This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24899.71 193.57 23597.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30799.65 292.34 28497.61 14298.20 19689.29 18599.10 20696.97 11697.60 18799.77 27
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25899.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26399.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25997.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
patch_mono-298.36 5098.87 696.82 21799.53 3690.68 32398.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
PVSNet_BlendedMVS96.73 12896.60 12397.12 19599.25 8195.35 18398.26 22199.26 1594.28 19297.94 11997.46 25892.74 10899.81 8196.88 12593.32 27996.20 343
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31899.26 1593.13 25597.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29896.97 9798.74 14699.24 1795.16 15193.88 27297.72 23791.68 13398.31 30695.81 16387.25 35596.92 266
WR-MVS_H95.05 21894.46 22296.81 21896.86 29795.82 16399.24 3099.24 1793.87 21192.53 31996.84 31490.37 16598.24 31493.24 24687.93 34696.38 336
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20498.76 13685.88 26399.44 16797.93 6495.59 23998.60 203
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 29097.27 8399.36 1599.23 2095.83 11793.93 26998.37 17692.00 12698.32 30496.02 15792.72 28997.00 260
VPA-MVSNet95.75 17595.11 19297.69 15697.24 27097.27 8398.94 9399.23 2095.13 15295.51 21297.32 26785.73 26698.91 23497.33 10689.55 32696.89 274
FIs96.51 13896.12 14197.67 15997.13 28197.54 7499.36 1599.22 2395.89 11394.03 26598.35 17891.98 12798.44 28596.40 14592.76 28897.01 259
tfpnnormal93.66 29492.70 30496.55 24696.94 29195.94 15498.97 8499.19 2491.04 32591.38 33797.34 26584.94 28298.61 26485.45 36289.02 33695.11 364
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28897.47 7898.79 14099.18 2595.60 12793.92 27097.04 29491.68 13398.48 27895.80 16587.66 34996.79 286
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23895.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18797.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 208
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27595.78 37399.15 2895.25 14796.79 17398.11 20292.29 11699.07 20998.56 2999.85 599.25 133
D2MVS95.18 21195.08 19395.48 29897.10 28392.07 29698.30 21599.13 3094.02 20192.90 30796.73 31889.48 17998.73 25594.48 20993.60 27295.65 356
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24598.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20498.76 13682.83 31599.32 17795.56 17495.59 23998.60 203
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19398.83 13699.65 69
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26399.06 3493.72 22296.92 16598.06 20588.50 21199.65 12991.77 28999.00 12798.66 199
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22697.64 6999.35 1799.06 3497.02 6493.75 27999.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16998.52 3699.70 5499.47 100
PS-CasMVS94.67 24293.99 25396.71 22296.68 30895.26 18799.13 5299.03 3793.68 22892.33 32597.95 21685.35 27498.10 32293.59 23888.16 34596.79 286
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19696.45 32196.36 13299.03 7199.03 3795.04 15993.58 28297.93 21788.27 21498.03 32894.13 22086.90 36096.95 265
PEN-MVS94.42 26293.73 27496.49 25096.28 32894.84 20999.17 4599.00 3993.51 23692.23 32797.83 22986.10 25997.90 33892.55 26986.92 35996.74 291
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17496.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 19494.76 20797.40 17796.53 31596.97 9798.66 16798.99 4195.43 13593.88 27297.69 24088.57 20698.31 30695.81 16387.25 35596.92 266
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23297.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
VPNet94.99 22294.19 23697.40 17797.16 27996.57 11898.71 15598.97 4295.67 12594.84 22698.24 19480.36 33198.67 26196.46 14287.32 35496.96 263
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27897.32 8199.21 3898.97 4289.96 34291.14 33999.05 9786.64 24999.92 3193.38 24299.47 9997.73 237
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
CP-MVSNet94.94 22994.30 23096.83 21696.72 30695.56 17199.11 5598.95 4693.89 20992.42 32497.90 21987.19 24098.12 32194.32 21488.21 34396.82 285
NR-MVSNet94.98 22494.16 23997.44 17296.53 31597.22 9098.74 14698.95 4694.96 16489.25 35697.69 24089.32 18498.18 31694.59 20687.40 35296.92 266
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20899.50 91
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20598.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
QAPM96.29 14895.40 17198.96 6197.85 22297.60 7299.23 3198.93 5089.76 34693.11 30399.02 9889.11 19299.93 2591.99 28399.62 7199.34 116
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 38097.77 12699.11 8492.84 10699.66 12894.85 19499.77 3199.47 100
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26895.99 20299.37 3892.12 12399.87 5893.67 23699.57 8098.97 170
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 28298.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 27398.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25298.89 5994.44 18996.83 16898.68 14290.69 16199.76 10794.36 21199.29 11698.98 169
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 28593.26 29496.61 23499.11 10494.28 23699.01 7698.88 6286.43 37092.81 30997.57 25281.66 32098.68 26094.83 19589.02 33696.88 275
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
X-MVStestdata94.06 28992.30 31299.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 40395.90 4199.89 4797.85 7199.74 4599.78 21
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26799.00 11489.54 34297.43 30498.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
DTE-MVSNet93.98 29193.26 29496.14 27296.06 33794.39 23299.20 4098.86 7593.06 25891.78 33397.81 23185.87 26497.58 35290.53 31086.17 36496.46 333
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35098.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
Anonymous2024052995.10 21594.22 23497.75 15099.01 11394.26 23898.87 11398.83 8085.79 37696.64 17698.97 10578.73 34099.85 6396.27 14794.89 24499.12 154
9.1498.06 5899.47 4798.71 15598.82 8194.36 19199.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18898.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18599.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
WR-MVS95.15 21294.46 22297.22 18596.67 30996.45 12498.21 22498.81 8694.15 19593.16 29997.69 24087.51 23498.30 30895.29 18388.62 34096.90 273
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28498.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23099.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17998.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 31291.34 32197.24 18497.00 28693.43 26694.96 37998.80 9382.27 38596.93 16392.12 38886.98 24499.82 7676.32 39196.65 20998.46 212
ZD-MVS99.46 4998.70 2398.79 9893.21 25098.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19797.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 28298.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19799.52 9299.67 65
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 28296.39 19298.31 18594.92 7699.78 10194.06 22498.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37799.11 155
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTGPAbinary98.74 108
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 27098.74 10893.84 21296.54 18598.18 19885.34 27599.75 10995.93 15996.35 21899.15 150
TEST999.31 6498.50 2997.92 26198.73 11192.63 27297.74 13098.68 14296.20 2899.80 88
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26198.73 11192.98 26197.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
test_899.29 7398.44 3197.89 26998.72 11392.98 26197.70 13498.66 14596.20 2899.80 88
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
无先验97.58 29698.72 11391.38 31199.87 5893.36 24499.60 77
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20399.48 98
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22398.52 2899.37 1498.71 11697.09 6292.99 30699.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
新几何199.16 4599.34 5798.01 5998.69 12090.06 34198.13 10198.95 11294.60 7999.89 4791.97 28599.47 9999.59 79
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18398.11 10298.28 18794.50 8499.57 14294.12 22199.49 9697.37 250
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
testdata98.26 11099.20 9295.36 18198.68 12391.89 29898.60 8199.10 8694.44 8699.82 7694.27 21699.44 10399.58 83
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
PVSNet91.96 1896.35 14696.15 14096.96 20799.17 9492.05 29796.08 36698.68 12393.69 22697.75 12997.80 23288.86 20199.69 12494.26 21799.01 12699.15 150
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 28397.07 15797.96 21591.54 14099.75 10993.68 23498.92 12998.69 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24997.81 12598.97 10595.18 6799.83 6993.84 23099.46 10299.50 91
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26398.67 12892.57 27698.77 6798.85 12295.93 3899.72 11395.56 17499.69 5699.68 61
UnsupCasMVSNet_eth90.99 33089.92 33394.19 33994.08 37489.83 33597.13 33298.67 12893.69 22685.83 37696.19 33975.15 36796.74 36789.14 33479.41 38596.00 348
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
test22299.23 8897.17 9297.40 30598.66 13188.68 36098.05 10698.96 11094.14 9399.53 9199.61 75
test1198.66 131
XXY-MVS95.20 21094.45 22497.46 17096.75 30496.56 11998.86 11698.65 13593.30 24793.27 29698.27 19084.85 28498.87 24194.82 19691.26 30596.96 263
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36896.29 19498.61 14894.00 9699.29 17980.00 38299.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 26096.17 19798.58 15394.01 9599.81 8193.95 22698.90 13099.14 152
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35696.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17697.38 10499.20 11899.05 163
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 23298.87 13499.52 86
cdsmvs_eth3d_5k23.98 37331.98 3750.00 3910.00 4140.00 4160.00 40298.59 1440.00 4090.00 41098.61 14890.60 1620.00 4100.00 4090.00 4080.00 406
131496.25 15295.73 15897.79 14597.13 28195.55 17398.19 22998.59 14493.47 23992.03 33197.82 23091.33 14599.49 15894.62 20398.44 15598.32 220
CVMVSNet95.43 19396.04 14593.57 34397.93 21883.62 38198.12 23998.59 14495.68 12496.56 18199.02 9887.51 23497.51 35593.56 24097.44 19099.60 77
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18898.88 13299.19 143
LTVRE_ROB92.95 1594.60 24593.90 25996.68 22697.41 26294.42 23098.52 18798.59 14491.69 30491.21 33898.35 17884.87 28399.04 21391.06 30293.44 27796.60 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis1_n_192096.71 12996.84 11096.31 26699.11 10489.74 33799.05 6598.58 14998.08 1299.87 199.37 3878.48 34399.93 2599.29 1499.69 5699.27 129
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D94.24 27393.33 29196.97 20697.19 27793.38 27198.74 14698.57 15191.21 32393.81 27698.58 15372.85 37798.77 25395.05 19093.93 26198.77 189
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 31198.57 15193.33 24496.67 17597.57 25294.30 8999.56 14591.05 30498.59 14799.47 100
HQP_MVS96.14 15595.90 15196.85 21597.42 25994.60 22498.80 13598.56 15397.28 4595.34 21498.28 18787.09 24199.03 21496.07 15294.27 24796.92 266
plane_prior598.56 15399.03 21496.07 15294.27 24796.92 266
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17497.62 8898.89 13198.58 207
mvs_tets95.41 19695.00 19696.65 22795.58 35294.42 23099.00 7898.55 15595.73 12293.21 29898.38 17583.45 31398.63 26397.09 11294.00 25896.91 271
LPG-MVS_test95.62 18495.34 17796.47 25397.46 25493.54 26198.99 8198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
LGP-MVS_train96.47 25397.46 25493.54 26198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27799.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24698.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21599.31 11599.02 165
jajsoiax95.45 19295.03 19596.73 22195.42 36094.63 21999.14 4998.52 16295.74 12093.22 29798.36 17783.87 30998.65 26296.95 11894.04 25696.91 271
XVG-OURS96.55 13796.41 13096.99 20398.75 13793.76 25297.50 30198.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22797.69 239
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 31398.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 248
cascas94.63 24493.86 26396.93 20996.91 29494.27 23796.00 37098.51 16485.55 37794.54 23596.23 33684.20 30298.87 24195.80 16596.98 20197.66 240
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19598.83 2299.56 8699.20 139
PS-MVSNAJss96.43 14096.26 13796.92 21295.84 34695.08 19799.16 4698.50 16995.87 11693.84 27598.34 18294.51 8198.61 26496.88 12593.45 27697.06 256
MVS94.67 24293.54 28498.08 12896.88 29696.56 11998.19 22998.50 16978.05 39092.69 31498.02 20891.07 15499.63 13490.09 31598.36 16198.04 228
XVG-OURS-SEG-HR96.51 13896.34 13297.02 20298.77 13693.76 25297.79 28098.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23897.74 236
PVSNet_088.72 1991.28 32690.03 33295.00 31497.99 21187.29 37394.84 38298.50 16992.06 29489.86 35095.19 36279.81 33599.39 17292.27 27569.79 39698.33 219
ACMH92.88 1694.55 24993.95 25596.34 26497.63 24093.26 27698.81 13498.49 17493.43 24189.74 35198.53 15781.91 31899.08 20893.69 23393.30 28096.70 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19898.71 2499.49 9699.09 157
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 30298.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 246
HQP3-MVS98.46 17694.18 251
HQP-MVS95.72 17795.40 17196.69 22597.20 27494.25 23998.05 24898.46 17696.43 8994.45 23997.73 23586.75 24798.96 22595.30 18194.18 25196.86 280
CLD-MVS95.62 18495.34 17796.46 25697.52 25193.75 25497.27 31998.46 17695.53 13094.42 24498.00 21186.21 25798.97 22196.25 15094.37 24596.66 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 25094.14 24195.75 29096.55 31491.65 30598.11 24198.44 18094.96 16494.22 25597.90 21979.18 33999.11 20294.05 22593.85 26296.48 331
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18598.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP93.49 1095.34 20294.98 19896.43 25897.67 23693.48 26598.73 15098.44 18094.94 16792.53 31998.53 15784.50 29599.14 19795.48 17894.00 25896.66 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 18195.38 17596.61 23497.61 24193.84 25098.91 9898.44 18095.25 14794.28 25198.47 16486.04 26299.12 20095.50 17793.95 26096.87 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30998.43 18493.71 22397.65 13998.02 20892.20 12199.25 18296.87 12897.79 17999.19 143
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21998.91 2099.50 9499.19 143
anonymousdsp95.42 19494.91 20196.94 20895.10 36395.90 16099.14 4998.41 18693.75 21793.16 29997.46 25887.50 23698.41 29595.63 17394.03 25796.50 328
PMMVS96.60 13296.33 13397.41 17597.90 22093.93 24797.35 31298.41 18692.84 26797.76 12797.45 26091.10 15399.20 18996.26 14897.91 17499.11 155
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16298.79 6598.83 12592.34 11498.41 29596.91 11999.59 7699.34 116
test_djsdf96.00 16095.69 16596.93 20995.72 34895.49 17599.47 998.40 18894.98 16294.58 23497.86 22389.16 19098.41 29596.91 11994.12 25596.88 275
OPM-MVS95.69 18195.33 17996.76 22096.16 33494.63 21998.43 20198.39 19096.64 8195.02 22398.78 13085.15 27999.05 21095.21 18794.20 25096.60 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22699.08 161
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 35294.52 23699.35 4491.85 13099.85 6392.89 26098.88 13299.68 61
dcpmvs_298.08 6098.59 1496.56 24199.57 3390.34 33099.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24798.37 19496.20 9998.74 6998.89 11891.31 14799.25 18298.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+92.99 1494.30 26893.77 27095.88 28597.81 22592.04 29898.71 15598.37 19493.99 20490.60 34598.47 16480.86 32899.05 21092.75 26292.40 29196.55 317
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 35398.37 19491.32 31694.43 24398.73 13890.27 16899.60 13990.05 31898.82 13798.52 209
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32898.35 19794.85 17197.93 12198.58 15395.07 7299.71 11892.60 26499.34 11399.43 109
CMPMVSbinary66.06 2189.70 33989.67 33589.78 36493.19 38076.56 39097.00 33798.35 19780.97 38781.57 38697.75 23474.75 36998.61 26489.85 32193.63 27094.17 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 27693.43 28996.47 25395.90 34394.38 23399.26 2798.34 19991.99 29592.76 31197.13 27988.31 21398.52 27589.48 33087.70 34896.52 323
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 23096.95 16198.49 16193.54 9998.42 28795.24 18697.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18598.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 19298.10 5598.29 16599.39 112
cl2294.68 23994.19 23696.13 27398.11 20193.60 25996.94 34098.31 20392.43 28193.32 29596.87 31286.51 25098.28 31294.10 22391.16 30696.51 326
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
nrg03096.28 15095.72 15997.96 13696.90 29598.15 5299.39 1298.31 20395.47 13394.42 24498.35 17892.09 12498.69 25797.50 9989.05 33497.04 257
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20697.05 15998.61 14893.49 10098.52 27595.33 18097.81 17899.29 127
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23497.19 15199.07 9594.05 9499.23 18596.89 12398.43 15799.37 114
UnsupCasMVSNet_bld87.17 35085.12 35793.31 34891.94 38488.77 35594.92 38198.30 20984.30 38282.30 38490.04 39063.96 39097.25 35985.85 35974.47 39593.93 381
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16496.60 18098.87 12090.05 17098.59 26793.67 23698.60 14699.46 104
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
MS-PatchMatch93.84 29393.63 27994.46 33596.18 33189.45 34397.76 28198.27 21292.23 28992.13 32997.49 25679.50 33698.69 25789.75 32399.38 11195.25 360
EI-MVSNet95.96 16295.83 15396.36 26297.93 21893.70 25898.12 23998.27 21293.70 22595.07 22199.02 9892.23 11998.54 27394.68 19993.46 27496.84 282
MVSTER96.06 15895.72 15997.08 19898.23 18695.93 15798.73 15098.27 21294.86 16995.07 22198.09 20388.21 21598.54 27396.59 13793.46 27496.79 286
FMVSNet294.47 25993.61 28097.04 20098.21 18896.43 12698.79 14098.27 21292.46 27793.50 28897.09 28481.16 32398.00 33191.09 30091.93 29596.70 298
FMVSNet394.97 22694.26 23297.11 19698.18 19496.62 11298.56 18498.26 21693.67 23094.09 26197.10 28084.25 29898.01 32992.08 27892.14 29296.70 298
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 30195.29 21897.23 27491.03 15599.15 19592.90 25897.96 17398.97 170
PAPM94.95 22794.00 25197.78 14697.04 28595.65 16896.03 36998.25 21791.23 32194.19 25797.80 23291.27 14898.86 24382.61 37697.61 18698.84 181
test_fmvs1_n95.90 16895.99 14895.63 29398.67 14788.32 36499.26 2798.22 21996.40 9299.67 1499.26 5773.91 37499.70 11999.02 1899.50 9498.87 178
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25698.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 19199.37 11298.66 199
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20696.72 17497.99 21291.58 13699.76 10794.51 20896.54 21398.95 173
test_fmvs196.42 14196.67 12195.66 29298.82 13388.53 36098.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
PCF-MVS93.45 1194.68 23993.43 28998.42 9998.62 15296.77 10795.48 37798.20 22284.63 38193.34 29498.32 18488.55 20999.81 8184.80 36898.96 12898.68 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 25993.77 27096.57 24096.36 32494.83 21199.05 6598.19 22491.92 29793.16 29996.97 30288.82 20398.48 27891.69 29187.79 34796.39 335
v1094.29 27093.55 28396.51 24996.39 32394.80 21398.99 8198.19 22491.35 31493.02 30596.99 30088.09 21998.41 29590.50 31188.41 34296.33 339
mvs_anonymous96.70 13096.53 12797.18 18998.19 19293.78 25198.31 21398.19 22494.01 20294.47 23898.27 19092.08 12598.46 28297.39 10397.91 17499.31 122
AllTest95.24 20794.65 21296.99 20399.25 8193.21 27998.59 17698.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
TestCases96.99 20399.25 8193.21 27998.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
GBi-Net94.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
test194.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
FMVSNet193.19 30792.07 31496.56 24197.54 24895.00 19998.82 12698.18 22790.38 33692.27 32697.07 28773.68 37597.95 33489.36 33291.30 30396.72 294
v119294.32 26793.58 28196.53 24796.10 33594.45 22898.50 19298.17 23291.54 30794.19 25797.06 29186.95 24598.43 28690.14 31489.57 32496.70 298
v124094.06 28993.29 29396.34 26496.03 33993.90 24898.44 19998.17 23291.18 32494.13 26097.01 29986.05 26098.42 28789.13 33589.50 32896.70 298
v14419294.39 26493.70 27696.48 25296.06 33794.35 23498.58 17898.16 23491.45 30994.33 24997.02 29787.50 23698.45 28391.08 30189.11 33396.63 306
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 28297.74 23191.74 30398.69 16198.15 23595.56 12994.92 22497.68 24388.98 19898.79 25193.19 24897.78 18097.20 254
v192192094.20 27593.47 28796.40 26195.98 34094.08 24498.52 18798.15 23591.33 31594.25 25397.20 27786.41 25498.42 28790.04 31989.39 33096.69 303
v114494.59 24793.92 25696.60 23696.21 32994.78 21598.59 17698.14 23791.86 30094.21 25697.02 29787.97 22398.41 29591.72 29089.57 32496.61 308
IterMVS-LS95.46 19095.21 18696.22 27098.12 20093.72 25798.32 21298.13 23893.71 22394.26 25297.31 26892.24 11898.10 32294.63 20190.12 31796.84 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25696.09 19898.87 12089.71 17698.97 22192.95 25698.08 17099.43 109
EU-MVSNet93.66 29494.14 24192.25 35995.96 34283.38 38398.52 18798.12 23994.69 17592.61 31698.13 20187.36 23996.39 37591.82 28790.00 31996.98 261
IterMVS94.09 28693.85 26494.80 32397.99 21190.35 32997.18 32698.12 23993.68 22892.46 32397.34 26584.05 30497.41 35792.51 27191.33 30296.62 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n95.47 18995.13 18996.49 25097.77 22790.41 32899.27 2698.11 24296.58 8399.66 1599.18 7367.00 38799.62 13799.21 1599.40 10999.44 107
IterMVS-SCA-FT94.11 28493.87 26294.85 32097.98 21390.56 32697.18 32698.11 24293.75 21792.58 31797.48 25783.97 30697.41 35792.48 27391.30 30396.58 311
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 22299.29 7393.24 27898.58 17898.11 24289.92 34393.57 28399.10 8686.37 25599.79 9890.78 30798.10 16997.09 255
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 17895.30 18396.93 20998.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21797.95 6280.91 38198.22 223
AUN-MVS94.53 25293.73 27496.92 21298.50 16093.52 26498.34 20798.10 24593.83 21495.94 20697.98 21485.59 26999.03 21494.35 21280.94 38098.22 223
Effi-MVS+-dtu96.29 14896.56 12495.51 29797.89 22190.22 33198.80 13598.10 24596.57 8596.45 19096.66 32190.81 15798.91 23495.72 16897.99 17197.40 247
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26494.84 22698.43 16892.14 12299.58 14194.35 21296.51 21499.56 85
V4294.78 23594.14 24196.70 22496.33 32795.22 19098.97 8498.09 24992.32 28694.31 25097.06 29188.39 21298.55 27192.90 25888.87 33896.34 337
miper_enhance_ethall95.10 21594.75 20896.12 27497.53 25093.73 25696.61 36098.08 25092.20 29293.89 27196.65 32392.44 11298.30 30894.21 21891.16 30696.34 337
v2v48294.69 23794.03 24796.65 22796.17 33294.79 21498.67 16598.08 25092.72 27094.00 26697.16 27887.69 23398.45 28392.91 25788.87 33896.72 294
CL-MVSNet_self_test90.11 33689.14 33993.02 35291.86 38588.23 36696.51 36398.07 25290.49 33190.49 34694.41 37084.75 28795.34 38480.79 38074.95 39395.50 357
miper_ehance_all_eth95.01 21994.69 21195.97 27997.70 23493.31 27497.02 33698.07 25292.23 28993.51 28796.96 30491.85 13098.15 31893.68 23491.16 30696.44 334
eth_miper_zixun_eth94.68 23994.41 22795.47 29997.64 23991.71 30496.73 35798.07 25292.71 27193.64 28097.21 27690.54 16398.17 31793.38 24289.76 32196.54 318
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 19398.44 9198.07 20492.48 11199.26 18196.43 14498.19 16699.16 149
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28598.07 25292.10 29394.79 23097.29 26991.75 13299.56 14594.17 21996.50 21599.58 83
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 21098.46 16687.72 22998.59 26797.84 7393.80 26496.87 277
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21299.19 143
RPSCF94.87 23195.40 17193.26 34998.89 12582.06 38798.33 20898.06 25790.30 33896.56 18199.26 5787.09 24199.49 15893.82 23196.32 22098.24 221
miper_lstm_enhance94.33 26694.07 24595.11 31197.75 22890.97 31597.22 32198.03 26091.67 30592.76 31196.97 30290.03 17197.78 34592.51 27189.64 32396.56 315
c3_l94.79 23494.43 22695.89 28497.75 22893.12 28397.16 33098.03 26092.23 28993.46 29097.05 29391.39 14298.01 32993.58 23989.21 33296.53 320
pm-mvs193.94 29293.06 29696.59 23796.49 31895.16 19298.95 9098.03 26092.32 28691.08 34097.84 22684.54 29498.41 29592.16 27686.13 36696.19 344
iter_conf0596.13 15695.79 15497.15 19298.16 19895.99 14598.88 10897.98 26395.91 11295.58 21198.46 16685.53 27098.59 26797.88 6993.75 26596.86 280
mvsmamba96.57 13696.32 13497.32 18296.60 31196.43 12699.54 797.98 26396.49 8695.20 21998.64 14690.82 15698.55 27197.97 6193.65 26996.98 261
v14894.29 27093.76 27295.91 28296.10 33592.93 28698.58 17897.97 26592.59 27593.47 28996.95 30688.53 21098.32 30492.56 26887.06 35796.49 329
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 23194.60 20498.59 14799.47 100
cl____94.51 25494.01 25096.02 27697.58 24393.40 27097.05 33497.96 26791.73 30392.76 31197.08 28689.06 19498.13 32092.61 26390.29 31596.52 323
KD-MVS_self_test90.38 33489.38 33793.40 34692.85 38288.94 35497.95 25897.94 26890.35 33790.25 34793.96 37579.82 33495.94 38084.62 37076.69 39195.33 359
DIV-MVS_self_test94.52 25394.03 24795.99 27797.57 24793.38 27197.05 33497.94 26891.74 30192.81 30997.10 28089.12 19198.07 32692.60 26490.30 31496.53 320
pmmvs691.77 32190.63 32695.17 30994.69 37191.24 31298.67 16597.92 27086.14 37289.62 35297.56 25475.79 36598.34 30290.75 30884.56 36895.94 350
RRT_MVS95.98 16195.78 15596.56 24196.48 31994.22 24199.57 697.92 27095.89 11393.95 26898.70 14089.27 18698.42 28797.23 10893.02 28397.04 257
jason97.32 10497.08 10098.06 13097.45 25795.59 16997.87 27197.91 27294.79 17298.55 8398.83 12591.12 15199.23 18597.58 9199.60 7499.34 116
jason: jason.
ppachtmachnet_test93.22 30592.63 30594.97 31595.45 35890.84 31996.88 34997.88 27390.60 33092.08 33097.26 27088.08 22097.86 34385.12 36490.33 31396.22 342
tpm cat193.36 29992.80 30195.07 31397.58 24387.97 36896.76 35597.86 27482.17 38693.53 28496.04 34386.13 25899.13 19889.24 33395.87 23798.10 227
tt080594.54 25093.85 26496.63 23197.98 21393.06 28598.77 14297.84 27593.67 23093.80 27798.04 20776.88 36098.96 22594.79 19892.86 28697.86 233
EG-PatchMatch MVS91.13 32890.12 33194.17 34094.73 37089.00 35198.13 23897.81 27689.22 35685.32 38096.46 32967.71 38598.42 28787.89 34893.82 26395.08 365
BH-untuned95.95 16395.72 15996.65 22798.55 15792.26 29298.23 22297.79 27793.73 22094.62 23398.01 21088.97 19999.00 22093.04 25398.51 15198.68 195
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28797.76 27894.50 18698.79 6598.61 14892.34 11499.30 17897.58 9199.59 7699.31 122
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 33398.36 9499.39 3273.27 37699.64 13197.98 6096.58 21198.81 183
ADS-MVSNet95.00 22094.45 22496.63 23198.00 20991.91 29996.04 36797.74 28090.15 33996.47 18896.64 32487.89 22598.96 22590.08 31697.06 19699.02 165
tpmvs94.60 24594.36 22995.33 30597.46 25488.60 35896.88 34997.68 28191.29 31893.80 27796.42 33188.58 20599.24 18491.06 30296.04 23398.17 225
pmmvs494.69 23793.99 25396.81 21895.74 34795.94 15497.40 30597.67 28290.42 33593.37 29397.59 25089.08 19398.20 31592.97 25591.67 29996.30 340
our_test_393.65 29693.30 29294.69 32595.45 35889.68 34096.91 34397.65 28391.97 29691.66 33596.88 31089.67 17797.93 33788.02 34691.49 30196.48 331
MVP-Stereo94.28 27293.92 25695.35 30494.95 36592.60 28997.97 25797.65 28391.61 30690.68 34497.09 28486.32 25698.42 28789.70 32599.34 11395.02 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
miper_refine_blended89.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
SCA95.46 19095.13 18996.46 25697.67 23691.29 31197.33 31497.60 28794.68 17696.92 16597.10 28083.97 30698.89 23892.59 26698.32 16499.20 139
testing9194.98 22494.25 23397.20 18697.94 21693.41 26898.00 25497.58 28894.99 16195.45 21396.04 34377.20 35699.42 16894.97 19296.02 23498.78 187
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27897.58 28893.21 25097.36 14797.70 23889.47 18099.56 14594.12 22197.99 17198.71 193
GA-MVS94.81 23394.03 24797.14 19397.15 28093.86 24996.76 35597.58 28894.00 20394.76 23197.04 29480.91 32698.48 27891.79 28896.25 22899.09 157
Anonymous2024052191.18 32790.44 32893.42 34493.70 37888.47 36198.94 9397.56 29188.46 36189.56 35495.08 36577.15 35896.97 36383.92 37189.55 32694.82 369
test20.0390.89 33190.38 32992.43 35593.48 37988.14 36798.33 20897.56 29193.40 24287.96 36496.71 32080.69 33094.13 39079.15 38586.17 36495.01 368
CR-MVSNet94.76 23694.15 24096.59 23797.00 28693.43 26694.96 37997.56 29192.46 27796.93 16396.24 33488.15 21797.88 34287.38 34996.65 20998.46 212
Patchmtry93.22 30592.35 31195.84 28696.77 30193.09 28494.66 38697.56 29187.37 36692.90 30796.24 33488.15 21797.90 33887.37 35090.10 31896.53 320
tpmrst95.63 18395.69 16595.44 30197.54 24888.54 35996.97 33897.56 29193.50 23797.52 14596.93 30889.49 17899.16 19295.25 18596.42 21798.64 201
FMVSNet591.81 32090.92 32394.49 33297.21 27392.09 29598.00 25497.55 29689.31 35590.86 34295.61 35774.48 37195.32 38585.57 36089.70 32296.07 347
testgi93.06 31092.45 31094.88 31996.43 32289.90 33498.75 14397.54 29795.60 12791.63 33697.91 21874.46 37297.02 36286.10 35693.67 26797.72 238
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29897.53 29895.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
PatchmatchNetpermissive95.71 17895.52 16996.29 26897.58 24390.72 32296.84 35297.52 29994.06 19897.08 15596.96 30489.24 18898.90 23792.03 28298.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 33888.35 34494.83 32295.21 36291.34 30997.64 29197.51 30088.36 36271.17 39796.13 34179.22 33896.63 37283.65 37286.27 36396.52 323
USDC93.33 30292.71 30395.21 30796.83 29990.83 32096.91 34397.50 30193.84 21290.72 34398.14 20077.69 35098.82 24889.51 32993.21 28295.97 349
ITE_SJBPF95.44 30197.42 25991.32 31097.50 30195.09 15793.59 28198.35 17881.70 31998.88 24089.71 32493.39 27896.12 345
Patchmatch-test94.42 26293.68 27896.63 23197.60 24291.76 30194.83 38397.49 30389.45 35294.14 25997.10 28088.99 19598.83 24785.37 36398.13 16899.29 127
Syy-MVS92.55 31592.61 30692.38 35697.39 26383.41 38297.91 26397.46 30493.16 25393.42 29195.37 36084.75 28796.12 37777.00 39096.99 19897.60 242
myMVS_eth3d92.73 31392.01 31594.89 31897.39 26390.94 31697.91 26397.46 30493.16 25393.42 29195.37 36068.09 38396.12 37788.34 34296.99 19897.60 242
YYNet190.70 33389.39 33694.62 32994.79 36990.65 32497.20 32397.46 30487.54 36572.54 39595.74 35086.51 25096.66 37186.00 35786.76 36296.54 318
MDA-MVSNet_test_wron90.71 33289.38 33794.68 32694.83 36790.78 32197.19 32597.46 30487.60 36472.41 39695.72 35486.51 25096.71 37085.92 35886.80 36196.56 315
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30894.56 18196.03 20098.61 14885.02 28099.12 20090.68 30999.06 12299.30 125
MIMVSNet189.67 34088.28 34593.82 34192.81 38391.08 31498.01 25297.45 30887.95 36387.90 36595.87 34867.63 38694.56 38978.73 38788.18 34495.83 352
OurMVSNet-221017-094.21 27494.00 25194.85 32095.60 35189.22 34798.89 10397.43 31095.29 14492.18 32898.52 16082.86 31498.59 26793.46 24191.76 29796.74 291
BH-w/o95.38 19795.08 19396.26 26998.34 17691.79 30097.70 28697.43 31092.87 26694.24 25497.22 27588.66 20498.84 24491.55 29397.70 18498.16 226
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31295.02 16097.95 11799.34 4874.37 37399.78 10198.64 2596.80 20499.08 161
Gipumacopyleft78.40 36276.75 36583.38 37695.54 35380.43 38979.42 40097.40 31264.67 39773.46 39480.82 39845.65 39793.14 39466.32 39887.43 35176.56 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32897.38 31490.95 32797.73 13297.70 23885.32 27799.63 13491.18 29798.33 16298.79 184
bld_raw_dy_0_6495.74 17695.31 18297.03 20196.35 32595.76 16599.12 5397.37 31595.97 10894.70 23298.48 16285.80 26598.49 27796.55 13993.48 27396.84 282
new-patchmatchnet88.50 34687.45 35191.67 36190.31 39085.89 37797.16 33097.33 31689.47 35183.63 38392.77 38476.38 36195.06 38782.70 37577.29 39094.06 379
ADS-MVSNet294.58 24894.40 22895.11 31198.00 20988.74 35696.04 36797.30 31790.15 33996.47 18896.64 32487.89 22597.56 35390.08 31697.06 19699.02 165
MDTV_nov1_ep1395.40 17197.48 25288.34 36396.85 35197.29 31893.74 21997.48 14697.26 27089.18 18999.05 21091.92 28697.43 191
pmmvs593.65 29692.97 29995.68 29195.49 35592.37 29098.20 22697.28 31989.66 34892.58 31797.26 27082.14 31798.09 32493.18 24990.95 30996.58 311
EPNet_dtu95.21 20994.95 20095.99 27796.17 33290.45 32798.16 23597.27 32096.77 7593.14 30298.33 18390.34 16698.42 28785.57 36098.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 32291.10 32293.33 34794.02 37787.35 37298.58 17897.26 32190.48 33290.16 34896.31 33283.83 31096.53 37379.36 38489.90 32096.12 345
test_fmvs293.43 29893.58 28192.95 35396.97 28983.91 38099.19 4297.24 32295.74 12095.20 21998.27 19069.65 38098.72 25696.26 14893.73 26696.24 341
test_040291.32 32490.27 33094.48 33396.60 31191.12 31398.50 19297.22 32386.10 37388.30 36396.98 30177.65 35297.99 33278.13 38892.94 28594.34 371
dp94.15 28093.90 25994.90 31797.31 26786.82 37596.97 33897.19 32491.22 32296.02 20196.61 32685.51 27199.02 21790.00 32094.30 24698.85 179
testing9994.83 23294.08 24497.07 19997.94 21693.13 28198.10 24397.17 32594.86 16995.34 21496.00 34676.31 36299.40 16995.08 18995.90 23598.68 195
testing393.19 30792.48 30995.30 30698.07 20392.27 29198.64 16997.17 32593.94 20893.98 26797.04 29467.97 38496.01 37988.40 34197.14 19597.63 241
ETVMVS94.50 25593.44 28897.68 15898.18 19495.35 18398.19 22997.11 32793.73 22096.40 19195.39 35974.53 37098.84 24491.10 29996.31 22198.84 181
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32795.24 14996.54 18596.22 33884.58 29399.53 15387.93 34796.50 21597.39 248
dmvs_re94.48 25894.18 23895.37 30397.68 23590.11 33398.54 18697.08 32994.56 18194.42 24497.24 27384.25 29897.76 34691.02 30592.83 28798.24 221
PatchT93.06 31091.97 31696.35 26396.69 30792.67 28894.48 38797.08 32986.62 36897.08 15592.23 38787.94 22497.90 33878.89 38696.69 20798.49 211
TDRefinement91.06 32989.68 33495.21 30785.35 40191.49 30898.51 19197.07 33191.47 30888.83 36197.84 22677.31 35499.09 20792.79 26177.98 38995.04 366
LF4IMVS93.14 30992.79 30294.20 33895.88 34488.67 35797.66 28997.07 33193.81 21591.71 33497.65 24477.96 34998.81 24991.47 29491.92 29695.12 363
testing1195.00 22094.28 23197.16 19197.96 21593.36 27398.09 24497.06 33394.94 16795.33 21796.15 34076.89 35999.40 16995.77 16796.30 22298.72 190
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33490.66 32996.49 18798.80 12878.13 34799.83 6996.21 15195.36 24399.44 107
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33595.37 14096.22 19598.19 19789.96 17299.16 19294.60 20487.48 35098.90 177
MIMVSNet93.26 30492.21 31396.41 25997.73 23293.13 28195.65 37497.03 33591.27 32094.04 26496.06 34275.33 36697.19 36086.56 35396.23 22998.92 176
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33798.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
EPNet97.28 10596.87 10998.51 8694.98 36496.14 14298.90 9997.02 33798.28 1095.99 20299.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 22994.20 23597.17 19097.75 22894.14 24397.59 29597.02 33792.28 28895.75 20897.64 24683.88 30898.96 22589.77 32296.15 23198.40 214
JIA-IIPM93.35 30092.49 30895.92 28196.48 31990.65 32495.01 37896.96 34085.93 37496.08 19987.33 39387.70 23298.78 25291.35 29595.58 24198.34 218
pmmvs-eth3d90.36 33589.05 34094.32 33791.10 38892.12 29497.63 29496.95 34188.86 35984.91 38193.13 38278.32 34496.74 36788.70 33881.81 37694.09 377
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22397.76 234
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22398.40 214
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34495.38 13896.61 17996.88 31084.29 29699.56 14588.11 34396.29 22397.76 234
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34495.38 13896.63 17796.90 30984.29 29699.59 14088.65 34096.33 21998.40 214
test_method79.03 35878.17 36081.63 38086.06 40054.40 41182.75 39996.89 34639.54 40380.98 38895.57 35858.37 39394.73 38884.74 36978.61 38695.75 353
CostFormer94.95 22794.73 20995.60 29597.28 26889.06 34997.53 29896.89 34689.66 34896.82 17096.72 31986.05 26098.95 23095.53 17696.13 23298.79 184
new_pmnet90.06 33789.00 34193.22 35094.18 37288.32 36496.42 36596.89 34686.19 37185.67 37793.62 37777.18 35797.10 36181.61 37889.29 33194.23 373
OpenMVS_ROBcopyleft86.42 2089.00 34487.43 35293.69 34293.08 38189.42 34497.91 26396.89 34678.58 38985.86 37594.69 36769.48 38198.29 31177.13 38993.29 28193.36 384
tpm294.19 27693.76 27295.46 30097.23 27189.04 35097.31 31696.85 35087.08 36796.21 19696.79 31683.75 31298.74 25492.43 27496.23 22998.59 205
TransMVSNet (Re)92.67 31491.51 32096.15 27196.58 31394.65 21798.90 9996.73 35190.86 32889.46 35597.86 22385.62 26898.09 32486.45 35481.12 37895.71 354
ambc89.49 36586.66 39875.78 39192.66 39296.72 35286.55 37392.50 38646.01 39697.90 33890.32 31282.09 37394.80 370
LCM-MVSNet78.70 36176.24 36686.08 37077.26 40771.99 39894.34 38896.72 35261.62 39876.53 39089.33 39133.91 40692.78 39581.85 37774.60 39493.46 383
TinyColmap92.31 31891.53 31994.65 32896.92 29289.75 33696.92 34196.68 35490.45 33489.62 35297.85 22576.06 36498.81 24986.74 35292.51 29095.41 358
Baseline_NR-MVSNet94.35 26593.81 26695.96 28096.20 33094.05 24598.61 17596.67 35591.44 31093.85 27497.60 24988.57 20698.14 31994.39 21086.93 35895.68 355
SixPastTwentyTwo93.34 30192.86 30094.75 32495.67 34989.41 34598.75 14396.67 35593.89 20990.15 34998.25 19380.87 32798.27 31390.90 30690.64 31196.57 313
testing22294.12 28393.03 29797.37 18098.02 20894.66 21697.94 26096.65 35794.63 17995.78 20795.76 34971.49 37898.92 23291.17 29895.88 23698.52 209
test_fmvs387.17 35087.06 35387.50 36891.21 38775.66 39299.05 6596.61 35892.79 26988.85 36092.78 38343.72 39893.49 39193.95 22684.56 36893.34 385
EGC-MVSNET75.22 36569.54 36892.28 35894.81 36889.58 34197.64 29196.50 3591.82 4085.57 40995.74 35068.21 38296.26 37673.80 39391.71 29890.99 388
APD_test188.22 34788.01 34788.86 36695.98 34074.66 39697.21 32296.44 36083.96 38386.66 37297.90 21960.95 39297.84 34482.73 37490.23 31694.09 377
WB-MVS84.86 35585.33 35683.46 37589.48 39269.56 40098.19 22996.42 36189.55 35081.79 38594.67 36884.80 28590.12 39852.44 40180.64 38290.69 389
test_f86.07 35485.39 35588.10 36789.28 39375.57 39397.73 28496.33 36289.41 35485.35 37991.56 38943.31 40095.53 38291.32 29684.23 37093.21 386
SSC-MVS84.27 35684.71 35982.96 37989.19 39468.83 40198.08 24596.30 36389.04 35881.37 38794.47 36984.60 29289.89 39949.80 40379.52 38490.15 390
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36493.40 24298.62 7999.20 6774.99 36899.63 13497.72 8097.20 19499.46 104
IB-MVS91.98 1793.27 30391.97 31697.19 18897.47 25393.41 26897.09 33395.99 36593.32 24592.47 32295.73 35278.06 34899.53 15394.59 20682.98 37298.62 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 28793.51 28595.80 28795.53 35492.89 28797.38 30795.97 36695.11 15492.51 32196.66 32187.71 23096.94 36487.03 35193.67 26797.57 244
WB-MVSnew94.19 27694.04 24694.66 32796.82 30092.14 29397.86 27295.96 36793.50 23795.64 20996.77 31788.06 22197.99 33284.87 36596.86 20293.85 382
FPMVS77.62 36477.14 36479.05 38279.25 40560.97 40795.79 37295.94 36865.96 39667.93 39894.40 37137.73 40288.88 40168.83 39788.46 34187.29 394
Patchmatch-RL test91.49 32390.85 32493.41 34591.37 38684.40 37892.81 39195.93 36991.87 29987.25 36794.87 36688.99 19596.53 37392.54 27082.00 37499.30 125
tpm94.13 28193.80 26795.12 31096.50 31787.91 36997.44 30295.89 37092.62 27396.37 19396.30 33384.13 30398.30 30893.24 24691.66 30099.14 152
LCM-MVSNet-Re95.22 20895.32 18094.91 31698.18 19487.85 37098.75 14395.66 37195.11 15488.96 35796.85 31390.26 16997.65 34895.65 17298.44 15599.22 137
mvsany_test388.80 34588.04 34691.09 36389.78 39181.57 38897.83 27795.49 37293.81 21587.53 36693.95 37656.14 39497.43 35694.68 19983.13 37194.26 372
ET-MVSNet_ETH3D94.13 28192.98 29897.58 16698.22 18796.20 13897.31 31695.37 37394.53 18379.56 38997.63 24886.51 25097.53 35496.91 11990.74 31099.02 165
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37498.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
test-LLR95.10 21594.87 20495.80 28796.77 30189.70 33896.91 34395.21 37595.11 15494.83 22895.72 35487.71 23098.97 22193.06 25198.50 15298.72 190
test-mter94.08 28793.51 28595.80 28796.77 30189.70 33896.91 34395.21 37592.89 26594.83 22895.72 35477.69 35098.97 22193.06 25198.50 15298.72 190
PM-MVS87.77 34886.55 35491.40 36291.03 38983.36 38496.92 34195.18 37791.28 31986.48 37493.42 37953.27 39596.74 36789.43 33181.97 37594.11 376
DeepMVS_CXcopyleft86.78 36997.09 28472.30 39795.17 37875.92 39184.34 38295.19 36270.58 37995.35 38379.98 38389.04 33592.68 387
K. test v392.55 31591.91 31894.48 33395.64 35089.24 34699.07 6294.88 37994.04 19986.78 37097.59 25077.64 35397.64 34992.08 27889.43 32996.57 313
TESTMET0.1,194.18 27993.69 27795.63 29396.92 29289.12 34896.91 34394.78 38093.17 25294.88 22596.45 33078.52 34298.92 23293.09 25098.50 15298.85 179
pmmvs386.67 35384.86 35892.11 36088.16 39587.19 37496.63 35994.75 38179.88 38887.22 36892.75 38566.56 38895.20 38681.24 37976.56 39293.96 380
door94.64 382
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35494.41 38392.95 26397.18 15297.43 26284.78 28699.45 16694.63 20197.73 18398.68 195
door-mid94.37 384
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38594.26 19497.64 14098.64 14684.05 30499.47 16495.34 17997.60 18799.03 164
DSMNet-mixed92.52 31792.58 30792.33 35794.15 37382.65 38598.30 21594.26 38689.08 35792.65 31595.73 35285.01 28195.76 38186.24 35597.76 18198.59 205
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38794.04 19997.64 14098.31 18583.82 31199.46 16595.29 18397.70 18498.93 175
MTMP98.89 10394.14 388
baseline295.11 21494.52 21896.87 21496.65 31093.56 26098.27 22094.10 38993.45 24092.02 33297.43 26287.45 23899.19 19093.88 22997.41 19297.87 232
PMVScopyleft61.03 2365.95 36863.57 37273.09 38557.90 41051.22 41285.05 39893.93 39054.45 39944.32 40583.57 39413.22 40989.15 40058.68 40081.00 37978.91 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UWE-MVS94.30 26893.89 26195.53 29697.83 22388.95 35397.52 30093.25 39194.44 18996.63 17797.07 28778.70 34199.28 18091.99 28397.56 18998.36 217
testf179.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
APD_test279.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
PMMVS277.95 36375.44 36785.46 37182.54 40274.95 39494.23 38993.08 39472.80 39374.68 39187.38 39236.36 40391.56 39673.95 39263.94 39989.87 391
MVS-HIRNet89.46 34388.40 34392.64 35497.58 24382.15 38694.16 39093.05 39575.73 39290.90 34182.52 39579.42 33798.33 30383.53 37398.68 14097.43 245
test111195.94 16595.78 15596.41 25998.99 11890.12 33299.04 6892.45 39696.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
ECVR-MVScopyleft95.95 16395.71 16296.65 22799.02 11190.86 31899.03 7191.80 39796.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
EPMVS94.99 22294.48 22096.52 24897.22 27291.75 30297.23 32091.66 39894.11 19697.28 14896.81 31585.70 26798.84 24493.04 25397.28 19398.97 170
dmvs_testset87.64 34988.93 34283.79 37495.25 36163.36 40597.20 32391.17 39993.07 25785.64 37895.98 34785.30 27891.52 39769.42 39687.33 35396.49 329
lessismore_v094.45 33694.93 36688.44 36291.03 40086.77 37197.64 24676.23 36398.42 28790.31 31385.64 36796.51 326
test_vis1_rt91.29 32590.65 32593.19 35197.45 25786.25 37698.57 18390.90 40193.30 24786.94 36993.59 37862.07 39199.11 20297.48 10095.58 24194.22 374
ANet_high69.08 36665.37 37080.22 38165.99 40971.96 39990.91 39590.09 40282.62 38449.93 40478.39 39929.36 40781.75 40262.49 39938.52 40386.95 396
gg-mvs-nofinetune92.21 31990.58 32797.13 19496.75 30495.09 19695.85 37189.40 40385.43 37894.50 23781.98 39680.80 32998.40 30192.16 27698.33 16297.88 231
GG-mvs-BLEND96.59 23796.34 32694.98 20296.51 36388.58 40493.10 30494.34 37480.34 33398.05 32789.53 32896.99 19896.74 291
E-PMN64.94 36964.25 37167.02 38682.28 40359.36 40991.83 39485.63 40552.69 40060.22 40177.28 40041.06 40180.12 40446.15 40441.14 40161.57 402
EMVS64.07 37063.26 37366.53 38781.73 40458.81 41091.85 39384.75 40651.93 40259.09 40275.13 40143.32 39979.09 40542.03 40539.47 40261.69 401
tmp_tt68.90 36766.97 36974.68 38450.78 41159.95 40887.13 39683.47 40738.80 40462.21 40096.23 33664.70 38976.91 40688.91 33730.49 40487.19 395
test_vis3_rt79.22 35777.40 36384.67 37386.44 39974.85 39597.66 28981.43 40884.98 37967.12 39981.91 39728.09 40897.60 35088.96 33680.04 38381.55 397
MVEpermissive62.14 2263.28 37159.38 37474.99 38374.33 40865.47 40485.55 39780.50 40952.02 40151.10 40375.00 40210.91 41280.50 40351.60 40253.40 40078.99 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250694.44 26193.91 25896.04 27599.02 11188.99 35299.06 6379.47 41096.96 6798.36 9499.26 5777.21 35599.52 15696.78 13499.04 12399.59 79
N_pmnet87.12 35287.77 35085.17 37295.46 35761.92 40697.37 30970.66 41185.83 37588.73 36296.04 34385.33 27697.76 34680.02 38190.48 31295.84 351
wuyk23d30.17 37230.18 37630.16 38878.61 40643.29 41366.79 40114.21 41217.31 40514.82 40811.93 40811.55 41141.43 40737.08 40619.30 4055.76 405
testmvs21.48 37424.95 37711.09 39014.89 4126.47 41596.56 3619.87 4137.55 40617.93 40639.02 4049.43 4135.90 40916.56 40812.72 40620.91 404
test12320.95 37523.72 37812.64 38913.54 4138.19 41496.55 3626.13 4147.48 40716.74 40737.98 40512.97 4106.05 40816.69 4075.43 40723.68 403
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.88 37710.50 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40994.51 810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
n20.00 415
nn0.00 415
ab-mvs-re8.20 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.43 1680.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.94 31688.66 339
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28197.52 9899.72 5199.74 37
eth-test20.00 414
eth-test0.00 414
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17397.24 10799.73 4899.70 53
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
test_post196.68 35830.43 40787.85 22898.69 25792.59 266
test_post31.83 40688.83 20298.91 234
patchmatchnet-post95.10 36489.42 18298.89 238
gm-plane-assit95.88 34487.47 37189.74 34796.94 30799.19 19093.32 245
test9_res96.39 14699.57 8099.69 56
agg_prior295.87 16299.57 8099.68 61
test_prior498.01 5997.86 272
test_prior297.80 27896.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
旧先验297.57 29791.30 31798.67 7399.80 8895.70 171
新几何297.64 291
原ACMM297.67 288
testdata299.89 4791.65 292
segment_acmp96.85 14
testdata197.32 31596.34 95
plane_prior797.42 25994.63 219
plane_prior697.35 26694.61 22287.09 241
plane_prior498.28 187
plane_prior394.61 22297.02 6495.34 214
plane_prior298.80 13597.28 45
plane_prior197.37 265
plane_prior94.60 22498.44 19996.74 7794.22 249
HQP5-MVS94.25 239
HQP-NCC97.20 27498.05 24896.43 8994.45 239
ACMP_Plane97.20 27498.05 24896.43 8994.45 239
BP-MVS95.30 181
HQP4-MVS94.45 23998.96 22596.87 277
HQP2-MVS86.75 247
NP-MVS97.28 26894.51 22797.73 235
MDTV_nov1_ep13_2view84.26 37996.89 34890.97 32697.90 12389.89 17393.91 22899.18 148
ACMMP++_ref92.97 284
ACMMP++93.61 271
Test By Simon94.64 78