| SMA-MVS |  | | 97.53 7 | 97.93 7 | 97.07 10 | 99.21 1 | 99.02 8 | 98.08 19 | 96.25 11 | 96.36 12 | 93.57 15 | 96.56 14 | 99.27 5 | 96.78 16 | 97.91 4 | 97.43 3 | 98.51 26 | 98.94 12 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 97.79 5 | 97.96 6 | 97.60 2 | 99.20 2 | 99.10 6 | 98.88 2 | 96.68 2 | 96.81 7 | 94.64 6 | 97.84 3 | 98.02 11 | 97.24 3 | 97.74 8 | 97.02 14 | 98.97 5 | 99.16 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS++ | | | 98.07 1 | 98.46 1 | 97.62 1 | 99.08 3 | 99.29 2 | 98.84 3 | 96.63 4 | 97.89 1 | 95.35 3 | 97.83 4 | 99.48 3 | 96.98 9 | 97.99 2 | 97.14 11 | 98.82 11 | 99.60 1 |
|
| HPM-MVS++ |  | | 97.22 11 | 97.40 12 | 97.01 11 | 99.08 3 | 98.55 24 | 98.19 14 | 96.48 7 | 96.02 19 | 93.28 20 | 96.26 17 | 98.71 8 | 96.76 17 | 97.30 16 | 96.25 39 | 98.30 54 | 98.68 17 |
|
| ACMMP_NAP | | | 96.93 16 | 97.27 15 | 96.53 23 | 99.06 5 | 98.95 9 | 98.24 13 | 96.06 15 | 95.66 21 | 90.96 32 | 95.63 24 | 97.71 16 | 96.53 20 | 97.66 10 | 96.68 20 | 98.30 54 | 98.61 22 |
|
| DVP-MVS |  | | 97.93 3 | 98.23 3 | 97.58 3 | 99.05 6 | 99.31 1 | 98.64 6 | 96.62 5 | 97.56 2 | 95.08 5 | 96.61 13 | 99.64 1 | 97.32 1 | 97.91 4 | 97.31 6 | 98.77 15 | 99.26 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 96.16 24 | 96.33 28 | 95.95 26 | 99.04 7 | 98.63 19 | 98.32 12 | 92.76 42 | 93.42 49 | 90.49 37 | 96.30 16 | 95.31 41 | 96.71 18 | 96.46 40 | 96.02 48 | 98.38 45 | 98.19 44 |
|
| APD-MVS |  | | 97.12 13 | 97.05 18 | 97.19 7 | 99.04 7 | 98.63 19 | 98.45 8 | 96.54 6 | 94.81 36 | 93.50 16 | 96.10 19 | 97.40 22 | 96.81 13 | 97.05 22 | 96.82 19 | 98.80 12 | 98.56 24 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| NCCC | | | 96.75 19 | 96.67 24 | 96.85 16 | 99.03 9 | 98.44 34 | 98.15 16 | 96.28 10 | 96.32 13 | 92.39 25 | 92.16 35 | 97.55 20 | 96.68 19 | 97.32 14 | 96.65 22 | 98.55 25 | 98.26 40 |
|
| CNVR-MVS | | | 97.30 10 | 97.41 11 | 97.18 8 | 99.02 10 | 98.60 21 | 98.15 16 | 96.24 13 | 96.12 17 | 94.10 11 | 95.54 25 | 97.99 12 | 96.99 7 | 97.97 3 | 97.17 9 | 98.57 24 | 98.50 31 |
|
| MSP-MVS | | | 97.70 6 | 98.09 5 | 97.24 6 | 99.00 11 | 99.17 5 | 98.76 5 | 96.41 9 | 96.91 5 | 93.88 14 | 97.72 5 | 99.04 7 | 96.93 11 | 97.29 17 | 97.31 6 | 98.45 37 | 99.23 4 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ACMMPR | | | 96.92 17 | 96.96 19 | 96.87 15 | 98.99 12 | 98.78 11 | 98.38 10 | 95.52 24 | 96.57 10 | 92.81 24 | 96.06 20 | 95.90 36 | 97.07 5 | 96.60 37 | 96.34 35 | 98.46 34 | 98.42 35 |
|
| HFP-MVS | | | 97.11 14 | 97.19 16 | 97.00 12 | 98.97 13 | 98.73 12 | 98.37 11 | 95.69 21 | 96.60 9 | 93.28 20 | 96.87 8 | 96.64 29 | 97.27 2 | 96.64 35 | 96.33 36 | 98.44 38 | 98.56 24 |
|
| SteuartSystems-ACMMP | | | 97.10 15 | 97.49 10 | 96.65 18 | 98.97 13 | 98.95 9 | 98.43 9 | 95.96 17 | 95.12 28 | 91.46 28 | 96.85 9 | 97.60 18 | 96.37 24 | 97.76 6 | 97.16 10 | 98.68 18 | 98.97 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 97.20 12 | 97.29 14 | 97.10 9 | 98.95 15 | 98.51 29 | 97.51 29 | 96.48 7 | 96.17 16 | 94.64 6 | 97.32 6 | 97.57 19 | 96.23 26 | 96.78 29 | 96.15 43 | 98.79 14 | 98.55 29 |
|
| SED-MVS | | | 97.98 2 | 98.36 2 | 97.54 4 | 98.94 16 | 99.29 2 | 98.81 4 | 96.64 3 | 97.14 3 | 95.16 4 | 97.96 2 | 99.61 2 | 96.92 12 | 98.00 1 | 97.24 8 | 98.75 17 | 99.25 3 |
|
| X-MVS | | | 96.07 26 | 96.33 28 | 95.77 29 | 98.94 16 | 98.66 14 | 97.94 23 | 95.41 30 | 95.12 28 | 88.03 54 | 93.00 33 | 96.06 32 | 95.85 29 | 96.65 34 | 96.35 32 | 98.47 32 | 98.48 32 |
|
| SR-MVS | | | | | | 98.93 18 | | | 96.00 16 | | | | 97.75 15 | | | | | |
|
| MP-MVS |  | | 96.56 21 | 96.72 23 | 96.37 24 | 98.93 18 | 98.48 30 | 98.04 20 | 95.55 23 | 94.32 40 | 90.95 34 | 95.88 22 | 97.02 26 | 96.29 25 | 96.77 30 | 96.01 49 | 98.47 32 | 98.56 24 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MCST-MVS | | | 96.83 18 | 97.06 17 | 96.57 19 | 98.88 20 | 98.47 32 | 98.02 21 | 96.16 14 | 95.58 23 | 90.96 32 | 95.78 23 | 97.84 14 | 96.46 22 | 97.00 25 | 96.17 41 | 98.94 7 | 98.55 29 |
|
| CP-MVS | | | 96.68 20 | 96.59 26 | 96.77 17 | 98.85 21 | 98.58 22 | 98.18 15 | 95.51 26 | 95.34 25 | 92.94 23 | 95.21 28 | 96.25 31 | 96.79 15 | 96.44 42 | 95.77 51 | 98.35 46 | 98.56 24 |
|
| DPE-MVS |  | | 97.83 4 | 98.13 4 | 97.48 5 | 98.83 22 | 99.19 4 | 98.99 1 | 96.70 1 | 96.05 18 | 94.39 9 | 98.30 1 | 99.47 4 | 97.02 6 | 97.75 7 | 97.02 14 | 98.98 3 | 99.10 9 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| mPP-MVS | | | | | | 98.76 23 | | | | | | | 95.49 39 | | | | | |
|
| CSCG | | | 95.68 30 | 95.46 35 | 95.93 27 | 98.71 24 | 99.07 7 | 97.13 35 | 93.55 37 | 95.48 24 | 93.35 19 | 90.61 45 | 93.82 46 | 95.16 37 | 94.60 82 | 95.57 55 | 97.70 108 | 99.08 10 |
|
| DeepC-MVS_fast | | 93.32 1 | 96.48 22 | 96.42 27 | 96.56 20 | 98.70 25 | 98.31 38 | 97.97 22 | 95.76 20 | 96.31 14 | 92.01 27 | 91.43 40 | 95.42 40 | 96.46 22 | 97.65 11 | 97.69 1 | 98.49 31 | 98.12 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 95.02 37 | 93.71 50 | 96.54 22 | 98.51 26 | 97.76 59 | 96.69 40 | 95.94 19 | 93.72 48 | 93.50 16 | 89.01 53 | 90.53 66 | 96.49 21 | 94.51 85 | 93.76 85 | 98.07 79 | 96.69 98 |
|
| train_agg | | | 96.15 25 | 96.64 25 | 95.58 33 | 98.44 27 | 98.03 48 | 98.14 18 | 95.40 31 | 93.90 46 | 87.72 59 | 96.26 17 | 98.10 10 | 95.75 31 | 96.25 47 | 95.45 57 | 98.01 86 | 98.47 33 |
|
| CDPH-MVS | | | 94.80 41 | 95.50 33 | 93.98 46 | 98.34 28 | 98.06 47 | 97.41 30 | 93.23 39 | 92.81 54 | 82.98 100 | 92.51 34 | 94.82 42 | 93.53 60 | 96.08 50 | 96.30 38 | 98.42 40 | 97.94 56 |
|
| TPM-MVS | | | | | | 98.33 29 | 97.85 54 | 97.06 36 | | | 89.97 40 | 93.26 31 | 97.16 25 | 93.12 66 | | | 97.79 98 | 95.95 126 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| MSLP-MVS++ | | | 96.05 27 | 95.63 31 | 96.55 21 | 98.33 29 | 98.17 44 | 96.94 37 | 94.61 34 | 94.70 38 | 94.37 10 | 89.20 52 | 95.96 35 | 96.81 13 | 95.57 58 | 97.33 5 | 98.24 63 | 98.47 33 |
|
| ACMMP |  | | 95.54 31 | 95.49 34 | 95.61 32 | 98.27 31 | 98.53 26 | 97.16 34 | 94.86 32 | 94.88 34 | 89.34 43 | 95.36 27 | 91.74 55 | 95.50 35 | 95.51 59 | 94.16 76 | 98.50 29 | 98.22 42 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| 3Dnovator+ | | 90.56 5 | 95.06 36 | 94.56 45 | 95.65 31 | 98.11 32 | 98.15 45 | 97.19 33 | 91.59 51 | 95.11 30 | 93.23 22 | 81.99 103 | 94.71 43 | 95.43 36 | 96.48 39 | 96.88 18 | 98.35 46 | 98.63 19 |
|
| 3Dnovator | | 90.28 7 | 94.70 42 | 94.34 48 | 95.11 35 | 98.06 33 | 98.21 42 | 96.89 38 | 91.03 57 | 94.72 37 | 91.45 29 | 82.87 94 | 93.10 50 | 94.61 42 | 96.24 48 | 97.08 13 | 98.63 21 | 98.16 45 |
|
| PLC |  | 90.69 4 | 94.32 46 | 92.99 58 | 95.87 28 | 97.91 34 | 96.49 94 | 95.95 51 | 94.12 35 | 94.94 32 | 94.09 12 | 85.90 72 | 90.77 63 | 95.58 33 | 94.52 84 | 93.32 99 | 97.55 117 | 95.00 148 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EPNet | | | 93.92 50 | 94.40 46 | 93.36 54 | 97.89 35 | 96.55 92 | 96.08 47 | 92.14 45 | 91.65 66 | 89.16 45 | 94.07 30 | 90.17 70 | 87.78 126 | 95.24 64 | 94.97 65 | 97.09 136 | 98.15 46 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CPTT-MVS | | | 95.54 31 | 95.07 37 | 96.10 25 | 97.88 36 | 97.98 50 | 97.92 24 | 94.86 32 | 94.56 39 | 92.16 26 | 91.01 41 | 95.71 37 | 96.97 10 | 94.56 83 | 93.50 92 | 96.81 157 | 98.14 47 |
|
| QAPM | | | 94.13 49 | 94.33 49 | 93.90 47 | 97.82 37 | 98.37 37 | 96.47 42 | 90.89 58 | 92.73 57 | 85.63 82 | 85.35 76 | 93.87 45 | 94.17 49 | 95.71 57 | 95.90 50 | 98.40 42 | 98.42 35 |
|
| DeepC-MVS | | 92.10 3 | 95.22 34 | 94.77 41 | 95.75 30 | 97.77 38 | 98.54 25 | 97.63 28 | 95.96 17 | 95.07 31 | 88.85 48 | 85.35 76 | 91.85 54 | 95.82 30 | 96.88 28 | 97.10 12 | 98.44 38 | 98.63 19 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OpenMVS |  | 88.18 11 | 92.51 63 | 91.61 80 | 93.55 53 | 97.74 39 | 98.02 49 | 95.66 53 | 90.46 61 | 89.14 103 | 86.50 70 | 75.80 137 | 90.38 69 | 92.69 71 | 94.99 67 | 95.30 59 | 98.27 58 | 97.63 67 |
|
| TSAR-MVS + ACMM | | | 96.19 23 | 97.39 13 | 94.78 37 | 97.70 40 | 98.41 35 | 97.72 27 | 95.49 27 | 96.47 11 | 86.66 69 | 96.35 15 | 97.85 13 | 93.99 52 | 97.19 20 | 96.37 31 | 97.12 134 | 99.13 7 |
|
| MAR-MVS | | | 92.71 62 | 92.63 63 | 92.79 67 | 97.70 40 | 97.15 78 | 93.75 91 | 87.98 97 | 90.71 72 | 85.76 80 | 86.28 69 | 86.38 79 | 94.35 47 | 94.95 68 | 95.49 56 | 97.22 127 | 97.44 75 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PHI-MVS | | | 95.86 28 | 96.93 22 | 94.61 40 | 97.60 42 | 98.65 18 | 96.49 41 | 93.13 40 | 94.07 43 | 87.91 58 | 97.12 7 | 97.17 24 | 93.90 55 | 96.46 40 | 96.93 17 | 98.64 20 | 98.10 51 |
|
| DPM-MVS | | | 95.07 35 | 94.84 40 | 95.34 34 | 97.44 43 | 97.49 68 | 97.76 26 | 95.52 24 | 94.88 34 | 88.92 47 | 87.25 61 | 96.44 30 | 94.41 44 | 95.78 55 | 96.11 45 | 97.99 88 | 95.95 126 |
|
| SD-MVS | | | 97.35 8 | 97.73 8 | 96.90 14 | 97.35 44 | 98.66 14 | 97.85 25 | 96.25 11 | 96.86 6 | 94.54 8 | 96.75 11 | 99.13 6 | 96.99 7 | 96.94 26 | 96.58 23 | 98.39 44 | 99.20 5 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MVS_111021_HR | | | 94.84 39 | 95.91 30 | 93.60 52 | 97.35 44 | 98.46 33 | 95.08 62 | 91.19 54 | 94.18 42 | 85.97 74 | 95.38 26 | 92.56 52 | 93.61 59 | 96.61 36 | 96.25 39 | 98.40 42 | 97.92 58 |
|
| TSAR-MVS + MP. | | | 97.31 9 | 97.64 9 | 96.92 13 | 97.28 46 | 98.56 23 | 98.61 7 | 95.48 28 | 96.72 8 | 94.03 13 | 96.73 12 | 98.29 9 | 97.15 4 | 97.61 12 | 96.42 26 | 98.96 6 | 99.13 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CANet | | | 94.85 38 | 94.92 39 | 94.78 37 | 97.25 47 | 98.52 28 | 97.20 32 | 91.81 48 | 93.25 51 | 91.06 31 | 86.29 68 | 94.46 44 | 92.99 67 | 97.02 24 | 96.68 20 | 98.34 48 | 98.20 43 |
|
| OMC-MVS | | | 94.49 45 | 94.36 47 | 94.64 39 | 97.17 48 | 97.73 61 | 95.49 55 | 92.25 44 | 96.18 15 | 90.34 38 | 88.51 55 | 92.88 51 | 94.90 41 | 94.92 70 | 94.17 75 | 97.69 110 | 96.15 118 |
|
| MVS_111021_LR | | | 94.84 39 | 95.57 32 | 94.00 44 | 97.11 49 | 97.72 63 | 94.88 66 | 91.16 55 | 95.24 27 | 88.74 49 | 96.03 21 | 91.52 59 | 94.33 48 | 95.96 52 | 95.01 64 | 97.79 98 | 97.49 74 |
|
| CNLPA | | | 93.69 53 | 92.50 65 | 95.06 36 | 97.11 49 | 97.36 70 | 93.88 88 | 93.30 38 | 95.64 22 | 93.44 18 | 80.32 112 | 90.73 64 | 94.99 40 | 93.58 103 | 93.33 97 | 97.67 112 | 96.57 103 |
|
| LS3D | | | 91.97 69 | 90.98 89 | 93.12 60 | 97.03 51 | 97.09 81 | 95.33 60 | 95.59 22 | 92.47 58 | 79.26 120 | 81.60 106 | 82.77 100 | 94.39 46 | 94.28 87 | 94.23 74 | 97.14 133 | 94.45 154 |
|
| TAPA-MVS | | 90.35 6 | 93.69 53 | 93.52 51 | 93.90 47 | 96.89 52 | 97.62 65 | 96.15 45 | 91.67 50 | 94.94 32 | 85.97 74 | 87.72 60 | 91.96 53 | 94.40 45 | 93.76 101 | 93.06 109 | 98.30 54 | 95.58 136 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DELS-MVS | | | 93.71 52 | 93.47 52 | 94.00 44 | 96.82 53 | 98.39 36 | 96.80 39 | 91.07 56 | 89.51 100 | 89.94 41 | 83.80 86 | 89.29 72 | 90.95 90 | 97.32 14 | 97.65 2 | 98.42 40 | 98.32 38 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| EPNet_dtu | | | 88.32 119 | 90.61 91 | 85.64 148 | 96.79 54 | 92.27 177 | 92.03 124 | 90.31 62 | 89.05 104 | 65.44 192 | 89.43 50 | 85.90 84 | 74.22 201 | 92.76 117 | 92.09 127 | 95.02 190 | 92.76 174 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSDG | | | 90.42 96 | 88.25 116 | 92.94 65 | 96.67 55 | 94.41 121 | 93.96 83 | 92.91 41 | 89.59 98 | 86.26 72 | 76.74 130 | 80.92 117 | 90.43 98 | 92.60 122 | 92.08 128 | 97.44 122 | 91.41 180 |
|
| CS-MVS-test | | | 94.63 43 | 95.28 36 | 93.88 49 | 96.56 56 | 98.67 13 | 93.41 100 | 89.31 80 | 94.27 41 | 89.64 42 | 90.84 43 | 91.64 57 | 95.58 33 | 97.04 23 | 96.17 41 | 98.77 15 | 98.32 38 |
|
| DeepPCF-MVS | | 92.65 2 | 95.50 33 | 96.96 19 | 93.79 51 | 96.44 57 | 98.21 42 | 93.51 98 | 94.08 36 | 96.94 4 | 89.29 44 | 93.08 32 | 96.77 28 | 93.82 56 | 97.68 9 | 97.40 4 | 95.59 180 | 98.65 18 |
|
| PCF-MVS | | 90.19 8 | 92.98 57 | 92.07 73 | 94.04 43 | 96.39 58 | 97.87 51 | 96.03 48 | 95.47 29 | 87.16 118 | 85.09 93 | 84.81 80 | 93.21 49 | 93.46 62 | 91.98 135 | 91.98 131 | 97.78 100 | 97.51 73 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS_0304 | | | 94.30 47 | 94.68 43 | 93.86 50 | 96.33 59 | 98.48 30 | 97.41 30 | 91.20 53 | 92.75 55 | 86.96 66 | 86.03 71 | 93.81 47 | 92.64 72 | 96.89 27 | 96.54 25 | 98.61 22 | 98.24 41 |
|
| CS-MVS | | | 94.53 44 | 94.73 42 | 94.31 42 | 96.30 60 | 98.53 26 | 94.98 63 | 89.24 82 | 93.37 50 | 90.24 39 | 88.96 54 | 89.76 71 | 96.09 28 | 97.48 13 | 96.42 26 | 98.99 2 | 98.59 23 |
|
| OPM-MVS | | | 91.08 82 | 89.34 102 | 93.11 61 | 96.18 61 | 96.13 103 | 96.39 43 | 92.39 43 | 82.97 157 | 81.74 103 | 82.55 100 | 80.20 120 | 93.97 54 | 94.62 80 | 93.23 100 | 98.00 87 | 95.73 132 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PVSNet_BlendedMVS | | | 92.80 58 | 92.44 67 | 93.23 55 | 96.02 62 | 97.83 56 | 93.74 92 | 90.58 59 | 91.86 63 | 90.69 35 | 85.87 74 | 82.04 110 | 90.01 100 | 96.39 43 | 95.26 60 | 98.34 48 | 97.81 63 |
|
| PVSNet_Blended | | | 92.80 58 | 92.44 67 | 93.23 55 | 96.02 62 | 97.83 56 | 93.74 92 | 90.58 59 | 91.86 63 | 90.69 35 | 85.87 74 | 82.04 110 | 90.01 100 | 96.39 43 | 95.26 60 | 98.34 48 | 97.81 63 |
|
| XVS | | | | | | 95.68 64 | 98.66 14 | 94.96 64 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
| X-MVStestdata | | | | | | 95.68 64 | 98.66 14 | 94.96 64 | | | 88.03 54 | | 96.06 32 | | | | 98.46 34 | |
|
| HQP-MVS | | | 92.39 65 | 92.49 66 | 92.29 75 | 95.65 66 | 95.94 106 | 95.64 54 | 92.12 46 | 92.46 59 | 79.65 118 | 91.97 37 | 82.68 101 | 92.92 70 | 93.47 108 | 92.77 114 | 97.74 104 | 98.12 49 |
|
| HyFIR lowres test | | | 87.87 121 | 86.42 138 | 89.57 106 | 95.56 67 | 96.99 84 | 92.37 114 | 84.15 140 | 86.64 123 | 77.17 127 | 57.65 208 | 83.97 91 | 91.08 88 | 92.09 133 | 92.44 119 | 97.09 136 | 95.16 145 |
|
| ACMM | | 88.76 10 | 91.70 77 | 90.43 92 | 93.19 57 | 95.56 67 | 95.14 112 | 93.35 102 | 91.48 52 | 92.26 60 | 87.12 64 | 84.02 84 | 79.34 123 | 93.99 52 | 94.07 93 | 92.68 115 | 97.62 116 | 95.50 137 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| COLMAP_ROB |  | 84.39 15 | 87.61 123 | 86.03 143 | 89.46 107 | 95.54 69 | 94.48 118 | 91.77 128 | 90.14 66 | 87.16 118 | 75.50 132 | 73.41 152 | 76.86 142 | 87.33 133 | 90.05 167 | 89.76 177 | 96.48 161 | 90.46 189 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LGP-MVS_train | | | 91.83 73 | 92.04 74 | 91.58 82 | 95.46 70 | 96.18 102 | 95.97 50 | 89.85 68 | 90.45 79 | 77.76 123 | 91.92 38 | 80.07 121 | 92.34 76 | 94.27 88 | 93.47 93 | 98.11 76 | 97.90 61 |
|
| CHOSEN 1792x2688 | | | 88.57 116 | 87.82 123 | 89.44 108 | 95.46 70 | 96.89 87 | 93.74 92 | 85.87 122 | 89.63 97 | 77.42 126 | 61.38 202 | 83.31 95 | 88.80 121 | 93.44 109 | 93.16 105 | 95.37 185 | 96.95 92 |
|
| PVSNet_Blended_VisFu | | | 91.92 71 | 92.39 69 | 91.36 90 | 95.45 72 | 97.85 54 | 92.25 117 | 89.54 76 | 88.53 110 | 87.47 61 | 79.82 114 | 90.53 66 | 85.47 152 | 96.31 46 | 95.16 63 | 97.99 88 | 98.56 24 |
|
| PatchMatch-RL | | | 90.30 97 | 88.93 109 | 91.89 78 | 95.41 73 | 95.68 108 | 90.94 130 | 88.67 88 | 89.80 95 | 86.95 67 | 85.90 72 | 72.51 151 | 92.46 73 | 93.56 105 | 92.18 124 | 96.93 149 | 92.89 173 |
|
| TSAR-MVS + COLMAP | | | 92.39 65 | 92.31 70 | 92.47 71 | 95.35 74 | 96.46 96 | 96.13 46 | 92.04 47 | 95.33 26 | 80.11 116 | 94.95 29 | 77.35 139 | 94.05 51 | 94.49 86 | 93.08 107 | 97.15 131 | 94.53 152 |
|
| test2506 | | | 90.93 86 | 89.20 105 | 92.95 64 | 94.97 75 | 98.30 39 | 94.53 68 | 90.25 64 | 89.91 92 | 88.39 53 | 83.23 90 | 64.17 194 | 90.69 93 | 96.75 32 | 96.10 46 | 98.87 8 | 95.97 125 |
|
| ECVR-MVS |  | | 90.77 90 | 89.27 103 | 92.52 69 | 94.97 75 | 98.30 39 | 94.53 68 | 90.25 64 | 89.91 92 | 85.80 79 | 73.64 147 | 74.31 148 | 90.69 93 | 96.75 32 | 96.10 46 | 98.87 8 | 95.91 129 |
|
| test1111 | | | 90.47 95 | 89.10 107 | 92.07 77 | 94.92 77 | 98.30 39 | 94.17 81 | 90.30 63 | 89.56 99 | 83.92 96 | 73.25 154 | 73.66 149 | 90.26 99 | 96.77 30 | 96.14 44 | 98.87 8 | 96.04 122 |
|
| ACMP | | 89.13 9 | 92.03 68 | 91.70 79 | 92.41 73 | 94.92 77 | 96.44 98 | 93.95 84 | 89.96 67 | 91.81 65 | 85.48 87 | 90.97 42 | 79.12 124 | 92.42 74 | 93.28 114 | 92.55 118 | 97.76 102 | 97.74 66 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| UA-Net | | | 90.81 87 | 92.58 64 | 88.74 115 | 94.87 79 | 97.44 69 | 92.61 111 | 88.22 93 | 82.35 161 | 78.93 121 | 85.20 78 | 95.61 38 | 79.56 187 | 96.52 38 | 96.57 24 | 98.23 64 | 94.37 155 |
|
| IB-MVS | | 85.10 14 | 87.98 120 | 87.97 121 | 87.99 124 | 94.55 80 | 96.86 88 | 84.52 196 | 88.21 94 | 86.48 128 | 88.54 52 | 74.41 145 | 77.74 136 | 74.10 203 | 89.65 173 | 92.85 113 | 98.06 81 | 97.80 65 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CANet_DTU | | | 90.74 92 | 92.93 61 | 88.19 121 | 94.36 81 | 96.61 90 | 94.34 74 | 84.66 133 | 90.66 73 | 68.75 171 | 90.41 46 | 86.89 77 | 89.78 102 | 95.46 60 | 94.87 66 | 97.25 126 | 95.62 134 |
|
| sasdasda | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 82 | 97.86 52 | 95.45 57 | 87.86 103 | 94.00 44 | 87.47 61 | 88.32 56 | 82.37 105 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
| canonicalmvs | | | 93.08 55 | 93.09 55 | 93.07 62 | 94.24 82 | 97.86 52 | 95.45 57 | 87.86 103 | 94.00 44 | 87.47 61 | 88.32 56 | 82.37 105 | 95.13 38 | 93.96 98 | 96.41 29 | 98.27 58 | 98.73 13 |
|
| MGCFI-Net | | | 92.75 60 | 92.98 59 | 92.48 70 | 94.18 84 | 97.77 58 | 95.28 61 | 87.77 105 | 93.88 47 | 85.28 91 | 88.19 58 | 82.17 109 | 94.14 50 | 93.86 100 | 96.32 37 | 98.20 67 | 98.69 16 |
|
| UGNet | | | 91.52 78 | 93.41 53 | 89.32 109 | 94.13 85 | 97.15 78 | 91.83 127 | 89.01 83 | 90.62 75 | 85.86 78 | 86.83 62 | 91.73 56 | 77.40 192 | 94.68 79 | 94.43 71 | 97.71 106 | 98.40 37 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| thres600view7 | | | 89.28 113 | 87.47 132 | 91.39 87 | 94.12 86 | 97.25 73 | 93.94 86 | 89.74 71 | 85.62 135 | 80.63 114 | 75.24 141 | 69.33 166 | 91.66 83 | 94.92 70 | 93.23 100 | 98.27 58 | 96.72 97 |
|
| IS_MVSNet | | | 91.87 72 | 93.35 54 | 90.14 103 | 94.09 87 | 97.73 61 | 93.09 105 | 88.12 95 | 88.71 107 | 79.98 117 | 84.49 81 | 90.63 65 | 87.49 131 | 97.07 21 | 96.96 16 | 98.07 79 | 97.88 62 |
|
| TSAR-MVS + GP. | | | 95.86 28 | 96.95 21 | 94.60 41 | 94.07 88 | 98.11 46 | 96.30 44 | 91.76 49 | 95.67 20 | 91.07 30 | 96.82 10 | 97.69 17 | 95.71 32 | 95.96 52 | 95.75 52 | 98.68 18 | 98.63 19 |
|
| thres400 | | | 89.40 109 | 87.58 129 | 91.53 84 | 94.06 89 | 97.21 76 | 94.19 80 | 89.83 69 | 85.69 132 | 81.08 110 | 75.50 139 | 69.76 164 | 91.80 79 | 94.79 77 | 93.51 89 | 98.20 67 | 96.60 101 |
|
| ETV-MVS | | | 93.80 51 | 94.57 44 | 92.91 66 | 93.98 90 | 97.50 67 | 93.62 95 | 88.70 87 | 91.95 62 | 87.57 60 | 90.21 47 | 90.79 62 | 94.56 43 | 97.20 19 | 96.35 32 | 99.02 1 | 97.98 53 |
|
| ACMH | | 85.51 13 | 87.31 126 | 86.59 136 | 88.14 122 | 93.96 91 | 94.51 117 | 89.00 166 | 87.99 96 | 81.58 164 | 70.15 161 | 78.41 121 | 71.78 156 | 90.60 96 | 91.30 144 | 91.99 130 | 97.17 130 | 96.58 102 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MS-PatchMatch | | | 87.63 122 | 87.61 127 | 87.65 129 | 93.95 92 | 94.09 127 | 92.60 112 | 81.52 173 | 86.64 123 | 76.41 130 | 73.46 151 | 85.94 83 | 85.01 156 | 92.23 131 | 90.00 171 | 96.43 164 | 90.93 186 |
|
| thres200 | | | 89.49 108 | 87.72 124 | 91.55 83 | 93.95 92 | 97.25 73 | 94.34 74 | 89.74 71 | 85.66 133 | 81.18 107 | 76.12 136 | 70.19 163 | 91.80 79 | 94.92 70 | 93.51 89 | 98.27 58 | 96.40 108 |
|
| CLD-MVS | | | 92.50 64 | 91.96 75 | 93.13 59 | 93.93 94 | 96.24 100 | 95.69 52 | 88.77 86 | 92.92 52 | 89.01 46 | 88.19 58 | 81.74 113 | 93.13 65 | 93.63 102 | 93.08 107 | 98.23 64 | 97.91 60 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thres100view900 | | | 89.36 110 | 87.61 127 | 91.39 87 | 93.90 95 | 96.86 88 | 94.35 73 | 89.66 75 | 85.87 130 | 81.15 108 | 76.46 132 | 70.38 160 | 91.17 86 | 94.09 92 | 93.43 95 | 98.13 73 | 96.16 117 |
|
| tfpn200view9 | | | 89.55 107 | 87.86 122 | 91.53 84 | 93.90 95 | 97.26 72 | 94.31 76 | 89.74 71 | 85.87 130 | 81.15 108 | 76.46 132 | 70.38 160 | 91.76 81 | 94.92 70 | 93.51 89 | 98.28 57 | 96.61 100 |
|
| EIA-MVS | | | 92.72 61 | 92.96 60 | 92.44 72 | 93.86 97 | 97.76 59 | 93.13 104 | 88.65 89 | 89.78 96 | 86.68 68 | 86.69 65 | 87.57 73 | 93.74 57 | 96.07 51 | 95.32 58 | 98.58 23 | 97.53 72 |
|
| CHOSEN 280x420 | | | 90.77 90 | 92.14 72 | 89.17 111 | 93.86 97 | 92.81 165 | 93.16 103 | 80.22 181 | 90.21 84 | 84.67 95 | 89.89 49 | 91.38 60 | 90.57 97 | 94.94 69 | 92.11 126 | 92.52 201 | 93.65 165 |
|
| FC-MVSNet-train | | | 90.55 93 | 90.19 95 | 90.97 93 | 93.78 99 | 95.16 111 | 92.11 122 | 88.85 84 | 87.64 115 | 83.38 99 | 84.36 83 | 78.41 130 | 89.53 104 | 94.69 78 | 93.15 106 | 98.15 71 | 97.92 58 |
|
| FA-MVS(training) | | | 90.79 89 | 91.33 83 | 90.17 101 | 93.76 100 | 97.22 75 | 92.74 109 | 77.79 191 | 90.60 77 | 88.03 54 | 78.80 118 | 87.41 74 | 91.00 89 | 95.40 62 | 93.43 95 | 97.70 108 | 96.46 105 |
|
| Vis-MVSNet (Re-imp) | | | 90.54 94 | 92.76 62 | 87.94 125 | 93.73 101 | 96.94 86 | 92.17 120 | 87.91 98 | 88.77 106 | 76.12 131 | 83.68 87 | 90.80 61 | 79.49 188 | 96.34 45 | 96.35 32 | 98.21 66 | 96.46 105 |
|
| baseline1 | | | 90.81 87 | 90.29 93 | 91.42 86 | 93.67 102 | 95.86 107 | 93.94 86 | 89.69 74 | 89.29 102 | 82.85 101 | 82.91 93 | 80.30 119 | 89.60 103 | 95.05 66 | 94.79 68 | 98.80 12 | 93.82 163 |
|
| EPP-MVSNet | | | 92.13 67 | 93.06 57 | 91.05 92 | 93.66 103 | 97.30 71 | 92.18 118 | 87.90 99 | 90.24 83 | 83.63 97 | 86.14 70 | 90.52 68 | 90.76 92 | 94.82 75 | 94.38 72 | 98.18 70 | 97.98 53 |
|
| EC-MVSNet | | | 94.19 48 | 95.05 38 | 93.18 58 | 93.56 104 | 97.65 64 | 95.34 59 | 86.37 118 | 92.05 61 | 88.71 50 | 89.91 48 | 93.32 48 | 96.14 27 | 97.29 17 | 96.42 26 | 98.98 3 | 98.70 15 |
|
| ACMH+ | | 85.75 12 | 87.19 128 | 86.02 144 | 88.56 117 | 93.42 105 | 94.41 121 | 89.91 150 | 87.66 109 | 83.45 154 | 72.25 148 | 76.42 134 | 71.99 155 | 90.78 91 | 89.86 168 | 90.94 145 | 97.32 123 | 95.11 147 |
|
| casdiffmvs_mvg |  | | 91.94 70 | 91.25 85 | 92.75 68 | 93.41 106 | 97.19 77 | 95.48 56 | 89.77 70 | 89.86 94 | 86.41 71 | 81.02 110 | 82.23 108 | 92.93 68 | 95.44 61 | 95.61 54 | 98.51 26 | 97.40 77 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 91.81 74 | 92.19 71 | 91.37 89 | 93.24 107 | 96.95 85 | 94.43 70 | 86.25 119 | 91.45 69 | 83.45 98 | 86.31 67 | 85.15 87 | 92.93 68 | 93.99 94 | 94.71 69 | 97.92 92 | 96.77 96 |
|
| MVSTER | | | 91.73 75 | 91.61 80 | 91.86 79 | 93.18 108 | 94.56 115 | 94.37 72 | 87.90 99 | 90.16 87 | 88.69 51 | 89.23 51 | 81.28 115 | 88.92 119 | 95.75 56 | 93.95 82 | 98.12 74 | 96.37 109 |
|
| Anonymous202405211 | | | | 88.00 119 | | 93.16 109 | 96.38 99 | 93.58 96 | 89.34 79 | 87.92 114 | | 65.04 191 | 83.03 97 | 92.07 77 | 92.67 119 | 93.33 97 | 96.96 144 | 97.63 67 |
|
| casdiffmvs |  | | 91.72 76 | 91.16 87 | 92.38 74 | 93.16 109 | 97.15 78 | 93.95 84 | 89.49 77 | 91.58 68 | 86.03 73 | 80.75 111 | 80.95 116 | 93.16 64 | 95.25 63 | 95.22 62 | 98.50 29 | 97.23 83 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 91.01 85 | 91.71 78 | 90.19 100 | 92.98 111 | 97.07 82 | 91.96 126 | 87.63 110 | 90.61 76 | 81.42 105 | 86.76 64 | 82.26 107 | 89.23 111 | 94.86 74 | 93.03 111 | 97.90 93 | 97.36 78 |
|
| Effi-MVS+ | | | 89.79 104 | 89.83 100 | 89.74 105 | 92.98 111 | 96.45 97 | 93.48 99 | 84.24 138 | 87.62 116 | 76.45 129 | 81.76 104 | 77.56 138 | 93.48 61 | 94.61 81 | 93.59 88 | 97.82 97 | 97.22 85 |
|
| RPSCF | | | 89.68 105 | 89.24 104 | 90.20 99 | 92.97 113 | 92.93 161 | 92.30 115 | 87.69 107 | 90.44 80 | 85.12 92 | 91.68 39 | 85.84 85 | 90.69 93 | 87.34 190 | 86.07 192 | 92.46 202 | 90.37 190 |
|
| TDRefinement | | | 84.97 154 | 83.39 169 | 86.81 137 | 92.97 113 | 94.12 126 | 92.18 118 | 87.77 105 | 82.78 158 | 71.31 153 | 68.43 172 | 68.07 172 | 81.10 183 | 89.70 172 | 89.03 184 | 95.55 182 | 91.62 178 |
|
| thisisatest0530 | | | 91.04 84 | 91.74 77 | 90.21 98 | 92.93 115 | 97.00 83 | 92.06 123 | 87.63 110 | 90.74 71 | 81.51 104 | 86.81 63 | 82.48 102 | 89.23 111 | 94.81 76 | 93.03 111 | 97.90 93 | 97.33 80 |
|
| DCV-MVSNet | | | 91.24 80 | 91.26 84 | 91.22 91 | 92.84 116 | 93.44 143 | 93.82 89 | 86.75 115 | 91.33 70 | 85.61 83 | 84.00 85 | 85.46 86 | 91.27 84 | 92.91 116 | 93.62 87 | 97.02 140 | 98.05 52 |
|
| baseline | | | 91.19 81 | 91.89 76 | 90.38 94 | 92.76 117 | 95.04 113 | 93.55 97 | 84.54 136 | 92.92 52 | 85.71 81 | 86.68 66 | 86.96 76 | 89.28 110 | 92.00 134 | 92.62 117 | 96.46 162 | 96.99 90 |
|
| EPMVS | | | 85.77 142 | 86.24 140 | 85.23 153 | 92.76 117 | 93.78 133 | 89.91 150 | 73.60 204 | 90.19 85 | 74.22 136 | 82.18 102 | 78.06 132 | 87.55 130 | 85.61 199 | 85.38 197 | 93.32 195 | 88.48 202 |
|
| GeoE | | | 89.29 112 | 88.68 111 | 89.99 104 | 92.75 119 | 96.03 105 | 93.07 107 | 83.79 145 | 86.98 120 | 81.34 106 | 74.72 142 | 78.92 125 | 91.22 85 | 93.31 112 | 93.21 103 | 97.78 100 | 97.60 71 |
|
| diffmvs |  | | 91.37 79 | 91.09 88 | 91.70 81 | 92.71 120 | 96.47 95 | 94.03 82 | 88.78 85 | 92.74 56 | 85.43 89 | 83.63 88 | 80.37 118 | 91.76 81 | 93.39 110 | 93.78 84 | 97.50 119 | 97.23 83 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DI_MVS_plusplus_trai | | | 91.05 83 | 90.15 96 | 92.11 76 | 92.67 121 | 96.61 90 | 96.03 48 | 88.44 91 | 90.25 82 | 85.92 76 | 73.73 146 | 84.89 89 | 91.92 78 | 94.17 91 | 94.07 80 | 97.68 111 | 97.31 81 |
|
| Anonymous20231211 | | | 89.82 103 | 88.18 117 | 91.74 80 | 92.52 122 | 96.09 104 | 93.38 101 | 89.30 81 | 88.95 105 | 85.90 77 | 64.55 196 | 84.39 90 | 92.41 75 | 92.24 130 | 93.06 109 | 96.93 149 | 97.95 55 |
|
| tpmrst | | | 83.72 172 | 83.45 166 | 84.03 169 | 92.21 123 | 91.66 189 | 88.74 169 | 73.58 205 | 88.14 112 | 72.67 145 | 77.37 126 | 72.11 154 | 86.34 142 | 82.94 207 | 82.05 206 | 90.63 211 | 89.86 194 |
|
| CostFormer | | | 86.78 131 | 86.05 142 | 87.62 131 | 92.15 124 | 93.20 152 | 91.55 129 | 75.83 196 | 88.11 113 | 85.29 90 | 81.76 104 | 76.22 144 | 87.80 125 | 84.45 202 | 85.21 198 | 93.12 196 | 93.42 168 |
|
| Vis-MVSNet |  | | 89.36 110 | 91.49 82 | 86.88 136 | 92.10 125 | 97.60 66 | 92.16 121 | 85.89 121 | 84.21 146 | 75.20 133 | 82.58 98 | 87.13 75 | 77.40 192 | 95.90 54 | 95.63 53 | 98.51 26 | 97.36 78 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IterMVS-LS | | | 88.60 115 | 88.45 112 | 88.78 114 | 92.02 126 | 92.44 175 | 92.00 125 | 83.57 149 | 86.52 126 | 78.90 122 | 78.61 120 | 81.34 114 | 89.12 114 | 90.68 156 | 93.18 104 | 97.10 135 | 96.35 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchmatchNet |  | | 85.70 143 | 86.65 135 | 84.60 160 | 91.79 127 | 93.40 144 | 89.27 159 | 73.62 203 | 90.19 85 | 72.63 146 | 82.74 97 | 81.93 112 | 87.64 128 | 84.99 200 | 84.29 202 | 92.64 200 | 89.00 197 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpm cat1 | | | 84.13 165 | 81.99 185 | 86.63 140 | 91.74 128 | 91.50 192 | 90.68 132 | 75.69 197 | 86.12 129 | 85.44 88 | 72.39 157 | 70.72 158 | 85.16 154 | 80.89 211 | 81.56 207 | 91.07 209 | 90.71 187 |
|
| USDC | | | 86.73 132 | 85.96 146 | 87.63 130 | 91.64 129 | 93.97 129 | 92.76 108 | 84.58 135 | 88.19 111 | 70.67 158 | 80.10 113 | 67.86 173 | 89.43 105 | 91.81 136 | 89.77 176 | 96.69 159 | 90.05 193 |
|
| SCA | | | 86.25 134 | 87.52 130 | 84.77 157 | 91.59 130 | 93.90 130 | 89.11 163 | 73.25 208 | 90.38 81 | 72.84 144 | 83.26 89 | 83.79 93 | 88.49 123 | 86.07 197 | 85.56 195 | 93.33 194 | 89.67 195 |
|
| gg-mvs-nofinetune | | | 81.83 191 | 83.58 164 | 79.80 198 | 91.57 131 | 96.54 93 | 93.79 90 | 68.80 215 | 62.71 219 | 43.01 224 | 55.28 211 | 85.06 88 | 83.65 166 | 96.13 49 | 94.86 67 | 97.98 91 | 94.46 153 |
|
| Fast-Effi-MVS+ | | | 88.56 117 | 87.99 120 | 89.22 110 | 91.56 132 | 95.21 110 | 92.29 116 | 82.69 156 | 86.82 121 | 77.73 124 | 76.24 135 | 73.39 150 | 93.36 63 | 94.22 90 | 93.64 86 | 97.65 113 | 96.43 107 |
|
| CMPMVS |  | 61.19 17 | 79.86 198 | 77.46 206 | 82.66 187 | 91.54 133 | 91.82 187 | 83.25 199 | 81.57 172 | 70.51 211 | 68.64 172 | 59.89 207 | 66.77 179 | 79.63 186 | 84.00 205 | 84.30 201 | 91.34 207 | 84.89 210 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ADS-MVSNet | | | 84.08 166 | 84.95 154 | 83.05 182 | 91.53 134 | 91.75 188 | 88.16 173 | 70.70 212 | 89.96 91 | 69.51 166 | 78.83 117 | 76.97 141 | 86.29 143 | 84.08 204 | 84.60 200 | 92.13 205 | 88.48 202 |
|
| test-LLR | | | 86.88 129 | 88.28 114 | 85.24 152 | 91.22 135 | 92.07 181 | 87.41 179 | 83.62 147 | 84.58 139 | 69.33 167 | 83.00 91 | 82.79 98 | 84.24 160 | 92.26 128 | 89.81 174 | 95.64 178 | 93.44 166 |
|
| test0.0.03 1 | | | 85.58 145 | 87.69 126 | 83.11 179 | 91.22 135 | 92.54 172 | 85.60 195 | 83.62 147 | 85.66 133 | 67.84 178 | 82.79 96 | 79.70 122 | 73.51 205 | 91.15 148 | 90.79 147 | 96.88 153 | 91.23 183 |
|
| baseline2 | | | 88.97 114 | 89.50 101 | 88.36 118 | 91.14 137 | 95.30 109 | 90.13 144 | 85.17 130 | 87.24 117 | 80.80 112 | 84.46 82 | 78.44 129 | 85.60 149 | 93.54 106 | 91.87 132 | 97.31 124 | 95.66 133 |
|
| Effi-MVS+-dtu | | | 87.51 124 | 88.13 118 | 86.77 138 | 91.10 138 | 94.90 114 | 90.91 131 | 82.67 157 | 83.47 153 | 71.55 150 | 81.11 109 | 77.04 140 | 89.41 106 | 92.65 121 | 91.68 138 | 95.00 191 | 96.09 120 |
|
| RPMNet | | | 84.82 156 | 85.90 147 | 83.56 174 | 91.10 138 | 92.10 179 | 88.73 170 | 71.11 211 | 84.75 137 | 68.79 170 | 73.56 148 | 77.62 137 | 85.33 153 | 90.08 166 | 89.43 180 | 96.32 165 | 93.77 164 |
|
| CR-MVSNet | | | 85.48 147 | 86.29 139 | 84.53 162 | 91.08 140 | 92.10 179 | 89.18 161 | 73.30 206 | 84.75 137 | 71.08 155 | 73.12 156 | 77.91 134 | 86.27 144 | 91.48 140 | 90.75 150 | 96.27 166 | 93.94 160 |
|
| TinyColmap | | | 84.04 167 | 82.01 184 | 86.42 142 | 90.87 141 | 91.84 186 | 88.89 168 | 84.07 142 | 82.11 163 | 69.89 163 | 71.08 161 | 60.81 207 | 89.04 115 | 90.52 158 | 89.19 182 | 95.76 172 | 88.50 201 |
|
| tpm | | | 83.16 178 | 83.64 163 | 82.60 188 | 90.75 142 | 91.05 195 | 88.49 171 | 73.99 201 | 82.36 160 | 67.08 184 | 78.10 122 | 68.79 167 | 84.17 162 | 85.95 198 | 85.96 193 | 91.09 208 | 93.23 170 |
|
| dps | | | 85.00 153 | 83.21 173 | 87.08 134 | 90.73 143 | 92.55 171 | 89.34 158 | 75.29 198 | 84.94 136 | 87.01 65 | 79.27 116 | 67.69 174 | 87.27 134 | 84.22 203 | 83.56 203 | 92.83 199 | 90.25 191 |
|
| MDTV_nov1_ep13 | | | 86.64 133 | 87.50 131 | 85.65 147 | 90.73 143 | 93.69 137 | 89.96 148 | 78.03 190 | 89.48 101 | 76.85 128 | 84.92 79 | 82.42 104 | 86.14 146 | 86.85 194 | 86.15 191 | 92.17 203 | 88.97 198 |
|
| CDS-MVSNet | | | 88.34 118 | 88.71 110 | 87.90 126 | 90.70 145 | 94.54 116 | 92.38 113 | 86.02 120 | 80.37 170 | 79.42 119 | 79.30 115 | 83.43 94 | 82.04 175 | 93.39 110 | 94.01 81 | 96.86 155 | 95.93 128 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IterMVS-SCA-FT | | | 85.44 149 | 86.71 134 | 83.97 170 | 90.59 146 | 90.84 198 | 89.73 154 | 78.34 187 | 84.07 150 | 66.40 187 | 77.27 128 | 78.66 127 | 83.06 168 | 91.20 145 | 90.10 169 | 95.72 175 | 94.78 149 |
|
| IterMVS | | | 85.25 151 | 86.49 137 | 83.80 171 | 90.42 147 | 90.77 201 | 90.02 146 | 78.04 189 | 84.10 148 | 66.27 188 | 77.28 127 | 78.41 130 | 83.01 169 | 90.88 150 | 89.72 178 | 95.04 189 | 94.24 156 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Fast-Effi-MVS+-dtu | | | 86.25 134 | 87.70 125 | 84.56 161 | 90.37 148 | 93.70 136 | 90.54 134 | 78.14 188 | 83.50 152 | 65.37 193 | 81.59 107 | 75.83 146 | 86.09 148 | 91.70 138 | 91.70 136 | 96.88 153 | 95.84 130 |
|
| dmvs_re | | | 87.31 126 | 86.10 141 | 88.74 115 | 89.84 149 | 94.28 124 | 92.66 110 | 89.41 78 | 82.61 159 | 74.69 134 | 74.69 143 | 69.47 165 | 87.78 126 | 92.38 126 | 93.23 100 | 98.03 83 | 96.02 124 |
|
| FC-MVSNet-test | | | 86.15 137 | 89.10 107 | 82.71 186 | 89.83 150 | 93.18 153 | 87.88 176 | 84.69 132 | 86.54 125 | 62.18 202 | 82.39 101 | 83.31 95 | 74.18 202 | 92.52 124 | 91.86 133 | 97.50 119 | 93.88 162 |
|
| GA-MVS | | | 85.08 152 | 85.65 150 | 84.42 163 | 89.77 151 | 94.25 125 | 89.26 160 | 84.62 134 | 81.19 167 | 62.25 201 | 75.72 138 | 68.44 170 | 84.14 163 | 93.57 104 | 91.68 138 | 96.49 160 | 94.71 151 |
|
| PMMVS | | | 89.88 102 | 91.19 86 | 88.35 119 | 89.73 152 | 91.97 185 | 90.62 133 | 81.92 168 | 90.57 78 | 80.58 115 | 92.16 35 | 86.85 78 | 91.17 86 | 92.31 127 | 91.35 142 | 96.11 168 | 93.11 172 |
|
| tfpnnormal | | | 83.80 171 | 81.26 193 | 86.77 138 | 89.60 153 | 93.26 151 | 89.72 155 | 87.60 112 | 72.78 204 | 70.44 159 | 60.53 205 | 61.15 206 | 85.55 150 | 92.72 118 | 91.44 140 | 97.71 106 | 96.92 93 |
|
| CVMVSNet | | | 83.83 170 | 85.53 151 | 81.85 193 | 89.60 153 | 90.92 196 | 87.81 177 | 83.21 153 | 80.11 173 | 60.16 206 | 76.47 131 | 78.57 128 | 76.79 194 | 89.76 169 | 90.13 164 | 93.51 193 | 92.75 175 |
|
| testgi | | | 81.94 190 | 84.09 161 | 79.43 199 | 89.53 155 | 90.83 199 | 82.49 202 | 81.75 171 | 80.59 168 | 59.46 208 | 82.82 95 | 65.75 183 | 67.97 207 | 90.10 165 | 89.52 179 | 95.39 184 | 89.03 196 |
|
| UniMVSNet_ETH3D | | | 84.57 157 | 81.40 191 | 88.28 120 | 89.34 156 | 94.38 123 | 90.33 136 | 86.50 117 | 74.74 202 | 77.52 125 | 59.90 206 | 62.04 202 | 88.78 122 | 88.82 183 | 92.65 116 | 97.22 127 | 97.24 82 |
|
| LTVRE_ROB | | 81.71 16 | 82.44 188 | 81.84 186 | 83.13 178 | 89.01 157 | 92.99 158 | 88.90 167 | 82.32 163 | 66.26 215 | 54.02 216 | 74.68 144 | 59.62 213 | 88.87 120 | 90.71 155 | 92.02 129 | 95.68 177 | 96.62 99 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TAMVS | | | 84.94 155 | 84.95 154 | 84.93 156 | 88.82 158 | 93.18 153 | 88.44 172 | 81.28 175 | 77.16 189 | 73.76 140 | 75.43 140 | 76.57 143 | 82.04 175 | 90.59 157 | 90.79 147 | 95.22 187 | 90.94 185 |
|
| EG-PatchMatch MVS | | | 81.70 193 | 81.31 192 | 82.15 191 | 88.75 159 | 93.81 132 | 87.14 182 | 78.89 186 | 71.57 207 | 64.12 198 | 61.20 204 | 68.46 169 | 76.73 196 | 91.48 140 | 90.77 149 | 97.28 125 | 91.90 177 |
|
| TransMVSNet (Re) | | | 82.67 185 | 80.93 196 | 84.69 159 | 88.71 160 | 91.50 192 | 87.90 175 | 87.15 113 | 71.54 209 | 68.24 175 | 63.69 198 | 64.67 193 | 78.51 191 | 91.65 139 | 90.73 152 | 97.64 114 | 92.73 176 |
|
| FMVSNet3 | | | 90.19 100 | 90.06 99 | 90.34 95 | 88.69 161 | 93.85 131 | 94.58 67 | 85.78 123 | 90.03 88 | 85.56 84 | 77.38 123 | 86.13 80 | 89.22 113 | 93.29 113 | 94.36 73 | 98.20 67 | 95.40 142 |
|
| GBi-Net | | | 90.21 98 | 90.11 97 | 90.32 96 | 88.66 162 | 93.65 139 | 94.25 77 | 85.78 123 | 90.03 88 | 85.56 84 | 77.38 123 | 86.13 80 | 89.38 107 | 93.97 95 | 94.16 76 | 98.31 51 | 95.47 138 |
|
| test1 | | | 90.21 98 | 90.11 97 | 90.32 96 | 88.66 162 | 93.65 139 | 94.25 77 | 85.78 123 | 90.03 88 | 85.56 84 | 77.38 123 | 86.13 80 | 89.38 107 | 93.97 95 | 94.16 76 | 98.31 51 | 95.47 138 |
|
| FMVSNet2 | | | 89.61 106 | 89.14 106 | 90.16 102 | 88.66 162 | 93.65 139 | 94.25 77 | 85.44 127 | 88.57 109 | 84.96 94 | 73.53 149 | 83.82 92 | 89.38 107 | 94.23 89 | 94.68 70 | 98.31 51 | 95.47 138 |
|
| PatchT | | | 83.86 169 | 85.51 152 | 81.94 192 | 88.41 165 | 91.56 191 | 78.79 210 | 71.57 210 | 84.08 149 | 71.08 155 | 70.62 162 | 76.13 145 | 86.27 144 | 91.48 140 | 90.75 150 | 95.52 183 | 93.94 160 |
|
| UniMVSNet (Re) | | | 86.22 136 | 85.46 153 | 87.11 133 | 88.34 166 | 94.42 120 | 89.65 156 | 87.10 114 | 84.39 143 | 74.61 135 | 70.41 166 | 68.10 171 | 85.10 155 | 91.17 147 | 91.79 134 | 97.84 96 | 97.94 56 |
|
| NR-MVSNet | | | 85.46 148 | 84.54 158 | 86.52 141 | 88.33 167 | 93.78 133 | 90.45 135 | 87.87 101 | 84.40 141 | 71.61 149 | 70.59 163 | 62.09 201 | 82.79 171 | 91.75 137 | 91.75 135 | 98.10 77 | 97.44 75 |
|
| UniMVSNet_NR-MVSNet | | | 86.80 130 | 85.86 148 | 87.89 127 | 88.17 168 | 94.07 128 | 90.15 142 | 88.51 90 | 84.20 147 | 73.45 141 | 72.38 158 | 70.30 162 | 88.95 117 | 90.25 161 | 92.21 123 | 98.12 74 | 97.62 69 |
|
| thisisatest0515 | | | 85.70 143 | 87.00 133 | 84.19 166 | 88.16 169 | 93.67 138 | 84.20 198 | 84.14 141 | 83.39 155 | 72.91 143 | 76.79 129 | 74.75 147 | 78.82 190 | 92.57 123 | 91.26 143 | 96.94 146 | 96.56 104 |
|
| pm-mvs1 | | | 84.55 158 | 83.46 165 | 85.82 144 | 88.16 169 | 93.39 145 | 89.05 165 | 85.36 129 | 74.03 203 | 72.43 147 | 65.08 190 | 71.11 157 | 82.30 174 | 93.48 107 | 91.70 136 | 97.64 114 | 95.43 141 |
|
| gm-plane-assit | | | 77.65 203 | 78.50 201 | 76.66 203 | 87.96 171 | 85.43 214 | 64.70 220 | 74.50 199 | 64.15 217 | 51.26 219 | 61.32 203 | 58.17 215 | 84.11 164 | 95.16 65 | 93.83 83 | 97.45 121 | 91.41 180 |
|
| test-mter | | | 86.09 140 | 88.38 113 | 83.43 176 | 87.89 172 | 92.61 169 | 86.89 184 | 77.11 194 | 84.30 144 | 68.62 173 | 82.57 99 | 82.45 103 | 84.34 159 | 92.40 125 | 90.11 168 | 95.74 173 | 94.21 158 |
|
| pmmvs4 | | | 86.00 141 | 84.28 160 | 88.00 123 | 87.80 173 | 92.01 184 | 89.94 149 | 84.91 131 | 86.79 122 | 80.98 111 | 73.41 152 | 66.34 182 | 88.12 124 | 89.31 176 | 88.90 185 | 96.24 167 | 93.20 171 |
|
| TESTMET0.1,1 | | | 86.11 139 | 88.28 114 | 83.59 173 | 87.80 173 | 92.07 181 | 87.41 179 | 77.12 193 | 84.58 139 | 69.33 167 | 83.00 91 | 82.79 98 | 84.24 160 | 92.26 128 | 89.81 174 | 95.64 178 | 93.44 166 |
|
| DU-MVS | | | 86.12 138 | 84.81 156 | 87.66 128 | 87.77 175 | 93.78 133 | 90.15 142 | 87.87 101 | 84.40 141 | 73.45 141 | 70.59 163 | 64.82 191 | 88.95 117 | 90.14 162 | 92.33 120 | 97.76 102 | 97.62 69 |
|
| Baseline_NR-MVSNet | | | 85.28 150 | 83.42 168 | 87.46 132 | 87.77 175 | 90.80 200 | 89.90 152 | 87.69 107 | 83.93 151 | 74.16 137 | 64.72 194 | 66.43 181 | 87.48 132 | 90.14 162 | 90.83 146 | 97.73 105 | 97.11 88 |
|
| SixPastTwentyTwo | | | 83.12 180 | 83.44 167 | 82.74 185 | 87.71 177 | 93.11 157 | 82.30 203 | 82.33 162 | 79.24 178 | 64.33 196 | 78.77 119 | 62.75 197 | 84.11 164 | 88.11 185 | 87.89 187 | 95.70 176 | 94.21 158 |
|
| TranMVSNet+NR-MVSNet | | | 85.57 146 | 84.41 159 | 86.92 135 | 87.67 178 | 93.34 146 | 90.31 138 | 88.43 92 | 83.07 156 | 70.11 162 | 69.99 169 | 65.28 186 | 86.96 136 | 89.73 170 | 92.27 121 | 98.06 81 | 97.17 87 |
|
| WR-MVS | | | 83.14 179 | 83.38 170 | 82.87 184 | 87.55 179 | 93.29 148 | 86.36 189 | 84.21 139 | 80.05 174 | 66.41 186 | 66.91 178 | 66.92 178 | 75.66 199 | 88.96 181 | 90.56 155 | 97.05 138 | 96.96 91 |
|
| v8 | | | 84.45 163 | 83.30 172 | 85.80 145 | 87.53 180 | 92.95 159 | 90.31 138 | 82.46 161 | 80.46 169 | 71.43 151 | 66.99 177 | 67.16 176 | 86.14 146 | 89.26 177 | 90.22 163 | 96.94 146 | 96.06 121 |
|
| WR-MVS_H | | | 82.86 184 | 82.66 178 | 83.10 180 | 87.44 181 | 93.33 147 | 85.71 194 | 83.20 154 | 77.36 188 | 68.20 176 | 66.37 181 | 65.23 187 | 76.05 198 | 89.35 174 | 90.13 164 | 97.99 88 | 96.89 94 |
|
| v148 | | | 83.61 173 | 82.10 182 | 85.37 149 | 87.34 182 | 92.94 160 | 87.48 178 | 85.72 126 | 78.92 179 | 73.87 139 | 65.71 187 | 64.69 192 | 81.78 179 | 87.82 186 | 89.35 181 | 96.01 169 | 95.26 144 |
|
| v10 | | | 84.18 164 | 83.17 174 | 85.37 149 | 87.34 182 | 92.68 167 | 90.32 137 | 81.33 174 | 79.93 177 | 69.23 169 | 66.33 182 | 65.74 184 | 87.03 135 | 90.84 151 | 90.38 158 | 96.97 142 | 96.29 114 |
|
| v2v482 | | | 84.51 159 | 83.05 175 | 86.20 143 | 87.25 184 | 93.28 149 | 90.22 140 | 85.40 128 | 79.94 176 | 69.78 164 | 67.74 174 | 65.15 188 | 87.57 129 | 89.12 179 | 90.55 156 | 96.97 142 | 95.60 135 |
|
| CP-MVSNet | | | 83.11 181 | 82.15 181 | 84.23 165 | 87.20 185 | 92.70 166 | 86.42 188 | 83.53 150 | 77.83 186 | 67.67 179 | 66.89 180 | 60.53 209 | 82.47 172 | 89.23 178 | 90.65 154 | 98.08 78 | 97.20 86 |
|
| v1144 | | | 84.03 168 | 82.88 176 | 85.37 149 | 87.17 186 | 93.15 156 | 90.18 141 | 83.31 152 | 78.83 180 | 67.85 177 | 65.99 184 | 64.99 189 | 86.79 138 | 90.75 153 | 90.33 160 | 96.90 151 | 96.15 118 |
|
| V42 | | | 84.48 161 | 83.36 171 | 85.79 146 | 87.14 187 | 93.28 149 | 90.03 145 | 83.98 143 | 80.30 171 | 71.20 154 | 66.90 179 | 67.17 175 | 85.55 150 | 89.35 174 | 90.27 161 | 96.82 156 | 96.27 115 |
|
| pmmvs5 | | | 83.37 176 | 82.68 177 | 84.18 167 | 87.13 188 | 93.18 153 | 86.74 185 | 82.08 166 | 76.48 193 | 67.28 182 | 71.26 160 | 62.70 198 | 84.71 157 | 90.77 152 | 90.12 167 | 97.15 131 | 94.24 156 |
|
| FMVSNet1 | | | 87.33 125 | 86.00 145 | 88.89 112 | 87.13 188 | 92.83 164 | 93.08 106 | 84.46 137 | 81.35 166 | 82.20 102 | 66.33 182 | 77.96 133 | 88.96 116 | 93.97 95 | 94.16 76 | 97.54 118 | 95.38 143 |
|
| PS-CasMVS | | | 82.53 186 | 81.54 189 | 83.68 172 | 87.08 190 | 92.54 172 | 86.20 190 | 83.46 151 | 76.46 194 | 65.73 191 | 65.71 187 | 59.41 214 | 81.61 180 | 89.06 180 | 90.55 156 | 98.03 83 | 97.07 89 |
|
| our_test_3 | | | | | | 86.93 191 | 89.77 202 | 81.61 204 | | | | | | | | | | |
|
| PEN-MVS | | | 82.49 187 | 81.58 188 | 83.56 174 | 86.93 191 | 92.05 183 | 86.71 186 | 83.84 144 | 76.94 191 | 64.68 195 | 67.24 175 | 60.11 210 | 81.17 182 | 87.78 187 | 90.70 153 | 98.02 85 | 96.21 116 |
|
| v1192 | | | 83.56 174 | 82.35 179 | 84.98 154 | 86.84 193 | 92.84 162 | 90.01 147 | 82.70 155 | 78.54 181 | 66.48 185 | 64.88 192 | 62.91 196 | 86.91 137 | 90.72 154 | 90.25 162 | 96.94 146 | 96.32 112 |
|
| v144192 | | | 83.48 175 | 82.23 180 | 84.94 155 | 86.65 194 | 92.84 162 | 89.63 157 | 82.48 160 | 77.87 185 | 67.36 181 | 65.33 189 | 63.50 195 | 86.51 140 | 89.72 171 | 89.99 172 | 97.03 139 | 96.35 110 |
|
| DTE-MVSNet | | | 81.76 192 | 81.04 194 | 82.60 188 | 86.63 195 | 91.48 194 | 85.97 192 | 83.70 146 | 76.45 195 | 62.44 200 | 67.16 176 | 59.98 211 | 78.98 189 | 87.15 191 | 89.93 173 | 97.88 95 | 95.12 146 |
|
| pmnet_mix02 | | | 80.14 197 | 80.21 198 | 80.06 196 | 86.61 196 | 89.66 203 | 80.40 207 | 82.20 165 | 82.29 162 | 61.35 203 | 71.52 159 | 66.67 180 | 76.75 195 | 82.55 208 | 80.18 211 | 93.05 197 | 88.62 199 |
|
| v1921920 | | | 83.30 177 | 82.09 183 | 84.70 158 | 86.59 197 | 92.67 168 | 89.82 153 | 82.23 164 | 78.32 182 | 65.76 190 | 64.64 195 | 62.35 199 | 86.78 139 | 90.34 160 | 90.02 170 | 97.02 140 | 96.31 113 |
|
| v1240 | | | 82.88 183 | 81.66 187 | 84.29 164 | 86.46 198 | 92.52 174 | 89.06 164 | 81.82 170 | 77.16 189 | 65.09 194 | 64.17 197 | 61.50 204 | 86.36 141 | 90.12 164 | 90.13 164 | 96.95 145 | 96.04 122 |
|
| anonymousdsp | | | 84.51 159 | 85.85 149 | 82.95 183 | 86.30 199 | 93.51 142 | 85.77 193 | 80.38 180 | 78.25 184 | 63.42 199 | 73.51 150 | 72.20 153 | 84.64 158 | 93.21 115 | 92.16 125 | 97.19 129 | 98.14 47 |
|
| pmmvs6 | | | 80.90 194 | 78.77 200 | 83.38 177 | 85.84 200 | 91.61 190 | 86.01 191 | 82.54 159 | 64.17 216 | 70.43 160 | 54.14 215 | 67.06 177 | 80.73 184 | 90.50 159 | 89.17 183 | 94.74 192 | 94.75 150 |
|
| MVS-HIRNet | | | 78.16 201 | 77.57 205 | 78.83 200 | 85.83 201 | 87.76 208 | 76.67 211 | 70.22 213 | 75.82 199 | 67.39 180 | 55.61 210 | 70.52 159 | 81.96 177 | 86.67 195 | 85.06 199 | 90.93 210 | 81.58 213 |
|
| test20.03 | | | 76.41 205 | 78.49 202 | 73.98 206 | 85.64 202 | 87.50 209 | 75.89 212 | 80.71 179 | 70.84 210 | 51.07 220 | 68.06 173 | 61.40 205 | 54.99 216 | 88.28 184 | 87.20 189 | 95.58 181 | 86.15 206 |
|
| v7n | | | 82.25 189 | 81.54 189 | 83.07 181 | 85.55 203 | 92.58 170 | 86.68 187 | 81.10 178 | 76.54 192 | 65.97 189 | 62.91 199 | 60.56 208 | 82.36 173 | 91.07 149 | 90.35 159 | 96.77 158 | 96.80 95 |
|
| N_pmnet | | | 77.55 204 | 76.68 207 | 78.56 201 | 85.43 204 | 87.30 211 | 78.84 209 | 81.88 169 | 78.30 183 | 60.61 204 | 61.46 201 | 62.15 200 | 74.03 204 | 82.04 209 | 80.69 210 | 90.59 212 | 84.81 211 |
|
| Anonymous20231206 | | | 78.09 202 | 78.11 203 | 78.07 202 | 85.19 205 | 89.17 204 | 80.99 205 | 81.24 177 | 75.46 200 | 58.25 210 | 54.78 214 | 59.90 212 | 66.73 210 | 88.94 182 | 88.26 186 | 96.01 169 | 90.25 191 |
|
| MDTV_nov1_ep13_2view | | | 80.43 195 | 80.94 195 | 79.84 197 | 84.82 206 | 90.87 197 | 84.23 197 | 73.80 202 | 80.28 172 | 64.33 196 | 70.05 168 | 68.77 168 | 79.67 185 | 84.83 201 | 83.50 204 | 92.17 203 | 88.25 204 |
|
| FPMVS | | | 69.87 211 | 67.10 214 | 73.10 208 | 84.09 207 | 78.35 219 | 79.40 208 | 76.41 195 | 71.92 205 | 57.71 211 | 54.06 216 | 50.04 220 | 56.72 214 | 71.19 217 | 68.70 217 | 84.25 217 | 75.43 217 |
|
| EU-MVSNet | | | 78.43 200 | 80.25 197 | 76.30 204 | 83.81 208 | 87.27 212 | 80.99 205 | 79.52 183 | 76.01 196 | 54.12 215 | 70.44 165 | 64.87 190 | 67.40 209 | 86.23 196 | 85.54 196 | 91.95 206 | 91.41 180 |
|
| FMVSNet5 | | | 84.47 162 | 84.72 157 | 84.18 167 | 83.30 209 | 88.43 206 | 88.09 174 | 79.42 184 | 84.25 145 | 74.14 138 | 73.15 155 | 78.74 126 | 83.65 166 | 91.19 146 | 91.19 144 | 96.46 162 | 86.07 207 |
|
| WB-MVS | | | 60.76 214 | 66.86 215 | 53.64 214 | 82.24 210 | 72.70 220 | 48.70 226 | 82.04 167 | 63.91 218 | 12.91 229 | 64.77 193 | 49.00 223 | 22.74 224 | 75.95 215 | 75.36 215 | 73.22 223 | 66.33 221 |
|
| MIMVSNet | | | 82.97 182 | 84.00 162 | 81.77 194 | 82.23 211 | 92.25 178 | 87.40 181 | 72.73 209 | 81.48 165 | 69.55 165 | 68.79 171 | 72.42 152 | 81.82 178 | 92.23 131 | 92.25 122 | 96.89 152 | 88.61 200 |
|
| PM-MVS | | | 80.29 196 | 79.30 199 | 81.45 195 | 81.91 212 | 88.23 207 | 82.61 201 | 79.01 185 | 79.99 175 | 67.15 183 | 69.07 170 | 51.39 219 | 82.92 170 | 87.55 189 | 85.59 194 | 95.08 188 | 93.28 169 |
|
| pmmvs-eth3d | | | 79.78 199 | 77.58 204 | 82.34 190 | 81.57 213 | 87.46 210 | 82.92 200 | 81.28 175 | 75.33 201 | 71.34 152 | 61.88 200 | 52.41 218 | 81.59 181 | 87.56 188 | 86.90 190 | 95.36 186 | 91.48 179 |
|
| new-patchmatchnet | | | 72.32 208 | 71.09 211 | 73.74 207 | 81.17 214 | 84.86 215 | 72.21 217 | 77.48 192 | 68.32 213 | 54.89 214 | 55.10 212 | 49.31 222 | 63.68 213 | 79.30 213 | 76.46 214 | 93.03 198 | 84.32 212 |
|
| ET-MVSNet_ETH3D | | | 89.93 101 | 90.84 90 | 88.87 113 | 79.60 215 | 96.19 101 | 94.43 70 | 86.56 116 | 90.63 74 | 80.75 113 | 90.71 44 | 77.78 135 | 93.73 58 | 91.36 143 | 93.45 94 | 98.15 71 | 95.77 131 |
|
| PMVS |  | 56.77 18 | 61.27 213 | 58.64 217 | 64.35 212 | 75.66 216 | 54.60 224 | 53.62 223 | 74.23 200 | 53.69 221 | 58.37 209 | 44.27 220 | 49.38 221 | 44.16 220 | 69.51 219 | 65.35 219 | 80.07 219 | 73.66 218 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 72.29 209 | 73.25 209 | 71.16 211 | 75.35 217 | 81.38 216 | 73.72 216 | 69.27 214 | 75.97 197 | 49.84 221 | 56.27 209 | 56.12 217 | 69.08 206 | 81.73 210 | 80.86 209 | 89.72 215 | 80.44 215 |
|
| ambc | | | | 67.96 213 | | 73.69 218 | 79.79 218 | 73.82 215 | | 71.61 206 | 59.80 207 | 46.00 218 | 20.79 228 | 66.15 211 | 86.92 193 | 80.11 212 | 89.13 216 | 90.50 188 |
|
| pmmvs3 | | | 71.13 210 | 71.06 212 | 71.21 210 | 73.54 219 | 80.19 217 | 71.69 218 | 64.86 217 | 62.04 220 | 52.10 217 | 54.92 213 | 48.00 224 | 75.03 200 | 83.75 206 | 83.24 205 | 90.04 214 | 85.27 208 |
|
| MDA-MVSNet-bldmvs | | | 73.81 206 | 72.56 210 | 75.28 205 | 72.52 220 | 88.87 205 | 74.95 214 | 82.67 157 | 71.57 207 | 55.02 213 | 65.96 185 | 42.84 226 | 76.11 197 | 70.61 218 | 81.47 208 | 90.38 213 | 86.59 205 |
|
| tmp_tt | | | | | 50.24 217 | 68.55 221 | 46.86 226 | 48.90 225 | 18.28 224 | 86.51 127 | 68.32 174 | 70.19 167 | 65.33 185 | 26.69 223 | 74.37 216 | 66.80 218 | 70.72 224 | |
|
| Gipuma |  | | 58.52 215 | 56.17 218 | 61.27 213 | 67.14 222 | 58.06 223 | 52.16 224 | 68.40 216 | 69.00 212 | 45.02 223 | 22.79 222 | 20.57 229 | 55.11 215 | 76.27 214 | 79.33 213 | 79.80 220 | 67.16 220 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 73.19 207 | 73.70 208 | 72.60 209 | 65.42 223 | 86.69 213 | 75.56 213 | 79.65 182 | 67.87 214 | 55.30 212 | 45.24 219 | 56.41 216 | 63.79 212 | 86.98 192 | 87.66 188 | 95.85 171 | 85.04 209 |
|
| PMMVS2 | | | 53.68 217 | 55.72 219 | 51.30 215 | 58.84 224 | 67.02 222 | 54.23 222 | 60.97 220 | 47.50 222 | 19.42 226 | 34.81 221 | 31.97 227 | 30.88 222 | 65.84 220 | 69.99 216 | 83.47 218 | 72.92 219 |
|
| EMVS | | | 39.04 220 | 34.32 222 | 44.54 219 | 58.25 225 | 39.35 228 | 27.61 228 | 62.55 219 | 35.99 223 | 16.40 228 | 20.04 225 | 14.77 230 | 44.80 218 | 33.12 224 | 44.10 223 | 57.61 226 | 52.89 224 |
|
| E-PMN | | | 40.00 218 | 35.74 221 | 44.98 218 | 57.69 226 | 39.15 229 | 28.05 227 | 62.70 218 | 35.52 224 | 17.78 227 | 20.90 223 | 14.36 231 | 44.47 219 | 35.89 223 | 47.86 222 | 59.15 225 | 56.47 223 |
|
| MVE |  | 39.81 19 | 39.52 219 | 41.58 220 | 37.11 220 | 33.93 227 | 49.06 225 | 26.45 229 | 54.22 221 | 29.46 225 | 24.15 225 | 20.77 224 | 10.60 232 | 34.42 221 | 51.12 222 | 65.27 220 | 49.49 227 | 64.81 222 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 58.10 216 | 64.61 216 | 50.51 216 | 28.26 228 | 41.71 227 | 61.28 221 | 32.07 223 | 75.92 198 | 52.04 218 | 47.94 217 | 61.83 203 | 51.80 217 | 79.83 212 | 63.95 221 | 77.60 221 | 81.05 214 |
|
| testmvs | | | 4.35 221 | 6.54 223 | 1.79 222 | 0.60 229 | 1.82 230 | 3.06 231 | 0.95 225 | 7.22 226 | 0.88 231 | 12.38 226 | 1.25 233 | 3.87 226 | 6.09 225 | 5.58 224 | 1.40 228 | 11.42 226 |
|
| GG-mvs-BLEND | | | 62.84 212 | 90.21 94 | 30.91 221 | 0.57 230 | 94.45 119 | 86.99 183 | 0.34 227 | 88.71 107 | 0.98 230 | 81.55 108 | 91.58 58 | 0.86 227 | 92.66 120 | 91.43 141 | 95.73 174 | 91.11 184 |
|
| test123 | | | 3.48 222 | 5.31 224 | 1.34 223 | 0.20 231 | 1.52 231 | 2.17 232 | 0.58 226 | 6.13 227 | 0.31 232 | 9.85 227 | 0.31 234 | 3.90 225 | 2.65 226 | 5.28 225 | 0.87 229 | 11.46 225 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| RE-MVS-def | | | | | | | | | | | 60.19 205 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 97.28 23 | | | | | |
|
| MTAPA | | | | | | | | | | | 95.36 2 | | 97.46 21 | | | | | |
|
| MTMP | | | | | | | | | | | 95.70 1 | | 96.90 27 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 18.47 230 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 91.63 67 | | | | | | | | |
|
| Patchmtry | | | | | | | 92.39 176 | 89.18 161 | 73.30 206 | | 71.08 155 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 71.82 221 | 68.37 219 | 48.05 222 | 77.38 187 | 46.88 222 | 65.77 186 | 47.03 225 | 67.48 208 | 64.27 221 | | 76.89 222 | 76.72 216 |
|