This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
DROMVSNet96.42 5596.47 4896.26 11197.01 16391.52 12798.89 397.75 12194.42 4596.64 6197.68 9789.32 9098.60 18597.45 899.11 8498.67 125
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15696.40 7497.99 7590.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9496.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17796.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14389.56 19098.67 897.00 21290.69 16794.24 13197.62 10689.79 8998.81 16693.39 12296.49 15998.92 104
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18593.36 7398.65 998.36 1694.12 5289.25 25298.06 7082.20 20199.77 3293.41 12199.32 5799.18 76
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20289.67 26297.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 37191.70 5399.80 3095.66 6099.40 4999.62 15
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8893.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8497.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8797.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8497.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8395.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 11196.39 7598.18 6491.61 5599.88 495.59 7099.55 2599.57 23
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16795.34 1698.48 1897.87 11294.65 4188.53 26898.02 7383.69 16699.71 4193.18 12598.96 9199.44 51
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8493.99 13597.74 9385.55 14398.45 20089.98 17997.86 12299.14 80
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7995.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.86 7395.88 6695.80 13196.76 17690.59 16198.40 2297.65 13793.52 7395.53 11096.79 14589.98 8698.59 18995.59 7098.69 9998.23 155
QAPM93.45 14092.27 16496.98 7796.77 17492.62 9298.39 2398.12 5984.50 31088.27 27497.77 9182.39 19899.81 2985.40 27298.81 9598.51 133
nrg03094.05 12093.31 13096.27 11095.22 25494.59 3298.34 2497.46 15992.93 10191.21 20096.64 15787.23 12298.22 21594.99 8585.80 29195.98 231
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25495.17 11698.03 7287.09 12399.61 6593.51 11799.42 4799.02 90
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 21293.97 13797.57 11092.62 3199.76 3394.66 9599.27 6599.15 79
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10896.70 5698.06 7091.35 6299.86 894.83 8999.28 6399.47 48
canonicalmvs96.02 6695.45 7497.75 4097.59 13995.15 2598.28 2997.60 14294.52 4396.27 7896.12 18787.65 11299.18 12996.20 4394.82 18698.91 105
test250691.60 20690.78 21494.04 21697.66 13383.81 31098.27 3075.53 37593.43 7795.23 11498.21 6067.21 33999.07 14593.01 13298.49 10599.25 72
OpenMVScopyleft89.19 1292.86 16591.68 18196.40 9995.34 24392.73 8898.27 3098.12 5984.86 30585.78 31197.75 9278.89 25999.74 3487.50 23898.65 10196.73 210
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14991.58 12598.26 3298.12 5994.38 4894.90 11898.15 6582.28 19998.92 15791.45 16198.58 10499.01 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3398.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
OPU-MVS98.55 398.82 5896.86 398.25 3398.26 5696.04 299.24 12495.36 7499.59 1799.56 26
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3398.81 392.99 9494.56 12598.39 3788.96 9499.85 1794.57 9897.63 12899.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE93.89 12593.28 13195.72 13896.96 16689.75 18598.24 3696.92 22089.47 20092.12 17897.21 12784.42 15698.39 20587.71 22796.50 15899.01 94
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3798.27 3092.37 11698.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
MVSFormer95.37 8295.16 8395.99 12496.34 19991.21 13898.22 3897.57 14691.42 14496.22 7997.32 12186.20 13597.92 26294.07 10499.05 8798.85 111
test_djsdf93.07 15492.76 14394.00 21893.49 31988.70 22198.22 3897.57 14691.42 14490.08 22595.55 22182.85 18697.92 26294.07 10491.58 23095.40 261
test111193.19 14992.82 14194.30 20797.58 14184.56 30398.21 4089.02 36393.53 7294.58 12498.21 6072.69 30899.05 14893.06 12898.48 10799.28 69
ECVR-MVScopyleft93.19 14992.73 14794.57 19697.66 13385.41 28998.21 4088.23 36493.43 7794.70 12298.21 6072.57 30999.07 14593.05 12998.49 10599.25 72
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4097.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4098.28 2799.86 897.52 499.67 699.75 5
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 4098.45 1589.86 18997.11 4898.01 7492.52 3599.69 4796.03 5099.53 2899.36 62
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4598.32 2192.57 11297.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23491.45 13198.12 4698.71 593.37 7990.23 21396.70 15287.66 11197.85 26891.49 15990.39 25095.83 237
FIs94.09 11893.70 11395.27 16195.70 22692.03 11298.10 4798.68 793.36 8190.39 21096.70 15287.63 11397.94 25992.25 13990.50 24995.84 236
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13787.92 24298.10 4795.80 27692.22 11993.02 15797.45 11684.53 15597.91 26588.24 21697.97 12099.02 90
VDDNet93.05 15592.07 16796.02 12296.84 16990.39 17098.08 4995.85 27486.22 28595.79 9798.46 2867.59 33699.19 12794.92 8694.85 18498.47 139
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 5097.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121190.63 25589.42 26694.27 20898.24 9889.19 21198.05 5197.89 10879.95 34488.25 27594.96 23972.56 31098.13 22589.70 18785.14 30195.49 251
WR-MVS_H92.00 19591.35 19193.95 22395.09 26189.47 19598.04 5298.68 791.46 14288.34 27094.68 25585.86 13997.56 29485.77 26784.24 31694.82 296
test_part192.21 19091.10 20495.51 15197.80 12592.66 9098.02 5397.68 13389.79 19488.80 26296.02 19276.85 28298.18 22190.86 16884.11 31895.69 247
Anonymous2024052991.98 19690.73 21895.73 13798.14 10889.40 19997.99 5497.72 12879.63 34693.54 14597.41 11969.94 32799.56 8491.04 16791.11 23898.22 156
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5598.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5598.06 7693.11 9097.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
tttt051792.96 15992.33 16294.87 17997.11 15387.16 25997.97 5992.09 35190.63 17293.88 13997.01 13776.50 28499.06 14790.29 17895.45 17598.38 149
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 6098.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 6198.18 4990.57 17798.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 13592.63 15096.52 8898.13 10991.27 13597.94 6193.39 34290.57 17796.29 7798.31 4969.00 32999.16 13194.18 10395.87 16799.12 84
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6398.14 5694.82 3299.01 398.55 2194.18 1497.41 30996.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6498.03 8793.34 8297.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 90
UGNet94.04 12193.28 13196.31 10696.85 16891.19 14197.88 6597.68 13394.40 4693.00 15896.18 18373.39 30799.61 6591.72 15298.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MTMP97.86 6682.03 372
alignmvs95.87 7295.23 8197.78 3697.56 14295.19 2297.86 6697.17 19394.39 4796.47 7196.40 17585.89 13899.20 12696.21 4295.11 18298.95 101
VPA-MVSNet93.24 14692.48 15995.51 15195.70 22692.39 9897.86 6698.66 992.30 11792.09 18095.37 22780.49 22798.40 20293.95 10785.86 29095.75 244
EPNet95.20 8994.56 9697.14 7192.80 33292.68 8997.85 6994.87 31996.64 192.46 16697.80 9086.23 13299.65 5693.72 11498.62 10299.10 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-CasMVS91.55 21190.84 21293.69 23794.96 26688.28 23197.84 7098.24 3791.46 14288.04 28095.80 20379.67 24397.48 30287.02 24784.54 31395.31 267
EIA-MVS95.53 8095.47 7395.71 13997.06 15889.63 18697.82 7197.87 11293.57 6793.92 13895.04 23890.61 7798.95 15594.62 9698.68 10098.54 129
CP-MVSNet91.89 19891.24 19893.82 23095.05 26288.57 22497.82 7198.19 4791.70 13588.21 27695.76 20881.96 20597.52 30087.86 22284.65 30895.37 264
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7397.48 15489.19 20894.81 12096.71 15088.84 9699.17 13088.91 20898.76 9796.53 213
pm-mvs190.72 25289.65 26493.96 22294.29 29889.63 18697.79 7496.82 23089.07 21086.12 31095.48 22578.61 26297.78 27686.97 24881.67 33494.46 312
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7598.22 4292.74 10797.59 2898.20 6391.96 4799.86 894.21 10199.25 6999.63 13
CS-MVS95.88 7195.98 6295.58 14696.44 19390.56 16297.78 7597.73 12493.01 9396.07 8596.77 14790.13 8398.57 19096.83 1899.10 8597.60 187
PEN-MVS91.20 23190.44 22893.48 24694.49 28987.91 24497.76 7798.18 4991.29 14987.78 28595.74 21080.35 23097.33 31385.46 27182.96 33095.19 277
PS-MVSNAJss93.74 13193.51 12294.44 19993.91 30689.28 20797.75 7897.56 14992.50 11389.94 22796.54 16788.65 9998.18 22193.83 11390.90 24395.86 233
HQP_MVS93.78 13093.43 12694.82 18096.21 20389.99 17797.74 7997.51 15294.85 2891.34 19196.64 15781.32 21598.60 18593.02 13092.23 21895.86 233
plane_prior297.74 7994.85 28
9.1496.75 3498.93 4997.73 8198.23 4191.28 15297.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
jajsoiax92.42 17791.89 17594.03 21793.33 32488.50 22797.73 8197.53 15092.00 13088.85 25996.50 16975.62 29398.11 22993.88 11191.56 23195.48 252
TransMVSNet (Re)88.94 28187.56 28893.08 26394.35 29488.45 22997.73 8195.23 30187.47 26384.26 32595.29 22979.86 24097.33 31379.44 32474.44 35393.45 332
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8495.85 27492.43 11495.86 9498.44 3068.42 33399.39 11396.31 3394.85 18498.71 122
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8498.10 6491.50 14098.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
thres100view90092.43 17691.58 18494.98 17397.92 11889.37 20197.71 8694.66 32192.20 12193.31 15294.90 24378.06 27399.08 14281.40 30894.08 19596.48 216
v7n90.76 24889.86 25393.45 24993.54 31687.60 25097.70 8797.37 17888.85 21987.65 28794.08 28781.08 21798.10 23084.68 28083.79 32494.66 308
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8898.24 3791.57 13897.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8998.49 1294.66 4097.24 4098.41 3692.31 4098.94 15696.61 2699.46 4298.96 99
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8997.47 15788.13 24593.00 15895.84 20084.86 15199.51 9787.99 22098.17 11697.83 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LS3D93.57 13792.61 15296.47 9497.59 13991.61 12297.67 8997.72 12885.17 30090.29 21298.34 4384.60 15399.73 3583.85 29198.27 11298.06 164
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 9298.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17697.35 13899.11 85
thres600view792.49 17591.60 18395.18 16497.91 11989.47 19597.65 9294.66 32192.18 12593.33 15194.91 24278.06 27399.10 13781.61 30594.06 19896.98 200
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 9298.98 192.22 11997.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
LPG-MVS_test92.94 16192.56 15394.10 21296.16 20888.26 23297.65 9297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
DTE-MVSNet90.56 25689.75 26093.01 26493.95 30487.25 25497.64 9697.65 13790.74 16587.12 29695.68 21479.97 23897.00 32483.33 29281.66 33594.78 303
mvs_tets92.31 18291.76 17793.94 22593.41 32188.29 23097.63 9797.53 15092.04 12888.76 26396.45 17174.62 29798.09 23493.91 10991.48 23295.45 257
h-mvs3394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9897.58 14595.19 1496.74 5497.45 11683.67 16799.61 6595.85 5479.73 34098.29 154
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9998.19 4792.82 10497.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
Anonymous20240521192.07 19490.83 21395.76 13298.19 10588.75 21997.58 10095.00 31086.00 28893.64 14297.45 11666.24 34699.53 9290.68 17392.71 21199.01 94
ACMM89.79 892.96 15992.50 15894.35 20496.30 20188.71 22097.58 10097.36 18091.40 14790.53 20696.65 15679.77 24198.75 17291.24 16591.64 22895.59 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal89.70 27588.40 28093.60 24095.15 25790.10 17397.56 10298.16 5387.28 26986.16 30994.63 25877.57 27898.05 24174.48 34384.59 31192.65 341
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10397.97 10295.59 496.61 6397.89 7892.57 3399.84 2295.95 5199.51 3399.40 57
TranMVSNet+NR-MVSNet92.50 17391.63 18295.14 16694.76 27892.07 11097.53 10498.11 6292.90 10289.56 24096.12 18783.16 17597.60 29289.30 19783.20 32995.75 244
anonymousdsp92.16 19191.55 18593.97 22192.58 33689.55 19197.51 10597.42 17389.42 20288.40 26994.84 24680.66 22497.88 26791.87 14991.28 23694.48 311
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10698.15 5493.87 5797.52 2997.61 10785.29 14599.53 9295.81 5795.27 17899.16 77
GBi-Net91.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
test191.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
FMVSNet189.88 27288.31 28194.59 19195.41 23691.18 14297.50 10696.93 21686.62 27987.41 29194.51 26165.94 34897.29 31583.04 29587.43 27695.31 267
thisisatest053093.03 15692.21 16595.49 15497.07 15589.11 21397.49 11092.19 35090.16 18494.09 13396.41 17476.43 28799.05 14890.38 17595.68 17398.31 153
ETV-MVS96.02 6695.89 6596.40 9997.16 15092.44 9797.47 11197.77 11994.55 4296.48 7094.51 26191.23 6598.92 15795.65 6398.19 11497.82 176
XXY-MVS92.16 19191.23 19994.95 17694.75 27990.94 15097.47 11197.43 17289.14 20988.90 25696.43 17279.71 24298.24 21389.56 19187.68 27395.67 249
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11397.96 10377.99 35293.00 15897.57 11086.14 13799.33 11789.22 20199.15 7798.94 102
tfpn200view992.38 17991.52 18794.95 17697.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.48 216
thres40092.42 17791.52 18795.12 16897.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.98 200
FMVSNet291.31 22690.08 24594.99 17196.51 18892.21 10597.41 11496.95 21488.82 22288.62 26594.75 25173.87 30197.42 30885.20 27588.55 26795.35 265
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11498.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet (Re)93.31 14492.55 15495.61 14495.39 23793.34 7497.39 11898.71 593.14 8990.10 22394.83 24787.71 11098.03 24591.67 15783.99 31995.46 255
NR-MVSNet92.34 18091.27 19795.53 15094.95 26793.05 8097.39 11898.07 7392.65 11084.46 32295.71 21185.00 14997.77 27889.71 18683.52 32695.78 240
DP-MVS92.76 17091.51 18996.52 8898.77 5990.99 14797.38 12096.08 26782.38 32989.29 24997.87 8183.77 16599.69 4781.37 31196.69 15498.89 108
ACMP89.59 1092.62 17292.14 16694.05 21596.40 19688.20 23597.36 12197.25 18991.52 13988.30 27296.64 15778.46 26498.72 17691.86 15091.48 23295.23 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs687.81 29686.19 30092.69 27591.32 34686.30 27597.34 12296.41 25480.59 34384.05 33094.37 27067.37 33897.67 28484.75 27979.51 34294.09 324
v891.29 22890.53 22793.57 24394.15 29988.12 23997.34 12297.06 20588.99 21388.32 27194.26 27983.08 17898.01 24787.62 23583.92 32294.57 310
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 12298.04 8495.96 297.09 4997.88 8093.18 2399.71 4195.84 5699.17 7699.56 26
v1091.04 23890.23 23993.49 24594.12 30088.16 23897.32 12597.08 20288.26 23888.29 27394.22 28282.17 20297.97 25286.45 25484.12 31794.33 316
V4291.58 20990.87 20893.73 23394.05 30388.50 22797.32 12596.97 21388.80 22589.71 23394.33 27282.54 19398.05 24189.01 20685.07 30394.64 309
RRT_test8_iter0591.19 23490.78 21492.41 28195.76 22583.14 31997.32 12597.46 15991.37 14889.07 25595.57 21870.33 32298.21 21693.56 11586.62 28595.89 232
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12898.06 7693.92 5693.38 15098.66 1486.83 12599.73 3595.60 6999.22 7298.96 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs95.64 7695.49 7296.08 11796.76 17690.45 16797.29 12997.44 16994.00 5495.46 11297.98 7687.52 11698.73 17395.64 6497.33 13999.08 87
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 13098.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 13098.25 3590.21 18294.18 13297.27 12387.48 11799.73 3593.53 11697.77 12698.55 128
mvs-test193.63 13493.69 11493.46 24896.02 21584.61 30297.24 13296.72 23393.85 5892.30 17395.76 20883.08 17898.89 16191.69 15596.54 15796.87 206
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 13298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
plane_prior89.99 17797.24 13294.06 5392.16 222
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 13297.73 12491.80 13392.93 16396.62 16489.13 9399.14 13489.21 20297.78 12598.97 98
ACMH87.59 1690.53 25789.42 26693.87 22896.21 20387.92 24297.24 13296.94 21588.45 23383.91 33196.27 18171.92 31198.62 18484.43 28489.43 25895.05 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D91.34 22590.22 24194.68 19094.86 27487.86 24597.23 13797.46 15987.99 24689.90 22896.92 14166.35 34498.23 21490.30 17790.99 24197.96 165
VPNet92.23 18891.31 19494.99 17195.56 23090.96 14997.22 13897.86 11592.96 10090.96 20296.62 16475.06 29598.20 21891.90 14783.65 32595.80 239
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
baseline192.82 16891.90 17495.55 14997.20 14890.77 15797.19 14094.58 32492.20 12192.36 17096.34 17884.16 16198.21 21689.20 20383.90 32397.68 181
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 14197.29 18687.75 25790.49 20797.10 13385.21 14699.50 10086.70 25096.72 15397.63 182
UniMVSNet_NR-MVSNet93.37 14292.67 14995.47 15795.34 24392.83 8597.17 14298.58 1092.98 9990.13 21995.80 20388.37 10497.85 26891.71 15383.93 32095.73 246
DU-MVS92.90 16392.04 16895.49 15494.95 26792.83 8597.16 14398.24 3793.02 9290.13 21995.71 21183.47 17097.85 26891.71 15383.93 32095.78 240
baseline95.58 7895.42 7696.08 11796.78 17390.41 16997.16 14397.45 16593.69 6695.65 10597.85 8487.29 12098.68 17895.66 6097.25 14299.13 81
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14598.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
Effi-MVS+-dtu93.08 15393.21 13392.68 27696.02 21583.25 31897.14 14696.72 23393.85 5891.20 20193.44 30883.08 17898.30 21191.69 15595.73 17196.50 215
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14798.07 7393.54 7196.08 8497.69 9693.86 1699.71 4196.50 2999.39 5199.55 30
MVSTER93.20 14892.81 14294.37 20396.56 18589.59 18997.06 14897.12 19791.24 15391.30 19495.96 19482.02 20498.05 24193.48 11890.55 24795.47 254
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14998.21 4388.16 24396.64 6197.70 9591.18 6699.67 5292.44 13699.47 4099.48 45
Fast-Effi-MVS+-dtu92.29 18491.99 17193.21 25995.27 25085.52 28797.03 14996.63 24592.09 12689.11 25495.14 23580.33 23198.08 23587.54 23794.74 18996.03 230
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14998.08 6788.35 23695.09 11797.65 10189.97 8799.48 10292.08 14698.59 10398.44 144
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 15297.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
save fliter98.91 5194.28 3997.02 15298.02 9195.35 8
CANet96.39 5796.02 6197.50 5397.62 13693.38 7197.02 15297.96 10395.42 794.86 11997.81 8887.38 11999.82 2896.88 1699.20 7499.29 66
FMVSNet391.78 20090.69 22095.03 17096.53 18792.27 10497.02 15296.93 21689.79 19489.35 24694.65 25777.01 28197.47 30386.12 26088.82 26295.35 265
Baseline_NR-MVSNet91.20 23190.62 22192.95 26793.83 30988.03 24097.01 15695.12 30688.42 23489.70 23495.13 23683.47 17097.44 30689.66 18983.24 32893.37 333
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15798.05 8389.85 19197.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 71
ACMH+87.92 1490.20 26589.18 27193.25 25696.48 19186.45 27396.99 15796.68 23988.83 22184.79 32196.22 18270.16 32598.53 19384.42 28588.04 26994.77 304
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32181.25 33296.98 15996.28 25891.68 13686.55 30696.30 17974.20 30097.98 24988.96 20787.40 27895.09 278
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 16098.06 7690.67 16895.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 16097.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 16098.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
v2v48291.59 20790.85 21193.80 23193.87 30888.17 23796.94 16396.88 22489.54 19789.53 24194.90 24381.70 21198.02 24689.25 20085.04 30595.20 276
RRT_MVS93.21 14792.32 16395.91 12694.92 26994.15 4796.92 16496.86 22791.42 14491.28 19796.43 17279.66 24498.10 23093.29 12390.06 25295.46 255
LCM-MVSNet-Re92.50 17392.52 15792.44 27996.82 17281.89 32896.92 16493.71 33892.41 11584.30 32494.60 25985.08 14897.03 32091.51 15897.36 13798.40 147
COLMAP_ROBcopyleft87.81 1590.40 26089.28 26993.79 23297.95 11587.13 26096.92 16495.89 27382.83 32786.88 30497.18 12873.77 30499.29 12178.44 32893.62 20394.95 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16797.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 11199.13 81
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16897.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 12198.90 106
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
v114491.37 22290.60 22293.68 23893.89 30788.23 23496.84 17197.03 21088.37 23589.69 23594.39 26882.04 20397.98 24987.80 22485.37 29694.84 293
v14419291.06 23790.28 23593.39 25093.66 31487.23 25696.83 17297.07 20387.43 26489.69 23594.28 27681.48 21398.00 24887.18 24584.92 30794.93 287
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 17297.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 17298.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
Fast-Effi-MVS+93.46 13992.75 14595.59 14596.77 17490.03 17496.81 17597.13 19688.19 23991.30 19494.27 27786.21 13498.63 18287.66 23396.46 16198.12 160
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17696.72 23394.17 5197.44 3397.66 10092.76 2699.33 11796.86 1797.76 12799.08 87
TAPA-MVS90.10 792.30 18391.22 20095.56 14798.33 9089.60 18896.79 17697.65 13781.83 33391.52 18797.23 12687.94 10798.91 15971.31 35598.37 11098.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14890.99 24090.38 23092.81 27293.83 30985.80 28396.78 17896.68 23989.45 20188.75 26493.93 29282.96 18497.82 27287.83 22383.25 32794.80 299
v192192090.85 24690.03 24993.29 25593.55 31586.96 26496.74 17997.04 20887.36 26689.52 24294.34 27180.23 23397.97 25286.27 25585.21 30094.94 285
Anonymous2024052186.42 30585.44 30589.34 33090.33 35179.79 34696.73 18095.92 27083.71 32083.25 33491.36 33763.92 35296.01 33678.39 32985.36 29792.22 347
v119291.07 23690.23 23993.58 24293.70 31287.82 24696.73 18097.07 20387.77 25589.58 23894.32 27480.90 22297.97 25286.52 25285.48 29494.95 283
PVSNet_BlendedMVS94.06 11993.92 10894.47 19898.27 9489.46 19796.73 18098.36 1690.17 18394.36 12895.24 23288.02 10599.58 7493.44 11990.72 24594.36 315
TAMVS94.01 12293.46 12495.64 14196.16 20890.45 16796.71 18396.89 22389.27 20693.46 14896.92 14187.29 12097.94 25988.70 21295.74 17098.53 130
MVS_Test94.89 9994.62 9495.68 14096.83 17189.55 19196.70 18497.17 19391.17 15695.60 10696.11 19087.87 10998.76 17193.01 13297.17 14598.72 120
SixPastTwentyTwo89.15 27988.54 27990.98 31293.49 31980.28 34296.70 18494.70 32090.78 16384.15 32795.57 21871.78 31397.71 28284.63 28185.07 30394.94 285
hse-mvs293.45 14092.99 13694.81 18297.02 16288.59 22396.69 18696.47 25195.19 1496.74 5496.16 18683.67 16798.48 19995.85 5479.13 34497.35 195
EPNet_dtu91.71 20291.28 19692.99 26593.76 31183.71 31396.69 18695.28 29793.15 8887.02 30095.95 19583.37 17397.38 31179.46 32396.84 14897.88 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18697.39 17587.29 26891.37 19096.71 15088.39 10399.52 9687.33 24197.13 14697.73 178
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testgi87.97 29387.21 29390.24 32492.86 33080.76 33496.67 18994.97 31291.74 13485.52 31395.83 20162.66 35594.47 35476.25 33888.36 26895.48 252
AUN-MVS91.76 20190.75 21794.81 18297.00 16488.57 22496.65 19096.49 25089.63 19692.15 17696.12 18778.66 26198.50 19590.83 16979.18 34397.36 194
OPM-MVS93.28 14592.76 14394.82 18094.63 28590.77 15796.65 19097.18 19193.72 6391.68 18597.26 12479.33 24998.63 18292.13 14392.28 21795.07 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC95.86 21896.65 19093.55 6890.14 215
ACMP_Plane95.86 21896.65 19093.55 6890.14 215
HQP-MVS93.19 14992.74 14694.54 19795.86 21889.33 20396.65 19097.39 17593.55 6890.14 21595.87 19880.95 21898.50 19592.13 14392.10 22395.78 240
EU-MVSNet88.72 28788.90 27488.20 33493.15 32774.21 36196.63 19594.22 33385.18 29987.32 29495.97 19376.16 28894.98 35085.27 27386.17 28795.41 258
v124090.70 25389.85 25493.23 25793.51 31886.80 26596.61 19697.02 21187.16 27189.58 23894.31 27579.55 24697.98 24985.52 27085.44 29594.90 290
K. test v387.64 29786.75 29890.32 32393.02 32979.48 34996.61 19692.08 35290.66 17080.25 34894.09 28667.21 33996.65 33185.96 26580.83 33894.83 294
thres20092.23 18891.39 19094.75 18997.61 13789.03 21496.60 19895.09 30792.08 12793.28 15394.00 28978.39 26799.04 15181.26 31294.18 19496.19 221
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19997.35 18190.61 17494.64 12396.93 13886.41 13199.39 11391.20 16694.71 19098.94 102
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19996.88 22490.13 18591.91 18297.24 12585.21 14699.09 14087.64 23497.83 12397.92 168
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19997.81 11889.87 18892.15 17697.06 13583.62 16999.54 8989.34 19698.07 11897.70 180
IterMVS-LS92.29 18491.94 17393.34 25396.25 20286.97 26396.57 20297.05 20690.67 16889.50 24394.80 24986.59 12697.64 28789.91 18186.11 28995.40 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest90.23 26488.98 27393.98 21997.94 11686.64 26896.51 20395.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
EI-MVSNet93.03 15692.88 14093.48 24695.77 22386.98 26296.44 20497.12 19790.66 17091.30 19497.64 10486.56 12798.05 24189.91 18190.55 24795.41 258
CVMVSNet91.23 22991.75 17889.67 32995.77 22374.69 36096.44 20494.88 31685.81 29092.18 17597.64 10479.07 25195.58 34688.06 21995.86 16898.74 118
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20697.57 14692.04 12894.77 12197.96 7787.01 12499.09 14091.31 16396.77 15098.36 151
test_prior493.66 6396.42 207
Effi-MVS+94.93 9794.45 10296.36 10496.61 17991.47 12996.41 20897.41 17491.02 16194.50 12695.92 19687.53 11598.78 16893.89 11096.81 14998.84 113
TEST998.70 6294.19 4496.41 20898.02 9188.17 24196.03 8697.56 11292.74 2799.59 71
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20898.02 9188.58 22996.03 8697.56 11292.73 2899.59 7195.04 8199.37 5699.39 58
MVS_030488.79 28587.57 28792.46 27894.65 28386.15 28196.40 21197.17 19386.44 28188.02 28191.71 33456.68 36197.03 32084.47 28392.58 21494.19 321
WR-MVS92.34 18091.53 18694.77 18795.13 25990.83 15496.40 21197.98 10191.88 13289.29 24995.54 22282.50 19497.80 27389.79 18585.27 29995.69 247
BH-untuned92.94 16192.62 15193.92 22797.22 14686.16 28096.40 21196.25 26190.06 18689.79 23296.17 18583.19 17498.35 20787.19 24497.27 14197.24 197
TDRefinement86.53 30384.76 31391.85 29282.23 36884.25 30596.38 21495.35 29384.97 30484.09 32894.94 24065.76 34998.34 21084.60 28274.52 35292.97 335
test_898.67 6494.06 5396.37 21598.01 9488.58 22995.98 9197.55 11492.73 2899.58 74
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21698.00 9692.80 10596.03 8697.59 10892.01 4499.41 11095.01 8299.38 5299.29 66
test_prior296.35 21692.80 10596.03 8697.59 10892.01 4495.01 8299.38 52
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21697.88 11086.98 27396.65 6097.89 7891.99 4699.47 10392.26 13799.46 4299.39 58
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20691.46 13096.33 21997.04 20888.97 21593.56 14396.51 16887.55 11497.89 26689.80 18495.95 16598.44 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10793.80 11196.64 8197.07 15591.97 11596.32 22098.06 7688.94 21694.50 12696.78 14684.60 15399.27 12291.90 14796.02 16398.68 124
1112_ss93.37 14292.42 16096.21 11497.05 16090.99 14796.31 22196.72 23386.87 27689.83 23196.69 15486.51 12999.14 13488.12 21893.67 20198.50 134
LTVRE_ROB88.41 1390.99 24089.92 25194.19 20996.18 20689.55 19196.31 22197.09 20187.88 25085.67 31295.91 19778.79 26098.57 19081.50 30689.98 25394.44 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040286.46 30484.79 31291.45 30495.02 26485.55 28696.29 22394.89 31580.90 33882.21 33893.97 29168.21 33497.29 31562.98 36388.68 26691.51 352
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22498.00 9688.76 22695.68 10197.55 11492.70 3099.57 8295.01 8299.32 5799.32 64
pmmvs589.86 27388.87 27592.82 27192.86 33086.23 27796.26 22595.39 29084.24 31287.12 29694.51 26174.27 29997.36 31287.61 23687.57 27494.86 292
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22998.79 493.99 5595.80 9697.65 10189.92 8899.24 12495.87 5299.20 7498.58 127
CANet_DTU94.37 10893.65 11696.55 8796.46 19292.13 10996.21 23096.67 24194.38 4893.53 14697.03 13679.34 24899.71 4190.76 17098.45 10997.82 176
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 23198.90 294.30 5095.86 9497.74 9392.33 3899.38 11596.04 4999.42 4799.28 69
D2MVS91.30 22790.95 20692.35 28294.71 28185.52 28796.18 23298.21 4388.89 21886.60 30593.82 29579.92 23997.95 25889.29 19890.95 24293.56 329
BH-RMVSNet92.72 17191.97 17294.97 17497.16 15087.99 24196.15 23395.60 28490.62 17391.87 18397.15 13178.41 26698.57 19083.16 29397.60 12998.36 151
Anonymous2023120687.09 30086.14 30189.93 32791.22 34780.35 33996.11 23495.35 29383.57 32284.16 32693.02 31373.54 30695.61 34472.16 35286.14 28893.84 327
jason94.84 10194.39 10496.18 11595.52 23290.93 15196.09 23596.52 24989.28 20596.01 9097.32 12184.70 15298.77 17095.15 7898.91 9498.85 111
jason: jason.
EG-PatchMatch MVS87.02 30185.44 30591.76 29992.67 33485.00 29696.08 23696.45 25283.41 32479.52 35093.49 30657.10 36097.72 28179.34 32590.87 24492.56 342
131492.81 16992.03 16995.14 16695.33 24689.52 19496.04 23797.44 16987.72 25886.25 30895.33 22883.84 16498.79 16789.26 19997.05 14797.11 198
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23797.73 12481.56 33695.68 10197.85 8490.23 8199.65 5687.68 23199.12 8298.73 119
MVS91.71 20290.44 22895.51 15195.20 25691.59 12496.04 23797.45 16573.44 35987.36 29395.60 21785.42 14499.10 13785.97 26497.46 13195.83 237
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23797.48 15493.47 7695.67 10498.10 6689.17 9299.25 12391.27 16498.77 9699.13 81
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 24198.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
diffmvs95.25 8695.13 8495.63 14296.43 19589.34 20295.99 24297.35 18192.83 10396.31 7697.37 12086.44 13098.67 17996.26 3597.19 14498.87 110
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24398.18 4995.23 1295.87 9397.65 10191.45 5899.70 4695.87 5299.44 4699.00 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
旧先验295.94 24481.66 33497.34 3898.82 16592.26 137
baseline291.63 20590.86 20993.94 22594.33 29586.32 27495.92 24591.64 35589.37 20386.94 30194.69 25481.62 21298.69 17788.64 21394.57 19196.81 208
test20.0386.14 30985.40 30788.35 33290.12 35280.06 34495.90 24695.20 30288.59 22881.29 34193.62 30471.43 31592.65 36271.26 35681.17 33792.34 345
MVP-Stereo90.74 25190.08 24592.71 27493.19 32688.20 23595.86 24796.27 25986.07 28784.86 32094.76 25077.84 27697.75 27983.88 29098.01 11992.17 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DWT-MVSNet_test90.76 24889.89 25293.38 25195.04 26383.70 31495.85 24894.30 33288.19 23990.46 20892.80 31573.61 30598.50 19588.16 21790.58 24697.95 167
lupinMVS94.99 9694.56 9696.29 10996.34 19991.21 13895.83 24996.27 25988.93 21796.22 7996.88 14386.20 13598.85 16395.27 7599.05 8798.82 114
mvs_anonymous93.82 12893.74 11294.06 21496.44 19385.41 28995.81 25097.05 20689.85 19190.09 22496.36 17787.44 11897.75 27993.97 10696.69 15499.02 90
新几何295.79 251
无先验95.79 25197.87 11283.87 31899.65 5687.68 23198.89 108
OpenMVS_ROBcopyleft81.14 2084.42 32082.28 32390.83 31490.06 35384.05 30995.73 25394.04 33573.89 35880.17 34991.53 33659.15 35897.64 28766.92 36189.05 26190.80 356
原ACMM295.67 254
BH-w/o92.14 19391.75 17893.31 25496.99 16585.73 28495.67 25495.69 28088.73 22789.26 25194.82 24882.97 18398.07 23885.26 27496.32 16296.13 226
TR-MVS91.48 21690.59 22394.16 21196.40 19687.33 25195.67 25495.34 29687.68 25991.46 18895.52 22376.77 28398.35 20782.85 29793.61 20496.79 209
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15492.49 9695.64 25796.64 24289.05 21193.00 15895.79 20685.77 14199.45 10689.16 20594.35 19297.96 165
RPSCF90.75 25090.86 20990.42 32296.84 16976.29 35895.61 25896.34 25683.89 31691.38 18997.87 8176.45 28598.78 16887.16 24692.23 21896.20 220
MS-PatchMatch90.27 26289.77 25891.78 29794.33 29584.72 30195.55 25996.73 23286.17 28686.36 30795.28 23171.28 31697.80 27384.09 28698.14 11792.81 338
PAPR94.18 11293.42 12896.48 9397.64 13591.42 13295.55 25997.71 13288.99 21392.34 17295.82 20289.19 9199.11 13686.14 25997.38 13698.90 106
Test_1112_low_res92.84 16791.84 17695.85 12997.04 16189.97 18095.53 26196.64 24285.38 29689.65 23795.18 23385.86 13999.10 13787.70 22893.58 20698.49 136
FMVSNet587.29 29985.79 30391.78 29794.80 27787.28 25295.49 26295.28 29784.09 31483.85 33291.82 33162.95 35494.17 35578.48 32785.34 29893.91 326
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26398.36 1688.84 22094.36 12896.09 19188.02 10599.58 7493.44 11998.18 11598.40 147
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14690.50 16595.44 26497.44 16993.70 6596.46 7296.18 18388.59 10299.53 9294.79 9497.81 12496.17 222
ab-mvs93.57 13792.55 15496.64 8197.28 14591.96 11695.40 26597.45 16589.81 19393.22 15696.28 18079.62 24599.46 10490.74 17193.11 20798.50 134
MIMVSNet184.93 31783.05 31990.56 32089.56 35784.84 30095.40 26595.35 29383.91 31580.38 34692.21 32957.23 35993.34 36070.69 35882.75 33393.50 330
ET-MVSNet_ETH3D91.49 21590.11 24495.63 14296.40 19691.57 12695.34 26793.48 34090.60 17675.58 35695.49 22480.08 23596.79 32994.25 10089.76 25698.52 131
test22298.24 9892.21 10595.33 26897.60 14279.22 34895.25 11397.84 8788.80 9799.15 7798.72 120
XVG-ACMP-BASELINE90.93 24490.21 24293.09 26294.31 29785.89 28295.33 26897.26 18791.06 16089.38 24595.44 22668.61 33198.60 18589.46 19391.05 23994.79 301
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14490.66 16095.31 27097.48 15493.85 5896.51 6895.70 21388.65 9999.65 5694.80 9298.27 11296.17 222
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15888.53 22695.28 27197.45 16591.68 13694.08 13497.68 9782.41 19798.90 16093.84 11292.47 21596.98 200
CLD-MVS92.98 15892.53 15694.32 20696.12 21289.20 20995.28 27197.47 15792.66 10989.90 22895.62 21680.58 22598.40 20292.73 13492.40 21695.38 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27397.62 14190.43 18095.55 10797.07 13491.72 5199.50 10089.62 19098.94 9298.82 114
PatchMatch-RL92.90 16392.02 17095.56 14798.19 10590.80 15595.27 27397.18 19187.96 24791.86 18495.68 21480.44 22898.99 15384.01 28797.54 13096.89 205
testdata195.26 27593.10 91
test0.0.03 189.37 27888.70 27691.41 30692.47 33885.63 28595.22 27692.70 34791.11 15886.91 30393.65 30379.02 25493.19 36178.00 33089.18 26095.41 258
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27798.48 1485.60 29393.76 14197.11 13283.15 17699.61 6591.33 16298.72 9899.19 75
KD-MVS_self_test85.95 31184.95 31088.96 33189.55 35879.11 35295.13 27896.42 25385.91 28984.07 32990.48 34070.03 32694.82 35180.04 31772.94 35692.94 336
IB-MVS87.33 1789.91 27088.28 28294.79 18695.26 25387.70 24895.12 27993.95 33789.35 20487.03 29992.49 32070.74 32099.19 12789.18 20481.37 33697.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed86.34 30686.12 30287.00 33989.88 35570.43 36494.93 28090.08 36177.97 35385.42 31692.78 31674.44 29893.96 35674.43 34495.14 17996.62 212
XVG-OURS93.72 13293.35 12994.80 18597.07 15588.61 22294.79 28197.46 15991.97 13193.99 13597.86 8381.74 21098.88 16292.64 13592.67 21396.92 204
SCA91.84 19991.18 20293.83 22995.59 22884.95 29894.72 28295.58 28690.82 16292.25 17493.69 29975.80 29098.10 23086.20 25795.98 16498.45 141
c3_l91.38 22090.89 20792.88 26995.58 22986.30 27594.68 28396.84 22988.17 24188.83 26194.23 28085.65 14297.47 30389.36 19584.63 30994.89 291
pmmvs490.93 24489.85 25494.17 21093.34 32390.79 15694.60 28496.02 26884.62 30887.45 28995.15 23481.88 20897.45 30587.70 22887.87 27194.27 320
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28598.49 1285.06 30293.78 14095.78 20782.86 18598.67 17991.77 15195.71 17299.07 89
MDA-MVSNet-bldmvs85.00 31682.95 32091.17 31193.13 32883.33 31794.56 28695.00 31084.57 30965.13 36492.65 31770.45 32195.85 34073.57 34877.49 34694.33 316
PMMVS92.86 16592.34 16194.42 20294.92 26986.73 26794.53 28796.38 25584.78 30794.27 13095.12 23783.13 17798.40 20291.47 16096.49 15998.12 160
miper_ehance_all_eth91.59 20791.13 20392.97 26695.55 23186.57 27294.47 28896.88 22487.77 25588.88 25894.01 28886.22 13397.54 29689.49 19286.93 28094.79 301
pmmvs-eth3d86.22 30884.45 31491.53 30288.34 36287.25 25494.47 28895.01 30983.47 32379.51 35189.61 34769.75 32895.71 34383.13 29476.73 34991.64 350
cl____90.96 24390.32 23292.89 26895.37 24086.21 27894.46 29096.64 24287.82 25188.15 27894.18 28382.98 18297.54 29687.70 22885.59 29294.92 289
DIV-MVS_self_test90.97 24290.33 23192.88 26995.36 24186.19 27994.46 29096.63 24587.82 25188.18 27794.23 28082.99 18197.53 29887.72 22585.57 29394.93 287
cl2291.21 23090.56 22693.14 26196.09 21486.80 26594.41 29296.58 24887.80 25388.58 26793.99 29080.85 22397.62 29089.87 18386.93 28094.99 282
LF4IMVS87.94 29487.25 29189.98 32692.38 34180.05 34594.38 29395.25 30087.59 26184.34 32394.74 25264.31 35197.66 28684.83 27787.45 27592.23 346
thisisatest051592.29 18491.30 19595.25 16296.60 18088.90 21794.36 29492.32 34987.92 24893.43 14994.57 26077.28 28099.00 15289.42 19495.86 16897.86 172
GA-MVS91.38 22090.31 23394.59 19194.65 28387.62 24994.34 29596.19 26490.73 16690.35 21193.83 29371.84 31297.96 25687.22 24393.61 20498.21 157
IterMVS90.15 26789.67 26291.61 30195.48 23483.72 31294.33 29696.12 26689.99 18787.31 29594.15 28575.78 29296.27 33586.97 24886.89 28394.83 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 26189.81 25691.82 29495.52 23284.20 30794.30 29796.15 26590.61 17487.39 29294.27 27775.80 29096.44 33287.34 24086.88 28494.82 296
test-LLR91.42 21891.19 20192.12 28694.59 28680.66 33594.29 29892.98 34491.11 15890.76 20492.37 32279.02 25498.07 23888.81 20996.74 15197.63 182
TESTMET0.1,190.06 26889.42 26691.97 28994.41 29380.62 33794.29 29891.97 35387.28 26990.44 20992.47 32168.79 33097.67 28488.50 21596.60 15697.61 186
test-mter90.19 26689.54 26592.12 28694.59 28680.66 33594.29 29892.98 34487.68 25990.76 20492.37 32267.67 33598.07 23888.81 20996.74 15197.63 182
CMPMVSbinary62.92 2185.62 31484.92 31187.74 33689.14 35973.12 36394.17 30196.80 23173.98 35773.65 35894.93 24166.36 34397.61 29183.95 28991.28 23692.48 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet78.73 32778.71 32978.79 34592.80 33246.50 37694.14 30243.71 37978.61 35080.83 34291.66 33574.94 29696.36 33367.24 36084.45 31493.50 330
eth_miper_zixun_eth91.02 23990.59 22392.34 28395.33 24684.35 30494.10 30396.90 22188.56 23188.84 26094.33 27284.08 16297.60 29288.77 21184.37 31595.06 280
CostFormer91.18 23590.70 21992.62 27794.84 27581.76 32994.09 30494.43 32684.15 31392.72 16593.77 29779.43 24798.20 21890.70 17292.18 22197.90 169
tpm90.25 26389.74 26191.76 29993.92 30579.73 34793.98 30593.54 33988.28 23791.99 18193.25 31177.51 27997.44 30687.30 24287.94 27098.12 160
miper_enhance_ethall91.54 21391.01 20593.15 26095.35 24287.07 26193.97 30696.90 22186.79 27789.17 25393.43 31086.55 12897.64 28789.97 18086.93 28094.74 305
EGC-MVSNET68.77 33163.01 33686.07 34292.49 33782.24 32793.96 30790.96 3590.71 3762.62 37790.89 33853.66 36393.46 35857.25 36584.55 31282.51 362
TinyColmap86.82 30285.35 30891.21 30994.91 27282.99 32093.94 30894.02 33683.58 32181.56 34094.68 25562.34 35698.13 22575.78 33987.35 27992.52 343
CL-MVSNet_self_test86.31 30785.15 30989.80 32888.83 36081.74 33093.93 30996.22 26286.67 27885.03 31890.80 33978.09 27294.50 35274.92 34271.86 35793.15 334
miper_lstm_enhance90.50 25990.06 24891.83 29395.33 24683.74 31193.86 31096.70 23887.56 26287.79 28493.81 29683.45 17296.92 32687.39 23984.62 31094.82 296
USDC88.94 28187.83 28692.27 28494.66 28284.96 29793.86 31095.90 27287.34 26783.40 33395.56 22067.43 33798.19 22082.64 30189.67 25793.66 328
tpm289.96 26989.21 27092.23 28594.91 27281.25 33293.78 31294.42 32780.62 34291.56 18693.44 30876.44 28697.94 25985.60 26992.08 22597.49 192
ppachtmachnet_test88.35 29187.29 29091.53 30292.45 33983.57 31693.75 31395.97 26984.28 31185.32 31794.18 28379.00 25896.93 32575.71 34084.99 30694.10 322
new-patchmatchnet83.18 32281.87 32487.11 33886.88 36575.99 35993.70 31495.18 30385.02 30377.30 35488.40 35065.99 34793.88 35774.19 34770.18 35991.47 354
MSDG91.42 21890.24 23894.96 17597.15 15288.91 21693.69 31596.32 25785.72 29286.93 30296.47 17080.24 23298.98 15480.57 31495.05 18396.98 200
EPMVS90.70 25389.81 25693.37 25294.73 28084.21 30693.67 31688.02 36589.50 19992.38 16993.49 30677.82 27797.78 27686.03 26392.68 21298.11 163
cascas91.20 23190.08 24594.58 19594.97 26589.16 21293.65 31797.59 14479.90 34589.40 24492.92 31475.36 29498.36 20692.14 14294.75 18896.23 219
UnsupCasMVSNet_eth85.99 31084.45 31490.62 31989.97 35482.40 32593.62 31897.37 17889.86 18978.59 35392.37 32265.25 35095.35 34982.27 30370.75 35894.10 322
our_test_388.78 28687.98 28591.20 31092.45 33982.53 32293.61 31995.69 28085.77 29184.88 31993.71 29879.99 23796.78 33079.47 32286.24 28694.28 319
PM-MVS83.48 32181.86 32588.31 33387.83 36477.59 35693.43 32091.75 35486.91 27480.63 34489.91 34544.42 36795.84 34185.17 27676.73 34991.50 353
tpmrst91.44 21791.32 19391.79 29695.15 25779.20 35193.42 32195.37 29288.55 23293.49 14793.67 30282.49 19598.27 21290.41 17489.34 25997.90 169
PAPM91.52 21490.30 23495.20 16395.30 24989.83 18393.38 32296.85 22886.26 28488.59 26695.80 20384.88 15098.15 22475.67 34195.93 16697.63 182
testmvs13.36 34216.33 3454.48 3585.04 3802.26 38293.18 3233.28 3812.70 3748.24 37521.66 3722.29 3812.19 3767.58 3742.96 3749.00 372
YYNet185.87 31284.23 31690.78 31892.38 34182.46 32493.17 32495.14 30582.12 33167.69 35992.36 32578.16 27195.50 34877.31 33379.73 34094.39 314
MDA-MVSNet_test_wron85.87 31284.23 31690.80 31792.38 34182.57 32193.17 32495.15 30482.15 33067.65 36092.33 32878.20 26895.51 34777.33 33279.74 33994.31 318
PatchmatchNetpermissive91.91 19791.35 19193.59 24195.38 23884.11 30893.15 32695.39 29089.54 19792.10 17993.68 30182.82 18798.13 22584.81 27895.32 17798.52 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs89.83 27489.15 27291.89 29194.92 26980.30 34193.11 32795.46 28986.28 28388.08 27992.65 31780.44 22898.52 19481.47 30789.92 25496.84 207
MDTV_nov1_ep13_2view70.35 36593.10 32883.88 31793.55 14482.47 19686.25 25698.38 149
MDTV_nov1_ep1390.76 21695.22 25480.33 34093.03 32995.28 29788.14 24492.84 16493.83 29381.34 21498.08 23582.86 29694.34 193
PVSNet86.66 1892.24 18791.74 18093.73 23397.77 12783.69 31592.88 33096.72 23387.91 24993.00 15894.86 24578.51 26399.05 14886.53 25197.45 13598.47 139
dp88.90 28388.26 28390.81 31594.58 28876.62 35792.85 33194.93 31485.12 30190.07 22693.07 31275.81 28998.12 22880.53 31587.42 27797.71 179
test_post192.81 33216.58 37580.53 22697.68 28386.20 257
bset_n11_16_dypcd91.55 21190.59 22394.44 19991.51 34590.25 17192.70 33393.42 34192.27 11890.22 21494.74 25278.42 26597.80 27394.19 10287.86 27295.29 274
pmmvs379.97 32677.50 33087.39 33782.80 36779.38 35092.70 33390.75 36070.69 36078.66 35287.47 35751.34 36593.40 35973.39 34969.65 36089.38 359
tpm cat188.36 29087.21 29391.81 29595.13 25980.55 33892.58 33595.70 27974.97 35687.45 28991.96 33078.01 27598.17 22380.39 31688.74 26596.72 211
PCF-MVS89.48 1191.56 21089.95 25096.36 10496.60 18092.52 9592.51 33697.26 18779.41 34788.90 25696.56 16684.04 16399.55 8777.01 33797.30 14097.01 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test12313.04 34315.66 3465.18 3574.51 3813.45 38192.50 3371.81 3822.50 3757.58 37620.15 3733.67 3802.18 3777.13 3751.07 3759.90 371
GG-mvs-BLEND93.62 23993.69 31389.20 20992.39 33883.33 37187.98 28389.84 34671.00 31896.87 32782.08 30495.40 17694.80 299
new_pmnet82.89 32381.12 32788.18 33589.63 35680.18 34391.77 33992.57 34876.79 35575.56 35788.23 35261.22 35794.48 35371.43 35482.92 33189.87 358
MIMVSNet88.50 28986.76 29793.72 23594.84 27587.77 24791.39 34094.05 33486.41 28287.99 28292.59 31963.27 35395.82 34277.44 33192.84 21097.57 190
FPMVS71.27 32969.85 33175.50 34774.64 37059.03 37291.30 34191.50 35658.80 36457.92 36688.28 35129.98 37285.53 36753.43 36682.84 33281.95 363
KD-MVS_2432*160084.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
miper_refine_blended84.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
gg-mvs-nofinetune87.82 29585.61 30494.44 19994.46 29089.27 20891.21 34484.61 37080.88 33989.89 23074.98 36371.50 31497.53 29885.75 26897.21 14396.51 214
ADS-MVSNet289.45 27688.59 27892.03 28895.86 21882.26 32690.93 34594.32 33183.23 32591.28 19791.81 33279.01 25695.99 33779.52 32091.39 23497.84 173
ADS-MVSNet89.89 27188.68 27793.53 24495.86 21884.89 29990.93 34595.07 30883.23 32591.28 19791.81 33279.01 25697.85 26879.52 32091.39 23497.84 173
UnsupCasMVSNet_bld82.13 32579.46 32890.14 32588.00 36382.47 32390.89 34796.62 24778.94 34975.61 35584.40 35956.63 36296.31 33477.30 33466.77 36291.63 351
PVSNet_082.17 1985.46 31583.64 31890.92 31395.27 25079.49 34890.55 34895.60 28483.76 31983.00 33789.95 34471.09 31797.97 25282.75 29960.79 36695.31 267
CHOSEN 280x42093.12 15292.72 14894.34 20596.71 17887.27 25390.29 34997.72 12886.61 28091.34 19195.29 22984.29 16098.41 20193.25 12498.94 9297.35 195
CR-MVSNet90.82 24789.77 25893.95 22394.45 29187.19 25790.23 35095.68 28286.89 27592.40 16792.36 32580.91 22097.05 31981.09 31393.95 19997.60 187
RPMNet88.98 28087.05 29594.77 18794.45 29187.19 25790.23 35098.03 8777.87 35492.40 16787.55 35680.17 23499.51 9768.84 35993.95 19997.60 187
LCM-MVSNet72.55 32869.39 33282.03 34370.81 37565.42 37090.12 35294.36 33055.02 36565.88 36281.72 36024.16 37689.96 36374.32 34668.10 36190.71 357
Patchmtry88.64 28887.25 29192.78 27394.09 30186.64 26889.82 35395.68 28280.81 34187.63 28892.36 32580.91 22097.03 32078.86 32685.12 30294.67 307
PatchT88.87 28487.42 28993.22 25894.08 30285.10 29589.51 35494.64 32381.92 33292.36 17088.15 35380.05 23697.01 32372.43 35193.65 20297.54 191
JIA-IIPM88.26 29287.04 29691.91 29093.52 31781.42 33189.38 35594.38 32880.84 34090.93 20380.74 36179.22 25097.92 26282.76 29891.62 22996.38 218
Patchmatch-test89.42 27787.99 28493.70 23695.27 25085.11 29488.98 35694.37 32981.11 33787.10 29893.69 29982.28 19997.50 30174.37 34594.76 18798.48 138
MVS-HIRNet82.47 32481.21 32686.26 34195.38 23869.21 36788.96 35789.49 36266.28 36180.79 34374.08 36568.48 33297.39 31071.93 35395.47 17492.18 348
Patchmatch-RL test87.38 29886.24 29990.81 31588.74 36178.40 35588.12 35893.17 34387.11 27282.17 33989.29 34881.95 20695.60 34588.64 21377.02 34798.41 146
PMMVS270.19 33066.92 33380.01 34476.35 36965.67 36986.22 35987.58 36764.83 36362.38 36580.29 36226.78 37488.49 36563.79 36254.07 36785.88 360
ambc86.56 34083.60 36670.00 36685.69 36094.97 31280.60 34588.45 34937.42 36996.84 32882.69 30075.44 35192.86 337
ANet_high63.94 33459.58 33777.02 34661.24 37766.06 36885.66 36187.93 36678.53 35142.94 36971.04 36625.42 37580.71 36952.60 36730.83 37084.28 361
EMVS52.08 33851.31 34154.39 35472.62 37345.39 37783.84 36275.51 37641.13 36940.77 37159.65 37030.08 37173.60 37228.31 37229.90 37144.18 369
E-PMN53.28 33652.56 34055.43 35374.43 37147.13 37583.63 36376.30 37442.23 36842.59 37062.22 36928.57 37374.40 37131.53 37131.51 36944.78 368
PMVScopyleft53.92 2258.58 33555.40 33868.12 35151.00 37848.64 37478.86 36487.10 36946.77 36735.84 37374.28 3648.76 37786.34 36642.07 36973.91 35469.38 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 33953.82 33946.29 35533.73 37945.30 37878.32 36567.24 37818.02 37250.93 36887.05 35852.99 36453.11 37470.76 35725.29 37240.46 370
MVEpermissive50.73 2353.25 33748.81 34266.58 35265.34 37657.50 37372.49 36670.94 37740.15 37039.28 37263.51 3686.89 37973.48 37338.29 37042.38 36868.76 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 33265.41 33475.18 34892.66 33573.45 36266.50 36794.52 32553.33 36657.80 36766.07 36730.81 37089.20 36448.15 36878.88 34562.90 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 33364.89 33569.79 35072.62 37335.23 38065.19 36892.83 34620.35 37165.20 36388.08 35443.14 36882.70 36873.12 35063.46 36391.45 355
wuyk23d25.11 34024.57 34426.74 35673.98 37239.89 37957.88 3699.80 38012.27 37310.39 3746.97 3767.03 37836.44 37525.43 37317.39 3733.89 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.24 34130.99 3430.00 3590.00 3820.00 3830.00 37097.63 1400.00 3770.00 37896.88 14384.38 1570.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.39 3459.85 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37788.65 990.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.06 34410.74 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37896.69 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
PC_three_145290.77 16498.89 898.28 5596.24 198.35 20795.76 5899.58 2299.59 19
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.05 4394.59 3298.08 6789.22 20797.03 5198.10 6692.52 3599.65 5694.58 9799.31 59
IU-MVS99.42 795.39 1197.94 10590.40 18198.94 597.41 1199.66 1099.74 7
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
GSMVS98.45 141
test_part299.28 2795.74 898.10 21
sam_mvs182.76 18898.45 141
sam_mvs81.94 207
MTGPAbinary98.08 67
test_post17.58 37481.76 20998.08 235
patchmatchnet-post90.45 34182.65 19298.10 230
gm-plane-assit93.22 32578.89 35484.82 30693.52 30598.64 18187.72 225
test9_res94.81 9199.38 5299.45 49
agg_prior293.94 10899.38 5299.50 41
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
TestCases93.98 21997.94 11686.64 26895.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
新几何197.32 5998.60 7393.59 6597.75 12181.58 33595.75 9897.85 8490.04 8599.67 5286.50 25399.13 7998.69 123
旧先验198.38 8693.38 7197.75 12198.09 6892.30 4199.01 8999.16 77
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26595.22 11597.68 9790.25 8099.54 8987.95 22199.12 8298.49 136
testdata299.67 5285.96 265
segment_acmp92.89 25
testdata95.46 15898.18 10788.90 21797.66 13582.73 32897.03 5198.07 6990.06 8498.85 16389.67 18898.98 9098.64 126
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 74
plane_prior796.21 20389.98 179
plane_prior696.10 21390.00 17581.32 215
plane_prior597.51 15298.60 18593.02 13092.23 21895.86 233
plane_prior496.64 157
plane_prior390.00 17594.46 4491.34 191
plane_prior196.14 211
n20.00 383
nn0.00 383
door-mid91.06 358
lessismore_v090.45 32191.96 34479.09 35387.19 36880.32 34794.39 26866.31 34597.55 29584.00 28876.84 34894.70 306
LGP-MVS_train94.10 21296.16 20888.26 23297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
test1197.88 110
door91.13 357
HQP5-MVS89.33 203
BP-MVS92.13 143
HQP4-MVS90.14 21598.50 19595.78 240
HQP3-MVS97.39 17592.10 223
HQP2-MVS80.95 218
NP-MVS95.99 21789.81 18495.87 198
ACMMP++_ref90.30 251
ACMMP++91.02 240
Test By Simon88.73 98
ITE_SJBPF92.43 28095.34 24385.37 29195.92 27091.47 14187.75 28696.39 17671.00 31897.96 25682.36 30289.86 25593.97 325
DeepMVS_CXcopyleft74.68 34990.84 35064.34 37181.61 37365.34 36267.47 36188.01 35548.60 36680.13 37062.33 36473.68 35579.58 364