.21 200 | 87.92 242 | 97.24 129 | 96.94 215 | 88.45 230 | 83.91 328 | 96.27 178 | 71.92 309 | 98.62 181 | 84.43 281 | 89.43 255 | 95.05 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 91.35 220 | 90.27 233 | 94.59 191 | 96.51 185 | 91.18 142 | 97.50 103 | 96.93 216 | 88.82 219 | 89.35 243 | 94.51 258 | 73.87 301 | 97.29 312 | 86.12 257 | 88.82 259 | 95.31 264 |
|
test1 | | | 91.35 220 | 90.27 233 | 94.59 191 | 96.51 185 | 91.18 142 | 97.50 103 | 96.93 216 | 88.82 219 | 89.35 243 | 94.51 258 | 73.87 301 | 97.29 312 | 86.12 257 | 88.82 259 | 95.31 264 |
|
FMVSNet3 | | | 91.78 198 | 90.69 217 | 95.03 170 | 96.53 184 | 92.27 104 | 97.02 149 | 96.93 216 | 89.79 191 | 89.35 243 | 94.65 254 | 77.01 281 | 97.47 300 | 86.12 257 | 88.82 259 | 95.35 262 |
|
FMVSNet1 | | | 89.88 269 | 88.31 278 | 94.59 191 | 95.41 233 | 91.18 142 | 97.50 103 | 96.93 216 | 86.62 276 | 87.41 288 | 94.51 258 | 65.94 345 | 97.29 312 | 83.04 292 | 87.43 273 | 95.31 264 |
|
GeoE | | | 93.89 125 | 93.28 131 | 95.72 138 | 96.96 163 | 89.75 185 | 98.24 35 | 96.92 220 | 89.47 197 | 92.12 175 | 97.21 124 | 84.42 156 | 98.39 202 | 87.71 224 | 96.50 155 | 99.01 91 |
|
miper_enhance_ethall | | | 91.54 210 | 91.01 203 | 93.15 257 | 95.35 239 | 87.07 261 | 93.97 303 | 96.90 221 | 86.79 274 | 89.17 250 | 93.43 307 | 86.55 128 | 97.64 284 | 89.97 177 | 86.93 277 | 94.74 302 |
|
eth_miper_zixun_eth | | | 91.02 236 | 90.59 220 | 92.34 280 | 95.33 243 | 84.35 302 | 94.10 300 | 96.90 221 | 88.56 228 | 88.84 257 | 94.33 269 | 84.08 162 | 97.60 289 | 88.77 208 | 84.37 311 | 95.06 277 |
|
TAMVS | | | 94.01 122 | 93.46 124 | 95.64 141 | 96.16 205 | 90.45 167 | 96.71 180 | 96.89 223 | 89.27 203 | 93.46 145 | 96.92 138 | 87.29 120 | 97.94 256 | 88.70 209 | 95.74 167 | 98.53 127 |
|
miper_ehance_all_eth | | | 91.59 204 | 91.13 201 | 92.97 263 | 95.55 228 | 86.57 272 | 94.47 285 | 96.88 224 | 87.77 252 | 88.88 255 | 94.01 285 | 86.22 133 | 97.54 293 | 89.49 189 | 86.93 277 | 94.79 298 |
|
v2v482 | | | 91.59 204 | 90.85 209 | 93.80 228 | 93.87 305 | 88.17 237 | 96.94 160 | 96.88 224 | 89.54 194 | 89.53 238 | 94.90 240 | 81.70 211 | 98.02 243 | 89.25 197 | 85.04 302 | 95.20 273 |
|
CNLPA | | | 94.28 110 | 93.53 120 | 96.52 88 | 98.38 86 | 92.55 94 | 96.59 196 | 96.88 224 | 90.13 182 | 91.91 179 | 97.24 122 | 85.21 146 | 99.09 140 | 87.64 231 | 97.83 120 | 97.92 165 |
|
RRT_MVS | | | 93.21 147 | 92.32 161 | 95.91 126 | 94.92 266 | 94.15 47 | 96.92 161 | 96.86 227 | 91.42 141 | 91.28 194 | 96.43 169 | 79.66 244 | 98.10 227 | 93.29 123 | 90.06 249 | 95.46 252 |
|
PAPM | | | 91.52 211 | 90.30 231 | 95.20 163 | 95.30 246 | 89.83 183 | 93.38 318 | 96.85 228 | 86.26 281 | 88.59 263 | 95.80 200 | 84.88 150 | 98.15 221 | 75.67 338 | 95.93 163 | 97.63 179 |
|
cl_fuxian | | | 91.38 217 | 90.89 205 | 92.88 266 | 95.58 226 | 86.30 275 | 94.68 280 | 96.84 229 | 88.17 238 | 88.83 258 | 94.23 277 | 85.65 142 | 97.47 300 | 89.36 192 | 84.63 306 | 94.89 288 |
|
pm-mvs1 | | | 90.72 249 | 89.65 261 | 93.96 219 | 94.29 295 | 89.63 186 | 97.79 71 | 96.82 230 | 89.07 207 | 86.12 307 | 95.48 222 | 78.61 262 | 97.78 273 | 86.97 245 | 81.67 330 | 94.46 309 |
|
CMPMVS |  | 62.92 21 | 85.62 311 | 84.92 308 | 87.74 333 | 89.14 355 | 73.12 359 | 94.17 298 | 96.80 231 | 73.98 354 | 73.65 355 | 94.93 238 | 66.36 340 | 97.61 288 | 83.95 286 | 91.28 233 | 92.48 341 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MS-PatchMatch | | | 90.27 259 | 89.77 255 | 91.78 294 | 94.33 292 | 84.72 300 | 95.55 256 | 96.73 232 | 86.17 283 | 86.36 304 | 95.28 228 | 71.28 314 | 97.80 270 | 84.09 283 | 98.14 114 | 92.81 335 |
|
Effi-MVS+-dtu | | | 93.08 151 | 93.21 133 | 92.68 273 | 96.02 212 | 83.25 315 | 97.14 143 | 96.72 233 | 93.85 58 | 91.20 198 | 93.44 305 | 83.08 178 | 98.30 208 | 91.69 152 | 95.73 168 | 96.50 212 |
|
mvs-test1 | | | 93.63 134 | 93.69 114 | 93.46 245 | 96.02 212 | 84.61 301 | 97.24 129 | 96.72 233 | 93.85 58 | 92.30 170 | 95.76 205 | 83.08 178 | 98.89 158 | 91.69 152 | 96.54 154 | 96.87 203 |
|
TSAR-MVS + GP. | | | 96.69 46 | 96.49 47 | 97.27 63 | 98.31 93 | 93.39 70 | 96.79 173 | 96.72 233 | 94.17 51 | 97.44 33 | 97.66 97 | 92.76 26 | 99.33 117 | 96.86 17 | 97.76 124 | 99.08 84 |
|
1112_ss | | | 93.37 142 | 92.42 158 | 96.21 114 | 97.05 157 | 90.99 147 | 96.31 218 | 96.72 233 | 86.87 273 | 89.83 228 | 96.69 151 | 86.51 129 | 99.14 134 | 88.12 215 | 93.67 198 | 98.50 131 |
|
PVSNet | | 86.66 18 | 92.24 185 | 91.74 178 | 93.73 230 | 97.77 127 | 83.69 312 | 92.88 326 | 96.72 233 | 87.91 246 | 93.00 155 | 94.86 242 | 78.51 263 | 99.05 146 | 86.53 248 | 97.45 132 | 98.47 136 |
|
miper_lstm_enhance | | | 90.50 256 | 90.06 245 | 91.83 290 | 95.33 243 | 83.74 308 | 93.86 306 | 96.70 238 | 87.56 259 | 87.79 281 | 93.81 293 | 83.45 172 | 96.92 323 | 87.39 236 | 84.62 307 | 94.82 293 |
|
v148 | | | 90.99 237 | 90.38 227 | 92.81 269 | 93.83 306 | 85.80 283 | 96.78 175 | 96.68 239 | 89.45 198 | 88.75 261 | 93.93 289 | 82.96 184 | 97.82 269 | 87.83 220 | 83.25 323 | 94.80 296 |
|
ACMH+ | | 87.92 14 | 90.20 262 | 89.18 268 | 93.25 253 | 96.48 188 | 86.45 273 | 96.99 154 | 96.68 239 | 88.83 218 | 84.79 318 | 96.22 179 | 70.16 323 | 98.53 190 | 84.42 282 | 88.04 266 | 94.77 301 |
|
CANet_DTU | | | 94.37 108 | 93.65 116 | 96.55 87 | 96.46 189 | 92.13 109 | 96.21 227 | 96.67 241 | 94.38 48 | 93.53 143 | 97.03 133 | 79.34 248 | 99.71 41 | 90.76 167 | 98.45 106 | 97.82 173 |
|
cl-mvsnet____ | | | 90.96 240 | 90.32 229 | 92.89 265 | 95.37 237 | 86.21 278 | 94.46 287 | 96.64 242 | 87.82 248 | 88.15 275 | 94.18 280 | 82.98 182 | 97.54 293 | 87.70 225 | 85.59 289 | 94.92 286 |
|
HY-MVS | | 89.66 9 | 93.87 126 | 92.95 138 | 96.63 83 | 97.10 151 | 92.49 96 | 95.64 254 | 96.64 242 | 89.05 208 | 93.00 155 | 95.79 203 | 85.77 141 | 99.45 106 | 89.16 202 | 94.35 189 | 97.96 162 |
|
Test_1112_low_res | | | 92.84 165 | 91.84 174 | 95.85 129 | 97.04 158 | 89.97 180 | 95.53 258 | 96.64 242 | 85.38 293 | 89.65 234 | 95.18 230 | 85.86 139 | 99.10 137 | 87.70 225 | 93.58 203 | 98.49 133 |
|
cl-mvsnet1 | | | 90.97 239 | 90.33 228 | 92.88 266 | 95.36 238 | 86.19 279 | 94.46 287 | 96.63 245 | 87.82 248 | 88.18 274 | 94.23 277 | 82.99 181 | 97.53 295 | 87.72 222 | 85.57 290 | 94.93 284 |
|
Fast-Effi-MVS+-dtu | | | 92.29 182 | 91.99 169 | 93.21 256 | 95.27 247 | 85.52 287 | 97.03 146 | 96.63 245 | 92.09 123 | 89.11 251 | 95.14 232 | 80.33 231 | 98.08 232 | 87.54 234 | 94.74 186 | 96.03 227 |
|
UnsupCasMVSNet_bld | | | 82.13 322 | 79.46 325 | 90.14 322 | 88.00 359 | 82.47 320 | 90.89 343 | 96.62 247 | 78.94 346 | 75.61 352 | 84.40 355 | 56.63 359 | 96.31 331 | 77.30 331 | 66.77 358 | 91.63 348 |
|
cl-mvsnet2 | | | 91.21 227 | 90.56 223 | 93.14 258 | 96.09 211 | 86.80 265 | 94.41 289 | 96.58 248 | 87.80 250 | 88.58 264 | 93.99 287 | 80.85 223 | 97.62 287 | 89.87 180 | 86.93 277 | 94.99 279 |
|
jason | | | 94.84 101 | 94.39 104 | 96.18 115 | 95.52 229 | 90.93 151 | 96.09 232 | 96.52 249 | 89.28 202 | 96.01 90 | 97.32 118 | 84.70 152 | 98.77 167 | 95.15 78 | 98.91 94 | 98.85 108 |
jason: jason. |
AUN-MVS | | | 91.76 199 | 90.75 214 | 94.81 182 | 97.00 161 | 88.57 224 | 96.65 187 | 96.49 250 | 89.63 193 | 92.15 173 | 96.12 184 | 78.66 261 | 98.50 192 | 90.83 166 | 79.18 339 | 97.36 191 |
|
hse-mvs2 | | | 93.45 140 | 92.99 136 | 94.81 182 | 97.02 159 | 88.59 223 | 96.69 183 | 96.47 251 | 95.19 14 | 96.74 54 | 96.16 183 | 83.67 167 | 98.48 196 | 95.85 54 | 79.13 340 | 97.35 192 |
|
EG-PatchMatch MVS | | | 87.02 298 | 85.44 302 | 91.76 296 | 92.67 331 | 85.00 295 | 96.08 233 | 96.45 252 | 83.41 321 | 79.52 347 | 93.49 303 | 57.10 357 | 97.72 278 | 79.34 322 | 90.87 241 | 92.56 339 |
|
DIV-MVS_2432*1600 | | | 85.95 308 | 84.95 307 | 88.96 328 | 89.55 354 | 79.11 348 | 95.13 275 | 96.42 253 | 85.91 286 | 84.07 326 | 90.48 336 | 70.03 324 | 94.82 348 | 80.04 314 | 72.94 352 | 92.94 333 |
|
pmmvs6 | | | 87.81 293 | 86.19 297 | 92.69 272 | 91.32 342 | 86.30 275 | 97.34 119 | 96.41 254 | 80.59 340 | 84.05 327 | 94.37 267 | 67.37 336 | 97.67 281 | 84.75 276 | 79.51 338 | 94.09 321 |
|
PMMVS | | | 92.86 163 | 92.34 159 | 94.42 201 | 94.92 266 | 86.73 267 | 94.53 284 | 96.38 255 | 84.78 304 | 94.27 127 | 95.12 234 | 83.13 177 | 98.40 199 | 91.47 157 | 96.49 156 | 98.12 157 |
|
RPSCF | | | 90.75 247 | 90.86 207 | 90.42 319 | 96.84 166 | 76.29 354 | 95.61 255 | 96.34 256 | 83.89 313 | 91.38 186 | 97.87 78 | 76.45 285 | 98.78 165 | 87.16 243 | 92.23 215 | 96.20 217 |
|
MSDG | | | 91.42 215 | 90.24 235 | 94.96 175 | 97.15 149 | 88.91 216 | 93.69 311 | 96.32 257 | 85.72 289 | 86.93 299 | 96.47 167 | 80.24 232 | 98.98 151 | 80.57 311 | 95.05 180 | 96.98 197 |
|
OurMVSNet-221017-0 | | | 90.51 255 | 90.19 240 | 91.44 302 | 93.41 318 | 81.25 328 | 96.98 156 | 96.28 258 | 91.68 133 | 86.55 303 | 96.30 176 | 74.20 300 | 97.98 246 | 88.96 204 | 87.40 275 | 95.09 275 |
|
MVP-Stereo | | | 90.74 248 | 90.08 242 | 92.71 271 | 93.19 323 | 88.20 235 | 95.86 244 | 96.27 259 | 86.07 284 | 84.86 317 | 94.76 247 | 77.84 276 | 97.75 276 | 83.88 287 | 98.01 116 | 92.17 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
lupinMVS | | | 94.99 96 | 94.56 96 | 96.29 109 | 96.34 196 | 91.21 138 | 95.83 246 | 96.27 259 | 88.93 214 | 96.22 79 | 96.88 140 | 86.20 135 | 98.85 160 | 95.27 75 | 99.05 87 | 98.82 111 |
|
BH-untuned | | | 92.94 159 | 92.62 149 | 93.92 224 | 97.22 143 | 86.16 280 | 96.40 208 | 96.25 261 | 90.06 183 | 89.79 229 | 96.17 182 | 83.19 174 | 98.35 204 | 87.19 241 | 97.27 138 | 97.24 194 |
|
CL-MVSNet_2432*1600 | | | 86.31 304 | 85.15 306 | 89.80 325 | 88.83 356 | 81.74 326 | 93.93 305 | 96.22 262 | 86.67 275 | 85.03 315 | 90.80 335 | 78.09 272 | 94.50 349 | 74.92 339 | 71.86 353 | 93.15 331 |
|
IS-MVSNet | | | 94.90 98 | 94.52 99 | 96.05 120 | 97.67 131 | 90.56 162 | 98.44 19 | 96.22 262 | 93.21 81 | 93.99 132 | 97.74 90 | 85.55 143 | 98.45 197 | 89.98 176 | 97.86 119 | 99.14 77 |
|
GA-MVS | | | 91.38 217 | 90.31 230 | 94.59 191 | 94.65 280 | 87.62 249 | 94.34 292 | 96.19 264 | 90.73 163 | 90.35 208 | 93.83 290 | 71.84 310 | 97.96 253 | 87.22 240 | 93.61 201 | 98.21 154 |
|
IterMVS-SCA-FT | | | 90.31 258 | 89.81 253 | 91.82 291 | 95.52 229 | 84.20 305 | 94.30 294 | 96.15 265 | 90.61 171 | 87.39 289 | 94.27 274 | 75.80 290 | 96.44 329 | 87.34 237 | 86.88 281 | 94.82 293 |
|
IterMVS | | | 90.15 264 | 89.67 259 | 91.61 298 | 95.48 231 | 83.72 309 | 94.33 293 | 96.12 266 | 89.99 184 | 87.31 292 | 94.15 282 | 75.78 292 | 96.27 332 | 86.97 245 | 86.89 280 | 94.83 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS | | | 92.76 168 | 91.51 187 | 96.52 88 | 98.77 59 | 90.99 147 | 97.38 117 | 96.08 267 | 82.38 326 | 89.29 246 | 97.87 78 | 83.77 165 | 99.69 47 | 81.37 308 | 96.69 151 | 98.89 105 |
|
pmmvs4 | | | 90.93 241 | 89.85 251 | 94.17 208 | 93.34 320 | 90.79 156 | 94.60 281 | 96.02 268 | 84.62 305 | 87.45 286 | 95.15 231 | 81.88 208 | 97.45 302 | 87.70 225 | 87.87 268 | 94.27 317 |
|
ppachtmachnet_test | | | 88.35 288 | 87.29 287 | 91.53 299 | 92.45 335 | 83.57 313 | 93.75 309 | 95.97 269 | 84.28 308 | 85.32 314 | 94.18 280 | 79.00 258 | 96.93 322 | 75.71 337 | 84.99 303 | 94.10 319 |
|
Anonymous20240521 | | | 86.42 302 | 85.44 302 | 89.34 327 | 90.33 347 | 79.79 342 | 96.73 177 | 95.92 270 | 83.71 317 | 83.25 331 | 91.36 334 | 63.92 349 | 96.01 333 | 78.39 326 | 85.36 294 | 92.22 344 |
|
ITE_SJBPF | | | | | 92.43 277 | 95.34 240 | 85.37 290 | | 95.92 270 | 91.47 138 | 87.75 283 | 96.39 173 | 71.00 316 | 97.96 253 | 82.36 299 | 89.86 252 | 93.97 322 |
|
USDC | | | 88.94 278 | 87.83 283 | 92.27 281 | 94.66 279 | 84.96 296 | 93.86 306 | 95.90 272 | 87.34 264 | 83.40 330 | 95.56 217 | 67.43 335 | 98.19 217 | 82.64 298 | 89.67 254 | 93.66 325 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 257 | 89.28 266 | 93.79 229 | 97.95 115 | 87.13 260 | 96.92 161 | 95.89 273 | 82.83 324 | 86.88 301 | 97.18 125 | 73.77 304 | 99.29 121 | 78.44 325 | 93.62 200 | 94.95 280 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
VDD-MVS | | | 93.82 128 | 93.08 134 | 96.02 122 | 97.88 121 | 89.96 181 | 97.72 81 | 95.85 274 | 92.43 111 | 95.86 94 | 98.44 30 | 68.42 331 | 99.39 113 | 96.31 33 | 94.85 181 | 98.71 119 |
|
VDDNet | | | 93.05 153 | 92.07 165 | 96.02 122 | 96.84 166 | 90.39 170 | 98.08 46 | 95.85 274 | 86.22 282 | 95.79 97 | 98.46 28 | 67.59 334 | 99.19 127 | 94.92 86 | 94.85 181 | 98.47 136 |
|
Vis-MVSNet (Re-imp) | | | 94.15 113 | 93.88 109 | 94.95 176 | 97.61 135 | 87.92 242 | 98.10 44 | 95.80 276 | 92.22 116 | 93.02 154 | 97.45 113 | 84.53 155 | 97.91 262 | 88.24 213 | 97.97 117 | 99.02 87 |
|
KD-MVS_2432*1600 | | | 84.81 315 | 82.64 318 | 91.31 304 | 91.07 344 | 85.34 291 | 91.22 338 | 95.75 277 | 85.56 291 | 83.09 332 | 90.21 338 | 67.21 337 | 95.89 335 | 77.18 332 | 62.48 360 | 92.69 336 |
|
miper_refine_blended | | | 84.81 315 | 82.64 318 | 91.31 304 | 91.07 344 | 85.34 291 | 91.22 338 | 95.75 277 | 85.56 291 | 83.09 332 | 90.21 338 | 67.21 337 | 95.89 335 | 77.18 332 | 62.48 360 | 92.69 336 |
|
tpm cat1 | | | 88.36 287 | 87.21 290 | 91.81 292 | 95.13 256 | 80.55 334 | 92.58 331 | 95.70 279 | 74.97 353 | 87.45 286 | 91.96 327 | 78.01 275 | 98.17 220 | 80.39 313 | 88.74 262 | 96.72 208 |
|
our_test_3 | | | 88.78 283 | 87.98 282 | 91.20 307 | 92.45 335 | 82.53 319 | 93.61 315 | 95.69 280 | 85.77 288 | 84.88 316 | 93.71 295 | 79.99 237 | 96.78 327 | 79.47 319 | 86.24 283 | 94.28 316 |
|
BH-w/o | | | 92.14 191 | 91.75 176 | 93.31 251 | 96.99 162 | 85.73 284 | 95.67 251 | 95.69 280 | 88.73 224 | 89.26 248 | 94.82 245 | 82.97 183 | 98.07 235 | 85.26 271 | 96.32 159 | 96.13 223 |
|
CR-MVSNet | | | 90.82 244 | 89.77 255 | 93.95 220 | 94.45 288 | 87.19 257 | 90.23 346 | 95.68 282 | 86.89 272 | 92.40 164 | 92.36 322 | 80.91 220 | 97.05 316 | 81.09 310 | 93.95 196 | 97.60 184 |
|
Patchmtry | | | 88.64 285 | 87.25 288 | 92.78 270 | 94.09 298 | 86.64 268 | 89.82 349 | 95.68 282 | 80.81 338 | 87.63 285 | 92.36 322 | 80.91 220 | 97.03 317 | 78.86 323 | 85.12 299 | 94.67 304 |
|
BH-RMVSNet | | | 92.72 169 | 91.97 170 | 94.97 174 | 97.16 147 | 87.99 241 | 96.15 230 | 95.60 284 | 90.62 170 | 91.87 180 | 97.15 128 | 78.41 266 | 98.57 187 | 83.16 290 | 97.60 126 | 98.36 148 |
|
PVSNet_0 | | 82.17 19 | 85.46 312 | 83.64 315 | 90.92 310 | 95.27 247 | 79.49 344 | 90.55 344 | 95.60 284 | 83.76 316 | 83.00 334 | 89.95 340 | 71.09 315 | 97.97 249 | 82.75 296 | 60.79 362 | 95.31 264 |
|
SCA | | | 91.84 197 | 91.18 200 | 93.83 226 | 95.59 225 | 84.95 297 | 94.72 279 | 95.58 286 | 90.82 159 | 92.25 171 | 93.69 296 | 75.80 290 | 98.10 227 | 86.20 254 | 95.98 161 | 98.45 138 |
|
AllTest | | | 90.23 261 | 88.98 270 | 93.98 216 | 97.94 116 | 86.64 268 | 96.51 200 | 95.54 287 | 85.38 293 | 85.49 311 | 96.77 144 | 70.28 321 | 99.15 132 | 80.02 315 | 92.87 205 | 96.15 221 |
|
TestCases | | | | | 93.98 216 | 97.94 116 | 86.64 268 | | 95.54 287 | 85.38 293 | 85.49 311 | 96.77 144 | 70.28 321 | 99.15 132 | 80.02 315 | 92.87 205 | 96.15 221 |
|
tpmvs | | | 89.83 271 | 89.15 269 | 91.89 288 | 94.92 266 | 80.30 337 | 93.11 323 | 95.46 289 | 86.28 280 | 88.08 276 | 92.65 314 | 80.44 228 | 98.52 191 | 81.47 304 | 89.92 251 | 96.84 204 |
|
pmmvs5 | | | 89.86 270 | 88.87 272 | 92.82 268 | 92.86 327 | 86.23 277 | 96.26 222 | 95.39 290 | 84.24 309 | 87.12 293 | 94.51 258 | 74.27 299 | 97.36 309 | 87.61 233 | 87.57 271 | 94.86 289 |
|
PatchmatchNet |  | | 91.91 195 | 91.35 189 | 93.59 238 | 95.38 235 | 84.11 306 | 93.15 322 | 95.39 290 | 89.54 194 | 92.10 176 | 93.68 298 | 82.82 187 | 98.13 222 | 84.81 275 | 95.32 174 | 98.52 128 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpmrst | | | 91.44 214 | 91.32 191 | 91.79 293 | 95.15 254 | 79.20 347 | 93.42 317 | 95.37 292 | 88.55 229 | 93.49 144 | 93.67 299 | 82.49 195 | 98.27 209 | 90.41 171 | 89.34 256 | 97.90 166 |
|
Anonymous20231206 | | | 87.09 297 | 86.14 298 | 89.93 324 | 91.22 343 | 80.35 335 | 96.11 231 | 95.35 293 | 83.57 319 | 84.16 323 | 93.02 310 | 73.54 306 | 95.61 341 | 72.16 349 | 86.14 285 | 93.84 324 |
|
MIMVSNet1 | | | 84.93 314 | 83.05 316 | 90.56 317 | 89.56 353 | 84.84 299 | 95.40 262 | 95.35 293 | 83.91 312 | 80.38 343 | 92.21 326 | 57.23 356 | 93.34 356 | 70.69 355 | 82.75 329 | 93.50 327 |
|
TDRefinement | | | 86.53 300 | 84.76 310 | 91.85 289 | 82.23 364 | 84.25 303 | 96.38 211 | 95.35 293 | 84.97 301 | 84.09 325 | 94.94 237 | 65.76 346 | 98.34 207 | 84.60 279 | 74.52 348 | 92.97 332 |
|
TR-MVS | | | 91.48 213 | 90.59 220 | 94.16 209 | 96.40 193 | 87.33 251 | 95.67 251 | 95.34 296 | 87.68 256 | 91.46 185 | 95.52 220 | 76.77 283 | 98.35 204 | 82.85 294 | 93.61 201 | 96.79 206 |
|
EPNet_dtu | | | 91.71 200 | 91.28 194 | 92.99 262 | 93.76 308 | 83.71 310 | 96.69 183 | 95.28 297 | 93.15 85 | 87.02 297 | 95.95 192 | 83.37 173 | 97.38 308 | 79.46 320 | 96.84 145 | 97.88 168 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
FMVSNet5 | | | 87.29 296 | 85.79 300 | 91.78 294 | 94.80 274 | 87.28 252 | 95.49 259 | 95.28 297 | 84.09 311 | 83.85 329 | 91.82 328 | 62.95 351 | 94.17 352 | 78.48 324 | 85.34 295 | 93.91 323 |
|
MDTV_nov1_ep13 | | | | 90.76 213 | | 95.22 251 | 80.33 336 | 93.03 325 | 95.28 297 | 88.14 241 | 92.84 161 | 93.83 290 | 81.34 214 | 98.08 232 | 82.86 293 | 94.34 190 | |
|
LF4IMVS | | | 87.94 291 | 87.25 288 | 89.98 323 | 92.38 337 | 80.05 341 | 94.38 290 | 95.25 300 | 87.59 258 | 84.34 320 | 94.74 249 | 64.31 348 | 97.66 283 | 84.83 274 | 87.45 272 | 92.23 343 |
|
TransMVSNet (Re) | | | 88.94 278 | 87.56 285 | 93.08 260 | 94.35 291 | 88.45 229 | 97.73 78 | 95.23 301 | 87.47 260 | 84.26 322 | 95.29 226 | 79.86 240 | 97.33 310 | 79.44 321 | 74.44 349 | 93.45 329 |
|
test20.03 | | | 86.14 306 | 85.40 304 | 88.35 329 | 90.12 348 | 80.06 340 | 95.90 243 | 95.20 302 | 88.59 225 | 81.29 338 | 93.62 301 | 71.43 313 | 92.65 358 | 71.26 353 | 81.17 333 | 92.34 342 |
|
new-patchmatchnet | | | 83.18 319 | 81.87 321 | 87.11 335 | 86.88 361 | 75.99 355 | 93.70 310 | 95.18 303 | 85.02 300 | 77.30 351 | 88.40 346 | 65.99 344 | 93.88 354 | 74.19 344 | 70.18 355 | 91.47 351 |
|
MDA-MVSNet_test_wron | | | 85.87 309 | 84.23 313 | 90.80 314 | 92.38 337 | 82.57 318 | 93.17 320 | 95.15 304 | 82.15 327 | 67.65 357 | 92.33 325 | 78.20 268 | 95.51 344 | 77.33 329 | 79.74 335 | 94.31 315 |
|
YYNet1 | | | 85.87 309 | 84.23 313 | 90.78 315 | 92.38 337 | 82.46 321 | 93.17 320 | 95.14 305 | 82.12 328 | 67.69 356 | 92.36 322 | 78.16 271 | 95.50 345 | 77.31 330 | 79.73 336 | 94.39 311 |
|
Baseline_NR-MVSNet | | | 91.20 228 | 90.62 218 | 92.95 264 | 93.83 306 | 88.03 240 | 97.01 153 | 95.12 306 | 88.42 231 | 89.70 231 | 95.13 233 | 83.47 170 | 97.44 303 | 89.66 186 | 83.24 324 | 93.37 330 |
|
thres200 | | | 92.23 186 | 91.39 188 | 94.75 189 | 97.61 135 | 89.03 214 | 96.60 195 | 95.09 307 | 92.08 124 | 93.28 150 | 94.00 286 | 78.39 267 | 99.04 148 | 81.26 309 | 94.18 191 | 96.19 218 |
|
ADS-MVSNet | | | 89.89 268 | 88.68 274 | 93.53 241 | 95.86 215 | 84.89 298 | 90.93 341 | 95.07 308 | 83.23 322 | 91.28 194 | 91.81 329 | 79.01 256 | 97.85 265 | 79.52 317 | 91.39 231 | 97.84 170 |
|
pmmvs-eth3d | | | 86.22 305 | 84.45 311 | 91.53 299 | 88.34 358 | 87.25 254 | 94.47 285 | 95.01 309 | 83.47 320 | 79.51 348 | 89.61 343 | 69.75 326 | 95.71 340 | 83.13 291 | 76.73 345 | 91.64 347 |
|
Anonymous202405211 | | | 92.07 192 | 90.83 211 | 95.76 132 | 98.19 105 | 88.75 219 | 97.58 97 | 95.00 310 | 86.00 285 | 93.64 139 | 97.45 113 | 66.24 343 | 99.53 92 | 90.68 170 | 92.71 208 | 99.01 91 |
|
MDA-MVSNet-bldmvs | | | 85.00 313 | 82.95 317 | 91.17 308 | 93.13 325 | 83.33 314 | 94.56 283 | 95.00 310 | 84.57 306 | 65.13 361 | 92.65 314 | 70.45 319 | 95.85 337 | 73.57 345 | 77.49 342 | 94.33 313 |
|
ambc | | | | | 86.56 337 | 83.60 362 | 70.00 362 | 85.69 356 | 94.97 312 | | 80.60 342 | 88.45 345 | 37.42 365 | 96.84 325 | 82.69 297 | 75.44 347 | 92.86 334 |
|
testgi | | | 87.97 290 | 87.21 290 | 90.24 321 | 92.86 327 | 80.76 330 | 96.67 186 | 94.97 312 | 91.74 131 | 85.52 310 | 95.83 198 | 62.66 352 | 94.47 351 | 76.25 335 | 88.36 265 | 95.48 249 |
|
dp | | | 88.90 280 | 88.26 280 | 90.81 312 | 94.58 285 | 76.62 353 | 92.85 327 | 94.93 314 | 85.12 298 | 90.07 223 | 93.07 309 | 75.81 289 | 98.12 225 | 80.53 312 | 87.42 274 | 97.71 176 |
|
test_0402 | | | 86.46 301 | 84.79 309 | 91.45 301 | 95.02 261 | 85.55 286 | 96.29 220 | 94.89 315 | 80.90 335 | 82.21 335 | 93.97 288 | 68.21 332 | 97.29 312 | 62.98 360 | 88.68 263 | 91.51 349 |
|
tfpn200view9 | | | 92.38 177 | 91.52 185 | 94.95 176 | 97.85 122 | 89.29 205 | 97.41 111 | 94.88 316 | 92.19 120 | 93.27 151 | 94.46 263 | 78.17 269 | 99.08 142 | 81.40 305 | 94.08 192 | 96.48 213 |
|
CVMVSNet | | | 91.23 226 | 91.75 176 | 89.67 326 | 95.77 220 | 74.69 356 | 96.44 201 | 94.88 316 | 85.81 287 | 92.18 172 | 97.64 101 | 79.07 251 | 95.58 343 | 88.06 216 | 95.86 165 | 98.74 115 |
|
thres400 | | | 92.42 175 | 91.52 185 | 95.12 168 | 97.85 122 | 89.29 205 | 97.41 111 | 94.88 316 | 92.19 120 | 93.27 151 | 94.46 263 | 78.17 269 | 99.08 142 | 81.40 305 | 94.08 192 | 96.98 197 |
|
EPNet | | | 95.20 89 | 94.56 96 | 97.14 71 | 92.80 329 | 92.68 89 | 97.85 66 | 94.87 319 | 96.64 1 | 92.46 163 | 97.80 87 | 86.23 132 | 99.65 56 | 93.72 114 | 98.62 102 | 99.10 83 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SixPastTwentyTwo | | | 89.15 276 | 88.54 276 | 90.98 309 | 93.49 316 | 80.28 338 | 96.70 181 | 94.70 320 | 90.78 160 | 84.15 324 | 95.57 215 | 71.78 311 | 97.71 279 | 84.63 278 | 85.07 300 | 94.94 282 |
|
thres100view900 | | | 92.43 174 | 91.58 182 | 94.98 173 | 97.92 118 | 89.37 201 | 97.71 83 | 94.66 321 | 92.20 118 | 93.31 149 | 94.90 240 | 78.06 273 | 99.08 142 | 81.40 305 | 94.08 192 | 96.48 213 |
|
thres600view7 | | | 92.49 173 | 91.60 181 | 95.18 164 | 97.91 119 | 89.47 195 | 97.65 89 | 94.66 321 | 92.18 122 | 93.33 148 | 94.91 239 | 78.06 273 | 99.10 137 | 81.61 302 | 94.06 195 | 96.98 197 |
|
PatchT | | | 88.87 281 | 87.42 286 | 93.22 255 | 94.08 299 | 85.10 294 | 89.51 350 | 94.64 323 | 81.92 329 | 92.36 167 | 88.15 349 | 80.05 236 | 97.01 320 | 72.43 348 | 93.65 199 | 97.54 188 |
|
baseline1 | | | 92.82 166 | 91.90 172 | 95.55 149 | 97.20 145 | 90.77 157 | 97.19 137 | 94.58 324 | 92.20 118 | 92.36 167 | 96.34 175 | 84.16 161 | 98.21 213 | 89.20 200 | 83.90 319 | 97.68 178 |
|
Gipuma |  | | 67.86 328 | 65.41 331 | 75.18 344 | 92.66 332 | 73.45 358 | 66.50 363 | 94.52 325 | 53.33 363 | 57.80 364 | 66.07 363 | 30.81 366 | 89.20 360 | 48.15 364 | 78.88 341 | 62.90 363 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
CostFormer | | | 91.18 232 | 90.70 216 | 92.62 274 | 94.84 272 | 81.76 325 | 94.09 301 | 94.43 326 | 84.15 310 | 92.72 162 | 93.77 294 | 79.43 247 | 98.20 215 | 90.70 169 | 92.18 218 | 97.90 166 |
|
tpm2 | | | 89.96 266 | 89.21 267 | 92.23 282 | 94.91 269 | 81.25 328 | 93.78 308 | 94.42 327 | 80.62 339 | 91.56 183 | 93.44 305 | 76.44 286 | 97.94 256 | 85.60 266 | 92.08 222 | 97.49 189 |
|
JIA-IIPM | | | 88.26 289 | 87.04 293 | 91.91 287 | 93.52 314 | 81.42 327 | 89.38 351 | 94.38 328 | 80.84 337 | 90.93 200 | 80.74 357 | 79.22 250 | 97.92 259 | 82.76 295 | 91.62 226 | 96.38 215 |
|
Patchmatch-test | | | 89.42 274 | 87.99 281 | 93.70 233 | 95.27 247 | 85.11 293 | 88.98 352 | 94.37 329 | 81.11 334 | 87.10 295 | 93.69 296 | 82.28 199 | 97.50 298 | 74.37 342 | 94.76 184 | 98.48 135 |
|
LCM-MVSNet | | | 72.55 325 | 69.39 329 | 82.03 339 | 70.81 371 | 65.42 366 | 90.12 348 | 94.36 330 | 55.02 362 | 65.88 359 | 81.72 356 | 24.16 372 | 89.96 359 | 74.32 343 | 68.10 357 | 90.71 354 |
|
ADS-MVSNet2 | | | 89.45 273 | 88.59 275 | 92.03 285 | 95.86 215 | 82.26 323 | 90.93 341 | 94.32 331 | 83.23 322 | 91.28 194 | 91.81 329 | 79.01 256 | 95.99 334 | 79.52 317 | 91.39 231 | 97.84 170 |
|
DWT-MVSNet_test | | | 90.76 245 | 89.89 249 | 93.38 248 | 95.04 260 | 83.70 311 | 95.85 245 | 94.30 332 | 88.19 236 | 90.46 205 | 92.80 312 | 73.61 305 | 98.50 192 | 88.16 214 | 90.58 243 | 97.95 164 |
|
EU-MVSNet | | | 88.72 284 | 88.90 271 | 88.20 331 | 93.15 324 | 74.21 357 | 96.63 192 | 94.22 333 | 85.18 296 | 87.32 291 | 95.97 190 | 76.16 288 | 94.98 347 | 85.27 270 | 86.17 284 | 95.41 255 |
|
MIMVSNet | | | 88.50 286 | 86.76 294 | 93.72 232 | 94.84 272 | 87.77 247 | 91.39 336 | 94.05 334 | 86.41 279 | 87.99 279 | 92.59 316 | 63.27 350 | 95.82 339 | 77.44 328 | 92.84 207 | 97.57 187 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 317 | 82.28 320 | 90.83 311 | 90.06 349 | 84.05 307 | 95.73 250 | 94.04 335 | 73.89 355 | 80.17 346 | 91.53 333 | 59.15 355 | 97.64 284 | 66.92 358 | 89.05 258 | 90.80 353 |
|
TinyColmap | | | 86.82 299 | 85.35 305 | 91.21 306 | 94.91 269 | 82.99 317 | 93.94 304 | 94.02 336 | 83.58 318 | 81.56 337 | 94.68 252 | 62.34 353 | 98.13 222 | 75.78 336 | 87.35 276 | 92.52 340 |
|
IB-MVS | | 87.33 17 | 89.91 267 | 88.28 279 | 94.79 186 | 95.26 250 | 87.70 248 | 95.12 276 | 93.95 337 | 89.35 201 | 87.03 296 | 92.49 317 | 70.74 318 | 99.19 127 | 89.18 201 | 81.37 332 | 97.49 189 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LCM-MVSNet-Re | | | 92.50 171 | 92.52 155 | 92.44 276 | 96.82 169 | 81.89 324 | 96.92 161 | 93.71 338 | 92.41 112 | 84.30 321 | 94.60 256 | 85.08 148 | 97.03 317 | 91.51 155 | 97.36 134 | 98.40 144 |
|
tpm | | | 90.25 260 | 89.74 258 | 91.76 296 | 93.92 302 | 79.73 343 | 93.98 302 | 93.54 339 | 88.28 234 | 91.99 178 | 93.25 308 | 77.51 279 | 97.44 303 | 87.30 239 | 87.94 267 | 98.12 157 |
|
ET-MVSNet_ETH3D | | | 91.49 212 | 90.11 241 | 95.63 142 | 96.40 193 | 91.57 126 | 95.34 264 | 93.48 340 | 90.60 173 | 75.58 353 | 95.49 221 | 80.08 235 | 96.79 326 | 94.25 100 | 89.76 253 | 98.52 128 |
|
bset_n11_16_dypcd | | | 91.55 208 | 90.59 220 | 94.44 198 | 91.51 341 | 90.25 171 | 92.70 329 | 93.42 341 | 92.27 115 | 90.22 211 | 94.74 249 | 78.42 265 | 97.80 270 | 94.19 102 | 87.86 269 | 95.29 271 |
|
LFMVS | | | 93.60 135 | 92.63 148 | 96.52 88 | 98.13 109 | 91.27 135 | 97.94 58 | 93.39 342 | 90.57 174 | 96.29 77 | 98.31 49 | 69.00 327 | 99.16 131 | 94.18 103 | 95.87 164 | 99.12 81 |
|
Patchmatch-RL test | | | 87.38 295 | 86.24 296 | 90.81 312 | 88.74 357 | 78.40 351 | 88.12 354 | 93.17 343 | 87.11 269 | 82.17 336 | 89.29 344 | 81.95 206 | 95.60 342 | 88.64 210 | 77.02 343 | 98.41 143 |
|
test-LLR | | | 91.42 215 | 91.19 199 | 92.12 283 | 94.59 283 | 80.66 331 | 94.29 295 | 92.98 344 | 91.11 155 | 90.76 201 | 92.37 319 | 79.02 254 | 98.07 235 | 88.81 206 | 96.74 148 | 97.63 179 |
|
test-mter | | | 90.19 263 | 89.54 262 | 92.12 283 | 94.59 283 | 80.66 331 | 94.29 295 | 92.98 344 | 87.68 256 | 90.76 201 | 92.37 319 | 67.67 333 | 98.07 235 | 88.81 206 | 96.74 148 | 97.63 179 |
|
test_method | | | 66.11 329 | 64.89 332 | 69.79 346 | 72.62 369 | 35.23 376 | 65.19 364 | 92.83 346 | 20.35 368 | 65.20 360 | 88.08 350 | 43.14 364 | 82.70 364 | 73.12 347 | 63.46 359 | 91.45 352 |
|
test0.0.03 1 | | | 89.37 275 | 88.70 273 | 91.41 303 | 92.47 334 | 85.63 285 | 95.22 273 | 92.70 347 | 91.11 155 | 86.91 300 | 93.65 300 | 79.02 254 | 93.19 357 | 78.00 327 | 89.18 257 | 95.41 255 |
|
new_pmnet | | | 82.89 320 | 81.12 324 | 88.18 332 | 89.63 352 | 80.18 339 | 91.77 335 | 92.57 348 | 76.79 352 | 75.56 354 | 88.23 348 | 61.22 354 | 94.48 350 | 71.43 351 | 82.92 327 | 89.87 355 |
|
thisisatest0515 | | | 92.29 182 | 91.30 193 | 95.25 162 | 96.60 177 | 88.90 217 | 94.36 291 | 92.32 349 | 87.92 245 | 93.43 146 | 94.57 257 | 77.28 280 | 99.00 149 | 89.42 191 | 95.86 165 | 97.86 169 |
|
thisisatest0530 | | | 93.03 154 | 92.21 163 | 95.49 154 | 97.07 152 | 89.11 213 | 97.49 107 | 92.19 350 | 90.16 181 | 94.09 130 | 96.41 171 | 76.43 287 | 99.05 146 | 90.38 172 | 95.68 170 | 98.31 150 |
|
tttt0517 | | | 92.96 157 | 92.33 160 | 94.87 179 | 97.11 150 | 87.16 259 | 97.97 56 | 92.09 351 | 90.63 169 | 93.88 136 | 97.01 134 | 76.50 284 | 99.06 145 | 90.29 175 | 95.45 172 | 98.38 146 |
|
K. test v3 | | | 87.64 294 | 86.75 295 | 90.32 320 | 93.02 326 | 79.48 345 | 96.61 193 | 92.08 352 | 90.66 167 | 80.25 345 | 94.09 283 | 67.21 337 | 96.65 328 | 85.96 262 | 80.83 334 | 94.83 291 |
|
TESTMET0.1,1 | | | 90.06 265 | 89.42 263 | 91.97 286 | 94.41 290 | 80.62 333 | 94.29 295 | 91.97 353 | 87.28 266 | 90.44 206 | 92.47 318 | 68.79 328 | 97.67 281 | 88.50 212 | 96.60 153 | 97.61 183 |
|
PM-MVS | | | 83.48 318 | 81.86 322 | 88.31 330 | 87.83 360 | 77.59 352 | 93.43 316 | 91.75 354 | 86.91 271 | 80.63 341 | 89.91 341 | 44.42 363 | 95.84 338 | 85.17 273 | 76.73 345 | 91.50 350 |
|
baseline2 | | | 91.63 203 | 90.86 207 | 93.94 222 | 94.33 292 | 86.32 274 | 95.92 242 | 91.64 355 | 89.37 200 | 86.94 298 | 94.69 251 | 81.62 212 | 98.69 174 | 88.64 210 | 94.57 188 | 96.81 205 |
|
FPMVS | | | 71.27 326 | 69.85 328 | 75.50 343 | 74.64 366 | 59.03 368 | 91.30 337 | 91.50 356 | 58.80 361 | 57.92 363 | 88.28 347 | 29.98 368 | 85.53 363 | 53.43 362 | 82.84 328 | 81.95 359 |
|
door | | | | | | | | | 91.13 357 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 358 | | | | | | | | |
|
pmmvs3 | | | 79.97 323 | 77.50 327 | 87.39 334 | 82.80 363 | 79.38 346 | 92.70 329 | 90.75 359 | 70.69 357 | 78.66 349 | 87.47 353 | 51.34 361 | 93.40 355 | 73.39 346 | 69.65 356 | 89.38 356 |
|
DSMNet-mixed | | | 86.34 303 | 86.12 299 | 87.00 336 | 89.88 351 | 70.43 360 | 94.93 277 | 90.08 360 | 77.97 350 | 85.42 313 | 92.78 313 | 74.44 298 | 93.96 353 | 74.43 341 | 95.14 176 | 96.62 209 |
|
MVS-HIRNet | | | 82.47 321 | 81.21 323 | 86.26 338 | 95.38 235 | 69.21 363 | 88.96 353 | 89.49 361 | 66.28 358 | 80.79 340 | 74.08 361 | 68.48 330 | 97.39 307 | 71.93 350 | 95.47 171 | 92.18 345 |
|
EPMVS | | | 90.70 250 | 89.81 253 | 93.37 249 | 94.73 277 | 84.21 304 | 93.67 312 | 88.02 362 | 89.50 196 | 92.38 166 | 93.49 303 | 77.82 277 | 97.78 273 | 86.03 260 | 92.68 209 | 98.11 160 |
|
ANet_high | | | 63.94 330 | 59.58 333 | 77.02 342 | 61.24 373 | 66.06 364 | 85.66 357 | 87.93 363 | 78.53 348 | 42.94 366 | 71.04 362 | 25.42 371 | 80.71 365 | 52.60 363 | 30.83 366 | 84.28 358 |
|
PMMVS2 | | | 70.19 327 | 66.92 330 | 80.01 340 | 76.35 365 | 65.67 365 | 86.22 355 | 87.58 364 | 64.83 360 | 62.38 362 | 80.29 358 | 26.78 370 | 88.49 361 | 63.79 359 | 54.07 363 | 85.88 357 |
|
lessismore_v0 | | | | | 90.45 318 | 91.96 340 | 79.09 349 | | 87.19 365 | | 80.32 344 | 94.39 265 | 66.31 342 | 97.55 292 | 84.00 285 | 76.84 344 | 94.70 303 |
|
PMVS |  | 53.92 22 | 58.58 331 | 55.40 334 | 68.12 347 | 51.00 374 | 48.64 370 | 78.86 360 | 87.10 366 | 46.77 364 | 35.84 370 | 74.28 360 | 8.76 373 | 86.34 362 | 42.07 365 | 73.91 350 | 69.38 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
gg-mvs-nofinetune | | | 87.82 292 | 85.61 301 | 94.44 198 | 94.46 287 | 89.27 208 | 91.21 340 | 84.61 367 | 80.88 336 | 89.89 227 | 74.98 359 | 71.50 312 | 97.53 295 | 85.75 265 | 97.21 140 | 96.51 211 |
|
GG-mvs-BLEND | | | | | 93.62 236 | 93.69 310 | 89.20 209 | 92.39 334 | 83.33 368 | | 87.98 280 | 89.84 342 | 71.00 316 | 96.87 324 | 82.08 301 | 95.40 173 | 94.80 296 |
|
MTMP | | | | | | | | 97.86 63 | 82.03 369 | | | | | | | | |
|
DeepMVS_CX |  | | | | 74.68 345 | 90.84 346 | 64.34 367 | | 81.61 370 | 65.34 359 | 67.47 358 | 88.01 351 | 48.60 362 | 80.13 366 | 62.33 361 | 73.68 351 | 79.58 360 |
|
E-PMN | | | 53.28 332 | 52.56 336 | 55.43 349 | 74.43 367 | 47.13 371 | 83.63 359 | 76.30 371 | 42.23 365 | 42.59 367 | 62.22 365 | 28.57 369 | 74.40 367 | 31.53 367 | 31.51 365 | 44.78 364 |
|
EMVS | | | 52.08 334 | 51.31 337 | 54.39 350 | 72.62 369 | 45.39 373 | 83.84 358 | 75.51 372 | 41.13 366 | 40.77 368 | 59.65 366 | 30.08 367 | 73.60 368 | 28.31 368 | 29.90 367 | 44.18 365 |
|
MVE |  | 50.73 23 | 53.25 333 | 48.81 338 | 66.58 348 | 65.34 372 | 57.50 369 | 72.49 362 | 70.94 373 | 40.15 367 | 39.28 369 | 63.51 364 | 6.89 375 | 73.48 369 | 38.29 366 | 42.38 364 | 68.76 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 51.94 335 | 53.82 335 | 46.29 351 | 33.73 375 | 45.30 374 | 78.32 361 | 67.24 374 | 18.02 369 | 50.93 365 | 87.05 354 | 52.99 360 | 53.11 370 | 70.76 354 | 25.29 368 | 40.46 366 |
|
N_pmnet | | | 78.73 324 | 78.71 326 | 78.79 341 | 92.80 329 | 46.50 372 | 94.14 299 | 43.71 375 | 78.61 347 | 80.83 339 | 91.66 332 | 74.94 296 | 96.36 330 | 67.24 357 | 84.45 310 | 93.50 327 |
|
wuyk23d | | | 25.11 336 | 24.57 340 | 26.74 352 | 73.98 368 | 39.89 375 | 57.88 365 | 9.80 376 | 12.27 370 | 10.39 371 | 6.97 372 | 7.03 374 | 36.44 371 | 25.43 369 | 17.39 369 | 3.89 369 |
|
testmvs | | | 13.36 338 | 16.33 341 | 4.48 354 | 5.04 376 | 2.26 378 | 93.18 319 | 3.28 377 | 2.70 371 | 8.24 372 | 21.66 368 | 2.29 377 | 2.19 372 | 7.58 370 | 2.96 370 | 9.00 368 |
|
test123 | | | 13.04 339 | 15.66 342 | 5.18 353 | 4.51 377 | 3.45 377 | 92.50 333 | 1.81 378 | 2.50 372 | 7.58 373 | 20.15 369 | 3.67 376 | 2.18 373 | 7.13 371 | 1.07 371 | 9.90 367 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 7.39 341 | 9.85 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 88.65 99 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
ab-mvs-re | | | 8.06 340 | 10.74 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 96.69 151 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
PC_three_1452 | | | | | | | | | | 90.77 161 | 98.89 8 | 98.28 55 | 96.24 1 | 98.35 204 | 95.76 58 | 99.58 22 | 99.59 19 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
OPU-MVS | | | | | 98.55 3 | 98.82 58 | 96.86 3 | 98.25 32 | | | | 98.26 56 | 96.04 2 | 99.24 124 | 95.36 74 | 99.59 17 | 99.56 26 |
|
test_0728_THIRD | | | | | | | | | | 94.78 35 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 22 | 97.45 8 | 99.72 2 | 99.77 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 138 |
|
test_part2 | | | | | | 99.28 27 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 188 | | | | 98.45 138 |
|
sam_mvs | | | | | | | | | | | | | 81.94 207 | | | | |
|
test_post1 | | | | | | | | 92.81 328 | | | | 16.58 371 | 80.53 226 | 97.68 280 | 86.20 254 | | |
|
test_post | | | | | | | | | | | | 17.58 370 | 81.76 209 | 98.08 232 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 337 | 82.65 192 | 98.10 227 | | | |
|
gm-plane-assit | | | | | | 93.22 322 | 78.89 350 | | | 84.82 303 | | 93.52 302 | | 98.64 178 | 87.72 222 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 91 | 99.38 52 | 99.45 49 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 108 | 99.38 52 | 99.50 41 |
|
test_prior4 | | | | | | | 93.66 63 | 96.42 204 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 213 | | 92.80 102 | 96.03 86 | 97.59 105 | 92.01 44 | | 95.01 82 | 99.38 52 | |
|
旧先验2 | | | | | | | | 95.94 241 | | 81.66 331 | 97.34 38 | | | 98.82 162 | 92.26 134 | | |
|
新几何2 | | | | | | | | 95.79 248 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 95.67 251 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 52 | 85.96 262 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 25 | | | | |
|
testdata1 | | | | | | | | 95.26 272 | | 93.10 88 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 200 | 89.98 179 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 210 | 90.00 175 | | | | | | 81.32 215 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.64 154 | | | | | |
|
plane_prior3 | | | | | | | 90.00 175 | | | 94.46 44 | 91.34 188 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 76 | | 94.85 28 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 208 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 177 | 97.24 129 | | 94.06 53 | | | | | | 92.16 219 | |
|
HQP5-MVS | | | | | | | 89.33 203 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 215 | | 96.65 187 | | 93.55 68 | 90.14 212 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 215 | | 96.65 187 | | 93.55 68 | 90.14 212 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 140 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 212 | | | 98.50 192 | | | 95.78 237 |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 218 | | | | |
|
NP-MVS | | | | | | 95.99 214 | 89.81 184 | | | | | 95.87 195 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 361 | 93.10 324 | | 83.88 314 | 93.55 141 | | 82.47 196 | | 86.25 253 | | 98.38 146 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 248 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 237 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 98 | | | | |
|