This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 8998.98 192.22 11697.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 22898.90 294.30 5095.86 9497.74 9092.33 3899.38 11596.04 4999.42 4799.28 69
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3298.81 392.99 9194.56 12298.39 3788.96 9499.85 1794.57 9897.63 12599.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22698.79 493.99 5595.80 9697.65 9889.92 8899.24 12495.87 5299.20 7498.58 124
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23191.45 13198.12 4398.71 593.37 7690.23 21096.70 14987.66 11197.85 26591.49 15690.39 24795.83 234
UniMVSNet (Re)93.31 14492.55 15295.61 14495.39 23493.34 7497.39 11598.71 593.14 8690.10 22094.83 24487.71 11098.03 24291.67 15483.99 31595.46 252
FIs94.09 11893.70 11395.27 16195.70 22392.03 11298.10 4498.68 793.36 7890.39 20796.70 14987.63 11397.94 25692.25 13690.50 24695.84 233
WR-MVS_H92.00 19391.35 18993.95 22095.09 25889.47 19598.04 4998.68 791.46 13988.34 26794.68 25285.86 13997.56 29185.77 26484.24 31294.82 293
VPA-MVSNet93.24 14692.48 15795.51 15195.70 22392.39 9897.86 6398.66 992.30 11492.09 17795.37 22480.49 22798.40 19993.95 10785.86 28795.75 241
UniMVSNet_NR-MVSNet93.37 14292.67 14795.47 15795.34 24092.83 8597.17 13998.58 1092.98 9690.13 21695.80 20088.37 10497.85 26591.71 15083.93 31695.73 243
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 20993.97 13497.57 10792.62 3199.76 3394.66 9599.27 6599.15 76
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8698.49 1294.66 4097.24 4098.41 3692.31 4098.94 15396.61 2699.46 4298.96 96
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28298.49 1285.06 29993.78 13795.78 20482.86 18598.67 17691.77 14895.71 16999.07 86
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27498.48 1485.60 29093.76 13897.11 12983.15 17699.61 6591.33 15998.72 9899.19 72
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 3998.45 1589.86 18697.11 4898.01 7192.52 3599.69 4796.03 5099.53 2899.36 62
PVSNet_BlendedMVS94.06 11993.92 10894.47 19798.27 9489.46 19796.73 17798.36 1690.17 18094.36 12595.24 22988.02 10599.58 7493.44 11990.72 24294.36 312
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26098.36 1688.84 21794.36 12596.09 18888.02 10599.58 7493.44 11998.18 11298.40 144
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18293.36 7398.65 998.36 1694.12 5289.25 24998.06 6782.20 20199.77 3293.41 12199.32 5799.18 73
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13698.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8197.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4298.32 2192.57 10997.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8197.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8593.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++.98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
test_0728_SECOND98.51 499.45 395.93 598.21 3998.28 2799.86 897.52 499.67 699.75 5
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9196.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3298.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3698.27 3092.37 11398.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 12798.25 3590.21 17994.18 12997.27 12087.48 11799.73 3593.53 11697.77 12398.55 125
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8598.24 3791.57 13597.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8497.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
PS-CasMVS91.55 20890.84 21093.69 23494.96 26388.28 23197.84 6798.24 3791.46 13988.04 27795.80 20079.67 24397.48 29987.02 24484.54 30995.31 264
DU-MVS92.90 16192.04 16695.49 15494.95 26492.83 8597.16 14098.24 3793.02 8990.13 21695.71 20883.47 17097.85 26591.71 15083.93 31695.78 237
9.1496.75 3498.93 4997.73 7898.23 4191.28 14997.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7298.22 4292.74 10497.59 2898.20 6091.96 4799.86 894.21 10199.25 6999.63 13
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14698.21 4388.16 24096.64 6197.70 9291.18 6699.67 5292.44 13399.47 4099.48 45
D2MVS91.30 22490.95 20492.35 27994.71 27885.52 28796.18 22998.21 4388.89 21586.60 30293.82 29279.92 23997.95 25589.29 19590.95 23993.56 326
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20089.67 25997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 36791.70 5399.80 3095.66 6099.40 4999.62 15
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9698.19 4792.82 10197.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
CP-MVSNet91.89 19691.24 19693.82 22795.05 25988.57 22497.82 6898.19 4791.70 13288.21 27395.76 20581.96 20597.52 29787.86 21984.65 30595.37 261
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 10896.39 7598.18 6191.61 5599.88 495.59 7099.55 2599.57 23
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 5898.18 4990.57 17498.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 22890.44 22593.48 24394.49 28687.91 24497.76 7498.18 4991.29 14687.78 28295.74 20780.35 23097.33 31085.46 26882.96 32695.19 274
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24098.18 4995.23 1295.87 9397.65 9891.45 5899.70 4695.87 5299.44 4699.00 94
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 27288.40 27793.60 23795.15 25490.10 17397.56 9998.16 5387.28 26686.16 30694.63 25577.57 27898.05 23874.48 34084.59 30892.65 338
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10398.15 5493.87 5797.52 2997.61 10485.29 14599.53 9295.81 5795.27 17599.16 74
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 23898.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6098.14 5694.82 3299.01 398.55 2194.18 1497.41 30696.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10596.70 5698.06 6791.35 6299.86 894.83 8999.28 6399.47 48
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 8998.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17397.35 13599.11 82
QAPM93.45 14092.27 16296.98 7796.77 17192.62 9298.39 2398.12 5984.50 30788.27 27197.77 8882.39 19899.81 2985.40 26998.81 9598.51 130
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14691.58 12598.26 3198.12 5994.38 4894.90 11798.15 6282.28 19998.92 15491.45 15898.58 10499.01 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 16391.68 17996.40 9995.34 24092.73 8898.27 3098.12 5984.86 30285.78 30897.75 8978.89 25999.74 3487.50 23598.65 10196.73 207
TranMVSNet+NR-MVSNet92.50 17191.63 18095.14 16694.76 27592.07 11097.53 10198.11 6292.90 9989.56 23796.12 18483.16 17597.60 28989.30 19483.20 32595.75 241
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25195.17 11598.03 6987.09 12399.61 6593.51 11799.42 4799.02 87
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 16998.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8198.10 6491.50 13798.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8095.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
ZD-MVS99.05 4394.59 3298.08 6789.22 20497.03 5198.10 6392.52 3599.65 5694.58 9799.31 59
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MTGPAbinary98.08 67
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 12998.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 12798.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14698.08 6788.35 23395.09 11697.65 9889.97 8799.48 10292.08 14398.59 10398.44 141
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5298.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14498.07 7393.54 7196.08 8497.69 9393.86 1699.71 4196.50 2999.39 5199.55 30
NR-MVSNet92.34 17891.27 19595.53 15094.95 26493.05 8097.39 11598.07 7392.65 10784.46 31995.71 20885.00 14997.77 27589.71 18383.52 32295.78 237
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 15798.06 7690.67 16595.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5298.06 7693.11 8797.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7695.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17496.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15396.40 7497.99 7290.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10793.80 11196.64 8197.07 15291.97 11596.32 21798.06 7688.94 21394.50 12396.78 14384.60 15399.27 12291.90 14496.02 16098.68 121
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12598.06 7693.92 5693.38 14798.66 1486.83 12599.73 3595.60 6999.22 7298.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15498.05 8389.85 18897.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 70
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 5798.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 11998.04 8495.96 297.09 4997.88 7793.18 2399.71 4195.84 5699.17 7699.56 26
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11198.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5298.03 8793.52 7297.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5298.03 8793.52 7297.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6198.03 8793.34 7997.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 87
RPMNet88.98 27787.05 29294.77 18794.45 28887.19 25790.23 34698.03 8777.87 35192.40 16487.55 35280.17 23499.51 9768.84 35693.95 19697.60 184
save fliter98.91 5194.28 3997.02 14998.02 9195.35 8
TEST998.70 6294.19 4496.41 20598.02 9188.17 23896.03 8697.56 10992.74 2799.59 71
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20598.02 9188.58 22696.03 8697.56 10992.73 2899.59 7195.04 8199.37 5699.39 58
test_898.67 6494.06 5396.37 21298.01 9488.58 22695.98 9197.55 11192.73 2899.58 74
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 15798.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22198.00 9688.76 22395.68 10197.55 11192.70 3099.57 8295.01 8299.32 5799.32 64
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21398.00 9692.80 10296.03 8697.59 10592.01 4499.41 11095.01 8299.38 5299.29 66
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 16997.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
WR-MVS92.34 17891.53 18494.77 18795.13 25690.83 15496.40 20897.98 10191.88 12989.29 24695.54 21982.50 19497.80 27089.79 18285.27 29695.69 244
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10097.97 10295.59 496.61 6397.89 7592.57 3399.84 2295.95 5199.51 3399.40 57
CANet96.39 5796.02 6197.50 5397.62 13493.38 7197.02 14997.96 10395.42 794.86 11897.81 8587.38 11999.82 2896.88 1699.20 7499.29 66
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11097.96 10377.99 34993.00 15597.57 10786.14 13799.33 11789.22 19899.15 7798.94 99
IU-MVS99.42 795.39 1197.94 10590.40 17898.94 597.41 1199.66 1099.74 7
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
Anonymous2023121190.63 25289.42 26394.27 20698.24 9889.19 21198.05 4897.89 10879.95 34188.25 27294.96 23672.56 30898.13 22289.70 18485.14 29895.49 248
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26295.22 11497.68 9490.25 8099.54 8987.95 21899.12 8298.49 133
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21397.88 11086.98 27096.65 6097.89 7591.99 4699.47 10392.26 13499.46 4299.39 58
test1197.88 110
EIA-MVS95.53 8095.47 7395.71 13997.06 15589.63 18697.82 6897.87 11293.57 6793.92 13595.04 23590.61 7798.95 15294.62 9698.68 10098.54 126
无先验95.79 24897.87 11283.87 31599.65 5687.68 22898.89 105
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16495.34 1698.48 1897.87 11294.65 4188.53 26598.02 7083.69 16699.71 4193.18 12598.96 9199.44 51
VPNet92.23 18691.31 19294.99 17195.56 22790.96 14997.22 13597.86 11592.96 9790.96 19996.62 16175.06 29598.20 21591.90 14483.65 32195.80 236
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 3997.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 4797.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19697.81 11889.87 18592.15 17397.06 13283.62 16999.54 8989.34 19398.07 11597.70 177
ETV-MVS96.02 6695.89 6596.40 9997.16 14792.44 9797.47 10897.77 11994.55 4296.48 7094.51 25891.23 6598.92 15495.65 6398.19 11197.82 173
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 15797.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
新几何197.32 5998.60 7393.59 6597.75 12181.58 33295.75 9897.85 8190.04 8599.67 5286.50 25099.13 7998.69 120
旧先验198.38 8693.38 7197.75 12198.09 6592.30 4199.01 8999.16 74
DROMVSNet96.42 5596.47 4896.26 11197.01 16091.52 12798.89 397.75 12194.42 4596.64 6197.68 9489.32 9098.60 18297.45 899.11 8498.67 122
CS-MVS95.88 7195.98 6295.58 14696.44 19090.56 16297.78 7297.73 12493.01 9096.07 8596.77 14490.13 8398.57 18796.83 1899.10 8597.60 184
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16497.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 10899.13 78
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23497.73 12481.56 33395.68 10197.85 8190.23 8199.65 5687.68 22899.12 8298.73 116
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 12997.73 12491.80 13092.93 16096.62 16189.13 9399.14 13489.21 19997.78 12298.97 95
Anonymous2024052991.98 19490.73 21595.73 13798.14 10889.40 19997.99 5197.72 12879.63 34393.54 14297.41 11669.94 32599.56 8491.04 16491.11 23598.22 153
CHOSEN 280x42093.12 15092.72 14694.34 20496.71 17587.27 25390.29 34597.72 12886.61 27791.34 18895.29 22684.29 16098.41 19893.25 12498.94 9297.35 192
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16597.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 11898.90 103
LS3D93.57 13792.61 15096.47 9497.59 13791.61 12297.67 8697.72 12885.17 29790.29 20998.34 4384.60 15399.73 3583.85 28898.27 10998.06 161
PAPR94.18 11293.42 12896.48 9397.64 13391.42 13295.55 25697.71 13288.99 21092.34 16995.82 19989.19 9199.11 13686.14 25697.38 13398.90 103
test_part192.21 18891.10 20295.51 15197.80 12592.66 9098.02 5097.68 13389.79 19188.80 25996.02 18976.85 28298.18 21890.86 16584.11 31495.69 244
UGNet94.04 12193.28 13196.31 10696.85 16591.19 14197.88 6297.68 13394.40 4693.00 15596.18 18073.39 30799.61 6591.72 14998.46 10598.13 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15898.18 10788.90 21797.66 13582.73 32597.03 5198.07 6690.06 8498.85 16089.67 18598.98 9098.64 123
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 71
CS-MVS-test95.86 7395.88 6695.80 13196.76 17390.59 16198.40 2297.65 13793.52 7295.53 11096.79 14289.98 8698.59 18695.59 7098.69 9998.23 152
DTE-MVSNet90.56 25389.75 25793.01 26193.95 30187.25 25497.64 9397.65 13790.74 16287.12 29395.68 21179.97 23897.00 32183.33 28981.66 33194.78 300
TAPA-MVS90.10 792.30 18191.22 19895.56 14798.33 9089.60 18896.79 17397.65 13781.83 33091.52 18497.23 12387.94 10798.91 15671.31 35298.37 10798.17 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
cdsmvs_eth3d_5k23.24 33730.99 3390.00 3550.00 3780.00 3790.00 36697.63 1400.00 3730.00 37496.88 14084.38 1570.00 3740.00 3720.00 3720.00 370
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27097.62 14190.43 17795.55 10797.07 13191.72 5199.50 10089.62 18798.94 9298.82 111
canonicalmvs96.02 6695.45 7497.75 4097.59 13795.15 2598.28 2997.60 14294.52 4396.27 7896.12 18487.65 11299.18 12996.20 4394.82 18398.91 102
test22298.24 9892.21 10595.33 26597.60 14279.22 34595.25 11397.84 8488.80 9799.15 7798.72 117
cascas91.20 22890.08 24294.58 19594.97 26289.16 21293.65 31397.59 14479.90 34289.40 24192.92 31175.36 29498.36 20392.14 13994.75 18596.23 216
hse-mvs394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9597.58 14595.19 1496.74 5497.45 11383.67 16799.61 6595.85 5479.73 33698.29 151
MVSFormer95.37 8295.16 8395.99 12496.34 19691.21 13898.22 3797.57 14691.42 14196.22 7997.32 11886.20 13597.92 25994.07 10499.05 8798.85 108
test_djsdf93.07 15292.76 14294.00 21593.49 31688.70 22198.22 3797.57 14691.42 14190.08 22295.55 21882.85 18697.92 25994.07 10491.58 22795.40 258
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20397.57 14692.04 12594.77 12097.96 7487.01 12499.09 14091.31 16096.77 14798.36 148
PS-MVSNAJss93.74 13193.51 12294.44 19893.91 30389.28 20797.75 7597.56 14992.50 11089.94 22496.54 16488.65 9998.18 21893.83 11390.90 24095.86 230
jajsoiax92.42 17591.89 17394.03 21493.33 32188.50 22797.73 7897.53 15092.00 12788.85 25696.50 16675.62 29398.11 22693.88 11191.56 22895.48 249
mvs_tets92.31 18091.76 17593.94 22293.41 31888.29 23097.63 9497.53 15092.04 12588.76 26096.45 16874.62 29798.09 23193.91 10991.48 22995.45 254
HQP_MVS93.78 13093.43 12694.82 18096.21 20089.99 17797.74 7697.51 15294.85 2891.34 18896.64 15481.32 21598.60 18293.02 12892.23 21595.86 230
plane_prior597.51 15298.60 18293.02 12892.23 21595.86 230
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14190.66 16095.31 26797.48 15493.85 5896.51 6895.70 21088.65 9999.65 5694.80 9298.27 10996.17 219
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7097.48 15489.19 20594.81 11996.71 14788.84 9699.17 13088.91 20598.76 9796.53 210
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23497.48 15493.47 7595.67 10498.10 6389.17 9299.25 12391.27 16198.77 9699.13 78
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8697.47 15788.13 24293.00 15595.84 19784.86 15199.51 9787.99 21798.17 11397.83 172
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 15692.53 15494.32 20596.12 20989.20 20995.28 26897.47 15792.66 10689.90 22595.62 21380.58 22598.40 19992.73 13192.40 21395.38 260
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 22290.22 23894.68 19094.86 27187.86 24597.23 13497.46 15987.99 24389.90 22596.92 13866.35 34198.23 21190.30 17490.99 23897.96 162
nrg03094.05 12093.31 13096.27 11095.22 25194.59 3298.34 2497.46 15992.93 9891.21 19796.64 15487.23 12298.22 21294.99 8585.80 28895.98 228
RRT_test8_iter0591.19 23190.78 21292.41 27895.76 22283.14 31697.32 12297.46 15991.37 14589.07 25295.57 21570.33 32098.21 21393.56 11586.62 28295.89 229
XVG-OURS93.72 13293.35 12994.80 18597.07 15288.61 22294.79 27897.46 15991.97 12893.99 13297.86 8081.74 21098.88 15992.64 13292.67 21096.92 201
LPG-MVS_test92.94 15992.56 15194.10 21096.16 20588.26 23297.65 8997.46 15991.29 14690.12 21897.16 12679.05 25298.73 17092.25 13691.89 22395.31 264
LGP-MVS_train94.10 21096.16 20588.26 23297.46 15991.29 14690.12 21897.16 12679.05 25298.73 17092.25 13691.89 22395.31 264
MVS91.71 20090.44 22595.51 15195.20 25391.59 12496.04 23497.45 16573.44 35687.36 29095.60 21485.42 14499.10 13785.97 26197.46 12895.83 234
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15588.53 22695.28 26897.45 16591.68 13394.08 13197.68 9482.41 19798.90 15793.84 11292.47 21296.98 197
baseline95.58 7895.42 7696.08 11796.78 17090.41 16997.16 14097.45 16593.69 6695.65 10597.85 8187.29 12098.68 17595.66 6097.25 13999.13 78
ab-mvs93.57 13792.55 15296.64 8197.28 14291.96 11695.40 26297.45 16589.81 19093.22 15396.28 17779.62 24599.46 10490.74 16893.11 20498.50 131
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14390.50 16595.44 26197.44 16993.70 6596.46 7296.18 18088.59 10299.53 9294.79 9497.81 12196.17 219
131492.81 16792.03 16795.14 16695.33 24389.52 19496.04 23497.44 16987.72 25586.25 30595.33 22583.84 16498.79 16489.26 19697.05 14497.11 195
casdiffmvs95.64 7695.49 7296.08 11796.76 17390.45 16797.29 12697.44 16994.00 5495.46 11297.98 7387.52 11698.73 17095.64 6497.33 13699.08 84
XXY-MVS92.16 18991.23 19794.95 17694.75 27690.94 15097.47 10897.43 17289.14 20688.90 25396.43 16979.71 24298.24 21089.56 18887.68 27095.67 246
anonymousdsp92.16 18991.55 18393.97 21892.58 33389.55 19197.51 10297.42 17389.42 19988.40 26694.84 24380.66 22497.88 26491.87 14691.28 23394.48 308
Effi-MVS+94.93 9794.45 10296.36 10496.61 17691.47 12996.41 20597.41 17491.02 15894.50 12395.92 19387.53 11598.78 16593.89 11096.81 14698.84 110
HQP3-MVS97.39 17592.10 220
HQP-MVS93.19 14992.74 14594.54 19695.86 21589.33 20396.65 18797.39 17593.55 6890.14 21295.87 19580.95 21898.50 19292.13 14092.10 22095.78 237
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18397.39 17587.29 26591.37 18796.71 14788.39 10399.52 9687.33 23897.13 14397.73 175
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 24589.86 25093.45 24693.54 31387.60 25097.70 8497.37 17888.85 21687.65 28494.08 28481.08 21798.10 22784.68 27783.79 32094.66 305
UnsupCasMVSNet_eth85.99 30784.45 31190.62 31689.97 35082.40 32293.62 31497.37 17889.86 18678.59 35092.37 31965.25 34795.35 34682.27 30070.75 35494.10 319
ACMM89.79 892.96 15792.50 15694.35 20396.30 19888.71 22097.58 9797.36 18091.40 14490.53 20396.65 15379.77 24198.75 16991.24 16291.64 22595.59 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 17991.71 11896.25 22397.35 18192.99 9196.70 5696.63 15882.67 18999.44 10796.22 3897.46 12896.11 224
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 17991.71 11896.25 22397.35 18192.99 9196.70 5696.63 15882.67 18999.44 10796.22 3897.46 12896.11 224
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 17991.71 11896.25 22397.35 18192.99 9196.70 5696.63 15882.67 18999.44 10796.22 3897.46 12896.11 224
diffmvs95.25 8695.13 8495.63 14296.43 19289.34 20295.99 23997.35 18192.83 10096.31 7697.37 11786.44 13098.67 17696.26 3597.19 14198.87 107
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19697.35 18190.61 17194.64 12196.93 13586.41 13199.39 11391.20 16394.71 18798.94 99
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 13897.29 18687.75 25490.49 20497.10 13085.21 14699.50 10086.70 24796.72 15097.63 179
XVG-ACMP-BASELINE90.93 24190.21 23993.09 25994.31 29485.89 28295.33 26597.26 18791.06 15789.38 24295.44 22368.61 32998.60 18289.46 19091.05 23694.79 298
PCF-MVS89.48 1191.56 20789.95 24796.36 10496.60 17792.52 9592.51 33297.26 18779.41 34488.90 25396.56 16384.04 16399.55 8777.01 33497.30 13797.01 196
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 17092.14 16494.05 21396.40 19388.20 23597.36 11897.25 18991.52 13688.30 26996.64 15478.46 26498.72 17391.86 14791.48 22995.23 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 14997.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
OPM-MVS93.28 14592.76 14294.82 18094.63 28290.77 15796.65 18797.18 19193.72 6391.68 18297.26 12179.33 24998.63 17992.13 14092.28 21495.07 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 16192.02 16895.56 14798.19 10590.80 15595.27 27097.18 19187.96 24491.86 18195.68 21180.44 22898.99 15084.01 28497.54 12796.89 202
MVS_030488.79 28287.57 28492.46 27594.65 28086.15 28196.40 20897.17 19386.44 27888.02 27891.71 33156.68 35897.03 31784.47 28092.58 21194.19 318
alignmvs95.87 7295.23 8197.78 3697.56 13995.19 2297.86 6397.17 19394.39 4796.47 7196.40 17285.89 13899.20 12696.21 4295.11 17998.95 98
MVS_Test94.89 9994.62 9495.68 14096.83 16889.55 19196.70 18197.17 19391.17 15395.60 10696.11 18787.87 10998.76 16893.01 13097.17 14298.72 117
Fast-Effi-MVS+93.46 13992.75 14495.59 14596.77 17190.03 17496.81 17297.13 19688.19 23691.30 19194.27 27486.21 13498.63 17987.66 23096.46 15898.12 157
EI-MVSNet93.03 15492.88 14093.48 24395.77 22086.98 26296.44 20197.12 19790.66 16791.30 19197.64 10186.56 12798.05 23889.91 17890.55 24495.41 255
MVSTER93.20 14892.81 14194.37 20296.56 18289.59 18997.06 14597.12 19791.24 15091.30 19195.96 19182.02 20498.05 23893.48 11890.55 24495.47 251
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16697.10 19991.23 15195.71 9996.93 13584.30 15899.31 11993.10 12695.12 17798.75 113
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16697.10 19991.23 15195.71 9996.93 13584.30 15899.31 11993.10 12695.12 17798.75 113
LTVRE_ROB88.41 1390.99 23789.92 24894.19 20796.18 20389.55 19196.31 21897.09 20187.88 24785.67 30995.91 19478.79 26098.57 18781.50 30389.98 25094.44 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1091.04 23590.23 23693.49 24294.12 29788.16 23897.32 12297.08 20288.26 23588.29 27094.22 27982.17 20297.97 24986.45 25184.12 31394.33 313
v14419291.06 23490.28 23293.39 24793.66 31187.23 25696.83 16997.07 20387.43 26189.69 23294.28 27381.48 21398.00 24587.18 24284.92 30494.93 284
v119291.07 23390.23 23693.58 23993.70 30987.82 24696.73 17797.07 20387.77 25289.58 23594.32 27180.90 22297.97 24986.52 24985.48 29194.95 280
v891.29 22590.53 22493.57 24094.15 29688.12 23997.34 11997.06 20588.99 21088.32 26894.26 27683.08 17898.01 24487.62 23283.92 31894.57 307
mvs_anonymous93.82 12893.74 11294.06 21296.44 19085.41 28995.81 24797.05 20689.85 18890.09 22196.36 17487.44 11897.75 27693.97 10696.69 15199.02 87
IterMVS-LS92.29 18291.94 17193.34 25096.25 19986.97 26396.57 19997.05 20690.67 16589.50 24094.80 24686.59 12697.64 28489.91 17886.11 28695.40 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 24390.03 24693.29 25293.55 31286.96 26496.74 17697.04 20887.36 26389.52 23994.34 26880.23 23397.97 24986.27 25285.21 29794.94 282
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20391.46 13096.33 21697.04 20888.97 21293.56 14096.51 16587.55 11497.89 26389.80 18195.95 16298.44 141
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 21990.60 21993.68 23593.89 30488.23 23496.84 16897.03 21088.37 23289.69 23294.39 26582.04 20397.98 24687.80 22185.37 29394.84 290
v124090.70 25089.85 25193.23 25493.51 31586.80 26596.61 19397.02 21187.16 26889.58 23594.31 27279.55 24697.98 24685.52 26785.44 29294.90 287
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14089.56 19098.67 897.00 21290.69 16494.24 12897.62 10389.79 8998.81 16393.39 12296.49 15698.92 101
V4291.58 20690.87 20693.73 23094.05 30088.50 22797.32 12296.97 21388.80 22289.71 23094.33 26982.54 19398.05 23889.01 20385.07 30094.64 306
FMVSNet291.31 22390.08 24294.99 17196.51 18592.21 10597.41 11196.95 21488.82 21988.62 26294.75 24873.87 30197.42 30585.20 27288.55 26495.35 262
ACMH87.59 1690.53 25489.42 26393.87 22596.21 20087.92 24297.24 12996.94 21588.45 23083.91 32896.27 17871.92 30998.62 18184.43 28189.43 25595.05 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 22090.27 23394.59 19196.51 18591.18 14297.50 10396.93 21688.82 21989.35 24394.51 25873.87 30197.29 31286.12 25788.82 25995.31 264
test191.35 22090.27 23394.59 19196.51 18591.18 14297.50 10396.93 21688.82 21989.35 24394.51 25873.87 30197.29 31286.12 25788.82 25995.31 264
FMVSNet391.78 19890.69 21795.03 17096.53 18492.27 10497.02 14996.93 21689.79 19189.35 24394.65 25477.01 28197.47 30086.12 25788.82 25995.35 262
FMVSNet189.88 26988.31 27894.59 19195.41 23391.18 14297.50 10396.93 21686.62 27687.41 28894.51 25865.94 34597.29 31283.04 29287.43 27395.31 264
GeoE93.89 12593.28 13195.72 13896.96 16389.75 18598.24 3596.92 22089.47 19792.12 17597.21 12484.42 15698.39 20287.71 22496.50 15599.01 91
miper_enhance_ethall91.54 21091.01 20393.15 25795.35 23987.07 26193.97 30396.90 22186.79 27489.17 25093.43 30786.55 12897.64 28489.97 17786.93 27794.74 302
eth_miper_zixun_eth91.02 23690.59 22092.34 28095.33 24384.35 30294.10 30096.90 22188.56 22888.84 25794.33 26984.08 16297.60 28988.77 20884.37 31195.06 277
TAMVS94.01 12293.46 12495.64 14196.16 20590.45 16796.71 18096.89 22389.27 20393.46 14596.92 13887.29 12097.94 25688.70 20995.74 16798.53 127
miper_ehance_all_eth91.59 20491.13 20192.97 26395.55 22886.57 27294.47 28596.88 22487.77 25288.88 25594.01 28586.22 13397.54 29389.49 18986.93 27794.79 298
v2v48291.59 20490.85 20993.80 22893.87 30588.17 23796.94 16096.88 22489.54 19489.53 23894.90 24081.70 21198.02 24389.25 19785.04 30295.20 273
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19696.88 22490.13 18291.91 17997.24 12285.21 14699.09 14087.64 23197.83 12097.92 165
RRT_MVS93.21 14792.32 16195.91 12694.92 26694.15 4796.92 16196.86 22791.42 14191.28 19496.43 16979.66 24498.10 22793.29 12390.06 24995.46 252
PAPM91.52 21190.30 23195.20 16395.30 24689.83 18393.38 31896.85 22886.26 28188.59 26395.80 20084.88 15098.15 22175.67 33895.93 16397.63 179
cl_fuxian91.38 21790.89 20592.88 26695.58 22686.30 27594.68 28096.84 22988.17 23888.83 25894.23 27785.65 14297.47 30089.36 19284.63 30694.89 288
pm-mvs190.72 24989.65 26193.96 21994.29 29589.63 18697.79 7196.82 23089.07 20786.12 30795.48 22278.61 26297.78 27386.97 24581.67 33094.46 309
CMPMVSbinary62.92 2185.62 31184.92 30887.74 33389.14 35573.12 35994.17 29896.80 23173.98 35473.65 35594.93 23866.36 34097.61 28883.95 28691.28 23392.48 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 25989.77 25591.78 29494.33 29284.72 30095.55 25696.73 23286.17 28386.36 30495.28 22871.28 31497.80 27084.09 28398.14 11492.81 335
Effi-MVS+-dtu93.08 15193.21 13392.68 27396.02 21283.25 31597.14 14396.72 23393.85 5891.20 19893.44 30583.08 17898.30 20891.69 15295.73 16896.50 212
mvs-test193.63 13493.69 11493.46 24596.02 21284.61 30197.24 12996.72 23393.85 5892.30 17095.76 20583.08 17898.89 15891.69 15296.54 15496.87 203
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17396.72 23394.17 5197.44 3397.66 9792.76 2699.33 11796.86 1797.76 12499.08 84
1112_ss93.37 14292.42 15896.21 11497.05 15790.99 14796.31 21896.72 23386.87 27389.83 22896.69 15186.51 12999.14 13488.12 21593.67 19898.50 131
PVSNet86.66 1892.24 18591.74 17893.73 23097.77 12783.69 31292.88 32696.72 23387.91 24693.00 15594.86 24278.51 26399.05 14686.53 24897.45 13298.47 136
miper_lstm_enhance90.50 25690.06 24591.83 29095.33 24383.74 30893.86 30696.70 23887.56 25987.79 28193.81 29383.45 17296.92 32387.39 23684.62 30794.82 293
v14890.99 23790.38 22792.81 26993.83 30685.80 28396.78 17596.68 23989.45 19888.75 26193.93 28982.96 18497.82 26987.83 22083.25 32394.80 296
ACMH+87.92 1490.20 26289.18 26893.25 25396.48 18886.45 27396.99 15496.68 23988.83 21884.79 31896.22 17970.16 32398.53 19084.42 28288.04 26694.77 301
CANet_DTU94.37 10893.65 11696.55 8796.46 18992.13 10996.21 22796.67 24194.38 4893.53 14397.03 13379.34 24899.71 4190.76 16798.45 10697.82 173
cl-mvsnet____90.96 24090.32 22992.89 26595.37 23786.21 27894.46 28796.64 24287.82 24888.15 27594.18 28082.98 18297.54 29387.70 22585.59 28994.92 286
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15192.49 9695.64 25496.64 24289.05 20893.00 15595.79 20385.77 14199.45 10689.16 20294.35 18997.96 162
Test_1112_low_res92.84 16591.84 17495.85 12997.04 15889.97 18095.53 25896.64 24285.38 29389.65 23495.18 23085.86 13999.10 13787.70 22593.58 20398.49 133
cl-mvsnet190.97 23990.33 22892.88 26695.36 23886.19 27994.46 28796.63 24587.82 24888.18 27494.23 27782.99 18197.53 29587.72 22285.57 29094.93 284
Fast-Effi-MVS+-dtu92.29 18291.99 16993.21 25695.27 24785.52 28797.03 14696.63 24592.09 12389.11 25195.14 23280.33 23198.08 23287.54 23494.74 18696.03 227
UnsupCasMVSNet_bld82.13 32279.46 32590.14 32288.00 35982.47 32090.89 34396.62 24778.94 34675.61 35284.40 35556.63 35996.31 33177.30 33166.77 35891.63 348
cl-mvsnet291.21 22790.56 22393.14 25896.09 21186.80 26594.41 28996.58 24887.80 25088.58 26493.99 28780.85 22397.62 28789.87 18086.93 27794.99 279
jason94.84 10194.39 10496.18 11595.52 22990.93 15196.09 23296.52 24989.28 20296.01 9097.32 11884.70 15298.77 16795.15 7898.91 9498.85 108
jason: jason.
AUN-MVS91.76 19990.75 21494.81 18297.00 16188.57 22496.65 18796.49 25089.63 19392.15 17396.12 18478.66 26198.50 19290.83 16679.18 33997.36 191
hse-mvs293.45 14092.99 13694.81 18297.02 15988.59 22396.69 18396.47 25195.19 1496.74 5496.16 18383.67 16798.48 19695.85 5479.13 34097.35 192
EG-PatchMatch MVS87.02 29885.44 30291.76 29692.67 33185.00 29596.08 23396.45 25283.41 32179.52 34793.49 30357.10 35797.72 27879.34 32290.87 24192.56 339
DIV-MVS_2432*160085.95 30884.95 30788.96 32889.55 35479.11 34895.13 27596.42 25385.91 28684.07 32690.48 33670.03 32494.82 34880.04 31472.94 35292.94 333
pmmvs687.81 29386.19 29792.69 27291.32 34286.30 27597.34 11996.41 25480.59 34084.05 32794.37 26767.37 33697.67 28184.75 27679.51 33894.09 321
PMMVS92.86 16392.34 15994.42 20194.92 26686.73 26794.53 28496.38 25584.78 30494.27 12795.12 23483.13 17798.40 19991.47 15796.49 15698.12 157
RPSCF90.75 24790.86 20790.42 31996.84 16676.29 35495.61 25596.34 25683.89 31391.38 18697.87 7876.45 28598.78 16587.16 24392.23 21596.20 217
MSDG91.42 21590.24 23594.96 17597.15 14988.91 21693.69 31196.32 25785.72 28986.93 29996.47 16780.24 23298.98 15180.57 31195.05 18096.98 197
OurMVSNet-221017-090.51 25590.19 24091.44 30293.41 31881.25 32896.98 15696.28 25891.68 13386.55 30396.30 17674.20 30097.98 24688.96 20487.40 27595.09 275
MVP-Stereo90.74 24890.08 24292.71 27193.19 32388.20 23595.86 24496.27 25986.07 28484.86 31794.76 24777.84 27697.75 27683.88 28798.01 11692.17 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9694.56 9696.29 10996.34 19691.21 13895.83 24696.27 25988.93 21496.22 7996.88 14086.20 13598.85 16095.27 7599.05 8798.82 111
BH-untuned92.94 15992.62 14993.92 22497.22 14386.16 28096.40 20896.25 26190.06 18389.79 22996.17 18283.19 17498.35 20487.19 24197.27 13897.24 194
CL-MVSNet_2432*160086.31 30485.15 30689.80 32588.83 35681.74 32693.93 30596.22 26286.67 27585.03 31590.80 33578.09 27294.50 34974.92 33971.86 35393.15 331
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8193.99 13297.74 9085.55 14398.45 19789.98 17697.86 11999.14 77
GA-MVS91.38 21790.31 23094.59 19194.65 28087.62 24994.34 29296.19 26490.73 16390.35 20893.83 29071.84 31097.96 25387.22 24093.61 20198.21 154
IterMVS-SCA-FT90.31 25889.81 25391.82 29195.52 22984.20 30594.30 29496.15 26590.61 17187.39 28994.27 27475.80 29096.44 32987.34 23786.88 28194.82 293
IterMVS90.15 26489.67 25991.61 29895.48 23183.72 30994.33 29396.12 26689.99 18487.31 29294.15 28275.78 29296.27 33286.97 24586.89 28094.83 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 16891.51 18796.52 8898.77 5990.99 14797.38 11796.08 26782.38 32689.29 24697.87 7883.77 16599.69 4781.37 30896.69 15198.89 105
pmmvs490.93 24189.85 25194.17 20893.34 32090.79 15694.60 28196.02 26884.62 30587.45 28695.15 23181.88 20897.45 30287.70 22587.87 26894.27 317
ppachtmachnet_test88.35 28887.29 28791.53 29992.45 33583.57 31393.75 30995.97 26984.28 30885.32 31494.18 28079.00 25896.93 32275.71 33784.99 30394.10 319
Anonymous2024052186.42 30285.44 30289.34 32790.33 34779.79 34296.73 17795.92 27083.71 31783.25 33191.36 33463.92 34996.01 33378.39 32685.36 29492.22 344
ITE_SJBPF92.43 27795.34 24085.37 29095.92 27091.47 13887.75 28396.39 17371.00 31697.96 25382.36 29989.86 25293.97 322
USDC88.94 27887.83 28392.27 28194.66 27984.96 29693.86 30695.90 27287.34 26483.40 33095.56 21767.43 33598.19 21782.64 29889.67 25493.66 325
COLMAP_ROBcopyleft87.81 1590.40 25789.28 26693.79 22997.95 11587.13 26096.92 16195.89 27382.83 32486.88 30197.18 12573.77 30499.29 12178.44 32593.62 20094.95 280
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8195.85 27492.43 11195.86 9498.44 3068.42 33199.39 11396.31 3394.85 18198.71 119
VDDNet93.05 15392.07 16596.02 12296.84 16690.39 17098.08 4695.85 27486.22 28295.79 9798.46 2867.59 33499.19 12794.92 8694.85 18198.47 136
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13587.92 24298.10 4495.80 27692.22 11693.02 15497.45 11384.53 15597.91 26288.24 21397.97 11799.02 87
KD-MVS_2432*160084.81 31582.64 31891.31 30491.07 34485.34 29191.22 33895.75 27785.56 29183.09 33290.21 33867.21 33795.89 33577.18 33262.48 36092.69 336
miper_refine_blended84.81 31582.64 31891.31 30491.07 34485.34 29191.22 33895.75 27785.56 29183.09 33290.21 33867.21 33795.89 33577.18 33262.48 36092.69 336
tpm cat188.36 28787.21 29091.81 29295.13 25680.55 33492.58 33195.70 27974.97 35387.45 28691.96 32778.01 27598.17 22080.39 31388.74 26296.72 208
our_test_388.78 28387.98 28291.20 30792.45 33582.53 31993.61 31595.69 28085.77 28884.88 31693.71 29579.99 23796.78 32779.47 31986.24 28394.28 316
BH-w/o92.14 19191.75 17693.31 25196.99 16285.73 28495.67 25195.69 28088.73 22489.26 24894.82 24582.97 18398.07 23585.26 27196.32 15996.13 223
CR-MVSNet90.82 24489.77 25593.95 22094.45 28887.19 25790.23 34695.68 28286.89 27292.40 16492.36 32280.91 22097.05 31681.09 31093.95 19697.60 184
Patchmtry88.64 28587.25 28892.78 27094.09 29886.64 26889.82 34995.68 28280.81 33887.63 28592.36 32280.91 22097.03 31778.86 32385.12 29994.67 304
BH-RMVSNet92.72 16991.97 17094.97 17497.16 14787.99 24196.15 23095.60 28490.62 17091.87 18097.15 12878.41 26698.57 18783.16 29097.60 12698.36 148
PVSNet_082.17 1985.46 31283.64 31590.92 31095.27 24779.49 34490.55 34495.60 28483.76 31683.00 33489.95 34071.09 31597.97 24982.75 29660.79 36295.31 264
SCA91.84 19791.18 20093.83 22695.59 22584.95 29794.72 27995.58 28690.82 15992.25 17193.69 29675.80 29098.10 22786.20 25495.98 16198.45 138
AllTest90.23 26188.98 27093.98 21697.94 11686.64 26896.51 20095.54 28785.38 29385.49 31196.77 14470.28 32199.15 13280.02 31592.87 20596.15 221
TestCases93.98 21697.94 11686.64 26895.54 28785.38 29385.49 31196.77 14470.28 32199.15 13280.02 31592.87 20596.15 221
tpmvs89.83 27189.15 26991.89 28894.92 26680.30 33793.11 32395.46 28986.28 28088.08 27692.65 31480.44 22898.52 19181.47 30489.92 25196.84 204
pmmvs589.86 27088.87 27292.82 26892.86 32786.23 27796.26 22295.39 29084.24 30987.12 29394.51 25874.27 29997.36 30987.61 23387.57 27194.86 289
PatchmatchNetpermissive91.91 19591.35 18993.59 23895.38 23584.11 30693.15 32295.39 29089.54 19492.10 17693.68 29882.82 18798.13 22284.81 27595.32 17498.52 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 21491.32 19191.79 29395.15 25479.20 34793.42 31795.37 29288.55 22993.49 14493.67 29982.49 19598.27 20990.41 17189.34 25697.90 166
Anonymous2023120687.09 29786.14 29889.93 32491.22 34380.35 33596.11 23195.35 29383.57 31984.16 32393.02 31073.54 30695.61 34172.16 34986.14 28593.84 324
MIMVSNet184.93 31483.05 31690.56 31789.56 35384.84 29995.40 26295.35 29383.91 31280.38 34392.21 32657.23 35693.34 35670.69 35582.75 32993.50 327
TDRefinement86.53 30084.76 31091.85 28982.23 36484.25 30396.38 21195.35 29384.97 30184.09 32594.94 23765.76 34698.34 20784.60 27974.52 34892.97 332
TR-MVS91.48 21390.59 22094.16 20996.40 19387.33 25195.67 25195.34 29687.68 25691.46 18595.52 22076.77 28398.35 20482.85 29493.61 20196.79 206
EPNet_dtu91.71 20091.28 19492.99 26293.76 30883.71 31096.69 18395.28 29793.15 8587.02 29795.95 19283.37 17397.38 30879.46 32096.84 14597.88 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 29685.79 30091.78 29494.80 27487.28 25295.49 25995.28 29784.09 31183.85 32991.82 32862.95 35194.17 35278.48 32485.34 29593.91 323
MDTV_nov1_ep1390.76 21395.22 25180.33 33693.03 32595.28 29788.14 24192.84 16193.83 29081.34 21498.08 23282.86 29394.34 190
LF4IMVS87.94 29187.25 28889.98 32392.38 33780.05 34194.38 29095.25 30087.59 25884.34 32094.74 24964.31 34897.66 28384.83 27487.45 27292.23 343
TransMVSNet (Re)88.94 27887.56 28593.08 26094.35 29188.45 22997.73 7895.23 30187.47 26084.26 32295.29 22679.86 24097.33 31079.44 32174.44 34993.45 329
test20.0386.14 30685.40 30488.35 32990.12 34880.06 34095.90 24395.20 30288.59 22581.29 33893.62 30171.43 31392.65 35871.26 35381.17 33392.34 342
new-patchmatchnet83.18 31981.87 32187.11 33586.88 36175.99 35593.70 31095.18 30385.02 30077.30 35188.40 34665.99 34493.88 35474.19 34470.18 35591.47 351
MDA-MVSNet_test_wron85.87 30984.23 31390.80 31492.38 33782.57 31893.17 32095.15 30482.15 32767.65 35792.33 32578.20 26895.51 34477.33 32979.74 33594.31 315
YYNet185.87 30984.23 31390.78 31592.38 33782.46 32193.17 32095.14 30582.12 32867.69 35692.36 32278.16 27195.50 34577.31 33079.73 33694.39 311
Baseline_NR-MVSNet91.20 22890.62 21892.95 26493.83 30688.03 24097.01 15395.12 30688.42 23189.70 23195.13 23383.47 17097.44 30389.66 18683.24 32493.37 330
thres20092.23 18691.39 18894.75 18997.61 13589.03 21496.60 19595.09 30792.08 12493.28 15094.00 28678.39 26799.04 14881.26 30994.18 19196.19 218
ADS-MVSNet89.89 26888.68 27493.53 24195.86 21584.89 29890.93 34195.07 30883.23 32291.28 19491.81 32979.01 25697.85 26579.52 31791.39 23197.84 170
pmmvs-eth3d86.22 30584.45 31191.53 29988.34 35887.25 25494.47 28595.01 30983.47 32079.51 34889.61 34369.75 32695.71 34083.13 29176.73 34591.64 347
Anonymous20240521192.07 19290.83 21195.76 13298.19 10588.75 21997.58 9795.00 31086.00 28593.64 13997.45 11366.24 34399.53 9290.68 17092.71 20899.01 91
MDA-MVSNet-bldmvs85.00 31382.95 31791.17 30893.13 32583.33 31494.56 28395.00 31084.57 30665.13 36192.65 31470.45 31995.85 33773.57 34577.49 34294.33 313
ambc86.56 33783.60 36270.00 36285.69 35694.97 31280.60 34288.45 34537.42 36596.84 32582.69 29775.44 34792.86 334
testgi87.97 29087.21 29090.24 32192.86 32780.76 33096.67 18694.97 31291.74 13185.52 31095.83 19862.66 35294.47 35176.25 33588.36 26595.48 249
dp88.90 28088.26 28090.81 31294.58 28576.62 35392.85 32794.93 31485.12 29890.07 22393.07 30975.81 28998.12 22580.53 31287.42 27497.71 176
test_040286.46 30184.79 30991.45 30195.02 26185.55 28696.29 22094.89 31580.90 33582.21 33593.97 28868.21 33297.29 31262.98 36088.68 26391.51 349
tfpn200view992.38 17791.52 18594.95 17697.85 12289.29 20597.41 11194.88 31692.19 12093.27 15194.46 26378.17 26999.08 14281.40 30594.08 19296.48 213
CVMVSNet91.23 22691.75 17689.67 32695.77 22074.69 35696.44 20194.88 31685.81 28792.18 17297.64 10179.07 25195.58 34388.06 21695.86 16598.74 115
thres40092.42 17591.52 18595.12 16897.85 12289.29 20597.41 11194.88 31692.19 12093.27 15194.46 26378.17 26999.08 14281.40 30594.08 19296.98 197
EPNet95.20 8994.56 9697.14 7192.80 32992.68 8997.85 6694.87 31996.64 192.46 16397.80 8786.23 13299.65 5693.72 11498.62 10299.10 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 27688.54 27690.98 30993.49 31680.28 33896.70 18194.70 32090.78 16084.15 32495.57 21571.78 31197.71 27984.63 27885.07 30094.94 282
thres100view90092.43 17491.58 18294.98 17397.92 11889.37 20197.71 8394.66 32192.20 11893.31 14994.90 24078.06 27399.08 14281.40 30594.08 19296.48 213
thres600view792.49 17391.60 18195.18 16497.91 11989.47 19597.65 8994.66 32192.18 12293.33 14894.91 23978.06 27399.10 13781.61 30294.06 19596.98 197
PatchT88.87 28187.42 28693.22 25594.08 29985.10 29489.51 35094.64 32381.92 32992.36 16788.15 34980.05 23697.01 32072.43 34893.65 19997.54 188
baseline192.82 16691.90 17295.55 14997.20 14590.77 15797.19 13794.58 32492.20 11892.36 16796.34 17584.16 16198.21 21389.20 20083.90 31997.68 178
Gipumacopyleft67.86 32865.41 33175.18 34492.66 33273.45 35866.50 36394.52 32553.33 36357.80 36466.07 36330.81 36689.20 36048.15 36478.88 34162.90 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CostFormer91.18 23290.70 21692.62 27494.84 27281.76 32594.09 30194.43 32684.15 31092.72 16293.77 29479.43 24798.20 21590.70 16992.18 21897.90 166
tpm289.96 26689.21 26792.23 28294.91 26981.25 32893.78 30894.42 32780.62 33991.56 18393.44 30576.44 28697.94 25685.60 26692.08 22297.49 189
JIA-IIPM88.26 28987.04 29391.91 28793.52 31481.42 32789.38 35194.38 32880.84 33790.93 20080.74 35779.22 25097.92 25982.76 29591.62 22696.38 215
Patchmatch-test89.42 27487.99 28193.70 23395.27 24785.11 29388.98 35294.37 32981.11 33487.10 29593.69 29682.28 19997.50 29874.37 34294.76 18498.48 135
LCM-MVSNet72.55 32569.39 32982.03 33970.81 37165.42 36690.12 34894.36 33055.02 36265.88 35981.72 35624.16 37289.96 35974.32 34368.10 35790.71 354
ADS-MVSNet289.45 27388.59 27592.03 28595.86 21582.26 32390.93 34194.32 33183.23 32291.28 19491.81 32979.01 25695.99 33479.52 31791.39 23197.84 170
DWT-MVSNet_test90.76 24589.89 24993.38 24895.04 26083.70 31195.85 24594.30 33288.19 23690.46 20592.80 31273.61 30598.50 19288.16 21490.58 24397.95 164
EU-MVSNet88.72 28488.90 27188.20 33193.15 32474.21 35796.63 19294.22 33385.18 29687.32 29195.97 19076.16 28894.98 34785.27 27086.17 28495.41 255
MIMVSNet88.50 28686.76 29493.72 23294.84 27287.77 24791.39 33694.05 33486.41 27987.99 27992.59 31663.27 35095.82 33977.44 32892.84 20797.57 187
OpenMVS_ROBcopyleft81.14 2084.42 31782.28 32090.83 31190.06 34984.05 30795.73 25094.04 33573.89 35580.17 34691.53 33359.15 35597.64 28466.92 35889.05 25890.80 353
TinyColmap86.82 29985.35 30591.21 30694.91 26982.99 31793.94 30494.02 33683.58 31881.56 33794.68 25262.34 35398.13 22275.78 33687.35 27692.52 340
IB-MVS87.33 1789.91 26788.28 27994.79 18695.26 25087.70 24895.12 27693.95 33789.35 20187.03 29692.49 31770.74 31899.19 12789.18 20181.37 33297.49 189
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet-Re92.50 17192.52 15592.44 27696.82 16981.89 32496.92 16193.71 33892.41 11284.30 32194.60 25685.08 14897.03 31791.51 15597.36 13498.40 144
tpm90.25 26089.74 25891.76 29693.92 30279.73 34393.98 30293.54 33988.28 23491.99 17893.25 30877.51 27997.44 30387.30 23987.94 26798.12 157
ET-MVSNet_ETH3D91.49 21290.11 24195.63 14296.40 19391.57 12695.34 26493.48 34090.60 17375.58 35395.49 22180.08 23596.79 32694.25 10089.76 25398.52 128
bset_n11_16_dypcd91.55 20890.59 22094.44 19891.51 34190.25 17192.70 32993.42 34192.27 11590.22 21194.74 24978.42 26597.80 27094.19 10287.86 26995.29 271
LFMVS93.60 13592.63 14896.52 8898.13 10991.27 13597.94 5893.39 34290.57 17496.29 7798.31 4969.00 32799.16 13194.18 10395.87 16499.12 81
Patchmatch-RL test87.38 29586.24 29690.81 31288.74 35778.40 35188.12 35493.17 34387.11 26982.17 33689.29 34481.95 20695.60 34288.64 21077.02 34398.41 143
test-LLR91.42 21591.19 19992.12 28394.59 28380.66 33194.29 29592.98 34491.11 15590.76 20192.37 31979.02 25498.07 23588.81 20696.74 14897.63 179
test-mter90.19 26389.54 26292.12 28394.59 28380.66 33194.29 29592.98 34487.68 25690.76 20192.37 31967.67 33398.07 23588.81 20696.74 14897.63 179
test_method66.11 32964.89 33269.79 34672.62 36935.23 37665.19 36492.83 34620.35 36865.20 36088.08 35043.14 36482.70 36473.12 34763.46 35991.45 352
test0.0.03 189.37 27588.70 27391.41 30392.47 33485.63 28595.22 27392.70 34791.11 15586.91 30093.65 30079.02 25493.19 35778.00 32789.18 25795.41 255
new_pmnet82.89 32081.12 32488.18 33289.63 35280.18 33991.77 33592.57 34876.79 35275.56 35488.23 34861.22 35494.48 35071.43 35182.92 32789.87 355
thisisatest051592.29 18291.30 19395.25 16296.60 17788.90 21794.36 29192.32 34987.92 24593.43 14694.57 25777.28 28099.00 14989.42 19195.86 16597.86 169
thisisatest053093.03 15492.21 16395.49 15497.07 15289.11 21397.49 10792.19 35090.16 18194.09 13096.41 17176.43 28799.05 14690.38 17295.68 17098.31 150
tttt051792.96 15792.33 16094.87 17997.11 15087.16 25997.97 5692.09 35190.63 16993.88 13697.01 13476.50 28499.06 14590.29 17595.45 17298.38 146
K. test v387.64 29486.75 29590.32 32093.02 32679.48 34596.61 19392.08 35290.66 16780.25 34594.09 28367.21 33796.65 32885.96 26280.83 33494.83 291
TESTMET0.1,190.06 26589.42 26391.97 28694.41 29080.62 33394.29 29591.97 35387.28 26690.44 20692.47 31868.79 32897.67 28188.50 21296.60 15397.61 183
PM-MVS83.48 31881.86 32288.31 33087.83 36077.59 35293.43 31691.75 35486.91 27180.63 34189.91 34144.42 36395.84 33885.17 27376.73 34591.50 350
baseline291.63 20390.86 20793.94 22294.33 29286.32 27495.92 24291.64 35589.37 20086.94 29894.69 25181.62 21298.69 17488.64 21094.57 18896.81 205
FPMVS71.27 32669.85 32875.50 34374.64 36659.03 36891.30 33791.50 35658.80 36157.92 36388.28 34729.98 36885.53 36353.43 36282.84 32881.95 359
door91.13 357
door-mid91.06 358
pmmvs379.97 32377.50 32787.39 33482.80 36379.38 34692.70 32990.75 35970.69 35778.66 34987.47 35351.34 36193.40 35573.39 34669.65 35689.38 356
DSMNet-mixed86.34 30386.12 29987.00 33689.88 35170.43 36094.93 27790.08 36077.97 35085.42 31392.78 31374.44 29893.96 35374.43 34195.14 17696.62 209
MVS-HIRNet82.47 32181.21 32386.26 33895.38 23569.21 36388.96 35389.49 36166.28 35880.79 34074.08 36168.48 33097.39 30771.93 35095.47 17192.18 345
EPMVS90.70 25089.81 25393.37 24994.73 27784.21 30493.67 31288.02 36289.50 19692.38 16693.49 30377.82 27797.78 27386.03 26092.68 20998.11 160
ANet_high63.94 33059.58 33377.02 34261.24 37366.06 36485.66 35787.93 36378.53 34842.94 36671.04 36225.42 37180.71 36552.60 36330.83 36684.28 358
PMMVS270.19 32766.92 33080.01 34076.35 36565.67 36586.22 35587.58 36464.83 36062.38 36280.29 35826.78 37088.49 36163.79 35954.07 36385.88 357
lessismore_v090.45 31891.96 34079.09 34987.19 36580.32 34494.39 26566.31 34297.55 29284.00 28576.84 34494.70 303
PMVScopyleft53.92 2258.58 33155.40 33468.12 34751.00 37448.64 37078.86 36087.10 36646.77 36435.84 37074.28 3608.76 37386.34 36242.07 36573.91 35069.38 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune87.82 29285.61 30194.44 19894.46 28789.27 20891.21 34084.61 36780.88 33689.89 22774.98 35971.50 31297.53 29585.75 26597.21 14096.51 211
GG-mvs-BLEND93.62 23693.69 31089.20 20992.39 33483.33 36887.98 28089.84 34271.00 31696.87 32482.08 30195.40 17394.80 296
MTMP97.86 6382.03 369
DeepMVS_CXcopyleft74.68 34590.84 34664.34 36781.61 37065.34 35967.47 35888.01 35148.60 36280.13 36662.33 36173.68 35179.58 360
E-PMN53.28 33252.56 33655.43 34974.43 36747.13 37183.63 35976.30 37142.23 36542.59 36762.22 36528.57 36974.40 36731.53 36731.51 36544.78 364
EMVS52.08 33451.31 33754.39 35072.62 36945.39 37383.84 35875.51 37241.13 36640.77 36859.65 36630.08 36773.60 36828.31 36829.90 36744.18 365
MVEpermissive50.73 2353.25 33348.81 33866.58 34865.34 37257.50 36972.49 36270.94 37340.15 36739.28 36963.51 3646.89 37573.48 36938.29 36642.38 36468.76 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 33553.82 33546.29 35133.73 37545.30 37478.32 36167.24 37418.02 36950.93 36587.05 35452.99 36053.11 37070.76 35425.29 36840.46 366
N_pmnet78.73 32478.71 32678.79 34192.80 32946.50 37294.14 29943.71 37578.61 34780.83 33991.66 33274.94 29696.36 33067.24 35784.45 31093.50 327
wuyk23d25.11 33624.57 34026.74 35273.98 36839.89 37557.88 3659.80 37612.27 37010.39 3716.97 3727.03 37436.44 37125.43 36917.39 3693.89 369
testmvs13.36 33816.33 3414.48 3545.04 3762.26 37893.18 3193.28 3772.70 3718.24 37221.66 3682.29 3772.19 3727.58 3702.96 3709.00 368
test12313.04 33915.66 3425.18 3534.51 3773.45 37792.50 3331.81 3782.50 3727.58 37320.15 3693.67 3762.18 3737.13 3711.07 3719.90 367
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.39 3419.85 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37388.65 990.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
n20.00 379
nn0.00 379
ab-mvs-re8.06 34010.74 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37496.69 1510.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145290.77 16198.89 898.28 5596.24 198.35 20495.76 5899.58 2299.59 19
eth-test20.00 378
eth-test0.00 378
OPU-MVS98.55 398.82 5896.86 398.25 3298.26 5696.04 299.24 12495.36 7499.59 1799.56 26
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
GSMVS98.45 138
test_part299.28 2795.74 898.10 21
sam_mvs182.76 18898.45 138
sam_mvs81.94 207
test_post192.81 32816.58 37180.53 22697.68 28086.20 254
test_post17.58 37081.76 20998.08 232
patchmatchnet-post90.45 33782.65 19298.10 227
gm-plane-assit93.22 32278.89 35084.82 30393.52 30298.64 17887.72 222
test9_res94.81 9199.38 5299.45 49
agg_prior293.94 10899.38 5299.50 41
test_prior493.66 6396.42 204
test_prior296.35 21392.80 10296.03 8697.59 10592.01 4495.01 8299.38 52
旧先验295.94 24181.66 33197.34 3898.82 16292.26 134
新几何295.79 248
原ACMM295.67 251
testdata299.67 5285.96 262
segment_acmp92.89 25
testdata195.26 27293.10 88
plane_prior796.21 20089.98 179
plane_prior696.10 21090.00 17581.32 215
plane_prior496.64 154
plane_prior390.00 17594.46 4491.34 188
plane_prior297.74 7694.85 28
plane_prior196.14 208
plane_prior89.99 17797.24 12994.06 5392.16 219
HQP5-MVS89.33 203
HQP-NCC95.86 21596.65 18793.55 6890.14 212
ACMP_Plane95.86 21596.65 18793.55 6890.14 212
BP-MVS92.13 140
HQP4-MVS90.14 21298.50 19295.78 237
HQP2-MVS80.95 218
NP-MVS95.99 21489.81 18495.87 195
MDTV_nov1_ep13_2view70.35 36193.10 32483.88 31493.55 14182.47 19686.25 25398.38 146
ACMMP++_ref90.30 248
ACMMP++91.02 237
Test By Simon88.73 98