This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 12096.80 11798.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16098.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
HyFIR lowres test96.90 12996.49 13598.14 12499.33 5995.56 17497.38 31099.65 292.34 28697.61 14798.20 19789.29 19299.10 21396.97 12097.60 19299.77 27
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7599.62 13797.91 7399.75 4599.50 91
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8199.49 595.43 13599.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
ACMMPcopyleft98.23 5797.95 6599.09 5299.74 797.62 7399.03 7199.41 695.98 10997.60 14899.36 4294.45 8799.93 2597.14 11498.85 14099.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11899.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11699.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 8999.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 180
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12997.25 9198.82 12699.34 1098.75 399.80 599.61 495.16 7099.95 799.70 699.80 2299.93 1
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16698.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1899.86 199.82 16
PVSNet_BlendedMVS96.73 13596.60 13097.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12197.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12198.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 13198.54 16495.24 19298.87 11399.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 139
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18396.84 30396.97 10198.74 14699.24 1795.16 15193.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
WR-MVS_H95.05 22194.46 22596.81 22196.86 30295.82 16799.24 3199.24 1793.87 21392.53 32296.84 31790.37 17298.24 31793.24 24987.93 34996.38 339
SDMVSNet96.85 13196.42 13698.14 12499.30 6896.38 13499.21 4099.23 2095.92 11195.96 21098.76 14085.88 26899.44 17497.93 7195.59 24698.60 209
FC-MVSNet-test96.42 14896.05 15097.53 17596.95 29597.27 8699.36 1499.23 2095.83 11793.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 266
VPA-MVSNet95.75 17995.11 19597.69 16297.24 27597.27 8698.94 9399.23 2095.13 15295.51 21797.32 27085.73 27098.91 24197.33 11189.55 32996.89 280
FIs96.51 14596.12 14897.67 16597.13 28697.54 7699.36 1499.22 2395.89 11494.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 265
tfpnnormal93.66 29792.70 30796.55 24896.94 29695.94 15898.97 8499.19 2491.04 32791.38 34097.34 26884.94 28598.61 27185.45 36589.02 33995.11 367
UniMVSNet (Re)95.78 17895.19 19097.58 17296.99 29397.47 8098.79 14099.18 2595.60 12793.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
fmvsm_s_conf0.1_n_a98.08 6198.04 6198.21 11997.66 24395.39 18298.89 10499.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16398.63 17499.16 2794.48 18997.67 14098.88 12192.80 11299.91 3997.11 11599.12 12699.50 91
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18396.15 14698.97 8499.15 2898.55 798.45 9199.55 694.26 9399.97 199.65 799.66 6698.57 214
CHOSEN 280x42097.18 11697.18 10297.20 19198.81 13793.27 27795.78 37699.15 2895.25 14796.79 17998.11 20392.29 12199.07 21698.56 3399.85 599.25 134
D2MVS95.18 21495.08 19695.48 30097.10 28892.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18698.73 26294.48 21293.60 27795.65 359
PHI-MVS98.34 5398.06 5999.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8999.76 4099.59 79
sd_testset96.17 15995.76 16197.42 18099.30 6894.34 23898.82 12699.08 3295.92 11195.96 21098.76 14082.83 31899.32 18495.56 17795.59 24698.60 209
UA-Net97.96 6797.62 7598.98 5998.86 13297.47 8098.89 10499.08 3296.67 8298.72 7499.54 893.15 10799.81 8194.87 19698.83 14199.65 69
PatchMatch-RL96.59 14096.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17198.06 20688.50 21799.65 12991.77 29299.00 13298.66 205
3Dnovator94.51 597.46 9796.93 11299.07 5397.78 23197.64 7199.35 1699.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6399.28 5496.47 2399.40 17698.52 4099.70 5999.47 100
PS-CasMVS94.67 24593.99 25696.71 22596.68 31395.26 19099.13 5499.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13799.03 7199.03 3795.04 15993.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4799.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15296.23 14299.22 3799.00 3996.63 8498.04 11099.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 19794.76 21097.40 18396.53 32096.97 10198.66 16898.99 4195.43 13593.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23797.15 9698.84 12298.97 4298.75 399.43 2799.54 893.29 10599.93 2599.64 999.79 2899.89 5
VPNet94.99 22594.19 23997.40 18397.16 28496.57 12298.71 15698.97 4295.67 12594.84 23198.24 19580.36 33498.67 26896.46 14587.32 35796.96 269
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28397.32 8399.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 244
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10798.94 5499.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10798.93 5899.19 7295.70 4699.94 897.62 9399.79 2899.78 21
CP-MVSNet94.94 23294.30 23396.83 21996.72 31195.56 17499.11 5698.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
NR-MVSNet94.98 22794.16 24297.44 17896.53 32097.22 9398.74 14698.95 4694.96 16489.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10498.94 5499.17 7495.91 4099.94 897.55 10099.79 2899.78 21
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1198.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2399.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VNet97.79 7697.40 9198.96 6298.88 12997.55 7598.63 17498.93 5096.74 7899.02 4898.84 12590.33 17499.83 6998.53 3496.66 21399.50 91
UGNet96.78 13496.30 14298.19 12398.24 19095.89 16598.88 10998.93 5097.39 3896.81 17797.84 22782.60 31999.90 4596.53 14399.49 10198.79 190
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 10596.98 11198.61 7998.60 15996.61 11898.22 22598.93 5093.97 20798.01 11698.48 16691.98 13499.85 6396.45 14698.15 17299.39 112
QAPM96.29 15495.40 17598.96 6297.85 22797.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1299.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 12796.27 14398.92 6499.50 4197.63 7298.85 11898.90 5784.80 38397.77 13099.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
LS3D97.16 11796.66 12998.68 7598.53 16597.19 9498.93 9598.90 5792.83 27095.99 20899.37 3892.12 12999.87 5893.67 23999.57 8598.97 176
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7699.88 5698.42 4899.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10898.94 11395.34 5999.65 12996.04 15999.42 11099.19 144
AdaColmapbinary97.15 11896.70 12598.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17498.68 14690.69 16899.76 10794.36 21499.29 12198.98 175
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4299.72 5699.74 37
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 4299.81 1599.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2898.88 6297.52 2999.41 2898.78 13496.00 3699.79 9897.79 8199.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7698.88 6286.43 37392.81 31297.57 25381.66 32398.68 26794.83 19889.02 33996.88 281
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7799.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2398.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7799.74 5099.78 21
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4699.81 1599.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4699.80 2299.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1798.87 6995.96 11098.60 8399.13 8296.05 3499.94 897.77 8299.86 199.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8299.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11998.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
Anonymous2024052995.10 21894.22 23797.75 15699.01 11394.26 24198.87 11398.83 8085.79 37996.64 18298.97 10578.73 34399.85 6396.27 15094.89 25199.12 156
9.1498.06 5999.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8999.63 7499.72 45
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12398.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1098.82 8194.46 19098.94 5499.20 6795.16 7099.74 11197.58 9699.85 599.77 27
APD-MVScopyleft98.35 5298.00 6499.42 1699.51 3998.72 2198.80 13598.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2799.84 6797.72 8599.73 5399.67 65
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5799.92 3197.89 7599.75 4599.79 19
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 9999.20 3899.37 3895.30 6199.80 8897.73 8499.67 6499.72 45
WR-MVS95.15 21594.46 22597.22 19096.67 31496.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2598.81 8696.24 9998.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5598.81 8692.34 28698.09 10699.08 9493.01 10899.92 3196.06 15899.77 3499.75 35
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8599.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 8899.17 4199.35 4495.29 6297.72 8599.65 6999.71 49
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 5098.10 5899.13 4899.74 797.82 6899.53 798.80 9394.63 18098.61 8298.97 10595.13 7299.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 31591.34 32497.24 18997.00 29193.43 26894.96 38298.80 9382.27 38996.93 16992.12 39386.98 24999.82 7676.32 39496.65 21498.46 218
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
MP-MVScopyleft98.33 5598.01 6399.28 3299.75 398.18 5199.22 3798.79 9896.13 10597.92 12499.23 6294.54 8299.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 6397.76 7198.90 6798.73 14197.27 8698.35 20898.78 10097.37 4197.72 13798.96 11091.53 14899.92 3198.79 2699.65 6999.51 89
MP-MVS-pluss98.31 5697.92 6799.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 13999.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6099.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15597.75 28598.78 10096.89 7098.46 8899.22 6493.90 9999.68 12594.81 20099.52 9799.67 65
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
PLCcopyleft95.07 497.20 11596.78 12098.44 9999.29 7396.31 14198.14 23998.76 10492.41 28496.39 19898.31 18694.92 7899.78 10194.06 22798.77 14499.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3396.17 15995.62 17297.81 15099.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14389.76 18199.86 6297.95 6981.59 38199.11 158
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12498.75 10696.96 6796.89 17399.50 1590.46 17199.87 5897.84 7999.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTGPAbinary98.74 108
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11399.39 3294.81 7999.96 497.91 7399.79 2899.77 27
ab-mvs96.42 14895.71 16698.55 8598.63 15696.75 11297.88 27398.74 10893.84 21496.54 19198.18 19985.34 27899.75 10995.93 16296.35 22399.15 152
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13498.68 14696.20 2999.80 88
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13498.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13898.66 14996.20 2999.80 88
agg_prior99.30 6898.38 3598.72 11397.57 15099.81 81
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
mamv497.13 11998.11 5694.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12898.90 11896.25 2699.55 15399.27 1599.76 4099.27 129
WTY-MVS97.37 10896.92 11398.72 7398.86 13296.89 10798.31 21598.71 11695.26 14697.67 14098.56 16092.21 12699.78 10195.89 16396.85 20899.48 98
3Dnovator+94.38 697.43 10296.78 12099.38 1897.83 22898.52 2899.37 1398.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6399.36 4295.41 5499.78 10198.62 2999.65 6999.80 18
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10398.95 11294.60 8199.89 4791.97 28899.47 10499.59 79
API-MVS97.41 10497.25 9797.91 14398.70 14696.80 10998.82 12698.69 12194.53 18598.11 10498.28 18894.50 8699.57 14394.12 22499.49 10197.37 257
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13998.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3199.54 9499.73 42
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8899.82 7694.27 21999.44 10899.58 83
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13196.78 1699.83 6997.93 7199.61 7799.74 37
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13397.80 23388.86 20799.69 12494.26 22099.01 13199.15 152
MAR-MVS96.91 12896.40 13898.45 9798.69 14996.90 10598.66 16898.68 12492.40 28597.07 16397.96 21691.54 14799.75 10993.68 23798.92 13498.69 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 7799.32 6296.62 11698.67 12993.27 25197.81 12998.97 10595.18 6999.83 6993.84 23399.46 10799.50 91
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12495.93 3999.72 11395.56 17799.69 6199.68 61
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12795.70 4699.92 3197.53 10299.67 6499.66 68
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10898.96 11094.14 9599.53 9699.61 75
test1198.66 132
XXY-MVS95.20 21394.45 22797.46 17696.75 30996.56 12398.86 11698.65 13693.30 24993.27 29998.27 19184.85 28798.87 24894.82 19991.26 30896.96 269
IU-MVS99.71 1999.23 798.64 13795.28 14599.63 1898.35 5299.81 1599.83 13
TAPA-MVS93.98 795.35 20494.56 21997.74 15799.13 10194.83 21498.33 21098.64 13786.62 37196.29 20098.61 15294.00 9899.29 18680.00 38599.41 11199.09 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3499.80 2299.86 8
F-COLMAP97.09 12296.80 11797.97 14099.45 5294.95 20898.55 18798.62 14193.02 26296.17 20398.58 15794.01 9799.81 8193.95 22998.90 13599.14 154
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9098.60 14298.58 698.93 5899.55 688.57 21299.91 3999.54 1199.61 7799.77 27
EIA-MVS97.75 7797.58 7798.27 11298.38 17396.44 12999.01 7698.60 14295.88 11597.26 15597.53 25694.97 7699.33 18397.38 10999.20 12399.05 169
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13398.63 17498.60 14295.18 15097.06 16498.06 20694.26 9399.57 14393.80 23598.87 13999.52 86
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15290.60 1690.00 4150.00 4140.00 4130.00 411
131496.25 15895.73 16297.79 15197.13 28695.55 17698.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16194.62 20698.44 16098.32 226
CVMVSNet95.43 19696.04 15193.57 34697.93 22383.62 38498.12 24298.59 14595.68 12496.56 18799.02 9887.51 23997.51 35893.56 24397.44 19599.60 77
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16298.28 22098.59 14595.52 13197.97 11899.10 8693.28 10699.49 16195.09 19198.88 13799.19 144
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26794.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22091.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_n_192096.71 13696.84 11696.31 26899.11 10489.74 33999.05 6598.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4299.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
iter_conf05_1198.04 6497.94 6698.34 10798.60 15996.38 13499.24 3198.57 15295.90 11398.99 5298.79 13392.97 10999.47 16998.58 3099.85 599.17 150
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28293.38 27398.74 14698.57 15291.21 32593.81 27998.58 15772.85 38098.77 26095.05 19393.93 26898.77 195
iter_conf0598.16 6098.02 6298.59 8298.96 12297.07 9898.90 9998.57 15294.81 17297.84 12798.90 11895.22 6899.59 14099.15 1799.84 1299.12 156
PAPR96.84 13296.24 14598.65 7798.72 14596.92 10497.36 31498.57 15293.33 24696.67 18197.57 25394.30 9199.56 14691.05 30798.59 15299.47 100
MVSMamba_pp98.02 6597.82 6898.61 7998.25 18997.32 8398.73 15098.56 15696.18 10398.84 6398.72 14392.90 11099.45 17298.37 5099.85 599.07 168
HQP_MVS96.14 16195.90 15796.85 21897.42 26494.60 22798.80 13598.56 15697.28 4595.34 21998.28 18887.09 24699.03 22196.07 15594.27 25496.92 272
plane_prior598.56 15699.03 22196.07 15594.27 25496.92 272
ETV-MVS97.96 6797.81 6998.40 10498.42 17097.27 8698.73 15098.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13698.58 213
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7898.55 15995.73 12293.21 30198.38 17683.45 31698.63 27097.09 11694.00 26596.91 277
LPG-MVS_test95.62 18795.34 18196.47 25597.46 25993.54 26398.99 8198.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
LGP-MVS_train96.47 25597.46 25993.54 26398.54 16194.67 17894.36 25198.77 13685.39 27599.11 20995.71 17294.15 26096.76 292
test_cas_vis1_n_192097.38 10697.36 9397.45 17798.95 12393.25 27999.00 7898.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3199.66 6699.26 132
test1299.18 4299.16 9898.19 5098.53 16398.07 10795.13 7299.72 11399.56 9199.63 73
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14396.80 17898.53 16193.32 10399.72 11394.31 21899.31 12099.02 171
bld_raw_dy_0_6497.09 12296.76 12498.08 13398.89 12796.54 12598.17 23798.52 16688.80 36295.67 21598.83 12793.32 10399.48 16698.86 2399.75 4598.21 231
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5198.52 16695.74 12093.22 30098.36 17883.87 31298.65 26996.95 12294.04 26396.91 277
XVG-OURS96.55 14496.41 13796.99 20698.75 14093.76 25497.50 30498.52 16695.67 12596.83 17499.30 5288.95 20699.53 15595.88 16496.26 23397.69 246
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15898.35 17695.98 15097.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3498.68 14597.37 257
PS-MVSNAJ97.73 7897.77 7097.62 17098.68 15095.58 17397.34 31698.51 16997.29 4498.66 7997.88 22394.51 8399.90 4597.87 7699.17 12597.39 255
cascas94.63 24793.86 26696.93 21296.91 29994.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24895.80 16896.98 20697.66 247
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6199.14 8195.25 6599.15 20298.83 2599.56 9199.20 140
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4898.50 17495.87 11693.84 27898.34 18394.51 8398.61 27196.88 12993.45 28097.06 263
MVS94.67 24593.54 28798.08 13396.88 30196.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16698.04 235
XVG-OURS-SEG-HR96.51 14596.34 13997.02 20598.77 13993.76 25497.79 28398.50 17495.45 13496.94 16899.09 9287.87 23399.55 15396.76 13995.83 24597.74 243
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21687.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 225
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24593.26 27898.81 13498.49 17993.43 24389.74 35498.53 16181.91 32199.08 21593.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5499.10 8695.73 4599.13 20598.71 2799.49 10199.09 160
xiu_mvs_v2_base97.66 8597.70 7397.56 17498.61 15895.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9099.80 8897.84 7998.66 14997.41 253
HQP3-MVS98.46 18194.18 258
HQP-MVS95.72 18095.40 17596.69 22897.20 27994.25 24298.05 25198.46 18196.43 9194.45 24397.73 23686.75 25298.96 23295.30 18494.18 25896.86 285
CLD-MVS95.62 18795.34 18196.46 25897.52 25693.75 25697.27 32298.46 18195.53 13094.42 24898.00 21286.21 26298.97 22896.25 15394.37 25296.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16494.22 25997.90 22079.18 34299.11 20994.05 22893.85 26996.48 334
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17096.59 12198.92 9798.44 18596.20 10197.76 13199.20 6791.66 14299.23 19298.27 5898.41 16399.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24193.48 26798.73 15098.44 18594.94 16792.53 32298.53 16184.50 29899.14 20495.48 18194.00 26596.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 18495.38 17996.61 23797.61 24693.84 25298.91 9898.44 18595.25 14794.28 25598.47 16786.04 26799.12 20795.50 18093.95 26796.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 12096.69 12698.39 10598.19 19896.72 11497.37 31298.43 18993.71 22597.65 14498.02 20992.20 12799.25 18996.87 13297.79 18499.19 144
EC-MVSNet98.21 5898.11 5698.49 9398.34 18197.26 9099.61 598.43 18996.78 7498.87 6298.84 12593.72 10099.01 22698.91 2299.50 9999.19 144
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16499.14 5198.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26496.50 331
PMMVS96.60 13996.33 14097.41 18197.90 22593.93 24997.35 31598.41 19192.84 26997.76 13197.45 26191.10 16099.20 19696.26 15197.91 17999.11 158
MVSFormer97.57 9397.49 8497.84 14698.07 20895.76 16999.47 898.40 19394.98 16298.79 6798.83 12792.34 11998.41 29896.91 12399.59 8199.34 116
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 898.40 19394.98 16294.58 23897.86 22489.16 19698.41 29896.91 12394.12 26296.88 281
sasdasda97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13485.15 28299.05 21795.21 19094.20 25796.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs97.67 8397.23 9898.98 5998.70 14698.38 3599.34 1798.39 19596.76 7697.67 14097.40 26692.26 12299.49 16198.28 5596.28 23199.08 164
DP-MVS96.59 14095.93 15698.57 8399.34 5796.19 14598.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13799.68 61
MGCFI-Net97.62 8897.19 10198.92 6498.66 15298.20 4999.32 2298.38 19996.69 8197.58 14997.42 26592.10 13099.50 16098.28 5596.25 23499.08 164
dcpmvs_298.08 6198.59 1496.56 24499.57 3390.34 33299.15 4998.38 19996.82 7399.29 3499.49 1795.78 4499.57 14398.94 2199.86 199.77 27
diffmvspermissive97.58 9297.40 9198.13 12798.32 18695.81 16898.06 25098.37 20196.20 10198.74 7198.89 12091.31 15499.25 18998.16 6098.52 15599.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23092.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21792.75 26592.40 29496.55 320
MSDG95.93 17095.30 18697.83 14798.90 12695.36 18496.83 35698.37 20191.32 31894.43 24798.73 14290.27 17599.60 13990.05 32198.82 14298.52 215
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17197.93 12398.58 15795.07 7499.71 11892.60 26799.34 11899.43 109
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27189.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2898.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
CDS-MVSNet96.99 12596.69 12697.90 14498.05 21295.98 15098.20 22898.33 20793.67 23296.95 16798.49 16593.54 10198.42 29195.24 18997.74 18799.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18396.14 14798.82 12698.32 20896.38 9697.95 11999.21 6591.23 15699.23 19298.12 6198.37 16499.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline97.64 8697.44 8998.25 11698.35 17696.20 14399.00 7898.32 20896.33 9898.03 11199.17 7491.35 15199.16 19998.10 6298.29 17099.39 112
cl2294.68 24294.19 23996.13 27598.11 20693.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
test_yl97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
DCV-MVSNet97.22 11296.78 12098.54 8798.73 14196.60 11998.45 19898.31 21094.70 17498.02 11398.42 17190.80 16599.70 11996.81 13596.79 21099.34 116
nrg03096.28 15695.72 16397.96 14296.90 30098.15 5499.39 1198.31 21095.47 13394.42 24898.35 17992.09 13198.69 26497.50 10489.05 33797.04 264
TAMVS97.02 12496.79 11997.70 16198.06 21195.31 18998.52 18998.31 21093.95 20897.05 16598.61 15293.49 10298.52 28095.33 18397.81 18399.29 127
EPP-MVSNet97.46 9797.28 9697.99 13998.64 15595.38 18399.33 2198.31 21093.61 23697.19 15799.07 9594.05 9699.23 19296.89 12798.43 16299.37 114
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
Vis-MVSNet (Re-imp)96.87 13096.55 13297.83 14798.73 14195.46 17999.20 4298.30 21694.96 16496.60 18698.87 12290.05 17798.59 27493.67 23998.60 15199.46 104
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4098.56 15499.51 89
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26489.75 32699.38 11695.25 363
EI-MVSNet95.96 16695.83 15996.36 26497.93 22393.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
MVSTER96.06 16395.72 16397.08 20298.23 19295.93 16198.73 15098.27 21994.86 16995.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
FMVSNet294.47 26293.61 28397.04 20498.21 19496.43 13098.79 14098.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
FMVSNet394.97 22994.26 23597.11 20098.18 20096.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 18895.97 15598.58 18098.25 22491.74 30395.29 22397.23 27791.03 16299.15 20292.90 26197.96 17898.97 176
PAPM94.95 23094.00 25497.78 15297.04 29095.65 17196.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25082.61 37997.61 19198.84 187
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15188.32 36699.26 2898.22 22696.40 9499.67 1499.26 5773.91 37799.70 11999.02 2099.50 9998.87 184
CANet_DTU96.96 12696.55 13298.21 11998.17 20396.07 14997.98 25998.21 22797.24 5097.13 15998.93 11486.88 25199.91 3995.00 19499.37 11798.66 205
HY-MVS93.96 896.82 13396.23 14698.57 8398.46 16997.00 10098.14 23998.21 22793.95 20896.72 18097.99 21391.58 14399.76 10794.51 21196.54 21898.95 179
test_fmvs196.42 14896.67 12895.66 29498.82 13688.53 36298.80 13598.20 22996.39 9599.64 1799.20 6780.35 33599.67 12699.04 1999.57 8598.78 193
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15796.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13398.68 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6598.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8198.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
mvs_anonymous96.70 13796.53 13497.18 19498.19 19893.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 17999.31 122
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13684.67 29399.72 11389.70 32897.87 18198.02 236
GBi-Net94.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19495.00 20298.82 12698.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25395.00 20298.82 12698.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23691.74 30598.69 16298.15 24295.56 12994.92 22997.68 24488.98 20498.79 25893.19 25197.78 18597.20 261
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
IterMVS-LS95.46 19395.21 18996.22 27298.12 20593.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 14296.07 14998.10 13298.35 17695.89 16599.34 1798.12 24693.12 25896.09 20498.87 12289.71 18398.97 22892.95 25998.08 17599.43 109
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 267
IterMVS94.09 28993.85 26794.80 32597.99 21690.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n95.47 19295.13 19296.49 25297.77 23290.41 33099.27 2798.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21890.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17497.09 262
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 18195.30 18696.93 21298.50 16693.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18199.02 22497.95 6980.91 38698.22 229
AUN-MVS94.53 25593.73 27796.92 21598.50 16693.52 26698.34 20998.10 25293.83 21695.94 21297.98 21585.59 27399.03 22194.35 21580.94 38598.22 229
Effi-MVS+-dtu96.29 15496.56 13195.51 29997.89 22690.22 33398.80 13598.10 25296.57 8796.45 19696.66 32490.81 16498.91 24195.72 17197.99 17697.40 254
1112_ss96.63 13896.00 15398.50 9198.56 16196.37 13698.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14294.35 21596.51 21999.56 85
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8498.09 25692.32 28894.31 25497.06 29488.39 21898.55 27692.90 26188.87 34196.34 340
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25593.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 23993.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24491.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 17098.17 32093.38 24589.76 32496.54 321
MVS_Test97.28 11097.00 10998.13 12798.33 18395.97 15598.74 14698.07 25994.27 19598.44 9398.07 20592.48 11699.26 18896.43 14798.19 17199.16 151
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16195.94 15897.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14694.17 22296.50 22099.58 83
alignmvs97.56 9497.07 10799.01 5698.66 15298.37 4098.83 12498.06 26496.74 7898.00 11797.65 24590.80 16599.48 16698.37 5096.56 21799.19 144
RPSCF94.87 23495.40 17593.26 35298.89 12782.06 39098.33 21098.06 26490.30 34096.56 18799.26 5787.09 24699.49 16193.82 23496.32 22598.24 227
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23390.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17897.78 34892.51 27489.64 32696.56 318
c3_l94.79 23794.43 22995.89 28697.75 23393.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9098.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
mvsmamba96.57 14396.32 14197.32 18796.60 31696.43 13099.54 697.98 26996.49 8895.20 22498.64 15090.82 16398.55 27697.97 6893.65 27496.98 267
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 27092.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
IS-MVSNet97.22 11296.88 11498.25 11698.85 13496.36 13799.19 4497.97 27095.39 13797.23 15698.99 10491.11 15998.93 23894.60 20798.59 15299.47 100
cl____94.51 25794.01 25396.02 27897.58 24893.40 27297.05 33797.96 27291.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27390.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25293.38 27397.05 33797.94 27391.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27586.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
jason97.32 10997.08 10698.06 13697.45 26295.59 17297.87 27497.91 27694.79 17398.55 8598.83 12791.12 15899.23 19297.58 9699.60 7999.34 116
jason: jason.
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27790.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
tpm cat193.36 30292.80 30495.07 31597.58 24887.97 37096.76 35897.86 27882.17 39093.53 28796.04 34786.13 26399.13 20589.24 33695.87 24498.10 234
tt080594.54 25393.85 26796.63 23497.98 21893.06 28798.77 14297.84 27993.67 23293.80 28098.04 20876.88 36398.96 23294.79 20192.86 28997.86 240
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 28089.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27095.08 368
BH-untuned95.95 16795.72 16396.65 23098.55 16392.26 29498.23 22497.79 28193.73 22294.62 23798.01 21188.97 20599.00 22793.04 25698.51 15698.68 201
lupinMVS97.44 10197.22 10098.12 13098.07 20895.76 16997.68 29097.76 28294.50 18898.79 6798.61 15292.34 11999.30 18597.58 9699.59 8199.31 122
VDDNet95.36 20394.53 22097.86 14598.10 20795.13 19898.85 11897.75 28390.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21698.81 189
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21491.91 30196.04 37097.74 28490.15 34196.47 19496.64 32787.89 23198.96 23290.08 31997.06 20199.02 171
tpmvs94.60 24894.36 23295.33 30797.46 25988.60 36096.88 35297.68 28591.29 32093.80 28096.42 33488.58 21199.24 19191.06 30596.04 24098.17 232
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15897.40 30897.67 28690.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28791.97 29891.66 33896.88 31389.67 18497.93 34088.02 34991.49 30496.48 334
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28791.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28989.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
SCA95.46 19395.13 19296.46 25897.67 24191.29 31397.33 31797.60 29194.68 17796.92 17197.10 28383.97 30998.89 24592.59 26998.32 16999.20 140
testing9194.98 22794.25 23697.20 19197.94 22193.41 27098.00 25797.58 29294.99 16195.45 21896.04 34777.20 35999.42 17594.97 19596.02 24198.78 193
FA-MVS(test-final)96.41 15195.94 15597.82 14998.21 19495.20 19497.80 28197.58 29293.21 25297.36 15397.70 23989.47 18799.56 14694.12 22497.99 17698.71 199
GA-MVS94.81 23694.03 25097.14 19797.15 28593.86 25196.76 35897.58 29294.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23499.09 160
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9397.56 29588.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29593.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
CR-MVSNet94.76 23994.15 24396.59 24097.00 29193.43 26894.96 38297.56 29592.46 27996.93 16996.24 33788.15 22397.88 34587.38 35296.65 21498.46 218
Patchmtry93.22 30892.35 31495.84 28896.77 30693.09 28694.66 38997.56 29587.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
tpmrst95.63 18695.69 16995.44 30397.54 25388.54 36196.97 34197.56 29593.50 23997.52 15196.93 31189.49 18599.16 19995.25 18896.42 22298.64 207
FMVSNet591.81 32390.92 32694.49 33497.21 27892.09 29798.00 25797.55 30089.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14397.54 30195.60 12791.63 33997.91 21974.46 37597.02 36586.10 35993.67 27297.72 245
mvsany_test197.69 8297.70 7397.66 16898.24 19094.18 24497.53 30197.53 30295.52 13199.66 1599.51 1394.30 9199.56 14698.38 4998.62 15099.23 136
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24890.72 32496.84 35597.52 30394.06 20097.08 16196.96 30789.24 19498.90 24492.03 28598.37 16499.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30488.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
USDC93.33 30592.71 30695.21 30996.83 30490.83 32296.91 34697.50 30593.84 21490.72 34698.14 20177.69 35398.82 25589.51 33293.21 28695.97 352
ITE_SJBPF95.44 30397.42 26491.32 31297.50 30595.09 15793.59 28498.35 17981.70 32298.88 24789.71 32793.39 28296.12 348
Patchmatch-test94.42 26593.68 28196.63 23497.60 24791.76 30394.83 38697.49 30789.45 35494.14 26397.10 28388.99 20198.83 25485.37 36698.13 17399.29 127
Syy-MVS92.55 31892.61 30992.38 35997.39 26883.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20397.60 249
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26890.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20397.60 249
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
BH-RMVSNet95.92 17195.32 18497.69 16298.32 18694.64 22198.19 23197.45 31294.56 18396.03 20698.61 15285.02 28399.12 20790.68 31299.06 12799.30 125
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10497.43 31495.29 14492.18 33198.52 16482.86 31798.59 27493.46 24491.76 30096.74 294
BH-w/o95.38 20095.08 19696.26 27198.34 18191.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25191.55 29697.70 18998.16 233
VDD-MVS95.82 17795.23 18897.61 17198.84 13593.98 24898.68 16397.40 31695.02 16097.95 11999.34 4874.37 37699.78 10198.64 2896.80 20999.08 164
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FE-MVS95.62 18794.90 20597.78 15298.37 17594.92 20997.17 33197.38 31890.95 32997.73 13697.70 23985.32 28099.63 13491.18 30098.33 16798.79 190
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21488.74 35896.04 37097.30 32090.15 34196.47 19496.64 32787.89 23197.56 35690.08 31997.06 20199.02 171
MDTV_nov1_ep1395.40 17597.48 25788.34 36596.85 35497.29 32193.74 22197.48 15297.26 27389.18 19599.05 21791.92 28997.43 196
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17398.42 29185.57 36398.81 14399.09 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
test_fmvs293.43 30193.58 28492.95 35696.97 29483.91 38299.19 4497.24 32595.74 12095.20 22498.27 19169.65 38398.72 26396.26 15193.73 27196.24 344
test_040291.32 32790.27 33394.48 33596.60 31691.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
dp94.15 28393.90 26294.90 31997.31 27286.82 37796.97 34197.19 32791.22 32496.02 20796.61 32985.51 27499.02 22490.00 32394.30 25398.85 185
testing9994.83 23594.08 24797.07 20397.94 22193.13 28398.10 24697.17 32894.86 16995.34 21996.00 35076.31 36599.40 17695.08 19295.90 24298.68 201
testing393.19 31092.48 31295.30 30898.07 20892.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20097.63 248
ETVMVS94.50 25893.44 29197.68 16498.18 20095.35 18698.19 23197.11 33093.73 22296.40 19795.39 36374.53 37398.84 25191.10 30296.31 22698.84 187
thres20095.25 20994.57 21897.28 18898.81 13794.92 20998.20 22897.11 33095.24 14996.54 19196.22 34184.58 29699.53 15587.93 35096.50 22097.39 255
dmvs_re94.48 26194.18 24195.37 30597.68 24090.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 227
PatchT93.06 31391.97 31996.35 26596.69 31292.67 29094.48 39297.08 33286.62 37197.08 16192.23 39287.94 23097.90 34178.89 38996.69 21298.49 217
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21492.79 26477.98 39495.04 369
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25691.47 29791.92 29995.12 366
testing1195.00 22394.28 23497.16 19697.96 22093.36 27598.09 24797.06 33694.94 16795.33 22296.15 34376.89 36299.40 17695.77 17096.30 22798.72 196
Anonymous20240521195.28 20894.49 22297.67 16599.00 11493.75 25698.70 16097.04 33790.66 33196.49 19398.80 13178.13 35099.83 6996.21 15495.36 25099.44 107
baseline195.84 17595.12 19498.01 13898.49 16895.98 15098.73 15097.03 33895.37 14096.22 20198.19 19889.96 17999.16 19994.60 20787.48 35398.90 183
MIMVSNet93.26 30792.21 31696.41 26197.73 23793.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23698.92 182
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9597.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
EPNet97.28 11096.87 11598.51 9094.98 36896.14 14798.90 9997.02 34098.28 1095.99 20899.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 23294.20 23897.17 19597.75 23394.14 24597.59 29897.02 34092.28 29095.75 21497.64 24783.88 31198.96 23289.77 32596.15 23898.40 220
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20587.33 39887.70 23798.78 25991.35 29895.58 24898.34 224
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
tfpn200view995.32 20794.62 21697.43 17998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22897.76 241
thres40095.38 20094.62 21697.65 16998.94 12494.98 20598.68 16396.93 34595.33 14196.55 18996.53 33084.23 30399.56 14688.11 34696.29 22898.40 220
thres100view90095.38 20094.70 21397.41 18198.98 11994.92 20998.87 11396.90 34795.38 13896.61 18596.88 31384.29 29999.56 14688.11 34696.29 22897.76 241
thres600view795.49 19194.77 20997.67 16598.98 11995.02 20198.85 11896.90 34795.38 13896.63 18396.90 31284.29 29999.59 14088.65 34396.33 22498.40 220
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
CostFormer94.95 23094.73 21295.60 29797.28 27389.06 35197.53 30196.89 34989.66 35096.82 17696.72 32286.05 26598.95 23795.53 17996.13 23998.79 190
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
tpm294.19 27993.76 27595.46 30297.23 27689.04 35297.31 31996.85 35387.08 37096.21 20296.79 31983.75 31598.74 26192.43 27796.23 23698.59 211
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 9996.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
TinyColmap92.31 32191.53 32294.65 33096.92 29789.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25686.74 35592.51 29395.41 361
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14396.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
testing22294.12 28693.03 30097.37 18698.02 21394.66 21997.94 26396.65 36094.63 18095.78 21395.76 35371.49 38198.92 23991.17 30195.88 24398.52 215
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6596.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
LFMVS95.86 17494.98 20198.47 9598.87 13196.32 13998.84 12296.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8597.20 19999.46 104
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25893.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15594.59 20982.98 37698.62 208
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15492.51 32496.66 32487.71 23596.94 36787.03 35493.67 27297.57 251
WB-MVSnew94.19 27994.04 24994.66 32996.82 30592.14 29597.86 27595.96 37093.50 23995.64 21696.77 32088.06 22797.99 33584.87 36896.86 20793.85 385
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 19996.30 33684.13 30698.30 31193.24 24991.66 30399.14 154
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20087.85 37298.75 14395.66 37495.11 15488.96 36096.85 31690.26 17697.65 35195.65 17598.44 16099.22 138
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17298.22 19396.20 14397.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 171
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37798.86 298.53 8699.44 2794.38 8999.94 899.86 199.70 5999.90 3
test-LLR95.10 21894.87 20795.80 28996.77 30689.70 34096.91 34695.21 37895.11 15494.83 23395.72 35887.71 23598.97 22893.06 25498.50 15798.72 196
test-mter94.08 29093.51 28895.80 28996.77 30689.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22893.06 25498.50 15798.72 196
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
DeepMVS_CXcopyleft86.78 37297.09 28972.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6294.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29789.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 23993.09 25398.50 15798.85 185
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
door94.64 385
thisisatest051595.61 19094.89 20697.76 15598.15 20495.15 19796.77 35794.41 38692.95 26597.18 15897.43 26384.78 28999.45 17294.63 20497.73 18898.68 201
door-mid94.37 387
tttt051796.07 16295.51 17497.78 15298.41 17294.84 21299.28 2594.33 38894.26 19697.64 14598.64 15084.05 30799.47 16995.34 18297.60 19299.03 170
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18698.59 211
thisisatest053096.01 16495.36 18097.97 14098.38 17395.52 17798.88 10994.19 39094.04 20197.64 14598.31 18683.82 31499.46 17195.29 18697.70 18998.93 181
MTMP98.89 10494.14 391
baseline295.11 21794.52 22196.87 21796.65 31593.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19793.88 23297.41 19797.87 239
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UWE-MVS94.30 27193.89 26495.53 29897.83 22888.95 35597.52 30393.25 39494.44 19196.63 18397.07 29078.70 34499.28 18791.99 28697.56 19498.36 223
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24882.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14597.43 252
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6892.45 39996.99 6698.03 11199.27 5681.40 32499.48 16696.87 13299.04 12899.63 73
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7191.80 40096.96 6798.10 10599.26 5781.31 32599.51 15996.90 12699.04 12899.59 79
EPMVS94.99 22594.48 22396.52 25097.22 27791.75 30497.23 32391.66 40194.11 19897.28 15496.81 31885.70 27198.84 25193.04 25697.28 19898.97 176
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
test_vis1_rt91.29 32890.65 32893.19 35497.45 26286.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 20997.48 10595.58 24894.22 377
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 30995.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16797.88 238
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20396.74 294
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6379.47 41396.96 6798.36 9699.26 5777.21 35899.52 15896.78 13899.04 12899.59 79
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 830.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 18097.24 11299.73 5399.70 53
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4299.86 199.85 10
GSMVS99.20 140
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 140
sam_mvs88.99 201
test_post196.68 36130.43 41287.85 23498.69 26492.59 269
test_post31.83 41188.83 20898.91 241
patchmatchnet-post95.10 36889.42 18998.89 245
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19793.32 248
test9_res96.39 14999.57 8599.69 56
agg_prior295.87 16599.57 8599.68 61
test_prior498.01 6197.86 275
test_prior297.80 28196.12 10697.89 12698.69 14595.96 3896.89 12799.60 79
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
新几何297.64 294
原ACMM297.67 291
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata197.32 31896.34 97
plane_prior797.42 26494.63 222
plane_prior697.35 27194.61 22587.09 246
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 219
plane_prior298.80 13597.28 45
plane_prior197.37 270
plane_prior94.60 22798.44 20196.74 7894.22 256
HQP5-MVS94.25 242
HQP-NCC97.20 27998.05 25196.43 9194.45 243
ACMP_Plane97.20 27998.05 25196.43 9194.45 243
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23296.87 283
HQP2-MVS86.75 252
NP-MVS97.28 27394.51 23097.73 236
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12589.89 18093.91 23199.18 149
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 80