This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ETH3D-3000-0.178.58 1578.91 1377.61 4583.06 7457.86 8784.14 4388.31 160.37 9679.14 1890.35 2757.76 2587.00 5977.16 1989.90 1487.97 18
9.1478.75 1583.10 7384.15 4188.26 259.90 10878.57 2390.36 2657.51 2886.86 6277.39 1589.52 21
SF-MVS78.82 1279.22 1177.60 4682.88 7957.83 8884.99 3088.13 361.86 7579.16 1690.75 1557.96 2287.09 5677.08 2090.18 1187.87 21
ETH3 D test640079.14 1079.32 978.61 2986.34 2758.11 8484.65 3287.66 458.56 13378.87 2089.54 5063.67 1089.57 1374.60 3389.98 1388.14 13
ETH3D cwj APD-0.1678.02 2478.13 2477.71 4482.10 8458.65 7782.72 6687.55 558.33 13878.05 2690.06 3858.35 2187.65 4576.15 2589.86 1586.82 55
test_0728_SECOND79.19 1287.82 359.11 6687.85 387.15 690.84 178.66 1090.61 787.62 32
test_part174.74 5974.42 6075.70 7781.69 9151.26 17983.98 4687.05 765.31 1673.10 7486.20 9753.94 5888.06 3565.32 10073.17 18887.77 26
MCST-MVS77.48 3277.45 2977.54 4786.67 1858.36 8183.22 5786.93 856.91 15774.91 4488.19 6659.15 1887.68 4473.67 4187.45 4386.57 61
DeepC-MVS69.38 278.56 1778.14 2379.83 483.60 6761.62 2684.17 4086.85 963.23 4573.84 6390.25 3357.68 2689.96 1074.62 3289.03 2287.89 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test072687.75 759.07 6787.86 286.83 1064.26 3084.19 591.92 564.82 6
MSP-MVS81.06 281.40 380.02 186.21 3062.73 1286.09 1586.83 1065.51 1483.81 890.51 2163.71 989.23 1681.51 188.44 2888.09 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.56 182.30 179.32 987.77 458.90 7287.82 586.78 1264.18 3385.97 191.84 666.87 290.83 278.63 1290.87 388.23 10
test_241102_ONE87.77 458.90 7286.78 1264.20 3285.97 191.34 1066.87 290.78 4
test_241102_TWO86.73 1464.18 3384.26 491.84 665.19 490.83 278.63 1290.70 587.65 30
CSCG76.92 3776.75 3677.41 4983.96 6659.60 5682.95 6086.50 1560.78 8775.27 3784.83 12060.76 1286.56 7367.86 7887.87 4286.06 79
DPE-MVScopyleft80.56 480.98 479.29 1187.27 1260.56 4585.71 2486.42 1663.28 4483.27 1091.83 864.96 590.47 776.41 2489.67 1886.84 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS80.16 680.59 578.86 2586.64 1960.02 5088.12 186.42 1662.94 5082.40 1192.12 259.64 1589.76 1178.70 888.32 3286.79 57
3Dnovator+66.72 475.84 4974.57 5879.66 682.40 8259.92 5385.83 2086.32 1866.92 867.80 15189.24 5542.03 18989.38 1464.07 10986.50 5789.69 1
ZNCC-MVS78.82 1278.67 1679.30 1086.43 2662.05 2186.62 986.01 1963.32 4375.08 3990.47 2553.96 5788.68 2376.48 2389.63 2087.16 47
SteuartSystems-ACMMP79.48 979.31 1079.98 283.01 7762.18 1987.60 785.83 2066.69 1078.03 2790.98 1254.26 5390.06 978.42 1489.02 2387.69 28
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS74.79 5774.83 5574.69 9477.15 19051.07 18181.99 8085.78 2162.52 6171.29 9484.64 12454.65 5088.12 3370.31 6385.15 6384.87 124
PHI-MVS75.87 4875.36 4877.41 4980.62 11155.91 12284.28 3785.78 2156.08 17873.41 6886.58 9050.94 9488.54 2470.79 5889.71 1787.79 25
SMA-MVScopyleft80.28 580.39 679.95 386.60 2161.95 2286.33 1185.75 2362.49 6282.20 1292.28 156.53 3189.70 1279.85 391.48 188.19 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS75.47 5175.00 5076.88 5681.38 9859.16 6379.94 10785.71 2456.59 16572.46 8486.76 8056.89 2987.86 4166.36 9088.91 2683.64 169
IU-MVS87.77 459.15 6485.53 2553.93 21484.64 379.07 690.87 388.37 7
MP-MVS-pluss78.35 2178.46 1778.03 4084.96 5559.52 5882.93 6185.39 2662.15 6776.41 3291.51 952.47 7486.78 6580.66 289.64 1987.80 24
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testtj78.47 1878.43 1878.61 2986.82 1360.67 4386.07 1685.38 2762.12 6878.65 2290.29 3155.76 3989.31 1573.55 4387.22 4585.84 85
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1584.92 5960.32 4883.03 5985.33 2862.86 5380.17 1390.03 4161.76 1188.95 2074.21 3488.67 2788.12 14
GST-MVS78.14 2377.85 2678.99 2286.05 3861.82 2585.84 1985.21 2963.56 4274.29 5590.03 4152.56 7188.53 2574.79 3188.34 3086.63 60
ACMMP_NAP78.77 1478.78 1478.74 2785.44 4761.04 3683.84 5085.16 3062.88 5278.10 2491.26 1152.51 7288.39 2679.34 590.52 986.78 58
HPM-MVScopyleft77.28 3376.85 3578.54 3185.00 5460.81 4082.91 6285.08 3162.57 5973.09 7589.97 4450.90 9587.48 4775.30 2786.85 5287.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs74.80 5674.89 5474.53 10475.59 21950.37 19578.17 13585.06 3262.80 5774.40 5387.86 7057.88 2483.61 14169.46 6882.79 8289.59 2
DVP-MVS80.84 381.64 278.42 3387.75 759.07 6787.85 385.03 3364.26 3083.82 692.00 364.82 690.75 578.66 1090.61 785.45 104
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS79.84 879.97 879.45 787.90 262.17 2084.37 3485.03 3366.96 577.58 2890.06 3859.47 1789.13 1878.67 989.73 1687.03 50
ETV-MVS74.46 6473.84 6776.33 6779.27 13655.24 13479.22 12085.00 3564.97 2272.65 8179.46 23553.65 6687.87 4067.45 8382.91 7885.89 84
test_prior376.89 3976.96 3476.69 5984.20 6457.27 9681.75 8284.88 3660.37 9675.01 4089.06 5656.22 3586.43 7872.19 4988.96 2486.38 63
test_prior76.69 5984.20 6457.27 9684.88 3686.43 7886.38 63
DeepC-MVS_fast68.24 377.25 3476.63 3879.12 1686.15 3460.86 3984.71 3184.85 3861.98 7473.06 7688.88 6153.72 6289.06 1968.27 7288.04 3887.42 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS73.33 7572.68 7975.29 8778.82 14553.33 15378.23 13484.79 3961.30 8270.41 10081.04 19852.41 7587.12 5464.61 10882.49 8685.41 108
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline74.61 6274.70 5774.34 10875.70 21549.99 20277.54 14684.63 4062.73 5873.98 5787.79 7257.67 2783.82 13769.49 6682.74 8389.20 3
ACMMPcopyleft76.02 4675.33 4978.07 3885.20 5161.91 2385.49 2884.44 4163.04 4869.80 11489.74 4945.43 15887.16 5372.01 5182.87 8085.14 114
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1578.31 1979.39 887.51 1162.61 1685.20 2984.42 4266.73 974.67 5089.38 5355.30 4389.18 1774.19 3587.34 4486.38 63
APD-MVScopyleft78.02 2478.04 2577.98 4186.44 2560.81 4085.52 2684.36 4360.61 8979.05 1990.30 3055.54 4288.32 2973.48 4487.03 4884.83 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2677.65 2779.10 1786.71 1662.81 1086.29 1284.32 4462.82 5473.96 5890.50 2253.20 6888.35 2774.02 3787.05 4686.13 76
#test#77.83 2777.41 3079.10 1786.71 1662.81 1085.69 2584.32 4461.61 7873.96 5890.50 2253.20 6888.35 2773.68 4087.05 4686.13 76
ACMMPR77.71 2877.23 3279.16 1386.75 1562.93 986.29 1284.24 4662.82 5473.55 6790.56 2049.80 10188.24 3074.02 3787.03 4886.32 71
DELS-MVS74.76 5874.46 5975.65 7977.84 17252.25 16975.59 18684.17 4763.76 3973.15 7182.79 15859.58 1686.80 6367.24 8486.04 5987.89 19
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R77.67 3077.18 3379.15 1486.76 1462.95 886.29 1284.16 4862.81 5673.30 6990.58 1949.90 9988.21 3173.78 3987.03 4886.29 74
CDPH-MVS76.31 4375.67 4778.22 3785.35 5059.14 6581.31 9184.02 4956.32 17074.05 5688.98 5953.34 6787.92 3969.23 6988.42 2987.59 33
HQP_MVS74.31 6673.73 6876.06 6981.41 9656.31 11184.22 3884.01 5064.52 2669.27 12286.10 10045.26 16287.21 5168.16 7580.58 10184.65 131
plane_prior584.01 5087.21 5168.16 7580.58 10184.65 131
XVS77.17 3576.56 3979.00 2086.32 2862.62 1485.83 2083.92 5264.55 2472.17 8790.01 4347.95 12288.01 3771.55 5486.74 5486.37 66
X-MVStestdata70.21 12167.28 16279.00 2086.32 2862.62 1485.83 2083.92 5264.55 2472.17 876.49 36247.95 12288.01 3771.55 5486.74 5486.37 66
HQP3-MVS83.90 5480.35 107
HQP-MVS73.45 7472.80 7875.40 8380.66 10854.94 13582.31 7483.90 5462.10 6967.85 14685.54 11445.46 15686.93 6067.04 8680.35 10784.32 139
canonicalmvs74.67 6174.98 5273.71 12378.94 14350.56 19380.23 10283.87 5660.30 10277.15 2986.56 9159.65 1482.00 17766.01 9382.12 8788.58 6
SD-MVS77.70 2977.62 2877.93 4284.47 6261.88 2484.55 3383.87 5660.37 9679.89 1489.38 5354.97 4585.58 9776.12 2684.94 6486.33 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1978.28 2078.90 2384.96 5561.41 2984.03 4483.82 5859.34 12179.37 1589.76 4859.84 1387.62 4676.69 2286.74 5487.68 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS76.77 4076.06 4278.88 2486.14 3562.73 1282.55 7083.74 5961.71 7672.45 8690.34 2948.48 11888.13 3272.32 4886.85 5285.78 87
HPM-MVS++copyleft79.88 780.14 779.10 1788.17 164.80 186.59 1083.70 6065.37 1578.78 2190.64 1758.63 2087.24 4979.00 790.37 1085.26 113
OPM-MVS74.73 6074.25 6276.19 6880.81 10759.01 7082.60 6983.64 6163.74 4072.52 8387.49 7347.18 13685.88 9069.47 6780.78 9783.66 167
FIs70.82 10971.43 9068.98 22078.33 15838.14 31176.96 16083.59 6261.02 8467.33 15886.73 8255.07 4481.64 18354.61 18079.22 12387.14 48
MP-MVScopyleft78.35 2178.26 2178.64 2886.54 2363.47 586.02 1883.55 6363.89 3873.60 6690.60 1854.85 4886.72 6677.20 1888.06 3785.74 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM70.05 12368.81 13173.78 11776.54 20353.43 15183.23 5683.48 6452.89 22365.90 18286.29 9641.55 20086.49 7751.01 20578.40 13781.42 208
test1183.47 65
CP-MVS77.12 3676.68 3778.43 3286.05 3863.18 787.55 883.45 6662.44 6472.68 8090.50 2248.18 12087.34 4873.59 4285.71 6084.76 130
原ACMM174.69 9485.39 4959.40 5983.42 6751.47 23870.27 10386.61 8848.61 11686.51 7653.85 18587.96 3978.16 254
LPG-MVS_test72.74 8171.74 8675.76 7380.22 11757.51 9482.55 7083.40 6861.32 8066.67 16787.33 7639.15 22086.59 7167.70 7977.30 14783.19 180
LGP-MVS_train75.76 7380.22 11757.51 9483.40 6861.32 8066.67 16787.33 7639.15 22086.59 7167.70 7977.30 14783.19 180
test1277.76 4384.52 6158.41 8083.36 7072.93 7854.61 5188.05 3688.12 3686.81 56
PAPR71.72 9870.82 10174.41 10781.20 10351.17 18079.55 11683.33 7155.81 18366.93 16384.61 12650.95 9386.06 8355.79 16879.20 12486.00 80
CANet76.46 4275.93 4478.06 3981.29 9957.53 9382.35 7283.31 7267.78 370.09 10486.34 9554.92 4688.90 2172.68 4784.55 6687.76 27
APD-MVS_3200maxsize74.96 5474.39 6176.67 6182.20 8358.24 8383.67 5183.29 7358.41 13573.71 6490.14 3545.62 15185.99 8669.64 6582.85 8185.78 87
PAPM_NR72.63 8371.80 8575.13 8881.72 9053.42 15279.91 10983.28 7459.14 12366.31 17585.90 10651.86 8286.06 8357.45 15780.62 9985.91 83
EIA-MVS71.78 9670.60 10375.30 8679.85 12553.54 14977.27 15483.26 7557.92 14566.49 17079.39 23652.07 8086.69 6760.05 14479.14 12685.66 95
FC-MVSNet-test69.80 12870.58 10567.46 23477.61 18234.73 33476.05 18083.19 7660.84 8565.88 18386.46 9254.52 5280.76 20652.52 19578.12 13886.91 51
3Dnovator64.47 572.49 8571.39 9275.79 7277.70 17458.99 7180.66 9883.15 7762.24 6665.46 18986.59 8942.38 18785.52 9959.59 14984.72 6582.85 189
MVS_Test72.45 8672.46 8172.42 15774.88 22748.50 22176.28 17483.14 7859.40 11972.46 8484.68 12255.66 4181.12 19465.98 9479.66 11587.63 31
DP-MVS Recon72.15 9370.73 10276.40 6586.57 2257.99 8681.15 9382.96 7957.03 15466.78 16485.56 11244.50 16988.11 3451.77 20180.23 11083.10 184
Regformer-275.63 5074.99 5177.54 4780.43 11358.32 8279.50 11782.92 8067.84 175.94 3380.75 20855.73 4086.80 6371.44 5680.38 10587.50 36
UniMVSNet (Re)70.63 11270.20 10971.89 16178.55 15145.29 25775.94 18382.92 8063.68 4168.16 14083.59 14853.89 6083.49 14453.97 18371.12 21386.89 52
MAR-MVS71.51 10070.15 11175.60 8181.84 8959.39 6081.38 9082.90 8254.90 20468.08 14378.70 24347.73 12485.51 10051.68 20384.17 6981.88 204
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
nrg03072.96 7973.01 7672.84 14675.41 22250.24 19680.02 10582.89 8358.36 13774.44 5286.73 8258.90 1980.83 20265.84 9574.46 16787.44 39
ACMP63.53 672.30 8871.20 9775.59 8280.28 11557.54 9282.74 6582.84 8460.58 9065.24 19686.18 9839.25 21886.03 8566.95 8876.79 15483.22 178
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZD-MVS86.64 1960.38 4782.70 8557.95 14478.10 2490.06 3856.12 3788.84 2274.05 3687.00 51
UniMVSNet_NR-MVSNet71.11 10471.00 9971.44 17279.20 13744.13 26676.02 18282.60 8666.48 1368.20 13784.60 12756.82 3082.82 16254.62 17870.43 22087.36 43
alignmvs73.86 7273.99 6473.45 13378.20 16150.50 19478.57 12882.43 8759.40 11976.57 3086.71 8456.42 3481.23 19365.84 9581.79 8988.62 4
Anonymous2023121169.28 14068.47 13771.73 16580.28 11547.18 23779.98 10682.37 8854.61 20667.24 15984.01 13839.43 21682.41 17255.45 17272.83 19285.62 98
mPP-MVS76.54 4175.93 4478.34 3686.47 2463.50 485.74 2382.28 8962.90 5171.77 9090.26 3246.61 14586.55 7471.71 5285.66 6184.97 121
SR-MVS76.13 4575.70 4677.40 5185.87 4061.20 3385.52 2682.19 9059.99 10775.10 3890.35 2747.66 12686.52 7571.64 5382.99 7584.47 136
Regformer-175.47 5174.93 5377.09 5480.43 11357.70 9179.50 11782.13 9167.84 175.73 3680.75 20856.50 3286.07 8271.07 5780.38 10587.50 36
PS-MVSNAJss72.24 8971.21 9675.31 8578.50 15255.93 12181.63 8482.12 9256.24 17370.02 10885.68 11147.05 13884.34 12565.27 10174.41 16985.67 94
WR-MVS_H67.02 18766.92 17067.33 23777.95 17037.75 31477.57 14482.11 9362.03 7362.65 22782.48 16750.57 9679.46 22142.91 27064.01 28784.79 128
ACMM61.98 770.80 11069.73 11674.02 11280.59 11258.59 7882.68 6782.02 9455.46 19167.18 16084.39 13238.51 22583.17 14960.65 13976.10 15880.30 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++73.77 7373.47 7274.66 9783.02 7659.29 6282.30 7781.88 9559.34 12171.59 9386.83 7945.94 14983.65 14065.09 10385.22 6281.06 219
abl_674.34 6573.50 7076.86 5782.43 8160.16 4983.48 5481.86 9658.81 12873.95 6089.86 4641.87 19286.62 7067.98 7781.23 9683.80 160
MVS67.37 17866.33 18370.51 19675.46 22150.94 18373.95 21681.85 9741.57 32662.54 23078.57 24847.98 12185.47 10352.97 19382.05 8875.14 286
RRT_test8_iter0568.17 16766.86 17172.07 16075.81 21346.33 24376.41 17181.81 9856.43 16866.52 16981.30 19431.90 29184.25 12663.77 11667.83 26085.64 97
114514_t70.83 10869.56 11874.64 9986.21 3054.63 13982.34 7381.81 9848.22 26963.01 22285.83 10840.92 20887.10 5557.91 15579.79 11282.18 198
PCF-MVS61.88 870.95 10769.49 12075.35 8477.63 17755.71 12476.04 18181.81 9850.30 25069.66 11585.40 11752.51 7284.89 11451.82 20080.24 10985.45 104
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet72.16 9271.31 9574.71 9378.68 14949.70 20582.10 7881.65 10160.40 9365.94 18085.84 10751.74 8486.37 8055.93 16579.55 11888.07 17
test117275.36 5374.81 5677.02 5585.47 4660.79 4283.94 4981.63 10259.52 11874.66 5190.18 3444.74 16585.84 9170.63 6082.52 8484.42 137
PVSNet_BlendedMVS68.56 15767.72 14771.07 18677.03 19350.57 19174.50 20881.52 10353.66 21764.22 21479.72 22949.13 10982.87 15855.82 16673.92 17379.77 241
PVSNet_Blended68.59 15367.72 14771.19 18177.03 19350.57 19172.51 23881.52 10351.91 23164.22 21477.77 26049.13 10982.87 15855.82 16679.58 11680.14 232
DU-MVS70.01 12469.53 11971.44 17278.05 16744.13 26675.01 19881.51 10564.37 2968.20 13784.52 12849.12 11182.82 16254.62 17870.43 22087.37 41
Regformer-474.25 6873.48 7176.57 6479.75 12656.54 11078.54 13081.49 10666.93 773.90 6180.30 21653.84 6185.98 8769.76 6476.84 15287.17 46
v114470.42 11769.31 12373.76 11973.22 24650.64 19077.83 13981.43 10758.58 13169.40 12081.16 19547.53 12985.29 10864.01 11170.64 21685.34 109
v1070.21 12169.02 12873.81 11673.51 24550.92 18578.74 12481.39 10860.05 10666.39 17381.83 18347.58 12885.41 10662.80 12268.86 25185.09 117
SR-MVS-dyc-post74.57 6373.90 6576.58 6383.49 6959.87 5484.29 3581.36 10958.07 14173.14 7290.07 3644.74 16585.84 9168.20 7381.76 9184.03 147
RE-MVS-def73.71 6983.49 6959.87 5484.29 3581.36 10958.07 14173.14 7290.07 3643.06 18168.20 7381.76 9184.03 147
v119269.97 12668.68 13373.85 11573.19 24750.94 18377.68 14281.36 10957.51 14968.95 12880.85 20545.28 16185.33 10762.97 12170.37 22285.27 112
RPMNet61.53 25058.42 26070.86 18869.96 29652.07 17265.31 29981.36 10943.20 31659.36 25970.15 32335.37 25285.47 10336.42 30964.65 28475.06 287
OpenMVScopyleft61.03 968.85 14667.56 15072.70 15074.26 24053.99 14381.21 9281.34 11352.70 22462.75 22585.55 11338.86 22384.14 12848.41 22583.01 7479.97 235
v7n69.01 14567.36 15973.98 11372.51 26152.65 16178.54 13081.30 11460.26 10362.67 22681.62 18643.61 17684.49 12257.01 15968.70 25384.79 128
MG-MVS73.96 7073.89 6674.16 11185.65 4249.69 20781.59 8781.29 11561.45 7971.05 9688.11 6751.77 8387.73 4361.05 13783.09 7385.05 118
TEST985.58 4461.59 2781.62 8581.26 11655.65 18874.93 4288.81 6253.70 6384.68 118
train_agg76.27 4476.15 4176.64 6285.58 4461.59 2781.62 8581.26 11655.86 18074.93 4288.81 6253.70 6384.68 11875.24 2988.33 3183.65 168
PAPM67.92 17166.69 17371.63 16978.09 16549.02 21577.09 15781.24 11851.04 24460.91 24683.98 13947.71 12584.99 10940.81 28379.32 12280.90 221
test_885.40 4860.96 3781.54 8881.18 11955.86 18074.81 4588.80 6453.70 6384.45 123
TranMVSNet+NR-MVSNet70.36 11870.10 11371.17 18378.64 15042.97 27776.53 16881.16 12066.95 668.53 13385.42 11651.61 8583.07 15052.32 19669.70 23787.46 38
HPM-MVS_fast74.30 6773.46 7376.80 5884.45 6359.04 6983.65 5281.05 12160.15 10470.43 9989.84 4741.09 20785.59 9667.61 8182.90 7985.77 90
agg_prior175.94 4776.01 4375.72 7585.04 5259.96 5181.44 8981.04 12256.14 17674.68 4888.90 6053.91 5984.04 13075.01 3087.92 4183.16 183
agg_prior85.04 5259.96 5181.04 12274.68 4884.04 130
Anonymous2024052969.91 12769.02 12872.56 15280.19 12047.65 23177.56 14580.99 12455.45 19269.88 11286.76 8039.24 21982.18 17554.04 18277.10 14987.85 23
zzz-MVS77.61 3177.36 3178.35 3486.08 3663.57 283.37 5580.97 12565.13 1875.77 3490.88 1348.63 11486.66 6877.23 1688.17 3484.81 126
MTGPAbinary80.97 125
MTAPA76.90 3876.42 4078.35 3486.08 3663.57 274.92 20180.97 12565.13 1875.77 3490.88 1348.63 11486.66 6877.23 1688.17 3484.81 126
NR-MVSNet69.54 13668.85 13071.59 17078.05 16743.81 27074.20 21180.86 12865.18 1762.76 22484.52 12852.35 7783.59 14250.96 20670.78 21587.37 41
v870.33 11969.28 12473.49 13173.15 24850.22 19778.62 12780.78 12960.79 8666.45 17282.11 17849.35 10484.98 11163.58 11768.71 25285.28 111
v14419269.71 12968.51 13573.33 13873.10 24950.13 19977.54 14680.64 13056.65 15968.57 13280.55 21046.87 14384.96 11362.98 12069.66 23884.89 123
v192192069.47 13868.17 14373.36 13773.06 25050.10 20077.39 14980.56 13156.58 16668.59 13080.37 21244.72 16784.98 11162.47 12669.82 23385.00 119
v124069.24 14267.91 14573.25 14173.02 25249.82 20377.21 15580.54 13256.43 16868.34 13680.51 21143.33 17984.99 10962.03 13069.77 23684.95 122
v2v48270.50 11569.45 12273.66 12572.62 25850.03 20177.58 14380.51 13359.90 10869.52 11682.14 17747.53 12984.88 11665.07 10470.17 22686.09 78
PEN-MVS66.60 19666.45 17667.04 23877.11 19136.56 32477.03 15980.42 13462.95 4962.51 23284.03 13746.69 14479.07 23244.22 25563.08 29685.51 101
API-MVS72.17 9171.41 9174.45 10681.95 8857.22 9884.03 4480.38 13559.89 11168.40 13482.33 17049.64 10287.83 4251.87 19984.16 7078.30 252
PVSNet_Blended_VisFu71.45 10270.39 10774.65 9882.01 8558.82 7479.93 10880.35 13655.09 19865.82 18582.16 17649.17 10882.64 16760.34 14278.62 13582.50 194
test_yl69.69 13069.13 12571.36 17678.37 15645.74 25174.71 20480.20 13757.91 14670.01 10983.83 14242.44 18582.87 15854.97 17479.72 11385.48 102
DCV-MVSNet69.69 13069.13 12571.36 17678.37 15645.74 25174.71 20480.20 13757.91 14670.01 10983.83 14242.44 18582.87 15854.97 17479.72 11385.48 102
TAPA-MVS59.36 1066.60 19665.20 20270.81 18976.63 20048.75 21976.52 16980.04 13950.64 24865.24 19684.93 11939.15 22078.54 23936.77 30276.88 15185.14 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
xxxxxxxxxxxxxcwj78.37 2078.25 2278.76 2686.17 3261.30 3183.98 4679.95 14059.00 12479.16 1690.75 1557.96 2287.09 5677.08 2090.18 1187.87 21
Regformer-373.89 7173.28 7575.71 7679.75 12655.48 13178.54 13079.93 14166.58 1173.62 6580.30 21654.87 4784.54 12169.09 7076.84 15287.10 49
OMC-MVS71.40 10370.60 10373.78 11776.60 20153.15 15579.74 11379.78 14258.37 13668.75 12986.45 9345.43 15880.60 20762.58 12377.73 14187.58 34
ACMH55.70 1565.20 21463.57 21670.07 20278.07 16652.01 17579.48 11979.69 14355.75 18556.59 28280.98 20027.12 32180.94 19942.90 27171.58 20977.25 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet69.02 14469.47 12167.69 23377.42 18541.00 29474.04 21379.68 14460.06 10569.26 12484.81 12151.06 9277.58 25254.44 18174.43 16884.48 135
save fliter86.17 3261.30 3183.98 4679.66 14559.00 124
Effi-MVS+73.31 7672.54 8075.62 8077.87 17153.64 14679.62 11579.61 14661.63 7772.02 8982.61 16356.44 3385.97 8863.99 11279.07 12787.25 45
PS-CasMVS66.42 20066.32 18466.70 24277.60 18336.30 32976.94 16179.61 14662.36 6562.43 23483.66 14645.69 15078.37 24045.35 25263.26 29485.42 107
CP-MVSNet66.49 19966.41 18066.72 24077.67 17636.33 32776.83 16579.52 14862.45 6362.54 23083.47 15246.32 14678.37 24045.47 25063.43 29385.45 104
V4268.65 15267.35 16072.56 15268.93 30750.18 19872.90 23279.47 14956.92 15669.45 11980.26 21846.29 14782.99 15164.07 10967.82 26184.53 133
Fast-Effi-MVS+70.28 12069.12 12773.73 12278.50 15251.50 17875.01 19879.46 15056.16 17568.59 13079.55 23353.97 5684.05 12953.34 19077.53 14385.65 96
DTE-MVSNet65.58 20765.34 19966.31 24576.06 21034.79 33276.43 17079.38 15162.55 6061.66 24183.83 14245.60 15279.15 23041.64 28260.88 31085.00 119
EI-MVSNet-Vis-set72.42 8771.59 8774.91 9078.47 15454.02 14277.05 15879.33 15265.03 2171.68 9279.35 23852.75 7084.89 11466.46 8974.23 17085.83 86
EI-MVSNet-UG-set71.92 9471.06 9874.52 10577.98 16953.56 14876.62 16679.16 15364.40 2871.18 9578.95 24252.19 7884.66 12065.47 9973.57 17885.32 110
XVG-OURS-SEG-HR68.81 14767.47 15572.82 14874.40 23856.87 10870.59 26579.04 15454.77 20566.99 16286.01 10339.57 21578.21 24362.54 12473.33 18383.37 173
PS-MVSNAJ70.51 11469.70 11772.93 14481.52 9355.79 12374.92 20179.00 15555.04 20269.88 11278.66 24447.05 13882.19 17461.61 13379.58 11680.83 222
xiu_mvs_v2_base70.52 11369.75 11572.84 14681.21 10255.63 12775.11 19578.92 15654.92 20369.96 11179.68 23047.00 14282.09 17661.60 13479.37 11980.81 223
EG-PatchMatch MVS64.71 21862.87 22370.22 19877.68 17553.48 15077.99 13778.82 15753.37 21856.03 28577.41 26324.75 33584.04 13046.37 23873.42 18273.14 306
XVG-OURS68.76 15167.37 15872.90 14574.32 23957.22 9870.09 27178.81 15855.24 19467.79 15285.81 11036.54 24878.28 24262.04 12975.74 16183.19 180
cl_fuxian68.33 16167.56 15070.62 19370.87 28146.21 24674.47 20978.80 15956.22 17466.19 17678.53 24951.88 8181.40 18862.08 12769.04 24784.25 141
ambc65.13 26463.72 33537.07 31947.66 34878.78 16054.37 30471.42 31211.24 35680.94 19945.64 24553.85 33377.38 263
AdaColmapbinary69.99 12568.66 13473.97 11484.94 5757.83 8882.63 6878.71 16156.28 17264.34 20984.14 13441.57 19787.06 5846.45 23778.88 12877.02 269
IS-MVSNet71.57 9971.00 9973.27 13978.86 14445.63 25580.22 10378.69 16264.14 3666.46 17187.36 7549.30 10585.60 9550.26 21083.71 7188.59 5
miper_ehance_all_eth68.03 16867.24 16670.40 19770.54 28546.21 24673.98 21478.68 16355.07 20066.05 17877.80 25852.16 7981.31 19061.53 13669.32 24183.67 165
cdsmvs_eth3d_5k17.50 33223.34 3310.00 3500.00 3710.00 3710.00 36278.63 1640.00 3670.00 36882.18 17349.25 1070.00 3660.00 3660.00 3640.00 364
TSAR-MVS + GP.74.90 5574.15 6377.17 5382.00 8658.77 7581.80 8178.57 16558.58 13174.32 5484.51 13055.94 3887.22 5067.11 8584.48 6885.52 100
mvs_tets68.18 16566.36 18273.63 12875.61 21855.35 13380.77 9678.56 16652.48 22764.27 21284.10 13627.45 31981.84 18063.45 11970.56 21983.69 164
MVP-Stereo65.41 21163.80 21270.22 19877.62 18155.53 12976.30 17378.53 16750.59 24956.47 28378.65 24539.84 21282.68 16544.10 25972.12 20472.44 315
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax68.25 16366.45 17673.66 12575.62 21755.49 13080.82 9578.51 16852.33 22864.33 21084.11 13528.28 31381.81 18163.48 11870.62 21783.67 165
MVSFormer71.50 10170.38 10874.88 9178.76 14657.15 10382.79 6378.48 16951.26 24269.49 11783.22 15343.99 17483.24 14766.06 9179.37 11984.23 142
test_djsdf69.45 13967.74 14674.58 10274.57 23454.92 13782.79 6378.48 16951.26 24265.41 19083.49 15138.37 22783.24 14766.06 9169.25 24485.56 99
diffmvs70.69 11170.43 10671.46 17169.45 30248.95 21772.93 23178.46 17157.27 15171.69 9183.97 14051.48 8677.92 24770.70 5977.95 14087.53 35
EI-MVSNet69.27 14168.44 13971.73 16574.47 23549.39 21275.20 19378.45 17259.60 11469.16 12676.51 27451.29 8782.50 16959.86 14871.45 21183.30 175
XVG-ACMP-BASELINE64.36 22262.23 23170.74 19172.35 26352.45 16770.80 26478.45 17253.84 21559.87 25481.10 19716.24 34979.32 22455.64 17171.76 20680.47 226
MVSTER67.16 18465.58 19771.88 16270.37 28949.70 20570.25 27078.45 17251.52 23669.16 12680.37 21238.45 22682.50 16960.19 14371.46 21083.44 172
miper_enhance_ethall67.11 18566.09 18970.17 20169.21 30445.98 24972.85 23378.41 17551.38 23965.65 18675.98 28351.17 9081.25 19160.82 13869.32 24183.29 177
MVS_111021_HR74.02 6973.46 7375.69 7883.01 7760.63 4477.29 15378.40 17661.18 8370.58 9885.97 10454.18 5584.00 13467.52 8282.98 7782.45 195
131464.61 22063.21 22068.80 22271.87 27147.46 23473.95 21678.39 17742.88 31959.97 25276.60 27338.11 23179.39 22354.84 17672.32 20179.55 242
Vis-MVSNetpermissive72.18 9071.37 9374.61 10081.29 9955.41 13280.90 9478.28 17860.73 8869.23 12588.09 6844.36 17182.65 16657.68 15681.75 9385.77 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE71.01 10670.15 11173.60 12979.57 13252.17 17078.93 12278.12 17958.02 14367.76 15483.87 14152.36 7682.72 16456.90 16075.79 16085.92 82
ACMH+57.40 1166.12 20264.06 20772.30 15977.79 17352.83 15980.39 10178.03 18057.30 15057.47 27782.55 16527.68 31784.17 12745.54 24769.78 23479.90 236
eth_miper_zixun_eth67.63 17466.28 18671.67 16771.60 27348.33 22373.68 22477.88 18155.80 18465.91 18178.62 24747.35 13582.88 15759.45 15066.25 27283.81 156
CPTT-MVS72.78 8072.08 8474.87 9284.88 6061.41 2984.15 4177.86 18255.27 19367.51 15688.08 6941.93 19181.85 17969.04 7180.01 11181.35 212
GBi-Net67.21 18066.55 17469.19 21677.63 17743.33 27377.31 15077.83 18356.62 16265.04 20082.70 15941.85 19380.33 21247.18 23172.76 19483.92 151
test167.21 18066.55 17469.19 21677.63 17743.33 27377.31 15077.83 18356.62 16265.04 20082.70 15941.85 19380.33 21247.18 23172.76 19483.92 151
FMVSNet166.70 19465.87 19169.19 21677.49 18443.33 27377.31 15077.83 18356.45 16764.60 20882.70 15938.08 23280.33 21246.08 24072.31 20283.92 151
UA-Net73.13 7772.93 7773.76 11983.58 6851.66 17778.75 12377.66 18667.75 472.61 8289.42 5149.82 10083.29 14653.61 18883.14 7286.32 71
VDD-MVS72.50 8472.09 8373.75 12181.58 9249.69 20777.76 14177.63 18763.21 4673.21 7089.02 5842.14 18883.32 14561.72 13282.50 8588.25 9
IterMVS-LS69.22 14368.48 13671.43 17474.44 23749.40 21176.23 17577.55 18859.60 11465.85 18481.59 18951.28 8881.58 18659.87 14769.90 23283.30 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet266.93 18966.31 18568.79 22377.63 17742.98 27676.11 17777.47 18956.62 16265.22 19882.17 17541.85 19380.18 21547.05 23472.72 19783.20 179
PLCcopyleft56.13 1465.09 21563.21 22070.72 19281.04 10554.87 13878.57 12877.47 18948.51 26555.71 28681.89 18133.71 26879.71 21741.66 28070.37 22277.58 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned68.27 16267.29 16171.21 18079.74 12853.22 15476.06 17977.46 19157.19 15266.10 17781.61 18745.37 16083.50 14345.42 25176.68 15676.91 273
VNet69.68 13270.19 11068.16 22979.73 12941.63 29070.53 26677.38 19260.37 9670.69 9786.63 8751.08 9177.09 25853.61 18881.69 9585.75 92
cl-mvsnet267.47 17766.45 17670.54 19569.85 29846.49 24173.85 22177.35 19355.07 20065.51 18877.92 25447.64 12781.10 19561.58 13569.32 24184.01 149
anonymousdsp67.00 18864.82 20573.57 13070.09 29356.13 11676.35 17277.35 19348.43 26764.99 20380.84 20633.01 27680.34 21164.66 10667.64 26384.23 142
cascas65.98 20363.42 21873.64 12777.26 18852.58 16372.26 24277.21 19548.56 26461.21 24574.60 29532.57 28785.82 9350.38 20976.75 15582.52 193
FMVSNet366.32 20165.61 19668.46 22676.48 20442.34 28074.98 20077.15 19655.83 18265.04 20081.16 19539.91 21180.14 21647.18 23172.76 19482.90 188
v14868.24 16467.19 16771.40 17570.43 28747.77 23075.76 18577.03 19758.91 12667.36 15780.10 22148.60 11781.89 17860.01 14566.52 27184.53 133
Fast-Effi-MVS+-dtu67.37 17865.33 20073.48 13272.94 25357.78 9077.47 14876.88 19857.60 14861.97 23776.85 26839.31 21780.49 21054.72 17770.28 22582.17 200
CANet_DTU68.18 16567.71 14969.59 21174.83 22846.24 24578.66 12676.85 19959.60 11463.45 21882.09 17935.25 25377.41 25459.88 14678.76 13285.14 114
cl-mvsnet____67.18 18266.26 18769.94 20470.20 29045.74 25173.30 22676.83 20055.10 19665.27 19279.57 23247.39 13380.53 20859.41 15269.22 24583.53 171
cl-mvsnet167.18 18266.26 18769.94 20470.20 29045.74 25173.29 22776.83 20055.10 19665.27 19279.58 23147.38 13480.53 20859.43 15169.22 24583.54 170
hse-mvs372.71 8271.49 8976.40 6581.99 8759.58 5776.92 16276.74 20260.40 9374.81 4585.95 10545.54 15485.76 9470.41 6170.61 21883.86 155
BH-w/o66.85 19065.83 19269.90 20779.29 13452.46 16674.66 20676.65 20354.51 21064.85 20478.12 25045.59 15382.95 15443.26 26675.54 16374.27 299
LTVRE_ROB55.42 1663.15 23461.23 24368.92 22176.57 20247.80 22859.92 32176.39 20454.35 21258.67 26782.46 16829.44 30681.49 18742.12 27671.14 21277.46 262
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-RMVSNet68.81 14767.42 15672.97 14380.11 12252.53 16474.26 21076.29 20558.48 13468.38 13584.20 13342.59 18383.83 13646.53 23675.91 15982.56 191
F-COLMAP63.05 23560.87 24869.58 21376.99 19553.63 14778.12 13676.16 20647.97 27352.41 31681.61 18727.87 31578.11 24440.07 28666.66 26977.00 270
ab-mvs66.65 19566.42 17967.37 23576.17 20741.73 28770.41 26976.14 20753.99 21365.98 17983.51 15049.48 10376.24 26748.60 22373.46 18184.14 145
WR-MVS68.47 15968.47 13768.44 22780.20 11939.84 29773.75 22376.07 20864.68 2368.11 14283.63 14750.39 9879.14 23149.78 21169.66 23886.34 68
Effi-MVS+-dtu69.64 13467.53 15375.95 7076.10 20862.29 1880.20 10476.06 20959.83 11265.26 19577.09 26441.56 19884.02 13360.60 14071.09 21481.53 207
mvs-test170.44 11668.19 14277.18 5276.10 20863.22 680.59 9976.06 20959.83 11266.32 17479.87 22441.56 19885.53 9860.60 14072.77 19382.80 190
RRT_MVS68.77 15066.71 17274.95 8975.93 21258.55 7980.50 10075.84 21156.09 17768.17 13983.74 14528.50 31182.98 15265.67 9765.91 27483.33 174
MSDG61.81 24859.23 25469.55 21472.64 25752.63 16270.45 26875.81 21251.38 23953.70 30876.11 27929.52 30481.08 19737.70 29765.79 27774.93 291
miper_lstm_enhance62.03 24460.88 24765.49 26066.71 32046.25 24456.29 33375.70 21350.68 24661.27 24475.48 28840.21 21068.03 30156.31 16365.25 28082.18 198
pm-mvs165.24 21364.97 20466.04 25272.38 26239.40 30272.62 23675.63 21455.53 19062.35 23683.18 15547.45 13176.47 26449.06 22066.54 27082.24 197
UniMVSNet_ETH3D67.60 17567.07 16969.18 21977.39 18642.29 28174.18 21275.59 21560.37 9666.77 16586.06 10237.64 23478.93 23852.16 19873.49 18086.32 71
HyFIR lowres test65.67 20663.01 22273.67 12479.97 12455.65 12669.07 27975.52 21642.68 32063.53 21777.95 25240.43 20981.64 18346.01 24171.91 20583.73 163
pmmvs663.69 22662.82 22566.27 24770.63 28439.27 30373.13 22975.47 21752.69 22559.75 25782.30 17139.71 21477.03 25947.40 22964.35 28682.53 192
UGNet68.81 14767.39 15773.06 14278.33 15854.47 14079.77 11175.40 21860.45 9263.22 21984.40 13132.71 28380.91 20151.71 20280.56 10383.81 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet71.81 9571.33 9473.26 14082.80 8047.60 23378.74 12475.27 21959.59 11772.94 7789.40 5241.51 20183.91 13558.75 15382.99 7588.26 8
hse-mvs271.04 10569.86 11474.60 10179.58 13157.12 10573.96 21575.25 22060.40 9374.81 4581.95 18045.54 15482.90 15570.41 6166.83 26883.77 161
AUN-MVS68.45 16066.41 18074.57 10379.53 13357.08 10673.93 21975.23 22154.44 21166.69 16681.85 18237.10 24382.89 15662.07 12866.84 26783.75 162
mvs_anonymous68.03 16867.51 15469.59 21172.08 26644.57 26471.99 24575.23 22151.67 23267.06 16182.57 16454.68 4977.94 24656.56 16175.71 16286.26 75
TR-MVS66.59 19865.07 20371.17 18379.18 13849.63 20973.48 22575.20 22352.95 22167.90 14480.33 21539.81 21383.68 13943.20 26773.56 17980.20 230
IB-MVS56.42 1265.40 21262.73 22673.40 13674.89 22652.78 16073.09 23075.13 22455.69 18658.48 27173.73 30132.86 27886.32 8150.63 20770.11 22781.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu68.58 15467.28 16272.48 15478.19 16257.19 10075.28 19075.09 22551.61 23370.04 10581.41 19132.79 27979.02 23363.81 11377.31 14481.22 214
xiu_mvs_v1_base68.58 15467.28 16272.48 15478.19 16257.19 10075.28 19075.09 22551.61 23370.04 10581.41 19132.79 27979.02 23363.81 11377.31 14481.22 214
xiu_mvs_v1_base_debi68.58 15467.28 16272.48 15478.19 16257.19 10075.28 19075.09 22551.61 23370.04 10581.41 19132.79 27979.02 23363.81 11377.31 14481.22 214
TransMVSNet (Re)64.72 21764.33 20665.87 25675.22 22438.56 30874.66 20675.08 22858.90 12761.79 24082.63 16251.18 8978.07 24543.63 26355.87 32680.99 220
ET-MVSNet_ETH3D67.96 17065.72 19474.68 9676.67 19955.62 12875.11 19574.74 22952.91 22260.03 25180.12 22033.68 26982.64 16761.86 13176.34 15785.78 87
LS3D64.71 21862.50 22871.34 17879.72 13055.71 12479.82 11074.72 23048.50 26656.62 28184.62 12533.59 27182.34 17329.65 34075.23 16575.97 277
Baseline_NR-MVSNet67.05 18667.56 15065.50 25975.65 21637.70 31575.42 18874.65 23159.90 10868.14 14183.15 15649.12 11177.20 25652.23 19769.78 23481.60 206
HY-MVS56.14 1364.55 22163.89 20966.55 24374.73 23141.02 29269.96 27274.43 23249.29 25861.66 24180.92 20247.43 13276.68 26244.91 25471.69 20781.94 202
GA-MVS65.53 20963.70 21371.02 18770.87 28148.10 22570.48 26774.40 23356.69 15864.70 20676.77 26933.66 27081.10 19555.42 17370.32 22483.87 154
DIV-MVS_2432*160055.22 28953.89 29559.21 29557.80 35327.47 35357.75 32874.32 23447.38 27950.90 32270.00 32428.45 31270.30 29240.44 28557.92 32079.87 237
无先验79.66 11474.30 23548.40 26880.78 20453.62 18679.03 248
thisisatest053067.92 17165.78 19374.33 10976.29 20551.03 18276.89 16374.25 23653.67 21665.59 18781.76 18435.15 25485.50 10155.94 16472.47 19886.47 62
CHOSEN 1792x268865.08 21662.84 22471.82 16381.49 9556.26 11466.32 29074.20 23740.53 33163.16 22178.65 24541.30 20377.80 24945.80 24374.09 17181.40 209
MS-PatchMatch62.42 23961.46 23965.31 26375.21 22552.10 17172.05 24474.05 23846.41 28857.42 27874.36 29634.35 26377.57 25345.62 24673.67 17566.26 339
tttt051767.83 17365.66 19574.33 10976.69 19850.82 18777.86 13873.99 23954.54 20964.64 20782.53 16635.06 25585.50 10155.71 16969.91 23186.67 59
USDC56.35 28154.24 29262.69 27964.74 33040.31 29565.05 30173.83 24043.93 31147.58 33277.71 26115.36 35175.05 27138.19 29661.81 30572.70 310
tfpnnormal62.47 23861.63 23764.99 26574.81 22939.01 30471.22 25573.72 24155.22 19560.21 24980.09 22241.26 20676.98 26030.02 33868.09 25778.97 249
jason69.65 13368.39 14073.43 13578.27 16056.88 10777.12 15673.71 24246.53 28769.34 12183.22 15343.37 17879.18 22664.77 10579.20 12484.23 142
jason: jason.
D2MVS62.30 24160.29 25068.34 22866.46 32248.42 22265.70 29373.42 24347.71 27558.16 27375.02 29130.51 29677.71 25053.96 18471.68 20878.90 250
COLMAP_ROBcopyleft52.97 1761.27 25458.81 25668.64 22474.63 23252.51 16578.42 13373.30 24449.92 25550.96 32181.51 19023.06 33779.40 22231.63 33065.85 27574.01 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lupinMVS69.57 13568.28 14173.44 13478.76 14657.15 10376.57 16773.29 24546.19 29069.49 11782.18 17343.99 17479.23 22564.66 10679.37 11983.93 150
DP-MVS65.68 20563.66 21571.75 16484.93 5856.87 10880.74 9773.16 24653.06 22059.09 26382.35 16936.79 24785.94 8932.82 32269.96 23072.45 314
thisisatest051565.83 20463.50 21772.82 14873.75 24349.50 21071.32 25373.12 24749.39 25763.82 21676.50 27634.95 25784.84 11753.20 19275.49 16484.13 146
VPNet67.52 17668.11 14465.74 25779.18 13836.80 32272.17 24372.83 24862.04 7267.79 15285.83 10848.88 11376.60 26351.30 20472.97 19183.81 156
CL-MVSNet_2432*160061.53 25060.94 24663.30 27468.95 30636.93 32167.60 28572.80 24955.67 18759.95 25376.63 27045.01 16472.22 28339.74 29062.09 30380.74 224
OurMVSNet-221017-061.37 25358.63 25969.61 21072.05 26748.06 22673.93 21972.51 25047.23 28354.74 29880.92 20221.49 34481.24 19248.57 22456.22 32579.53 243
EPNet73.09 7872.16 8275.90 7175.95 21156.28 11383.05 5872.39 25166.53 1265.27 19287.00 7850.40 9785.47 10362.48 12586.32 5885.94 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss64.00 22463.36 21965.93 25479.28 13542.58 27971.35 25272.36 25246.41 28860.55 24877.89 25646.27 14873.28 27746.18 23969.97 22981.92 203
test_040263.25 23261.01 24569.96 20380.00 12354.37 14176.86 16472.02 25354.58 20858.71 26680.79 20735.00 25684.36 12426.41 34864.71 28371.15 326
EU-MVSNet55.61 28654.41 28959.19 29665.41 32833.42 34072.44 23971.91 25428.81 34851.27 31973.87 30024.76 33469.08 29743.04 26858.20 31975.06 287
KD-MVS_2432*160053.45 29751.50 30459.30 29262.82 33637.14 31755.33 33471.79 25547.34 28155.09 29470.52 31921.91 34270.45 29035.72 31242.97 34870.31 329
miper_refine_blended53.45 29751.50 30459.30 29262.82 33637.14 31755.33 33471.79 25547.34 28155.09 29470.52 31921.91 34270.45 29035.72 31242.97 34870.31 329
Anonymous20240521166.84 19165.99 19069.40 21580.19 12042.21 28271.11 25971.31 25758.80 12967.90 14486.39 9429.83 30379.65 21849.60 21778.78 13186.33 69
LFMVS71.78 9671.59 8772.32 15883.40 7146.38 24279.75 11271.08 25864.18 3372.80 7988.64 6542.58 18483.72 13857.41 15884.49 6786.86 53
CDS-MVSNet66.80 19265.37 19871.10 18578.98 14253.13 15773.27 22871.07 25952.15 23064.72 20580.23 21943.56 17777.10 25745.48 24978.88 12883.05 185
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052155.30 28754.41 28957.96 30460.92 34841.73 28771.09 26071.06 26041.18 32748.65 33073.31 30316.93 34859.25 33142.54 27264.01 28772.90 308
OpenMVS_ROBcopyleft52.78 1860.03 25858.14 26465.69 25870.47 28644.82 25975.33 18970.86 26145.04 29856.06 28476.00 28026.89 32479.65 21835.36 31467.29 26472.60 311
CNLPA65.43 21064.02 20869.68 20978.73 14858.07 8577.82 14070.71 26251.49 23761.57 24383.58 14938.23 23070.82 28743.90 26070.10 22880.16 231
CostFormer64.04 22362.51 22768.61 22571.88 27045.77 25071.30 25470.60 26347.55 27764.31 21176.61 27241.63 19679.62 22049.74 21369.00 24980.42 227
bset_n11_16_dypcd65.57 20863.69 21471.19 18170.84 28351.79 17671.37 25170.48 26453.33 21965.19 19976.41 27731.46 29381.76 18265.12 10269.04 24780.01 234
Test_1112_low_res62.32 24061.77 23564.00 27079.08 14139.53 30168.17 28170.17 26543.25 31559.03 26479.90 22344.08 17271.24 28643.79 26268.42 25581.25 213
MVS_111021_LR69.50 13768.78 13271.65 16878.38 15559.33 6174.82 20370.11 26658.08 14067.83 15084.68 12241.96 19076.34 26665.62 9877.54 14279.30 246
DWT-MVSNet_test61.90 24559.93 25267.83 23171.98 26946.09 24871.03 26269.71 26750.09 25258.51 27070.62 31730.21 30077.63 25149.28 21867.91 25879.78 240
ANet_high41.38 32037.47 32553.11 32239.73 36224.45 35856.94 33069.69 26847.65 27626.04 35552.32 34912.44 35262.38 32121.80 35110.61 36172.49 313
SixPastTwentyTwo61.65 24958.80 25770.20 20075.80 21447.22 23675.59 18669.68 26954.61 20654.11 30579.26 23927.07 32282.96 15343.27 26549.79 34080.41 228
IterMVS-SCA-FT62.49 23761.52 23865.40 26171.99 26850.80 18871.15 25869.63 27045.71 29660.61 24777.93 25337.45 23665.99 31155.67 17063.50 29279.42 244
TAMVS66.78 19365.27 20171.33 17979.16 14053.67 14573.84 22269.59 27152.32 22965.28 19181.72 18544.49 17077.40 25542.32 27478.66 13482.92 186
CMPMVSbinary42.80 2157.81 27355.97 27863.32 27360.98 34647.38 23564.66 30369.50 27232.06 34546.83 33677.80 25829.50 30571.36 28548.68 22273.75 17471.21 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tfpn200view963.18 23362.18 23266.21 24876.85 19639.62 29971.96 24669.44 27356.63 16062.61 22879.83 22537.18 23979.17 22731.84 32673.25 18579.83 238
thres40063.31 22962.18 23266.72 24076.85 19639.62 29971.96 24669.44 27356.63 16062.61 22879.83 22537.18 23979.17 22731.84 32673.25 18581.36 210
thres20062.20 24261.16 24465.34 26275.38 22339.99 29669.60 27469.29 27555.64 18961.87 23976.99 26537.07 24478.96 23731.28 33473.28 18477.06 268
UnsupCasMVSNet_eth53.16 30252.47 30055.23 31359.45 35033.39 34159.43 32369.13 27645.98 29250.35 32872.32 30729.30 30758.26 33442.02 27844.30 34674.05 301
thres100view90063.28 23162.41 22965.89 25577.31 18738.66 30772.65 23469.11 27757.07 15362.45 23381.03 19937.01 24579.17 22731.84 32673.25 18579.83 238
thres600view763.30 23062.27 23066.41 24477.18 18938.87 30572.35 24069.11 27756.98 15562.37 23580.96 20137.01 24579.00 23631.43 33373.05 19081.36 210
CVMVSNet59.63 26259.14 25561.08 29074.47 23538.84 30675.20 19368.74 27931.15 34658.24 27276.51 27432.39 28868.58 29949.77 21265.84 27675.81 280
TinyColmap54.14 29251.72 30261.40 28866.84 31941.97 28366.52 28868.51 28044.81 29942.69 34675.77 28411.66 35472.94 27831.96 32456.77 32369.27 335
baseline263.42 22861.26 24269.89 20872.55 26047.62 23271.54 24968.38 28150.11 25154.82 29775.55 28743.06 18180.96 19848.13 22667.16 26681.11 217
IterMVS62.79 23661.27 24167.35 23669.37 30352.04 17471.17 25668.24 28252.63 22659.82 25576.91 26737.32 23872.36 28052.80 19463.19 29577.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
旧先验183.04 7553.15 15567.52 28387.85 7144.08 17280.76 9878.03 259
AllTest57.08 27754.65 28664.39 26871.44 27549.03 21369.92 27367.30 28445.97 29347.16 33479.77 22717.47 34667.56 30333.65 31959.16 31676.57 274
TestCases64.39 26871.44 27549.03 21367.30 28445.97 29347.16 33479.77 22717.47 34667.56 30333.65 31959.16 31676.57 274
baseline163.81 22563.87 21163.62 27176.29 20536.36 32571.78 24867.29 28656.05 17964.23 21382.95 15747.11 13774.41 27447.30 23061.85 30480.10 233
tpmvs58.47 26656.95 27263.03 27870.20 29041.21 29167.90 28467.23 28749.62 25654.73 29970.84 31534.14 26476.24 26736.64 30661.29 30871.64 322
Gipumacopyleft34.77 32531.91 32943.33 33662.05 34137.87 31220.39 35867.03 28823.23 35418.41 35825.84 3584.24 36462.73 31914.71 35551.32 33729.38 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tpm262.07 24360.10 25167.99 23072.79 25543.86 26971.05 26166.85 28943.14 31762.77 22375.39 28938.32 22880.80 20341.69 27968.88 25079.32 245
XXY-MVS60.68 25561.67 23657.70 30770.43 28738.45 30964.19 30566.47 29048.05 27263.22 21980.86 20449.28 10660.47 32645.25 25367.28 26574.19 300
112168.53 15867.16 16872.63 15185.64 4361.14 3473.95 21666.46 29144.61 30270.28 10286.68 8541.42 20280.78 20453.62 18681.79 8975.97 277
新几何170.76 19085.66 4161.13 3566.43 29244.68 30170.29 10186.64 8641.29 20475.23 27049.72 21481.75 9375.93 279
ppachtmachnet_test58.06 27155.38 28266.10 25169.51 30048.99 21668.01 28366.13 29344.50 30454.05 30670.74 31632.09 29072.34 28136.68 30556.71 32476.99 272
tpm cat159.25 26356.95 27266.15 24972.19 26546.96 23868.09 28265.76 29440.03 33457.81 27570.56 31838.32 22874.51 27338.26 29561.50 30777.00 270
EPNet_dtu61.90 24561.97 23461.68 28572.89 25439.78 29875.85 18465.62 29555.09 19854.56 30179.36 23737.59 23567.02 30639.80 28976.95 15078.25 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030458.51 26557.36 26861.96 28470.04 29441.83 28569.40 27765.46 29650.73 24553.30 31474.06 29922.65 33870.18 29442.16 27568.44 25473.86 304
pmmvs461.48 25259.39 25367.76 23271.57 27453.86 14471.42 25065.34 29744.20 30759.46 25877.92 25435.90 24974.71 27243.87 26164.87 28274.71 295
testdata64.66 26681.52 9352.93 15865.29 29846.09 29173.88 6287.46 7438.08 23266.26 31053.31 19178.48 13674.78 294
TDRefinement53.44 29950.72 30761.60 28664.31 33346.96 23870.89 26365.27 29941.78 32244.61 34277.98 25111.52 35566.36 30928.57 34351.59 33671.49 323
MIMVSNet155.17 29054.31 29157.77 30670.03 29532.01 34465.68 29464.81 30049.19 25946.75 33776.00 28025.53 33164.04 31628.65 34262.13 30277.26 266
pmmvs-eth3d58.81 26456.31 27766.30 24667.61 31452.42 16872.30 24164.76 30143.55 31354.94 29674.19 29828.95 30872.60 27943.31 26457.21 32173.88 303
MDTV_nov1_ep1357.00 27172.73 25638.26 31065.02 30264.73 30244.74 30055.46 28872.48 30632.61 28670.47 28937.47 29867.75 262
UnsupCasMVSNet_bld50.07 31048.87 31153.66 31960.97 34733.67 33957.62 32964.56 30339.47 33647.38 33364.02 34227.47 31859.32 33034.69 31643.68 34767.98 338
ITE_SJBPF62.09 28366.16 32444.55 26564.32 30447.36 28055.31 29180.34 21419.27 34562.68 32036.29 31062.39 30179.04 247
WTY-MVS59.75 26160.39 24957.85 30572.32 26437.83 31361.05 31964.18 30545.95 29561.91 23879.11 24147.01 14160.88 32542.50 27369.49 24074.83 292
MDA-MVSNet-bldmvs53.87 29550.81 30663.05 27766.25 32348.58 22056.93 33163.82 30648.09 27141.22 34770.48 32130.34 29868.00 30234.24 31745.92 34572.57 312
Vis-MVSNet (Re-imp)63.69 22663.88 21063.14 27674.75 23031.04 34771.16 25763.64 30756.32 17059.80 25684.99 11844.51 16875.46 26939.12 29180.62 9982.92 186
test22283.14 7258.68 7672.57 23763.45 30841.78 32267.56 15586.12 9937.13 24278.73 13374.98 290
PVSNet50.76 1958.40 26757.39 26761.42 28775.53 22044.04 26861.43 31463.45 30847.04 28556.91 27973.61 30227.00 32364.76 31439.12 29172.40 19975.47 284
SCA60.49 25658.38 26166.80 23974.14 24248.06 22663.35 30763.23 31049.13 26059.33 26272.10 30837.45 23674.27 27544.17 25662.57 29978.05 256
CR-MVSNet59.91 25957.90 26665.96 25369.96 29652.07 17265.31 29963.15 31142.48 32159.36 25974.84 29235.83 25070.75 28845.50 24864.65 28475.06 287
Patchmtry57.16 27656.47 27559.23 29469.17 30534.58 33562.98 30863.15 31144.53 30356.83 28074.84 29235.83 25068.71 29840.03 28760.91 30974.39 298
pmmvs556.47 27955.68 28058.86 29861.41 34336.71 32366.37 28962.75 31340.38 33253.70 30876.62 27134.56 25967.05 30540.02 28865.27 27972.83 309
K. test v360.47 25757.11 26970.56 19473.74 24448.22 22475.10 19762.55 31458.27 13953.62 31076.31 27827.81 31681.59 18547.42 22839.18 35181.88 204
FMVSNet555.86 28454.93 28458.66 30071.05 28036.35 32664.18 30662.48 31546.76 28650.66 32674.73 29425.80 32964.04 31633.11 32165.57 27875.59 283
PatchmatchNetpermissive59.84 26058.24 26264.65 26773.05 25146.70 24069.42 27662.18 31647.55 27758.88 26571.96 31034.49 26169.16 29642.99 26963.60 29178.07 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120655.10 29155.30 28354.48 31769.81 29933.94 33862.91 30962.13 31741.08 32855.18 29375.65 28532.75 28256.59 34130.32 33767.86 25972.91 307
sss56.17 28356.57 27454.96 31466.93 31836.32 32857.94 32761.69 31841.67 32458.64 26875.32 29038.72 22456.25 34242.04 27766.19 27372.31 319
our_test_356.49 27854.42 28862.68 28069.51 30045.48 25666.08 29161.49 31944.11 31050.73 32569.60 32733.05 27568.15 30038.38 29456.86 32274.40 297
tpmrst58.24 26858.70 25856.84 30866.97 31734.32 33669.57 27561.14 32047.17 28458.58 26971.60 31141.28 20560.41 32749.20 21962.84 29775.78 281
MIMVSNet57.35 27457.07 27058.22 30174.21 24137.18 31662.46 31060.88 32148.88 26255.29 29275.99 28231.68 29262.04 32231.87 32572.35 20075.43 285
LCM-MVSNet40.30 32135.88 32653.57 32042.24 35929.15 35145.21 35160.53 32222.23 35628.02 35450.98 3523.72 36661.78 32331.22 33538.76 35269.78 332
ADS-MVSNet251.33 30748.76 31259.07 29766.02 32644.60 26350.90 34259.76 32336.90 33850.74 32366.18 33726.38 32563.11 31827.17 34454.76 32969.50 333
new-patchmatchnet47.56 31447.73 31547.06 33258.81 3519.37 36548.78 34659.21 32443.28 31444.22 34368.66 32925.67 33057.20 33831.57 33249.35 34174.62 296
test20.0353.87 29554.02 29453.41 32161.47 34228.11 35261.30 31659.21 32451.34 24152.09 31777.43 26233.29 27458.55 33329.76 33960.27 31373.58 305
JIA-IIPM51.56 30647.68 31663.21 27564.61 33150.73 18947.71 34758.77 32642.90 31848.46 33151.72 35024.97 33370.24 29336.06 31153.89 33268.64 337
testgi51.90 30452.37 30150.51 33060.39 34923.55 35958.42 32558.15 32749.03 26151.83 31879.21 24022.39 33955.59 34529.24 34162.64 29872.40 318
LCM-MVSNet-Re61.88 24761.35 24063.46 27274.58 23331.48 34661.42 31558.14 32858.71 13053.02 31579.55 23343.07 18076.80 26145.69 24477.96 13982.11 201
test-LLR58.15 27058.13 26558.22 30168.57 30844.80 26065.46 29657.92 32950.08 25355.44 28969.82 32532.62 28457.44 33649.66 21573.62 17672.41 316
test-mter56.42 28055.82 27958.22 30168.57 30844.80 26065.46 29657.92 32939.94 33555.44 28969.82 32521.92 34157.44 33649.66 21573.62 17672.41 316
RPSCF55.80 28554.22 29360.53 29165.13 32942.91 27864.30 30457.62 33136.84 34058.05 27482.28 17228.01 31456.24 34337.14 30058.61 31882.44 196
GG-mvs-BLEND62.34 28171.36 27937.04 32069.20 27857.33 33254.73 29965.48 33930.37 29777.82 24834.82 31574.93 16672.17 320
MDA-MVSNet_test_wron50.71 30948.95 31056.00 31261.17 34441.84 28451.90 34156.45 33340.96 32944.79 34167.84 33130.04 30255.07 34836.71 30450.69 33971.11 327
YYNet150.73 30848.96 30956.03 31161.10 34541.78 28651.94 34056.44 33440.94 33044.84 34067.80 33230.08 30155.08 34736.77 30250.71 33871.22 324
gg-mvs-nofinetune57.86 27256.43 27662.18 28272.62 25835.35 33166.57 28756.33 33550.65 24757.64 27657.10 34730.65 29576.36 26537.38 29978.88 12874.82 293
TESTMET0.1,155.28 28854.90 28556.42 30966.56 32143.67 27165.46 29656.27 33639.18 33753.83 30767.44 33324.21 33655.46 34648.04 22773.11 18970.13 331
PMMVS53.96 29353.26 29956.04 31062.60 33950.92 18561.17 31856.09 33732.81 34453.51 31266.84 33534.04 26559.93 32944.14 25868.18 25657.27 347
tpm57.34 27558.16 26354.86 31571.80 27234.77 33367.47 28656.04 33848.20 27060.10 25076.92 26637.17 24153.41 34940.76 28465.01 28176.40 276
PVSNet_043.31 2047.46 31545.64 31852.92 32367.60 31544.65 26254.06 33854.64 33941.59 32546.15 33858.75 34630.99 29458.66 33232.18 32324.81 35455.46 348
dp51.89 30551.60 30352.77 32468.44 31132.45 34362.36 31154.57 34044.16 30849.31 32967.91 33028.87 31056.61 34033.89 31854.89 32869.24 336
PatchT53.17 30153.44 29852.33 32668.29 31225.34 35758.21 32654.41 34144.46 30554.56 30169.05 32833.32 27360.94 32436.93 30161.76 30670.73 328
test0.0.03 153.32 30053.59 29752.50 32562.81 33829.45 35059.51 32254.11 34250.08 25354.40 30374.31 29732.62 28455.92 34430.50 33663.95 28972.15 321
PatchMatch-RL56.25 28254.55 28761.32 28977.06 19256.07 11865.57 29554.10 34344.13 30953.49 31371.27 31425.20 33266.78 30736.52 30863.66 29061.12 342
FPMVS42.18 31941.11 32245.39 33358.03 35241.01 29349.50 34453.81 34430.07 34733.71 35264.03 34011.69 35352.08 35114.01 35655.11 32743.09 352
Patchmatch-RL test58.16 26955.49 28166.15 24967.92 31348.89 21860.66 32051.07 34547.86 27459.36 25962.71 34434.02 26672.27 28256.41 16259.40 31577.30 264
lessismore_v069.91 20671.42 27747.80 22850.90 34650.39 32775.56 28627.43 32081.33 18945.91 24234.10 35380.59 225
ADS-MVSNet48.48 31247.77 31450.63 32966.02 32629.92 34950.90 34250.87 34736.90 33850.74 32366.18 33726.38 32552.47 35027.17 34454.76 32969.50 333
EPMVS53.96 29353.69 29654.79 31666.12 32531.96 34562.34 31249.05 34844.42 30655.54 28771.33 31330.22 29956.70 33941.65 28162.54 30075.71 282
PMVScopyleft28.69 2236.22 32433.29 32845.02 33536.82 36435.98 33054.68 33748.74 34926.31 35121.02 35651.61 3512.88 36860.10 3289.99 36047.58 34338.99 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LF4IMVS42.95 31842.26 32045.04 33448.30 35732.50 34254.80 33648.49 35028.03 34940.51 34970.16 3229.24 35943.89 35531.63 33049.18 34258.72 344
Patchmatch-test49.08 31148.28 31351.50 32864.40 33230.85 34845.68 34948.46 35135.60 34146.10 33972.10 30834.47 26246.37 35327.08 34660.65 31277.27 265
door47.60 352
door-mid47.19 353
pmmvs344.92 31741.95 32153.86 31852.58 35543.55 27262.11 31346.90 35426.05 35240.63 34860.19 34511.08 35757.91 33531.83 32946.15 34460.11 343
MVS-HIRNet45.52 31644.48 31948.65 33168.49 31034.05 33759.41 32444.50 35527.03 35037.96 35150.47 35326.16 32864.10 31526.74 34759.52 31447.82 350
CHOSEN 280x42047.83 31346.36 31752.24 32767.37 31649.78 20438.91 35543.11 35635.00 34243.27 34563.30 34328.95 30849.19 35236.53 30760.80 31157.76 346
test_method19.68 33118.10 33424.41 34413.68 3673.11 36812.06 36142.37 3572.00 36311.97 36136.38 3555.77 36329.35 36215.06 35423.65 35540.76 353
PM-MVS52.33 30350.19 30858.75 29962.10 34045.14 25865.75 29240.38 35843.60 31253.52 31172.65 3059.16 36065.87 31250.41 20854.18 33165.24 341
E-PMN23.77 32822.73 33226.90 34242.02 36020.67 36042.66 35335.70 35917.43 35710.28 36325.05 3596.42 36242.39 35710.28 35914.71 35817.63 357
EMVS22.97 32921.84 33326.36 34340.20 36119.53 36241.95 35434.64 36017.09 3589.73 36422.83 3607.29 36142.22 3589.18 36113.66 35917.32 358
new_pmnet34.13 32634.29 32733.64 33952.63 35418.23 36344.43 35233.90 36122.81 35530.89 35353.18 34810.48 35835.72 36020.77 35239.51 35046.98 351
DSMNet-mixed39.30 32338.72 32441.03 33751.22 35619.66 36145.53 35031.35 36215.83 35939.80 35067.42 33422.19 34045.13 35422.43 35052.69 33458.31 345
PMMVS227.40 32725.91 33031.87 34139.46 3636.57 36631.17 35628.52 36323.96 35320.45 35748.94 3544.20 36537.94 35916.51 35319.97 35651.09 349
MVEpermissive17.77 2321.41 33017.77 33532.34 34034.34 36525.44 35616.11 35924.11 36411.19 36013.22 36031.92 3561.58 36930.95 36110.47 35817.03 35740.62 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP86.03 1717.08 365
tmp_tt9.43 33411.14 3374.30 3472.38 3684.40 36713.62 36016.08 3660.39 36415.89 35913.06 36115.80 3505.54 36512.63 35710.46 3622.95 360
DeepMVS_CXcopyleft12.03 34617.97 36610.91 36410.60 3677.46 36111.07 36228.36 3573.28 36711.29 3648.01 3629.74 36313.89 359
wuyk23d13.32 33312.52 33615.71 34547.54 35826.27 35431.06 3571.98 3684.93 3625.18 3651.94 3650.45 37018.54 3636.81 36312.83 3602.33 361
N_pmnet39.35 32240.28 32336.54 33863.76 3341.62 36949.37 3450.76 36934.62 34343.61 34466.38 33626.25 32742.57 35626.02 34951.77 33565.44 340
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
pcd_1.5k_mvsjas3.92 3385.23 3410.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 36847.05 1380.00 3660.00 3660.00 3640.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
testmvs4.52 3376.03 3400.01 3490.01 3690.00 37153.86 3390.00 3700.01 3650.04 3660.27 3660.00 3720.00 3660.04 3640.00 3640.03 363
test1234.73 3366.30 3390.02 3480.01 3690.01 37056.36 3320.00 3700.01 3650.04 3660.21 3670.01 3710.00 3660.03 3650.00 3640.04 362
n20.00 370
nn0.00 370
ab-mvs-re6.49 3358.65 3380.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 36877.89 2560.00 3720.00 3660.00 3660.00 3640.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3710.00 3620.00 3700.00 3670.00 3680.00 3680.00 3720.00 3660.00 3660.00 3640.00 364
OPU-MVS79.83 487.54 1060.93 3887.82 589.89 4567.01 190.33 873.16 4591.15 288.23 10
test_0728_THIRD65.04 2083.82 692.00 364.69 890.75 579.48 490.63 688.09 15
GSMVS78.05 256
test_part287.58 960.47 4683.42 9
sam_mvs134.74 25878.05 256
sam_mvs33.43 272
test_post168.67 2803.64 36332.39 28869.49 29544.17 256
test_post3.55 36433.90 26766.52 308
patchmatchnet-post64.03 34034.50 26074.27 275
gm-plane-assit71.40 27841.72 28948.85 26373.31 30382.48 17148.90 221
test9_res75.28 2888.31 3383.81 156
agg_prior273.09 4687.93 4084.33 138
test_prior462.51 1782.08 79
test_prior281.75 8260.37 9675.01 4089.06 5656.22 3572.19 4988.96 24
旧先验276.08 17845.32 29776.55 3165.56 31358.75 153
新几何276.12 176
原ACMM279.02 121
testdata272.18 28446.95 235
segment_acmp54.23 54
testdata172.65 23460.50 91
plane_prior781.41 9655.96 120
plane_prior681.20 10356.24 11545.26 162
plane_prior486.10 100
plane_prior356.09 11763.92 3769.27 122
plane_prior284.22 3864.52 26
plane_prior181.27 101
plane_prior56.31 11183.58 5363.19 4780.48 104
HQP5-MVS54.94 135
HQP-NCC80.66 10882.31 7462.10 6967.85 146
ACMP_Plane80.66 10882.31 7462.10 6967.85 146
BP-MVS67.04 86
HQP4-MVS67.85 14686.93 6084.32 139
HQP2-MVS45.46 156
NP-MVS80.98 10656.05 11985.54 114
MDTV_nov1_ep13_2view25.89 35561.22 31740.10 33351.10 32032.97 27738.49 29378.61 251
ACMMP++_ref74.07 172
ACMMP++72.16 203
Test By Simon48.33 119