This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13298.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2099.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12398.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2499.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2199.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30096.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 10898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14597.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 16898.85 798.94 193.33 1799.83 2296.72 1999.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9697.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4799.51 2999.40 53
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11598.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5299.17 7299.56 22
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9298.19 4492.82 9697.93 2098.74 1191.60 5399.86 896.26 3199.52 2599.67 8
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5599.40 4599.62 13
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14098.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2599.39 4799.55 26
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16598.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1599.29 5799.56 22
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6099.59 1599.54 29
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16597.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1799.29 5799.55 26
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12598.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8198.24 3491.57 13097.90 2198.37 3692.61 2999.66 5295.59 6599.51 2999.43 49
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13898.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6799.59 1599.64 10
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6099.59 1599.62 13
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10497.18 3898.29 5092.08 3999.83 2295.12 7399.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8696.45 6898.30 4991.90 4599.85 1495.61 6299.68 499.54 29
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3499.27 6199.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15398.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10396.39 7098.18 5891.61 5299.88 495.59 6599.55 2199.57 19
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7798.10 6191.50 13298.01 1898.32 4692.33 3599.58 7194.85 8199.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8298.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2299.46 3898.96 92
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3099.30 5699.55 26
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 9997.59 2498.20 5791.96 4499.86 894.21 9599.25 6599.63 11
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10798.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7199.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4399.26 6399.43 49
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7695.95 8798.33 4491.04 6699.88 495.20 7099.57 2099.60 16
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10096.70 5298.06 6491.35 5999.86 894.83 8399.28 5999.47 44
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15397.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1599.13 7599.48 41
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4299.25 6599.51 34
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8598.98 192.22 11197.14 4198.44 2891.17 6499.85 1494.35 9399.46 3899.57 19
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10498.34 4190.59 7599.88 494.83 8399.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18097.11 4498.01 6892.52 3299.69 4496.03 4699.53 2499.36 58
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15398.06 7390.67 15995.55 10298.78 1091.07 6599.86 896.58 2399.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16996.72 22694.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 11899.08 80
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14896.40 6997.99 6990.99 6799.58 7195.61 6299.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22498.90 294.30 4695.86 8997.74 8792.33 3599.38 11296.04 4599.42 4399.28 65
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23698.18 4695.23 1295.87 8897.65 9491.45 5599.70 4395.87 4899.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16098.09 10586.63 26496.00 23498.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1899.48 3599.45 45
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15098.05 8089.85 18297.26 3598.22 5691.80 4799.69 4494.84 8299.28 5999.27 66
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 16097.73 11894.74 3596.49 6498.49 2490.88 7099.58 7196.44 2898.32 10299.13 74
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16896.77 4998.35 3890.21 7999.53 8994.80 8699.63 1299.38 56
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20998.00 9392.80 9796.03 8197.59 10192.01 4199.41 10795.01 7699.38 4899.29 62
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10399.72 3595.10 7499.07 8099.02 83
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14597.96 10095.42 794.86 11297.81 8287.38 11499.82 2596.88 1399.20 7099.29 62
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16197.72 12194.67 3696.16 7798.46 2690.43 7699.58 7196.23 3397.96 11298.90 99
train_agg96.30 5795.83 6497.72 3998.70 6094.19 4096.41 20198.02 8888.58 22096.03 8197.56 10592.73 2599.59 6895.04 7599.37 5299.39 54
ACMMPcopyleft96.27 5895.93 6197.28 5999.24 2892.62 8798.25 2998.81 392.99 8694.56 11698.39 3588.96 8999.85 1494.57 9297.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 22298.79 493.99 5195.80 9197.65 9489.92 8399.24 12195.87 4899.20 7098.58 119
agg_prior196.22 6095.77 6597.56 4898.67 6293.79 5596.28 21798.00 9388.76 21795.68 9697.55 10792.70 2799.57 7995.01 7699.32 5399.32 60
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14298.21 4088.16 23496.64 5797.70 8991.18 6399.67 4992.44 12799.47 3699.48 41
CS-MVS96.12 6296.17 5895.97 12196.69 16991.17 13998.49 1497.72 12193.80 5796.17 7697.13 12589.42 8598.60 17997.05 999.03 8398.15 150
DeepC-MVS93.07 396.06 6395.66 6697.29 5897.96 10993.17 7397.30 12198.06 7393.92 5293.38 14198.66 1286.83 12099.73 3295.60 6499.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6495.91 6296.46 9399.24 2890.47 15998.30 2498.57 1189.01 20393.97 12897.57 10392.62 2899.76 3094.66 8999.27 6199.15 72
ETV-MVS96.02 6595.89 6396.40 9697.16 14292.44 9297.47 10497.77 11494.55 3996.48 6594.51 25391.23 6298.92 15195.65 5898.19 10597.82 168
canonicalmvs96.02 6595.45 7197.75 3797.59 13295.15 2198.28 2697.60 13594.52 4096.27 7396.12 17987.65 10799.18 12696.20 3994.82 17798.91 98
CDPH-MVS95.97 6795.38 7497.77 3598.93 4794.44 3196.35 20997.88 10586.98 26496.65 5697.89 7291.99 4399.47 10092.26 12899.46 3899.39 54
UA-Net95.95 6895.53 6797.20 6697.67 12692.98 7897.65 8598.13 5494.81 3196.61 5898.35 3888.87 9099.51 9490.36 16797.35 12999.11 78
VNet95.89 6995.45 7197.21 6598.07 10792.94 7997.50 9998.15 5193.87 5397.52 2597.61 10085.29 14099.53 8995.81 5395.27 16999.16 70
alignmvs95.87 7095.23 7897.78 3397.56 13495.19 1897.86 6097.17 18694.39 4396.47 6696.40 16785.89 13399.20 12396.21 3895.11 17398.95 94
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26697.62 13490.43 17195.55 10297.07 12891.72 4899.50 9789.62 18198.94 8798.82 107
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14298.08 6488.35 22795.09 11097.65 9489.97 8299.48 9992.08 13798.59 9798.44 136
casdiffmvs95.64 7395.49 6996.08 11396.76 16790.45 16097.29 12297.44 16294.00 5095.46 10697.98 7087.52 11198.73 16795.64 5997.33 13099.08 80
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 23097.48 14793.47 7195.67 9998.10 6089.17 8799.25 12091.27 15598.77 9199.13 74
baseline95.58 7595.42 7396.08 11396.78 16490.41 16297.16 13697.45 15893.69 6395.65 10097.85 7887.29 11598.68 17295.66 5597.25 13399.13 74
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2298.11 5987.79 24595.17 10998.03 6687.09 11899.61 6293.51 11199.42 4399.02 83
EIA-MVS95.53 7795.47 7095.71 13597.06 15089.63 17997.82 6597.87 10793.57 6493.92 12995.04 23090.61 7498.95 14994.62 9098.68 9498.54 121
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 25998.02 6783.69 16199.71 3893.18 11998.96 8699.44 47
PS-MVSNAJ95.37 7995.33 7695.49 14997.35 13690.66 15595.31 26397.48 14793.85 5496.51 6395.70 20588.65 9499.65 5394.80 8698.27 10396.17 213
MVSFormer95.37 7995.16 8095.99 12096.34 18991.21 13298.22 3497.57 13991.42 13696.22 7497.32 11486.20 13097.92 25394.07 9899.05 8198.85 104
xiu_mvs_v2_base95.32 8195.29 7795.40 15497.22 13890.50 15895.44 25797.44 16293.70 6296.46 6796.18 17588.59 9799.53 8994.79 8897.81 11596.17 213
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12398.25 3390.21 17394.18 12397.27 11687.48 11299.73 3293.53 11097.77 11798.55 120
diffmvs95.25 8395.13 8195.63 13896.43 18589.34 19595.99 23597.35 17492.83 9596.31 7197.37 11386.44 12598.67 17396.26 3197.19 13598.87 103
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11198.15 5982.28 19498.92 15191.45 15298.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18398.67 597.00 20590.69 15894.24 12297.62 9989.79 8498.81 16093.39 11696.49 15098.92 97
EPNet95.20 8694.56 9397.14 6892.80 32292.68 8497.85 6394.87 31296.64 192.46 15797.80 8486.23 12799.65 5393.72 10898.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17693.36 6998.65 698.36 1694.12 4889.25 24398.06 6482.20 19699.77 2993.41 11599.32 5399.18 69
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19997.57 13992.04 12094.77 11497.96 7187.01 11999.09 13791.31 15496.77 14198.36 143
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12597.73 11891.80 12592.93 15496.62 15689.13 8899.14 13189.21 19397.78 11698.97 91
lupinMVS94.99 9394.56 9396.29 10696.34 18991.21 13295.83 24296.27 25288.93 20896.22 7496.88 13786.20 13098.85 15795.27 6999.05 8198.82 107
Effi-MVS+94.93 9494.45 9996.36 10196.61 17091.47 12396.41 20197.41 16791.02 15394.50 11795.92 18887.53 11098.78 16293.89 10496.81 14098.84 106
IS-MVSNet94.90 9594.52 9696.05 11697.67 12690.56 15698.44 1796.22 25593.21 7793.99 12697.74 8785.55 13898.45 19289.98 17097.86 11399.14 73
MVS_Test94.89 9694.62 9195.68 13696.83 16289.55 18496.70 17797.17 18691.17 14895.60 10196.11 18287.87 10498.76 16593.01 12497.17 13698.72 113
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 19095.47 25698.36 1688.84 21194.36 11996.09 18388.02 10099.58 7193.44 11398.18 10698.40 139
jason94.84 9894.39 10196.18 11195.52 22290.93 14696.09 22896.52 24289.28 19696.01 8597.32 11484.70 14798.77 16495.15 7298.91 8998.85 104
jason: jason.
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6797.48 14789.19 19994.81 11396.71 14288.84 9199.17 12788.91 19998.76 9296.53 204
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 23097.73 11881.56 32795.68 9697.85 7890.23 7899.65 5387.68 22299.12 7898.73 112
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19297.35 17490.61 16594.64 11596.93 13286.41 12699.39 11091.20 15794.71 18198.94 95
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 21398.06 7388.94 20794.50 11796.78 13984.60 14899.27 11991.90 13896.02 15498.68 117
CANet_DTU94.37 10593.65 11396.55 8496.46 18392.13 10496.21 22396.67 23494.38 4493.53 13797.03 13079.34 24399.71 3890.76 16198.45 10097.82 168
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19297.81 11389.87 17992.15 16797.06 12983.62 16499.54 8689.34 18798.07 10997.70 172
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19296.88 21790.13 17691.91 17397.24 11885.21 14199.09 13787.64 22597.83 11497.92 160
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8297.47 15088.13 23693.00 14995.84 19284.86 14699.51 9487.99 21198.17 10797.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12695.55 25297.71 12688.99 20492.34 16395.82 19489.19 8699.11 13386.14 25097.38 12798.90 99
hse-mvs394.15 11093.52 11896.04 11797.81 11990.22 16597.62 9197.58 13895.19 1496.74 5097.45 10983.67 16299.61 6295.85 5079.73 33098.29 146
CHOSEN 1792x268894.15 11093.51 11996.06 11598.27 8989.38 19395.18 27098.48 1485.60 28493.76 13297.11 12683.15 17199.61 6291.33 15398.72 9399.19 68
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17197.61 13087.92 23598.10 4195.80 26992.22 11193.02 14897.45 10984.53 15097.91 25688.24 20797.97 11199.02 83
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19691.46 12496.33 21297.04 20188.97 20693.56 13496.51 16087.55 10997.89 25789.80 17595.95 15698.44 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 11493.43 12396.13 11298.58 7191.15 14096.69 17997.39 16887.29 25991.37 18196.71 14288.39 9899.52 9387.33 23297.13 13797.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 11593.70 11095.27 15695.70 21692.03 10798.10 4198.68 793.36 7490.39 20196.70 14487.63 10897.94 25092.25 13090.50 24095.84 227
PVSNet_BlendedMVS94.06 11693.92 10594.47 19298.27 8989.46 19096.73 17398.36 1690.17 17494.36 11995.24 22488.02 10099.58 7193.44 11390.72 23694.36 306
nrg03094.05 11793.31 12796.27 10795.22 24494.59 2898.34 2197.46 15292.93 9391.21 19196.64 14987.23 11798.22 20694.99 7985.80 28295.98 222
UGNet94.04 11893.28 12896.31 10396.85 15991.19 13597.88 5997.68 12794.40 4293.00 14996.18 17573.39 30299.61 6291.72 14398.46 9998.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 11993.46 12195.64 13796.16 19890.45 16096.71 17696.89 21689.27 19793.46 13996.92 13587.29 11597.94 25088.70 20395.74 16198.53 122
114514_t93.95 12093.06 13296.63 8099.07 3991.61 11797.46 10697.96 10077.99 34393.00 14997.57 10386.14 13299.33 11489.22 19299.15 7398.94 95
FC-MVSNet-test93.94 12193.57 11495.04 16495.48 22491.45 12598.12 4098.71 593.37 7290.23 20496.70 14487.66 10697.85 25991.49 15090.39 24195.83 228
GeoE93.89 12293.28 12895.72 13496.96 15789.75 17898.24 3296.92 21389.47 19192.12 16997.21 12084.42 15198.39 19787.71 21896.50 14999.01 87
HY-MVS89.66 993.87 12392.95 13596.63 8097.10 14692.49 9195.64 25096.64 23589.05 20293.00 14995.79 19885.77 13699.45 10389.16 19694.35 18397.96 157
XVG-OURS-SEG-HR93.86 12493.55 11594.81 17797.06 15088.53 21995.28 26497.45 15891.68 12894.08 12597.68 9182.41 19298.90 15493.84 10692.47 20696.98 191
VDD-MVS93.82 12593.08 13196.02 11897.88 11689.96 17497.72 7795.85 26792.43 10695.86 8998.44 2868.42 32699.39 11096.31 2994.85 17598.71 115
mvs_anonymous93.82 12593.74 10994.06 20796.44 18485.41 28295.81 24397.05 19989.85 18290.09 21596.36 16987.44 11397.75 27093.97 10096.69 14599.02 83
HQP_MVS93.78 12793.43 12394.82 17596.21 19389.99 17097.74 7297.51 14594.85 2691.34 18296.64 14981.32 21098.60 17993.02 12292.23 20995.86 224
PS-MVSNAJss93.74 12893.51 11994.44 19393.91 29689.28 20097.75 7197.56 14292.50 10589.94 21896.54 15988.65 9498.18 21293.83 10790.90 23495.86 224
XVG-OURS93.72 12993.35 12694.80 18097.07 14788.61 21594.79 27497.46 15291.97 12393.99 12697.86 7781.74 20598.88 15692.64 12692.67 20496.92 195
HyFIR lowres test93.66 13092.92 13695.87 12598.24 9389.88 17594.58 27898.49 1285.06 29393.78 13195.78 19982.86 18098.67 17391.77 14295.71 16399.07 82
mvs-test193.63 13193.69 11193.46 24096.02 20584.61 29497.24 12596.72 22693.85 5492.30 16495.76 20083.08 17398.89 15591.69 14696.54 14896.87 197
LFMVS93.60 13292.63 14596.52 8598.13 10491.27 12997.94 5593.39 33590.57 16896.29 7298.31 4769.00 32299.16 12894.18 9795.87 15899.12 77
F-COLMAP93.58 13392.98 13495.37 15598.40 7888.98 20897.18 13497.29 17987.75 24890.49 19897.10 12785.21 14199.50 9786.70 24196.72 14497.63 174
ab-mvs93.57 13492.55 14996.64 7897.28 13791.96 11195.40 25897.45 15889.81 18493.22 14796.28 17279.62 24099.46 10190.74 16293.11 19898.50 126
LS3D93.57 13492.61 14796.47 9197.59 13291.61 11797.67 8297.72 12185.17 29190.29 20398.34 4184.60 14899.73 3283.85 28298.27 10398.06 156
Fast-Effi-MVS+93.46 13692.75 14195.59 14196.77 16590.03 16796.81 16897.13 18988.19 23091.30 18594.27 26986.21 12998.63 17687.66 22496.46 15298.12 152
hse-mvs293.45 13792.99 13394.81 17797.02 15488.59 21696.69 17996.47 24495.19 1496.74 5096.16 17883.67 16298.48 19195.85 5079.13 33497.35 186
QAPM93.45 13792.27 15996.98 7496.77 16592.62 8798.39 2098.12 5684.50 30188.27 26597.77 8582.39 19399.81 2685.40 26398.81 9098.51 125
UniMVSNet_NR-MVSNet93.37 13992.67 14495.47 15295.34 23392.83 8097.17 13598.58 1092.98 9190.13 21095.80 19588.37 9997.85 25991.71 14483.93 31095.73 237
1112_ss93.37 13992.42 15596.21 11097.05 15290.99 14296.31 21496.72 22686.87 26789.83 22296.69 14686.51 12499.14 13188.12 20993.67 19298.50 126
UniMVSNet (Re)93.31 14192.55 14995.61 14095.39 22793.34 7097.39 11198.71 593.14 8290.10 21494.83 23987.71 10598.03 23691.67 14883.99 30995.46 246
OPM-MVS93.28 14292.76 13994.82 17594.63 27590.77 15296.65 18397.18 18493.72 6091.68 17697.26 11779.33 24498.63 17692.13 13492.28 20895.07 270
VPA-MVSNet93.24 14392.48 15495.51 14695.70 21692.39 9397.86 6098.66 992.30 10992.09 17195.37 21980.49 22298.40 19493.95 10185.86 28195.75 235
RRT_MVS93.21 14492.32 15895.91 12394.92 25994.15 4396.92 15796.86 22091.42 13691.28 18896.43 16479.66 23998.10 22193.29 11790.06 24395.46 246
MVSTER93.20 14592.81 13894.37 19796.56 17689.59 18297.06 14197.12 19091.24 14591.30 18595.96 18682.02 19998.05 23293.48 11290.55 23895.47 245
HQP-MVS93.19 14692.74 14294.54 19195.86 20889.33 19696.65 18397.39 16893.55 6590.14 20695.87 19080.95 21398.50 18792.13 13492.10 21495.78 231
CHOSEN 280x42093.12 14792.72 14394.34 19996.71 16887.27 24690.29 34197.72 12186.61 27191.34 18295.29 22184.29 15598.41 19393.25 11898.94 8797.35 186
Effi-MVS+-dtu93.08 14893.21 13092.68 26896.02 20583.25 30897.14 13996.72 22693.85 5491.20 19293.44 30083.08 17398.30 20291.69 14695.73 16296.50 206
test_djsdf93.07 14992.76 13994.00 21093.49 30988.70 21498.22 3497.57 13991.42 13690.08 21695.55 21382.85 18197.92 25394.07 9891.58 22195.40 252
VDDNet93.05 15092.07 16296.02 11896.84 16090.39 16398.08 4395.85 26786.22 27695.79 9298.46 2667.59 32999.19 12494.92 8094.85 17598.47 131
thisisatest053093.03 15192.21 16095.49 14997.07 14789.11 20697.49 10392.19 34390.16 17594.09 12496.41 16676.43 28299.05 14390.38 16695.68 16498.31 145
EI-MVSNet93.03 15192.88 13793.48 23895.77 21386.98 25596.44 19797.12 19090.66 16191.30 18597.64 9786.56 12298.05 23289.91 17290.55 23895.41 249
CLD-MVS92.98 15392.53 15194.32 20096.12 20289.20 20295.28 26497.47 15092.66 10189.90 21995.62 20880.58 22098.40 19492.73 12592.40 20795.38 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 15492.33 15794.87 17497.11 14587.16 25297.97 5392.09 34490.63 16393.88 13097.01 13176.50 27999.06 14290.29 16995.45 16698.38 141
ACMM89.79 892.96 15492.50 15394.35 19896.30 19188.71 21397.58 9397.36 17391.40 13990.53 19796.65 14879.77 23698.75 16691.24 15691.64 21995.59 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 15692.56 14894.10 20596.16 19888.26 22597.65 8597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
BH-untuned92.94 15692.62 14693.92 21997.22 13886.16 27396.40 20496.25 25490.06 17789.79 22396.17 17783.19 16998.35 19987.19 23597.27 13297.24 188
DU-MVS92.90 15892.04 16395.49 14994.95 25792.83 8097.16 13698.24 3493.02 8590.13 21095.71 20383.47 16597.85 25991.71 14483.93 31095.78 231
PatchMatch-RL92.90 15892.02 16595.56 14298.19 10090.80 15095.27 26697.18 18487.96 23891.86 17595.68 20680.44 22398.99 14784.01 27897.54 12196.89 196
PMMVS92.86 16092.34 15694.42 19694.92 25986.73 26094.53 28096.38 24884.78 29894.27 12195.12 22983.13 17298.40 19491.47 15196.49 15098.12 152
OpenMVScopyleft89.19 1292.86 16091.68 17696.40 9695.34 23392.73 8398.27 2798.12 5684.86 29685.78 30297.75 8678.89 25499.74 3187.50 22998.65 9596.73 201
Test_1112_low_res92.84 16291.84 17195.85 12697.04 15389.97 17395.53 25496.64 23585.38 28789.65 22895.18 22585.86 13499.10 13487.70 21993.58 19798.49 128
baseline192.82 16391.90 16995.55 14497.20 14090.77 15297.19 13394.58 31792.20 11392.36 16196.34 17084.16 15698.21 20789.20 19483.90 31397.68 173
131492.81 16492.03 16495.14 16195.33 23689.52 18796.04 23097.44 16287.72 24986.25 29995.33 22083.84 15998.79 16189.26 19097.05 13897.11 189
DP-MVS92.76 16591.51 18496.52 8598.77 5790.99 14297.38 11396.08 26082.38 32089.29 24097.87 7583.77 16099.69 4481.37 30296.69 14598.89 101
BH-RMVSNet92.72 16691.97 16794.97 16997.16 14287.99 23496.15 22695.60 27790.62 16491.87 17497.15 12478.41 26198.57 18383.16 28497.60 12098.36 143
ACMP89.59 1092.62 16792.14 16194.05 20896.40 18688.20 22897.36 11497.25 18291.52 13188.30 26396.64 14978.46 25998.72 17091.86 14191.48 22395.23 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 16892.52 15292.44 27196.82 16381.89 31796.92 15793.71 33192.41 10784.30 31594.60 25185.08 14397.03 31191.51 14997.36 12898.40 139
TranMVSNet+NR-MVSNet92.50 16891.63 17795.14 16194.76 26892.07 10597.53 9798.11 5992.90 9489.56 23196.12 17983.16 17097.60 28389.30 18883.20 31995.75 235
thres600view792.49 17091.60 17895.18 15997.91 11489.47 18897.65 8594.66 31492.18 11793.33 14294.91 23478.06 26899.10 13481.61 29694.06 18996.98 191
thres100view90092.43 17191.58 17994.98 16897.92 11389.37 19497.71 7994.66 31492.20 11393.31 14394.90 23578.06 26899.08 13981.40 29994.08 18696.48 207
jajsoiax92.42 17291.89 17094.03 20993.33 31488.50 22097.73 7497.53 14392.00 12288.85 25096.50 16175.62 28898.11 22093.88 10591.56 22295.48 243
thres40092.42 17291.52 18295.12 16397.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.98 191
tfpn200view992.38 17491.52 18294.95 17197.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.48 207
WR-MVS92.34 17591.53 18194.77 18295.13 24990.83 14996.40 20497.98 9891.88 12489.29 24095.54 21482.50 18997.80 26489.79 17685.27 29095.69 238
NR-MVSNet92.34 17591.27 19295.53 14594.95 25793.05 7597.39 11198.07 7092.65 10284.46 31395.71 20385.00 14497.77 26989.71 17783.52 31695.78 231
mvs_tets92.31 17791.76 17293.94 21793.41 31188.29 22397.63 9097.53 14392.04 12088.76 25496.45 16374.62 29298.09 22593.91 10391.48 22395.45 248
TAPA-MVS90.10 792.30 17891.22 19595.56 14298.33 8589.60 18196.79 16997.65 13181.83 32491.52 17897.23 11987.94 10298.91 15371.31 34698.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 17991.30 19095.25 15796.60 17188.90 21094.36 28792.32 34287.92 23993.43 14094.57 25277.28 27599.00 14689.42 18595.86 15997.86 164
Fast-Effi-MVS+-dtu92.29 17991.99 16693.21 25195.27 24085.52 28097.03 14296.63 23892.09 11889.11 24595.14 22780.33 22698.08 22687.54 22894.74 18096.03 221
IterMVS-LS92.29 17991.94 16893.34 24596.25 19286.97 25696.57 19597.05 19990.67 15989.50 23494.80 24186.59 12197.64 27889.91 17286.11 28095.40 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 18291.74 17593.73 22597.77 12283.69 30592.88 32296.72 22687.91 24093.00 14994.86 23778.51 25899.05 14386.53 24297.45 12698.47 131
VPNet92.23 18391.31 18994.99 16695.56 22090.96 14497.22 13197.86 11092.96 9290.96 19396.62 15675.06 29098.20 20991.90 13883.65 31595.80 230
thres20092.23 18391.39 18594.75 18497.61 13089.03 20796.60 19195.09 30092.08 11993.28 14494.00 28178.39 26299.04 14581.26 30394.18 18596.19 212
test_part192.21 18591.10 19995.51 14697.80 12092.66 8598.02 4797.68 12789.79 18588.80 25396.02 18476.85 27798.18 21290.86 15984.11 30895.69 238
anonymousdsp92.16 18691.55 18093.97 21392.58 32689.55 18497.51 9897.42 16689.42 19388.40 26094.84 23880.66 21997.88 25891.87 14091.28 22794.48 302
XXY-MVS92.16 18691.23 19494.95 17194.75 26990.94 14597.47 10497.43 16589.14 20088.90 24796.43 16479.71 23798.24 20489.56 18287.68 26495.67 240
BH-w/o92.14 18891.75 17393.31 24696.99 15685.73 27795.67 24795.69 27388.73 21889.26 24294.82 24082.97 17898.07 22985.26 26596.32 15396.13 217
Anonymous20240521192.07 18990.83 20895.76 12898.19 10088.75 21297.58 9395.00 30386.00 27993.64 13397.45 10966.24 33899.53 8990.68 16492.71 20299.01 87
WR-MVS_H92.00 19091.35 18693.95 21595.09 25189.47 18898.04 4698.68 791.46 13488.34 26194.68 24785.86 13497.56 28585.77 25884.24 30694.82 287
Anonymous2024052991.98 19190.73 21295.73 13398.14 10389.40 19297.99 4897.72 12179.63 33793.54 13697.41 11269.94 32099.56 8191.04 15891.11 22998.22 147
PatchmatchNetpermissive91.91 19291.35 18693.59 23395.38 22884.11 29993.15 31895.39 28389.54 18892.10 17093.68 29382.82 18298.13 21684.81 26995.32 16898.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 19391.24 19393.82 22295.05 25288.57 21797.82 6598.19 4491.70 12788.21 26795.76 20081.96 20097.52 29187.86 21384.65 29995.37 255
SCA91.84 19491.18 19793.83 22195.59 21884.95 29094.72 27595.58 27990.82 15492.25 16593.69 29175.80 28598.10 22186.20 24895.98 15598.45 133
FMVSNet391.78 19590.69 21495.03 16596.53 17892.27 9997.02 14596.93 20989.79 18589.35 23794.65 24977.01 27697.47 29486.12 25188.82 25395.35 256
AUN-MVS91.76 19690.75 21194.81 17797.00 15588.57 21796.65 18396.49 24389.63 18792.15 16796.12 17978.66 25698.50 18790.83 16079.18 33397.36 185
X-MVStestdata91.71 19789.67 25697.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6032.69 36291.70 5099.80 2795.66 5599.40 4599.62 13
MVS91.71 19790.44 22295.51 14695.20 24691.59 11996.04 23097.45 15873.44 35087.36 28495.60 20985.42 13999.10 13485.97 25597.46 12295.83 228
EPNet_dtu91.71 19791.28 19192.99 25793.76 30183.71 30396.69 17995.28 29093.15 8187.02 29195.95 18783.37 16897.38 30279.46 31496.84 13997.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20090.86 20493.94 21794.33 28586.32 26795.92 23891.64 34889.37 19486.94 29294.69 24681.62 20798.69 17188.64 20494.57 18296.81 199
miper_ehance_all_eth91.59 20191.13 19892.97 25895.55 22186.57 26594.47 28196.88 21787.77 24688.88 24994.01 28086.22 12897.54 28789.49 18386.93 27194.79 292
v2v48291.59 20190.85 20693.80 22393.87 29888.17 23096.94 15696.88 21789.54 18889.53 23294.90 23581.70 20698.02 23789.25 19185.04 29695.20 267
V4291.58 20390.87 20393.73 22594.05 29388.50 22097.32 11896.97 20688.80 21689.71 22494.33 26482.54 18898.05 23289.01 19785.07 29494.64 300
PCF-MVS89.48 1191.56 20489.95 24496.36 10196.60 17192.52 9092.51 32897.26 18079.41 33888.90 24796.56 15884.04 15899.55 8477.01 32897.30 13197.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bset_n11_16_dypcd91.55 20590.59 21794.44 19391.51 33490.25 16492.70 32593.42 33492.27 11090.22 20594.74 24478.42 26097.80 26494.19 9687.86 26395.29 265
PS-CasMVS91.55 20590.84 20793.69 22994.96 25688.28 22497.84 6498.24 3491.46 13488.04 27195.80 19579.67 23897.48 29387.02 23884.54 30395.31 258
miper_enhance_ethall91.54 20791.01 20093.15 25295.35 23287.07 25493.97 29996.90 21486.79 26889.17 24493.43 30286.55 12397.64 27889.97 17186.93 27194.74 296
PAPM91.52 20890.30 22895.20 15895.30 23989.83 17693.38 31496.85 22186.26 27588.59 25795.80 19584.88 14598.15 21575.67 33295.93 15797.63 174
ET-MVSNet_ETH3D91.49 20990.11 23895.63 13896.40 18691.57 12195.34 26093.48 33390.60 16775.58 34795.49 21680.08 23096.79 32094.25 9489.76 24798.52 123
TR-MVS91.48 21090.59 21794.16 20496.40 18687.33 24495.67 24795.34 28987.68 25091.46 17995.52 21576.77 27898.35 19982.85 28893.61 19596.79 200
tpmrst91.44 21191.32 18891.79 28895.15 24779.20 34093.42 31395.37 28588.55 22393.49 13893.67 29482.49 19098.27 20390.41 16589.34 25097.90 161
test-LLR91.42 21291.19 19692.12 27894.59 27680.66 32494.29 29192.98 33791.11 15090.76 19592.37 31479.02 24998.07 22988.81 20096.74 14297.63 174
MSDG91.42 21290.24 23294.96 17097.15 14488.91 20993.69 30796.32 25085.72 28386.93 29396.47 16280.24 22798.98 14880.57 30595.05 17496.98 191
cl_fuxian91.38 21490.89 20292.88 26195.58 21986.30 26894.68 27696.84 22288.17 23288.83 25294.23 27285.65 13797.47 29489.36 18684.63 30094.89 282
GA-MVS91.38 21490.31 22794.59 18694.65 27387.62 24294.34 28896.19 25790.73 15790.35 20293.83 28571.84 30597.96 24787.22 23493.61 19598.21 148
v114491.37 21690.60 21693.68 23093.89 29788.23 22796.84 16497.03 20388.37 22689.69 22694.39 26082.04 19897.98 24087.80 21585.37 28794.84 284
GBi-Net91.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
test191.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
UniMVSNet_ETH3D91.34 21990.22 23594.68 18594.86 26487.86 23897.23 13097.46 15287.99 23789.90 21996.92 13566.35 33698.23 20590.30 16890.99 23297.96 157
FMVSNet291.31 22090.08 23994.99 16696.51 17992.21 10097.41 10796.95 20788.82 21388.62 25694.75 24373.87 29697.42 29985.20 26688.55 25895.35 256
D2MVS91.30 22190.95 20192.35 27494.71 27185.52 28096.18 22598.21 4088.89 20986.60 29693.82 28779.92 23497.95 24989.29 18990.95 23393.56 320
v891.29 22290.53 22193.57 23594.15 28988.12 23297.34 11597.06 19888.99 20488.32 26294.26 27183.08 17398.01 23887.62 22683.92 31294.57 301
CVMVSNet91.23 22391.75 17389.67 32195.77 21374.69 34996.44 19794.88 30985.81 28192.18 16697.64 9779.07 24695.58 33788.06 21095.86 15998.74 111
cl-mvsnet291.21 22490.56 22093.14 25396.09 20486.80 25894.41 28596.58 24187.80 24488.58 25893.99 28280.85 21897.62 28189.87 17486.93 27194.99 273
PEN-MVS91.20 22590.44 22293.48 23894.49 27987.91 23797.76 7098.18 4691.29 14187.78 27695.74 20280.35 22597.33 30485.46 26282.96 32095.19 268
Baseline_NR-MVSNet91.20 22590.62 21592.95 25993.83 29988.03 23397.01 14995.12 29988.42 22589.70 22595.13 22883.47 16597.44 29789.66 18083.24 31893.37 324
cascas91.20 22590.08 23994.58 19094.97 25589.16 20593.65 30997.59 13779.90 33689.40 23592.92 30675.36 28998.36 19892.14 13394.75 17996.23 210
RRT_test8_iter0591.19 22890.78 20992.41 27395.76 21583.14 30997.32 11897.46 15291.37 14089.07 24695.57 21070.33 31598.21 20793.56 10986.62 27695.89 223
CostFormer91.18 22990.70 21392.62 26994.84 26581.76 31894.09 29794.43 31984.15 30492.72 15693.77 28979.43 24298.20 20990.70 16392.18 21297.90 161
v119291.07 23090.23 23393.58 23493.70 30287.82 23996.73 17397.07 19687.77 24689.58 22994.32 26680.90 21797.97 24386.52 24385.48 28594.95 274
v14419291.06 23190.28 22993.39 24293.66 30487.23 24996.83 16597.07 19687.43 25589.69 22694.28 26881.48 20898.00 23987.18 23684.92 29894.93 278
v1091.04 23290.23 23393.49 23794.12 29088.16 23197.32 11897.08 19588.26 22988.29 26494.22 27482.17 19797.97 24386.45 24584.12 30794.33 307
eth_miper_zixun_eth91.02 23390.59 21792.34 27595.33 23684.35 29594.10 29696.90 21488.56 22288.84 25194.33 26484.08 15797.60 28388.77 20284.37 30595.06 271
v14890.99 23490.38 22492.81 26493.83 29985.80 27696.78 17196.68 23289.45 19288.75 25593.93 28482.96 17997.82 26387.83 21483.25 31794.80 290
LTVRE_ROB88.41 1390.99 23489.92 24594.19 20296.18 19689.55 18496.31 21497.09 19487.88 24185.67 30395.91 18978.79 25598.57 18381.50 29789.98 24494.44 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet190.97 23690.33 22592.88 26195.36 23186.19 27294.46 28396.63 23887.82 24288.18 26894.23 27282.99 17697.53 28987.72 21685.57 28494.93 278
cl-mvsnet____90.96 23790.32 22692.89 26095.37 23086.21 27194.46 28396.64 23587.82 24288.15 26994.18 27582.98 17797.54 28787.70 21985.59 28394.92 280
pmmvs490.93 23889.85 24894.17 20393.34 31390.79 15194.60 27796.02 26184.62 29987.45 28095.15 22681.88 20397.45 29687.70 21987.87 26294.27 311
XVG-ACMP-BASELINE90.93 23890.21 23693.09 25494.31 28785.89 27595.33 26197.26 18091.06 15289.38 23695.44 21868.61 32498.60 17989.46 18491.05 23094.79 292
v192192090.85 24090.03 24393.29 24793.55 30586.96 25796.74 17297.04 20187.36 25789.52 23394.34 26380.23 22897.97 24386.27 24685.21 29194.94 276
CR-MVSNet90.82 24189.77 25293.95 21594.45 28187.19 25090.23 34295.68 27586.89 26692.40 15892.36 31780.91 21597.05 31081.09 30493.95 19097.60 179
v7n90.76 24289.86 24793.45 24193.54 30687.60 24397.70 8097.37 17188.85 21087.65 27894.08 27981.08 21298.10 22184.68 27183.79 31494.66 299
DWT-MVSNet_test90.76 24289.89 24693.38 24395.04 25383.70 30495.85 24194.30 32588.19 23090.46 19992.80 30773.61 30098.50 18788.16 20890.58 23797.95 159
RPSCF90.75 24490.86 20490.42 31496.84 16076.29 34795.61 25196.34 24983.89 30791.38 18097.87 7576.45 28098.78 16287.16 23792.23 20996.20 211
MVP-Stereo90.74 24590.08 23992.71 26693.19 31688.20 22895.86 24096.27 25286.07 27884.86 31194.76 24277.84 27197.75 27083.88 28198.01 11092.17 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 24689.65 25893.96 21494.29 28889.63 17997.79 6896.82 22389.07 20186.12 30195.48 21778.61 25797.78 26786.97 23981.67 32494.46 303
v124090.70 24789.85 24893.23 24993.51 30886.80 25896.61 18997.02 20487.16 26289.58 22994.31 26779.55 24197.98 24085.52 26185.44 28694.90 281
EPMVS90.70 24789.81 25093.37 24494.73 27084.21 29793.67 30888.02 35589.50 19092.38 16093.49 29877.82 27297.78 26786.03 25492.68 20398.11 155
Anonymous2023121190.63 24989.42 26094.27 20198.24 9389.19 20498.05 4597.89 10379.95 33588.25 26694.96 23172.56 30398.13 21689.70 17885.14 29295.49 242
DTE-MVSNet90.56 25089.75 25493.01 25693.95 29487.25 24797.64 8997.65 13190.74 15687.12 28795.68 20679.97 23397.00 31583.33 28381.66 32594.78 294
ACMH87.59 1690.53 25189.42 26093.87 22096.21 19387.92 23597.24 12596.94 20888.45 22483.91 32296.27 17371.92 30498.62 17884.43 27589.43 24995.05 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-090.51 25290.19 23791.44 29793.41 31181.25 32196.98 15296.28 25191.68 12886.55 29796.30 17174.20 29597.98 24088.96 19887.40 26995.09 269
miper_lstm_enhance90.50 25390.06 24291.83 28595.33 23683.74 30193.86 30296.70 23187.56 25387.79 27593.81 28883.45 16796.92 31787.39 23084.62 30194.82 287
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26393.79 22497.95 11087.13 25396.92 15795.89 26682.83 31886.88 29597.18 12173.77 29999.29 11878.44 31993.62 19494.95 274
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT90.31 25589.81 25091.82 28695.52 22284.20 29894.30 29096.15 25890.61 16587.39 28394.27 26975.80 28596.44 32387.34 23186.88 27594.82 287
MS-PatchMatch90.27 25689.77 25291.78 28994.33 28584.72 29395.55 25296.73 22586.17 27786.36 29895.28 22371.28 30997.80 26484.09 27798.14 10892.81 329
tpm90.25 25789.74 25591.76 29193.92 29579.73 33693.98 29893.54 33288.28 22891.99 17293.25 30377.51 27497.44 29787.30 23387.94 26198.12 152
AllTest90.23 25888.98 26793.98 21197.94 11186.64 26196.51 19695.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
ACMH+87.92 1490.20 25989.18 26593.25 24896.48 18286.45 26696.99 15096.68 23288.83 21284.79 31296.22 17470.16 31898.53 18584.42 27688.04 26094.77 295
test-mter90.19 26089.54 25992.12 27894.59 27680.66 32494.29 29192.98 33787.68 25090.76 19592.37 31467.67 32898.07 22988.81 20096.74 14297.63 174
IterMVS90.15 26189.67 25691.61 29395.48 22483.72 30294.33 28996.12 25989.99 17887.31 28694.15 27775.78 28796.27 32686.97 23986.89 27494.83 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 26289.42 26091.97 28194.41 28380.62 32694.29 29191.97 34687.28 26090.44 20092.47 31368.79 32397.67 27588.50 20696.60 14797.61 178
tpm289.96 26389.21 26492.23 27794.91 26281.25 32193.78 30494.42 32080.62 33391.56 17793.44 30076.44 28197.94 25085.60 26092.08 21697.49 183
IB-MVS87.33 1789.91 26488.28 27694.79 18195.26 24387.70 24195.12 27293.95 33089.35 19587.03 29092.49 31270.74 31399.19 12489.18 19581.37 32697.49 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 26588.68 27193.53 23695.86 20884.89 29190.93 33795.07 30183.23 31691.28 18891.81 32479.01 25197.85 25979.52 31191.39 22597.84 165
FMVSNet189.88 26688.31 27594.59 18695.41 22691.18 13697.50 9996.93 20986.62 27087.41 28294.51 25365.94 34097.29 30683.04 28687.43 26795.31 258
pmmvs589.86 26788.87 26992.82 26392.86 32086.23 27096.26 21895.39 28384.24 30387.12 28794.51 25374.27 29497.36 30387.61 22787.57 26594.86 283
tpmvs89.83 26889.15 26691.89 28394.92 25980.30 33093.11 31995.46 28286.28 27488.08 27092.65 30980.44 22398.52 18681.47 29889.92 24596.84 198
tfpnnormal89.70 26988.40 27493.60 23295.15 24790.10 16697.56 9598.16 5087.28 26086.16 30094.63 25077.57 27398.05 23274.48 33484.59 30292.65 332
ADS-MVSNet289.45 27088.59 27292.03 28095.86 20882.26 31690.93 33794.32 32483.23 31691.28 18891.81 32479.01 25195.99 32879.52 31191.39 22597.84 165
Patchmatch-test89.42 27187.99 27893.70 22895.27 24085.11 28688.98 34894.37 32281.11 32887.10 28993.69 29182.28 19497.50 29274.37 33694.76 17898.48 130
test0.0.03 189.37 27288.70 27091.41 29892.47 32785.63 27895.22 26992.70 34091.11 15086.91 29493.65 29579.02 24993.19 35178.00 32189.18 25195.41 249
SixPastTwentyTwo89.15 27388.54 27390.98 30493.49 30980.28 33196.70 17794.70 31390.78 15584.15 31895.57 21071.78 30697.71 27384.63 27285.07 29494.94 276
RPMNet88.98 27487.05 28994.77 18294.45 28187.19 25090.23 34298.03 8477.87 34592.40 15887.55 34780.17 22999.51 9468.84 35093.95 19097.60 179
TransMVSNet (Re)88.94 27587.56 28293.08 25594.35 28488.45 22297.73 7495.23 29487.47 25484.26 31695.29 22179.86 23597.33 30479.44 31574.44 34393.45 323
USDC88.94 27587.83 28092.27 27694.66 27284.96 28993.86 30295.90 26587.34 25883.40 32495.56 21267.43 33098.19 21182.64 29289.67 24893.66 319
dp88.90 27788.26 27790.81 30794.58 27876.62 34692.85 32394.93 30785.12 29290.07 21793.07 30475.81 28498.12 21980.53 30687.42 26897.71 171
PatchT88.87 27887.42 28393.22 25094.08 29285.10 28789.51 34694.64 31681.92 32392.36 16188.15 34480.05 23197.01 31472.43 34293.65 19397.54 182
MVS_030488.79 27987.57 28192.46 27094.65 27386.15 27496.40 20497.17 18686.44 27288.02 27291.71 32656.68 35397.03 31184.47 27492.58 20594.19 312
our_test_388.78 28087.98 27991.20 30292.45 32882.53 31293.61 31195.69 27385.77 28284.88 31093.71 29079.99 23296.78 32179.47 31386.24 27794.28 310
EU-MVSNet88.72 28188.90 26888.20 32693.15 31774.21 35096.63 18894.22 32685.18 29087.32 28595.97 18576.16 28394.98 34185.27 26486.17 27895.41 249
Patchmtry88.64 28287.25 28592.78 26594.09 29186.64 26189.82 34595.68 27580.81 33287.63 27992.36 31780.91 21597.03 31178.86 31785.12 29394.67 298
MIMVSNet88.50 28386.76 29193.72 22794.84 26587.77 24091.39 33294.05 32786.41 27387.99 27392.59 31163.27 34595.82 33377.44 32292.84 20197.57 181
tpm cat188.36 28487.21 28791.81 28795.13 24980.55 32792.58 32795.70 27274.97 34787.45 28091.96 32278.01 27098.17 21480.39 30788.74 25696.72 202
ppachtmachnet_test88.35 28587.29 28491.53 29492.45 32883.57 30693.75 30595.97 26284.28 30285.32 30894.18 27579.00 25396.93 31675.71 33184.99 29794.10 313
JIA-IIPM88.26 28687.04 29091.91 28293.52 30781.42 32089.38 34794.38 32180.84 33190.93 19480.74 35279.22 24597.92 25382.76 28991.62 22096.38 209
testgi87.97 28787.21 28790.24 31692.86 32080.76 32396.67 18294.97 30591.74 12685.52 30495.83 19362.66 34794.47 34576.25 32988.36 25995.48 243
LF4IMVS87.94 28887.25 28589.98 31892.38 33080.05 33494.38 28695.25 29387.59 25284.34 31494.74 24464.31 34397.66 27784.83 26887.45 26692.23 337
gg-mvs-nofinetune87.82 28985.61 29894.44 19394.46 28089.27 20191.21 33684.61 36080.88 33089.89 22174.98 35471.50 30797.53 28985.75 25997.21 13496.51 205
pmmvs687.81 29086.19 29492.69 26791.32 33586.30 26897.34 11596.41 24780.59 33484.05 32194.37 26267.37 33197.67 27584.75 27079.51 33294.09 315
K. test v387.64 29186.75 29290.32 31593.02 31979.48 33896.61 18992.08 34590.66 16180.25 33994.09 27867.21 33296.65 32285.96 25680.83 32894.83 285
Patchmatch-RL test87.38 29286.24 29390.81 30788.74 35078.40 34488.12 35093.17 33687.11 26382.17 33089.29 33981.95 20195.60 33688.64 20477.02 33798.41 138
FMVSNet587.29 29385.79 29791.78 28994.80 26787.28 24595.49 25595.28 29084.09 30583.85 32391.82 32362.95 34694.17 34678.48 31885.34 28993.91 317
Anonymous2023120687.09 29486.14 29589.93 31991.22 33680.35 32896.11 22795.35 28683.57 31384.16 31793.02 30573.54 30195.61 33572.16 34386.14 27993.84 318
EG-PatchMatch MVS87.02 29585.44 29991.76 29192.67 32485.00 28896.08 22996.45 24583.41 31579.52 34193.49 29857.10 35297.72 27279.34 31690.87 23592.56 333
TinyColmap86.82 29685.35 30291.21 30194.91 26282.99 31093.94 30094.02 32983.58 31281.56 33194.68 24762.34 34898.13 21675.78 33087.35 27092.52 334
TDRefinement86.53 29784.76 30791.85 28482.23 35784.25 29696.38 20795.35 28684.97 29584.09 31994.94 23265.76 34198.34 20184.60 27374.52 34292.97 326
test_040286.46 29884.79 30691.45 29695.02 25485.55 27996.29 21694.89 30880.90 32982.21 32993.97 28368.21 32797.29 30662.98 35488.68 25791.51 343
Anonymous2024052186.42 29985.44 29989.34 32290.33 34079.79 33596.73 17395.92 26383.71 31183.25 32591.36 32963.92 34496.01 32778.39 32085.36 28892.22 338
DSMNet-mixed86.34 30086.12 29687.00 33189.88 34470.43 35394.93 27390.08 35377.97 34485.42 30792.78 30874.44 29393.96 34774.43 33595.14 17096.62 203
CL-MVSNet_2432*160086.31 30185.15 30389.80 32088.83 34981.74 31993.93 30196.22 25586.67 26985.03 30990.80 33078.09 26794.50 34374.92 33371.86 34793.15 325
pmmvs-eth3d86.22 30284.45 30891.53 29488.34 35187.25 24794.47 28195.01 30283.47 31479.51 34289.61 33869.75 32195.71 33483.13 28576.73 33991.64 341
test20.0386.14 30385.40 30188.35 32490.12 34180.06 33395.90 23995.20 29588.59 21981.29 33293.62 29671.43 30892.65 35271.26 34781.17 32792.34 336
UnsupCasMVSNet_eth85.99 30484.45 30890.62 31189.97 34382.40 31593.62 31097.37 17189.86 18078.59 34492.37 31465.25 34295.35 34082.27 29470.75 34894.10 313
DIV-MVS_2432*160085.95 30584.95 30488.96 32389.55 34779.11 34195.13 27196.42 24685.91 28084.07 32090.48 33170.03 31994.82 34280.04 30872.94 34692.94 327
YYNet185.87 30684.23 31090.78 31092.38 33082.46 31493.17 31695.14 29882.12 32267.69 35092.36 31778.16 26695.50 33977.31 32479.73 33094.39 305
MDA-MVSNet_test_wron85.87 30684.23 31090.80 30992.38 33082.57 31193.17 31695.15 29782.15 32167.65 35192.33 32078.20 26395.51 33877.33 32379.74 32994.31 309
CMPMVSbinary62.92 2185.62 30884.92 30587.74 32889.14 34873.12 35294.17 29496.80 22473.98 34873.65 34994.93 23366.36 33597.61 28283.95 28091.28 22792.48 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 30983.64 31290.92 30595.27 24079.49 33790.55 34095.60 27783.76 31083.00 32889.95 33571.09 31097.97 24382.75 29060.79 35695.31 258
MDA-MVSNet-bldmvs85.00 31082.95 31491.17 30393.13 31883.33 30794.56 27995.00 30384.57 30065.13 35592.65 30970.45 31495.85 33173.57 33977.49 33694.33 307
MIMVSNet184.93 31183.05 31390.56 31289.56 34684.84 29295.40 25895.35 28683.91 30680.38 33792.21 32157.23 35193.34 35070.69 34982.75 32393.50 321
KD-MVS_2432*160084.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
miper_refine_blended84.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
OpenMVS_ROBcopyleft81.14 2084.42 31482.28 31790.83 30690.06 34284.05 30095.73 24694.04 32873.89 34980.17 34091.53 32859.15 35097.64 27866.92 35289.05 25290.80 347
PM-MVS83.48 31581.86 31988.31 32587.83 35377.59 34593.43 31291.75 34786.91 26580.63 33589.91 33644.42 35895.84 33285.17 26776.73 33991.50 344
new-patchmatchnet83.18 31681.87 31887.11 33086.88 35475.99 34893.70 30695.18 29685.02 29477.30 34588.40 34165.99 33993.88 34874.19 33870.18 34991.47 345
new_pmnet82.89 31781.12 32188.18 32789.63 34580.18 33291.77 33192.57 34176.79 34675.56 34888.23 34361.22 34994.48 34471.43 34582.92 32189.87 349
MVS-HIRNet82.47 31881.21 32086.26 33395.38 22869.21 35688.96 34989.49 35466.28 35280.79 33474.08 35668.48 32597.39 30171.93 34495.47 16592.18 339
UnsupCasMVSNet_bld82.13 31979.46 32290.14 31788.00 35282.47 31390.89 33996.62 24078.94 34075.61 34684.40 35056.63 35496.31 32577.30 32566.77 35291.63 342
pmmvs379.97 32077.50 32487.39 32982.80 35679.38 33992.70 32590.75 35270.69 35178.66 34387.47 34851.34 35693.40 34973.39 34069.65 35089.38 350
N_pmnet78.73 32178.71 32378.79 33692.80 32246.50 36594.14 29543.71 36878.61 34180.83 33391.66 32774.94 29196.36 32467.24 35184.45 30493.50 321
LCM-MVSNet72.55 32269.39 32682.03 33470.81 36465.42 35990.12 34494.36 32355.02 35665.88 35381.72 35124.16 36789.96 35374.32 33768.10 35190.71 348
FPMVS71.27 32369.85 32575.50 33874.64 35959.03 36191.30 33391.50 34958.80 35557.92 35788.28 34229.98 36385.53 35753.43 35682.84 32281.95 353
PMMVS270.19 32466.92 32780.01 33576.35 35865.67 35886.22 35187.58 35764.83 35462.38 35680.29 35326.78 36588.49 35563.79 35354.07 35785.88 351
Gipumacopyleft67.86 32565.41 32875.18 33992.66 32573.45 35166.50 35994.52 31853.33 35757.80 35866.07 35830.81 36189.20 35448.15 35878.88 33562.90 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 32664.89 32969.79 34172.62 36235.23 36965.19 36092.83 33920.35 36265.20 35488.08 34543.14 35982.70 35873.12 34163.46 35391.45 346
ANet_high63.94 32759.58 33077.02 33761.24 36666.06 35785.66 35387.93 35678.53 34242.94 36071.04 35725.42 36680.71 35952.60 35730.83 36084.28 352
PMVScopyleft53.92 2258.58 32855.40 33168.12 34251.00 36748.64 36378.86 35687.10 35946.77 35835.84 36474.28 3558.76 36886.34 35642.07 35973.91 34469.38 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 32952.56 33355.43 34474.43 36047.13 36483.63 35576.30 36442.23 35942.59 36162.22 36028.57 36474.40 36131.53 36131.51 35944.78 358
MVEpermissive50.73 2353.25 33048.81 33566.58 34365.34 36557.50 36272.49 35870.94 36640.15 36139.28 36363.51 3596.89 37073.48 36338.29 36042.38 35868.76 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 33151.31 33454.39 34572.62 36245.39 36683.84 35475.51 36541.13 36040.77 36259.65 36130.08 36273.60 36228.31 36229.90 36144.18 359
tmp_tt51.94 33253.82 33246.29 34633.73 36845.30 36778.32 35767.24 36718.02 36350.93 35987.05 34952.99 35553.11 36470.76 34825.29 36240.46 360
wuyk23d25.11 33324.57 33726.74 34773.98 36139.89 36857.88 3619.80 36912.27 36410.39 3656.97 3677.03 36936.44 36525.43 36317.39 3633.89 363
cdsmvs_eth3d_5k23.24 33430.99 3360.00 3500.00 3710.00 3720.00 36297.63 1330.00 3670.00 36896.88 13784.38 1520.00 3680.00 3660.00 3660.00 364
testmvs13.36 33516.33 3384.48 3495.04 3692.26 37193.18 3153.28 3702.70 3658.24 36621.66 3632.29 3722.19 3667.58 3642.96 3649.00 362
test12313.04 33615.66 3395.18 3484.51 3703.45 37092.50 3291.81 3712.50 3667.58 36720.15 3643.67 3712.18 3677.13 3651.07 3659.90 361
ab-mvs-re8.06 33710.74 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36896.69 1460.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.39 3389.85 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36888.65 940.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.05 4194.59 2898.08 6489.22 19897.03 4798.10 6092.52 3299.65 5394.58 9199.31 55
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4399.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17298.94 597.41 799.66 899.74 5
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 6899.59 1599.56 22
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7498.23 3891.28 14497.88 2298.44 2893.00 2199.65 5395.76 5499.47 36
save fliter98.91 4994.28 3597.02 14598.02 8895.35 8
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
GSMVS98.45 133
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18398.45 133
sam_mvs81.94 202
ambc86.56 33283.60 35570.00 35585.69 35294.97 30580.60 33688.45 34037.42 36096.84 31982.69 29175.44 34192.86 328
MTGPAbinary98.08 64
test_post192.81 32416.58 36680.53 22197.68 27486.20 248
test_post17.58 36581.76 20498.08 226
patchmatchnet-post90.45 33282.65 18798.10 221
GG-mvs-BLEND93.62 23193.69 30389.20 20292.39 33083.33 36187.98 27489.84 33771.00 31196.87 31882.08 29595.40 16794.80 290
MTMP97.86 6082.03 362
gm-plane-assit93.22 31578.89 34384.82 29793.52 29798.64 17587.72 216
test9_res94.81 8599.38 4899.45 45
TEST998.70 6094.19 4096.41 20198.02 8888.17 23296.03 8197.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20898.01 9188.58 22095.98 8697.55 10792.73 2599.58 71
agg_prior293.94 10299.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9699.57 79
TestCases93.98 21197.94 11186.64 26195.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
test_prior493.66 5996.42 200
test_prior296.35 20992.80 9796.03 8197.59 10192.01 4195.01 7699.38 48
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
旧先验295.94 23781.66 32597.34 3498.82 15992.26 128
新几何295.79 244
新几何197.32 5698.60 6893.59 6197.75 11681.58 32695.75 9397.85 7890.04 8199.67 4986.50 24499.13 7598.69 116
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8499.16 70
无先验95.79 24497.87 10783.87 30999.65 5387.68 22298.89 101
原ACMM295.67 247
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25695.22 10897.68 9190.25 7799.54 8687.95 21299.12 7898.49 128
test22298.24 9392.21 10095.33 26197.60 13579.22 33995.25 10797.84 8188.80 9299.15 7398.72 113
testdata299.67 4985.96 256
segment_acmp92.89 22
testdata95.46 15398.18 10288.90 21097.66 12982.73 31997.03 4798.07 6390.06 8098.85 15789.67 17998.98 8598.64 118
testdata195.26 26893.10 84
test1297.65 4498.46 7494.26 3797.66 12995.52 10590.89 6999.46 10199.25 6599.22 67
plane_prior796.21 19389.98 172
plane_prior696.10 20390.00 16881.32 210
plane_prior597.51 14598.60 17993.02 12292.23 20995.86 224
plane_prior496.64 149
plane_prior390.00 16894.46 4191.34 182
plane_prior297.74 7294.85 26
plane_prior196.14 201
plane_prior89.99 17097.24 12594.06 4992.16 213
n20.00 372
nn0.00 372
door-mid91.06 351
lessismore_v090.45 31391.96 33379.09 34287.19 35880.32 33894.39 26066.31 33797.55 28684.00 27976.84 33894.70 297
LGP-MVS_train94.10 20596.16 19888.26 22597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
test1197.88 105
door91.13 350
HQP5-MVS89.33 196
HQP-NCC95.86 20896.65 18393.55 6590.14 206
ACMP_Plane95.86 20896.65 18393.55 6590.14 206
BP-MVS92.13 134
HQP4-MVS90.14 20698.50 18795.78 231
HQP3-MVS97.39 16892.10 214
HQP2-MVS80.95 213
NP-MVS95.99 20789.81 17795.87 190
MDTV_nov1_ep13_2view70.35 35493.10 32083.88 30893.55 13582.47 19186.25 24798.38 141
MDTV_nov1_ep1390.76 21095.22 24480.33 32993.03 32195.28 29088.14 23592.84 15593.83 28581.34 20998.08 22682.86 28794.34 184
ACMMP++_ref90.30 242
ACMMP++91.02 231
Test By Simon88.73 93
ITE_SJBPF92.43 27295.34 23385.37 28395.92 26391.47 13387.75 27796.39 16871.00 31197.96 24782.36 29389.86 24693.97 316
DeepMVS_CXcopyleft74.68 34090.84 33964.34 36081.61 36365.34 35367.47 35288.01 34648.60 35780.13 36062.33 35573.68 34579.58 354