This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 42
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16274.91 4788.19 6259.15 2387.68 4973.67 5187.45 4386.57 74
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7467.86 8687.87 4186.06 93
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+66.72 475.84 4574.57 5579.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20489.38 1964.07 11886.50 5689.69 2
EC-MVSNet75.84 4575.87 4275.74 7278.86 14552.65 16883.73 5086.08 1763.47 4272.77 8887.25 8153.13 7587.93 4371.97 6285.57 6286.66 71
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6288.68 2776.48 2889.63 2087.16 56
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5790.06 1378.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS75.87 4475.36 4677.41 4680.62 10955.91 11384.28 3985.78 2056.08 18173.41 6986.58 9650.94 10788.54 2970.79 6989.71 1787.79 36
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 4975.00 5076.88 5181.38 9259.16 5979.94 10285.71 2256.59 17072.46 9386.76 8656.89 3587.86 4666.36 9988.91 2583.64 184
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
IU-MVS87.77 459.15 6085.53 2553.93 22684.64 379.07 1190.87 588.37 17
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8386.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
CS-MVS-test75.62 4875.31 4876.56 5780.63 10855.13 13083.88 4885.22 2862.05 7171.49 10486.03 11453.83 6586.36 8267.74 8786.91 5088.19 23
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16279.97 10185.21 2955.21 20172.81 8685.37 13553.93 6387.17 5867.93 8586.46 5788.80 8
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3262.57 6073.09 7989.97 4150.90 10887.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22051.83 18879.67 10985.08 3265.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive74.80 5274.89 5374.53 9975.59 23250.37 20678.17 13185.06 3462.80 5874.40 5687.86 7057.88 2783.61 13969.46 7682.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3564.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3566.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 58
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11485.00 3764.97 2172.65 9079.46 25053.65 7287.87 4567.45 9282.91 8585.89 99
test_prior76.69 5384.20 6157.27 8884.88 3886.43 7986.38 77
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3961.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0575.83 4775.63 4576.43 5880.84 10251.87 18778.13 13284.81 4059.65 11272.86 8487.47 7556.92 3488.17 3772.18 6087.79 4289.24 5
CLD-MVS73.33 7072.68 7475.29 8378.82 14753.33 15778.23 12884.79 4161.30 8170.41 11181.04 21852.41 8487.12 6064.61 11682.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
bld_raw_dy_0_6472.13 9371.18 9774.96 8577.70 18251.88 18671.67 26184.69 4251.27 25665.06 21785.80 12654.50 5688.19 3664.51 11785.45 6484.82 142
baseline74.61 5874.70 5474.34 10375.70 22849.99 21477.54 14884.63 4362.73 5973.98 6287.79 7357.67 3083.82 13569.49 7482.74 9089.20 7
ACMMPcopyleft76.02 4375.33 4778.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12489.74 4645.43 17387.16 5972.01 6182.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4566.73 874.67 5389.38 4955.30 4589.18 2174.19 4687.34 4486.38 77
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 8979.05 2190.30 3055.54 4488.32 3373.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6390.50 2453.20 7488.35 3274.02 4887.05 4586.13 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 6890.56 2249.80 11588.24 3474.02 4887.03 4686.32 85
DELS-MVS74.76 5374.46 5675.65 7577.84 17952.25 17775.59 19384.17 4963.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7090.58 2149.90 11388.21 3573.78 5087.03 4686.29 88
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5156.32 17574.05 6188.98 5453.34 7387.92 4469.23 7788.42 2887.59 43
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5264.52 2569.27 13286.10 11145.26 17787.21 5668.16 8280.58 10984.65 147
plane_prior584.01 5287.21 5668.16 8280.58 10984.65 147
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5473.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 6
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9690.01 4047.95 13588.01 4171.55 6686.74 5386.37 79
X-MVStestdata70.21 12567.28 17479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 966.49 40847.95 13588.01 4171.55 6686.74 5386.37 79
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5763.24 4573.30 7087.27 8055.06 4786.30 8471.78 6384.58 6889.25 4
HQP3-MVS83.90 5780.35 113
HQP-MVS73.45 6972.80 7375.40 7980.66 10554.94 13182.31 7183.90 5762.10 6867.85 15585.54 13145.46 17186.93 6467.04 9580.35 11384.32 154
sasdasda74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
canonicalmvs74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6060.37 9679.89 1889.38 4954.97 4985.58 9876.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6359.34 12079.37 1989.76 4559.84 1687.62 5076.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6461.71 7672.45 9590.34 2948.48 13188.13 3872.32 5886.85 5185.78 102
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 129
OPM-MVS74.73 5474.25 5876.19 6480.81 10459.01 6782.60 6683.64 6663.74 3972.52 9287.49 7447.18 15185.88 9169.47 7580.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FOURS186.12 3660.82 3788.18 183.61 6760.87 8481.50 16
FIs70.82 11371.43 8968.98 22978.33 16338.14 33276.96 16483.59 6861.02 8367.33 16886.73 8855.07 4681.64 18154.61 19579.22 12987.14 57
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 6790.60 2054.85 5186.72 6977.20 2588.06 3785.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
iter_conf05_1173.52 6872.59 7576.30 6380.93 10151.97 18478.62 12183.48 7052.20 24371.53 10385.93 11954.01 6088.55 2861.08 14785.56 6388.39 16
QAPM70.05 12768.81 13873.78 11676.54 21853.43 15483.23 5483.48 7052.89 23665.90 19686.29 10541.55 21386.49 7851.01 22378.40 14481.42 225
test1183.47 72
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2448.18 13387.34 5373.59 5285.71 6084.76 146
原ACMM174.69 9085.39 4759.40 5483.42 7451.47 25270.27 11386.61 9448.61 12986.51 7753.85 20087.96 3978.16 275
LPG-MVS_test72.74 7871.74 8475.76 7080.22 11357.51 8682.55 6783.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
test1277.76 4384.52 5858.41 7583.36 7772.93 8354.61 5488.05 4088.12 3586.81 65
PAPR71.72 9970.82 10374.41 10281.20 9751.17 19179.55 11283.33 7855.81 18666.93 17784.61 14450.95 10686.06 8555.79 18279.20 13086.00 94
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7967.78 370.09 11486.34 10454.92 5088.90 2572.68 5784.55 6987.76 37
APD-MVS_3200maxsize74.96 5074.39 5776.67 5482.20 7858.24 7783.67 5183.29 8058.41 13673.71 6690.14 3345.62 16685.99 8869.64 7382.85 8885.78 102
PAPM_NR72.63 8071.80 8375.13 8481.72 8553.42 15579.91 10483.28 8159.14 12266.31 18985.90 12051.86 9386.06 8557.45 17080.62 10785.91 98
EIA-MVS71.78 9670.60 10675.30 8279.85 12253.54 15177.27 15783.26 8257.92 14866.49 18479.39 25252.07 9086.69 7060.05 15579.14 13285.66 110
FC-MVSNet-test69.80 13470.58 10867.46 24577.61 19234.73 36376.05 18483.19 8360.84 8565.88 19886.46 10154.52 5580.76 20552.52 20978.12 14686.91 61
3Dnovator64.47 572.49 8271.39 9175.79 6977.70 18258.99 6880.66 9383.15 8462.24 6665.46 20486.59 9542.38 20285.52 9959.59 16184.72 6782.85 203
MVS_Test72.45 8372.46 7872.42 15974.88 24148.50 23576.28 17883.14 8559.40 11872.46 9384.68 14055.66 4381.12 19365.98 10579.66 12187.63 41
DP-MVS Recon72.15 9270.73 10576.40 5986.57 2457.99 7981.15 8882.96 8657.03 15966.78 17885.56 12844.50 18388.11 3951.77 21880.23 11683.10 198
UniMVSNet (Re)70.63 11670.20 11471.89 16578.55 15345.29 27075.94 18782.92 8763.68 4068.16 14983.59 16653.89 6483.49 14253.97 19871.12 23586.89 62
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8582.90 8854.90 21168.08 15278.70 26047.73 13885.51 10051.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 7573.01 7172.84 14875.41 23550.24 20780.02 9982.89 8958.36 13874.44 5586.73 8858.90 2480.83 20265.84 10674.46 18487.44 47
ACMP63.53 672.30 8671.20 9675.59 7880.28 11157.54 8482.74 6382.84 9060.58 9065.24 21286.18 10839.25 23486.03 8766.95 9776.79 16583.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 2160.38 4382.70 9157.95 14778.10 2490.06 3656.12 4188.84 2674.05 4787.00 49
UniMVSNet_NR-MVSNet71.11 10671.00 10171.44 17979.20 13644.13 27976.02 18682.60 9266.48 1168.20 14784.60 14556.82 3682.82 15954.62 19370.43 24287.36 53
alignmvs73.86 6673.99 6173.45 13578.20 16650.50 20578.57 12382.43 9359.40 11876.57 3286.71 9056.42 3981.23 19265.84 10681.79 9988.62 10
Anonymous2023121169.28 15068.47 14771.73 17180.28 11147.18 25179.98 10082.37 9454.61 21467.24 16984.01 15739.43 23182.41 17055.45 18772.83 21385.62 112
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7571.71 6485.66 6184.97 138
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9659.99 10675.10 4190.35 2847.66 14086.52 7671.64 6582.99 8284.47 152
PS-MVSNAJss72.24 8771.21 9575.31 8178.50 15455.93 11281.63 8082.12 9756.24 17870.02 11885.68 12747.05 15384.34 12565.27 11074.41 18785.67 109
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31284.79 144
ACMM61.98 770.80 11469.73 12174.02 11080.59 11058.59 7482.68 6482.02 9955.46 19567.18 17184.39 15038.51 24183.17 14760.65 15176.10 17280.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 6773.47 6774.66 9283.02 7159.29 5882.30 7481.88 10059.34 12071.59 10286.83 8445.94 16483.65 13865.09 11185.22 6581.06 238
MVS67.37 18866.33 19470.51 20375.46 23450.94 19373.95 22681.85 10141.57 35462.54 25478.57 26547.98 13485.47 10352.97 20782.05 9575.14 309
114514_t70.83 11269.56 12374.64 9486.21 3154.63 13682.34 7081.81 10248.22 29363.01 24685.83 12340.92 22187.10 6157.91 16779.79 11882.18 215
PCF-MVS61.88 870.95 11069.49 12675.35 8077.63 18755.71 11776.04 18581.81 10250.30 26869.66 12585.40 13452.51 8184.89 11551.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 9171.31 9474.71 8978.68 15149.70 21782.10 7581.65 10460.40 9365.94 19485.84 12251.74 9686.37 8155.93 17979.55 12488.07 28
PVSNet_BlendedMVS68.56 16667.72 15871.07 19377.03 20850.57 20174.50 21781.52 10553.66 23064.22 23379.72 24449.13 12382.87 15555.82 18073.92 19279.77 261
PVSNet_Blended68.59 16267.72 15871.19 18877.03 20850.57 20172.51 24981.52 10551.91 24564.22 23377.77 28049.13 12382.87 15555.82 18079.58 12280.14 253
DU-MVS70.01 12869.53 12571.44 17978.05 17344.13 27975.01 20681.51 10764.37 2868.20 14784.52 14649.12 12582.82 15954.62 19370.43 24287.37 51
dcpmvs_274.55 6075.23 4972.48 15582.34 7753.34 15677.87 13881.46 10857.80 15175.49 3786.81 8562.22 1377.75 25471.09 6882.02 9686.34 81
v114470.42 12169.31 12973.76 11873.22 26450.64 20077.83 14181.43 10958.58 13369.40 13081.16 21547.53 14485.29 10864.01 12070.64 23885.34 124
v1070.21 12569.02 13473.81 11573.51 26350.92 19578.74 11881.39 11060.05 10566.39 18781.83 20447.58 14285.41 10662.80 13268.86 27585.09 134
tt080567.77 18267.24 17869.34 22474.87 24240.08 31377.36 15281.37 11155.31 19766.33 18884.65 14237.35 25482.55 16655.65 18572.28 22385.39 123
SR-MVS-dyc-post74.57 5973.90 6276.58 5683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3444.74 18085.84 9268.20 8081.76 10084.03 162
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3443.06 19568.20 8081.76 10084.03 162
v119269.97 13068.68 14173.85 11373.19 26550.94 19377.68 14481.36 11257.51 15468.95 13880.85 22545.28 17685.33 10762.97 13170.37 24485.27 128
RPMNet61.53 26658.42 28070.86 19569.96 32152.07 18065.31 32181.36 11243.20 34459.36 28870.15 35035.37 27385.47 10336.42 33764.65 30775.06 310
OpenMVScopyleft61.03 968.85 15667.56 16172.70 15274.26 25853.99 14381.21 8781.34 11652.70 23762.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
MVS_030478.73 1678.75 1578.66 3080.82 10357.62 8385.31 3081.31 11770.51 274.17 6091.24 1454.99 4889.56 1782.29 288.13 3488.80 8
v7n69.01 15567.36 17173.98 11172.51 28052.65 16878.54 12581.30 11860.26 10262.67 25081.62 20743.61 19084.49 12257.01 17268.70 27784.79 144
MG-MVS73.96 6573.89 6374.16 10885.65 4249.69 21981.59 8381.29 11961.45 7871.05 10688.11 6351.77 9587.73 4861.05 14883.09 8085.05 135
TEST985.58 4361.59 2481.62 8181.26 12055.65 19174.93 4588.81 5653.70 6984.68 119
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12055.86 18374.93 4588.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
PAPM67.92 17966.69 18471.63 17578.09 17149.02 22777.09 16181.24 12251.04 26060.91 27283.98 15847.71 13984.99 11040.81 30879.32 12880.90 241
MGCFI-Net72.45 8373.34 7069.81 21677.77 18143.21 28975.84 19081.18 12359.59 11675.45 3886.64 9157.74 2877.94 24963.92 12281.90 9888.30 18
test_885.40 4660.96 3481.54 8481.18 12355.86 18374.81 4988.80 5853.70 6984.45 123
TranMVSNet+NR-MVSNet70.36 12270.10 11871.17 19078.64 15242.97 29276.53 17381.16 12566.95 668.53 14385.42 13351.61 9883.07 14852.32 21069.70 26187.46 46
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12660.15 10370.43 11089.84 4341.09 22085.59 9767.61 9082.90 8685.77 105
agg_prior85.04 5059.96 4781.04 12774.68 5284.04 129
Anonymous2024052969.91 13169.02 13472.56 15380.19 11647.65 24577.56 14780.99 12855.45 19669.88 12286.76 8639.24 23582.18 17354.04 19777.10 16287.85 32
MTGPAbinary80.97 129
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20980.97 12965.13 1575.77 3690.88 1748.63 12886.66 7177.23 2488.17 3384.81 143
NR-MVSNet69.54 14368.85 13671.59 17678.05 17343.81 28374.20 22180.86 13165.18 1462.76 24884.52 14652.35 8683.59 14050.96 22570.78 23787.37 51
v870.33 12369.28 13073.49 13373.15 26650.22 20878.62 12180.78 13260.79 8666.45 18682.11 19949.35 11884.98 11263.58 12768.71 27685.28 127
v14419269.71 13568.51 14473.33 14073.10 26750.13 21077.54 14880.64 13356.65 16468.57 14280.55 22846.87 15884.96 11462.98 13069.66 26284.89 140
v192192069.47 14668.17 15373.36 13973.06 26850.10 21177.39 15180.56 13456.58 17168.59 14080.37 23044.72 18184.98 11262.47 13669.82 25785.00 136
v124069.24 15267.91 15673.25 14373.02 27049.82 21577.21 15880.54 13556.43 17368.34 14680.51 22943.33 19384.99 11062.03 14069.77 26084.95 139
v2v48270.50 11969.45 12873.66 12572.62 27650.03 21377.58 14580.51 13659.90 10769.52 12682.14 19747.53 14484.88 11765.07 11270.17 24986.09 92
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34977.03 16380.42 13762.95 5062.51 25684.03 15646.69 15979.07 23544.22 28063.08 32285.51 115
API-MVS72.17 8971.41 9074.45 10181.95 8357.22 8984.03 4580.38 13859.89 11068.40 14482.33 19049.64 11687.83 4751.87 21684.16 7578.30 273
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9382.01 8058.82 7179.93 10380.35 13955.09 20465.82 20082.16 19649.17 12282.64 16460.34 15378.62 14182.50 209
test_yl69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23176.52 17480.04 14250.64 26565.24 21284.93 13739.15 23678.54 24236.77 33076.88 16485.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 10470.60 10673.78 11676.60 21653.15 15979.74 10879.78 14358.37 13768.75 13986.45 10245.43 17380.60 20662.58 13377.73 15087.58 44
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17252.01 18379.48 11379.69 14455.75 18856.59 31380.98 22027.12 34980.94 19842.90 29771.58 23077.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 15469.47 12767.69 24377.42 19841.00 31074.04 22379.68 14560.06 10469.26 13484.81 13951.06 10577.58 25654.44 19674.43 18684.48 151
save fliter86.17 3361.30 2883.98 4779.66 14659.00 124
Effi-MVS+73.31 7172.54 7775.62 7677.87 17753.64 14879.62 11179.61 14761.63 7772.02 9882.61 18156.44 3885.97 8963.99 12179.07 13387.25 55
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35476.94 16579.61 14762.36 6562.43 25883.66 16445.69 16578.37 24345.35 27763.26 32085.42 121
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35276.83 17079.52 14962.45 6362.54 25483.47 17046.32 16178.37 24345.47 27563.43 31985.45 118
V4268.65 16167.35 17272.56 15368.93 33450.18 20972.90 24279.47 15056.92 16169.45 12980.26 23446.29 16282.99 14964.07 11867.82 28384.53 149
Fast-Effi-MVS+70.28 12469.12 13373.73 12178.50 15451.50 19075.01 20679.46 15156.16 18068.59 14079.55 24853.97 6184.05 12853.34 20477.53 15285.65 111
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 36076.43 17579.38 15262.55 6161.66 26683.83 16145.60 16779.15 23341.64 30760.88 33785.00 136
EI-MVSNet-Vis-set72.42 8571.59 8574.91 8678.47 15654.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11566.46 9874.23 18885.83 101
EI-MVSNet-UG-set71.92 9471.06 10074.52 10077.98 17553.56 15076.62 17179.16 15464.40 2771.18 10578.95 25952.19 8884.66 12165.47 10973.57 19985.32 125
SDMVSNet68.03 17568.10 15567.84 24177.13 20448.72 23365.32 32079.10 15558.02 14465.08 21582.55 18347.83 13773.40 29363.92 12273.92 19281.41 226
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15654.77 21266.99 17486.01 11539.57 23078.21 24662.54 13473.33 20583.37 188
PS-MVSNAJ70.51 11869.70 12272.93 14681.52 8755.79 11674.92 20979.00 15755.04 20969.88 12278.66 26147.05 15382.19 17261.61 14379.58 12280.83 242
FA-MVS(test-final)69.82 13368.48 14573.84 11478.44 15750.04 21275.58 19578.99 15858.16 14067.59 16482.14 19742.66 19785.63 9556.60 17476.19 17185.84 100
xiu_mvs_v2_base70.52 11769.75 12072.84 14881.21 9655.63 12075.11 20378.92 15954.92 21069.96 12179.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15277.99 13678.82 16053.37 23256.03 31877.41 28524.75 36484.04 12946.37 26273.42 20473.14 328
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 16155.24 19967.79 16185.81 12536.54 26678.28 24562.04 13975.74 17683.19 194
c3_l68.33 16967.56 16170.62 20070.87 30846.21 25974.47 21878.80 16256.22 17966.19 19078.53 26651.88 9281.40 18662.08 13769.04 27184.25 156
ambc65.13 28163.72 36537.07 34447.66 38778.78 16354.37 33771.42 33911.24 39480.94 19845.64 26953.85 36577.38 286
AdaColmapbinary69.99 12968.66 14273.97 11284.94 5457.83 8082.63 6578.71 16456.28 17764.34 22784.14 15341.57 21187.06 6346.45 26178.88 13477.02 292
IS-MVSNet71.57 10071.00 10173.27 14178.86 14545.63 26780.22 9778.69 16564.14 3566.46 18587.36 7749.30 11985.60 9650.26 22983.71 7888.59 11
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31146.21 25973.98 22478.68 16655.07 20766.05 19277.80 27752.16 8981.31 18961.53 14669.32 26583.67 180
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1670.00 4140.00 41582.18 19349.25 1210.00 4130.00 4140.00 4110.00 411
TSAR-MVS + GP.74.90 5174.15 5977.17 4982.00 8158.77 7281.80 7878.57 16858.58 13374.32 5884.51 14855.94 4287.22 5567.11 9484.48 7185.52 114
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9178.56 16952.48 24064.27 23084.10 15527.45 34681.84 17963.45 12970.56 24183.69 179
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17778.53 17050.59 26656.47 31678.65 26239.84 22782.68 16244.10 28472.12 22572.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9078.51 17152.33 24164.33 22884.11 15428.28 34081.81 18063.48 12870.62 23983.67 180
MVSFormer71.50 10270.38 11174.88 8778.76 14857.15 9482.79 6178.48 17251.26 25769.49 12783.22 17143.99 18883.24 14566.06 10179.37 12584.23 157
test_djsdf69.45 14767.74 15774.58 9774.57 25154.92 13382.79 6178.48 17251.26 25765.41 20583.49 16938.37 24383.24 14566.06 10169.25 26885.56 113
diffmvspermissive70.69 11570.43 10971.46 17869.45 32848.95 22972.93 24178.46 17457.27 15671.69 10083.97 15951.48 9977.92 25170.70 7077.95 14987.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet69.27 15168.44 14971.73 17174.47 25249.39 22475.20 20178.45 17559.60 11369.16 13676.51 29851.29 10082.50 16759.86 16071.45 23283.30 189
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28452.45 17570.80 27578.45 17553.84 22759.87 28181.10 21716.24 38279.32 22755.64 18671.76 22780.47 246
MVSTER67.16 19565.58 20871.88 16670.37 31549.70 21770.25 28278.45 17551.52 25069.16 13680.37 23038.45 24282.50 16760.19 15471.46 23183.44 187
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33145.98 26172.85 24378.41 17851.38 25365.65 20175.98 30651.17 10381.25 19060.82 15069.32 26583.29 191
MVS_111021_HR74.02 6473.46 6875.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 10985.97 11654.18 5984.00 13267.52 9182.98 8482.45 210
131464.61 23263.21 23568.80 23171.87 29247.46 24873.95 22678.39 18042.88 34759.97 27976.60 29738.11 24779.39 22654.84 19172.32 22179.55 262
Vis-MVSNetpermissive72.18 8871.37 9274.61 9581.29 9355.41 12680.90 8978.28 18160.73 8869.23 13588.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE71.01 10870.15 11673.60 13079.57 12852.17 17878.93 11678.12 18258.02 14467.76 16383.87 16052.36 8582.72 16156.90 17375.79 17585.92 97
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18052.83 16680.39 9478.03 18357.30 15557.47 30682.55 18327.68 34484.17 12645.54 27169.78 25879.90 256
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29448.33 23773.68 23477.88 18455.80 18765.91 19578.62 26447.35 15082.88 15459.45 16266.25 29583.81 172
CPTT-MVS72.78 7772.08 8274.87 8884.88 5761.41 2684.15 4377.86 18555.27 19867.51 16688.08 6541.93 20681.85 17869.04 7880.01 11781.35 231
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28677.31 15377.83 18656.45 17264.60 22682.70 17738.08 24880.33 21246.08 26472.31 22283.92 167
UA-Net73.13 7272.93 7273.76 11883.58 6451.66 18978.75 11777.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
VDD-MVS72.50 8172.09 8173.75 12081.58 8649.69 21977.76 14377.63 19063.21 4773.21 7389.02 5342.14 20383.32 14361.72 14282.50 9188.25 20
IterMVS-LS69.22 15368.48 14571.43 18174.44 25449.40 22376.23 17977.55 19159.60 11365.85 19981.59 21051.28 10181.58 18459.87 15969.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29176.11 18177.47 19256.62 16765.22 21482.17 19541.85 20780.18 21847.05 25872.72 21783.20 193
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12377.47 19248.51 28955.71 31981.89 20233.71 29179.71 22041.66 30570.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 17067.29 17371.21 18779.74 12453.22 15876.06 18377.46 19457.19 15766.10 19181.61 20845.37 17583.50 14145.42 27676.68 16776.91 296
VNet69.68 13870.19 11568.16 23979.73 12541.63 30570.53 27777.38 19560.37 9670.69 10886.63 9351.08 10477.09 26453.61 20281.69 10485.75 107
cl2267.47 18766.45 18770.54 20269.85 32446.49 25573.85 23177.35 19655.07 20765.51 20377.92 27347.64 14181.10 19461.58 14569.32 26584.01 164
anonymousdsp67.00 19964.82 21673.57 13170.09 31956.13 10776.35 17677.35 19648.43 29164.99 22180.84 22633.01 29980.34 21164.66 11467.64 28584.23 157
cascas65.98 21463.42 23173.64 12777.26 20252.58 17172.26 25377.21 19848.56 28761.21 27074.60 31932.57 31185.82 9350.38 22876.75 16682.52 208
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29574.98 20877.15 19955.83 18565.04 21881.16 21539.91 22580.14 21947.18 25572.76 21482.90 202
v14868.24 17267.19 18071.40 18270.43 31347.77 24475.76 19177.03 20058.91 12567.36 16780.10 23748.60 13081.89 17760.01 15666.52 29484.53 149
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 20157.60 15361.97 26176.85 29139.31 23280.49 21054.72 19270.28 24782.17 217
CANet_DTU68.18 17367.71 16069.59 21974.83 24346.24 25878.66 12076.85 20259.60 11363.45 23982.09 20035.25 27477.41 25959.88 15878.76 13885.14 131
cl____67.18 19366.26 19869.94 21170.20 31645.74 26373.30 23676.83 20355.10 20265.27 20879.57 24747.39 14880.53 20759.41 16469.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31645.74 26373.29 23776.83 20355.10 20265.27 20879.58 24647.38 14980.53 20759.43 16369.22 26983.54 185
h-mvs3372.71 7971.49 8876.40 5981.99 8259.58 5276.92 16676.74 20560.40 9374.81 4985.95 11845.54 16985.76 9470.41 7170.61 24083.86 171
BH-w/o66.85 20165.83 20369.90 21479.29 13252.46 17474.66 21576.65 20654.51 21864.85 22278.12 26745.59 16882.95 15143.26 29275.54 17974.27 322
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24259.92 35076.39 20754.35 22058.67 29682.46 18829.44 33281.49 18542.12 30171.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11952.53 17274.26 22076.29 20858.48 13568.38 14584.20 15142.59 19883.83 13446.53 26075.91 17382.56 205
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 27956.53 10175.60 19276.16 20948.11 29577.22 2885.56 12853.10 7677.43 25874.86 4077.14 16086.55 75
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14978.12 13376.16 20947.97 29852.41 34981.61 20827.87 34278.11 24740.07 31166.66 29277.00 293
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30270.41 28076.14 21153.99 22565.98 19383.51 16849.48 11776.24 28248.60 24373.46 20384.14 160
WR-MVS68.47 16768.47 14768.44 23680.20 11539.84 31673.75 23376.07 21264.68 2268.11 15183.63 16550.39 11179.14 23449.78 23069.66 26286.34 81
Effi-MVS+-dtu69.64 14067.53 16475.95 6776.10 22462.29 1580.20 9876.06 21359.83 11165.26 21177.09 28741.56 21284.02 13160.60 15271.09 23681.53 224
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18572.62 24675.81 21453.70 22865.31 20678.96 25828.81 33786.39 8043.93 28573.48 20282.55 206
MSDG61.81 26459.23 27269.55 22272.64 27552.63 17070.45 27975.81 21451.38 25353.70 34176.11 30229.52 33081.08 19637.70 32365.79 29974.93 314
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34846.25 25756.29 36775.70 21650.68 26361.27 26975.48 31240.21 22468.03 32356.31 17765.25 30282.18 215
pm-mvs165.24 22564.97 21566.04 26772.38 28339.40 32272.62 24675.63 21755.53 19362.35 26083.18 17347.45 14676.47 27949.06 24066.54 29382.24 214
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29674.18 22275.59 21860.37 9666.77 17986.06 11337.64 25078.93 24152.16 21273.49 20186.32 85
test_fmvsmconf_n73.01 7472.59 7574.27 10671.28 30355.88 11478.21 13075.56 21954.31 22174.86 4887.80 7254.72 5280.23 21678.07 2178.48 14286.70 68
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12155.65 11969.07 29275.52 22042.68 34863.53 23877.95 27140.43 22381.64 18146.01 26571.91 22683.73 178
pmmvs663.69 24162.82 24066.27 26170.63 31039.27 32373.13 23975.47 22152.69 23859.75 28582.30 19139.71 22977.03 26547.40 25264.35 31182.53 207
test_fmvsmconf0.1_n72.81 7672.33 7974.24 10769.89 32355.81 11578.22 12975.40 22254.17 22375.00 4488.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
UGNet68.81 15767.39 16973.06 14478.33 16354.47 13779.77 10675.40 22260.45 9263.22 24084.40 14932.71 30680.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 9571.33 9373.26 14282.80 7547.60 24778.74 11875.27 22459.59 11672.94 8289.40 4841.51 21483.91 13358.75 16582.99 8288.26 19
hse-mvs271.04 10769.86 11974.60 9679.58 12757.12 9673.96 22575.25 22560.40 9374.81 4981.95 20145.54 16982.90 15270.41 7166.83 29183.77 176
AUN-MVS68.45 16866.41 19174.57 9879.53 12957.08 9773.93 22875.23 22654.44 21966.69 18181.85 20337.10 26182.89 15362.07 13866.84 29083.75 177
mvs_anonymous68.03 17567.51 16569.59 21972.08 28844.57 27771.99 25675.23 22651.67 24667.06 17382.57 18254.68 5377.94 24956.56 17575.71 17786.26 89
TR-MVS66.59 20965.07 21471.17 19079.18 13749.63 22173.48 23575.20 22852.95 23467.90 15380.33 23339.81 22883.68 13743.20 29373.56 20080.20 251
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16773.09 24075.13 22955.69 18958.48 30073.73 32432.86 30186.32 8350.63 22670.11 25081.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba71.15 10569.54 12475.99 6677.61 19253.46 15381.95 7775.11 23057.73 15266.95 17685.96 11737.14 25987.56 5167.94 8475.49 18086.97 59
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32874.66 21575.08 23458.90 12661.79 26482.63 18051.18 10278.07 24843.63 28955.87 35880.99 240
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20374.74 23552.91 23560.03 27880.12 23633.68 29282.64 16461.86 14176.34 16985.78 102
LS3D64.71 23062.50 24371.34 18579.72 12655.71 11779.82 10574.72 23648.50 29056.62 31284.62 14333.59 29482.34 17129.65 37475.23 18275.97 300
test_fmvsmconf0.01_n72.17 8971.50 8774.16 10867.96 34055.58 12378.06 13574.67 23754.19 22274.54 5488.23 6150.35 11280.24 21578.07 2177.46 15486.65 72
Baseline_NR-MVSNet67.05 19767.56 16165.50 27575.65 22937.70 33875.42 19674.65 23859.90 10768.14 15083.15 17449.12 12577.20 26252.23 21169.78 25881.60 223
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30769.96 28474.43 23949.29 27961.66 26680.92 22247.43 14776.68 27544.91 27971.69 22881.94 219
GA-MVS65.53 22063.70 22771.02 19470.87 30848.10 23970.48 27874.40 24056.69 16364.70 22476.77 29233.66 29381.10 19455.42 18870.32 24683.87 170
KD-MVS_self_test55.22 31353.89 32059.21 31557.80 38727.47 39157.75 36074.32 24147.38 30550.90 35570.00 35128.45 33970.30 31240.44 31057.92 34979.87 257
patch_mono-269.85 13271.09 9966.16 26379.11 14054.80 13571.97 25774.31 24253.50 23170.90 10784.17 15257.63 3163.31 34266.17 10082.02 9680.38 249
无先验79.66 11074.30 24348.40 29280.78 20453.62 20179.03 269
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19276.89 16774.25 24453.67 22965.59 20281.76 20535.15 27585.50 10155.94 17872.47 21886.47 76
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24540.53 36063.16 24378.65 26241.30 21577.80 25345.80 26774.09 18981.40 228
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17972.05 25574.05 24646.41 31557.42 30874.36 32034.35 28477.57 25745.62 27073.67 19666.26 372
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19777.86 13973.99 24754.54 21764.64 22582.53 18635.06 27685.50 10155.71 18369.91 25586.67 70
USDC56.35 30454.24 31762.69 29764.74 35940.31 31265.05 32373.83 24843.93 33847.58 36677.71 28115.36 38575.05 28738.19 32261.81 33272.70 332
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32471.22 26773.72 24955.22 20060.21 27580.09 23841.26 21876.98 26730.02 37268.09 28178.97 270
jason69.65 13968.39 15173.43 13778.27 16556.88 9877.12 16073.71 25046.53 31469.34 13183.22 17143.37 19279.18 22964.77 11379.20 13084.23 157
jason: jason.
D2MVS62.30 25760.29 26768.34 23866.46 35148.42 23665.70 31273.42 25147.71 30158.16 30275.02 31530.51 32177.71 25553.96 19971.68 22978.90 271
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17378.42 12673.30 25249.92 27350.96 35481.51 21123.06 36779.40 22531.63 36365.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 14268.28 15273.44 13678.76 14857.15 9476.57 17273.29 25346.19 31769.49 12782.18 19343.99 18879.23 22864.66 11479.37 12583.93 166
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23359.09 29282.35 18936.79 26585.94 9032.82 35369.96 25472.45 336
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22271.32 26573.12 25549.39 27763.82 23576.50 30034.95 27884.84 11853.20 20675.49 18084.13 161
VPNet67.52 18668.11 15465.74 27279.18 13736.80 34772.17 25472.83 25662.04 7267.79 16185.83 12348.88 12776.60 27651.30 22172.97 21283.81 172
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33336.93 34667.60 30172.80 25755.67 19059.95 28076.63 29445.01 17972.22 30039.74 31562.09 33080.74 244
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28948.06 24073.93 22872.51 25847.23 30954.74 33180.92 22221.49 37481.24 19148.57 24456.22 35779.53 263
EPNet73.09 7372.16 8075.90 6875.95 22656.28 10483.05 5672.39 25966.53 1065.27 20887.00 8250.40 11085.47 10362.48 13586.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 23963.36 23265.93 26979.28 13342.58 29471.35 26472.36 26046.41 31560.55 27477.89 27546.27 16373.28 29446.18 26369.97 25381.92 220
test_fmvsmvis_n_192070.84 11170.38 11172.22 16271.16 30455.39 12775.86 18872.21 26149.03 28273.28 7286.17 10951.83 9477.29 26175.80 3278.05 14783.98 165
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29762.67 33472.11 26258.02 14465.08 21582.55 18341.22 21969.88 31447.32 25373.92 19281.41 226
test_040263.25 24761.01 26269.96 21080.00 12054.37 14076.86 16972.02 26354.58 21658.71 29580.79 22735.00 27784.36 12426.41 38564.71 30671.15 354
EU-MVSNet55.61 31054.41 31459.19 31665.41 35733.42 37272.44 25071.91 26428.81 38151.27 35273.87 32324.76 36369.08 31743.04 29458.20 34875.06 310
KD-MVS_2432*160053.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
miper_refine_blended53.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
Anonymous20240521166.84 20265.99 20169.40 22380.19 11642.21 29871.11 27171.31 26758.80 12767.90 15386.39 10329.83 32879.65 22149.60 23678.78 13786.33 83
LFMVS71.78 9671.59 8572.32 16083.40 6746.38 25679.75 10771.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14253.13 16173.27 23871.07 26952.15 24464.72 22380.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 31154.41 31457.96 32660.92 38141.73 30271.09 27271.06 27041.18 35548.65 36473.31 32616.93 37959.25 35842.54 29864.01 31272.90 330
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31244.82 27275.33 19770.86 27145.04 32656.06 31776.00 30326.89 35279.65 22135.36 34267.29 28772.60 333
CNLPA65.43 22164.02 22169.68 21778.73 15058.07 7877.82 14270.71 27251.49 25161.57 26883.58 16738.23 24670.82 30643.90 28670.10 25180.16 252
CostFormer64.04 23862.51 24268.61 23471.88 29145.77 26271.30 26670.60 27347.55 30364.31 22976.61 29641.63 21079.62 22349.74 23269.00 27280.42 247
fmvsm_l_conf0.5_n70.99 10970.82 10371.48 17771.45 29654.40 13977.18 15970.46 27448.67 28675.17 4086.86 8353.77 6776.86 26976.33 3077.51 15383.17 197
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32168.17 29670.17 27543.25 34359.03 29379.90 23944.08 18671.24 30543.79 28868.42 27981.25 232
MVS_111021_LR69.50 14568.78 13971.65 17478.38 15959.33 5674.82 21170.11 27658.08 14167.83 15984.68 14041.96 20576.34 28165.62 10877.54 15179.30 266
fmvsm_l_conf0.5_n_a70.50 11970.27 11371.18 18971.30 30254.09 14176.89 16769.87 27747.90 29974.37 5786.49 10053.07 7776.69 27475.41 3577.11 16182.76 204
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27847.65 30226.04 39952.32 38912.44 38962.38 34621.80 39110.61 40872.49 335
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 25075.59 19369.68 27954.61 21454.11 33879.26 25527.07 35082.96 15043.27 29149.79 37680.41 248
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29050.80 19871.15 27069.63 28045.71 32360.61 27377.93 27237.45 25265.99 33455.67 18463.50 31879.42 264
testing9164.46 23463.80 22566.47 25678.43 15840.06 31467.63 30069.59 28159.06 12363.18 24278.05 26934.05 28676.99 26648.30 24675.87 17482.37 212
TAMVS66.78 20465.27 21271.33 18679.16 13953.67 14773.84 23269.59 28152.32 24265.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
CMPMVSbinary42.80 2157.81 29255.97 30163.32 29160.98 37947.38 24964.66 32669.50 28332.06 37846.83 37077.80 27729.50 33171.36 30448.68 24273.75 19571.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20779.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20781.36 229
thres20062.20 25961.16 26165.34 27875.38 23639.99 31569.60 28769.29 28655.64 19261.87 26376.99 28837.07 26278.96 24031.28 36773.28 20677.06 291
UnsupCasMVSNet_eth53.16 32752.47 32555.23 33959.45 38333.39 37359.43 35269.13 28745.98 31950.35 36172.32 33029.30 33358.26 36442.02 30344.30 38274.05 324
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32772.65 24469.11 28857.07 15862.45 25781.03 21937.01 26379.17 23031.84 35973.25 20779.83 258
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32572.35 25169.11 28856.98 16062.37 25980.96 22137.01 26379.00 23931.43 36673.05 21181.36 229
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32675.20 20168.74 29031.15 37958.24 30176.51 29832.39 31368.58 31949.77 23165.84 29875.81 302
TinyColmap54.14 31751.72 32861.40 30666.84 34741.97 29966.52 30768.51 29144.81 32742.69 38275.77 30811.66 39172.94 29531.96 35756.77 35569.27 367
baseline263.42 24361.26 25969.89 21572.55 27847.62 24671.54 26268.38 29250.11 26954.82 33075.55 31143.06 19580.96 19748.13 24867.16 28981.11 236
IterMVS62.79 25261.27 25867.35 24869.37 32952.04 18271.17 26868.24 29352.63 23959.82 28276.91 29037.32 25572.36 29752.80 20863.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing9964.05 23763.29 23466.34 25878.17 17039.76 31867.33 30568.00 29458.60 13263.03 24578.10 26832.57 31176.94 26848.22 24775.58 17882.34 213
旧先验183.04 7053.15 15967.52 29587.85 7144.08 18680.76 10678.03 280
AllTest57.08 29654.65 31064.39 28671.44 29749.03 22569.92 28567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
TestCases64.39 28671.44 29749.03 22567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
baseline163.81 24063.87 22463.62 28976.29 22136.36 35071.78 26067.29 29856.05 18264.23 23282.95 17547.11 15274.41 29047.30 25461.85 33180.10 254
tpmvs58.47 28556.95 29263.03 29670.20 31641.21 30667.90 29967.23 29949.62 27554.73 33270.84 34334.14 28576.24 28236.64 33461.29 33571.64 346
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30023.23 39118.41 40425.84 4044.24 40562.73 34414.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ECVR-MVScopyleft67.72 18367.51 16568.35 23779.46 13036.29 35574.79 21266.93 30158.72 12867.19 17088.05 6636.10 26781.38 18752.07 21384.25 7287.39 49
tpm262.07 26060.10 26867.99 24072.79 27343.86 28271.05 27366.85 30243.14 34562.77 24775.39 31338.32 24480.80 20341.69 30468.88 27379.32 265
testing1162.81 25161.90 25065.54 27478.38 15940.76 31167.59 30266.78 30355.48 19460.13 27677.11 28631.67 31776.79 27145.53 27274.45 18579.06 267
XXY-MVS60.68 27161.67 25257.70 32970.43 31338.45 33064.19 32866.47 30448.05 29763.22 24080.86 22449.28 12060.47 35145.25 27867.28 28874.19 323
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11286.64 9141.29 21675.23 28649.72 23381.75 10275.93 301
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36343.14 29067.49 30366.36 30640.22 36265.89 19771.95 33631.04 31859.75 35659.94 15764.90 30471.85 345
testing22262.29 25861.31 25765.25 28077.87 17738.53 32968.34 29566.31 30756.37 17463.15 24477.58 28328.47 33876.18 28437.04 32876.65 16881.05 239
ppachtmachnet_test58.06 29055.38 30666.10 26669.51 32648.99 22868.01 29866.13 30844.50 33154.05 33970.74 34432.09 31572.34 29836.68 33356.71 35676.99 295
tpm cat159.25 28256.95 29266.15 26472.19 28746.96 25268.09 29765.76 30940.03 36457.81 30470.56 34538.32 24474.51 28938.26 32161.50 33477.00 293
test111167.21 19067.14 18167.42 24679.24 13534.76 36273.89 23065.65 31058.71 13066.96 17587.95 6936.09 26880.53 20752.03 21483.79 7786.97 59
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31775.85 18965.62 31155.09 20454.56 33479.36 25337.59 25167.02 32839.80 31476.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs461.48 26859.39 27167.76 24271.57 29553.86 14471.42 26365.34 31244.20 33459.46 28777.92 27335.90 26974.71 28843.87 28764.87 30574.71 318
testdata64.66 28381.52 8752.93 16365.29 31346.09 31873.88 6487.46 7638.08 24866.26 33353.31 20578.48 14274.78 317
TDRefinement53.44 32450.72 33361.60 30364.31 36246.96 25270.89 27465.27 31441.78 35044.61 37777.98 27011.52 39366.36 33228.57 37851.59 37071.49 349
MIMVSNet155.17 31454.31 31657.77 32870.03 32032.01 37865.68 31364.81 31549.19 28046.75 37176.00 30325.53 36064.04 34028.65 37762.13 32977.26 289
pmmvs-eth3d58.81 28456.31 29966.30 26067.61 34252.42 17672.30 25264.76 31643.55 34054.94 32974.19 32228.95 33472.60 29643.31 29057.21 35273.88 326
MDTV_nov1_ep1357.00 29172.73 27438.26 33165.02 32464.73 31744.74 32855.46 32172.48 32932.61 31070.47 30837.47 32467.75 284
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34860.97 38033.67 37157.62 36164.56 31839.47 36647.38 36764.02 37827.47 34559.32 35734.69 34443.68 38367.98 370
ITE_SJBPF62.09 30166.16 35344.55 27864.32 31947.36 30655.31 32480.34 23219.27 37662.68 34536.29 33862.39 32779.04 268
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35769.34 29064.28 32046.88 31261.76 26575.79 30740.61 22265.20 33732.16 35571.21 23377.70 282
dmvs_re56.77 29956.83 29456.61 33269.23 33041.02 30758.37 35564.18 32150.59 26657.45 30771.42 33935.54 27258.94 36037.23 32667.45 28669.87 363
WTY-MVS59.75 27860.39 26657.85 32772.32 28537.83 33561.05 34664.18 32145.95 32261.91 26279.11 25747.01 15660.88 35042.50 29969.49 26474.83 315
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 37069.04 29363.82 32348.56 28764.27 23077.64 28227.20 34870.40 31133.56 35076.24 17079.83 258
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29566.25 35248.58 23456.93 36563.82 32348.09 29641.22 38370.48 34830.34 32368.00 32434.24 34545.92 38172.57 334
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38171.16 26963.64 32556.32 17559.80 28384.99 13644.51 18275.46 28539.12 31780.62 10782.92 200
test22283.14 6858.68 7372.57 24863.45 32641.78 35067.56 16586.12 11037.13 26078.73 13974.98 313
PVSNet50.76 1958.40 28657.39 28861.42 30575.53 23344.04 28161.43 34063.45 32647.04 31156.91 31073.61 32527.00 35164.76 33839.12 31772.40 21975.47 307
SCA60.49 27258.38 28166.80 25174.14 26048.06 24063.35 33163.23 32849.13 28159.33 29172.10 33337.45 25274.27 29144.17 28162.57 32578.05 277
CR-MVSNet59.91 27657.90 28765.96 26869.96 32152.07 18065.31 32163.15 32942.48 34959.36 28874.84 31635.83 27070.75 30745.50 27364.65 30775.06 310
Patchmtry57.16 29556.47 29759.23 31469.17 33234.58 36462.98 33263.15 32944.53 33056.83 31174.84 31635.83 27068.71 31840.03 31260.91 33674.39 321
pmmvs556.47 30255.68 30458.86 31861.41 37536.71 34866.37 30862.75 33140.38 36153.70 34176.62 29534.56 28067.05 32740.02 31365.27 30172.83 331
K. test v360.47 27357.11 28970.56 20173.74 26248.22 23875.10 20562.55 33258.27 13953.62 34476.31 30127.81 34381.59 18347.42 25139.18 38981.88 221
FMVSNet555.86 30854.93 30858.66 32071.05 30636.35 35164.18 32962.48 33346.76 31350.66 35974.73 31825.80 35864.04 34033.11 35165.57 30075.59 305
fmvsm_s_conf0.1_n69.41 14868.60 14371.83 16771.07 30552.88 16577.85 14062.44 33449.58 27672.97 8186.22 10651.68 9776.48 27875.53 3470.10 25186.14 90
fmvsm_s_conf0.5_n69.58 14168.84 13771.79 16972.31 28652.90 16477.90 13762.43 33549.97 27272.85 8585.90 12052.21 8776.49 27775.75 3370.26 24885.97 95
fmvsm_s_conf0.1_n_a69.32 14968.44 14971.96 16370.91 30753.78 14678.12 13362.30 33649.35 27873.20 7486.55 9951.99 9176.79 27174.83 4168.68 27885.32 125
fmvsm_s_conf0.5_n_a69.54 14368.74 14071.93 16472.47 28153.82 14578.25 12762.26 33749.78 27473.12 7886.21 10752.66 7976.79 27175.02 3968.88 27385.18 130
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25469.42 28962.18 33847.55 30358.88 29471.96 33534.49 28269.16 31642.99 29563.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 31555.30 30754.48 34369.81 32533.94 36962.91 33362.13 33941.08 35655.18 32675.65 30932.75 30556.59 37230.32 37167.86 28272.91 329
sss56.17 30656.57 29654.96 34066.93 34636.32 35357.94 35861.69 34041.67 35258.64 29775.32 31438.72 24056.25 37342.04 30266.19 29672.31 341
our_test_356.49 30154.42 31362.68 29869.51 32645.48 26866.08 31061.49 34144.11 33750.73 35869.60 35533.05 29868.15 32038.38 32056.86 35374.40 320
test_cas_vis1_n_192056.91 29756.71 29557.51 33059.13 38445.40 26963.58 33061.29 34236.24 37267.14 17271.85 33729.89 32756.69 37057.65 16963.58 31770.46 358
tpmrst58.24 28758.70 27856.84 33166.97 34534.32 36569.57 28861.14 34347.17 31058.58 29971.60 33841.28 21760.41 35249.20 23862.84 32375.78 303
MIMVSNet57.35 29357.07 29058.22 32374.21 25937.18 34162.46 33560.88 34448.88 28455.29 32575.99 30531.68 31662.04 34731.87 35872.35 22075.43 308
LCM-MVSNet40.30 35635.88 36253.57 34942.24 40229.15 38545.21 39260.53 34522.23 39528.02 39750.98 3933.72 40861.78 34831.22 36838.76 39069.78 364
ADS-MVSNet251.33 33348.76 34059.07 31766.02 35544.60 27650.90 38059.76 34636.90 36950.74 35666.18 37226.38 35363.11 34327.17 38154.76 36169.50 365
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35964.94 32559.35 34754.06 22461.08 27176.67 29329.54 32971.87 30232.16 35574.07 19078.01 281
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34843.28 34244.22 37868.66 35925.67 35957.20 36831.57 36549.35 37774.62 319
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34259.21 34851.34 25552.09 35077.43 28433.29 29758.55 36229.76 37360.27 34273.58 327
JIA-IIPM51.56 33147.68 34563.21 29364.61 36050.73 19947.71 38658.77 35042.90 34648.46 36551.72 39024.97 36270.24 31336.06 33953.89 36468.64 369
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35458.15 35149.03 28251.83 35179.21 25622.39 36855.59 37629.24 37662.64 32472.40 340
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 38061.42 34158.14 35258.71 13053.02 34879.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
test-LLR58.15 28958.13 28558.22 32368.57 33544.80 27365.46 31757.92 35350.08 27055.44 32269.82 35232.62 30857.44 36649.66 23473.62 19772.41 338
test-mter56.42 30355.82 30358.22 32368.57 33544.80 27365.46 31757.92 35339.94 36555.44 32269.82 35221.92 37057.44 36649.66 23473.62 19772.41 338
RPSCF55.80 30954.22 31860.53 31065.13 35842.91 29364.30 32757.62 35536.84 37158.05 30382.28 19228.01 34156.24 37437.14 32758.61 34782.44 211
Syy-MVS56.00 30756.23 30055.32 33874.69 24726.44 39565.52 31557.49 35650.97 26156.52 31472.18 33139.89 22668.09 32124.20 38864.59 30971.44 350
myMVS_eth3d54.86 31654.61 31155.61 33774.69 24727.31 39265.52 31557.49 35650.97 26156.52 31472.18 33121.87 37368.09 32127.70 38064.59 30971.44 350
GG-mvs-BLEND62.34 29971.36 30137.04 34569.20 29157.33 35854.73 33265.48 37430.37 32277.82 25234.82 34374.93 18372.17 342
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33661.17 37641.84 30051.90 37856.45 35940.96 35744.79 37667.84 36130.04 32655.07 37936.71 33250.69 37371.11 355
YYNet150.73 33548.96 33756.03 33561.10 37741.78 30151.94 37756.44 36040.94 35844.84 37567.80 36230.08 32555.08 37836.77 33050.71 37271.22 352
testing356.54 30055.92 30258.41 32177.52 19527.93 38969.72 28656.36 36154.75 21358.63 29877.80 27720.88 37571.75 30325.31 38762.25 32875.53 306
gg-mvs-nofinetune57.86 29156.43 29862.18 30072.62 27635.35 35866.57 30656.33 36250.65 26457.64 30557.10 38630.65 32076.36 28037.38 32578.88 13474.82 316
TESTMET0.1,155.28 31254.90 30956.42 33366.56 34943.67 28465.46 31756.27 36339.18 36753.83 34067.44 36424.21 36555.46 37748.04 24973.11 21070.13 361
PMMVS53.96 31853.26 32456.04 33462.60 37050.92 19561.17 34456.09 36432.81 37753.51 34666.84 36934.04 28759.93 35544.14 28368.18 28057.27 384
tpm57.34 29458.16 28354.86 34171.80 29334.77 36167.47 30456.04 36548.20 29460.10 27776.92 28937.17 25853.41 38240.76 30965.01 30376.40 299
mamv456.85 29858.00 28653.43 35172.46 28254.47 13757.56 36254.74 36638.81 36857.42 30879.45 25147.57 14338.70 40160.88 14953.07 36667.11 371
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35346.15 37358.75 38330.99 31958.66 36132.18 35424.81 39855.46 386
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33654.57 36844.16 33549.31 36367.91 36028.87 33656.61 37133.89 34654.89 36069.24 368
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35654.41 36944.46 33254.56 33469.05 35833.32 29660.94 34936.93 32961.76 33370.73 357
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35154.11 37050.08 27054.40 33674.31 32132.62 30855.92 37530.50 37063.95 31472.15 343
PatchMatch-RL56.25 30554.55 31261.32 30877.06 20756.07 10965.57 31454.10 37144.13 33653.49 34771.27 34225.20 36166.78 32936.52 33663.66 31561.12 376
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38714.01 39855.11 35943.09 395
test_fmvs1_n51.37 33250.35 33554.42 34552.85 39137.71 33761.16 34551.93 37328.15 38363.81 23669.73 35413.72 38653.95 38051.16 22260.65 34071.59 347
test250665.33 22464.61 21767.50 24479.46 13034.19 36774.43 21951.92 37458.72 12866.75 18088.05 6625.99 35780.92 20051.94 21584.25 7287.39 49
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34751.50 37551.17 25950.30 36267.44 36439.28 23360.29 35322.38 39057.49 35162.76 375
test_fmvs151.32 33450.48 33453.81 34753.57 38937.51 33960.63 34951.16 37628.02 38563.62 23769.23 35716.41 38153.93 38151.01 22360.70 33969.99 362
EGC-MVSNET42.47 35138.48 35954.46 34474.33 25648.73 23270.33 28151.10 3770.03 4110.18 41267.78 36313.28 38866.49 33118.91 39450.36 37448.15 391
Patchmatch-RL test58.16 28855.49 30566.15 26467.92 34148.89 23060.66 34851.07 37847.86 30059.36 28862.71 38034.02 28872.27 29956.41 17659.40 34477.30 287
lessismore_v069.91 21371.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18845.91 26634.10 39580.59 245
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38427.17 38154.76 36169.50 365
EPMVS53.96 31853.69 32154.79 34266.12 35431.96 37962.34 33749.05 38144.42 33355.54 32071.33 34130.22 32456.70 36941.65 30662.54 32675.71 304
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3549.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39631.63 36349.18 37858.72 380
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39327.08 38360.65 34077.27 288
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 35948.05 38525.71 38959.76 28469.60 35511.57 39252.23 38649.45 23756.86 35371.58 348
door47.60 386
test_vis1_n49.89 33948.69 34153.50 35053.97 38837.38 34061.53 33947.33 38728.54 38259.62 28667.10 36813.52 38752.27 38549.07 23957.52 35070.84 356
door-mid47.19 388
pmmvs344.92 34741.95 35453.86 34652.58 39343.55 28562.11 33846.90 38926.05 38840.63 38460.19 38211.08 39657.91 36531.83 36246.15 38060.11 377
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35745.20 39045.42 32440.44 38667.26 36734.01 28958.98 35911.96 40324.88 39759.20 378
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38847.47 25049.82 37571.88 344
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35344.50 39227.03 38637.96 39250.47 39426.16 35664.10 33926.74 38459.52 34347.82 393
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34138.30 39166.45 37032.67 30758.42 36310.98 40421.91 40057.99 382
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38318.92 39341.17 38748.14 392
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 38936.53 33560.80 33857.76 383
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
PM-MVS52.33 32850.19 33658.75 31962.10 37245.14 27165.75 31140.38 39743.60 33953.52 34572.65 3289.16 39965.87 33550.41 22754.18 36365.24 374
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39539.27 31653.02 36759.14 379
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39810.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 3999.18 40813.66 40617.32 405
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 35939.33 39048.65 39816.91 38048.34 39012.18 40219.05 40235.44 401
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
MTMP86.03 1917.08 413
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
n20.00 418
nn0.00 418
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
PC_three_145255.09 20484.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
eth-test20.00 419
eth-test0.00 419
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
GSMVS78.05 277
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27978.05 277
sam_mvs33.43 295
test_post168.67 2943.64 40932.39 31369.49 31544.17 281
test_post3.55 41033.90 29066.52 330
patchmatchnet-post64.03 37634.50 28174.27 291
gm-plane-assit71.40 30041.72 30448.85 28573.31 32682.48 16948.90 241
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 4072.19 5988.96 24
旧先验276.08 18245.32 32576.55 3365.56 33658.75 165
新几何276.12 180
原ACMM279.02 115
testdata272.18 30146.95 259
segment_acmp54.23 58
testdata172.65 24460.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior486.10 111
plane_prior356.09 10863.92 3669.27 132
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
HQP5-MVS54.94 131
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
BP-MVS67.04 95
HQP4-MVS67.85 15586.93 6484.32 154
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 131
MDTV_nov1_ep13_2view25.89 39761.22 34340.10 36351.10 35332.97 30038.49 31978.61 272
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 132