This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 10996.80 10498.08 12499.30 7594.56 21598.05 22299.71 193.57 20297.09 13798.91 10088.17 20999.89 3596.87 10399.56 8099.81 8
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16797.38 27199.65 292.34 24797.61 12598.20 17589.29 17999.10 18596.97 9097.60 17199.77 20
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 23199.58 397.14 4398.44 7599.01 8495.03 7399.62 13197.91 4199.75 3899.50 91
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23599.58 397.20 3998.33 8199.00 8595.99 3599.64 12698.05 3699.76 3299.69 51
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6599.49 595.43 11099.03 3399.32 3395.56 4799.94 396.80 10799.77 2699.78 13
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5699.41 695.98 8697.60 12699.36 2694.45 8899.93 1597.14 8498.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG97.85 6797.74 6398.20 11599.67 2695.16 18299.22 2799.32 793.04 22297.02 14398.92 9995.36 5899.91 3097.43 7599.64 6299.52 85
PVSNet_BlendedMVS96.73 12296.60 11797.12 18199.25 8695.35 17798.26 19699.26 894.28 16397.94 10397.46 23792.74 10999.81 7196.88 10093.32 24796.20 313
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17797.28 28299.26 893.13 21997.94 10398.21 17492.74 10999.81 7196.88 10099.40 10099.27 125
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16996.84 27096.97 10398.74 11599.24 1095.16 12693.88 24297.72 21791.68 13198.31 27895.81 14087.25 32196.92 238
WR-MVS_H95.05 20094.46 20496.81 20196.86 26995.82 16099.24 2299.24 1093.87 18192.53 28896.84 29090.37 16098.24 28793.24 22187.93 31396.38 306
FC-MVSNet-test96.42 13496.05 13597.53 16396.95 26297.27 9199.36 999.23 1295.83 9193.93 23998.37 15692.00 12598.32 27696.02 13492.72 25597.00 232
VPA-MVSNet95.75 16095.11 17597.69 15197.24 24297.27 9198.94 7599.23 1295.13 12895.51 18897.32 24685.73 25698.91 21197.33 8089.55 29296.89 246
FIs96.51 13196.12 13397.67 15397.13 25397.54 8299.36 999.22 1495.89 8894.03 23798.35 15891.98 12698.44 25896.40 12292.76 25497.01 231
tfpnnormal93.66 27092.70 27996.55 22696.94 26395.94 15198.97 6999.19 1591.04 29191.38 30797.34 24484.94 26998.61 24085.45 32889.02 30295.11 334
UniMVSNet (Re)95.78 15995.19 17197.58 15996.99 26197.47 8498.79 11099.18 1695.60 10193.92 24097.04 27191.68 13198.48 25295.80 14287.66 31696.79 256
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 14099.16 1794.48 15997.67 11998.88 10292.80 10899.91 3097.11 8599.12 11199.50 91
CHOSEN 280x42097.18 10697.18 8997.20 17598.81 12693.27 25995.78 33499.15 1895.25 12296.79 15698.11 18192.29 11599.07 18898.56 999.85 399.25 127
D2MVS95.18 19395.08 17695.48 27497.10 25592.07 27598.30 19099.13 1994.02 17292.90 27696.73 29389.48 17498.73 23194.48 18493.60 24195.65 326
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21198.83 4899.10 6996.54 1699.83 5697.70 6099.76 3299.59 80
UA-Net97.96 5997.62 6598.98 6598.86 12197.47 8498.89 8499.08 2196.67 6098.72 5699.54 193.15 10599.81 7194.87 16898.83 12399.65 67
PatchMatch-RL96.59 12796.03 13798.27 10999.31 7096.51 12497.91 23599.06 2293.72 19096.92 14898.06 18488.50 20399.65 12491.77 26399.00 11498.66 180
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20297.64 7799.35 1199.06 2297.02 4993.75 24999.16 6189.25 18099.92 2197.22 8299.75 3899.64 70
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12499.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1499.70 5199.47 98
PS-CasMVS94.67 22493.99 23396.71 20696.68 27995.26 18099.13 4199.03 2593.68 19692.33 29597.95 19485.35 26398.10 29593.59 21288.16 31296.79 256
TranMVSNet+NR-MVSNet95.14 19594.48 20297.11 18296.45 29096.36 13199.03 5699.03 2595.04 13493.58 25297.93 19688.27 20698.03 30294.13 19586.90 32696.95 237
PEN-MVS94.42 24193.73 25296.49 23096.28 29694.84 19999.17 3599.00 2793.51 20392.23 29797.83 20986.10 25197.90 31192.55 24486.92 32596.74 262
Vis-MVSNetpermissive97.42 9397.11 9198.34 10598.66 13996.23 13699.22 2799.00 2796.63 6298.04 9199.21 4888.05 21499.35 15896.01 13599.21 10799.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 17694.76 18997.40 16996.53 28596.97 10398.66 13798.99 2995.43 11093.88 24297.69 21888.57 19998.31 27895.81 14087.25 32196.92 238
VPNet94.99 20394.19 21897.40 16997.16 25196.57 12198.71 12498.97 3095.67 9894.84 19998.24 17380.36 31298.67 23696.46 11887.32 32096.96 235
OpenMVScopyleft93.04 1395.83 15795.00 17998.32 10697.18 25097.32 8899.21 3098.97 3089.96 30891.14 30999.05 7986.64 24199.92 2193.38 21699.47 9097.73 212
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8498.94 3999.17 5696.06 3099.92 2197.62 6499.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6898.96 3295.65 10098.94 3999.17 5696.06 3099.92 2197.21 8399.78 2399.75 28
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8498.93 4399.19 5595.70 4499.94 397.62 6499.79 1999.78 13
CP-MVSNet94.94 20994.30 21396.83 20096.72 27795.56 16799.11 4498.95 3493.89 17992.42 29497.90 19887.19 23198.12 29494.32 18988.21 31096.82 255
NR-MVSNet94.98 20594.16 22197.44 16596.53 28597.22 9698.74 11598.95 3494.96 13889.25 32697.69 21889.32 17898.18 28994.59 18087.40 31996.92 238
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 7998.94 3999.17 5695.91 3999.94 397.55 7199.79 1999.78 13
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 14098.93 3796.74 5799.02 3498.84 10790.33 16299.83 5698.53 1096.66 18799.50 91
UGNet96.78 12196.30 12798.19 11798.24 16995.89 15898.88 8798.93 3797.39 2596.81 15497.84 20682.60 29799.90 3396.53 11699.49 8898.79 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19898.93 3793.97 17698.01 9798.48 14491.98 12699.85 5096.45 11998.15 15199.39 109
QAPM96.29 13895.40 15698.96 6797.85 19997.60 8099.23 2398.93 3789.76 31293.11 27299.02 8089.11 18599.93 1591.99 25899.62 6699.34 112
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17298.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6399.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9298.90 4484.80 34297.77 11199.11 6792.84 10799.66 12394.85 16999.77 2699.47 98
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7798.90 4492.83 23295.99 18499.37 2292.12 12299.87 4493.67 21099.57 7598.97 158
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25198.89 4697.71 898.33 8198.97 8794.97 7499.88 4398.42 2199.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 6697.46 7799.06 6199.53 3698.35 4398.33 18298.89 4692.62 23698.05 8998.94 9695.34 5999.65 12496.04 13399.42 9799.19 133
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22698.89 4694.44 16196.83 15198.68 12390.69 15699.76 10394.36 18699.29 10698.98 157
test_0728_SECOND99.71 199.72 1299.35 198.97 6998.88 4999.94 398.47 1699.81 1099.84 4
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5199.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 26193.26 27096.61 21699.11 10494.28 22499.01 6198.88 4986.43 33392.81 27897.57 23081.66 30398.68 23594.83 17089.02 30296.88 247
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7199.20 5295.90 4099.89 3597.85 4799.74 4199.78 13
X-MVStestdata94.06 26592.30 28599.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7143.50 36295.90 4099.89 3597.85 4799.74 4199.78 13
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5998.87 5597.65 999.73 199.48 697.53 499.94 398.43 1999.81 1099.70 48
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1999.80 1799.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8798.60 6699.13 6496.05 3299.94 397.77 5299.86 199.77 20
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5299.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 6498.48 1796.30 24599.00 11089.54 31597.43 26898.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2799.77 2699.72 40
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9398.31 8399.10 6995.46 5199.93 1597.57 7099.81 1099.74 33
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9698.86 6195.48 10798.91 4599.17 5695.48 5099.93 1595.80 14299.53 8599.76 26
DTE-MVSNet93.98 26793.26 27096.14 25196.06 30594.39 22199.20 3198.86 6193.06 22191.78 30397.81 21185.87 25597.58 32290.53 28086.17 33096.46 303
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8098.85 6497.28 3199.72 399.39 1496.63 1597.60 32198.17 2999.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13498.84 6594.66 15299.11 2899.25 4395.46 5199.81 7196.80 10799.73 4399.63 73
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24798.84 6596.12 8297.89 10898.69 12195.96 3699.70 11596.89 9799.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6699.05 3299.34 3195.34 5999.82 6497.86 4699.64 6299.73 36
Anonymous2024052995.10 19794.22 21697.75 14599.01 10994.26 22698.87 8998.83 6885.79 33996.64 15998.97 8778.73 32199.85 5096.27 12494.89 21799.12 143
9.1498.06 4999.47 4898.71 12498.82 7094.36 16299.16 2699.29 3996.05 3299.81 7197.00 8899.71 50
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6099.63 6499.72 40
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9698.73 5599.06 7895.27 6499.93 1597.07 8799.63 6499.72 40
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8099.26 1899.37 2293.33 10299.93 1596.96 9299.67 5499.69 51
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 16098.94 3999.20 5295.16 6999.74 10797.58 6799.85 399.77 20
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10698.82 7094.52 15799.23 2099.25 4395.54 4999.80 8096.52 11799.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 12999.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20298.81 7691.63 27098.44 7598.85 10593.98 9799.82 6494.11 19799.69 5299.64 70
test_part194.82 21393.82 24397.82 13998.84 12497.82 7299.03 5698.81 7692.31 25192.51 29097.89 20081.96 30098.67 23694.80 17388.24 30996.98 233
MVS_030492.81 28692.01 28895.23 28197.46 22791.33 29198.17 21198.81 7691.13 29093.80 24795.68 32766.08 35598.06 30090.79 27696.13 20996.32 310
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9998.81 7695.80 9299.16 2699.47 895.37 5799.92 2197.89 4499.75 3899.79 10
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17698.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2399.73 4399.75 28
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5499.67 5499.72 40
WR-MVS95.15 19494.46 20497.22 17496.67 28096.45 12698.21 19998.81 7694.15 16693.16 26897.69 21887.51 22598.30 28095.29 16088.62 30696.90 245
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8099.23 4595.46 5199.94 397.42 7699.81 1099.77 20
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16498.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3499.66 5799.69 51
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4398.81 7692.34 24798.09 8799.08 7693.01 10699.92 2196.06 13299.77 2699.75 28
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5599.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5599.65 5899.71 44
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7398.80 8793.67 19899.37 1399.52 396.52 1799.89 3598.06 3499.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15398.61 6598.97 8795.13 7099.77 10197.65 6299.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 28691.34 29497.24 17397.00 25993.43 25294.96 34198.80 8782.27 34696.93 14692.12 34986.98 23699.82 6476.32 35496.65 18898.46 189
ZD-MVS99.46 5198.70 1998.79 9293.21 21598.67 5898.97 8795.70 4499.83 5696.07 12999.58 74
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17498.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2798.79 9296.13 8197.92 10699.23 4594.54 8399.94 396.74 11199.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 5697.76 6298.90 7198.73 13097.27 9198.35 17998.78 9597.37 2897.72 11698.96 9391.53 13899.92 2198.79 299.65 5899.51 89
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17098.78 9594.10 16897.69 11899.42 1295.25 6699.92 2198.09 3399.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16198.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7199.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 6897.60 6698.44 9899.12 10395.97 14897.75 25198.78 9596.89 5298.46 7199.22 4793.90 9899.68 12194.81 17299.52 8799.67 61
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17698.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2199.73 4399.75 28
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16598.76 9997.82 598.45 7498.93 9796.65 1499.83 5697.38 7899.41 9899.71 44
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21398.76 9992.41 24596.39 17498.31 16594.92 7699.78 9694.06 19998.77 12699.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
hse-mvs396.17 14395.62 15297.81 14099.03 10894.45 21798.64 13998.75 10297.48 1898.67 5898.72 12089.76 16999.86 4997.95 3881.59 34099.11 144
DeepC-MVS95.98 397.88 6597.58 6798.77 7599.25 8696.93 10598.83 9698.75 10296.96 5196.89 15099.50 490.46 15999.87 4497.84 4999.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15498.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
MTGPAbinary98.74 104
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8098.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
ab-mvs96.42 13495.71 14798.55 8798.63 14296.75 11397.88 24098.74 10493.84 18296.54 16798.18 17785.34 26499.75 10595.93 13696.35 19799.15 139
TEST999.31 7098.50 2997.92 23398.73 10892.63 23597.74 11498.68 12396.20 2399.80 80
train_agg97.97 5897.52 7299.33 2799.31 7098.50 2997.92 23398.73 10892.98 22497.74 11498.68 12396.20 2399.80 8096.59 11399.57 7599.68 57
test_899.29 7898.44 3197.89 23998.72 11092.98 22497.70 11798.66 12696.20 2399.80 80
agg_prior197.95 6297.51 7499.28 3599.30 7598.38 3597.81 24698.72 11093.16 21897.57 12798.66 12696.14 2699.81 7196.63 11299.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12799.81 71
无先验97.58 26298.72 11091.38 27699.87 4493.36 21899.60 78
save fliter99.46 5198.38 3598.21 19998.71 11497.95 3
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18898.71 11495.26 12197.67 11998.56 13792.21 11999.78 9695.89 13796.85 18299.48 96
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 20098.52 2799.37 898.71 11497.09 4792.99 27599.13 6489.36 17799.89 3596.97 9099.57 7599.71 44
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 19098.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
新几何199.16 5099.34 6298.01 6298.69 11890.06 30798.13 8598.95 9594.60 8299.89 3591.97 25999.47 9099.59 80
API-MVS97.41 9497.25 8697.91 13398.70 13596.80 11098.82 9998.69 11894.53 15598.11 8698.28 16794.50 8799.57 13594.12 19699.49 8897.37 222
ETH3D cwj APD-0.1697.96 5997.52 7299.29 3199.05 10598.52 2798.33 18298.68 12193.18 21698.68 5799.13 6494.62 8199.83 5696.45 11999.55 8399.52 85
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19398.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 899.54 8499.73 36
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17498.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
testdata98.26 11199.20 9795.36 17598.68 12191.89 26298.60 6699.10 6994.44 8999.82 6494.27 19199.44 9599.58 82
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20698.68 12190.14 30698.01 9798.97 8794.80 7999.87 4493.36 21899.46 9399.61 75
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17398.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4099.61 6799.74 33
PVSNet91.96 1896.35 13696.15 13296.96 19199.17 9892.05 27696.08 32798.68 12193.69 19497.75 11397.80 21288.86 19499.69 12094.26 19299.01 11399.15 139
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13798.68 12192.40 24697.07 14097.96 19391.54 13799.75 10593.68 20898.92 11698.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21497.81 11098.97 8795.18 6899.83 5693.84 20499.46 9399.50 91
CDPH-MVS97.94 6397.49 7599.28 3599.47 4898.44 3197.91 23598.67 12992.57 23998.77 5198.85 10595.93 3899.72 10995.56 15299.69 5299.68 57
UnsupCasMVSNet_eth90.99 30289.92 30594.19 31294.08 33989.83 31097.13 29398.67 12993.69 19485.83 34296.19 31575.15 34196.74 33689.14 30479.41 34596.00 318
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2699.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12398.66 13297.51 1698.15 8498.83 10895.70 4499.92 2197.53 7399.67 5499.66 65
test22299.23 9397.17 9897.40 26998.66 13288.68 32398.05 8998.96 9394.14 9399.53 8599.61 75
test1198.66 132
XXY-MVS95.20 19294.45 20697.46 16496.75 27596.56 12298.86 9198.65 13693.30 21393.27 26598.27 17084.85 27198.87 21894.82 17191.26 27196.96 235
IU-MVS99.71 2099.23 698.64 13795.28 12099.63 498.35 2599.81 1099.83 5
TAPA-MVS93.98 795.35 18394.56 19897.74 14699.13 10294.83 20198.33 18298.64 13786.62 33196.29 17698.61 12994.00 9699.29 16280.00 34699.41 9899.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
F-COLMAP97.09 11196.80 10497.97 13099.45 5594.95 19698.55 15498.62 13993.02 22396.17 17998.58 13494.01 9599.81 7193.95 20198.90 11799.14 141
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6198.60 14095.88 8997.26 13297.53 23394.97 7499.33 16097.38 7899.20 10899.05 151
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 14098.60 14095.18 12597.06 14198.06 18494.26 9299.57 13593.80 20698.87 12199.52 85
cdsmvs_eth3d_5k23.98 33431.98 3360.00 3500.00 3710.00 3720.00 36298.59 1420.00 3670.00 36898.61 12990.60 1570.00 3680.00 3660.00 3660.00 364
131496.25 14295.73 14397.79 14197.13 25395.55 16998.19 20698.59 14293.47 20592.03 30197.82 21091.33 14299.49 14694.62 17798.44 14198.32 196
CVMVSNet95.43 17596.04 13693.57 31697.93 19483.62 34898.12 21698.59 14295.68 9796.56 16399.02 8087.51 22597.51 32593.56 21497.44 17399.60 78
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19398.59 14295.52 10697.97 10099.10 6993.28 10499.49 14695.09 16598.88 11999.19 133
LTVRE_ROB92.95 1594.60 22793.90 23896.68 21097.41 23594.42 21998.52 15698.59 14291.69 26891.21 30898.35 15884.87 27099.04 19291.06 27293.44 24596.60 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6998.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1699.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D94.24 25193.33 26796.97 19097.19 24993.38 25698.74 11598.57 14891.21 28893.81 24698.58 13472.85 34998.77 22995.05 16693.93 23498.77 171
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27598.57 14893.33 21096.67 15897.57 23094.30 9199.56 13791.05 27498.59 13399.47 98
HQP_MVS96.14 14495.90 14096.85 19997.42 23294.60 21398.80 10698.56 15097.28 3195.34 18998.28 16787.09 23399.03 19396.07 12994.27 22096.92 238
plane_prior598.56 15099.03 19396.07 12994.27 22096.92 238
ETV-MVS97.96 5997.81 6098.40 10298.42 15497.27 9198.73 11998.55 15296.84 5398.38 7897.44 24095.39 5599.35 15897.62 6498.89 11898.58 186
mvs_tets95.41 17895.00 17996.65 21195.58 31994.42 21999.00 6398.55 15295.73 9593.21 26798.38 15583.45 29598.63 23997.09 8694.00 23196.91 243
LPG-MVS_test95.62 16895.34 16296.47 23297.46 22793.54 24798.99 6598.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
LGP-MVS_train96.47 23297.46 22793.54 24798.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
test1299.18 4799.16 9998.19 5298.53 15698.07 8895.13 7099.72 10999.56 8099.63 73
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 22098.53 15695.32 11896.80 15598.53 13893.32 10399.72 10994.31 19099.31 10599.02 153
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19998.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
jajsoiax95.45 17495.03 17896.73 20595.42 32694.63 20899.14 3898.52 15895.74 9493.22 26698.36 15783.87 29198.65 23896.95 9394.04 22996.91 243
XVG-OURS96.55 13096.41 12396.99 18798.75 12993.76 23897.50 26598.52 15895.67 9896.83 15199.30 3888.95 19399.53 14395.88 13896.26 20497.69 214
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
PS-MVSNAJ97.73 7197.77 6197.62 15798.68 13895.58 16697.34 27798.51 16197.29 3098.66 6297.88 20194.51 8499.90 3397.87 4599.17 11097.39 220
cascas94.63 22693.86 24196.93 19396.91 26694.27 22596.00 33198.51 16185.55 34094.54 20896.23 31284.20 28498.87 21895.80 14296.98 18197.66 215
PS-MVSNAJss96.43 13396.26 12996.92 19695.84 31395.08 18899.16 3698.50 16695.87 9093.84 24598.34 16294.51 8498.61 24096.88 10093.45 24497.06 229
MVS94.67 22493.54 26198.08 12496.88 26896.56 12298.19 20698.50 16678.05 35192.69 28398.02 18691.07 14999.63 12990.09 28598.36 14698.04 203
XVG-OURS-SEG-HR96.51 13196.34 12597.02 18698.77 12893.76 23897.79 24998.50 16695.45 10996.94 14599.09 7487.87 21999.55 14296.76 11095.83 21397.74 211
PVSNet_088.72 1991.28 29890.03 30495.00 28997.99 19187.29 34294.84 34498.50 16692.06 25889.86 32095.19 33079.81 31599.39 15692.27 25069.79 35498.33 195
ACMH92.88 1694.55 23293.95 23596.34 24397.63 21293.26 26098.81 10598.49 17093.43 20789.74 32198.53 13881.91 30199.08 18793.69 20793.30 24896.70 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base97.66 7597.70 6497.56 16198.61 14495.46 17297.44 26698.46 17197.15 4298.65 6398.15 17894.33 9099.80 8097.84 4998.66 13197.41 218
HQP3-MVS98.46 17194.18 224
HQP-MVS95.72 16195.40 15696.69 20997.20 24694.25 22798.05 22298.46 17196.43 7094.45 21297.73 21586.75 23998.96 20495.30 15894.18 22496.86 251
CLD-MVS95.62 16895.34 16296.46 23597.52 22493.75 24097.27 28398.46 17195.53 10494.42 21798.00 18986.21 24998.97 20096.25 12694.37 21896.66 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 23394.14 22395.75 26896.55 28491.65 28598.11 21898.44 17594.96 13894.22 22797.90 19879.18 31999.11 18294.05 20093.85 23596.48 301
ACMP93.49 1095.34 18494.98 18196.43 23797.67 20993.48 25198.73 11998.44 17594.94 14192.53 28898.53 13884.50 27899.14 17795.48 15594.00 23196.66 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 16595.38 16096.61 21697.61 21393.84 23698.91 7998.44 17595.25 12294.28 22398.47 14586.04 25499.12 17995.50 15493.95 23396.87 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 10996.69 11398.39 10398.19 17596.72 11497.37 27398.43 17893.71 19197.65 12298.02 18692.20 12099.25 16496.87 10397.79 16399.19 133
RRT_test8_iter0594.56 23194.19 21895.67 27097.60 21491.34 28998.93 7798.42 17994.75 14593.39 26197.87 20279.00 32098.61 24096.78 10990.99 27597.07 228
CS-MVS98.04 5797.95 5598.32 10698.14 18197.15 9999.39 598.41 18096.51 6798.59 6898.51 14293.89 9999.03 19398.66 399.43 9698.77 171
anonymousdsp95.42 17694.91 18496.94 19295.10 32895.90 15799.14 3898.41 18093.75 18693.16 26897.46 23787.50 22798.41 26795.63 15194.03 23096.50 299
PMMVS96.60 12596.33 12697.41 16797.90 19693.93 23397.35 27698.41 18092.84 23197.76 11297.45 23991.10 14899.20 17096.26 12597.91 15899.11 144
MVSFormer97.57 8397.49 7597.84 13698.07 18595.76 16299.47 298.40 18394.98 13698.79 4998.83 10892.34 11398.41 26796.91 9499.59 7199.34 112
test_djsdf96.00 14995.69 14996.93 19395.72 31595.49 17199.47 298.40 18394.98 13694.58 20797.86 20389.16 18398.41 26796.91 9494.12 22896.88 247
OPM-MVS95.69 16595.33 16496.76 20396.16 30294.63 20898.43 17098.39 18596.64 6195.02 19598.78 11385.15 26699.05 18995.21 16494.20 22396.60 280
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 11997.40 24392.26 11699.49 14698.28 2896.28 20399.08 149
DP-MVS96.59 12795.93 13998.57 8599.34 6296.19 13998.70 12898.39 18589.45 31794.52 20999.35 2891.85 12899.85 5092.89 23598.88 11999.68 57
diffmvs97.58 8297.40 8198.13 12098.32 16695.81 16198.06 22198.37 18896.20 7898.74 5398.89 10191.31 14399.25 16498.16 3098.52 13699.34 112
ACMH+92.99 1494.30 24793.77 24895.88 26397.81 20192.04 27798.71 12498.37 18893.99 17590.60 31598.47 14580.86 30999.05 18992.75 23792.40 25796.55 288
MSDG95.93 15295.30 16797.83 13798.90 11795.36 17596.83 31498.37 18891.32 28194.43 21698.73 11990.27 16399.60 13290.05 28898.82 12498.52 187
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 29098.35 19194.85 14397.93 10598.58 13495.07 7299.71 11492.60 23999.34 10399.43 106
CMPMVSbinary66.06 2189.70 31189.67 30789.78 33293.19 34576.56 35597.00 29898.35 19180.97 34881.57 34997.75 21474.75 34398.61 24089.85 29193.63 23994.17 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 25493.43 26596.47 23295.90 31094.38 22299.26 2098.34 19391.99 25992.76 28097.13 25788.31 20598.52 25089.48 30087.70 31596.52 294
CDS-MVSNet96.99 11396.69 11397.90 13498.05 18895.98 14398.20 20298.33 19493.67 19896.95 14498.49 14393.54 10098.42 26095.24 16397.74 16699.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvs97.63 7797.41 8098.28 10898.33 16496.14 14098.82 9998.32 19596.38 7397.95 10199.21 4891.23 14599.23 16798.12 3198.37 14499.48 96
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6398.32 19596.33 7598.03 9299.17 5691.35 14199.16 17398.10 3298.29 14999.39 109
cl-mvsnet294.68 22194.19 21896.13 25298.11 18393.60 24596.94 30198.31 19792.43 24493.32 26496.87 28886.51 24298.28 28594.10 19891.16 27296.51 297
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
nrg03096.28 14095.72 14497.96 13296.90 26798.15 5699.39 598.31 19795.47 10894.42 21798.35 15892.09 12398.69 23297.50 7489.05 30097.04 230
TAMVS97.02 11296.79 10697.70 15098.06 18795.31 17998.52 15698.31 19793.95 17797.05 14298.61 12993.49 10198.52 25095.33 15797.81 16299.29 123
EPP-MVSNet97.46 8797.28 8597.99 12998.64 14195.38 17499.33 1598.31 19793.61 20197.19 13499.07 7794.05 9499.23 16796.89 9798.43 14399.37 111
UnsupCasMVSNet_bld87.17 31985.12 32393.31 32191.94 34988.77 32694.92 34398.30 20384.30 34482.30 34890.04 35063.96 35797.25 32885.85 32574.47 35393.93 348
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13798.73 13095.46 17299.20 3198.30 20394.96 13896.60 16298.87 10390.05 16598.59 24493.67 21098.60 13299.46 102
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21898.29 20597.19 4098.99 3899.02 8096.22 2099.67 12298.52 1498.56 13599.51 89
MS-PatchMatch93.84 26993.63 25794.46 30896.18 29989.45 31697.76 25098.27 20692.23 25392.13 29997.49 23579.50 31698.69 23289.75 29399.38 10195.25 330
EI-MVSNet95.96 15095.83 14296.36 24197.93 19493.70 24498.12 21698.27 20693.70 19395.07 19399.02 8092.23 11898.54 24894.68 17493.46 24296.84 252
MVSTER96.06 14695.72 14497.08 18498.23 17095.93 15498.73 11998.27 20694.86 14295.07 19398.09 18288.21 20798.54 24896.59 11393.46 24296.79 256
FMVSNet294.47 23993.61 25897.04 18598.21 17296.43 12898.79 11098.27 20692.46 24093.50 25897.09 26281.16 30498.00 30591.09 27091.93 26196.70 269
FMVSNet394.97 20694.26 21597.11 18298.18 17796.62 11698.56 15298.26 21093.67 19894.09 23397.10 25884.25 28198.01 30392.08 25392.14 25896.70 269
Fast-Effi-MVS+96.28 14095.70 14898.03 12798.29 16895.97 14898.58 14698.25 21191.74 26595.29 19297.23 25291.03 15099.15 17692.90 23397.96 15798.97 158
PAPM94.95 20794.00 23197.78 14297.04 25895.65 16496.03 33098.25 21191.23 28694.19 22997.80 21291.27 14498.86 22082.61 34097.61 17098.84 167
CANet_DTU96.96 11496.55 11998.21 11498.17 17996.07 14297.98 22998.21 21397.24 3797.13 13698.93 9786.88 23899.91 3095.00 16799.37 10298.66 180
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21398.21 21393.95 17796.72 15797.99 19091.58 13399.76 10394.51 18396.54 19298.95 161
PCF-MVS93.45 1194.68 22193.43 26598.42 10198.62 14396.77 11295.48 33998.20 21584.63 34393.34 26398.32 16488.55 20199.81 7184.80 33398.96 11598.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 23993.77 24896.57 22296.36 29394.83 20199.05 5398.19 21691.92 26193.16 26896.97 27888.82 19698.48 25291.69 26587.79 31496.39 305
v1094.29 24893.55 26096.51 22996.39 29294.80 20398.99 6598.19 21691.35 27993.02 27496.99 27688.09 21298.41 26790.50 28188.41 30896.33 309
mvs_anonymous96.70 12396.53 12197.18 17798.19 17593.78 23798.31 18898.19 21694.01 17394.47 21198.27 17092.08 12498.46 25597.39 7797.91 15899.31 118
AllTest95.24 18994.65 19496.99 18799.25 8693.21 26298.59 14498.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
TestCases96.99 18799.25 8693.21 26298.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
GBi-Net94.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
test194.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
FMVSNet193.19 28292.07 28796.56 22397.54 22195.00 19098.82 9998.18 21990.38 30192.27 29697.07 26573.68 34797.95 30789.36 30291.30 26996.72 265
v119294.32 24693.58 25996.53 22796.10 30394.45 21798.50 16198.17 22491.54 27294.19 22997.06 26886.95 23798.43 25990.14 28489.57 29096.70 269
v124094.06 26593.29 26996.34 24396.03 30793.90 23498.44 16898.17 22491.18 28994.13 23297.01 27586.05 25298.42 26089.13 30589.50 29496.70 269
v14419294.39 24393.70 25496.48 23196.06 30594.35 22398.58 14698.16 22691.45 27494.33 22197.02 27387.50 22798.45 25691.08 27189.11 29996.63 277
Fast-Effi-MVS+-dtu95.87 15495.85 14195.91 26097.74 20691.74 28398.69 13098.15 22795.56 10394.92 19797.68 22188.98 19198.79 22793.19 22397.78 16497.20 226
v192192094.20 25393.47 26496.40 23995.98 30894.08 23098.52 15698.15 22791.33 28094.25 22597.20 25586.41 24698.42 26090.04 28989.39 29696.69 274
v114494.59 22993.92 23696.60 21896.21 29794.78 20598.59 14498.14 22991.86 26494.21 22897.02 27387.97 21598.41 26791.72 26489.57 29096.61 279
IterMVS-LS95.46 17295.21 17096.22 24898.12 18293.72 24398.32 18798.13 23093.71 19194.26 22497.31 24792.24 11798.10 29594.63 17590.12 28396.84 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 12996.07 13498.10 12398.35 15895.89 15899.34 1298.12 23193.12 22096.09 18098.87 10389.71 17198.97 20092.95 23198.08 15499.43 106
EU-MVSNet93.66 27094.14 22392.25 32895.96 30983.38 34998.52 15698.12 23194.69 14892.61 28598.13 18087.36 23096.39 34491.82 26190.00 28596.98 233
IterMVS94.09 26293.85 24294.80 29797.99 19190.35 30797.18 28898.12 23193.68 19692.46 29397.34 24484.05 28697.41 32692.51 24691.33 26896.62 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26093.87 24094.85 29497.98 19390.56 30597.18 28898.11 23493.75 18692.58 28697.48 23683.97 28897.41 32692.48 24891.30 26996.58 282
COLMAP_ROBcopyleft93.27 1295.33 18594.87 18696.71 20699.29 7893.24 26198.58 14698.11 23489.92 30993.57 25399.10 6986.37 24799.79 9290.78 27798.10 15397.09 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 16295.30 16796.93 19398.50 15093.53 24998.36 17898.10 23697.48 1898.67 5897.99 19089.76 16999.02 19797.95 3880.91 34498.22 198
AUN-MVS94.53 23493.73 25296.92 19698.50 15093.52 25098.34 18098.10 23693.83 18495.94 18697.98 19285.59 25999.03 19394.35 18780.94 34398.22 198
Effi-MVS+-dtu96.29 13896.56 11895.51 27397.89 19790.22 30898.80 10698.10 23696.57 6496.45 17396.66 29690.81 15198.91 21195.72 14597.99 15697.40 219
mvs-test196.60 12596.68 11596.37 24097.89 19791.81 27998.56 15298.10 23696.57 6496.52 16997.94 19590.81 15199.45 15395.72 14598.01 15597.86 208
1112_ss96.63 12496.00 13898.50 9398.56 14696.37 13098.18 21098.10 23692.92 22794.84 19998.43 14892.14 12199.58 13494.35 18796.51 19399.56 84
RRT_MVS96.04 14795.53 15397.56 16197.07 25797.32 8898.57 15198.09 24195.15 12795.02 19598.44 14788.20 20898.58 24696.17 12893.09 25196.79 256
V4294.78 21794.14 22396.70 20896.33 29595.22 18198.97 6998.09 24192.32 24994.31 22297.06 26888.39 20498.55 24792.90 23388.87 30496.34 307
miper_enhance_ethall95.10 19794.75 19096.12 25397.53 22393.73 24296.61 32198.08 24392.20 25693.89 24196.65 29892.44 11298.30 28094.21 19391.16 27296.34 307
v2v48294.69 21994.03 22796.65 21196.17 30094.79 20498.67 13498.08 24392.72 23394.00 23897.16 25687.69 22498.45 25692.91 23288.87 30496.72 265
CL-MVSNet_2432*160090.11 30889.14 31193.02 32491.86 35088.23 33596.51 32498.07 24590.49 29690.49 31694.41 33684.75 27395.34 34880.79 34474.95 35195.50 327
miper_ehance_all_eth95.01 20194.69 19395.97 25797.70 20893.31 25897.02 29798.07 24592.23 25393.51 25796.96 28091.85 12898.15 29193.68 20891.16 27296.44 304
eth_miper_zixun_eth94.68 22194.41 20995.47 27597.64 21191.71 28496.73 31898.07 24592.71 23493.64 25097.21 25490.54 15898.17 29093.38 21689.76 28796.54 289
MVS_Test97.28 10097.00 9798.13 12098.33 16495.97 14898.74 11598.07 24594.27 16498.44 7598.07 18392.48 11199.26 16396.43 12198.19 15099.16 138
Test_1112_low_res96.34 13795.66 15198.36 10498.56 14695.94 15197.71 25398.07 24592.10 25794.79 20397.29 24891.75 13099.56 13794.17 19496.50 19499.58 82
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9698.06 25096.74 5798.00 9997.65 22290.80 15399.48 15098.37 2496.56 19199.19 133
RPSCF94.87 21295.40 15693.26 32298.89 11882.06 35398.33 18298.06 25090.30 30396.56 16399.26 4287.09 23399.49 14693.82 20596.32 19998.24 197
miper_lstm_enhance94.33 24594.07 22695.11 28697.75 20390.97 29797.22 28598.03 25291.67 26992.76 28096.97 27890.03 16697.78 31792.51 24689.64 28996.56 286
cl_fuxian94.79 21694.43 20895.89 26297.75 20393.12 26597.16 29198.03 25292.23 25393.46 26097.05 27091.39 13998.01 30393.58 21389.21 29896.53 291
pm-mvs193.94 26893.06 27296.59 21996.49 28895.16 18298.95 7398.03 25292.32 24991.08 31097.84 20684.54 27798.41 26792.16 25186.13 33296.19 314
v14894.29 24893.76 25095.91 26096.10 30392.93 26798.58 14697.97 25592.59 23893.47 25996.95 28288.53 20298.32 27692.56 24387.06 32396.49 300
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3397.97 25595.39 11297.23 13398.99 8691.11 14798.93 20994.60 17898.59 13399.47 98
cl-mvsnet____94.51 23694.01 23096.02 25497.58 21693.40 25597.05 29597.96 25791.73 26792.76 28097.08 26489.06 18798.13 29392.61 23890.29 28296.52 294
DIV-MVS_2432*160090.38 30689.38 30993.40 31992.85 34788.94 32597.95 23197.94 25890.35 30290.25 31793.96 34179.82 31495.94 34584.62 33576.69 34995.33 329
cl-mvsnet194.52 23594.03 22795.99 25597.57 22093.38 25697.05 29597.94 25891.74 26592.81 27897.10 25889.12 18498.07 29992.60 23990.30 28196.53 291
pmmvs691.77 29490.63 29895.17 28494.69 33591.24 29498.67 13497.92 26086.14 33589.62 32297.56 23275.79 33998.34 27490.75 27884.56 33495.94 320
jason97.32 9997.08 9398.06 12697.45 23195.59 16597.87 24197.91 26194.79 14498.55 6998.83 10891.12 14699.23 16797.58 6799.60 6899.34 112
jason: jason.
ppachtmachnet_test93.22 28092.63 28094.97 29095.45 32490.84 29896.88 31097.88 26290.60 29592.08 30097.26 24988.08 21397.86 31685.12 33090.33 28096.22 312
tpm cat193.36 27492.80 27695.07 28897.58 21687.97 33796.76 31697.86 26382.17 34793.53 25496.04 31886.13 25099.13 17889.24 30395.87 21298.10 202
EG-PatchMatch MVS91.13 30090.12 30394.17 31394.73 33489.00 32498.13 21597.81 26489.22 32085.32 34496.46 30467.71 35298.42 26087.89 31493.82 23695.08 335
BH-untuned95.95 15195.72 14496.65 21198.55 14892.26 27298.23 19797.79 26593.73 18994.62 20698.01 18888.97 19299.00 19993.04 22898.51 13798.68 177
lupinMVS97.44 9197.22 8898.12 12298.07 18595.76 16297.68 25597.76 26694.50 15898.79 4998.61 12992.34 11399.30 16197.58 6799.59 7199.31 118
VDDNet95.36 18294.53 19997.86 13598.10 18495.13 18698.85 9297.75 26790.46 29898.36 7999.39 1473.27 34899.64 12697.98 3796.58 19098.81 168
ADS-MVSNet95.00 20294.45 20696.63 21498.00 18991.91 27896.04 32897.74 26890.15 30496.47 17196.64 29987.89 21798.96 20490.08 28697.06 17899.02 153
tpmvs94.60 22794.36 21195.33 28097.46 22788.60 32996.88 31097.68 26991.29 28393.80 24796.42 30788.58 19899.24 16691.06 27296.04 21198.17 200
pmmvs494.69 21993.99 23396.81 20195.74 31495.94 15197.40 26997.67 27090.42 30093.37 26297.59 22889.08 18698.20 28892.97 23091.67 26496.30 311
our_test_393.65 27293.30 26894.69 29995.45 32489.68 31496.91 30497.65 27191.97 26091.66 30596.88 28689.67 17297.93 31088.02 31291.49 26696.48 301
MVP-Stereo94.28 25093.92 23695.35 27994.95 33092.60 27097.97 23097.65 27191.61 27190.68 31497.09 26286.32 24898.42 26089.70 29599.34 10395.02 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
miper_refine_blended89.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
SCA95.46 17295.13 17396.46 23597.67 20991.29 29397.33 27897.60 27594.68 14996.92 14897.10 25883.97 28898.89 21592.59 24198.32 14899.20 130
GA-MVS94.81 21594.03 22797.14 17997.15 25293.86 23596.76 31697.58 27694.00 17494.76 20497.04 27180.91 30798.48 25291.79 26296.25 20599.09 146
Anonymous2024052191.18 29990.44 30093.42 31793.70 34388.47 33198.94 7597.56 27788.46 32489.56 32495.08 33377.15 33596.97 33283.92 33689.55 29294.82 339
test20.0390.89 30390.38 30192.43 32693.48 34488.14 33698.33 18297.56 27793.40 20887.96 33396.71 29580.69 31194.13 35479.15 34986.17 33095.01 338
CR-MVSNet94.76 21894.15 22296.59 21997.00 25993.43 25294.96 34197.56 27792.46 24096.93 14696.24 31088.15 21097.88 31587.38 31596.65 18898.46 189
Patchmtry93.22 28092.35 28495.84 26496.77 27293.09 26694.66 34697.56 27787.37 32992.90 27696.24 31088.15 21097.90 31187.37 31690.10 28496.53 291
tpmrst95.63 16795.69 14995.44 27797.54 22188.54 33096.97 29997.56 27793.50 20497.52 12996.93 28489.49 17399.16 17395.25 16296.42 19698.64 182
FMVSNet591.81 29390.92 29694.49 30597.21 24592.09 27498.00 22897.55 28289.31 31990.86 31295.61 32874.48 34495.32 34985.57 32689.70 28896.07 317
testgi93.06 28492.45 28394.88 29396.43 29189.90 30998.75 11297.54 28395.60 10191.63 30697.91 19774.46 34597.02 33186.10 32293.67 23797.72 213
PatchmatchNetpermissive95.71 16295.52 15496.29 24697.58 21690.72 30296.84 31397.52 28494.06 16997.08 13896.96 28089.24 18198.90 21492.03 25798.37 14499.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 31088.35 31594.83 29695.21 32791.34 28997.64 25897.51 28588.36 32571.17 35796.13 31679.22 31896.63 34183.65 33786.27 32996.52 294
USDC93.33 27792.71 27895.21 28296.83 27190.83 29996.91 30497.50 28693.84 18290.72 31398.14 17977.69 32998.82 22489.51 29993.21 25095.97 319
ITE_SJBPF95.44 27797.42 23291.32 29297.50 28695.09 13393.59 25198.35 15881.70 30298.88 21789.71 29493.39 24696.12 315
Patchmatch-test94.42 24193.68 25696.63 21497.60 21491.76 28194.83 34597.49 28889.45 31794.14 23197.10 25888.99 18898.83 22385.37 32998.13 15299.29 123
YYNet190.70 30589.39 30894.62 30294.79 33390.65 30397.20 28697.46 28987.54 32872.54 35595.74 32186.51 24296.66 34086.00 32386.76 32896.54 289
MDA-MVSNet_test_wron90.71 30489.38 30994.68 30094.83 33290.78 30197.19 28797.46 28987.60 32772.41 35695.72 32486.51 24296.71 33985.92 32486.80 32796.56 286
BH-RMVSNet95.92 15395.32 16597.69 15198.32 16694.64 20798.19 20697.45 29194.56 15496.03 18298.61 12985.02 26799.12 17990.68 27999.06 11299.30 121
MIMVSNet189.67 31288.28 31693.82 31492.81 34891.08 29698.01 22697.45 29187.95 32687.90 33495.87 32067.63 35394.56 35378.73 35188.18 31195.83 322
OurMVSNet-221017-094.21 25294.00 23194.85 29495.60 31889.22 32098.89 8497.43 29395.29 11992.18 29898.52 14182.86 29698.59 24493.46 21591.76 26396.74 262
BH-w/o95.38 17995.08 17696.26 24798.34 16391.79 28097.70 25497.43 29392.87 23094.24 22697.22 25388.66 19798.84 22191.55 26797.70 16898.16 201
VDD-MVS95.82 15895.23 16997.61 15898.84 12493.98 23298.68 13197.40 29595.02 13597.95 10199.34 3174.37 34699.78 9698.64 496.80 18399.08 149
Gipumacopyleft78.40 32476.75 32783.38 33895.54 32080.43 35479.42 36097.40 29564.67 35673.46 35480.82 35745.65 36193.14 35566.32 35787.43 31876.56 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet88.50 31787.45 32091.67 33090.31 35485.89 34597.16 29197.33 29789.47 31683.63 34792.77 34576.38 33695.06 35182.70 33977.29 34894.06 346
ADS-MVSNet294.58 23094.40 21095.11 28698.00 18988.74 32796.04 32897.30 29890.15 30496.47 17196.64 29987.89 21797.56 32390.08 28697.06 17899.02 153
MDTV_nov1_ep1395.40 15697.48 22588.34 33396.85 31297.29 29993.74 18897.48 13097.26 24989.18 18299.05 18991.92 26097.43 174
pmmvs593.65 27292.97 27495.68 26995.49 32292.37 27198.20 20297.28 30089.66 31492.58 28697.26 24982.14 29898.09 29793.18 22490.95 27696.58 282
EPNet_dtu95.21 19194.95 18395.99 25596.17 30090.45 30698.16 21297.27 30196.77 5593.14 27198.33 16390.34 16198.42 26085.57 32698.81 12599.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 29591.10 29593.33 32094.02 34287.35 34198.58 14697.26 30290.48 29790.16 31896.31 30883.83 29296.53 34279.36 34889.90 28696.12 315
test_040291.32 29790.27 30294.48 30696.60 28291.12 29598.50 16197.22 30386.10 33688.30 33296.98 27777.65 33197.99 30678.13 35292.94 25394.34 341
dp94.15 25793.90 23894.90 29297.31 23986.82 34496.97 29997.19 30491.22 28796.02 18396.61 30185.51 26099.02 19790.00 29094.30 21998.85 165
thres20095.25 18894.57 19797.28 17298.81 12694.92 19798.20 20297.11 30595.24 12496.54 16796.22 31484.58 27699.53 14387.93 31396.50 19497.39 220
PatchT93.06 28491.97 28996.35 24296.69 27892.67 26994.48 34797.08 30686.62 33197.08 13892.23 34887.94 21697.90 31178.89 35096.69 18698.49 188
TDRefinement91.06 30189.68 30695.21 28285.35 35891.49 28898.51 16097.07 30791.47 27388.83 33097.84 20677.31 33399.09 18692.79 23677.98 34795.04 336
LF4IMVS93.14 28392.79 27794.20 31195.88 31188.67 32897.66 25797.07 30793.81 18591.71 30497.65 22277.96 32898.81 22591.47 26891.92 26295.12 333
Anonymous20240521195.28 18794.49 20197.67 15399.00 11093.75 24098.70 12897.04 30990.66 29496.49 17098.80 11178.13 32699.83 5696.21 12795.36 21699.44 105
baseline195.84 15695.12 17498.01 12898.49 15295.98 14398.73 11997.03 31095.37 11596.22 17798.19 17689.96 16799.16 17394.60 17887.48 31798.90 164
MIMVSNet93.26 27992.21 28696.41 23897.73 20793.13 26495.65 33697.03 31091.27 28594.04 23696.06 31775.33 34097.19 32986.56 31996.23 20698.92 163
EPNet97.28 10096.87 10398.51 9294.98 32996.14 14098.90 8097.02 31298.28 195.99 18499.11 6791.36 14099.89 3596.98 8999.19 10999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 20994.20 21797.17 17897.75 20394.14 22997.59 26197.02 31292.28 25295.75 18797.64 22483.88 29098.96 20489.77 29296.15 20898.40 191
JIA-IIPM93.35 27592.49 28295.92 25996.48 28990.65 30395.01 34096.96 31485.93 33796.08 18187.33 35387.70 22398.78 22891.35 26995.58 21598.34 194
pmmvs-eth3d90.36 30789.05 31294.32 31091.10 35292.12 27397.63 26096.95 31588.86 32284.91 34593.13 34478.32 32396.74 33688.70 30781.81 33994.09 345
tfpn200view995.32 18694.62 19597.43 16698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20097.76 209
thres40095.38 17994.62 19597.65 15698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20098.40 191
thres100view90095.38 17994.70 19297.41 16798.98 11394.92 19798.87 8996.90 31895.38 11396.61 16196.88 28684.29 27999.56 13788.11 30996.29 20097.76 209
thres600view795.49 17194.77 18897.67 15398.98 11395.02 18998.85 9296.90 31895.38 11396.63 16096.90 28584.29 27999.59 13388.65 30896.33 19898.40 191
test_method79.03 32278.17 32581.63 33986.06 35754.40 36782.75 35996.89 32039.54 36280.98 35095.57 32958.37 35894.73 35284.74 33478.61 34695.75 323
CostFormer94.95 20794.73 19195.60 27297.28 24089.06 32297.53 26496.89 32089.66 31496.82 15396.72 29486.05 25298.95 20895.53 15396.13 20998.79 169
new_pmnet90.06 30989.00 31393.22 32394.18 33788.32 33496.42 32696.89 32086.19 33485.67 34393.62 34277.18 33497.10 33081.61 34289.29 29794.23 342
OpenMVS_ROBcopyleft86.42 2089.00 31687.43 32193.69 31593.08 34689.42 31797.91 23596.89 32078.58 35085.86 34194.69 33569.48 35198.29 28377.13 35393.29 24993.36 350
tpm294.19 25493.76 25095.46 27697.23 24389.04 32397.31 28096.85 32487.08 33096.21 17896.79 29283.75 29498.74 23092.43 24996.23 20698.59 184
TransMVSNet (Re)92.67 28891.51 29396.15 25096.58 28394.65 20698.90 8096.73 32590.86 29389.46 32597.86 20385.62 25898.09 29786.45 32081.12 34195.71 324
ambc89.49 33386.66 35675.78 35692.66 35296.72 32686.55 33992.50 34746.01 36097.90 31190.32 28282.09 33694.80 340
LCM-MVSNet78.70 32376.24 32886.08 33577.26 36471.99 35994.34 34896.72 32661.62 35776.53 35289.33 35133.91 36692.78 35681.85 34174.60 35293.46 349
TinyColmap92.31 29191.53 29294.65 30196.92 26489.75 31196.92 30296.68 32890.45 29989.62 32297.85 20576.06 33898.81 22586.74 31892.51 25695.41 328
Baseline_NR-MVSNet94.35 24493.81 24495.96 25896.20 29894.05 23198.61 14396.67 32991.44 27593.85 24497.60 22788.57 19998.14 29294.39 18586.93 32495.68 325
SixPastTwentyTwo93.34 27692.86 27594.75 29895.67 31689.41 31898.75 11296.67 32993.89 17990.15 31998.25 17280.87 30898.27 28690.90 27590.64 27896.57 284
DWT-MVSNet_test94.82 21394.36 21196.20 24997.35 23790.79 30098.34 18096.57 33192.91 22895.33 19196.44 30682.00 29999.12 17994.52 18295.78 21498.70 175
LFMVS95.86 15594.98 18198.47 9698.87 12096.32 13398.84 9596.02 33293.40 20898.62 6499.20 5274.99 34299.63 12997.72 5597.20 17799.46 102
IB-MVS91.98 1793.27 27891.97 28997.19 17697.47 22693.41 25497.09 29495.99 33393.32 21192.47 29295.73 32278.06 32799.53 14394.59 18082.98 33598.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 26393.51 26295.80 26595.53 32192.89 26897.38 27195.97 33495.11 13092.51 29096.66 29687.71 22196.94 33387.03 31793.67 23797.57 216
FPMVS77.62 32677.14 32679.05 34179.25 36260.97 36395.79 33395.94 33565.96 35567.93 35894.40 33737.73 36488.88 35968.83 35688.46 30787.29 353
Patchmatch-RL test91.49 29690.85 29793.41 31891.37 35184.40 34692.81 35195.93 33691.87 26387.25 33594.87 33488.99 18896.53 34292.54 24582.00 33799.30 121
tpm94.13 25893.80 24595.12 28596.50 28787.91 33897.44 26695.89 33792.62 23696.37 17596.30 30984.13 28598.30 28093.24 22191.66 26599.14 141
LCM-MVSNet-Re95.22 19095.32 16594.91 29198.18 17787.85 33998.75 11295.66 33895.11 13088.96 32796.85 28990.26 16497.65 31995.65 15098.44 14199.22 129
bset_n11_16_dypcd94.89 21194.27 21496.76 20394.41 33695.15 18495.67 33595.64 33995.53 10494.65 20597.52 23487.10 23298.29 28396.58 11591.35 26796.83 254
ET-MVSNet_ETH3D94.13 25892.98 27397.58 15998.22 17196.20 13797.31 28095.37 34094.53 15579.56 35197.63 22686.51 24297.53 32496.91 9490.74 27799.02 153
test-LLR95.10 19794.87 18695.80 26596.77 27289.70 31296.91 30495.21 34195.11 13094.83 20195.72 32487.71 22198.97 20093.06 22698.50 13898.72 173
test-mter94.08 26393.51 26295.80 26596.77 27289.70 31296.91 30495.21 34192.89 22994.83 20195.72 32477.69 32998.97 20093.06 22698.50 13898.72 173
PM-MVS87.77 31886.55 32291.40 33191.03 35383.36 35096.92 30295.18 34391.28 28486.48 34093.42 34353.27 35996.74 33689.43 30181.97 33894.11 344
DeepMVS_CXcopyleft86.78 33497.09 25672.30 35895.17 34475.92 35284.34 34695.19 33070.58 35095.35 34779.98 34789.04 30192.68 351
K. test v392.55 28991.91 29194.48 30695.64 31789.24 31999.07 5194.88 34594.04 17086.78 33797.59 22877.64 33297.64 32092.08 25389.43 29596.57 284
TESTMET0.1,194.18 25693.69 25595.63 27196.92 26489.12 32196.91 30494.78 34693.17 21794.88 19896.45 30578.52 32298.92 21093.09 22598.50 13898.85 165
pmmvs386.67 32184.86 32492.11 32988.16 35587.19 34396.63 32094.75 34779.88 34987.22 33692.75 34666.56 35495.20 35081.24 34376.56 35093.96 347
door94.64 348
thisisatest051595.61 17094.89 18597.76 14498.15 18095.15 18496.77 31594.41 34992.95 22697.18 13597.43 24184.78 27299.45 15394.63 17597.73 16798.68 177
door-mid94.37 350
tttt051796.07 14595.51 15597.78 14298.41 15594.84 19999.28 1894.33 35194.26 16597.64 12398.64 12884.05 28699.47 15195.34 15697.60 17199.03 152
DSMNet-mixed92.52 29092.58 28192.33 32794.15 33882.65 35198.30 19094.26 35289.08 32192.65 28495.73 32285.01 26895.76 34686.24 32197.76 16598.59 184
thisisatest053096.01 14895.36 16197.97 13098.38 15695.52 17098.88 8794.19 35394.04 17097.64 12398.31 16583.82 29399.46 15295.29 16097.70 16898.93 162
MTMP98.89 8494.14 354
baseline295.11 19694.52 20096.87 19896.65 28193.56 24698.27 19594.10 35593.45 20692.02 30297.43 24187.45 22999.19 17193.88 20397.41 17597.87 207
PMVScopyleft61.03 2365.95 32963.57 33373.09 34457.90 36751.22 36885.05 35893.93 35654.45 35844.32 36483.57 35413.22 36889.15 35858.68 35981.00 34278.91 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.95 32575.44 32985.46 33682.54 35974.95 35794.23 34993.08 35772.80 35474.68 35387.38 35236.36 36591.56 35773.95 35563.94 35789.87 352
MVS-HIRNet89.46 31588.40 31492.64 32597.58 21682.15 35294.16 35093.05 35875.73 35390.90 31182.52 35579.42 31798.33 27583.53 33898.68 12797.43 217
EPMVS94.99 20394.48 20296.52 22897.22 24491.75 28297.23 28491.66 35994.11 16797.28 13196.81 29185.70 25798.84 22193.04 22897.28 17698.97 158
lessismore_v094.45 30994.93 33188.44 33291.03 36086.77 33897.64 22476.23 33798.42 26090.31 28385.64 33396.51 297
ANet_high69.08 32765.37 33180.22 34065.99 36671.96 36090.91 35590.09 36182.62 34549.93 36378.39 35829.36 36781.75 36062.49 35838.52 36186.95 355
gg-mvs-nofinetune92.21 29290.58 29997.13 18096.75 27595.09 18795.85 33289.40 36285.43 34194.50 21081.98 35680.80 31098.40 27392.16 25198.33 14797.88 206
GG-mvs-BLEND96.59 21996.34 29494.98 19396.51 32488.58 36393.10 27394.34 34080.34 31398.05 30189.53 29896.99 18096.74 262
E-PMN64.94 33064.25 33267.02 34582.28 36059.36 36591.83 35485.63 36452.69 35960.22 36077.28 35941.06 36380.12 36246.15 36141.14 35961.57 360
EMVS64.07 33163.26 33466.53 34681.73 36158.81 36691.85 35384.75 36551.93 36159.09 36175.13 36043.32 36279.09 36342.03 36239.47 36061.69 359
tmp_tt68.90 32866.97 33074.68 34350.78 36859.95 36487.13 35683.47 36638.80 36362.21 35996.23 31264.70 35676.91 36488.91 30630.49 36287.19 354
MVEpermissive62.14 2263.28 33259.38 33574.99 34274.33 36565.47 36185.55 35780.50 36752.02 36051.10 36275.00 36110.91 37180.50 36151.60 36053.40 35878.99 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet87.12 32087.77 31985.17 33795.46 32361.92 36297.37 27370.66 36885.83 33888.73 33196.04 31885.33 26597.76 31880.02 34590.48 27995.84 321
wuyk23d30.17 33330.18 33730.16 34778.61 36343.29 36966.79 36114.21 36917.31 36414.82 36711.93 36711.55 37041.43 36537.08 36319.30 3635.76 363
testmvs21.48 33524.95 33811.09 34914.89 3696.47 37196.56 3229.87 3707.55 36517.93 36539.02 3639.43 3725.90 36716.56 36512.72 36420.91 362
test12320.95 33623.72 33912.64 34813.54 3708.19 37096.55 3236.13 3717.48 36616.74 36637.98 36412.97 3696.05 36616.69 3645.43 36523.68 361
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.88 33810.50 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36894.51 840.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re8.20 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.43 1480.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.37 2099.24 9299.05 1099.02 5999.16 6197.81 299.37 15797.24 8199.73 4399.70 48
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1699.86 199.85 2
GSMVS99.20 130
test_part299.63 2999.18 899.27 17
sam_mvs189.45 17599.20 130
sam_mvs88.99 188
test_post196.68 31930.43 36687.85 22098.69 23292.59 241
test_post31.83 36588.83 19598.91 211
patchmatchnet-post95.10 33289.42 17698.89 215
gm-plane-assit95.88 31187.47 34089.74 31396.94 28399.19 17193.32 220
test9_res96.39 12399.57 7599.69 51
agg_prior295.87 13999.57 7599.68 57
test_prior498.01 6297.86 242
test_prior297.80 24796.12 8297.89 10898.69 12195.96 3696.89 9799.60 68
旧先验297.57 26391.30 28298.67 5899.80 8095.70 149
新几何297.64 258
原ACMM297.67 256
testdata299.89 3591.65 266
segment_acmp96.85 11
testdata197.32 27996.34 74
plane_prior797.42 23294.63 208
plane_prior697.35 23794.61 21187.09 233
plane_prior498.28 167
plane_prior394.61 21197.02 4995.34 189
plane_prior298.80 10697.28 31
plane_prior197.37 236
plane_prior94.60 21398.44 16896.74 5794.22 222
HQP5-MVS94.25 227
HQP-NCC97.20 24698.05 22296.43 7094.45 212
ACMP_Plane97.20 24698.05 22296.43 7094.45 212
BP-MVS95.30 158
HQP4-MVS94.45 21298.96 20496.87 249
HQP2-MVS86.75 239
NP-MVS97.28 24094.51 21697.73 215
MDTV_nov1_ep13_2view84.26 34796.89 30990.97 29297.90 10789.89 16893.91 20299.18 137
ACMMP++_ref92.97 252
ACMMP++93.61 240
Test By Simon94.64 80