This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10593.26 5197.33 2484.62 6599.51 2190.75 8598.57 4698.32 40
FC-MVSNet-test90.27 10990.18 10090.53 18893.71 20079.85 21495.77 6597.59 289.31 5286.27 17594.67 13381.93 9897.01 23184.26 15588.09 22094.71 194
FIs90.51 10690.35 9690.99 17793.99 19080.98 18195.73 6697.54 389.15 5786.72 16694.68 13281.83 9997.24 21385.18 14388.31 21694.76 193
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15893.56 4996.28 7685.60 5199.31 3892.45 3998.79 1998.12 59
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9695.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet (Re)89.80 12289.07 12692.01 12993.60 20484.52 8494.78 12397.47 889.26 5386.44 17292.32 21482.10 9397.39 20284.81 14980.84 29794.12 221
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2297.45 1188.33 7890.15 11397.03 4481.44 10099.51 2190.85 8495.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 5296.08 5097.44 1286.13 13495.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12295.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17490.05 11495.66 10087.77 2399.15 5389.91 9098.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4498.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10293.65 4397.21 3286.10 4599.49 2391.68 6898.77 2498.30 41
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16492.19 4998.66 4096.76 121
VPA-MVSNet89.62 12488.96 12891.60 15193.86 19482.89 13295.46 7897.33 2287.91 9088.43 13393.31 18174.17 18397.40 19987.32 12282.86 26994.52 205
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4298.81 1898.52 20
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4498.78 2198.50 22
WR-MVS_H87.80 17687.37 16689.10 24293.23 21378.12 25095.61 7497.30 2687.90 9183.72 24492.01 23079.65 12196.01 28276.36 26080.54 30193.16 270
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13697.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 20993.81 3996.29 7587.29 3299.27 4289.87 9198.67 3798.65 15
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5098.83 1798.25 50
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21497.24 3088.76 6791.60 9695.85 9486.07 4798.66 10291.91 6198.16 6098.03 67
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10794.85 2497.04 4286.99 3799.52 2091.54 7098.33 5698.71 12
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4798.74 2998.56 19
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11397.21 3484.33 17293.89 3897.09 3987.20 3399.29 4191.90 6498.44 5198.12 59
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7498.40 5398.30 41
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5698.56 4798.47 28
X-MVStestdata88.31 16386.13 20594.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36285.02 6099.49 2391.99 5698.56 4798.47 28
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12097.17 3886.26 13092.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22197.13 3990.74 2091.84 8995.09 11786.32 4399.21 4791.22 7598.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10897.12 4087.13 10992.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
UniMVSNet_NR-MVSNet89.92 11989.29 12191.81 14593.39 20983.72 10794.43 14697.12 4089.80 3786.46 16993.32 18083.16 7897.23 21484.92 14681.02 29394.49 209
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23794.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21094.00 18097.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
ZD-MVS98.15 3586.62 3597.07 4483.63 18594.19 3096.91 4887.57 2999.26 4391.99 5698.44 51
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11792.62 7296.80 5584.85 6399.17 5092.43 4098.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23296.66 6173.74 19299.17 5086.74 12997.96 6897.79 83
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11596.99 4789.02 6289.56 11797.37 2382.51 8599.38 2992.20 4898.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 6091.98 8597.19 3485.43 5499.56 792.06 5598.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTGPAbinary96.97 49
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15696.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8896.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14295.05 2397.18 3587.31 3199.07 5891.90 6498.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9197.17 3683.96 7399.55 1291.44 7398.64 4398.43 34
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8398.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16696.88 5987.67 9992.63 7096.39 7286.62 3998.87 8891.50 7198.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11393.92 3797.47 1683.88 7498.96 8392.71 3897.87 7198.26 49
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2797.98 6798.52 20
IU-MVS98.77 486.00 5496.84 6281.26 24297.26 695.50 799.13 399.03 4
PVSNet_BlendedMVS89.98 11589.70 11090.82 18196.12 10081.25 17393.92 18496.83 6483.49 19089.10 12492.26 21781.04 10498.85 9486.72 13187.86 22492.35 296
PVSNet_Blended90.73 9890.32 9791.98 13296.12 10081.25 17392.55 23696.83 6482.04 22089.10 12492.56 20781.04 10498.85 9486.72 13195.91 10495.84 155
save fliter97.85 4885.63 6895.21 9496.82 6689.44 47
原ACMM192.01 12997.34 6681.05 17996.81 6778.89 26990.45 10995.92 9182.65 8398.84 9680.68 21498.26 5996.14 139
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 13992.47 7697.13 3882.38 8699.07 5890.51 8798.40 5397.92 75
TEST997.53 5886.49 3994.07 17396.78 6981.61 23592.77 6596.20 8087.71 2699.12 55
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17396.78 6981.86 22892.77 6596.20 8087.63 2799.12 5592.14 5198.69 3397.94 72
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23796.62 6375.95 15799.34 3387.77 11497.68 7698.59 18
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1884.24 6999.01 7092.73 3597.80 7397.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10393.75 4097.43 1882.94 8092.73 3597.80 7397.88 77
test_897.49 6186.30 4894.02 17896.76 7281.86 22892.70 6996.20 8087.63 2799.02 68
RPMNet83.95 26681.53 27691.21 16390.58 30079.34 22485.24 33496.76 7271.44 33585.55 18882.97 34270.87 22498.91 8661.01 34289.36 19895.40 170
EIA-MVS91.95 7691.94 7491.98 13295.16 13780.01 20995.36 8096.73 7688.44 7589.34 12192.16 21983.82 7598.45 11889.35 9697.06 8697.48 94
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18496.72 7881.96 22292.16 8196.23 7887.85 2298.97 8091.95 6098.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13696.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7898.16 55
QAPM89.51 12888.15 14993.59 7294.92 14884.58 8096.82 2496.70 8078.43 27883.41 25396.19 8373.18 20099.30 3977.11 25596.54 9796.89 118
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11196.69 8291.89 590.69 10795.88 9381.99 9799.54 1693.14 3097.95 6998.39 36
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8387.85 9393.20 5497.22 3180.35 10799.18 4991.91 6197.21 8397.26 100
CDPH-MVS92.83 6592.30 7194.44 4897.79 5286.11 5294.06 17596.66 8480.09 25592.77 6596.63 6286.62 3999.04 6387.40 11998.66 4098.17 54
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11796.66 8483.29 19589.27 12294.46 14080.29 10999.17 5087.57 11795.37 11496.05 148
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 13196.66 8482.69 20890.03 11595.82 9582.30 8999.03 6484.57 15296.48 10096.91 117
CS-MVS93.01 6393.28 5392.21 12594.70 16081.67 16196.60 2996.65 8789.58 4492.34 7795.10 11683.39 7798.15 13693.11 3197.99 6596.82 120
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8796.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-CasMVS87.32 19886.88 17688.63 25592.99 22476.33 28495.33 8296.61 8988.22 8483.30 25793.07 19273.03 20295.79 29378.36 24181.00 29593.75 246
DU-MVS89.34 13888.50 13891.85 14293.04 22083.72 10794.47 14396.59 9089.50 4686.46 16993.29 18377.25 14397.23 21484.92 14681.02 29394.59 200
CP-MVSNet87.63 18487.26 17188.74 25293.12 21676.59 27995.29 8896.58 9188.43 7683.49 25292.98 19475.28 16795.83 29078.97 23681.15 28993.79 240
test1196.57 92
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 23196.56 9383.44 19191.68 9595.04 11886.60 4298.99 7785.60 14097.92 7096.93 116
ETV-MVS92.74 6792.66 6692.97 8895.20 13684.04 10095.07 10396.51 9490.73 2192.96 6091.19 25284.06 7198.34 12591.72 6796.54 9796.54 130
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22790.24 11196.44 7178.59 13198.61 10789.68 9297.85 7297.06 109
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13696.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7898.15 56
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11996.44 9689.19 5694.08 3495.90 9277.85 14298.17 13588.90 10193.38 14798.13 58
OpenMVScopyleft83.78 1188.74 15387.29 16893.08 8292.70 22985.39 7196.57 3096.43 9878.74 27480.85 28296.07 8769.64 24299.01 7078.01 24696.65 9494.83 190
canonicalmvs93.27 5892.75 6594.85 2795.70 12087.66 1196.33 3596.41 9990.00 3494.09 3394.60 13682.33 8898.62 10692.40 4292.86 15898.27 47
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12896.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
UA-Net92.83 6592.54 6893.68 7096.10 10384.71 7895.66 7196.39 10191.92 493.22 5396.49 6983.16 7898.87 8884.47 15395.47 11197.45 96
PEN-MVS86.80 21686.27 20288.40 25992.32 23675.71 28995.18 9796.38 10287.97 8882.82 26193.15 18873.39 19895.92 28576.15 26479.03 31893.59 251
114514_t89.51 12888.50 13892.54 10898.11 3781.99 15395.16 9996.36 10370.19 34085.81 18195.25 11076.70 14998.63 10582.07 18796.86 9097.00 113
TranMVSNet+NR-MVSNet88.84 15087.95 15491.49 15492.68 23083.01 12894.92 11396.31 10489.88 3685.53 19093.85 16676.63 15196.96 23381.91 19179.87 31194.50 207
test1294.34 5397.13 7486.15 5196.29 10591.04 10585.08 5899.01 7098.13 6197.86 79
baseline92.39 7392.29 7292.69 10294.46 17181.77 15894.14 16596.27 10689.22 5491.88 8796.00 8882.35 8797.99 15391.05 7795.27 11898.30 41
nrg03091.08 9390.39 9593.17 7993.07 21886.91 2096.41 3396.26 10788.30 8088.37 13494.85 12682.19 9297.64 17591.09 7682.95 26494.96 183
无先验93.28 21096.26 10773.95 31899.05 6080.56 21696.59 127
NR-MVSNet88.58 15887.47 16491.93 13693.04 22084.16 9794.77 12496.25 10989.05 5980.04 29693.29 18379.02 12597.05 22881.71 19880.05 30894.59 200
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16894.37 15596.24 11086.39 12887.41 15194.80 12882.06 9598.48 11382.80 17695.37 11497.61 88
casdiffmvs92.51 7092.43 7092.74 9894.41 17481.98 15494.54 13896.23 11189.57 4591.96 8696.17 8482.58 8498.01 15190.95 8195.45 11398.23 51
HQP_MVS90.60 10590.19 9991.82 14394.70 16082.73 13795.85 6196.22 11290.81 1786.91 16294.86 12474.23 18098.12 13788.15 10989.99 18594.63 196
plane_prior596.22 11298.12 13788.15 10989.99 18594.63 196
PAPR90.02 11489.27 12392.29 12295.78 11680.95 18392.68 23096.22 11281.91 22586.66 16793.75 17282.23 9098.44 11979.40 23494.79 12197.48 94
TAPA-MVS84.62 688.16 16787.01 17591.62 15096.64 8480.65 19094.39 15096.21 11576.38 29486.19 17795.44 10479.75 11598.08 14662.75 33895.29 11696.13 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121186.59 22485.13 23490.98 17996.52 9081.50 16496.14 4696.16 11673.78 31983.65 24792.15 22063.26 29597.37 20382.82 17581.74 28294.06 226
LPG-MVS_test89.45 13188.90 13191.12 16694.47 16981.49 16695.30 8696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
LGP-MVS_train91.12 16694.47 16981.49 16696.14 11786.73 12085.45 19795.16 11369.89 23898.10 13987.70 11589.23 20193.77 244
ACMM84.12 989.14 14088.48 14191.12 16694.65 16481.22 17595.31 8396.12 11985.31 15385.92 18094.34 14170.19 23698.06 14885.65 13988.86 20694.08 225
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10984.43 9293.08 21996.09 12088.20 8591.12 10495.72 9981.33 10297.76 16491.74 6697.37 8296.75 122
CLD-MVS89.47 13088.90 13191.18 16594.22 17982.07 15292.13 24996.09 12087.90 9185.37 20692.45 21074.38 17897.56 18087.15 12490.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
alignmvs93.08 6292.50 6994.81 3295.62 12387.61 1295.99 5496.07 12289.77 4094.12 3294.87 12380.56 10698.66 10292.42 4193.10 15398.15 56
XVG-OURS89.40 13688.70 13491.52 15294.06 18381.46 16891.27 26796.07 12286.14 13388.89 12895.77 9768.73 25797.26 21187.39 12089.96 18795.83 156
XVG-OURS-SEG-HR89.95 11789.45 11491.47 15694.00 18981.21 17691.87 25496.06 12485.78 13888.55 13095.73 9874.67 17697.27 20988.71 10489.64 19495.91 151
test_part189.00 14787.99 15292.04 12895.94 11283.81 10596.14 4696.05 12586.44 12685.69 18493.73 17371.57 21497.66 17185.80 13880.54 30194.66 195
HQP3-MVS96.04 12689.77 192
HQP-MVS89.80 12289.28 12291.34 16094.17 18081.56 16294.39 15096.04 12688.81 6485.43 20093.97 15873.83 19097.96 15587.11 12689.77 19294.50 207
PS-MVSNAJss89.97 11689.62 11191.02 17491.90 24880.85 18695.26 9195.98 12886.26 13086.21 17694.29 14579.70 11797.65 17388.87 10288.10 21894.57 202
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4695.98 12889.89 3590.45 10996.58 6575.09 16998.31 12984.75 15096.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.38 16087.67 16090.52 19093.30 21280.18 19993.26 21195.96 13088.57 7385.47 19692.81 20176.12 15396.91 23781.24 20382.29 27294.47 212
RRT_test8_iter0586.90 21286.36 19788.52 25793.00 22373.27 30694.32 15795.96 13085.50 14884.26 23392.86 19660.76 31297.70 16988.32 10882.29 27294.60 199
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19995.93 13286.95 11489.51 11896.13 8678.50 13398.35 12485.84 13792.90 15796.83 119
v7n86.81 21585.76 22289.95 21690.72 29679.25 23095.07 10395.92 13384.45 17182.29 26590.86 26372.60 20797.53 18279.42 23380.52 30493.08 274
AdaColmapbinary89.89 12089.07 12692.37 11797.41 6383.03 12694.42 14795.92 13382.81 20686.34 17494.65 13473.89 18899.02 6880.69 21395.51 10995.05 178
cascas86.43 23084.98 23790.80 18292.10 24280.92 18490.24 28395.91 13573.10 32583.57 25088.39 30665.15 28797.46 18784.90 14891.43 17094.03 228
MVSFormer91.68 8391.30 8192.80 9493.86 19483.88 10395.96 5795.90 13684.66 16891.76 9294.91 12177.92 13997.30 20589.64 9397.11 8497.24 101
test_djsdf89.03 14488.64 13590.21 20390.74 29579.28 22895.96 5795.90 13684.66 16885.33 20892.94 19574.02 18697.30 20589.64 9388.53 20994.05 227
ACMP84.23 889.01 14688.35 14290.99 17794.73 15781.27 17295.07 10395.89 13886.48 12483.67 24694.30 14469.33 24697.99 15387.10 12888.55 20893.72 248
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS84.11 1087.74 17886.08 20992.70 10194.02 18584.43 9289.27 29995.87 13973.62 32184.43 22494.33 14278.48 13498.86 9170.27 29894.45 13094.81 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CHOSEN 1792x268888.84 15087.69 15892.30 12196.14 9981.42 17090.01 28995.86 14074.52 31487.41 15193.94 15975.46 16698.36 12280.36 21995.53 10897.12 108
Anonymous2024052988.09 16986.59 19092.58 10696.53 8981.92 15695.99 5495.84 14174.11 31789.06 12695.21 11261.44 30598.81 9783.67 16487.47 22697.01 112
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12895.83 14291.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9497.96 71
tfpnnormal84.72 25983.23 26389.20 23992.79 22880.05 20694.48 14095.81 14382.38 21281.08 28091.21 25169.01 25396.95 23461.69 34080.59 30090.58 327
MVS_Test91.31 8891.11 8591.93 13694.37 17580.14 20193.46 20295.80 14486.46 12591.35 10193.77 17082.21 9198.09 14587.57 11794.95 12097.55 93
HyFIR lowres test88.09 16986.81 17991.93 13696.00 10880.63 19190.01 28995.79 14573.42 32287.68 14792.10 22573.86 18997.96 15580.75 21291.70 16897.19 104
EI-MVSNet-Vis-set93.01 6392.92 6393.29 7495.01 14183.51 11494.48 14095.77 14690.87 1592.52 7496.67 6084.50 6699.00 7591.99 5694.44 13197.36 97
cdsmvs_eth3d_5k22.14 33329.52 3360.00 3500.00 3710.00 3720.00 36295.76 1470.00 3670.00 36894.29 14575.66 1640.00 3680.00 3660.00 3660.00 364
DTE-MVSNet86.11 23385.48 22787.98 27191.65 25974.92 29294.93 11295.75 14887.36 10682.26 26693.04 19372.85 20395.82 29174.04 28077.46 32493.20 268
OPM-MVS90.12 11189.56 11291.82 14393.14 21583.90 10294.16 16495.74 14988.96 6387.86 14195.43 10672.48 20897.91 15988.10 11290.18 18493.65 250
EI-MVSNet-UG-set92.74 6792.62 6793.12 8094.86 15283.20 12194.40 14895.74 14990.71 2292.05 8496.60 6484.00 7298.99 7791.55 6993.63 13997.17 105
D2MVS85.90 23685.09 23588.35 26190.79 29277.42 26991.83 25595.70 15180.77 24980.08 29590.02 28266.74 27496.37 26781.88 19287.97 22291.26 314
PS-MVSNAJ91.18 9190.92 8991.96 13495.26 13482.60 14492.09 25195.70 15186.27 12991.84 8992.46 20979.70 11798.99 7789.08 9995.86 10594.29 215
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7796.97 114
MAR-MVS90.30 10889.37 11893.07 8496.61 8584.48 8795.68 6995.67 15382.36 21387.85 14292.85 19776.63 15198.80 9880.01 22496.68 9395.91 151
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_tets88.06 17187.28 16990.38 19890.94 28579.88 21295.22 9395.66 15585.10 15984.21 23593.94 15963.53 29497.40 19988.50 10688.40 21493.87 235
MVS87.44 19486.10 20891.44 15792.61 23183.62 11192.63 23295.66 15567.26 34481.47 27492.15 22077.95 13898.22 13379.71 22795.48 11092.47 291
jajsoiax88.24 16587.50 16290.48 19390.89 28980.14 20195.31 8395.65 15784.97 16284.24 23494.02 15465.31 28697.42 19288.56 10588.52 21093.89 232
xiu_mvs_v2_base91.13 9290.89 9191.86 14094.97 14482.42 14592.24 24595.64 15886.11 13591.74 9493.14 18979.67 12098.89 8789.06 10095.46 11294.28 216
UniMVSNet_ETH3D87.53 19086.37 19691.00 17692.44 23378.96 23394.74 12595.61 15984.07 17685.36 20794.52 13959.78 31997.34 20482.93 17187.88 22396.71 124
ab-mvs89.41 13488.35 14292.60 10495.15 13982.65 14292.20 24795.60 16083.97 17888.55 13093.70 17474.16 18498.21 13482.46 18189.37 19796.94 115
新几何193.10 8197.30 6884.35 9495.56 16171.09 33791.26 10296.24 7782.87 8298.86 9179.19 23598.10 6296.07 146
anonymousdsp87.84 17487.09 17290.12 20889.13 31980.54 19494.67 13095.55 16282.05 21883.82 24292.12 22271.47 21797.15 21887.15 12487.80 22592.67 285
XVG-ACMP-BASELINE86.00 23484.84 24289.45 23591.20 27278.00 25291.70 26095.55 16285.05 16182.97 25992.25 21854.49 33697.48 18582.93 17187.45 22892.89 280
VPNet88.20 16687.47 16490.39 19693.56 20579.46 21994.04 17695.54 16488.67 6986.96 15994.58 13869.33 24697.15 21884.05 15880.53 30394.56 203
hse-mvs390.80 9590.15 10192.75 9796.01 10782.66 14195.43 7995.53 16589.80 3793.08 5895.64 10175.77 15899.00 7592.07 5378.05 32096.60 126
diffmvs91.37 8791.23 8391.77 14693.09 21780.27 19892.36 24195.52 16687.03 11291.40 10094.93 12080.08 11197.44 19092.13 5294.56 12797.61 88
112190.42 10789.49 11393.20 7797.27 7184.46 8892.63 23295.51 16771.01 33891.20 10396.21 7982.92 8199.05 6080.56 21698.07 6396.10 144
v119287.25 20186.33 19990.00 21590.76 29479.04 23293.80 18895.48 16882.57 21085.48 19591.18 25473.38 19997.42 19282.30 18382.06 27593.53 253
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9495.47 16989.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
xiu_mvs_v1_base_debu90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
xiu_mvs_v1_base_debi90.64 10290.05 10492.40 11393.97 19184.46 8893.32 20495.46 17085.17 15592.25 7894.03 15170.59 22898.57 10990.97 7894.67 12294.18 217
v1087.25 20186.38 19589.85 21891.19 27379.50 21894.48 14095.45 17383.79 18283.62 24891.19 25275.13 16897.42 19281.94 19080.60 29992.63 287
F-COLMAP87.95 17286.80 18091.40 15896.35 9580.88 18594.73 12695.45 17379.65 26182.04 27094.61 13571.13 21998.50 11276.24 26391.05 17694.80 192
PLCcopyleft84.53 789.06 14388.03 15192.15 12697.27 7182.69 14094.29 15895.44 17579.71 26084.01 23894.18 15076.68 15098.75 10077.28 25293.41 14695.02 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v14419287.19 20686.35 19889.74 22490.64 29878.24 24893.92 18495.43 17681.93 22485.51 19291.05 26074.21 18297.45 18882.86 17381.56 28393.53 253
v192192086.97 21186.06 21089.69 22890.53 30378.11 25193.80 18895.43 17681.90 22685.33 20891.05 26072.66 20597.41 19782.05 18881.80 28093.53 253
v114487.61 18786.79 18190.06 21191.01 28079.34 22493.95 18295.42 17883.36 19485.66 18691.31 25074.98 17197.42 19283.37 16582.06 27593.42 259
v887.50 19386.71 18389.89 21791.37 26779.40 22194.50 13995.38 17984.81 16583.60 24991.33 24776.05 15497.42 19282.84 17480.51 30592.84 282
sss88.93 14888.26 14890.94 18094.05 18480.78 18891.71 25995.38 17981.55 23688.63 12993.91 16375.04 17095.47 30582.47 18091.61 16996.57 128
v124086.78 21785.85 21789.56 23090.45 30477.79 26093.61 19695.37 18181.65 23285.43 20091.15 25671.50 21697.43 19181.47 20182.05 27793.47 257
testdata90.49 19296.40 9277.89 25695.37 18172.51 33093.63 4596.69 5882.08 9497.65 17383.08 16897.39 8195.94 150
131487.51 19186.57 19190.34 20192.42 23479.74 21692.63 23295.35 18378.35 27980.14 29391.62 24274.05 18597.15 21881.05 20493.53 14294.12 221
V4287.68 17986.86 17790.15 20690.58 30080.14 20194.24 16195.28 18483.66 18485.67 18591.33 24774.73 17597.41 19784.43 15481.83 27992.89 280
EPP-MVSNet91.70 8291.56 7992.13 12795.88 11380.50 19597.33 395.25 18586.15 13289.76 11695.60 10283.42 7698.32 12887.37 12193.25 15097.56 92
UGNet89.95 11788.95 12992.95 8994.51 16883.31 11995.70 6895.23 18689.37 5187.58 14893.94 15964.00 29298.78 9983.92 15996.31 10296.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS87.65 18186.85 17890.03 21292.14 23980.60 19393.76 19095.23 18682.94 20384.60 21794.02 15474.27 17995.49 30481.04 20583.68 25794.01 229
API-MVS90.66 10190.07 10392.45 11296.36 9484.57 8196.06 5295.22 18882.39 21189.13 12394.27 14880.32 10898.46 11580.16 22396.71 9294.33 214
MG-MVS91.77 7991.70 7892.00 13197.08 7580.03 20893.60 19795.18 18987.85 9390.89 10696.47 7082.06 9598.36 12285.07 14497.04 8797.62 87
v2v48287.84 17487.06 17390.17 20490.99 28179.23 23194.00 18095.13 19084.87 16385.53 19092.07 22874.45 17797.45 18884.71 15181.75 28193.85 238
test_yl90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
DCV-MVSNet90.69 9990.02 10792.71 9995.72 11882.41 14794.11 16895.12 19185.63 14391.49 9794.70 13074.75 17398.42 12086.13 13592.53 16297.31 98
Effi-MVS+91.59 8491.11 8593.01 8694.35 17883.39 11894.60 13395.10 19387.10 11090.57 10893.10 19181.43 10198.07 14789.29 9794.48 12997.59 90
Fast-Effi-MVS+89.41 13488.64 13591.71 14894.74 15680.81 18793.54 19895.10 19383.11 19886.82 16590.67 27079.74 11697.75 16780.51 21893.55 14196.57 128
IterMVS-LS88.36 16287.91 15689.70 22793.80 19778.29 24793.73 19195.08 19585.73 14084.75 21591.90 23379.88 11396.92 23683.83 16082.51 27093.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test22296.55 8881.70 15992.22 24695.01 19668.36 34390.20 11296.14 8580.26 11097.80 7396.05 148
EI-MVSNet89.10 14188.86 13389.80 22391.84 25078.30 24693.70 19495.01 19685.73 14087.15 15595.28 10879.87 11497.21 21683.81 16187.36 22993.88 234
MVSTER88.84 15088.29 14690.51 19192.95 22580.44 19693.73 19195.01 19684.66 16887.15 15593.12 19072.79 20497.21 21687.86 11387.36 22993.87 235
RRT_MVS88.86 14987.68 15992.39 11692.02 24586.09 5394.38 15494.94 19985.45 14987.14 15793.84 16765.88 28497.11 22288.73 10386.77 23693.98 230
GBi-Net87.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
test187.26 19985.98 21291.08 17094.01 18683.10 12395.14 10094.94 19983.57 18684.37 22591.64 23866.59 27696.34 27078.23 24385.36 24293.79 240
FMVSNet287.19 20685.82 21891.30 16194.01 18683.67 10994.79 12294.94 19983.57 18683.88 24092.05 22966.59 27696.51 25877.56 25085.01 24593.73 247
FMVSNet185.85 23884.11 25191.08 17092.81 22783.10 12395.14 10094.94 19981.64 23382.68 26291.64 23859.01 32396.34 27075.37 27083.78 25493.79 240
LS3D87.89 17386.32 20092.59 10596.07 10582.92 13195.23 9294.92 20475.66 30182.89 26095.98 8972.48 20899.21 4768.43 31295.23 11995.64 163
eth_miper_zixun_eth86.50 22785.77 22188.68 25391.94 24775.81 28890.47 27994.89 20582.05 21884.05 23690.46 27375.96 15696.77 24182.76 17779.36 31593.46 258
LTVRE_ROB82.13 1386.26 23284.90 24090.34 20194.44 17381.50 16492.31 24494.89 20583.03 20079.63 30192.67 20469.69 24197.79 16271.20 29386.26 23791.72 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31085.24 34672.63 31488.45 31394.87 20782.99 20271.64 34388.07 31256.34 32991.75 34473.48 28563.36 34992.01 302
pm-mvs186.61 22285.54 22589.82 22091.44 26180.18 19995.28 9094.85 20883.84 18181.66 27392.62 20672.45 21096.48 26079.67 22878.06 31992.82 283
ACMH80.38 1785.36 24583.68 25790.39 19694.45 17280.63 19194.73 12694.85 20882.09 21777.24 31492.65 20560.01 31797.58 17872.25 29084.87 24692.96 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous89.37 13789.32 12089.51 23493.47 20774.22 29891.65 26294.83 21082.91 20485.45 19793.79 16881.23 10396.36 26986.47 13394.09 13397.94 72
miper_enhance_ethall86.90 21286.18 20489.06 24391.66 25877.58 26790.22 28594.82 21179.16 26684.48 22189.10 29579.19 12496.66 24584.06 15782.94 26592.94 278
miper_ehance_all_eth87.22 20486.62 18989.02 24592.13 24077.40 27090.91 27394.81 21281.28 24184.32 23090.08 28179.26 12396.62 24783.81 16182.94 26593.04 275
FMVSNet387.40 19686.11 20791.30 16193.79 19983.64 11094.20 16394.81 21283.89 18084.37 22591.87 23468.45 26096.56 25578.23 24385.36 24293.70 249
WTY-MVS89.60 12588.92 13091.67 14995.47 12681.15 17792.38 24094.78 21483.11 19889.06 12694.32 14378.67 13096.61 25081.57 19990.89 17897.24 101
PAPM86.68 22185.39 22990.53 18893.05 21979.33 22789.79 29294.77 21578.82 27181.95 27193.24 18576.81 14697.30 20566.94 32193.16 15294.95 186
cl_fuxian87.14 20886.50 19489.04 24492.20 23777.26 27191.22 26994.70 21682.01 22184.34 22990.43 27478.81 12796.61 25083.70 16381.09 29093.25 264
CDS-MVSNet89.45 13188.51 13792.29 12293.62 20383.61 11293.01 22294.68 21781.95 22387.82 14493.24 18578.69 12996.99 23280.34 22093.23 15196.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE90.05 11389.43 11691.90 13995.16 13780.37 19795.80 6394.65 21883.90 17987.55 15094.75 12978.18 13797.62 17781.28 20293.63 13997.71 85
1112_ss88.42 15987.33 16791.72 14794.92 14880.98 18192.97 22494.54 21978.16 28383.82 24293.88 16478.78 12897.91 15979.45 23089.41 19696.26 136
HY-MVS83.01 1289.03 14487.94 15592.29 12294.86 15282.77 13392.08 25294.49 22081.52 23786.93 16092.79 20378.32 13698.23 13179.93 22590.55 17995.88 153
CANet_DTU90.26 11089.41 11792.81 9393.46 20883.01 12893.48 20094.47 22189.43 4987.76 14694.23 14970.54 23299.03 6484.97 14596.39 10196.38 132
v14887.04 21086.32 20089.21 23890.94 28577.26 27193.71 19394.43 22284.84 16484.36 22890.80 26676.04 15597.05 22882.12 18679.60 31393.31 261
OurMVSNet-221017-085.35 24684.64 24687.49 28190.77 29372.59 31594.01 17994.40 22384.72 16779.62 30293.17 18761.91 30296.72 24281.99 18981.16 28793.16 270
Effi-MVS+-dtu88.65 15588.35 14289.54 23193.33 21076.39 28294.47 14394.36 22487.70 9785.43 20089.56 29273.45 19597.26 21185.57 14191.28 17194.97 180
mvs-test189.45 13189.14 12490.38 19893.33 21077.63 26594.95 11094.36 22487.70 9787.10 15892.81 20173.45 19598.03 15085.57 14193.04 15495.48 166
EG-PatchMatch MVS82.37 27980.34 28588.46 25890.27 30679.35 22392.80 22994.33 22677.14 29073.26 33790.18 27847.47 35296.72 24270.25 29987.32 23189.30 334
cl-mvsnet____86.52 22685.78 21988.75 25092.03 24476.46 28090.74 27594.30 22781.83 23083.34 25590.78 26775.74 16396.57 25381.74 19681.54 28493.22 267
cl-mvsnet186.53 22585.78 21988.75 25092.02 24576.45 28190.74 27594.30 22781.83 23083.34 25590.82 26575.75 16196.57 25381.73 19781.52 28593.24 265
Test_1112_low_res87.65 18186.51 19391.08 17094.94 14779.28 22891.77 25694.30 22776.04 29983.51 25192.37 21277.86 14197.73 16878.69 23989.13 20396.22 137
pmmvs683.42 27181.60 27588.87 24788.01 33377.87 25794.96 10994.24 23074.67 31378.80 30591.09 25960.17 31696.49 25977.06 25775.40 33092.23 299
MVP-Stereo85.97 23584.86 24189.32 23690.92 28782.19 15092.11 25094.19 23178.76 27378.77 30691.63 24168.38 26196.56 25575.01 27593.95 13489.20 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS89.21 13988.29 14691.96 13493.71 20082.62 14393.30 20894.19 23182.22 21587.78 14593.94 15978.83 12696.95 23477.70 24892.98 15696.32 133
jason90.80 9590.10 10292.90 9193.04 22083.53 11393.08 21994.15 23380.22 25291.41 9994.91 12176.87 14597.93 15890.28 8996.90 8897.24 101
jason: jason.
BH-untuned88.60 15788.13 15090.01 21495.24 13578.50 24193.29 20994.15 23384.75 16684.46 22293.40 17775.76 16097.40 19977.59 24994.52 12894.12 221
cl-mvsnet286.78 21785.98 21289.18 24092.34 23577.62 26690.84 27494.13 23581.33 24083.97 23990.15 27973.96 18796.60 25284.19 15682.94 26593.33 260
ACMH+81.04 1485.05 25383.46 26189.82 22094.66 16379.37 22294.44 14594.12 23682.19 21678.04 30992.82 20058.23 32597.54 18173.77 28382.90 26892.54 288
miper_lstm_enhance85.27 24984.59 24787.31 28491.28 27174.63 29387.69 32094.09 23781.20 24581.36 27789.85 28774.97 17294.30 31981.03 20779.84 31293.01 276
Fast-Effi-MVS+-dtu87.44 19486.72 18289.63 22992.04 24377.68 26494.03 17793.94 23885.81 13782.42 26491.32 24970.33 23497.06 22780.33 22190.23 18394.14 220
DIV-MVS_2432*160080.20 30179.24 29883.07 32585.64 34465.29 34991.01 27293.93 23978.71 27576.32 32086.40 32859.20 32292.93 33672.59 28869.35 33991.00 322
AUN-MVS87.78 17786.54 19291.48 15594.82 15581.05 17993.91 18793.93 23983.00 20186.93 16093.53 17669.50 24497.67 17086.14 13477.12 32695.73 161
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14893.93 23989.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10397.83 81
hse-mvs289.88 12189.34 11991.51 15394.83 15481.12 17893.94 18393.91 24289.80 3793.08 5893.60 17575.77 15897.66 17192.07 5377.07 32795.74 160
VDD-MVS90.74 9789.92 10993.20 7796.27 9683.02 12795.73 6693.86 24388.42 7792.53 7396.84 5062.09 30098.64 10490.95 8192.62 16197.93 74
lupinMVS90.92 9490.21 9893.03 8593.86 19483.88 10392.81 22893.86 24379.84 25891.76 9294.29 14577.92 13998.04 14990.48 8897.11 8497.17 105
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31883.98 34867.63 34489.95 29193.84 24564.79 34766.81 34891.14 25757.93 32695.17 30876.25 26288.10 21890.65 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS86.61 22285.27 23290.66 18391.33 27078.71 23590.40 28093.81 24685.34 15285.12 21089.57 29161.25 30797.11 22280.99 20889.59 19596.15 138
MVS_030483.46 27081.92 27388.10 26990.63 29977.49 26893.26 21193.75 24780.04 25680.44 28987.24 32447.94 35095.55 29875.79 26688.16 21791.26 314
IS-MVSNet91.43 8591.09 8792.46 11195.87 11581.38 17196.95 1493.69 24889.72 4289.50 11995.98 8978.57 13297.77 16383.02 17096.50 9998.22 52
MS-PatchMatch85.05 25384.16 25087.73 27591.42 26578.51 24091.25 26893.53 24977.50 28580.15 29291.58 24361.99 30195.51 30175.69 26794.35 13289.16 337
BH-w/o87.57 18987.05 17489.12 24194.90 15077.90 25592.41 23893.51 25082.89 20583.70 24591.34 24675.75 16197.07 22675.49 26893.49 14392.39 294
UnsupCasMVSNet_bld76.23 31773.27 32085.09 31583.79 34972.92 30885.65 33393.47 25171.52 33468.84 34679.08 34749.77 34693.21 33266.81 32560.52 35189.13 339
USDC82.76 27481.26 27987.26 28691.17 27474.55 29489.27 29993.39 25278.26 28175.30 32792.08 22654.43 33796.63 24671.64 29185.79 24190.61 324
CNLPA89.07 14287.98 15392.34 11896.87 7884.78 7794.08 17293.24 25381.41 23884.46 22295.13 11575.57 16596.62 24777.21 25393.84 13795.61 164
Anonymous2024052180.44 29979.21 29984.11 32285.75 34367.89 34192.86 22793.23 25475.61 30375.59 32687.47 32050.03 34594.33 31871.14 29681.21 28690.12 329
VDDNet89.56 12788.49 14092.76 9695.07 14082.09 15196.30 3693.19 25581.05 24791.88 8796.86 4961.16 31098.33 12788.43 10792.49 16497.84 80
MSDG84.86 25783.09 26490.14 20793.80 19780.05 20689.18 30293.09 25678.89 26978.19 30791.91 23265.86 28597.27 20968.47 31188.45 21293.11 272
CL-MVSNet_2432*160081.74 28480.53 28285.36 31185.96 34172.45 31790.25 28293.07 25781.24 24379.85 29987.29 32370.93 22392.52 33866.95 32069.23 34091.11 320
BH-RMVSNet88.37 16187.48 16391.02 17495.28 13279.45 22092.89 22693.07 25785.45 14986.91 16294.84 12770.35 23397.76 16473.97 28194.59 12695.85 154
ITE_SJBPF88.24 26591.88 24977.05 27492.92 25985.54 14680.13 29493.30 18257.29 32796.20 27472.46 28984.71 24791.49 309
ambc83.06 32679.99 35463.51 35277.47 35292.86 26074.34 33384.45 33628.74 35895.06 31273.06 28768.89 34390.61 324
TR-MVS86.78 21785.76 22289.82 22094.37 17578.41 24392.47 23792.83 26181.11 24686.36 17392.40 21168.73 25797.48 18573.75 28489.85 19193.57 252
TransMVSNet (Re)84.43 26283.06 26588.54 25691.72 25478.44 24295.18 9792.82 26282.73 20779.67 30092.12 22273.49 19495.96 28471.10 29768.73 34491.21 316
CHOSEN 280x42085.15 25183.99 25388.65 25492.47 23278.40 24479.68 35192.76 26374.90 31181.41 27689.59 29069.85 24095.51 30179.92 22695.29 11692.03 301
MIMVSNet179.38 30777.28 30985.69 30986.35 33873.67 30391.61 26392.75 26478.11 28472.64 33988.12 31148.16 34991.97 34360.32 34377.49 32391.43 311
PVSNet78.82 1885.55 24284.65 24588.23 26694.72 15871.93 31987.12 32492.75 26478.80 27284.95 21390.53 27264.43 29196.71 24474.74 27693.86 13696.06 147
pmmvs485.43 24483.86 25590.16 20590.02 31282.97 13090.27 28192.67 26675.93 30080.73 28391.74 23771.05 22095.73 29578.85 23783.46 26191.78 304
IterMVS-SCA-FT85.45 24384.53 24888.18 26791.71 25576.87 27690.19 28692.65 26785.40 15181.44 27590.54 27166.79 27295.00 31381.04 20581.05 29192.66 286
Baseline_NR-MVSNet87.07 20986.63 18888.40 25991.44 26177.87 25794.23 16292.57 26884.12 17585.74 18392.08 22677.25 14396.04 27982.29 18479.94 30991.30 313
RPSCF85.07 25284.27 24987.48 28292.91 22670.62 33191.69 26192.46 26976.20 29882.67 26395.22 11163.94 29397.29 20877.51 25185.80 24094.53 204
IterMVS84.88 25683.98 25487.60 27791.44 26176.03 28690.18 28792.41 27083.24 19781.06 28190.42 27566.60 27594.28 32079.46 22980.98 29692.48 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
KD-MVS_2432*160078.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
miper_refine_blended78.50 31176.02 31685.93 30686.22 33974.47 29584.80 33692.33 27179.29 26376.98 31685.92 33153.81 34093.97 32367.39 31857.42 35289.36 332
PatchMatch-RL86.77 22085.54 22590.47 19495.88 11382.71 13990.54 27892.31 27379.82 25984.32 23091.57 24568.77 25696.39 26673.16 28693.48 14592.32 297
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22495.28 13279.75 21594.25 16092.28 27475.17 30778.02 31093.77 17058.60 32497.84 16165.06 33185.92 23891.63 307
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet581.52 28979.60 29587.27 28591.17 27477.95 25391.49 26492.26 27576.87 29176.16 32187.91 31551.67 34392.34 33967.74 31781.16 28791.52 308
EPNet_dtu86.49 22985.94 21588.14 26890.24 30772.82 31094.11 16892.20 27686.66 12379.42 30392.36 21373.52 19395.81 29271.26 29293.66 13895.80 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test81.84 28280.07 29087.15 29288.46 32674.43 29789.04 30492.16 27775.33 30577.75 31188.99 29666.20 28095.37 30665.12 33077.60 32291.65 306
thres20087.21 20586.24 20390.12 20895.36 12878.53 23993.26 21192.10 27886.42 12788.00 14091.11 25869.24 25098.00 15269.58 30691.04 17793.83 239
Anonymous2023120681.03 29579.77 29384.82 31687.85 33570.26 33391.42 26592.08 27973.67 32077.75 31189.25 29462.43 29993.08 33461.50 34182.00 27891.12 319
EPNet91.79 7891.02 8894.10 5890.10 30985.25 7396.03 5392.05 28092.83 187.39 15495.78 9679.39 12299.01 7088.13 11197.48 8098.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement79.81 30477.34 30887.22 29079.24 35575.48 29193.12 21692.03 28176.45 29375.01 32891.58 24349.19 34896.44 26470.22 30169.18 34189.75 331
DP-MVS87.25 20185.36 23192.90 9197.65 5683.24 12094.81 12192.00 28274.99 30981.92 27295.00 11972.66 20599.05 6066.92 32392.33 16596.40 131
SixPastTwentyTwo83.91 26782.90 26786.92 29590.99 28170.67 33093.48 20091.99 28385.54 14677.62 31392.11 22460.59 31396.87 23976.05 26577.75 32193.20 268
tfpn200view987.58 18886.64 18690.41 19595.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.48 210
thres40087.62 18686.64 18690.57 18695.99 10978.64 23694.58 13491.98 28486.94 11588.09 13591.77 23569.18 25198.10 13970.13 30291.10 17294.96 183
CR-MVSNet85.35 24683.76 25690.12 20890.58 30079.34 22485.24 33491.96 28678.27 28085.55 18887.87 31671.03 22195.61 29673.96 28289.36 19895.40 170
Patchmtry82.71 27580.93 28188.06 27090.05 31176.37 28384.74 33891.96 28672.28 33281.32 27887.87 31671.03 22195.50 30368.97 30880.15 30792.32 297
pmmvs584.21 26382.84 26988.34 26288.95 32176.94 27592.41 23891.91 28875.63 30280.28 29091.18 25464.59 29095.57 29777.09 25683.47 26092.53 289
test_040281.30 29379.17 30187.67 27693.19 21478.17 24992.98 22391.71 28975.25 30676.02 32490.31 27659.23 32196.37 26750.22 35383.63 25888.47 343
tpmvs83.35 27382.07 27187.20 29191.07 27971.00 32888.31 31491.70 29078.91 26880.49 28887.18 32569.30 24997.08 22568.12 31683.56 25993.51 256
SCA86.32 23185.18 23389.73 22692.15 23876.60 27891.12 27091.69 29183.53 18985.50 19388.81 29966.79 27296.48 26076.65 25890.35 18296.12 141
pmmvs-eth3d80.97 29678.72 30587.74 27484.99 34779.97 21190.11 28891.65 29275.36 30473.51 33586.03 33059.45 32093.96 32575.17 27272.21 33589.29 335
thres100view90087.63 18486.71 18390.38 19896.12 10078.55 23895.03 10791.58 29387.15 10888.06 13892.29 21668.91 25498.10 13970.13 30291.10 17294.48 210
thres600view787.65 18186.67 18590.59 18596.08 10478.72 23494.88 11691.58 29387.06 11188.08 13792.30 21568.91 25498.10 13970.05 30591.10 17294.96 183
MDTV_nov1_ep1383.56 26091.69 25769.93 33587.75 31991.54 29578.60 27684.86 21488.90 29869.54 24396.03 28070.25 29988.93 205
tpm cat181.96 28080.27 28687.01 29391.09 27871.02 32787.38 32391.53 29666.25 34580.17 29186.35 32968.22 26296.15 27769.16 30782.29 27293.86 237
Anonymous20240521187.68 17986.13 20592.31 12096.66 8380.74 18994.87 11791.49 29780.47 25189.46 12095.44 10454.72 33598.23 13182.19 18589.89 18997.97 70
CVMVSNet84.69 26084.79 24384.37 31991.84 25064.92 35093.70 19491.47 29866.19 34686.16 17895.28 10867.18 26693.33 33180.89 21090.42 18194.88 188
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34288.71 30891.43 29980.13 25486.08 17988.80 30173.05 20196.02 28182.48 17983.40 26395.40 170
EU-MVSNet81.32 29280.95 28082.42 32888.50 32563.67 35193.32 20491.33 30064.02 34880.57 28792.83 19961.21 30992.27 34076.34 26180.38 30691.32 312
PatchmatchNetpermissive85.85 23884.70 24489.29 23791.76 25375.54 29088.49 31191.30 30181.63 23485.05 21188.70 30371.71 21296.24 27374.61 27889.05 20496.08 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline188.10 16887.28 16990.57 18694.96 14580.07 20494.27 15991.29 30286.74 11987.41 15194.00 15676.77 14896.20 27480.77 21179.31 31695.44 168
IB-MVS80.51 1585.24 25083.26 26291.19 16492.13 24079.86 21391.75 25791.29 30283.28 19680.66 28588.49 30561.28 30698.46 11580.99 20879.46 31495.25 174
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_381.93 28180.46 28486.33 30388.46 32673.48 30488.46 31291.11 30476.46 29276.69 31888.25 30966.89 27094.36 31768.75 30979.08 31791.14 318
new-patchmatchnet76.41 31675.17 31880.13 33082.65 35359.61 35387.66 32191.08 30578.23 28269.85 34483.22 34054.76 33491.63 34664.14 33464.89 34789.16 337
test20.0379.95 30379.08 30282.55 32785.79 34267.74 34391.09 27191.08 30581.23 24474.48 33289.96 28561.63 30390.15 34860.08 34476.38 32889.76 330
LF4IMVS80.37 30079.07 30384.27 32186.64 33769.87 33689.39 29891.05 30776.38 29474.97 32990.00 28347.85 35194.25 32174.55 27980.82 29888.69 341
CostFormer85.77 24084.94 23988.26 26491.16 27672.58 31689.47 29791.04 30876.26 29786.45 17189.97 28470.74 22696.86 24082.35 18287.07 23495.34 173
LCM-MVSNet-Re88.30 16488.32 14588.27 26394.71 15972.41 31893.15 21590.98 30987.77 9579.25 30491.96 23178.35 13595.75 29483.04 16995.62 10796.65 125
DWT-MVSNet_test84.95 25583.68 25788.77 24891.43 26473.75 30291.74 25890.98 30980.66 25083.84 24187.36 32162.44 29897.11 22278.84 23885.81 23995.46 167
ET-MVSNet_ETH3D87.51 19185.91 21692.32 11993.70 20283.93 10192.33 24290.94 31184.16 17372.09 34092.52 20869.90 23795.85 28989.20 9888.36 21597.17 105
LCM-MVSNet66.00 32262.16 32677.51 33464.51 36258.29 35483.87 34290.90 31248.17 35554.69 35373.31 35116.83 36786.75 35265.47 32761.67 35087.48 346
AllTest83.42 27181.39 27789.52 23295.01 14177.79 26093.12 21690.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
TestCases89.52 23295.01 14177.79 26090.89 31377.41 28676.12 32293.34 17854.08 33897.51 18368.31 31384.27 25193.26 262
Vis-MVSNet (Re-imp)89.59 12689.44 11590.03 21295.74 11775.85 28795.61 7490.80 31587.66 10187.83 14395.40 10776.79 14796.46 26378.37 24096.73 9197.80 82
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31286.93 29487.00 33676.23 28592.33 24290.74 31668.93 34274.52 33188.23 31049.58 34796.62 24757.64 34884.29 25087.94 345
testgi80.94 29780.20 28883.18 32487.96 33466.29 34591.28 26690.70 31783.70 18378.12 30892.84 19851.37 34490.82 34763.34 33582.46 27192.43 292
bset_n11_16_dypcd86.83 21485.55 22490.65 18488.22 33081.70 15988.88 30690.42 31885.26 15485.49 19490.69 26967.11 26797.02 23089.51 9584.39 24993.23 266
MDA-MVSNet-bldmvs78.85 31076.31 31386.46 30089.76 31673.88 30188.79 30790.42 31879.16 26659.18 35288.33 30860.20 31594.04 32262.00 33968.96 34291.48 310
tpm284.08 26482.94 26687.48 28291.39 26671.27 32389.23 30190.37 32071.95 33384.64 21689.33 29367.30 26396.55 25775.17 27287.09 23394.63 196
TinyColmap79.76 30577.69 30785.97 30591.71 25573.12 30789.55 29390.36 32175.03 30872.03 34190.19 27746.22 35396.19 27663.11 33681.03 29288.59 342
Gipumacopyleft57.99 32654.91 32867.24 33988.51 32465.59 34752.21 35990.33 32243.58 35742.84 35851.18 35920.29 36485.07 35434.77 35870.45 33751.05 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT82.68 27681.27 27886.89 29790.09 31070.94 32984.06 34090.15 32374.91 31085.63 18783.57 33969.37 24594.87 31465.19 32888.50 21194.84 189
MIMVSNet82.59 27780.53 28288.76 24991.51 26078.32 24586.57 32790.13 32479.32 26280.70 28488.69 30452.98 34293.07 33566.03 32688.86 20694.90 187
dp81.47 29080.23 28785.17 31489.92 31465.49 34886.74 32590.10 32576.30 29681.10 27987.12 32662.81 29695.92 28568.13 31579.88 31094.09 224
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31288.22 33072.77 31185.87 33090.06 32674.34 31562.62 35187.56 31966.14 28191.99 34266.90 32473.01 33291.10 321
PMMVS85.71 24184.96 23887.95 27288.90 32277.09 27388.68 30990.06 32672.32 33186.47 16890.76 26872.15 21194.40 31681.78 19593.49 14392.36 295
YYNet179.22 30877.20 31085.28 31388.20 33272.66 31385.87 33090.05 32874.33 31662.70 35087.61 31866.09 28292.03 34166.94 32172.97 33391.15 317
tpm84.73 25884.02 25286.87 29890.33 30568.90 33889.06 30389.94 32980.85 24885.75 18289.86 28668.54 25995.97 28377.76 24784.05 25395.75 159
LFMVS90.08 11289.13 12592.95 8996.71 8282.32 14996.08 5089.91 33086.79 11892.15 8396.81 5362.60 29798.34 12587.18 12393.90 13598.19 53
thisisatest053088.67 15487.61 16191.86 14094.87 15180.07 20494.63 13289.90 33184.00 17788.46 13293.78 16966.88 27198.46 11583.30 16692.65 16097.06 109
test-LLR85.87 23785.41 22887.25 28790.95 28371.67 32189.55 29389.88 33283.41 19284.54 21987.95 31367.25 26495.11 31081.82 19393.37 14894.97 180
test-mter84.54 26183.64 25987.25 28790.95 28371.67 32189.55 29389.88 33279.17 26584.54 21987.95 31355.56 33195.11 31081.82 19393.37 14894.97 180
tttt051788.61 15687.78 15791.11 16994.96 14577.81 25995.35 8189.69 33485.09 16088.05 13994.59 13766.93 26998.48 11383.27 16792.13 16797.03 111
PVSNet_073.20 2077.22 31474.83 31984.37 31990.70 29771.10 32683.09 34589.67 33572.81 32973.93 33483.13 34160.79 31193.70 32768.54 31050.84 35588.30 344
JIA-IIPM81.04 29478.98 30487.25 28788.64 32373.48 30481.75 34889.61 33673.19 32482.05 26973.71 35066.07 28395.87 28871.18 29584.60 24892.41 293
thisisatest051587.33 19785.99 21191.37 15993.49 20679.55 21790.63 27789.56 33780.17 25387.56 14990.86 26367.07 26898.28 13081.50 20093.02 15596.29 134
ADS-MVSNet81.56 28879.78 29286.90 29691.35 26871.82 32083.33 34389.16 33872.90 32782.24 26785.77 33364.98 28893.76 32664.57 33283.74 25595.12 176
baseline286.50 22785.39 22989.84 21991.12 27776.70 27791.88 25388.58 33982.35 21479.95 29790.95 26273.42 19797.63 17680.27 22289.95 18895.19 175
ADS-MVSNet281.66 28679.71 29487.50 28091.35 26874.19 29983.33 34388.48 34072.90 32782.24 26785.77 33364.98 28893.20 33364.57 33283.74 25595.12 176
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31371.21 32589.55 29387.88 34177.41 28683.37 25487.31 32256.71 32893.65 32880.62 21592.85 15994.40 213
test0.0.03 182.41 27881.69 27484.59 31788.23 32972.89 30990.24 28387.83 34283.41 19279.86 29889.78 28867.25 26488.99 35065.18 32983.42 26291.90 303
K. test v381.59 28780.15 28985.91 30889.89 31569.42 33792.57 23587.71 34385.56 14573.44 33689.71 28955.58 33095.52 30077.17 25469.76 33892.78 284
Patchmatch-test81.37 29179.30 29787.58 27890.92 28774.16 30080.99 34987.68 34470.52 33976.63 31988.81 29971.21 21892.76 33760.01 34686.93 23595.83 156
Patchmatch-RL test81.67 28579.96 29186.81 29985.42 34571.23 32482.17 34787.50 34578.47 27777.19 31582.50 34370.81 22593.48 32982.66 17872.89 33495.71 162
ANet_high58.88 32554.22 32972.86 33556.50 36556.67 35680.75 35086.00 34673.09 32637.39 35964.63 35622.17 36279.49 35843.51 35523.96 36082.43 351
door-mid85.49 347
door85.33 348
PM-MVS78.11 31376.12 31584.09 32383.54 35070.08 33488.97 30585.27 34979.93 25774.73 33086.43 32734.70 35793.48 32979.43 23272.06 33688.72 340
FPMVS64.63 32362.55 32570.88 33670.80 35856.71 35584.42 33984.42 35051.78 35449.57 35481.61 34423.49 36181.48 35640.61 35776.25 32974.46 353
pmmvs371.81 32068.71 32381.11 32975.86 35670.42 33286.74 32583.66 35158.95 35168.64 34780.89 34536.93 35689.52 34963.10 33763.59 34883.39 347
MVS-HIRNet73.70 31872.20 32178.18 33391.81 25256.42 35782.94 34682.58 35255.24 35268.88 34566.48 35455.32 33395.13 30958.12 34788.42 21383.01 348
new_pmnet72.15 31970.13 32278.20 33282.95 35265.68 34683.91 34182.40 35362.94 34964.47 34979.82 34642.85 35586.26 35357.41 34974.44 33182.65 350
EPMVS83.90 26882.70 27087.51 27990.23 30872.67 31288.62 31081.96 35481.37 23985.01 21288.34 30766.31 27994.45 31575.30 27187.12 23295.43 169
test_method50.52 32848.47 33056.66 34252.26 36618.98 36941.51 36181.40 35510.10 36244.59 35775.01 34928.51 35968.16 35953.54 35149.31 35682.83 349
lessismore_v086.04 30488.46 32668.78 33980.59 35673.01 33890.11 28055.39 33296.43 26575.06 27465.06 34692.90 279
DSMNet-mixed76.94 31576.29 31478.89 33183.10 35156.11 35887.78 31879.77 35760.65 35075.64 32588.71 30261.56 30488.34 35160.07 34589.29 20092.21 300
gg-mvs-nofinetune81.77 28379.37 29688.99 24690.85 29177.73 26386.29 32879.63 35874.88 31283.19 25869.05 35360.34 31496.11 27875.46 26994.64 12593.11 272
PMVScopyleft47.18 2252.22 32748.46 33163.48 34045.72 36746.20 36373.41 35578.31 35941.03 35830.06 36165.68 3556.05 36883.43 35530.04 35965.86 34560.80 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND87.94 27389.73 31777.91 25487.80 31778.23 36080.58 28683.86 33759.88 31895.33 30771.20 29392.22 16690.60 326
PMMVS259.60 32456.40 32769.21 33868.83 35946.58 36273.02 35677.48 36155.07 35349.21 35572.95 35217.43 36680.04 35749.32 35444.33 35780.99 352
E-PMN43.23 33042.29 33246.03 34465.58 36137.41 36473.51 35464.62 36233.99 35928.47 36347.87 36019.90 36567.91 36022.23 36124.45 35932.77 358
EMVS42.07 33141.12 33344.92 34563.45 36335.56 36673.65 35363.48 36333.05 36026.88 36445.45 36121.27 36367.14 36119.80 36223.02 36132.06 359
MTMP96.16 4460.64 364
MVEpermissive39.65 2343.39 32938.59 33557.77 34156.52 36448.77 36155.38 35858.64 36529.33 36128.96 36252.65 3584.68 36964.62 36228.11 36033.07 35859.93 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 34374.23 35751.81 36056.67 36644.85 35648.54 35675.16 34827.87 36058.74 36340.92 35652.22 35458.39 356
tmp_tt35.64 33239.24 33424.84 34614.87 36823.90 36862.71 35751.51 3676.58 36436.66 36062.08 35744.37 35430.34 36552.40 35222.00 36220.27 360
N_pmnet68.89 32168.44 32470.23 33789.07 32028.79 36788.06 31519.50 36869.47 34171.86 34284.93 33561.24 30891.75 34454.70 35077.15 32590.15 328
wuyk23d21.27 33420.48 33723.63 34768.59 36036.41 36549.57 3606.85 3699.37 3637.89 3654.46 3674.03 37031.37 36417.47 36316.07 3633.12 361
testmvs8.92 33511.52 3381.12 3491.06 3690.46 37186.02 3290.65 3700.62 3652.74 3669.52 3650.31 3720.45 3672.38 3640.39 3642.46 363
test1238.76 33611.22 3391.39 3480.85 3700.97 37085.76 3320.35 3710.54 3662.45 3678.14 3660.60 3710.48 3662.16 3650.17 3652.71 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas6.64 3388.86 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36879.70 1170.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re7.82 33710.43 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36893.88 1640.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4698.99 1098.84 8
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 141
test_part298.55 1187.22 1696.40 11
sam_mvs171.70 21396.12 141
sam_mvs70.60 227
test_post188.00 3169.81 36469.31 24895.53 29976.65 258
test_post10.29 36370.57 23195.91 287
patchmatchnet-post83.76 33871.53 21596.48 260
gm-plane-assit89.60 31868.00 34077.28 28988.99 29697.57 17979.44 231
test9_res91.91 6198.71 3098.07 63
agg_prior290.54 8698.68 3598.27 47
test_prior485.96 5794.11 168
test_prior294.12 16687.67 9992.63 7096.39 7286.62 3991.50 7198.67 37
旧先验293.36 20371.25 33694.37 2697.13 22186.74 129
新几何293.11 218
原ACMM292.94 225
testdata298.75 10078.30 242
segment_acmp87.16 35
testdata192.15 24887.94 89
plane_prior794.70 16082.74 136
plane_prior694.52 16782.75 13474.23 180
plane_prior494.86 124
plane_prior382.75 13490.26 3086.91 162
plane_prior295.85 6190.81 17
plane_prior194.59 165
plane_prior82.73 13795.21 9489.66 4389.88 190
HQP5-MVS81.56 162
HQP-NCC94.17 18094.39 15088.81 6485.43 200
ACMP_Plane94.17 18094.39 15088.81 6485.43 200
BP-MVS87.11 126
HQP4-MVS85.43 20097.96 15594.51 206
HQP2-MVS73.83 190
NP-MVS94.37 17582.42 14593.98 157
MDTV_nov1_ep13_2view55.91 35987.62 32273.32 32384.59 21870.33 23474.65 27795.50 165
ACMMP++_ref87.47 226
ACMMP++88.01 221
Test By Simon80.02 112