SED-MVS | | | 98.05 1 | 97.99 1 | 98.24 7 | 99.42 6 | 95.30 15 | 98.25 29 | 98.27 28 | 95.13 17 | 99.19 1 | 98.89 4 | 95.54 3 | 99.85 14 | 97.52 2 | 99.66 8 | 99.56 22 |
|
DVP-MVS | | | 97.91 2 | 97.81 2 | 98.22 9 | 99.45 2 | 95.36 10 | 98.21 36 | 97.85 111 | 94.92 24 | 98.73 8 | 98.87 6 | 95.08 5 | 99.84 19 | 97.52 2 | 99.67 6 | 99.48 41 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 97.86 3 | 97.65 4 | 98.47 3 | 99.17 32 | 95.78 5 | 97.21 132 | 98.35 19 | 95.16 16 | 98.71 10 | 98.80 9 | 95.05 7 | 99.89 3 | 96.70 20 | 99.73 1 | 99.73 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 97.82 4 | 97.73 3 | 98.08 15 | 99.15 33 | 94.82 25 | 98.81 2 | 98.30 23 | 94.76 34 | 98.30 13 | 98.90 3 | 93.77 14 | 99.68 47 | 97.93 1 | 99.69 3 | 99.75 3 |
|
CNVR-MVS | | | 97.68 5 | 97.44 8 | 98.37 5 | 98.90 51 | 95.86 4 | 97.27 123 | 98.08 64 | 95.81 3 | 97.87 23 | 98.31 47 | 94.26 10 | 99.68 47 | 97.02 10 | 99.49 34 | 99.57 19 |
|
SteuartSystems-ACMMP | | | 97.62 6 | 97.53 6 | 97.87 24 | 98.39 80 | 94.25 38 | 98.43 18 | 98.27 28 | 95.34 10 | 98.11 16 | 98.56 17 | 94.53 9 | 99.71 38 | 96.57 24 | 99.62 13 | 99.65 9 |
Skip Steuart: Steuart Systems R&D Blog. |
MSP-MVS | | | 97.59 7 | 97.54 5 | 97.73 38 | 99.40 11 | 93.77 58 | 98.53 9 | 98.29 24 | 95.55 5 | 98.56 12 | 97.81 82 | 93.90 12 | 99.65 53 | 96.62 21 | 99.21 69 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 97.42 8 | 97.33 9 | 97.69 42 | 99.25 27 | 94.24 39 | 98.07 44 | 97.85 111 | 93.72 60 | 98.57 11 | 98.35 38 | 93.69 15 | 99.40 109 | 97.06 8 | 99.46 38 | 99.44 47 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 97.41 9 | 97.53 6 | 97.06 71 | 98.57 72 | 94.46 30 | 97.92 57 | 98.14 53 | 94.82 30 | 99.01 3 | 98.55 19 | 94.18 11 | 97.41 300 | 96.94 11 | 99.64 11 | 99.32 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SF-MVS | | | 97.39 10 | 97.13 11 | 98.17 11 | 99.02 43 | 95.28 17 | 98.23 33 | 98.27 28 | 92.37 108 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 26 | 99.52 25 | 99.51 34 |
|
xxxxxxxxxxxxxcwj | | | 97.36 11 | 97.20 10 | 97.83 26 | 98.91 49 | 94.28 35 | 97.02 145 | 97.22 183 | 95.35 8 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 26 | 99.52 25 | 99.51 34 |
|
SMA-MVS |  | | 97.35 12 | 97.03 14 | 98.30 6 | 99.06 40 | 95.42 8 | 97.94 55 | 98.18 46 | 90.57 168 | 98.85 7 | 98.94 1 | 93.33 17 | 99.83 22 | 96.72 19 | 99.68 4 | 99.63 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HPM-MVS++ |  | | 97.34 13 | 96.97 17 | 98.47 3 | 99.08 38 | 96.16 2 | 97.55 96 | 97.97 99 | 95.59 4 | 96.61 58 | 97.89 72 | 92.57 30 | 99.84 19 | 95.95 47 | 99.51 29 | 99.40 53 |
|
NCCC | | | 97.30 14 | 97.03 14 | 98.11 14 | 98.77 57 | 95.06 22 | 97.34 115 | 98.04 81 | 95.96 2 | 97.09 45 | 97.88 74 | 93.18 20 | 99.71 38 | 95.84 52 | 99.17 72 | 99.56 22 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 22 | 98.23 8 | 99.09 36 | 95.16 20 | 97.60 92 | 98.19 44 | 92.82 96 | 97.93 20 | 98.74 11 | 91.60 53 | 99.86 8 | 96.26 31 | 99.52 25 | 99.67 8 |
|
XVS | | | 97.18 16 | 96.96 18 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 26 | 96.59 60 | 98.29 50 | 91.70 50 | 99.80 27 | 95.66 55 | 99.40 45 | 99.62 13 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 10 | 99.30 24 | 95.35 12 | 97.12 140 | 98.07 70 | 93.54 68 | 96.08 80 | 97.69 90 | 93.86 13 | 99.71 38 | 96.50 25 | 99.39 47 | 99.55 26 |
|
Regformer-2 | | | 97.16 18 | 96.99 16 | 97.67 43 | 98.32 86 | 93.84 53 | 96.83 165 | 98.10 61 | 95.24 11 | 97.49 26 | 98.25 54 | 92.57 30 | 99.61 62 | 96.80 15 | 99.29 57 | 99.56 22 |
|
HFP-MVS | | | 97.14 19 | 96.92 20 | 97.83 26 | 99.42 6 | 94.12 45 | 98.52 10 | 98.32 20 | 93.21 77 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.63 60 | 99.59 15 | 99.54 29 |
|
Regformer-1 | | | 97.10 20 | 96.96 18 | 97.54 49 | 98.32 86 | 93.48 64 | 96.83 165 | 97.99 97 | 95.20 13 | 97.46 27 | 98.25 54 | 92.48 34 | 99.58 71 | 96.79 17 | 99.29 57 | 99.55 26 |
|
MTAPA | | | 97.08 21 | 96.78 31 | 97.97 22 | 99.37 16 | 94.42 32 | 97.24 125 | 98.08 64 | 95.07 21 | 96.11 78 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 40 | 99.50 32 | 99.58 17 |
|
ETH3D-3000-0.1 | | | 97.07 22 | 96.71 36 | 98.14 13 | 98.90 51 | 95.33 14 | 97.68 81 | 98.24 34 | 91.57 130 | 97.90 21 | 98.37 36 | 92.61 29 | 99.66 52 | 95.59 65 | 99.51 29 | 99.43 49 |
|
zzz-MVS | | | 97.07 22 | 96.77 32 | 97.97 22 | 99.37 16 | 94.42 32 | 97.15 138 | 98.08 64 | 95.07 21 | 96.11 78 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 40 | 99.50 32 | 99.58 17 |
|
region2R | | | 97.07 22 | 96.84 25 | 97.77 35 | 99.46 1 | 93.79 55 | 98.52 10 | 98.24 34 | 93.19 80 | 97.14 41 | 98.34 41 | 91.59 54 | 99.87 7 | 95.46 67 | 99.59 15 | 99.64 10 |
|
ACMMPR | | | 97.07 22 | 96.84 25 | 97.79 32 | 99.44 5 | 93.88 52 | 98.52 10 | 98.31 22 | 93.21 77 | 97.15 40 | 98.33 44 | 91.35 59 | 99.86 8 | 95.63 60 | 99.59 15 | 99.62 13 |
|
#test# | | | 97.02 26 | 96.75 33 | 97.83 26 | 99.42 6 | 94.12 45 | 98.15 39 | 98.32 20 | 92.57 104 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.12 73 | 99.59 15 | 99.54 29 |
|
CP-MVS | | | 97.02 26 | 96.81 28 | 97.64 46 | 99.33 22 | 93.54 62 | 98.80 3 | 98.28 26 | 92.99 86 | 96.45 68 | 98.30 49 | 91.90 45 | 99.85 14 | 95.61 62 | 99.68 4 | 99.54 29 |
|
SR-MVS | | | 97.01 28 | 96.86 22 | 97.47 51 | 99.09 36 | 93.27 71 | 97.98 49 | 98.07 70 | 93.75 59 | 97.45 28 | 98.48 25 | 91.43 56 | 99.59 68 | 96.22 34 | 99.27 61 | 99.54 29 |
|
Regformer-4 | | | 96.97 29 | 96.87 21 | 97.25 61 | 98.34 83 | 92.66 85 | 96.96 153 | 98.01 91 | 95.12 19 | 97.14 41 | 98.42 31 | 91.82 46 | 99.61 62 | 96.90 12 | 99.13 75 | 99.50 37 |
|
ZNCC-MVS | | | 96.96 30 | 96.67 38 | 97.85 25 | 99.37 16 | 94.12 45 | 98.49 14 | 98.18 46 | 92.64 103 | 96.39 70 | 98.18 58 | 91.61 52 | 99.88 4 | 95.59 65 | 99.55 21 | 99.57 19 |
|
APD-MVS |  | | 96.95 31 | 96.60 40 | 98.01 19 | 99.03 42 | 94.93 24 | 97.72 77 | 98.10 61 | 91.50 132 | 98.01 18 | 98.32 46 | 92.33 35 | 99.58 71 | 94.85 81 | 99.51 29 | 99.53 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSLP-MVS++ | | | 96.94 32 | 97.06 13 | 96.59 83 | 98.72 59 | 91.86 112 | 97.67 82 | 98.49 12 | 94.66 37 | 97.24 36 | 98.41 34 | 92.31 37 | 98.94 150 | 96.61 22 | 99.46 38 | 98.96 92 |
|
test1172 | | | 96.93 33 | 96.86 22 | 97.15 67 | 99.10 34 | 92.34 94 | 97.96 54 | 98.04 81 | 93.79 58 | 97.35 33 | 98.53 21 | 91.40 57 | 99.56 81 | 96.30 30 | 99.30 56 | 99.55 26 |
|
testtj | | | 96.93 33 | 96.56 43 | 98.05 17 | 99.10 34 | 94.66 27 | 97.78 69 | 98.22 39 | 92.74 99 | 97.59 24 | 98.20 57 | 91.96 44 | 99.86 8 | 94.21 95 | 99.25 65 | 99.63 11 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 39 | 97.78 33 | 98.64 67 | 94.30 34 | 97.41 107 | 98.04 81 | 94.81 31 | 96.59 60 | 98.37 36 | 91.24 61 | 99.64 61 | 95.16 71 | 99.52 25 | 99.42 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS-dyc-post | | | 96.88 36 | 96.80 29 | 97.11 70 | 99.02 43 | 92.34 94 | 97.98 49 | 98.03 84 | 93.52 69 | 97.43 31 | 98.51 22 | 91.40 57 | 99.56 81 | 96.05 43 | 99.26 63 | 99.43 49 |
|
mPP-MVS | | | 96.86 37 | 96.60 40 | 97.64 46 | 99.40 11 | 93.44 65 | 98.50 13 | 98.09 63 | 93.27 76 | 95.95 87 | 98.33 44 | 91.04 66 | 99.88 4 | 95.20 70 | 99.57 20 | 99.60 16 |
|
GST-MVS | | | 96.85 38 | 96.52 45 | 97.82 29 | 99.36 19 | 94.14 44 | 98.29 25 | 98.13 54 | 92.72 100 | 96.70 52 | 98.06 64 | 91.35 59 | 99.86 8 | 94.83 83 | 99.28 59 | 99.47 44 |
|
Regformer-3 | | | 96.85 38 | 96.80 29 | 97.01 72 | 98.34 83 | 92.02 108 | 96.96 153 | 97.76 115 | 95.01 23 | 97.08 46 | 98.42 31 | 91.71 49 | 99.54 86 | 96.80 15 | 99.13 75 | 99.48 41 |
|
APD-MVS_3200maxsize | | | 96.81 40 | 96.71 36 | 97.12 69 | 99.01 46 | 92.31 97 | 97.98 49 | 98.06 73 | 93.11 83 | 97.44 29 | 98.55 19 | 90.93 68 | 99.55 84 | 96.06 42 | 99.25 65 | 99.51 34 |
|
PGM-MVS | | | 96.81 40 | 96.53 44 | 97.65 44 | 99.35 21 | 93.53 63 | 97.65 85 | 98.98 1 | 92.22 111 | 97.14 41 | 98.44 28 | 91.17 64 | 99.85 14 | 94.35 93 | 99.46 38 | 99.57 19 |
|
MP-MVS |  | | 96.77 42 | 96.45 49 | 97.72 39 | 99.39 13 | 93.80 54 | 98.41 19 | 98.06 73 | 93.37 72 | 95.54 104 | 98.34 41 | 90.59 75 | 99.88 4 | 94.83 83 | 99.54 23 | 99.49 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 96.77 42 | 96.46 48 | 97.71 41 | 98.40 78 | 94.07 48 | 98.21 36 | 98.45 15 | 89.86 180 | 97.11 44 | 98.01 68 | 92.52 32 | 99.69 44 | 96.03 46 | 99.53 24 | 99.36 58 |
|
MP-MVS-pluss | | | 96.70 44 | 96.27 53 | 97.98 21 | 99.23 30 | 94.71 26 | 96.96 153 | 98.06 73 | 90.67 159 | 95.55 102 | 98.78 10 | 91.07 65 | 99.86 8 | 96.58 23 | 99.55 21 | 99.38 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + GP. | | | 96.69 45 | 96.49 46 | 97.27 60 | 98.31 88 | 93.39 66 | 96.79 169 | 96.72 226 | 94.17 47 | 97.44 29 | 97.66 93 | 92.76 23 | 99.33 114 | 96.86 14 | 97.76 118 | 99.08 80 |
|
HPM-MVS |  | | 96.69 45 | 96.45 49 | 97.40 53 | 99.36 19 | 93.11 74 | 98.87 1 | 98.06 73 | 91.17 148 | 96.40 69 | 97.99 69 | 90.99 67 | 99.58 71 | 95.61 62 | 99.61 14 | 99.49 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 96.68 47 | 96.58 42 | 96.99 73 | 98.46 74 | 92.31 97 | 96.20 224 | 98.90 2 | 94.30 46 | 95.86 89 | 97.74 87 | 92.33 35 | 99.38 112 | 96.04 45 | 99.42 43 | 99.28 65 |
|
DELS-MVS | | | 96.61 48 | 96.38 51 | 97.30 57 | 97.79 121 | 93.19 72 | 95.96 236 | 98.18 46 | 95.23 12 | 95.87 88 | 97.65 94 | 91.45 55 | 99.70 43 | 95.87 48 | 99.44 42 | 99.00 90 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepPCF-MVS | | 93.97 1 | 96.61 48 | 97.09 12 | 95.15 160 | 98.09 105 | 86.63 264 | 96.00 234 | 98.15 51 | 95.43 6 | 97.95 19 | 98.56 17 | 93.40 16 | 99.36 113 | 96.77 18 | 99.48 35 | 99.45 45 |
|
ETH3D cwj APD-0.16 | | | 96.56 50 | 96.06 59 | 98.05 17 | 98.26 92 | 95.19 18 | 96.99 150 | 98.05 80 | 89.85 182 | 97.26 35 | 98.22 56 | 91.80 47 | 99.69 44 | 94.84 82 | 99.28 59 | 99.27 66 |
|
EI-MVSNet-Vis-set | | | 96.51 51 | 96.47 47 | 96.63 80 | 98.24 93 | 91.20 134 | 96.89 160 | 97.73 118 | 94.74 35 | 96.49 64 | 98.49 24 | 90.88 70 | 99.58 71 | 96.44 28 | 98.32 102 | 99.13 74 |
|
HPM-MVS_fast | | | 96.51 51 | 96.27 53 | 97.22 64 | 99.32 23 | 92.74 82 | 98.74 4 | 98.06 73 | 90.57 168 | 96.77 49 | 98.35 38 | 90.21 79 | 99.53 89 | 94.80 86 | 99.63 12 | 99.38 56 |
|
test_prior3 | | | 96.46 53 | 96.20 56 | 97.23 62 | 98.67 62 | 92.99 76 | 96.35 209 | 98.00 93 | 92.80 97 | 96.03 81 | 97.59 101 | 92.01 41 | 99.41 107 | 95.01 76 | 99.38 48 | 99.29 62 |
|
abl_6 | | | 96.40 54 | 96.21 55 | 96.98 74 | 98.89 54 | 92.20 102 | 97.89 58 | 98.03 84 | 93.34 75 | 97.22 37 | 98.42 31 | 87.93 103 | 99.72 35 | 95.10 74 | 99.07 80 | 99.02 83 |
|
CANet | | | 96.39 55 | 96.02 60 | 97.50 50 | 97.62 129 | 93.38 67 | 97.02 145 | 97.96 100 | 95.42 7 | 94.86 112 | 97.81 82 | 87.38 114 | 99.82 25 | 96.88 13 | 99.20 70 | 99.29 62 |
|
EI-MVSNet-UG-set | | | 96.34 56 | 96.30 52 | 96.47 91 | 98.20 98 | 90.93 146 | 96.86 161 | 97.72 121 | 94.67 36 | 96.16 77 | 98.46 26 | 90.43 76 | 99.58 71 | 96.23 33 | 97.96 112 | 98.90 99 |
|
train_agg | | | 96.30 57 | 95.83 64 | 97.72 39 | 98.70 60 | 94.19 40 | 96.41 201 | 98.02 88 | 88.58 220 | 96.03 81 | 97.56 105 | 92.73 25 | 99.59 68 | 95.04 75 | 99.37 52 | 99.39 54 |
|
ACMMP |  | | 96.27 58 | 95.93 61 | 97.28 59 | 99.24 28 | 92.62 87 | 98.25 29 | 98.81 3 | 92.99 86 | 94.56 116 | 98.39 35 | 88.96 89 | 99.85 14 | 94.57 92 | 97.63 119 | 99.36 58 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 96.24 59 | 96.19 57 | 96.39 98 | 98.23 97 | 91.35 127 | 96.24 222 | 98.79 4 | 93.99 51 | 95.80 91 | 97.65 94 | 89.92 83 | 99.24 121 | 95.87 48 | 99.20 70 | 98.58 119 |
|
agg_prior1 | | | 96.22 60 | 95.77 65 | 97.56 48 | 98.67 62 | 93.79 55 | 96.28 217 | 98.00 93 | 88.76 217 | 95.68 96 | 97.55 107 | 92.70 27 | 99.57 79 | 95.01 76 | 99.32 53 | 99.32 60 |
|
ETH3 D test6400 | | | 96.16 61 | 95.52 68 | 98.07 16 | 98.90 51 | 95.06 22 | 97.03 142 | 98.21 40 | 88.16 234 | 96.64 57 | 97.70 89 | 91.18 63 | 99.67 49 | 92.44 127 | 99.47 36 | 99.48 41 |
|
CS-MVS | | | 96.12 62 | 96.17 58 | 95.97 121 | 96.69 169 | 91.17 139 | 98.49 14 | 97.72 121 | 93.80 57 | 96.17 76 | 97.13 125 | 89.42 85 | 98.60 179 | 97.05 9 | 99.03 83 | 98.15 150 |
|
DeepC-MVS | | 93.07 3 | 96.06 63 | 95.66 66 | 97.29 58 | 97.96 109 | 93.17 73 | 97.30 121 | 98.06 73 | 93.92 52 | 93.38 141 | 98.66 12 | 86.83 120 | 99.73 32 | 95.60 64 | 99.22 68 | 98.96 92 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 96.05 64 | 95.91 62 | 96.46 93 | 99.24 28 | 90.47 159 | 98.30 24 | 98.57 11 | 89.01 203 | 93.97 128 | 97.57 103 | 92.62 28 | 99.76 30 | 94.66 89 | 99.27 61 | 99.15 72 |
|
ETV-MVS | | | 96.02 65 | 95.89 63 | 96.40 96 | 97.16 142 | 92.44 92 | 97.47 104 | 97.77 114 | 94.55 39 | 96.48 65 | 94.51 253 | 91.23 62 | 98.92 151 | 95.65 58 | 98.19 105 | 97.82 168 |
|
canonicalmvs | | | 96.02 65 | 95.45 71 | 97.75 37 | 97.59 132 | 95.15 21 | 98.28 26 | 97.60 135 | 94.52 40 | 96.27 73 | 96.12 179 | 87.65 107 | 99.18 126 | 96.20 39 | 94.82 177 | 98.91 98 |
|
CDPH-MVS | | | 95.97 67 | 95.38 74 | 97.77 35 | 98.93 47 | 94.44 31 | 96.35 209 | 97.88 105 | 86.98 264 | 96.65 56 | 97.89 72 | 91.99 43 | 99.47 100 | 92.26 128 | 99.46 38 | 99.39 54 |
|
UA-Net | | | 95.95 68 | 95.53 67 | 97.20 66 | 97.67 126 | 92.98 78 | 97.65 85 | 98.13 54 | 94.81 31 | 96.61 58 | 98.35 38 | 88.87 90 | 99.51 94 | 90.36 167 | 97.35 129 | 99.11 78 |
|
VNet | | | 95.89 69 | 95.45 71 | 97.21 65 | 98.07 107 | 92.94 79 | 97.50 99 | 98.15 51 | 93.87 53 | 97.52 25 | 97.61 100 | 85.29 140 | 99.53 89 | 95.81 53 | 95.27 169 | 99.16 70 |
|
alignmvs | | | 95.87 70 | 95.23 78 | 97.78 33 | 97.56 134 | 95.19 18 | 97.86 60 | 97.17 186 | 94.39 43 | 96.47 66 | 96.40 167 | 85.89 133 | 99.20 123 | 96.21 38 | 95.11 173 | 98.95 94 |
|
DPM-MVS | | | 95.69 71 | 94.92 84 | 98.01 19 | 98.08 106 | 95.71 7 | 95.27 266 | 97.62 134 | 90.43 171 | 95.55 102 | 97.07 128 | 91.72 48 | 99.50 97 | 89.62 181 | 98.94 87 | 98.82 107 |
|
DP-MVS Recon | | | 95.68 72 | 95.12 82 | 97.37 54 | 99.19 31 | 94.19 40 | 97.03 142 | 98.08 64 | 88.35 227 | 95.09 110 | 97.65 94 | 89.97 82 | 99.48 99 | 92.08 137 | 98.59 97 | 98.44 136 |
|
casdiffmvs | | | 95.64 73 | 95.49 69 | 96.08 113 | 96.76 167 | 90.45 160 | 97.29 122 | 97.44 162 | 94.00 50 | 95.46 106 | 97.98 70 | 87.52 111 | 98.73 167 | 95.64 59 | 97.33 130 | 99.08 80 |
|
MG-MVS | | | 95.61 74 | 95.38 74 | 96.31 103 | 98.42 77 | 90.53 157 | 96.04 230 | 97.48 147 | 93.47 71 | 95.67 99 | 98.10 60 | 89.17 87 | 99.25 120 | 91.27 155 | 98.77 91 | 99.13 74 |
|
baseline | | | 95.58 75 | 95.42 73 | 96.08 113 | 96.78 164 | 90.41 162 | 97.16 136 | 97.45 158 | 93.69 63 | 95.65 100 | 97.85 78 | 87.29 115 | 98.68 172 | 95.66 55 | 97.25 133 | 99.13 74 |
|
CPTT-MVS | | | 95.57 76 | 95.19 79 | 96.70 77 | 99.27 26 | 91.48 122 | 98.33 22 | 98.11 59 | 87.79 245 | 95.17 109 | 98.03 66 | 87.09 118 | 99.61 62 | 93.51 111 | 99.42 43 | 99.02 83 |
|
EIA-MVS | | | 95.53 77 | 95.47 70 | 95.71 135 | 97.06 150 | 89.63 179 | 97.82 65 | 97.87 107 | 93.57 64 | 93.92 129 | 95.04 230 | 90.61 74 | 98.95 149 | 94.62 90 | 98.68 94 | 98.54 121 |
|
3Dnovator+ | | 91.43 4 | 95.40 78 | 94.48 98 | 98.16 12 | 96.90 158 | 95.34 13 | 98.48 16 | 97.87 107 | 94.65 38 | 88.53 259 | 98.02 67 | 83.69 161 | 99.71 38 | 93.18 119 | 98.96 86 | 99.44 47 |
|
PS-MVSNAJ | | | 95.37 79 | 95.33 76 | 95.49 149 | 97.35 136 | 90.66 155 | 95.31 263 | 97.48 147 | 93.85 54 | 96.51 63 | 95.70 205 | 88.65 94 | 99.65 53 | 94.80 86 | 98.27 103 | 96.17 213 |
|
MVSFormer | | | 95.37 79 | 95.16 80 | 95.99 120 | 96.34 189 | 91.21 132 | 98.22 34 | 97.57 139 | 91.42 136 | 96.22 74 | 97.32 114 | 86.20 130 | 97.92 253 | 94.07 98 | 99.05 81 | 98.85 104 |
|
xiu_mvs_v2_base | | | 95.32 81 | 95.29 77 | 95.40 154 | 97.22 138 | 90.50 158 | 95.44 257 | 97.44 162 | 93.70 62 | 96.46 67 | 96.18 175 | 88.59 97 | 99.53 89 | 94.79 88 | 97.81 115 | 96.17 213 |
|
PVSNet_Blended_VisFu | | | 95.27 82 | 94.91 85 | 96.38 99 | 98.20 98 | 90.86 148 | 97.27 123 | 98.25 33 | 90.21 173 | 94.18 123 | 97.27 116 | 87.48 112 | 99.73 32 | 93.53 110 | 97.77 117 | 98.55 120 |
|
diffmvs | | | 95.25 83 | 95.13 81 | 95.63 138 | 96.43 185 | 89.34 195 | 95.99 235 | 97.35 174 | 92.83 95 | 96.31 71 | 97.37 113 | 86.44 125 | 98.67 173 | 96.26 31 | 97.19 135 | 98.87 103 |
|
Vis-MVSNet |  | | 95.23 84 | 94.81 86 | 96.51 88 | 97.18 141 | 91.58 120 | 98.26 28 | 98.12 56 | 94.38 44 | 94.90 111 | 98.15 59 | 82.28 194 | 98.92 151 | 91.45 152 | 98.58 98 | 99.01 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 95.22 85 | 95.04 83 | 95.76 128 | 97.49 135 | 89.56 183 | 98.67 5 | 97.00 205 | 90.69 158 | 94.24 122 | 97.62 99 | 89.79 84 | 98.81 160 | 93.39 116 | 96.49 150 | 98.92 97 |
|
EPNet | | | 95.20 86 | 94.56 93 | 97.14 68 | 92.80 322 | 92.68 84 | 97.85 63 | 94.87 312 | 96.64 1 | 92.46 157 | 97.80 84 | 86.23 127 | 99.65 53 | 93.72 108 | 98.62 96 | 99.10 79 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
3Dnovator | | 91.36 5 | 95.19 87 | 94.44 100 | 97.44 52 | 96.56 176 | 93.36 69 | 98.65 6 | 98.36 16 | 94.12 48 | 89.25 243 | 98.06 64 | 82.20 196 | 99.77 29 | 93.41 115 | 99.32 53 | 99.18 69 |
|
OMC-MVS | | | 95.09 88 | 94.70 90 | 96.25 109 | 98.46 74 | 91.28 128 | 96.43 199 | 97.57 139 | 92.04 120 | 94.77 114 | 97.96 71 | 87.01 119 | 99.09 137 | 91.31 154 | 96.77 141 | 98.36 143 |
|
xiu_mvs_v1_base_debu | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 173 | 91.71 113 | 96.25 219 | 97.35 174 | 92.99 86 | 96.70 52 | 96.63 153 | 82.67 184 | 99.44 104 | 96.22 34 | 97.46 122 | 96.11 218 |
|
xiu_mvs_v1_base | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 173 | 91.71 113 | 96.25 219 | 97.35 174 | 92.99 86 | 96.70 52 | 96.63 153 | 82.67 184 | 99.44 104 | 96.22 34 | 97.46 122 | 96.11 218 |
|
xiu_mvs_v1_base_debi | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 173 | 91.71 113 | 96.25 219 | 97.35 174 | 92.99 86 | 96.70 52 | 96.63 153 | 82.67 184 | 99.44 104 | 96.22 34 | 97.46 122 | 96.11 218 |
|
PAPM_NR | | | 95.01 89 | 94.59 92 | 96.26 108 | 98.89 54 | 90.68 154 | 97.24 125 | 97.73 118 | 91.80 125 | 92.93 154 | 96.62 156 | 89.13 88 | 99.14 131 | 89.21 193 | 97.78 116 | 98.97 91 |
|
lupinMVS | | | 94.99 93 | 94.56 93 | 96.29 106 | 96.34 189 | 91.21 132 | 95.83 242 | 96.27 252 | 88.93 208 | 96.22 74 | 96.88 137 | 86.20 130 | 98.85 157 | 95.27 69 | 99.05 81 | 98.82 107 |
|
Effi-MVS+ | | | 94.93 94 | 94.45 99 | 96.36 101 | 96.61 170 | 91.47 123 | 96.41 201 | 97.41 167 | 91.02 153 | 94.50 117 | 95.92 188 | 87.53 110 | 98.78 162 | 93.89 104 | 96.81 140 | 98.84 106 |
|
IS-MVSNet | | | 94.90 95 | 94.52 96 | 96.05 116 | 97.67 126 | 90.56 156 | 98.44 17 | 96.22 255 | 93.21 77 | 93.99 126 | 97.74 87 | 85.55 138 | 98.45 192 | 89.98 170 | 97.86 113 | 99.14 73 |
|
MVS_Test | | | 94.89 96 | 94.62 91 | 95.68 136 | 96.83 162 | 89.55 184 | 96.70 177 | 97.17 186 | 91.17 148 | 95.60 101 | 96.11 182 | 87.87 104 | 98.76 165 | 93.01 124 | 97.17 136 | 98.72 113 |
|
PVSNet_Blended | | | 94.87 97 | 94.56 93 | 95.81 127 | 98.27 89 | 89.46 190 | 95.47 256 | 98.36 16 | 88.84 211 | 94.36 119 | 96.09 183 | 88.02 100 | 99.58 71 | 93.44 113 | 98.18 106 | 98.40 139 |
|
jason | | | 94.84 98 | 94.39 101 | 96.18 111 | 95.52 222 | 90.93 146 | 96.09 228 | 96.52 242 | 89.28 196 | 96.01 85 | 97.32 114 | 84.70 147 | 98.77 164 | 95.15 72 | 98.91 89 | 98.85 104 |
jason: jason. |
API-MVS | | | 94.84 98 | 94.49 97 | 95.90 124 | 97.90 115 | 92.00 109 | 97.80 67 | 97.48 147 | 89.19 199 | 94.81 113 | 96.71 142 | 88.84 91 | 99.17 127 | 88.91 199 | 98.76 92 | 96.53 204 |
|
test_yl | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 123 | 91.22 130 | 96.85 162 | 97.10 192 | 91.23 146 | 95.71 94 | 96.93 132 | 84.30 153 | 99.31 116 | 93.10 120 | 95.12 171 | 98.75 109 |
|
DCV-MVSNet | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 123 | 91.22 130 | 96.85 162 | 97.10 192 | 91.23 146 | 95.71 94 | 96.93 132 | 84.30 153 | 99.31 116 | 93.10 120 | 95.12 171 | 98.75 109 |
|
1121 | | | 94.71 102 | 93.83 107 | 97.34 55 | 98.57 72 | 93.64 60 | 96.04 230 | 97.73 118 | 81.56 327 | 95.68 96 | 97.85 78 | 90.23 78 | 99.65 53 | 87.68 222 | 99.12 78 | 98.73 112 |
|
WTY-MVS | | | 94.71 102 | 94.02 104 | 96.79 76 | 97.71 125 | 92.05 106 | 96.59 192 | 97.35 174 | 90.61 165 | 94.64 115 | 96.93 132 | 86.41 126 | 99.39 110 | 91.20 157 | 94.71 181 | 98.94 95 |
|
sss | | | 94.51 104 | 93.80 108 | 96.64 78 | 97.07 147 | 91.97 110 | 96.32 213 | 98.06 73 | 88.94 207 | 94.50 117 | 96.78 139 | 84.60 148 | 99.27 119 | 91.90 138 | 96.02 154 | 98.68 117 |
|
CANet_DTU | | | 94.37 105 | 93.65 113 | 96.55 84 | 96.46 183 | 92.13 104 | 96.21 223 | 96.67 234 | 94.38 44 | 93.53 137 | 97.03 130 | 79.34 243 | 99.71 38 | 90.76 161 | 98.45 100 | 97.82 168 |
|
AdaColmap |  | | 94.34 106 | 93.68 112 | 96.31 103 | 98.59 69 | 91.68 116 | 96.59 192 | 97.81 113 | 89.87 179 | 92.15 167 | 97.06 129 | 83.62 164 | 99.54 86 | 89.34 187 | 98.07 109 | 97.70 172 |
|
CNLPA | | | 94.28 107 | 93.53 117 | 96.52 85 | 98.38 81 | 92.55 89 | 96.59 192 | 96.88 217 | 90.13 176 | 91.91 173 | 97.24 118 | 85.21 141 | 99.09 137 | 87.64 225 | 97.83 114 | 97.92 160 |
|
MAR-MVS | | | 94.22 108 | 93.46 121 | 96.51 88 | 98.00 108 | 92.19 103 | 97.67 82 | 97.47 150 | 88.13 236 | 93.00 149 | 95.84 192 | 84.86 146 | 99.51 94 | 87.99 211 | 98.17 107 | 97.83 167 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPR | | | 94.18 109 | 93.42 125 | 96.48 90 | 97.64 128 | 91.42 126 | 95.55 252 | 97.71 126 | 88.99 204 | 92.34 163 | 95.82 194 | 89.19 86 | 99.11 133 | 86.14 250 | 97.38 127 | 98.90 99 |
|
hse-mvs3 | | | 94.15 110 | 93.52 118 | 96.04 117 | 97.81 119 | 90.22 165 | 97.62 91 | 97.58 138 | 95.19 14 | 96.74 50 | 97.45 109 | 83.67 162 | 99.61 62 | 95.85 50 | 79.73 330 | 98.29 146 |
|
CHOSEN 1792x2688 | | | 94.15 110 | 93.51 119 | 96.06 115 | 98.27 89 | 89.38 193 | 95.18 270 | 98.48 14 | 85.60 284 | 93.76 132 | 97.11 126 | 83.15 171 | 99.61 62 | 91.33 153 | 98.72 93 | 99.19 68 |
|
Vis-MVSNet (Re-imp) | | | 94.15 110 | 93.88 106 | 94.95 171 | 97.61 130 | 87.92 235 | 98.10 41 | 95.80 269 | 92.22 111 | 93.02 148 | 97.45 109 | 84.53 150 | 97.91 256 | 88.24 207 | 97.97 111 | 99.02 83 |
|
CDS-MVSNet | | | 94.14 113 | 93.54 116 | 95.93 122 | 96.18 196 | 91.46 124 | 96.33 212 | 97.04 201 | 88.97 206 | 93.56 134 | 96.51 160 | 87.55 109 | 97.89 257 | 89.80 175 | 95.95 156 | 98.44 136 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 91.00 6 | 94.11 114 | 93.43 123 | 96.13 112 | 98.58 71 | 91.15 140 | 96.69 179 | 97.39 168 | 87.29 259 | 91.37 181 | 96.71 142 | 88.39 98 | 99.52 93 | 87.33 232 | 97.13 137 | 97.73 170 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
FIs | | | 94.09 115 | 93.70 110 | 95.27 156 | 95.70 216 | 92.03 107 | 98.10 41 | 98.68 7 | 93.36 74 | 90.39 201 | 96.70 144 | 87.63 108 | 97.94 250 | 92.25 130 | 90.50 240 | 95.84 227 |
|
PVSNet_BlendedMVS | | | 94.06 116 | 93.92 105 | 94.47 192 | 98.27 89 | 89.46 190 | 96.73 173 | 98.36 16 | 90.17 174 | 94.36 119 | 95.24 224 | 88.02 100 | 99.58 71 | 93.44 113 | 90.72 236 | 94.36 306 |
|
nrg030 | | | 94.05 117 | 93.31 127 | 96.27 107 | 95.22 244 | 94.59 28 | 98.34 21 | 97.46 152 | 92.93 93 | 91.21 191 | 96.64 149 | 87.23 117 | 98.22 206 | 94.99 79 | 85.80 282 | 95.98 222 |
|
UGNet | | | 94.04 118 | 93.28 128 | 96.31 103 | 96.85 159 | 91.19 135 | 97.88 59 | 97.68 127 | 94.40 42 | 93.00 149 | 96.18 175 | 73.39 302 | 99.61 62 | 91.72 143 | 98.46 99 | 98.13 151 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAMVS | | | 94.01 119 | 93.46 121 | 95.64 137 | 96.16 198 | 90.45 160 | 96.71 176 | 96.89 216 | 89.27 197 | 93.46 139 | 96.92 135 | 87.29 115 | 97.94 250 | 88.70 203 | 95.74 161 | 98.53 122 |
|
114514_t | | | 93.95 120 | 93.06 132 | 96.63 80 | 99.07 39 | 91.61 117 | 97.46 106 | 97.96 100 | 77.99 343 | 93.00 149 | 97.57 103 | 86.14 132 | 99.33 114 | 89.22 192 | 99.15 73 | 98.94 95 |
|
FC-MVSNet-test | | | 93.94 121 | 93.57 114 | 95.04 164 | 95.48 224 | 91.45 125 | 98.12 40 | 98.71 5 | 93.37 72 | 90.23 204 | 96.70 144 | 87.66 106 | 97.85 259 | 91.49 150 | 90.39 241 | 95.83 228 |
|
GeoE | | | 93.89 122 | 93.28 128 | 95.72 134 | 96.96 157 | 89.75 178 | 98.24 32 | 96.92 213 | 89.47 191 | 92.12 169 | 97.21 120 | 84.42 151 | 98.39 197 | 87.71 218 | 96.50 149 | 99.01 87 |
|
HY-MVS | | 89.66 9 | 93.87 123 | 92.95 135 | 96.63 80 | 97.10 146 | 92.49 91 | 95.64 250 | 96.64 235 | 89.05 202 | 93.00 149 | 95.79 198 | 85.77 136 | 99.45 103 | 89.16 196 | 94.35 183 | 97.96 157 |
|
XVG-OURS-SEG-HR | | | 93.86 124 | 93.55 115 | 94.81 177 | 97.06 150 | 88.53 219 | 95.28 264 | 97.45 158 | 91.68 128 | 94.08 125 | 97.68 91 | 82.41 192 | 98.90 154 | 93.84 106 | 92.47 206 | 96.98 191 |
|
VDD-MVS | | | 93.82 125 | 93.08 131 | 96.02 118 | 97.88 116 | 89.96 174 | 97.72 77 | 95.85 267 | 92.43 106 | 95.86 89 | 98.44 28 | 68.42 326 | 99.39 110 | 96.31 29 | 94.85 175 | 98.71 115 |
|
mvs_anonymous | | | 93.82 125 | 93.74 109 | 94.06 207 | 96.44 184 | 85.41 282 | 95.81 243 | 97.05 199 | 89.85 182 | 90.09 215 | 96.36 169 | 87.44 113 | 97.75 270 | 93.97 100 | 96.69 145 | 99.02 83 |
|
HQP_MVS | | | 93.78 127 | 93.43 123 | 94.82 175 | 96.21 193 | 89.99 170 | 97.74 72 | 97.51 145 | 94.85 26 | 91.34 182 | 96.64 149 | 81.32 210 | 98.60 179 | 93.02 122 | 92.23 209 | 95.86 224 |
|
PS-MVSNAJss | | | 93.74 128 | 93.51 119 | 94.44 193 | 93.91 296 | 89.28 200 | 97.75 71 | 97.56 142 | 92.50 105 | 89.94 218 | 96.54 159 | 88.65 94 | 98.18 212 | 93.83 107 | 90.90 234 | 95.86 224 |
|
XVG-OURS | | | 93.72 129 | 93.35 126 | 94.80 180 | 97.07 147 | 88.61 215 | 94.79 274 | 97.46 152 | 91.97 123 | 93.99 126 | 97.86 77 | 81.74 205 | 98.88 156 | 92.64 126 | 92.67 204 | 96.92 195 |
|
HyFIR lowres test | | | 93.66 130 | 92.92 136 | 95.87 125 | 98.24 93 | 89.88 175 | 94.58 278 | 98.49 12 | 85.06 293 | 93.78 131 | 95.78 199 | 82.86 180 | 98.67 173 | 91.77 142 | 95.71 163 | 99.07 82 |
|
mvs-test1 | | | 93.63 131 | 93.69 111 | 93.46 240 | 96.02 205 | 84.61 294 | 97.24 125 | 96.72 226 | 93.85 54 | 92.30 164 | 95.76 200 | 83.08 173 | 98.89 155 | 91.69 146 | 96.54 148 | 96.87 197 |
|
LFMVS | | | 93.60 132 | 92.63 145 | 96.52 85 | 98.13 104 | 91.27 129 | 97.94 55 | 93.39 335 | 90.57 168 | 96.29 72 | 98.31 47 | 69.00 322 | 99.16 128 | 94.18 97 | 95.87 158 | 99.12 77 |
|
F-COLMAP | | | 93.58 133 | 92.98 134 | 95.37 155 | 98.40 78 | 88.98 208 | 97.18 134 | 97.29 179 | 87.75 248 | 90.49 198 | 97.10 127 | 85.21 141 | 99.50 97 | 86.70 241 | 96.72 144 | 97.63 174 |
|
ab-mvs | | | 93.57 134 | 92.55 149 | 96.64 78 | 97.28 137 | 91.96 111 | 95.40 258 | 97.45 158 | 89.81 184 | 93.22 147 | 96.28 172 | 79.62 240 | 99.46 101 | 90.74 162 | 93.11 198 | 98.50 126 |
|
LS3D | | | 93.57 134 | 92.61 147 | 96.47 91 | 97.59 132 | 91.61 117 | 97.67 82 | 97.72 121 | 85.17 291 | 90.29 203 | 98.34 41 | 84.60 148 | 99.73 32 | 83.85 282 | 98.27 103 | 98.06 156 |
|
Fast-Effi-MVS+ | | | 93.46 136 | 92.75 141 | 95.59 141 | 96.77 165 | 90.03 167 | 96.81 168 | 97.13 189 | 88.19 230 | 91.30 185 | 94.27 269 | 86.21 129 | 98.63 176 | 87.66 224 | 96.46 152 | 98.12 152 |
|
hse-mvs2 | | | 93.45 137 | 92.99 133 | 94.81 177 | 97.02 154 | 88.59 216 | 96.69 179 | 96.47 244 | 95.19 14 | 96.74 50 | 96.16 178 | 83.67 162 | 98.48 191 | 95.85 50 | 79.13 334 | 97.35 186 |
|
QAPM | | | 93.45 137 | 92.27 159 | 96.98 74 | 96.77 165 | 92.62 87 | 98.39 20 | 98.12 56 | 84.50 301 | 88.27 265 | 97.77 85 | 82.39 193 | 99.81 26 | 85.40 263 | 98.81 90 | 98.51 125 |
|
UniMVSNet_NR-MVSNet | | | 93.37 139 | 92.67 144 | 95.47 152 | 95.34 233 | 92.83 80 | 97.17 135 | 98.58 10 | 92.98 91 | 90.13 210 | 95.80 195 | 88.37 99 | 97.85 259 | 91.71 144 | 83.93 310 | 95.73 237 |
|
1112_ss | | | 93.37 139 | 92.42 155 | 96.21 110 | 97.05 152 | 90.99 142 | 96.31 214 | 96.72 226 | 86.87 267 | 89.83 222 | 96.69 146 | 86.51 124 | 99.14 131 | 88.12 209 | 93.67 192 | 98.50 126 |
|
UniMVSNet (Re) | | | 93.31 141 | 92.55 149 | 95.61 140 | 95.39 227 | 93.34 70 | 97.39 111 | 98.71 5 | 93.14 82 | 90.10 214 | 94.83 239 | 87.71 105 | 98.03 236 | 91.67 148 | 83.99 309 | 95.46 246 |
|
OPM-MVS | | | 93.28 142 | 92.76 139 | 94.82 175 | 94.63 275 | 90.77 152 | 96.65 183 | 97.18 184 | 93.72 60 | 91.68 176 | 97.26 117 | 79.33 244 | 98.63 176 | 92.13 134 | 92.28 208 | 95.07 270 |
|
VPA-MVSNet | | | 93.24 143 | 92.48 154 | 95.51 146 | 95.70 216 | 92.39 93 | 97.86 60 | 98.66 9 | 92.30 109 | 92.09 171 | 95.37 219 | 80.49 222 | 98.40 194 | 93.95 101 | 85.86 281 | 95.75 235 |
|
RRT_MVS | | | 93.21 144 | 92.32 158 | 95.91 123 | 94.92 259 | 94.15 43 | 96.92 157 | 96.86 220 | 91.42 136 | 91.28 188 | 96.43 164 | 79.66 239 | 98.10 221 | 93.29 117 | 90.06 243 | 95.46 246 |
|
MVSTER | | | 93.20 145 | 92.81 138 | 94.37 197 | 96.56 176 | 89.59 182 | 97.06 141 | 97.12 190 | 91.24 145 | 91.30 185 | 95.96 186 | 82.02 199 | 98.05 232 | 93.48 112 | 90.55 238 | 95.47 245 |
|
HQP-MVS | | | 93.19 146 | 92.74 142 | 94.54 191 | 95.86 208 | 89.33 196 | 96.65 183 | 97.39 168 | 93.55 65 | 90.14 206 | 95.87 190 | 80.95 213 | 98.50 187 | 92.13 134 | 92.10 214 | 95.78 231 |
|
CHOSEN 280x420 | | | 93.12 147 | 92.72 143 | 94.34 199 | 96.71 168 | 87.27 246 | 90.29 341 | 97.72 121 | 86.61 271 | 91.34 182 | 95.29 221 | 84.29 155 | 98.41 193 | 93.25 118 | 98.94 87 | 97.35 186 |
|
Effi-MVS+-dtu | | | 93.08 148 | 93.21 130 | 92.68 268 | 96.02 205 | 83.25 308 | 97.14 139 | 96.72 226 | 93.85 54 | 91.20 192 | 93.44 300 | 83.08 173 | 98.30 202 | 91.69 146 | 95.73 162 | 96.50 206 |
|
test_djsdf | | | 93.07 149 | 92.76 139 | 94.00 210 | 93.49 309 | 88.70 214 | 98.22 34 | 97.57 139 | 91.42 136 | 90.08 216 | 95.55 213 | 82.85 181 | 97.92 253 | 94.07 98 | 91.58 221 | 95.40 252 |
|
VDDNet | | | 93.05 150 | 92.07 162 | 96.02 118 | 96.84 160 | 90.39 163 | 98.08 43 | 95.85 267 | 86.22 276 | 95.79 92 | 98.46 26 | 67.59 329 | 99.19 124 | 94.92 80 | 94.85 175 | 98.47 131 |
|
thisisatest0530 | | | 93.03 151 | 92.21 160 | 95.49 149 | 97.07 147 | 89.11 206 | 97.49 103 | 92.19 343 | 90.16 175 | 94.09 124 | 96.41 166 | 76.43 282 | 99.05 143 | 90.38 166 | 95.68 164 | 98.31 145 |
|
EI-MVSNet | | | 93.03 151 | 92.88 137 | 93.48 238 | 95.77 213 | 86.98 255 | 96.44 197 | 97.12 190 | 90.66 161 | 91.30 185 | 97.64 97 | 86.56 122 | 98.05 232 | 89.91 172 | 90.55 238 | 95.41 249 |
|
CLD-MVS | | | 92.98 153 | 92.53 151 | 94.32 200 | 96.12 202 | 89.20 202 | 95.28 264 | 97.47 150 | 92.66 101 | 89.90 219 | 95.62 208 | 80.58 220 | 98.40 194 | 92.73 125 | 92.40 207 | 95.38 254 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
tttt0517 | | | 92.96 154 | 92.33 157 | 94.87 174 | 97.11 145 | 87.16 252 | 97.97 53 | 92.09 344 | 90.63 163 | 93.88 130 | 97.01 131 | 76.50 279 | 99.06 142 | 90.29 169 | 95.45 166 | 98.38 141 |
|
ACMM | | 89.79 8 | 92.96 154 | 92.50 153 | 94.35 198 | 96.30 191 | 88.71 213 | 97.58 93 | 97.36 173 | 91.40 139 | 90.53 197 | 96.65 148 | 79.77 236 | 98.75 166 | 91.24 156 | 91.64 219 | 95.59 241 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LPG-MVS_test | | | 92.94 156 | 92.56 148 | 94.10 205 | 96.16 198 | 88.26 225 | 97.65 85 | 97.46 152 | 91.29 141 | 90.12 212 | 97.16 122 | 79.05 247 | 98.73 167 | 92.25 130 | 91.89 217 | 95.31 258 |
|
BH-untuned | | | 92.94 156 | 92.62 146 | 93.92 219 | 97.22 138 | 86.16 273 | 96.40 204 | 96.25 254 | 90.06 177 | 89.79 223 | 96.17 177 | 83.19 169 | 98.35 199 | 87.19 235 | 97.27 132 | 97.24 188 |
|
DU-MVS | | | 92.90 158 | 92.04 163 | 95.49 149 | 94.95 257 | 92.83 80 | 97.16 136 | 98.24 34 | 93.02 85 | 90.13 210 | 95.71 203 | 83.47 165 | 97.85 259 | 91.71 144 | 83.93 310 | 95.78 231 |
|
PatchMatch-RL | | | 92.90 158 | 92.02 165 | 95.56 142 | 98.19 100 | 90.80 150 | 95.27 266 | 97.18 184 | 87.96 238 | 91.86 175 | 95.68 206 | 80.44 223 | 98.99 147 | 84.01 278 | 97.54 121 | 96.89 196 |
|
PMMVS | | | 92.86 160 | 92.34 156 | 94.42 196 | 94.92 259 | 86.73 260 | 94.53 280 | 96.38 248 | 84.78 298 | 94.27 121 | 95.12 229 | 83.13 172 | 98.40 194 | 91.47 151 | 96.49 150 | 98.12 152 |
|
OpenMVS |  | 89.19 12 | 92.86 160 | 91.68 176 | 96.40 96 | 95.34 233 | 92.73 83 | 98.27 27 | 98.12 56 | 84.86 296 | 85.78 302 | 97.75 86 | 78.89 254 | 99.74 31 | 87.50 229 | 98.65 95 | 96.73 201 |
|
Test_1112_low_res | | | 92.84 162 | 91.84 171 | 95.85 126 | 97.04 153 | 89.97 173 | 95.53 254 | 96.64 235 | 85.38 287 | 89.65 228 | 95.18 225 | 85.86 134 | 99.10 134 | 87.70 219 | 93.58 197 | 98.49 128 |
|
baseline1 | | | 92.82 163 | 91.90 169 | 95.55 144 | 97.20 140 | 90.77 152 | 97.19 133 | 94.58 317 | 92.20 113 | 92.36 161 | 96.34 170 | 84.16 156 | 98.21 207 | 89.20 194 | 83.90 313 | 97.68 173 |
|
1314 | | | 92.81 164 | 92.03 164 | 95.14 161 | 95.33 236 | 89.52 187 | 96.04 230 | 97.44 162 | 87.72 249 | 86.25 299 | 95.33 220 | 83.84 159 | 98.79 161 | 89.26 190 | 97.05 138 | 97.11 189 |
|
DP-MVS | | | 92.76 165 | 91.51 184 | 96.52 85 | 98.77 57 | 90.99 142 | 97.38 113 | 96.08 260 | 82.38 320 | 89.29 240 | 97.87 75 | 83.77 160 | 99.69 44 | 81.37 302 | 96.69 145 | 98.89 101 |
|
BH-RMVSNet | | | 92.72 166 | 91.97 167 | 94.97 169 | 97.16 142 | 87.99 234 | 96.15 226 | 95.60 277 | 90.62 164 | 91.87 174 | 97.15 124 | 78.41 261 | 98.57 183 | 83.16 284 | 97.60 120 | 98.36 143 |
|
ACMP | | 89.59 10 | 92.62 167 | 92.14 161 | 94.05 208 | 96.40 186 | 88.20 228 | 97.36 114 | 97.25 182 | 91.52 131 | 88.30 263 | 96.64 149 | 78.46 259 | 98.72 170 | 91.86 141 | 91.48 223 | 95.23 266 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LCM-MVSNet-Re | | | 92.50 168 | 92.52 152 | 92.44 271 | 96.82 163 | 81.89 317 | 96.92 157 | 93.71 331 | 92.41 107 | 84.30 315 | 94.60 251 | 85.08 143 | 97.03 311 | 91.51 149 | 97.36 128 | 98.40 139 |
|
TranMVSNet+NR-MVSNet | | | 92.50 168 | 91.63 177 | 95.14 161 | 94.76 268 | 92.07 105 | 97.53 97 | 98.11 59 | 92.90 94 | 89.56 231 | 96.12 179 | 83.16 170 | 97.60 283 | 89.30 188 | 83.20 319 | 95.75 235 |
|
thres600view7 | | | 92.49 170 | 91.60 178 | 95.18 159 | 97.91 114 | 89.47 188 | 97.65 85 | 94.66 314 | 92.18 117 | 93.33 142 | 94.91 234 | 78.06 268 | 99.10 134 | 81.61 296 | 94.06 189 | 96.98 191 |
|
thres100view900 | | | 92.43 171 | 91.58 179 | 94.98 168 | 97.92 113 | 89.37 194 | 97.71 79 | 94.66 314 | 92.20 113 | 93.31 143 | 94.90 235 | 78.06 268 | 99.08 139 | 81.40 299 | 94.08 186 | 96.48 207 |
|
jajsoiax | | | 92.42 172 | 91.89 170 | 94.03 209 | 93.33 314 | 88.50 220 | 97.73 74 | 97.53 143 | 92.00 122 | 88.85 250 | 96.50 161 | 75.62 288 | 98.11 220 | 93.88 105 | 91.56 222 | 95.48 243 |
|
thres400 | | | 92.42 172 | 91.52 182 | 95.12 163 | 97.85 117 | 89.29 198 | 97.41 107 | 94.88 309 | 92.19 115 | 93.27 145 | 94.46 258 | 78.17 264 | 99.08 139 | 81.40 299 | 94.08 186 | 96.98 191 |
|
tfpn200view9 | | | 92.38 174 | 91.52 182 | 94.95 171 | 97.85 117 | 89.29 198 | 97.41 107 | 94.88 309 | 92.19 115 | 93.27 145 | 94.46 258 | 78.17 264 | 99.08 139 | 81.40 299 | 94.08 186 | 96.48 207 |
|
WR-MVS | | | 92.34 175 | 91.53 181 | 94.77 182 | 95.13 249 | 90.83 149 | 96.40 204 | 97.98 98 | 91.88 124 | 89.29 240 | 95.54 214 | 82.50 189 | 97.80 264 | 89.79 176 | 85.27 290 | 95.69 238 |
|
NR-MVSNet | | | 92.34 175 | 91.27 192 | 95.53 145 | 94.95 257 | 93.05 75 | 97.39 111 | 98.07 70 | 92.65 102 | 84.46 313 | 95.71 203 | 85.00 144 | 97.77 269 | 89.71 177 | 83.52 316 | 95.78 231 |
|
mvs_tets | | | 92.31 177 | 91.76 172 | 93.94 217 | 93.41 311 | 88.29 223 | 97.63 90 | 97.53 143 | 92.04 120 | 88.76 254 | 96.45 163 | 74.62 292 | 98.09 225 | 93.91 103 | 91.48 223 | 95.45 248 |
|
TAPA-MVS | | 90.10 7 | 92.30 178 | 91.22 195 | 95.56 142 | 98.33 85 | 89.60 181 | 96.79 169 | 97.65 131 | 81.83 324 | 91.52 178 | 97.23 119 | 87.94 102 | 98.91 153 | 71.31 346 | 98.37 101 | 98.17 149 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thisisatest0515 | | | 92.29 179 | 91.30 190 | 95.25 157 | 96.60 171 | 88.90 210 | 94.36 287 | 92.32 342 | 87.92 239 | 93.43 140 | 94.57 252 | 77.28 275 | 99.00 146 | 89.42 185 | 95.86 159 | 97.86 164 |
|
Fast-Effi-MVS+-dtu | | | 92.29 179 | 91.99 166 | 93.21 251 | 95.27 240 | 85.52 280 | 97.03 142 | 96.63 238 | 92.09 118 | 89.11 245 | 95.14 227 | 80.33 226 | 98.08 226 | 87.54 228 | 94.74 180 | 96.03 221 |
|
IterMVS-LS | | | 92.29 179 | 91.94 168 | 93.34 245 | 96.25 192 | 86.97 256 | 96.57 195 | 97.05 199 | 90.67 159 | 89.50 234 | 94.80 241 | 86.59 121 | 97.64 278 | 89.91 172 | 86.11 280 | 95.40 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PVSNet | | 86.66 18 | 92.24 182 | 91.74 175 | 93.73 225 | 97.77 122 | 83.69 305 | 92.88 322 | 96.72 226 | 87.91 240 | 93.00 149 | 94.86 237 | 78.51 258 | 99.05 143 | 86.53 242 | 97.45 126 | 98.47 131 |
|
VPNet | | | 92.23 183 | 91.31 189 | 94.99 166 | 95.56 220 | 90.96 144 | 97.22 131 | 97.86 110 | 92.96 92 | 90.96 193 | 96.62 156 | 75.06 290 | 98.20 209 | 91.90 138 | 83.65 315 | 95.80 230 |
|
thres200 | | | 92.23 183 | 91.39 185 | 94.75 184 | 97.61 130 | 89.03 207 | 96.60 191 | 95.09 300 | 92.08 119 | 93.28 144 | 94.00 281 | 78.39 262 | 99.04 145 | 81.26 303 | 94.18 185 | 96.19 212 |
|
test_part1 | | | 92.21 185 | 91.10 199 | 95.51 146 | 97.80 120 | 92.66 85 | 98.02 47 | 97.68 127 | 89.79 185 | 88.80 253 | 96.02 184 | 76.85 277 | 98.18 212 | 90.86 159 | 84.11 308 | 95.69 238 |
|
anonymousdsp | | | 92.16 186 | 91.55 180 | 93.97 213 | 92.58 326 | 89.55 184 | 97.51 98 | 97.42 166 | 89.42 193 | 88.40 260 | 94.84 238 | 80.66 219 | 97.88 258 | 91.87 140 | 91.28 227 | 94.48 302 |
|
XXY-MVS | | | 92.16 186 | 91.23 194 | 94.95 171 | 94.75 269 | 90.94 145 | 97.47 104 | 97.43 165 | 89.14 200 | 88.90 247 | 96.43 164 | 79.71 237 | 98.24 204 | 89.56 182 | 87.68 264 | 95.67 240 |
|
BH-w/o | | | 92.14 188 | 91.75 173 | 93.31 246 | 96.99 156 | 85.73 277 | 95.67 247 | 95.69 273 | 88.73 218 | 89.26 242 | 94.82 240 | 82.97 178 | 98.07 229 | 85.26 265 | 96.32 153 | 96.13 217 |
|
Anonymous202405211 | | | 92.07 189 | 90.83 208 | 95.76 128 | 98.19 100 | 88.75 212 | 97.58 93 | 95.00 303 | 86.00 279 | 93.64 133 | 97.45 109 | 66.24 338 | 99.53 89 | 90.68 164 | 92.71 202 | 99.01 87 |
|
WR-MVS_H | | | 92.00 190 | 91.35 186 | 93.95 215 | 95.09 251 | 89.47 188 | 98.04 46 | 98.68 7 | 91.46 134 | 88.34 261 | 94.68 247 | 85.86 134 | 97.56 285 | 85.77 258 | 84.24 306 | 94.82 287 |
|
Anonymous20240529 | | | 91.98 191 | 90.73 212 | 95.73 133 | 98.14 103 | 89.40 192 | 97.99 48 | 97.72 121 | 79.63 337 | 93.54 136 | 97.41 112 | 69.94 320 | 99.56 81 | 91.04 158 | 91.11 229 | 98.22 147 |
|
PatchmatchNet |  | | 91.91 192 | 91.35 186 | 93.59 233 | 95.38 228 | 84.11 299 | 93.15 318 | 95.39 283 | 89.54 188 | 92.10 170 | 93.68 293 | 82.82 182 | 98.13 216 | 84.81 269 | 95.32 168 | 98.52 123 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CP-MVSNet | | | 91.89 193 | 91.24 193 | 93.82 222 | 95.05 252 | 88.57 217 | 97.82 65 | 98.19 44 | 91.70 127 | 88.21 267 | 95.76 200 | 81.96 200 | 97.52 291 | 87.86 213 | 84.65 299 | 95.37 255 |
|
SCA | | | 91.84 194 | 91.18 197 | 93.83 221 | 95.59 218 | 84.95 290 | 94.72 275 | 95.58 279 | 90.82 154 | 92.25 165 | 93.69 291 | 75.80 285 | 98.10 221 | 86.20 248 | 95.98 155 | 98.45 133 |
|
FMVSNet3 | | | 91.78 195 | 90.69 214 | 95.03 165 | 96.53 178 | 92.27 99 | 97.02 145 | 96.93 209 | 89.79 185 | 89.35 237 | 94.65 249 | 77.01 276 | 97.47 294 | 86.12 251 | 88.82 253 | 95.35 256 |
|
AUN-MVS | | | 91.76 196 | 90.75 211 | 94.81 177 | 97.00 155 | 88.57 217 | 96.65 183 | 96.49 243 | 89.63 187 | 92.15 167 | 96.12 179 | 78.66 256 | 98.50 187 | 90.83 160 | 79.18 333 | 97.36 185 |
|
X-MVStestdata | | | 91.71 197 | 89.67 256 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 26 | 96.59 60 | 32.69 362 | 91.70 50 | 99.80 27 | 95.66 55 | 99.40 45 | 99.62 13 |
|
MVS | | | 91.71 197 | 90.44 222 | 95.51 146 | 95.20 246 | 91.59 119 | 96.04 230 | 97.45 158 | 73.44 350 | 87.36 284 | 95.60 209 | 85.42 139 | 99.10 134 | 85.97 255 | 97.46 122 | 95.83 228 |
|
EPNet_dtu | | | 91.71 197 | 91.28 191 | 92.99 257 | 93.76 301 | 83.71 303 | 96.69 179 | 95.28 290 | 93.15 81 | 87.02 291 | 95.95 187 | 83.37 168 | 97.38 302 | 79.46 314 | 96.84 139 | 97.88 163 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline2 | | | 91.63 200 | 90.86 204 | 93.94 217 | 94.33 285 | 86.32 267 | 95.92 238 | 91.64 348 | 89.37 194 | 86.94 292 | 94.69 246 | 81.62 207 | 98.69 171 | 88.64 204 | 94.57 182 | 96.81 199 |
|
miper_ehance_all_eth | | | 91.59 201 | 91.13 198 | 92.97 258 | 95.55 221 | 86.57 265 | 94.47 281 | 96.88 217 | 87.77 246 | 88.88 249 | 94.01 280 | 86.22 128 | 97.54 287 | 89.49 183 | 86.93 271 | 94.79 292 |
|
v2v482 | | | 91.59 201 | 90.85 206 | 93.80 223 | 93.87 298 | 88.17 230 | 96.94 156 | 96.88 217 | 89.54 188 | 89.53 232 | 94.90 235 | 81.70 206 | 98.02 237 | 89.25 191 | 85.04 296 | 95.20 267 |
|
V42 | | | 91.58 203 | 90.87 203 | 93.73 225 | 94.05 293 | 88.50 220 | 97.32 118 | 96.97 206 | 88.80 216 | 89.71 224 | 94.33 264 | 82.54 188 | 98.05 232 | 89.01 197 | 85.07 294 | 94.64 300 |
|
PCF-MVS | | 89.48 11 | 91.56 204 | 89.95 244 | 96.36 101 | 96.60 171 | 92.52 90 | 92.51 328 | 97.26 180 | 79.41 338 | 88.90 247 | 96.56 158 | 84.04 158 | 99.55 84 | 77.01 328 | 97.30 131 | 97.01 190 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
bset_n11_16_dypcd | | | 91.55 205 | 90.59 217 | 94.44 193 | 91.51 334 | 90.25 164 | 92.70 325 | 93.42 334 | 92.27 110 | 90.22 205 | 94.74 244 | 78.42 260 | 97.80 264 | 94.19 96 | 87.86 263 | 95.29 265 |
|
PS-CasMVS | | | 91.55 205 | 90.84 207 | 93.69 229 | 94.96 256 | 88.28 224 | 97.84 64 | 98.24 34 | 91.46 134 | 88.04 271 | 95.80 195 | 79.67 238 | 97.48 293 | 87.02 238 | 84.54 303 | 95.31 258 |
|
miper_enhance_ethall | | | 91.54 207 | 91.01 200 | 93.15 252 | 95.35 232 | 87.07 254 | 93.97 299 | 96.90 214 | 86.79 268 | 89.17 244 | 93.43 302 | 86.55 123 | 97.64 278 | 89.97 171 | 86.93 271 | 94.74 296 |
|
PAPM | | | 91.52 208 | 90.30 228 | 95.20 158 | 95.30 239 | 89.83 176 | 93.38 314 | 96.85 221 | 86.26 275 | 88.59 257 | 95.80 195 | 84.88 145 | 98.15 215 | 75.67 332 | 95.93 157 | 97.63 174 |
|
ET-MVSNet_ETH3D | | | 91.49 209 | 90.11 238 | 95.63 138 | 96.40 186 | 91.57 121 | 95.34 260 | 93.48 333 | 90.60 167 | 75.58 347 | 95.49 216 | 80.08 230 | 96.79 320 | 94.25 94 | 89.76 247 | 98.52 123 |
|
TR-MVS | | | 91.48 210 | 90.59 217 | 94.16 204 | 96.40 186 | 87.33 244 | 95.67 247 | 95.34 289 | 87.68 250 | 91.46 179 | 95.52 215 | 76.77 278 | 98.35 199 | 82.85 288 | 93.61 195 | 96.79 200 |
|
tpmrst | | | 91.44 211 | 91.32 188 | 91.79 288 | 95.15 247 | 79.20 340 | 93.42 313 | 95.37 285 | 88.55 223 | 93.49 138 | 93.67 294 | 82.49 190 | 98.27 203 | 90.41 165 | 89.34 250 | 97.90 161 |
|
test-LLR | | | 91.42 212 | 91.19 196 | 92.12 278 | 94.59 276 | 80.66 324 | 94.29 291 | 92.98 337 | 91.11 150 | 90.76 195 | 92.37 314 | 79.02 249 | 98.07 229 | 88.81 200 | 96.74 142 | 97.63 174 |
|
MSDG | | | 91.42 212 | 90.24 232 | 94.96 170 | 97.15 144 | 88.91 209 | 93.69 307 | 96.32 250 | 85.72 283 | 86.93 293 | 96.47 162 | 80.24 227 | 98.98 148 | 80.57 305 | 95.05 174 | 96.98 191 |
|
cl_fuxian | | | 91.38 214 | 90.89 202 | 92.88 261 | 95.58 219 | 86.30 268 | 94.68 276 | 96.84 222 | 88.17 232 | 88.83 252 | 94.23 272 | 85.65 137 | 97.47 294 | 89.36 186 | 84.63 300 | 94.89 282 |
|
GA-MVS | | | 91.38 214 | 90.31 227 | 94.59 186 | 94.65 273 | 87.62 242 | 94.34 288 | 96.19 257 | 90.73 157 | 90.35 202 | 93.83 285 | 71.84 305 | 97.96 247 | 87.22 234 | 93.61 195 | 98.21 148 |
|
v1144 | | | 91.37 216 | 90.60 216 | 93.68 230 | 93.89 297 | 88.23 227 | 96.84 164 | 97.03 203 | 88.37 226 | 89.69 226 | 94.39 260 | 82.04 198 | 97.98 240 | 87.80 215 | 85.37 287 | 94.84 284 |
|
GBi-Net | | | 91.35 217 | 90.27 230 | 94.59 186 | 96.51 179 | 91.18 136 | 97.50 99 | 96.93 209 | 88.82 213 | 89.35 237 | 94.51 253 | 73.87 296 | 97.29 306 | 86.12 251 | 88.82 253 | 95.31 258 |
|
test1 | | | 91.35 217 | 90.27 230 | 94.59 186 | 96.51 179 | 91.18 136 | 97.50 99 | 96.93 209 | 88.82 213 | 89.35 237 | 94.51 253 | 73.87 296 | 97.29 306 | 86.12 251 | 88.82 253 | 95.31 258 |
|
UniMVSNet_ETH3D | | | 91.34 219 | 90.22 235 | 94.68 185 | 94.86 264 | 87.86 238 | 97.23 130 | 97.46 152 | 87.99 237 | 89.90 219 | 96.92 135 | 66.35 336 | 98.23 205 | 90.30 168 | 90.99 232 | 97.96 157 |
|
FMVSNet2 | | | 91.31 220 | 90.08 239 | 94.99 166 | 96.51 179 | 92.21 100 | 97.41 107 | 96.95 207 | 88.82 213 | 88.62 256 | 94.75 243 | 73.87 296 | 97.42 299 | 85.20 266 | 88.55 258 | 95.35 256 |
|
D2MVS | | | 91.30 221 | 90.95 201 | 92.35 274 | 94.71 271 | 85.52 280 | 96.18 225 | 98.21 40 | 88.89 209 | 86.60 296 | 93.82 287 | 79.92 234 | 97.95 249 | 89.29 189 | 90.95 233 | 93.56 320 |
|
v8 | | | 91.29 222 | 90.53 221 | 93.57 235 | 94.15 289 | 88.12 232 | 97.34 115 | 97.06 198 | 88.99 204 | 88.32 262 | 94.26 271 | 83.08 173 | 98.01 238 | 87.62 226 | 83.92 312 | 94.57 301 |
|
CVMVSNet | | | 91.23 223 | 91.75 173 | 89.67 321 | 95.77 213 | 74.69 349 | 96.44 197 | 94.88 309 | 85.81 281 | 92.18 166 | 97.64 97 | 79.07 246 | 95.58 337 | 88.06 210 | 95.86 159 | 98.74 111 |
|
cl-mvsnet2 | | | 91.21 224 | 90.56 220 | 93.14 253 | 96.09 204 | 86.80 258 | 94.41 285 | 96.58 241 | 87.80 244 | 88.58 258 | 93.99 282 | 80.85 218 | 97.62 281 | 89.87 174 | 86.93 271 | 94.99 273 |
|
PEN-MVS | | | 91.20 225 | 90.44 222 | 93.48 238 | 94.49 279 | 87.91 237 | 97.76 70 | 98.18 46 | 91.29 141 | 87.78 276 | 95.74 202 | 80.35 225 | 97.33 304 | 85.46 262 | 82.96 320 | 95.19 268 |
|
Baseline_NR-MVSNet | | | 91.20 225 | 90.62 215 | 92.95 259 | 93.83 299 | 88.03 233 | 97.01 149 | 95.12 299 | 88.42 225 | 89.70 225 | 95.13 228 | 83.47 165 | 97.44 297 | 89.66 180 | 83.24 318 | 93.37 324 |
|
cascas | | | 91.20 225 | 90.08 239 | 94.58 190 | 94.97 255 | 89.16 205 | 93.65 309 | 97.59 137 | 79.90 336 | 89.40 235 | 92.92 306 | 75.36 289 | 98.36 198 | 92.14 133 | 94.75 179 | 96.23 210 |
|
RRT_test8_iter05 | | | 91.19 228 | 90.78 209 | 92.41 273 | 95.76 215 | 83.14 309 | 97.32 118 | 97.46 152 | 91.37 140 | 89.07 246 | 95.57 210 | 70.33 315 | 98.21 207 | 93.56 109 | 86.62 276 | 95.89 223 |
|
CostFormer | | | 91.18 229 | 90.70 213 | 92.62 269 | 94.84 265 | 81.76 318 | 94.09 297 | 94.43 319 | 84.15 304 | 92.72 156 | 93.77 289 | 79.43 242 | 98.20 209 | 90.70 163 | 92.18 212 | 97.90 161 |
|
v1192 | | | 91.07 230 | 90.23 233 | 93.58 234 | 93.70 302 | 87.82 239 | 96.73 173 | 97.07 196 | 87.77 246 | 89.58 229 | 94.32 266 | 80.90 217 | 97.97 243 | 86.52 243 | 85.48 285 | 94.95 274 |
|
v144192 | | | 91.06 231 | 90.28 229 | 93.39 242 | 93.66 304 | 87.23 249 | 96.83 165 | 97.07 196 | 87.43 255 | 89.69 226 | 94.28 268 | 81.48 208 | 98.00 239 | 87.18 236 | 84.92 298 | 94.93 278 |
|
v10 | | | 91.04 232 | 90.23 233 | 93.49 237 | 94.12 290 | 88.16 231 | 97.32 118 | 97.08 195 | 88.26 229 | 88.29 264 | 94.22 274 | 82.17 197 | 97.97 243 | 86.45 245 | 84.12 307 | 94.33 307 |
|
eth_miper_zixun_eth | | | 91.02 233 | 90.59 217 | 92.34 275 | 95.33 236 | 84.35 295 | 94.10 296 | 96.90 214 | 88.56 222 | 88.84 251 | 94.33 264 | 84.08 157 | 97.60 283 | 88.77 202 | 84.37 305 | 95.06 271 |
|
v148 | | | 90.99 234 | 90.38 224 | 92.81 264 | 93.83 299 | 85.80 276 | 96.78 171 | 96.68 232 | 89.45 192 | 88.75 255 | 93.93 284 | 82.96 179 | 97.82 263 | 87.83 214 | 83.25 317 | 94.80 290 |
|
LTVRE_ROB | | 88.41 13 | 90.99 234 | 89.92 245 | 94.19 202 | 96.18 196 | 89.55 184 | 96.31 214 | 97.09 194 | 87.88 241 | 85.67 303 | 95.91 189 | 78.79 255 | 98.57 183 | 81.50 297 | 89.98 244 | 94.44 304 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl-mvsnet1 | | | 90.97 236 | 90.33 225 | 92.88 261 | 95.36 231 | 86.19 272 | 94.46 283 | 96.63 238 | 87.82 242 | 88.18 268 | 94.23 272 | 82.99 176 | 97.53 289 | 87.72 216 | 85.57 284 | 94.93 278 |
|
cl-mvsnet____ | | | 90.96 237 | 90.32 226 | 92.89 260 | 95.37 230 | 86.21 271 | 94.46 283 | 96.64 235 | 87.82 242 | 88.15 269 | 94.18 275 | 82.98 177 | 97.54 287 | 87.70 219 | 85.59 283 | 94.92 280 |
|
pmmvs4 | | | 90.93 238 | 89.85 248 | 94.17 203 | 93.34 313 | 90.79 151 | 94.60 277 | 96.02 261 | 84.62 299 | 87.45 280 | 95.15 226 | 81.88 203 | 97.45 296 | 87.70 219 | 87.87 262 | 94.27 311 |
|
XVG-ACMP-BASELINE | | | 90.93 238 | 90.21 236 | 93.09 254 | 94.31 287 | 85.89 275 | 95.33 261 | 97.26 180 | 91.06 152 | 89.38 236 | 95.44 218 | 68.61 324 | 98.60 179 | 89.46 184 | 91.05 230 | 94.79 292 |
|
v1921920 | | | 90.85 240 | 90.03 243 | 93.29 247 | 93.55 305 | 86.96 257 | 96.74 172 | 97.04 201 | 87.36 257 | 89.52 233 | 94.34 263 | 80.23 228 | 97.97 243 | 86.27 246 | 85.21 291 | 94.94 276 |
|
CR-MVSNet | | | 90.82 241 | 89.77 252 | 93.95 215 | 94.45 281 | 87.19 250 | 90.23 342 | 95.68 275 | 86.89 266 | 92.40 158 | 92.36 317 | 80.91 215 | 97.05 310 | 81.09 304 | 93.95 190 | 97.60 179 |
|
v7n | | | 90.76 242 | 89.86 247 | 93.45 241 | 93.54 306 | 87.60 243 | 97.70 80 | 97.37 171 | 88.85 210 | 87.65 278 | 94.08 279 | 81.08 212 | 98.10 221 | 84.68 271 | 83.79 314 | 94.66 299 |
|
DWT-MVSNet_test | | | 90.76 242 | 89.89 246 | 93.38 243 | 95.04 253 | 83.70 304 | 95.85 241 | 94.30 325 | 88.19 230 | 90.46 199 | 92.80 307 | 73.61 300 | 98.50 187 | 88.16 208 | 90.58 237 | 97.95 159 |
|
RPSCF | | | 90.75 244 | 90.86 204 | 90.42 314 | 96.84 160 | 76.29 347 | 95.61 251 | 96.34 249 | 83.89 307 | 91.38 180 | 97.87 75 | 76.45 280 | 98.78 162 | 87.16 237 | 92.23 209 | 96.20 211 |
|
MVP-Stereo | | | 90.74 245 | 90.08 239 | 92.71 266 | 93.19 316 | 88.20 228 | 95.86 240 | 96.27 252 | 86.07 278 | 84.86 311 | 94.76 242 | 77.84 271 | 97.75 270 | 83.88 281 | 98.01 110 | 92.17 340 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pm-mvs1 | | | 90.72 246 | 89.65 258 | 93.96 214 | 94.29 288 | 89.63 179 | 97.79 68 | 96.82 223 | 89.07 201 | 86.12 301 | 95.48 217 | 78.61 257 | 97.78 267 | 86.97 239 | 81.67 324 | 94.46 303 |
|
v1240 | | | 90.70 247 | 89.85 248 | 93.23 249 | 93.51 308 | 86.80 258 | 96.61 189 | 97.02 204 | 87.16 262 | 89.58 229 | 94.31 267 | 79.55 241 | 97.98 240 | 85.52 261 | 85.44 286 | 94.90 281 |
|
EPMVS | | | 90.70 247 | 89.81 250 | 93.37 244 | 94.73 270 | 84.21 297 | 93.67 308 | 88.02 355 | 89.50 190 | 92.38 160 | 93.49 298 | 77.82 272 | 97.78 267 | 86.03 254 | 92.68 203 | 98.11 155 |
|
Anonymous20231211 | | | 90.63 249 | 89.42 260 | 94.27 201 | 98.24 93 | 89.19 204 | 98.05 45 | 97.89 103 | 79.95 335 | 88.25 266 | 94.96 231 | 72.56 303 | 98.13 216 | 89.70 178 | 85.14 292 | 95.49 242 |
|
DTE-MVSNet | | | 90.56 250 | 89.75 254 | 93.01 256 | 93.95 294 | 87.25 247 | 97.64 89 | 97.65 131 | 90.74 156 | 87.12 287 | 95.68 206 | 79.97 233 | 97.00 315 | 83.33 283 | 81.66 325 | 94.78 294 |
|
ACMH | | 87.59 16 | 90.53 251 | 89.42 260 | 93.87 220 | 96.21 193 | 87.92 235 | 97.24 125 | 96.94 208 | 88.45 224 | 83.91 322 | 96.27 173 | 71.92 304 | 98.62 178 | 84.43 275 | 89.43 249 | 95.05 272 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 90.51 252 | 90.19 237 | 91.44 297 | 93.41 311 | 81.25 321 | 96.98 152 | 96.28 251 | 91.68 128 | 86.55 297 | 96.30 171 | 74.20 295 | 97.98 240 | 88.96 198 | 87.40 269 | 95.09 269 |
|
miper_lstm_enhance | | | 90.50 253 | 90.06 242 | 91.83 285 | 95.33 236 | 83.74 301 | 93.86 302 | 96.70 231 | 87.56 253 | 87.79 275 | 93.81 288 | 83.45 167 | 96.92 317 | 87.39 230 | 84.62 301 | 94.82 287 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 254 | 89.28 263 | 93.79 224 | 97.95 110 | 87.13 253 | 96.92 157 | 95.89 266 | 82.83 318 | 86.88 295 | 97.18 121 | 73.77 299 | 99.29 118 | 78.44 319 | 93.62 194 | 94.95 274 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-SCA-FT | | | 90.31 255 | 89.81 250 | 91.82 286 | 95.52 222 | 84.20 298 | 94.30 290 | 96.15 258 | 90.61 165 | 87.39 283 | 94.27 269 | 75.80 285 | 96.44 323 | 87.34 231 | 86.88 275 | 94.82 287 |
|
MS-PatchMatch | | | 90.27 256 | 89.77 252 | 91.78 289 | 94.33 285 | 84.72 293 | 95.55 252 | 96.73 225 | 86.17 277 | 86.36 298 | 95.28 223 | 71.28 309 | 97.80 264 | 84.09 277 | 98.14 108 | 92.81 329 |
|
tpm | | | 90.25 257 | 89.74 255 | 91.76 291 | 93.92 295 | 79.73 336 | 93.98 298 | 93.54 332 | 88.28 228 | 91.99 172 | 93.25 303 | 77.51 274 | 97.44 297 | 87.30 233 | 87.94 261 | 98.12 152 |
|
AllTest | | | 90.23 258 | 88.98 267 | 93.98 211 | 97.94 111 | 86.64 261 | 96.51 196 | 95.54 280 | 85.38 287 | 85.49 305 | 96.77 140 | 70.28 316 | 99.15 129 | 80.02 309 | 92.87 199 | 96.15 215 |
|
ACMH+ | | 87.92 14 | 90.20 259 | 89.18 265 | 93.25 248 | 96.48 182 | 86.45 266 | 96.99 150 | 96.68 232 | 88.83 212 | 84.79 312 | 96.22 174 | 70.16 318 | 98.53 185 | 84.42 276 | 88.04 260 | 94.77 295 |
|
test-mter | | | 90.19 260 | 89.54 259 | 92.12 278 | 94.59 276 | 80.66 324 | 94.29 291 | 92.98 337 | 87.68 250 | 90.76 195 | 92.37 314 | 67.67 328 | 98.07 229 | 88.81 200 | 96.74 142 | 97.63 174 |
|
IterMVS | | | 90.15 261 | 89.67 256 | 91.61 293 | 95.48 224 | 83.72 302 | 94.33 289 | 96.12 259 | 89.99 178 | 87.31 286 | 94.15 277 | 75.78 287 | 96.27 326 | 86.97 239 | 86.89 274 | 94.83 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 90.06 262 | 89.42 260 | 91.97 281 | 94.41 283 | 80.62 326 | 94.29 291 | 91.97 346 | 87.28 260 | 90.44 200 | 92.47 313 | 68.79 323 | 97.67 275 | 88.50 206 | 96.60 147 | 97.61 178 |
|
tpm2 | | | 89.96 263 | 89.21 264 | 92.23 277 | 94.91 262 | 81.25 321 | 93.78 304 | 94.42 320 | 80.62 333 | 91.56 177 | 93.44 300 | 76.44 281 | 97.94 250 | 85.60 260 | 92.08 216 | 97.49 183 |
|
IB-MVS | | 87.33 17 | 89.91 264 | 88.28 276 | 94.79 181 | 95.26 243 | 87.70 241 | 95.12 272 | 93.95 330 | 89.35 195 | 87.03 290 | 92.49 312 | 70.74 313 | 99.19 124 | 89.18 195 | 81.37 326 | 97.49 183 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ADS-MVSNet | | | 89.89 265 | 88.68 271 | 93.53 236 | 95.86 208 | 84.89 291 | 90.93 337 | 95.07 301 | 83.23 316 | 91.28 188 | 91.81 324 | 79.01 251 | 97.85 259 | 79.52 311 | 91.39 225 | 97.84 165 |
|
FMVSNet1 | | | 89.88 266 | 88.31 275 | 94.59 186 | 95.41 226 | 91.18 136 | 97.50 99 | 96.93 209 | 86.62 270 | 87.41 282 | 94.51 253 | 65.94 340 | 97.29 306 | 83.04 286 | 87.43 267 | 95.31 258 |
|
pmmvs5 | | | 89.86 267 | 88.87 269 | 92.82 263 | 92.86 320 | 86.23 270 | 96.26 218 | 95.39 283 | 84.24 303 | 87.12 287 | 94.51 253 | 74.27 294 | 97.36 303 | 87.61 227 | 87.57 265 | 94.86 283 |
|
tpmvs | | | 89.83 268 | 89.15 266 | 91.89 283 | 94.92 259 | 80.30 330 | 93.11 319 | 95.46 282 | 86.28 274 | 88.08 270 | 92.65 309 | 80.44 223 | 98.52 186 | 81.47 298 | 89.92 245 | 96.84 198 |
|
tfpnnormal | | | 89.70 269 | 88.40 274 | 93.60 232 | 95.15 247 | 90.10 166 | 97.56 95 | 98.16 50 | 87.28 260 | 86.16 300 | 94.63 250 | 77.57 273 | 98.05 232 | 74.48 334 | 84.59 302 | 92.65 332 |
|
ADS-MVSNet2 | | | 89.45 270 | 88.59 272 | 92.03 280 | 95.86 208 | 82.26 316 | 90.93 337 | 94.32 324 | 83.23 316 | 91.28 188 | 91.81 324 | 79.01 251 | 95.99 328 | 79.52 311 | 91.39 225 | 97.84 165 |
|
Patchmatch-test | | | 89.42 271 | 87.99 278 | 93.70 228 | 95.27 240 | 85.11 286 | 88.98 348 | 94.37 322 | 81.11 328 | 87.10 289 | 93.69 291 | 82.28 194 | 97.50 292 | 74.37 336 | 94.76 178 | 98.48 130 |
|
test0.0.03 1 | | | 89.37 272 | 88.70 270 | 91.41 298 | 92.47 327 | 85.63 278 | 95.22 269 | 92.70 340 | 91.11 150 | 86.91 294 | 93.65 295 | 79.02 249 | 93.19 351 | 78.00 321 | 89.18 251 | 95.41 249 |
|
SixPastTwentyTwo | | | 89.15 273 | 88.54 273 | 90.98 304 | 93.49 309 | 80.28 331 | 96.70 177 | 94.70 313 | 90.78 155 | 84.15 318 | 95.57 210 | 71.78 306 | 97.71 273 | 84.63 272 | 85.07 294 | 94.94 276 |
|
RPMNet | | | 88.98 274 | 87.05 289 | 94.77 182 | 94.45 281 | 87.19 250 | 90.23 342 | 98.03 84 | 77.87 345 | 92.40 158 | 87.55 347 | 80.17 229 | 99.51 94 | 68.84 350 | 93.95 190 | 97.60 179 |
|
TransMVSNet (Re) | | | 88.94 275 | 87.56 282 | 93.08 255 | 94.35 284 | 88.45 222 | 97.73 74 | 95.23 294 | 87.47 254 | 84.26 316 | 95.29 221 | 79.86 235 | 97.33 304 | 79.44 315 | 74.44 343 | 93.45 323 |
|
USDC | | | 88.94 275 | 87.83 280 | 92.27 276 | 94.66 272 | 84.96 289 | 93.86 302 | 95.90 265 | 87.34 258 | 83.40 324 | 95.56 212 | 67.43 330 | 98.19 211 | 82.64 292 | 89.67 248 | 93.66 319 |
|
dp | | | 88.90 277 | 88.26 277 | 90.81 307 | 94.58 278 | 76.62 346 | 92.85 323 | 94.93 307 | 85.12 292 | 90.07 217 | 93.07 304 | 75.81 284 | 98.12 219 | 80.53 306 | 87.42 268 | 97.71 171 |
|
PatchT | | | 88.87 278 | 87.42 283 | 93.22 250 | 94.08 292 | 85.10 287 | 89.51 346 | 94.64 316 | 81.92 323 | 92.36 161 | 88.15 344 | 80.05 231 | 97.01 314 | 72.43 342 | 93.65 193 | 97.54 182 |
|
MVS_0304 | | | 88.79 279 | 87.57 281 | 92.46 270 | 94.65 273 | 86.15 274 | 96.40 204 | 97.17 186 | 86.44 272 | 88.02 272 | 91.71 326 | 56.68 353 | 97.03 311 | 84.47 274 | 92.58 205 | 94.19 312 |
|
our_test_3 | | | 88.78 280 | 87.98 279 | 91.20 302 | 92.45 328 | 82.53 312 | 93.61 311 | 95.69 273 | 85.77 282 | 84.88 310 | 93.71 290 | 79.99 232 | 96.78 321 | 79.47 313 | 86.24 277 | 94.28 310 |
|
EU-MVSNet | | | 88.72 281 | 88.90 268 | 88.20 326 | 93.15 317 | 74.21 350 | 96.63 188 | 94.22 326 | 85.18 290 | 87.32 285 | 95.97 185 | 76.16 283 | 94.98 341 | 85.27 264 | 86.17 278 | 95.41 249 |
|
Patchmtry | | | 88.64 282 | 87.25 285 | 92.78 265 | 94.09 291 | 86.64 261 | 89.82 345 | 95.68 275 | 80.81 332 | 87.63 279 | 92.36 317 | 80.91 215 | 97.03 311 | 78.86 317 | 85.12 293 | 94.67 298 |
|
MIMVSNet | | | 88.50 283 | 86.76 291 | 93.72 227 | 94.84 265 | 87.77 240 | 91.39 332 | 94.05 327 | 86.41 273 | 87.99 273 | 92.59 311 | 63.27 345 | 95.82 333 | 77.44 322 | 92.84 201 | 97.57 181 |
|
tpm cat1 | | | 88.36 284 | 87.21 287 | 91.81 287 | 95.13 249 | 80.55 327 | 92.58 327 | 95.70 272 | 74.97 347 | 87.45 280 | 91.96 322 | 78.01 270 | 98.17 214 | 80.39 307 | 88.74 256 | 96.72 202 |
|
ppachtmachnet_test | | | 88.35 285 | 87.29 284 | 91.53 294 | 92.45 328 | 83.57 306 | 93.75 305 | 95.97 262 | 84.28 302 | 85.32 308 | 94.18 275 | 79.00 253 | 96.93 316 | 75.71 331 | 84.99 297 | 94.10 313 |
|
JIA-IIPM | | | 88.26 286 | 87.04 290 | 91.91 282 | 93.52 307 | 81.42 320 | 89.38 347 | 94.38 321 | 80.84 331 | 90.93 194 | 80.74 352 | 79.22 245 | 97.92 253 | 82.76 289 | 91.62 220 | 96.38 209 |
|
testgi | | | 87.97 287 | 87.21 287 | 90.24 316 | 92.86 320 | 80.76 323 | 96.67 182 | 94.97 305 | 91.74 126 | 85.52 304 | 95.83 193 | 62.66 347 | 94.47 345 | 76.25 329 | 88.36 259 | 95.48 243 |
|
LF4IMVS | | | 87.94 288 | 87.25 285 | 89.98 318 | 92.38 330 | 80.05 334 | 94.38 286 | 95.25 293 | 87.59 252 | 84.34 314 | 94.74 244 | 64.31 343 | 97.66 277 | 84.83 268 | 87.45 266 | 92.23 337 |
|
gg-mvs-nofinetune | | | 87.82 289 | 85.61 298 | 94.44 193 | 94.46 280 | 89.27 201 | 91.21 336 | 84.61 360 | 80.88 330 | 89.89 221 | 74.98 354 | 71.50 307 | 97.53 289 | 85.75 259 | 97.21 134 | 96.51 205 |
|
pmmvs6 | | | 87.81 290 | 86.19 294 | 92.69 267 | 91.32 335 | 86.30 268 | 97.34 115 | 96.41 247 | 80.59 334 | 84.05 321 | 94.37 262 | 67.37 331 | 97.67 275 | 84.75 270 | 79.51 332 | 94.09 315 |
|
K. test v3 | | | 87.64 291 | 86.75 292 | 90.32 315 | 93.02 319 | 79.48 338 | 96.61 189 | 92.08 345 | 90.66 161 | 80.25 339 | 94.09 278 | 67.21 332 | 96.65 322 | 85.96 256 | 80.83 328 | 94.83 285 |
|
Patchmatch-RL test | | | 87.38 292 | 86.24 293 | 90.81 307 | 88.74 350 | 78.40 344 | 88.12 350 | 93.17 336 | 87.11 263 | 82.17 330 | 89.29 339 | 81.95 201 | 95.60 336 | 88.64 204 | 77.02 337 | 98.41 138 |
|
FMVSNet5 | | | 87.29 293 | 85.79 297 | 91.78 289 | 94.80 267 | 87.28 245 | 95.49 255 | 95.28 290 | 84.09 305 | 83.85 323 | 91.82 323 | 62.95 346 | 94.17 346 | 78.48 318 | 85.34 289 | 93.91 317 |
|
Anonymous20231206 | | | 87.09 294 | 86.14 295 | 89.93 319 | 91.22 336 | 80.35 328 | 96.11 227 | 95.35 286 | 83.57 313 | 84.16 317 | 93.02 305 | 73.54 301 | 95.61 335 | 72.16 343 | 86.14 279 | 93.84 318 |
|
EG-PatchMatch MVS | | | 87.02 295 | 85.44 299 | 91.76 291 | 92.67 324 | 85.00 288 | 96.08 229 | 96.45 245 | 83.41 315 | 79.52 341 | 93.49 298 | 57.10 352 | 97.72 272 | 79.34 316 | 90.87 235 | 92.56 333 |
|
TinyColmap | | | 86.82 296 | 85.35 302 | 91.21 301 | 94.91 262 | 82.99 310 | 93.94 300 | 94.02 329 | 83.58 312 | 81.56 331 | 94.68 247 | 62.34 348 | 98.13 216 | 75.78 330 | 87.35 270 | 92.52 334 |
|
TDRefinement | | | 86.53 297 | 84.76 307 | 91.85 284 | 82.23 357 | 84.25 296 | 96.38 207 | 95.35 286 | 84.97 295 | 84.09 319 | 94.94 232 | 65.76 341 | 98.34 201 | 84.60 273 | 74.52 342 | 92.97 326 |
|
test_0402 | | | 86.46 298 | 84.79 306 | 91.45 296 | 95.02 254 | 85.55 279 | 96.29 216 | 94.89 308 | 80.90 329 | 82.21 329 | 93.97 283 | 68.21 327 | 97.29 306 | 62.98 354 | 88.68 257 | 91.51 343 |
|
Anonymous20240521 | | | 86.42 299 | 85.44 299 | 89.34 322 | 90.33 340 | 79.79 335 | 96.73 173 | 95.92 263 | 83.71 311 | 83.25 325 | 91.36 329 | 63.92 344 | 96.01 327 | 78.39 320 | 85.36 288 | 92.22 338 |
|
DSMNet-mixed | | | 86.34 300 | 86.12 296 | 87.00 331 | 89.88 344 | 70.43 353 | 94.93 273 | 90.08 353 | 77.97 344 | 85.42 307 | 92.78 308 | 74.44 293 | 93.96 347 | 74.43 335 | 95.14 170 | 96.62 203 |
|
CL-MVSNet_2432*1600 | | | 86.31 301 | 85.15 303 | 89.80 320 | 88.83 349 | 81.74 319 | 93.93 301 | 96.22 255 | 86.67 269 | 85.03 309 | 90.80 330 | 78.09 267 | 94.50 343 | 74.92 333 | 71.86 347 | 93.15 325 |
|
pmmvs-eth3d | | | 86.22 302 | 84.45 308 | 91.53 294 | 88.34 351 | 87.25 247 | 94.47 281 | 95.01 302 | 83.47 314 | 79.51 342 | 89.61 338 | 69.75 321 | 95.71 334 | 83.13 285 | 76.73 339 | 91.64 341 |
|
test20.03 | | | 86.14 303 | 85.40 301 | 88.35 324 | 90.12 341 | 80.06 333 | 95.90 239 | 95.20 295 | 88.59 219 | 81.29 332 | 93.62 296 | 71.43 308 | 92.65 352 | 71.26 347 | 81.17 327 | 92.34 336 |
|
UnsupCasMVSNet_eth | | | 85.99 304 | 84.45 308 | 90.62 311 | 89.97 343 | 82.40 315 | 93.62 310 | 97.37 171 | 89.86 180 | 78.59 344 | 92.37 314 | 65.25 342 | 95.35 340 | 82.27 294 | 70.75 348 | 94.10 313 |
|
DIV-MVS_2432*1600 | | | 85.95 305 | 84.95 304 | 88.96 323 | 89.55 347 | 79.11 341 | 95.13 271 | 96.42 246 | 85.91 280 | 84.07 320 | 90.48 331 | 70.03 319 | 94.82 342 | 80.04 308 | 72.94 346 | 92.94 327 |
|
YYNet1 | | | 85.87 306 | 84.23 310 | 90.78 310 | 92.38 330 | 82.46 314 | 93.17 316 | 95.14 298 | 82.12 322 | 67.69 350 | 92.36 317 | 78.16 266 | 95.50 339 | 77.31 324 | 79.73 330 | 94.39 305 |
|
MDA-MVSNet_test_wron | | | 85.87 306 | 84.23 310 | 90.80 309 | 92.38 330 | 82.57 311 | 93.17 316 | 95.15 297 | 82.15 321 | 67.65 351 | 92.33 320 | 78.20 263 | 95.51 338 | 77.33 323 | 79.74 329 | 94.31 309 |
|
CMPMVS |  | 62.92 21 | 85.62 308 | 84.92 305 | 87.74 328 | 89.14 348 | 73.12 352 | 94.17 294 | 96.80 224 | 73.98 348 | 73.65 349 | 94.93 233 | 66.36 335 | 97.61 282 | 83.95 280 | 91.28 227 | 92.48 335 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PVSNet_0 | | 82.17 19 | 85.46 309 | 83.64 312 | 90.92 305 | 95.27 240 | 79.49 337 | 90.55 340 | 95.60 277 | 83.76 310 | 83.00 328 | 89.95 335 | 71.09 310 | 97.97 243 | 82.75 290 | 60.79 356 | 95.31 258 |
|
MDA-MVSNet-bldmvs | | | 85.00 310 | 82.95 314 | 91.17 303 | 93.13 318 | 83.33 307 | 94.56 279 | 95.00 303 | 84.57 300 | 65.13 355 | 92.65 309 | 70.45 314 | 95.85 331 | 73.57 339 | 77.49 336 | 94.33 307 |
|
MIMVSNet1 | | | 84.93 311 | 83.05 313 | 90.56 312 | 89.56 346 | 84.84 292 | 95.40 258 | 95.35 286 | 83.91 306 | 80.38 337 | 92.21 321 | 57.23 351 | 93.34 350 | 70.69 349 | 82.75 323 | 93.50 321 |
|
KD-MVS_2432*1600 | | | 84.81 312 | 82.64 315 | 91.31 299 | 91.07 337 | 85.34 284 | 91.22 334 | 95.75 270 | 85.56 285 | 83.09 326 | 90.21 333 | 67.21 332 | 95.89 329 | 77.18 326 | 62.48 354 | 92.69 330 |
|
miper_refine_blended | | | 84.81 312 | 82.64 315 | 91.31 299 | 91.07 337 | 85.34 284 | 91.22 334 | 95.75 270 | 85.56 285 | 83.09 326 | 90.21 333 | 67.21 332 | 95.89 329 | 77.18 326 | 62.48 354 | 92.69 330 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 314 | 82.28 317 | 90.83 306 | 90.06 342 | 84.05 300 | 95.73 246 | 94.04 328 | 73.89 349 | 80.17 340 | 91.53 328 | 59.15 350 | 97.64 278 | 66.92 352 | 89.05 252 | 90.80 347 |
|
PM-MVS | | | 83.48 315 | 81.86 319 | 88.31 325 | 87.83 353 | 77.59 345 | 93.43 312 | 91.75 347 | 86.91 265 | 80.63 335 | 89.91 336 | 44.42 358 | 95.84 332 | 85.17 267 | 76.73 339 | 91.50 344 |
|
new-patchmatchnet | | | 83.18 316 | 81.87 318 | 87.11 330 | 86.88 354 | 75.99 348 | 93.70 306 | 95.18 296 | 85.02 294 | 77.30 345 | 88.40 341 | 65.99 339 | 93.88 348 | 74.19 338 | 70.18 349 | 91.47 345 |
|
new_pmnet | | | 82.89 317 | 81.12 321 | 88.18 327 | 89.63 345 | 80.18 332 | 91.77 331 | 92.57 341 | 76.79 346 | 75.56 348 | 88.23 343 | 61.22 349 | 94.48 344 | 71.43 345 | 82.92 321 | 89.87 349 |
|
MVS-HIRNet | | | 82.47 318 | 81.21 320 | 86.26 333 | 95.38 228 | 69.21 356 | 88.96 349 | 89.49 354 | 66.28 352 | 80.79 334 | 74.08 356 | 68.48 325 | 97.39 301 | 71.93 344 | 95.47 165 | 92.18 339 |
|
UnsupCasMVSNet_bld | | | 82.13 319 | 79.46 322 | 90.14 317 | 88.00 352 | 82.47 313 | 90.89 339 | 96.62 240 | 78.94 340 | 75.61 346 | 84.40 350 | 56.63 354 | 96.31 325 | 77.30 325 | 66.77 352 | 91.63 342 |
|
pmmvs3 | | | 79.97 320 | 77.50 324 | 87.39 329 | 82.80 356 | 79.38 339 | 92.70 325 | 90.75 352 | 70.69 351 | 78.66 343 | 87.47 348 | 51.34 356 | 93.40 349 | 73.39 340 | 69.65 350 | 89.38 350 |
|
N_pmnet | | | 78.73 321 | 78.71 323 | 78.79 336 | 92.80 322 | 46.50 365 | 94.14 295 | 43.71 368 | 78.61 341 | 80.83 333 | 91.66 327 | 74.94 291 | 96.36 324 | 67.24 351 | 84.45 304 | 93.50 321 |
|
LCM-MVSNet | | | 72.55 322 | 69.39 326 | 82.03 334 | 70.81 364 | 65.42 359 | 90.12 344 | 94.36 323 | 55.02 356 | 65.88 353 | 81.72 351 | 24.16 367 | 89.96 353 | 74.32 337 | 68.10 351 | 90.71 348 |
|
FPMVS | | | 71.27 323 | 69.85 325 | 75.50 338 | 74.64 359 | 59.03 361 | 91.30 333 | 91.50 349 | 58.80 355 | 57.92 357 | 88.28 342 | 29.98 363 | 85.53 357 | 53.43 356 | 82.84 322 | 81.95 353 |
|
PMMVS2 | | | 70.19 324 | 66.92 327 | 80.01 335 | 76.35 358 | 65.67 358 | 86.22 351 | 87.58 357 | 64.83 354 | 62.38 356 | 80.29 353 | 26.78 365 | 88.49 355 | 63.79 353 | 54.07 357 | 85.88 351 |
|
Gipuma |  | | 67.86 325 | 65.41 328 | 75.18 339 | 92.66 325 | 73.45 351 | 66.50 359 | 94.52 318 | 53.33 357 | 57.80 358 | 66.07 358 | 30.81 361 | 89.20 354 | 48.15 358 | 78.88 335 | 62.90 357 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 66.11 326 | 64.89 329 | 69.79 341 | 72.62 362 | 35.23 369 | 65.19 360 | 92.83 339 | 20.35 362 | 65.20 354 | 88.08 345 | 43.14 359 | 82.70 358 | 73.12 341 | 63.46 353 | 91.45 346 |
|
ANet_high | | | 63.94 327 | 59.58 330 | 77.02 337 | 61.24 366 | 66.06 357 | 85.66 353 | 87.93 356 | 78.53 342 | 42.94 360 | 71.04 357 | 25.42 366 | 80.71 359 | 52.60 357 | 30.83 360 | 84.28 352 |
|
PMVS |  | 53.92 22 | 58.58 328 | 55.40 331 | 68.12 342 | 51.00 367 | 48.64 363 | 78.86 356 | 87.10 359 | 46.77 358 | 35.84 364 | 74.28 355 | 8.76 368 | 86.34 356 | 42.07 359 | 73.91 344 | 69.38 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 53.28 329 | 52.56 333 | 55.43 344 | 74.43 360 | 47.13 364 | 83.63 355 | 76.30 364 | 42.23 359 | 42.59 361 | 62.22 360 | 28.57 364 | 74.40 361 | 31.53 361 | 31.51 359 | 44.78 358 |
|
MVE |  | 50.73 23 | 53.25 330 | 48.81 335 | 66.58 343 | 65.34 365 | 57.50 362 | 72.49 358 | 70.94 366 | 40.15 361 | 39.28 363 | 63.51 359 | 6.89 370 | 73.48 363 | 38.29 360 | 42.38 358 | 68.76 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 52.08 331 | 51.31 334 | 54.39 345 | 72.62 362 | 45.39 366 | 83.84 354 | 75.51 365 | 41.13 360 | 40.77 362 | 59.65 361 | 30.08 362 | 73.60 362 | 28.31 362 | 29.90 361 | 44.18 359 |
|
tmp_tt | | | 51.94 332 | 53.82 332 | 46.29 346 | 33.73 368 | 45.30 367 | 78.32 357 | 67.24 367 | 18.02 363 | 50.93 359 | 87.05 349 | 52.99 355 | 53.11 364 | 70.76 348 | 25.29 362 | 40.46 360 |
|
wuyk23d | | | 25.11 333 | 24.57 337 | 26.74 347 | 73.98 361 | 39.89 368 | 57.88 361 | 9.80 369 | 12.27 364 | 10.39 365 | 6.97 367 | 7.03 369 | 36.44 365 | 25.43 363 | 17.39 363 | 3.89 363 |
|
cdsmvs_eth3d_5k | | | 23.24 334 | 30.99 336 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 97.63 133 | 0.00 367 | 0.00 368 | 96.88 137 | 84.38 152 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
testmvs | | | 13.36 335 | 16.33 338 | 4.48 349 | 5.04 369 | 2.26 371 | 93.18 315 | 3.28 370 | 2.70 365 | 8.24 366 | 21.66 363 | 2.29 372 | 2.19 366 | 7.58 364 | 2.96 364 | 9.00 362 |
|
test123 | | | 13.04 336 | 15.66 339 | 5.18 348 | 4.51 370 | 3.45 370 | 92.50 329 | 1.81 371 | 2.50 366 | 7.58 367 | 20.15 364 | 3.67 371 | 2.18 367 | 7.13 365 | 1.07 365 | 9.90 361 |
|
ab-mvs-re | | | 8.06 337 | 10.74 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 96.69 146 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 7.39 338 | 9.85 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 88.65 94 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 99.05 41 | 94.59 28 | | 98.08 64 | 89.22 198 | 97.03 47 | 98.10 60 | 92.52 32 | 99.65 53 | 94.58 91 | 99.31 55 | |
|
RE-MVS-def | | | | 96.72 35 | | 99.02 43 | 92.34 94 | 97.98 49 | 98.03 84 | 93.52 69 | 97.43 31 | 98.51 22 | 90.71 73 | | 96.05 43 | 99.26 63 | 99.43 49 |
|
IU-MVS | | | | | | 99.42 6 | 95.39 9 | | 97.94 102 | 90.40 172 | 98.94 5 | | | | 97.41 7 | 99.66 8 | 99.74 5 |
|
OPU-MVS | | | | | 98.55 1 | 98.82 56 | 96.86 1 | 98.25 29 | | | | 98.26 53 | 96.04 1 | 99.24 121 | 95.36 68 | 99.59 15 | 99.56 22 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 17 | 98.93 6 | 98.89 4 | 94.99 8 | 99.85 14 | 97.52 2 | 99.65 10 | 99.74 5 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 15 | | 98.27 28 | 95.09 20 | 99.19 1 | 98.81 8 | 95.54 3 | 99.65 53 | | | |
|
9.14 | | | | 96.75 33 | | 98.93 47 | | 97.73 74 | 98.23 38 | 91.28 144 | 97.88 22 | 98.44 28 | 93.00 21 | 99.65 53 | 95.76 54 | 99.47 36 | |
|
save fliter | | | | | | 98.91 49 | 94.28 35 | 97.02 145 | 98.02 88 | 95.35 8 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 94.78 33 | 98.73 8 | 98.87 6 | 95.87 2 | 99.84 19 | 97.45 6 | 99.72 2 | 99.77 1 |
|
test_0728_SECOND | | | | | 98.51 2 | 99.45 2 | 95.93 3 | 98.21 36 | 98.28 26 | | | | | 99.86 8 | 97.52 2 | 99.67 6 | 99.75 3 |
|
test0726 | | | | | | 99.45 2 | 95.36 10 | 98.31 23 | 98.29 24 | 94.92 24 | 98.99 4 | 98.92 2 | 95.08 5 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 133 |
|
test_part2 | | | | | | 99.28 25 | 95.74 6 | | | | 98.10 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 183 | | | | 98.45 133 |
|
sam_mvs | | | | | | | | | | | | | 81.94 202 | | | | |
|
ambc | | | | | 86.56 332 | 83.60 355 | 70.00 355 | 85.69 352 | 94.97 305 | | 80.60 336 | 88.45 340 | 37.42 360 | 96.84 319 | 82.69 291 | 75.44 341 | 92.86 328 |
|
MTGPA |  | | | | | | | | 98.08 64 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 324 | | | | 16.58 366 | 80.53 221 | 97.68 274 | 86.20 248 | | |
|
test_post | | | | | | | | | | | | 17.58 365 | 81.76 204 | 98.08 226 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 332 | 82.65 187 | 98.10 221 | | | |
|
GG-mvs-BLEND | | | | | 93.62 231 | 93.69 303 | 89.20 202 | 92.39 330 | 83.33 361 | | 87.98 274 | 89.84 337 | 71.00 311 | 96.87 318 | 82.08 295 | 95.40 167 | 94.80 290 |
|
MTMP | | | | | | | | 97.86 60 | 82.03 362 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 315 | 78.89 343 | | | 84.82 297 | | 93.52 297 | | 98.64 175 | 87.72 216 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 85 | 99.38 48 | 99.45 45 |
|
TEST9 | | | | | | 98.70 60 | 94.19 40 | 96.41 201 | 98.02 88 | 88.17 232 | 96.03 81 | 97.56 105 | 92.74 24 | 99.59 68 | | | |
|
test_8 | | | | | | 98.67 62 | 94.06 49 | 96.37 208 | 98.01 91 | 88.58 220 | 95.98 86 | 97.55 107 | 92.73 25 | 99.58 71 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 102 | 99.38 48 | 99.50 37 |
|
agg_prior | | | | | | 98.67 62 | 93.79 55 | | 98.00 93 | | 95.68 96 | | | 99.57 79 | | | |
|
TestCases | | | | | 93.98 211 | 97.94 111 | 86.64 261 | | 95.54 280 | 85.38 287 | 85.49 305 | 96.77 140 | 70.28 316 | 99.15 129 | 80.02 309 | 92.87 199 | 96.15 215 |
|
test_prior4 | | | | | | | 93.66 59 | 96.42 200 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 209 | | 92.80 97 | 96.03 81 | 97.59 101 | 92.01 41 | | 95.01 76 | 99.38 48 | |
|
test_prior | | | | | 97.23 62 | 98.67 62 | 92.99 76 | | 98.00 93 | | | | | 99.41 107 | | | 99.29 62 |
|
旧先验2 | | | | | | | | 95.94 237 | | 81.66 325 | 97.34 34 | | | 98.82 159 | 92.26 128 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 95.79 244 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 97.32 56 | 98.60 68 | 93.59 61 | | 97.75 116 | 81.58 326 | 95.75 93 | 97.85 78 | 90.04 81 | 99.67 49 | 86.50 244 | 99.13 75 | 98.69 116 |
|
旧先验1 | | | | | | 98.38 81 | 93.38 67 | | 97.75 116 | | | 98.09 62 | 92.30 38 | | | 99.01 84 | 99.16 70 |
|
æ— å…ˆéªŒ | | | | | | | | 95.79 244 | 97.87 107 | 83.87 309 | | | | 99.65 53 | 87.68 222 | | 98.89 101 |
|
原ACMM2 | | | | | | | | 95.67 247 | | | | | | | | | |
|
原ACMM1 | | | | | 96.38 99 | 98.59 69 | 91.09 141 | | 97.89 103 | 87.41 256 | 95.22 108 | 97.68 91 | 90.25 77 | 99.54 86 | 87.95 212 | 99.12 78 | 98.49 128 |
|
test222 | | | | | | 98.24 93 | 92.21 100 | 95.33 261 | 97.60 135 | 79.22 339 | 95.25 107 | 97.84 81 | 88.80 92 | | | 99.15 73 | 98.72 113 |
|
testdata2 | | | | | | | | | | | | | | 99.67 49 | 85.96 256 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 22 | | | | |
|
testdata | | | | | 95.46 153 | 98.18 102 | 88.90 210 | | 97.66 129 | 82.73 319 | 97.03 47 | 98.07 63 | 90.06 80 | 98.85 157 | 89.67 179 | 98.98 85 | 98.64 118 |
|
testdata1 | | | | | | | | 95.26 268 | | 93.10 84 | | | | | | | |
|
test12 | | | | | 97.65 44 | 98.46 74 | 94.26 37 | | 97.66 129 | | 95.52 105 | | 90.89 69 | 99.46 101 | | 99.25 65 | 99.22 67 |
|
plane_prior7 | | | | | | 96.21 193 | 89.98 172 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 203 | 90.00 168 | | | | | | 81.32 210 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 145 | | | | | 98.60 179 | 93.02 122 | 92.23 209 | 95.86 224 |
|
plane_prior4 | | | | | | | | | | | | 96.64 149 | | | | | |
|
plane_prior3 | | | | | | | 90.00 168 | | | 94.46 41 | 91.34 182 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 72 | | 94.85 26 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 201 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 170 | 97.24 125 | | 94.06 49 | | | | | | 92.16 213 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 351 | | | | | | | | |
|
lessismore_v0 | | | | | 90.45 313 | 91.96 333 | 79.09 342 | | 87.19 358 | | 80.32 338 | 94.39 260 | 66.31 337 | 97.55 286 | 84.00 279 | 76.84 338 | 94.70 297 |
|
LGP-MVS_train | | | | | 94.10 205 | 96.16 198 | 88.26 225 | | 97.46 152 | 91.29 141 | 90.12 212 | 97.16 122 | 79.05 247 | 98.73 167 | 92.25 130 | 91.89 217 | 95.31 258 |
|
test11 | | | | | | | | | 97.88 105 | | | | | | | | |
|
door | | | | | | | | | 91.13 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 196 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 208 | | 96.65 183 | | 93.55 65 | 90.14 206 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 208 | | 96.65 183 | | 93.55 65 | 90.14 206 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 134 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 206 | | | 98.50 187 | | | 95.78 231 |
|
HQP3-MVS | | | | | | | | | 97.39 168 | | | | | | | 92.10 214 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 213 | | | | |
|
NP-MVS | | | | | | 95.99 207 | 89.81 177 | | | | | 95.87 190 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 354 | 93.10 320 | | 83.88 308 | 93.55 135 | | 82.47 191 | | 86.25 247 | | 98.38 141 |
|
MDTV_nov1_ep13 | | | | 90.76 210 | | 95.22 244 | 80.33 329 | 93.03 321 | 95.28 290 | 88.14 235 | 92.84 155 | 93.83 285 | 81.34 209 | 98.08 226 | 82.86 287 | 94.34 184 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 242 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 231 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 93 | | | | |
|
ITE_SJBPF | | | | | 92.43 272 | 95.34 233 | 85.37 283 | | 95.92 263 | 91.47 133 | 87.75 277 | 96.39 168 | 71.00 311 | 97.96 247 | 82.36 293 | 89.86 246 | 93.97 316 |
|
DeepMVS_CX |  | | | | 74.68 340 | 90.84 339 | 64.34 360 | | 81.61 363 | 65.34 353 | 67.47 352 | 88.01 346 | 48.60 357 | 80.13 360 | 62.33 355 | 73.68 345 | 79.58 354 |
|