This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4399.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2899.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4299.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
MVSMamba_pp96.06 6895.92 6996.50 8897.00 16891.81 10997.33 14697.77 12492.49 12696.78 6497.19 14188.50 10399.07 15396.54 4899.67 698.60 126
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2499.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2499.67 699.75 6
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2499.66 1199.56 29
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3199.66 1199.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2499.65 1399.74 8
iter_conf05_1196.17 6596.16 6496.21 11497.48 14590.74 16098.14 4997.80 12292.80 11997.34 4897.29 13388.54 10299.10 14296.40 5299.64 1498.80 115
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3699.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19496.77 6598.35 5190.21 7799.53 9194.80 10999.63 1699.38 58
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4799.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 16896.40 8597.99 8490.99 6799.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5399.87 795.46 9499.59 1999.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5899.86 895.63 8799.59 1999.62 18
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2899.58 2399.59 22
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6699.88 495.20 9799.57 2599.60 21
iter_conf0596.12 6796.06 6696.29 10798.07 10591.48 12497.25 15397.65 13990.43 19794.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18595.55 11798.78 2591.07 6599.86 896.58 4699.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7499.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 6199.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15398.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2099.50 3699.72 11
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32297.56 11897.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3299.50 3699.51 37
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7099.90 296.18 6699.50 3699.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3599.49 3999.57 26
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4099.48 4099.45 47
9.1496.75 4198.93 4797.73 9698.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14692.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11098.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3499.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10398.49 1994.66 4897.24 5098.41 4792.31 4198.94 16696.61 4599.46 4298.96 94
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13197.14 5398.44 4491.17 6499.85 1894.35 11899.46 4299.57 26
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
DELS-MVS96.61 5296.38 5997.30 5497.79 12293.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.04 2896.73 4297.96 2397.60 13794.36 3698.01 5994.09 35197.33 296.29 8898.79 2489.73 8499.86 899.36 299.42 4999.67 13
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 8099.78 3599.06 799.41 5299.59 22
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
MM97.29 1996.98 2698.23 1198.01 10895.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
train_agg96.30 6295.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6097.97 8691.24 6198.75 18696.92 3799.33 6198.94 97
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3699.65 5894.58 11699.31 63
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7296.05 6899.26 6799.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6899.55 8796.06 6799.25 6999.51 37
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 6999.46 10399.25 6999.22 70
DeepC-MVS93.07 396.06 6895.66 7497.29 5597.96 11193.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4499.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet96.39 5996.02 6797.50 4797.62 13493.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3899.20 7499.29 63
MVS_111021_LR96.24 6496.19 6396.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8299.24 12495.87 7499.20 7498.58 128
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4798.71 19297.10 3399.17 7698.90 104
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
mamv494.66 11296.10 6590.37 34298.01 10873.41 38896.82 19097.78 12389.95 20794.52 13797.43 12892.91 2799.09 14698.28 1499.16 7898.60 126
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9599.15 7998.72 119
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 7999.67 5686.50 27399.13 8198.69 122
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7699.54 8987.95 24199.12 8398.49 137
EC-MVSNet96.42 5796.47 5396.26 11097.01 16791.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8698.60 20297.45 2899.11 8498.67 124
test_fmvsmconf0.01_n96.15 6695.85 7297.03 6992.66 36091.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6398.30 3296.19 596.10 9798.95 889.42 8599.76 3898.90 1099.08 8597.43 205
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14996.73 4199.05 8797.31 212
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15796.22 9297.32 13186.20 14297.92 28294.07 12199.05 8798.85 110
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13190.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9099.04 16096.27 5499.00 9196.85 226
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7898.85 17589.67 20898.98 9298.64 125
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19795.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13184.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14782.02 34397.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1798.82 9797.40 207
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8899.25 12391.27 17998.77 9999.13 77
API-MVS94.84 10794.49 10995.90 13197.90 11792.00 10497.80 9097.48 16289.19 23094.81 13096.71 16488.84 9499.17 13388.91 22998.76 10096.53 233
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
EIA-MVS95.53 8695.47 7895.71 14397.06 16289.63 18997.82 8797.87 11193.57 8193.92 15295.04 25390.61 7398.95 16594.62 11498.68 10298.54 130
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9599.65 5899.06 798.63 10498.18 162
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8199.48 10192.08 16198.59 10798.44 145
Vis-MVSNetpermissive95.23 9394.81 9696.51 8597.18 15391.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13796.96 22190.68 18496.80 6298.04 7969.25 34598.40 21797.58 2398.50 10997.16 217
test250691.60 22490.78 23094.04 23197.66 12983.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15393.01 14898.49 11099.25 68
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12985.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15393.05 14598.49 11099.25 68
test111193.19 16192.82 15594.30 22097.58 14284.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 7997.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU94.37 11593.65 12596.55 8096.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6397.08 20890.72 18296.79 6398.18 7063.07 37698.45 21497.62 2298.42 11597.36 208
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13190.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13987.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25290.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7099.58 7796.44 5198.32 11899.13 77
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14890.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9899.65 5894.80 10998.27 12096.17 244
LS3D93.57 14892.61 16696.47 9097.59 13891.61 11797.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5896.80 23891.18 16797.77 3797.93 8858.02 38498.29 22997.63 2198.21 12297.23 216
ETV-MVS96.02 7195.89 7196.40 9697.16 15492.44 8897.47 13097.77 12494.55 5096.48 8194.51 27891.23 6398.92 16895.65 8598.19 12397.82 187
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
MAR-MVS94.22 11993.46 13596.51 8598.00 11092.19 9997.67 10397.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13587.92 24998.10 5195.80 28692.22 13193.02 17197.45 12584.53 16297.91 28588.24 23797.97 12999.02 86
EI-MVSNet-UG-set96.34 6196.30 6096.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7599.58 7796.23 5797.96 13098.90 104
IS-MVSNet94.90 10494.52 10896.05 12397.67 12790.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
CNLPA94.28 11893.53 13096.52 8298.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13885.21 15399.09 14687.64 25397.83 13297.92 179
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15090.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10199.53 9194.79 11197.81 13396.17 244
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14592.93 17796.62 17889.13 8999.14 13889.21 22297.78 13498.97 93
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13687.48 12399.73 4293.53 13297.77 13598.55 129
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 3997.76 13699.08 83
ACMMPcopyleft96.27 6395.93 6897.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9299.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15487.99 24796.15 24895.60 29790.62 19091.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14285.97 28497.46 14095.83 258
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12383.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
PAPR94.18 12093.42 14096.48 8997.64 13191.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8799.11 14186.14 27997.38 14598.90 104
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
UA-Net95.95 7595.53 7697.20 6397.67 12792.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9399.51 9690.36 19497.35 14799.11 81
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8596.87 17391.49 12397.50 12497.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned92.94 17492.62 16593.92 24297.22 15086.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13086.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16895.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17494.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14094.77 13197.96 8787.01 13199.09 14691.31 17896.77 16198.36 152
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 17090.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
DP-MVS92.76 18391.51 20496.52 8298.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14084.42 16398.39 22187.71 24796.50 16899.01 89
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14489.56 19398.67 1097.00 21990.69 18394.24 14397.62 11689.79 8398.81 17993.39 13896.49 16998.92 100
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13890.01 19896.16 17398.25 156
sss94.51 11393.80 12196.64 7497.07 15991.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17792.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
LFMVS93.60 14692.63 16496.52 8298.13 10091.27 13397.94 7393.39 36490.57 19496.29 8898.31 6069.00 34699.16 13594.18 12095.87 17899.12 80
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
thisisatest053093.03 16992.21 18095.49 15797.07 15989.11 21797.49 12992.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6198.49 3888.98 9198.08 25195.03 10195.62 18596.46 238
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
tttt051792.96 17292.33 17794.87 18797.11 15787.16 26897.97 6992.09 37690.63 18993.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
test_yl94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
alignmvs95.87 7895.23 8897.78 3197.56 14395.19 2197.86 8097.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
MSDG91.42 23590.24 25494.96 18297.15 15688.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
VDD-MVS93.82 14093.08 14696.02 12697.88 11889.96 18497.72 9995.85 28492.43 12795.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5395.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
sasdasda96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
canonicalmvs96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13889.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
MGCFI-Net95.94 7695.40 8397.56 4697.59 13894.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13396.19 6594.73 20498.91 101
WTY-MVS94.71 11194.02 11696.79 7297.71 12692.05 10296.59 21697.35 18990.61 19194.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15892.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17291.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
thres20092.23 20391.39 20594.75 19797.61 13589.03 21896.60 21595.09 32192.08 13993.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17591.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
thres100view90092.43 19091.58 19994.98 18097.92 11589.37 20497.71 10194.66 33792.20 13393.31 16694.90 25978.06 28299.08 14981.40 33294.08 21696.48 236
tfpn200view992.38 19391.52 20294.95 18397.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.98 220
thres600view792.49 18991.60 19895.18 16897.91 11689.47 19897.65 10694.66 33792.18 13793.33 16594.91 25878.06 28299.10 14281.61 32994.06 22096.98 220
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14691.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15191.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
1112_ss93.37 15492.42 17596.21 11497.05 16490.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13888.12 23893.67 22598.50 135
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11287.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18190.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16589.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14287.70 24893.58 23098.49 137
ab-mvs93.57 14892.55 16896.64 7497.28 14991.96 10695.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
AllTest90.23 28288.98 29493.98 23497.94 11386.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
TestCases93.98 23497.94 11386.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13479.13 26098.93 16794.61 11592.84 23497.28 213
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13475.35 30698.65 19788.99 22792.84 23497.28 213
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15697.45 12566.24 36799.53 9190.68 19092.71 23799.01 89
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
XVG-OURS93.72 14493.35 14194.80 19397.07 15988.61 22694.79 30697.46 16891.97 14393.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16288.53 23195.28 29197.45 17391.68 14994.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13779.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9497.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
plane_prior89.99 18097.24 15494.06 6792.16 247
HQP3-MVS97.39 18392.10 248
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10697.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11697.36 18891.40 15990.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15790.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9697.53 15792.00 14288.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11297.53 15792.04 14088.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14197.25 19791.52 15288.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12397.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15997.41 12969.94 34299.56 8591.04 18491.11 26598.22 158
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17389.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
ACMMP++91.02 267
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15592.50 12589.94 24996.54 18188.65 9898.18 23893.83 13090.90 27095.86 254
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18791.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16491.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
ACMMP++_ref90.30 278
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15487.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19375.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17688.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 17086.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13396.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14785.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12496.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14986.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19187.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18589.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8098.66 1692.30 13092.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14489.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17884.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8798.19 5591.70 14888.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8498.24 4791.46 15588.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5798.68 1391.46 15588.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14397.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
baseline192.82 18191.90 18995.55 15397.20 15290.77 15897.19 16194.58 34092.20 13392.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10297.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9298.18 5791.29 16087.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9196.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11097.65 13990.74 18087.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18780.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
h-mvs3394.15 12393.52 13296.04 12497.81 12190.22 17597.62 11497.58 15095.19 2096.74 6697.45 12583.67 17599.61 6995.85 7679.73 36898.29 155
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
AUN-MVS91.76 21790.75 23294.81 19097.00 16888.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
hse-mvs293.45 15292.99 14894.81 19097.02 16688.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 980.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36875.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 247
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
新几何295.79 267
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 28
testdata195.26 29593.10 106
plane_prior796.21 21889.98 182
plane_prior696.10 22990.00 17881.32 224
plane_prior496.64 171
plane_prior390.00 17894.46 5591.34 212
plane_prior297.74 9494.85 34
plane_prior196.14 226
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 21095.78 262
HQP2-MVS80.95 227
NP-MVS95.99 23389.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
Test By Simon88.73 97