APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 50 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 2 | 86.83 10 | 64.26 30 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 67 | 87.85 3 | 85.03 33 | 64.26 30 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 104 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 66 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 32 |
|
SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 72 | 87.82 5 | 86.78 12 | 64.18 33 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 20 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 53 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 28 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 66 | 62.44 64 | 72.68 80 | 90.50 22 | 48.18 120 | 87.34 48 | 73.59 42 | 85.71 60 | 84.76 130 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 19 | 63.32 43 | 75.08 39 | 90.47 25 | 53.96 57 | 88.68 23 | 76.48 23 | 89.63 20 | 87.16 47 |
|
HPM-MVS++ |  | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 60 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 49 | 79.00 7 | 90.37 10 | 85.26 113 |
|
SMA-MVS |  | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 23 | 62.49 62 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 44 | 62.82 54 | 73.96 58 | 90.50 22 | 53.20 68 | 88.35 27 | 74.02 37 | 87.05 46 | 86.13 76 |
|
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 48 | 62.81 56 | 73.30 69 | 90.58 19 | 49.90 99 | 88.21 31 | 73.78 39 | 87.03 48 | 86.29 74 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 46 | 62.82 54 | 73.55 67 | 90.56 20 | 49.80 101 | 88.24 30 | 74.02 37 | 87.03 48 | 86.32 71 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 27 | 62.12 68 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 85 |
|
MTMP | | | | | | | | 86.03 17 | 17.08 365 | | | | | | | | |
|
MP-MVS |  | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 63 | 63.89 38 | 73.60 66 | 90.60 18 | 54.85 48 | 86.72 66 | 77.20 18 | 88.06 37 | 85.74 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 29 | 63.56 42 | 74.29 55 | 90.03 41 | 52.56 71 | 88.53 25 | 74.79 31 | 88.34 30 | 86.63 60 |
|
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 87 | 90.01 43 | 47.95 122 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 66 |
|
X-MVStestdata | | | 70.21 121 | 67.28 162 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 87 | 6.49 362 | 47.95 122 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 66 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 58 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 151 | 89.24 55 | 42.03 189 | 89.38 14 | 64.07 109 | 86.50 57 | 89.69 1 |
|
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 89 | 62.90 51 | 71.77 90 | 90.26 32 | 46.61 145 | 86.55 74 | 71.71 52 | 85.66 61 | 84.97 121 |
|
DPE-MVS |  | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 44 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 44 | 61.61 78 | 73.96 58 | 90.50 22 | 53.20 68 | 88.35 27 | 73.68 40 | 87.05 46 | 86.13 76 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 90 | 59.99 107 | 75.10 38 | 90.35 27 | 47.66 126 | 86.52 75 | 71.64 53 | 82.99 75 | 84.47 136 |
|
APD-MVS |  | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 43 | 60.61 89 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 29 | 73.48 44 | 87.03 48 | 84.83 125 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP |  | | 76.02 46 | 75.33 49 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 28 | 84.44 41 | 63.04 48 | 69.80 114 | 89.74 49 | 45.43 158 | 87.16 53 | 72.01 51 | 82.87 80 | 85.14 114 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 29 | 84.42 42 | 66.73 9 | 74.67 50 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 88 | 84.99 30 | 88.13 3 | 61.86 75 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 31 | 84.85 38 | 61.98 74 | 73.06 76 | 88.88 61 | 53.72 62 | 89.06 19 | 68.27 72 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 84 | 84.65 32 | 87.66 4 | 58.56 133 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 33 | 83.87 56 | 60.37 96 | 79.89 14 | 89.38 53 | 54.97 45 | 85.58 97 | 76.12 26 | 84.94 64 | 86.33 69 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 34 | 85.03 33 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
SR-MVS-dyc-post | | | 74.57 63 | 73.90 65 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 141 | 73.14 72 | 90.07 36 | 44.74 165 | 85.84 91 | 68.20 73 | 81.76 91 | 84.03 147 |
|
RE-MVS-def | | | | 73.71 69 | | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 141 | 73.14 72 | 90.07 36 | 43.06 181 | | 68.20 73 | 81.76 91 | 84.03 147 |
|
PHI-MVS | | | 75.87 48 | 75.36 48 | 77.41 49 | 80.62 111 | 55.91 122 | 84.28 37 | 85.78 21 | 56.08 178 | 73.41 68 | 86.58 90 | 50.94 94 | 88.54 24 | 70.79 58 | 89.71 17 | 87.79 25 |
|
HQP_MVS | | | 74.31 66 | 73.73 68 | 76.06 69 | 81.41 96 | 56.31 111 | 84.22 38 | 84.01 50 | 64.52 26 | 69.27 122 | 86.10 100 | 45.26 162 | 87.21 51 | 68.16 75 | 80.58 101 | 84.65 131 |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 26 | | | | | | | |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 40 | 86.85 9 | 63.23 45 | 73.84 63 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 41 | 88.26 2 | 59.90 108 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 62 | 77.39 15 | 89.52 21 | |
|
CPTT-MVS | | | 72.78 80 | 72.08 84 | 74.87 92 | 84.88 60 | 61.41 29 | 84.15 41 | 77.86 182 | 55.27 193 | 67.51 156 | 88.08 69 | 41.93 191 | 81.85 179 | 69.04 71 | 80.01 111 | 81.35 212 |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 87 | 84.14 43 | 88.31 1 | 60.37 96 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 59 | 77.16 19 | 89.90 14 | 87.97 18 |
|
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 44 | 83.82 58 | 59.34 121 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 46 | 76.69 22 | 86.74 54 | 87.68 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
API-MVS | | | 72.17 91 | 71.41 91 | 74.45 106 | 81.95 88 | 57.22 98 | 84.03 44 | 80.38 135 | 59.89 111 | 68.40 134 | 82.33 170 | 49.64 102 | 87.83 42 | 51.87 199 | 84.16 70 | 78.30 252 |
|
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 46 | 79.95 140 | 59.00 124 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 46 | 79.66 145 | 59.00 124 | | | | | | | |
|
test_part1 | | | 74.74 59 | 74.42 60 | 75.70 77 | 81.69 91 | 51.26 179 | 83.98 46 | 87.05 7 | 65.31 16 | 73.10 74 | 86.20 97 | 53.94 58 | 88.06 35 | 65.32 100 | 73.17 188 | 87.77 26 |
|
test1172 | | | 75.36 53 | 74.81 56 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 102 | 59.52 118 | 74.66 51 | 90.18 34 | 44.74 165 | 85.84 91 | 70.63 60 | 82.52 84 | 84.42 137 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 30 | 62.88 52 | 78.10 24 | 91.26 11 | 52.51 72 | 88.39 26 | 79.34 5 | 90.52 9 | 86.78 58 |
|
APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 61 | 82.20 83 | 58.24 83 | 83.67 51 | 83.29 73 | 58.41 135 | 73.71 64 | 90.14 35 | 45.62 151 | 85.99 86 | 69.64 65 | 82.85 81 | 85.78 87 |
|
HPM-MVS_fast | | | 74.30 67 | 73.46 73 | 76.80 58 | 84.45 63 | 59.04 69 | 83.65 52 | 81.05 121 | 60.15 104 | 70.43 99 | 89.84 47 | 41.09 207 | 85.59 96 | 67.61 81 | 82.90 79 | 85.77 90 |
|
plane_prior | | | | | | | 56.31 111 | 83.58 53 | | 63.19 47 | | | | | | 80.48 104 | |
|
abl_6 | | | 74.34 65 | 73.50 70 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 96 | 58.81 128 | 73.95 60 | 89.86 46 | 41.87 192 | 86.62 70 | 67.98 77 | 81.23 96 | 83.80 160 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 114 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 126 |
|
QAPM | | | 70.05 123 | 68.81 131 | 73.78 117 | 76.54 203 | 53.43 151 | 83.23 56 | 83.48 64 | 52.89 223 | 65.90 182 | 86.29 96 | 41.55 200 | 86.49 77 | 51.01 205 | 78.40 137 | 81.42 208 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 81 | 83.22 57 | 86.93 8 | 56.91 157 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 44 | 73.67 41 | 87.45 43 | 86.57 61 |
|
EPNet | | | 73.09 78 | 72.16 82 | 75.90 71 | 75.95 211 | 56.28 113 | 83.05 58 | 72.39 251 | 66.53 12 | 65.27 192 | 87.00 78 | 50.40 97 | 85.47 103 | 62.48 125 | 86.32 58 | 85.94 81 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 28 | 62.86 53 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 87 | 75.27 37 | 84.83 120 | 60.76 12 | 86.56 73 | 67.86 78 | 87.87 42 | 86.06 79 |
|
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 58 | 82.93 61 | 85.39 26 | 62.15 67 | 76.41 32 | 91.51 9 | 52.47 74 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS |  | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 31 | 62.57 59 | 73.09 75 | 89.97 44 | 50.90 95 | 87.48 47 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVSFormer | | | 71.50 101 | 70.38 108 | 74.88 91 | 78.76 146 | 57.15 103 | 82.79 63 | 78.48 169 | 51.26 242 | 69.49 117 | 83.22 153 | 43.99 174 | 83.24 147 | 66.06 91 | 79.37 119 | 84.23 142 |
|
test_djsdf | | | 69.45 139 | 67.74 146 | 74.58 102 | 74.57 234 | 54.92 137 | 82.79 63 | 78.48 169 | 51.26 242 | 65.41 190 | 83.49 151 | 38.37 227 | 83.24 147 | 66.06 91 | 69.25 244 | 85.56 99 |
|
ACMP | | 63.53 6 | 72.30 88 | 71.20 97 | 75.59 82 | 80.28 115 | 57.54 92 | 82.74 65 | 82.84 84 | 60.58 90 | 65.24 196 | 86.18 98 | 39.25 218 | 86.03 85 | 66.95 88 | 76.79 154 | 83.22 178 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 77 | 82.72 66 | 87.55 5 | 58.33 138 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 45 | 76.15 25 | 89.86 15 | 86.82 55 |
|
ACMM | | 61.98 7 | 70.80 110 | 69.73 116 | 74.02 112 | 80.59 112 | 58.59 78 | 82.68 67 | 82.02 94 | 55.46 191 | 67.18 160 | 84.39 132 | 38.51 225 | 83.17 149 | 60.65 139 | 76.10 158 | 80.30 229 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
AdaColmap |  | | 69.99 125 | 68.66 134 | 73.97 114 | 84.94 57 | 57.83 88 | 82.63 68 | 78.71 161 | 56.28 172 | 64.34 209 | 84.14 134 | 41.57 197 | 87.06 58 | 46.45 237 | 78.88 128 | 77.02 269 |
|
OPM-MVS | | | 74.73 60 | 74.25 62 | 76.19 68 | 80.81 107 | 59.01 70 | 82.60 69 | 83.64 61 | 63.74 40 | 72.52 83 | 87.49 73 | 47.18 136 | 85.88 90 | 69.47 67 | 80.78 97 | 83.66 167 |
|
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 70 | 83.74 59 | 61.71 76 | 72.45 86 | 90.34 29 | 48.48 118 | 88.13 32 | 72.32 48 | 86.85 52 | 85.78 87 |
|
LPG-MVS_test | | | 72.74 81 | 71.74 86 | 75.76 73 | 80.22 117 | 57.51 94 | 82.55 70 | 83.40 68 | 61.32 80 | 66.67 167 | 87.33 76 | 39.15 220 | 86.59 71 | 67.70 79 | 77.30 147 | 83.19 180 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 99 | 57.53 93 | 82.35 72 | 83.31 72 | 67.78 3 | 70.09 104 | 86.34 95 | 54.92 46 | 88.90 21 | 72.68 47 | 84.55 66 | 87.76 27 |
|
114514_t | | | 70.83 108 | 69.56 118 | 74.64 99 | 86.21 30 | 54.63 139 | 82.34 73 | 81.81 98 | 48.22 269 | 63.01 222 | 85.83 108 | 40.92 208 | 87.10 55 | 57.91 155 | 79.79 112 | 82.18 198 |
|
HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 69 | 67.85 146 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 69 | 67.85 146 | | | | | | |
|
HQP-MVS | | | 73.45 74 | 72.80 78 | 75.40 83 | 80.66 108 | 54.94 135 | 82.31 74 | 83.90 54 | 62.10 69 | 67.85 146 | 85.54 114 | 45.46 156 | 86.93 60 | 67.04 86 | 80.35 107 | 84.32 139 |
|
MSLP-MVS++ | | | 73.77 73 | 73.47 72 | 74.66 97 | 83.02 76 | 59.29 62 | 82.30 77 | 81.88 95 | 59.34 121 | 71.59 93 | 86.83 79 | 45.94 149 | 83.65 140 | 65.09 103 | 85.22 62 | 81.06 219 |
|
EPP-MVSNet | | | 72.16 92 | 71.31 95 | 74.71 93 | 78.68 149 | 49.70 205 | 82.10 78 | 81.65 101 | 60.40 93 | 65.94 180 | 85.84 107 | 51.74 84 | 86.37 80 | 55.93 165 | 79.55 118 | 88.07 17 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 79 | | | | | | | | | |
|
CS-MVS | | | 74.79 57 | 74.83 55 | 74.69 94 | 77.15 190 | 51.07 181 | 81.99 80 | 85.78 21 | 62.52 61 | 71.29 94 | 84.64 124 | 54.65 50 | 88.12 33 | 70.31 63 | 85.15 63 | 84.87 124 |
|
TSAR-MVS + GP. | | | 74.90 55 | 74.15 63 | 77.17 53 | 82.00 86 | 58.77 75 | 81.80 81 | 78.57 165 | 58.58 131 | 74.32 54 | 84.51 130 | 55.94 38 | 87.22 50 | 67.11 85 | 84.48 68 | 85.52 100 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 96 | 81.75 82 | 84.88 36 | 60.37 96 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 78 | 72.19 49 | 88.96 24 | 86.38 63 |
|
test_prior2 | | | | | | | | 81.75 82 | | 60.37 96 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
PS-MVSNAJss | | | 72.24 89 | 71.21 96 | 75.31 85 | 78.50 152 | 55.93 121 | 81.63 84 | 82.12 92 | 56.24 173 | 70.02 108 | 85.68 111 | 47.05 138 | 84.34 125 | 65.27 101 | 74.41 169 | 85.67 94 |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 85 | 81.26 116 | 55.65 188 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | | | |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 85 | 81.26 116 | 55.86 180 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | 75.24 29 | 88.33 31 | 83.65 168 |
|
MG-MVS | | | 73.96 70 | 73.89 66 | 74.16 111 | 85.65 42 | 49.69 207 | 81.59 87 | 81.29 115 | 61.45 79 | 71.05 96 | 88.11 67 | 51.77 83 | 87.73 43 | 61.05 137 | 83.09 73 | 85.05 118 |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 88 | 81.18 119 | 55.86 180 | 74.81 45 | 88.80 64 | 53.70 63 | 84.45 123 | | | |
|
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 75 | 85.04 52 | 59.96 51 | 81.44 89 | 81.04 122 | 56.14 176 | 74.68 48 | 88.90 60 | 53.91 59 | 84.04 130 | 75.01 30 | 87.92 41 | 83.16 183 |
|
MAR-MVS | | | 71.51 100 | 70.15 111 | 75.60 81 | 81.84 89 | 59.39 60 | 81.38 90 | 82.90 82 | 54.90 204 | 68.08 143 | 78.70 243 | 47.73 124 | 85.51 100 | 51.68 203 | 84.17 69 | 81.88 204 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 65 | 81.31 91 | 84.02 49 | 56.32 170 | 74.05 56 | 88.98 59 | 53.34 67 | 87.92 39 | 69.23 69 | 88.42 29 | 87.59 33 |
|
OpenMVS |  | 61.03 9 | 68.85 146 | 67.56 150 | 72.70 150 | 74.26 240 | 53.99 143 | 81.21 92 | 81.34 113 | 52.70 224 | 62.75 225 | 85.55 113 | 38.86 223 | 84.14 128 | 48.41 225 | 83.01 74 | 79.97 235 |
|
DP-MVS Recon | | | 72.15 93 | 70.73 102 | 76.40 65 | 86.57 22 | 57.99 86 | 81.15 93 | 82.96 79 | 57.03 154 | 66.78 164 | 85.56 112 | 44.50 169 | 88.11 34 | 51.77 201 | 80.23 110 | 83.10 184 |
|
Vis-MVSNet |  | | 72.18 90 | 71.37 93 | 74.61 100 | 81.29 99 | 55.41 132 | 80.90 94 | 78.28 178 | 60.73 88 | 69.23 125 | 88.09 68 | 44.36 171 | 82.65 166 | 57.68 156 | 81.75 93 | 85.77 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
jajsoiax | | | 68.25 163 | 66.45 176 | 73.66 125 | 75.62 217 | 55.49 130 | 80.82 95 | 78.51 168 | 52.33 228 | 64.33 210 | 84.11 135 | 28.28 313 | 81.81 181 | 63.48 118 | 70.62 217 | 83.67 165 |
|
mvs_tets | | | 68.18 165 | 66.36 182 | 73.63 128 | 75.61 218 | 55.35 133 | 80.77 96 | 78.56 166 | 52.48 227 | 64.27 212 | 84.10 136 | 27.45 319 | 81.84 180 | 63.45 119 | 70.56 219 | 83.69 164 |
|
DP-MVS | | | 65.68 205 | 63.66 215 | 71.75 164 | 84.93 58 | 56.87 108 | 80.74 97 | 73.16 246 | 53.06 220 | 59.09 263 | 82.35 169 | 36.79 247 | 85.94 89 | 32.82 322 | 69.96 230 | 72.45 314 |
|
3Dnovator | | 64.47 5 | 72.49 85 | 71.39 92 | 75.79 72 | 77.70 174 | 58.99 71 | 80.66 98 | 83.15 77 | 62.24 66 | 65.46 189 | 86.59 89 | 42.38 187 | 85.52 99 | 59.59 149 | 84.72 65 | 82.85 189 |
|
mvs-test1 | | | 70.44 116 | 68.19 142 | 77.18 52 | 76.10 208 | 63.22 6 | 80.59 99 | 76.06 209 | 59.83 112 | 66.32 174 | 79.87 224 | 41.56 198 | 85.53 98 | 60.60 140 | 72.77 193 | 82.80 190 |
|
RRT_MVS | | | 68.77 150 | 66.71 172 | 74.95 89 | 75.93 212 | 58.55 79 | 80.50 100 | 75.84 211 | 56.09 177 | 68.17 139 | 83.74 145 | 28.50 311 | 82.98 152 | 65.67 97 | 65.91 274 | 83.33 174 |
|
ACMH+ | | 57.40 11 | 66.12 202 | 64.06 207 | 72.30 159 | 77.79 173 | 52.83 159 | 80.39 101 | 78.03 180 | 57.30 150 | 57.47 277 | 82.55 165 | 27.68 317 | 84.17 127 | 45.54 247 | 69.78 234 | 79.90 236 |
|
canonicalmvs | | | 74.67 61 | 74.98 52 | 73.71 123 | 78.94 143 | 50.56 193 | 80.23 102 | 83.87 56 | 60.30 102 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 177 | 66.01 93 | 82.12 87 | 88.58 6 |
|
IS-MVSNet | | | 71.57 99 | 71.00 99 | 73.27 139 | 78.86 144 | 45.63 255 | 80.22 103 | 78.69 162 | 64.14 36 | 66.46 171 | 87.36 75 | 49.30 105 | 85.60 95 | 50.26 210 | 83.71 71 | 88.59 5 |
|
Effi-MVS+-dtu | | | 69.64 134 | 67.53 153 | 75.95 70 | 76.10 208 | 62.29 18 | 80.20 104 | 76.06 209 | 59.83 112 | 65.26 195 | 77.09 264 | 41.56 198 | 84.02 133 | 60.60 140 | 71.09 214 | 81.53 207 |
|
nrg030 | | | 72.96 79 | 73.01 76 | 72.84 146 | 75.41 222 | 50.24 196 | 80.02 105 | 82.89 83 | 58.36 137 | 74.44 52 | 86.73 82 | 58.90 19 | 80.83 202 | 65.84 95 | 74.46 167 | 87.44 39 |
|
Anonymous20231211 | | | 69.28 140 | 68.47 137 | 71.73 165 | 80.28 115 | 47.18 237 | 79.98 106 | 82.37 88 | 54.61 206 | 67.24 159 | 84.01 138 | 39.43 216 | 82.41 172 | 55.45 172 | 72.83 192 | 85.62 98 |
|
DPM-MVS | | | 75.47 51 | 75.00 50 | 76.88 56 | 81.38 98 | 59.16 63 | 79.94 107 | 85.71 24 | 56.59 165 | 72.46 84 | 86.76 80 | 56.89 29 | 87.86 41 | 66.36 90 | 88.91 26 | 83.64 169 |
|
PVSNet_Blended_VisFu | | | 71.45 102 | 70.39 107 | 74.65 98 | 82.01 85 | 58.82 74 | 79.93 108 | 80.35 136 | 55.09 198 | 65.82 185 | 82.16 176 | 49.17 108 | 82.64 167 | 60.34 142 | 78.62 135 | 82.50 194 |
|
PAPM_NR | | | 72.63 83 | 71.80 85 | 75.13 88 | 81.72 90 | 53.42 152 | 79.91 109 | 83.28 74 | 59.14 123 | 66.31 175 | 85.90 106 | 51.86 82 | 86.06 83 | 57.45 157 | 80.62 99 | 85.91 83 |
|
LS3D | | | 64.71 218 | 62.50 228 | 71.34 178 | 79.72 130 | 55.71 124 | 79.82 110 | 74.72 230 | 48.50 266 | 56.62 281 | 84.62 125 | 33.59 271 | 82.34 173 | 29.65 340 | 75.23 165 | 75.97 277 |
|
UGNet | | | 68.81 147 | 67.39 157 | 73.06 142 | 78.33 158 | 54.47 140 | 79.77 111 | 75.40 218 | 60.45 92 | 63.22 219 | 84.40 131 | 32.71 283 | 80.91 201 | 51.71 202 | 80.56 103 | 83.81 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 71.78 96 | 71.59 87 | 72.32 158 | 83.40 71 | 46.38 242 | 79.75 112 | 71.08 258 | 64.18 33 | 72.80 79 | 88.64 65 | 42.58 184 | 83.72 138 | 57.41 158 | 84.49 67 | 86.86 53 |
|
OMC-MVS | | | 71.40 103 | 70.60 103 | 73.78 117 | 76.60 201 | 53.15 155 | 79.74 113 | 79.78 142 | 58.37 136 | 68.75 129 | 86.45 93 | 45.43 158 | 80.60 207 | 62.58 123 | 77.73 141 | 87.58 34 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 114 | 74.30 235 | 48.40 268 | | | | 80.78 204 | 53.62 186 | | 79.03 248 |
|
Effi-MVS+ | | | 73.31 76 | 72.54 80 | 75.62 80 | 77.87 171 | 53.64 146 | 79.62 115 | 79.61 146 | 61.63 77 | 72.02 89 | 82.61 163 | 56.44 33 | 85.97 88 | 63.99 112 | 79.07 127 | 87.25 45 |
|
PAPR | | | 71.72 98 | 70.82 101 | 74.41 107 | 81.20 103 | 51.17 180 | 79.55 116 | 83.33 71 | 55.81 183 | 66.93 163 | 84.61 126 | 50.95 93 | 86.06 83 | 55.79 168 | 79.20 124 | 86.00 80 |
|
Regformer-1 | | | 75.47 51 | 74.93 53 | 77.09 54 | 80.43 113 | 57.70 91 | 79.50 117 | 82.13 91 | 67.84 1 | 75.73 36 | 80.75 208 | 56.50 32 | 86.07 82 | 71.07 57 | 80.38 105 | 87.50 36 |
|
Regformer-2 | | | 75.63 50 | 74.99 51 | 77.54 47 | 80.43 113 | 58.32 82 | 79.50 117 | 82.92 80 | 67.84 1 | 75.94 33 | 80.75 208 | 55.73 40 | 86.80 63 | 71.44 56 | 80.38 105 | 87.50 36 |
|
ACMH | | 55.70 15 | 65.20 214 | 63.57 216 | 70.07 202 | 78.07 166 | 52.01 175 | 79.48 119 | 79.69 143 | 55.75 185 | 56.59 282 | 80.98 200 | 27.12 321 | 80.94 199 | 42.90 271 | 71.58 209 | 77.25 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 74.46 64 | 73.84 67 | 76.33 67 | 79.27 136 | 55.24 134 | 79.22 120 | 85.00 35 | 64.97 22 | 72.65 81 | 79.46 235 | 53.65 66 | 87.87 40 | 67.45 83 | 82.91 78 | 85.89 84 |
|
原ACMM2 | | | | | | | | 79.02 121 | | | | | | | | | |
|
GeoE | | | 71.01 106 | 70.15 111 | 73.60 129 | 79.57 132 | 52.17 170 | 78.93 122 | 78.12 179 | 58.02 143 | 67.76 154 | 83.87 141 | 52.36 76 | 82.72 164 | 56.90 160 | 75.79 160 | 85.92 82 |
|
UA-Net | | | 73.13 77 | 72.93 77 | 73.76 119 | 83.58 68 | 51.66 177 | 78.75 123 | 77.66 186 | 67.75 4 | 72.61 82 | 89.42 51 | 49.82 100 | 83.29 146 | 53.61 188 | 83.14 72 | 86.32 71 |
|
VDDNet | | | 71.81 95 | 71.33 94 | 73.26 140 | 82.80 80 | 47.60 233 | 78.74 124 | 75.27 219 | 59.59 117 | 72.94 77 | 89.40 52 | 41.51 201 | 83.91 135 | 58.75 153 | 82.99 75 | 88.26 8 |
|
v10 | | | 70.21 121 | 69.02 128 | 73.81 116 | 73.51 245 | 50.92 185 | 78.74 124 | 81.39 108 | 60.05 106 | 66.39 173 | 81.83 183 | 47.58 128 | 85.41 106 | 62.80 122 | 68.86 251 | 85.09 117 |
|
CANet_DTU | | | 68.18 165 | 67.71 149 | 69.59 211 | 74.83 228 | 46.24 245 | 78.66 126 | 76.85 199 | 59.60 114 | 63.45 218 | 82.09 179 | 35.25 253 | 77.41 254 | 59.88 146 | 78.76 132 | 85.14 114 |
|
v8 | | | 70.33 119 | 69.28 124 | 73.49 131 | 73.15 248 | 50.22 197 | 78.62 127 | 80.78 129 | 60.79 86 | 66.45 172 | 82.11 178 | 49.35 104 | 84.98 111 | 63.58 117 | 68.71 252 | 85.28 111 |
|
alignmvs | | | 73.86 72 | 73.99 64 | 73.45 133 | 78.20 161 | 50.50 194 | 78.57 128 | 82.43 87 | 59.40 119 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 193 | 65.84 95 | 81.79 89 | 88.62 4 |
|
PLC |  | 56.13 14 | 65.09 215 | 63.21 220 | 70.72 192 | 81.04 105 | 54.87 138 | 78.57 128 | 77.47 189 | 48.51 265 | 55.71 286 | 81.89 181 | 33.71 268 | 79.71 217 | 41.66 280 | 70.37 222 | 77.58 261 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v7n | | | 69.01 145 | 67.36 159 | 73.98 113 | 72.51 261 | 52.65 161 | 78.54 130 | 81.30 114 | 60.26 103 | 62.67 226 | 81.62 186 | 43.61 176 | 84.49 122 | 57.01 159 | 68.70 253 | 84.79 128 |
|
Regformer-3 | | | 73.89 71 | 73.28 75 | 75.71 76 | 79.75 126 | 55.48 131 | 78.54 130 | 79.93 141 | 66.58 11 | 73.62 65 | 80.30 216 | 54.87 47 | 84.54 121 | 69.09 70 | 76.84 152 | 87.10 49 |
|
Regformer-4 | | | 74.25 68 | 73.48 71 | 76.57 64 | 79.75 126 | 56.54 110 | 78.54 130 | 81.49 106 | 66.93 7 | 73.90 61 | 80.30 216 | 53.84 61 | 85.98 87 | 69.76 64 | 76.84 152 | 87.17 46 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 254 | 58.81 256 | 68.64 224 | 74.63 232 | 52.51 165 | 78.42 133 | 73.30 244 | 49.92 255 | 50.96 321 | 81.51 190 | 23.06 337 | 79.40 222 | 31.63 330 | 65.85 275 | 74.01 302 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CLD-MVS | | | 73.33 75 | 72.68 79 | 75.29 87 | 78.82 145 | 53.33 153 | 78.23 134 | 84.79 39 | 61.30 82 | 70.41 100 | 81.04 198 | 52.41 75 | 87.12 54 | 64.61 108 | 82.49 86 | 85.41 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
casdiffmvs | | | 74.80 56 | 74.89 54 | 74.53 104 | 75.59 219 | 50.37 195 | 78.17 135 | 85.06 32 | 62.80 57 | 74.40 53 | 87.86 70 | 57.88 24 | 83.61 141 | 69.46 68 | 82.79 82 | 89.59 2 |
|
F-COLMAP | | | 63.05 235 | 60.87 248 | 69.58 213 | 76.99 195 | 53.63 147 | 78.12 136 | 76.16 206 | 47.97 273 | 52.41 316 | 81.61 187 | 27.87 315 | 78.11 244 | 40.07 286 | 66.66 269 | 77.00 270 |
|
EG-PatchMatch MVS | | | 64.71 218 | 62.87 223 | 70.22 198 | 77.68 175 | 53.48 150 | 77.99 137 | 78.82 157 | 53.37 218 | 56.03 285 | 77.41 263 | 24.75 335 | 84.04 130 | 46.37 238 | 73.42 182 | 73.14 306 |
|
tttt0517 | | | 67.83 173 | 65.66 195 | 74.33 109 | 76.69 198 | 50.82 187 | 77.86 138 | 73.99 239 | 54.54 209 | 64.64 207 | 82.53 166 | 35.06 255 | 85.50 101 | 55.71 169 | 69.91 231 | 86.67 59 |
|
v1144 | | | 70.42 117 | 69.31 123 | 73.76 119 | 73.22 246 | 50.64 190 | 77.83 139 | 81.43 107 | 58.58 131 | 69.40 120 | 81.16 195 | 47.53 129 | 85.29 108 | 64.01 111 | 70.64 216 | 85.34 109 |
|
CNLPA | | | 65.43 210 | 64.02 208 | 69.68 209 | 78.73 148 | 58.07 85 | 77.82 140 | 70.71 262 | 51.49 237 | 61.57 243 | 83.58 149 | 38.23 230 | 70.82 287 | 43.90 260 | 70.10 228 | 80.16 231 |
|
VDD-MVS | | | 72.50 84 | 72.09 83 | 73.75 121 | 81.58 92 | 49.69 207 | 77.76 141 | 77.63 187 | 63.21 46 | 73.21 70 | 89.02 58 | 42.14 188 | 83.32 145 | 61.72 132 | 82.50 85 | 88.25 9 |
|
v1192 | | | 69.97 126 | 68.68 133 | 73.85 115 | 73.19 247 | 50.94 183 | 77.68 142 | 81.36 109 | 57.51 149 | 68.95 128 | 80.85 205 | 45.28 161 | 85.33 107 | 62.97 121 | 70.37 222 | 85.27 112 |
|
v2v482 | | | 70.50 115 | 69.45 122 | 73.66 125 | 72.62 258 | 50.03 201 | 77.58 143 | 80.51 133 | 59.90 108 | 69.52 116 | 82.14 177 | 47.53 129 | 84.88 116 | 65.07 104 | 70.17 226 | 86.09 78 |
|
WR-MVS_H | | | 67.02 187 | 66.92 170 | 67.33 237 | 77.95 170 | 37.75 314 | 77.57 144 | 82.11 93 | 62.03 73 | 62.65 227 | 82.48 167 | 50.57 96 | 79.46 221 | 42.91 270 | 64.01 287 | 84.79 128 |
|
Anonymous20240529 | | | 69.91 127 | 69.02 128 | 72.56 152 | 80.19 120 | 47.65 231 | 77.56 145 | 80.99 124 | 55.45 192 | 69.88 112 | 86.76 80 | 39.24 219 | 82.18 175 | 54.04 182 | 77.10 149 | 87.85 23 |
|
v144192 | | | 69.71 129 | 68.51 135 | 73.33 138 | 73.10 249 | 50.13 199 | 77.54 146 | 80.64 130 | 56.65 159 | 68.57 132 | 80.55 210 | 46.87 143 | 84.96 113 | 62.98 120 | 69.66 238 | 84.89 123 |
|
baseline | | | 74.61 62 | 74.70 57 | 74.34 108 | 75.70 215 | 49.99 202 | 77.54 146 | 84.63 40 | 62.73 58 | 73.98 57 | 87.79 72 | 57.67 27 | 83.82 137 | 69.49 66 | 82.74 83 | 89.20 3 |
|
Fast-Effi-MVS+-dtu | | | 67.37 178 | 65.33 200 | 73.48 132 | 72.94 253 | 57.78 90 | 77.47 148 | 76.88 198 | 57.60 148 | 61.97 237 | 76.85 268 | 39.31 217 | 80.49 210 | 54.72 177 | 70.28 225 | 82.17 200 |
|
v1921920 | | | 69.47 138 | 68.17 143 | 73.36 137 | 73.06 250 | 50.10 200 | 77.39 149 | 80.56 131 | 56.58 166 | 68.59 130 | 80.37 212 | 44.72 167 | 84.98 111 | 62.47 126 | 69.82 233 | 85.00 119 |
|
GBi-Net | | | 67.21 180 | 66.55 174 | 69.19 216 | 77.63 177 | 43.33 273 | 77.31 150 | 77.83 183 | 56.62 162 | 65.04 200 | 82.70 159 | 41.85 193 | 80.33 212 | 47.18 231 | 72.76 194 | 83.92 151 |
|
test1 | | | 67.21 180 | 66.55 174 | 69.19 216 | 77.63 177 | 43.33 273 | 77.31 150 | 77.83 183 | 56.62 162 | 65.04 200 | 82.70 159 | 41.85 193 | 80.33 212 | 47.18 231 | 72.76 194 | 83.92 151 |
|
FMVSNet1 | | | 66.70 194 | 65.87 191 | 69.19 216 | 77.49 184 | 43.33 273 | 77.31 150 | 77.83 183 | 56.45 167 | 64.60 208 | 82.70 159 | 38.08 232 | 80.33 212 | 46.08 240 | 72.31 202 | 83.92 151 |
|
MVS_111021_HR | | | 74.02 69 | 73.46 73 | 75.69 78 | 83.01 77 | 60.63 44 | 77.29 153 | 78.40 176 | 61.18 83 | 70.58 98 | 85.97 104 | 54.18 55 | 84.00 134 | 67.52 82 | 82.98 77 | 82.45 195 |
|
EIA-MVS | | | 71.78 96 | 70.60 103 | 75.30 86 | 79.85 125 | 53.54 149 | 77.27 154 | 83.26 75 | 57.92 145 | 66.49 170 | 79.39 236 | 52.07 80 | 86.69 67 | 60.05 144 | 79.14 126 | 85.66 95 |
|
v1240 | | | 69.24 142 | 67.91 145 | 73.25 141 | 73.02 252 | 49.82 203 | 77.21 155 | 80.54 132 | 56.43 168 | 68.34 136 | 80.51 211 | 43.33 179 | 84.99 109 | 62.03 130 | 69.77 236 | 84.95 122 |
|
jason | | | 69.65 133 | 68.39 140 | 73.43 135 | 78.27 160 | 56.88 107 | 77.12 156 | 73.71 242 | 46.53 287 | 69.34 121 | 83.22 153 | 43.37 178 | 79.18 226 | 64.77 105 | 79.20 124 | 84.23 142 |
jason: jason. |
PAPM | | | 67.92 171 | 66.69 173 | 71.63 169 | 78.09 165 | 49.02 215 | 77.09 157 | 81.24 118 | 51.04 244 | 60.91 246 | 83.98 139 | 47.71 125 | 84.99 109 | 40.81 283 | 79.32 122 | 80.90 221 |
|
EI-MVSNet-Vis-set | | | 72.42 87 | 71.59 87 | 74.91 90 | 78.47 154 | 54.02 142 | 77.05 158 | 79.33 152 | 65.03 21 | 71.68 92 | 79.35 238 | 52.75 70 | 84.89 114 | 66.46 89 | 74.23 170 | 85.83 86 |
|
PEN-MVS | | | 66.60 196 | 66.45 176 | 67.04 238 | 77.11 191 | 36.56 324 | 77.03 159 | 80.42 134 | 62.95 49 | 62.51 232 | 84.03 137 | 46.69 144 | 79.07 232 | 44.22 255 | 63.08 296 | 85.51 101 |
|
FIs | | | 70.82 109 | 71.43 90 | 68.98 220 | 78.33 158 | 38.14 311 | 76.96 160 | 83.59 62 | 61.02 84 | 67.33 158 | 86.73 82 | 55.07 44 | 81.64 183 | 54.61 180 | 79.22 123 | 87.14 48 |
|
PS-CasMVS | | | 66.42 200 | 66.32 184 | 66.70 242 | 77.60 183 | 36.30 329 | 76.94 161 | 79.61 146 | 62.36 65 | 62.43 234 | 83.66 146 | 45.69 150 | 78.37 240 | 45.35 252 | 63.26 294 | 85.42 107 |
|
hse-mvs3 | | | 72.71 82 | 71.49 89 | 76.40 65 | 81.99 87 | 59.58 57 | 76.92 162 | 76.74 202 | 60.40 93 | 74.81 45 | 85.95 105 | 45.54 154 | 85.76 94 | 70.41 61 | 70.61 218 | 83.86 155 |
|
thisisatest0530 | | | 67.92 171 | 65.78 193 | 74.33 109 | 76.29 205 | 51.03 182 | 76.89 163 | 74.25 236 | 53.67 216 | 65.59 187 | 81.76 184 | 35.15 254 | 85.50 101 | 55.94 164 | 72.47 198 | 86.47 62 |
|
test_0402 | | | 63.25 232 | 61.01 245 | 69.96 203 | 80.00 123 | 54.37 141 | 76.86 164 | 72.02 253 | 54.58 208 | 58.71 266 | 80.79 207 | 35.00 256 | 84.36 124 | 26.41 348 | 64.71 283 | 71.15 326 |
|
CP-MVSNet | | | 66.49 199 | 66.41 180 | 66.72 240 | 77.67 176 | 36.33 327 | 76.83 165 | 79.52 148 | 62.45 63 | 62.54 230 | 83.47 152 | 46.32 146 | 78.37 240 | 45.47 250 | 63.43 293 | 85.45 104 |
|
EI-MVSNet-UG-set | | | 71.92 94 | 71.06 98 | 74.52 105 | 77.98 169 | 53.56 148 | 76.62 166 | 79.16 153 | 64.40 28 | 71.18 95 | 78.95 242 | 52.19 78 | 84.66 120 | 65.47 99 | 73.57 178 | 85.32 110 |
|
lupinMVS | | | 69.57 135 | 68.28 141 | 73.44 134 | 78.76 146 | 57.15 103 | 76.57 167 | 73.29 245 | 46.19 290 | 69.49 117 | 82.18 173 | 43.99 174 | 79.23 225 | 64.66 106 | 79.37 119 | 83.93 150 |
|
TranMVSNet+NR-MVSNet | | | 70.36 118 | 70.10 113 | 71.17 183 | 78.64 150 | 42.97 277 | 76.53 168 | 81.16 120 | 66.95 6 | 68.53 133 | 85.42 116 | 51.61 85 | 83.07 150 | 52.32 196 | 69.70 237 | 87.46 38 |
|
TAPA-MVS | | 59.36 10 | 66.60 196 | 65.20 202 | 70.81 189 | 76.63 200 | 48.75 219 | 76.52 169 | 80.04 139 | 50.64 248 | 65.24 196 | 84.93 119 | 39.15 220 | 78.54 239 | 36.77 302 | 76.88 151 | 85.14 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DTE-MVSNet | | | 65.58 207 | 65.34 199 | 66.31 245 | 76.06 210 | 34.79 332 | 76.43 170 | 79.38 151 | 62.55 60 | 61.66 241 | 83.83 142 | 45.60 152 | 79.15 230 | 41.64 282 | 60.88 310 | 85.00 119 |
|
RRT_test8_iter05 | | | 68.17 167 | 66.86 171 | 72.07 160 | 75.81 213 | 46.33 243 | 76.41 171 | 81.81 98 | 56.43 168 | 66.52 169 | 81.30 194 | 31.90 291 | 84.25 126 | 63.77 116 | 67.83 260 | 85.64 97 |
|
anonymousdsp | | | 67.00 188 | 64.82 205 | 73.57 130 | 70.09 293 | 56.13 116 | 76.35 172 | 77.35 193 | 48.43 267 | 64.99 203 | 80.84 206 | 33.01 276 | 80.34 211 | 64.66 106 | 67.64 263 | 84.23 142 |
|
MVP-Stereo | | | 65.41 211 | 63.80 212 | 70.22 198 | 77.62 181 | 55.53 129 | 76.30 173 | 78.53 167 | 50.59 249 | 56.47 283 | 78.65 245 | 39.84 212 | 82.68 165 | 44.10 259 | 72.12 204 | 72.44 315 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MVS_Test | | | 72.45 86 | 72.46 81 | 72.42 157 | 74.88 227 | 48.50 221 | 76.28 174 | 83.14 78 | 59.40 119 | 72.46 84 | 84.68 122 | 55.66 41 | 81.12 194 | 65.98 94 | 79.66 115 | 87.63 31 |
|
IterMVS-LS | | | 69.22 143 | 68.48 136 | 71.43 174 | 74.44 237 | 49.40 211 | 76.23 175 | 77.55 188 | 59.60 114 | 65.85 184 | 81.59 189 | 51.28 88 | 81.58 186 | 59.87 147 | 69.90 232 | 83.30 175 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
æ–°å‡ ä½•2 | | | | | | | | 76.12 176 | | | | | | | | | |
|
FMVSNet2 | | | 66.93 189 | 66.31 185 | 68.79 223 | 77.63 177 | 42.98 276 | 76.11 177 | 77.47 189 | 56.62 162 | 65.22 198 | 82.17 175 | 41.85 193 | 80.18 215 | 47.05 234 | 72.72 197 | 83.20 179 |
|
旧先验2 | | | | | | | | 76.08 178 | | 45.32 297 | 76.55 31 | | | 65.56 313 | 58.75 153 | | |
|
BH-untuned | | | 68.27 162 | 67.29 161 | 71.21 180 | 79.74 128 | 53.22 154 | 76.06 179 | 77.46 191 | 57.19 152 | 66.10 177 | 81.61 187 | 45.37 160 | 83.50 143 | 45.42 251 | 76.68 156 | 76.91 273 |
|
FC-MVSNet-test | | | 69.80 128 | 70.58 105 | 67.46 234 | 77.61 182 | 34.73 334 | 76.05 180 | 83.19 76 | 60.84 85 | 65.88 183 | 86.46 92 | 54.52 52 | 80.76 206 | 52.52 195 | 78.12 138 | 86.91 51 |
|
PCF-MVS | | 61.88 8 | 70.95 107 | 69.49 120 | 75.35 84 | 77.63 177 | 55.71 124 | 76.04 181 | 81.81 98 | 50.30 250 | 69.66 115 | 85.40 117 | 52.51 72 | 84.89 114 | 51.82 200 | 80.24 109 | 85.45 104 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_NR-MVSNet | | | 71.11 104 | 71.00 99 | 71.44 172 | 79.20 137 | 44.13 266 | 76.02 182 | 82.60 86 | 66.48 13 | 68.20 137 | 84.60 127 | 56.82 30 | 82.82 162 | 54.62 178 | 70.43 220 | 87.36 43 |
|
UniMVSNet (Re) | | | 70.63 112 | 70.20 109 | 71.89 161 | 78.55 151 | 45.29 257 | 75.94 183 | 82.92 80 | 63.68 41 | 68.16 140 | 83.59 148 | 53.89 60 | 83.49 144 | 53.97 183 | 71.12 213 | 86.89 52 |
|
EPNet_dtu | | | 61.90 245 | 61.97 234 | 61.68 285 | 72.89 254 | 39.78 298 | 75.85 184 | 65.62 295 | 55.09 198 | 54.56 301 | 79.36 237 | 37.59 235 | 67.02 306 | 39.80 289 | 76.95 150 | 78.25 253 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v148 | | | 68.24 164 | 67.19 167 | 71.40 175 | 70.43 287 | 47.77 230 | 75.76 185 | 77.03 197 | 58.91 126 | 67.36 157 | 80.10 221 | 48.60 117 | 81.89 178 | 60.01 145 | 66.52 271 | 84.53 133 |
|
SixPastTwentyTwo | | | 61.65 249 | 58.80 257 | 70.20 200 | 75.80 214 | 47.22 236 | 75.59 186 | 69.68 269 | 54.61 206 | 54.11 305 | 79.26 239 | 27.07 322 | 82.96 153 | 43.27 265 | 49.79 340 | 80.41 228 |
|
DELS-MVS | | | 74.76 58 | 74.46 59 | 75.65 79 | 77.84 172 | 52.25 169 | 75.59 186 | 84.17 47 | 63.76 39 | 73.15 71 | 82.79 158 | 59.58 16 | 86.80 63 | 67.24 84 | 86.04 59 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Baseline_NR-MVSNet | | | 67.05 186 | 67.56 150 | 65.50 259 | 75.65 216 | 37.70 315 | 75.42 188 | 74.65 231 | 59.90 108 | 68.14 141 | 83.15 156 | 49.12 111 | 77.20 256 | 52.23 197 | 69.78 234 | 81.60 206 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 258 | 58.14 264 | 65.69 258 | 70.47 286 | 44.82 259 | 75.33 189 | 70.86 261 | 45.04 298 | 56.06 284 | 76.00 280 | 26.89 324 | 79.65 218 | 35.36 314 | 67.29 264 | 72.60 311 |
|
xiu_mvs_v1_base_debu | | | 68.58 154 | 67.28 162 | 72.48 154 | 78.19 162 | 57.19 100 | 75.28 190 | 75.09 225 | 51.61 233 | 70.04 105 | 81.41 191 | 32.79 279 | 79.02 233 | 63.81 113 | 77.31 144 | 81.22 214 |
|
xiu_mvs_v1_base | | | 68.58 154 | 67.28 162 | 72.48 154 | 78.19 162 | 57.19 100 | 75.28 190 | 75.09 225 | 51.61 233 | 70.04 105 | 81.41 191 | 32.79 279 | 79.02 233 | 63.81 113 | 77.31 144 | 81.22 214 |
|
xiu_mvs_v1_base_debi | | | 68.58 154 | 67.28 162 | 72.48 154 | 78.19 162 | 57.19 100 | 75.28 190 | 75.09 225 | 51.61 233 | 70.04 105 | 81.41 191 | 32.79 279 | 79.02 233 | 63.81 113 | 77.31 144 | 81.22 214 |
|
EI-MVSNet | | | 69.27 141 | 68.44 139 | 71.73 165 | 74.47 235 | 49.39 212 | 75.20 193 | 78.45 172 | 59.60 114 | 69.16 126 | 76.51 274 | 51.29 87 | 82.50 169 | 59.86 148 | 71.45 211 | 83.30 175 |
|
CVMVSNet | | | 59.63 262 | 59.14 255 | 61.08 290 | 74.47 235 | 38.84 306 | 75.20 193 | 68.74 279 | 31.15 346 | 58.24 272 | 76.51 274 | 32.39 288 | 68.58 299 | 49.77 212 | 65.84 276 | 75.81 280 |
|
ET-MVSNet_ETH3D | | | 67.96 170 | 65.72 194 | 74.68 96 | 76.67 199 | 55.62 128 | 75.11 195 | 74.74 229 | 52.91 222 | 60.03 251 | 80.12 220 | 33.68 269 | 82.64 167 | 61.86 131 | 76.34 157 | 85.78 87 |
|
xiu_mvs_v2_base | | | 70.52 113 | 69.75 115 | 72.84 146 | 81.21 102 | 55.63 127 | 75.11 195 | 78.92 156 | 54.92 203 | 69.96 111 | 79.68 230 | 47.00 142 | 82.09 176 | 61.60 134 | 79.37 119 | 80.81 223 |
|
K. test v3 | | | 60.47 257 | 57.11 269 | 70.56 194 | 73.74 244 | 48.22 224 | 75.10 197 | 62.55 314 | 58.27 139 | 53.62 310 | 76.31 278 | 27.81 316 | 81.59 185 | 47.42 228 | 39.18 351 | 81.88 204 |
|
Fast-Effi-MVS+ | | | 70.28 120 | 69.12 127 | 73.73 122 | 78.50 152 | 51.50 178 | 75.01 198 | 79.46 150 | 56.16 175 | 68.59 130 | 79.55 233 | 53.97 56 | 84.05 129 | 53.34 190 | 77.53 143 | 85.65 96 |
|
DU-MVS | | | 70.01 124 | 69.53 119 | 71.44 172 | 78.05 167 | 44.13 266 | 75.01 198 | 81.51 105 | 64.37 29 | 68.20 137 | 84.52 128 | 49.12 111 | 82.82 162 | 54.62 178 | 70.43 220 | 87.37 41 |
|
FMVSNet3 | | | 66.32 201 | 65.61 196 | 68.46 226 | 76.48 204 | 42.34 280 | 74.98 200 | 77.15 196 | 55.83 182 | 65.04 200 | 81.16 195 | 39.91 211 | 80.14 216 | 47.18 231 | 72.76 194 | 82.90 188 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 201 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 114 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 126 |
|
PS-MVSNAJ | | | 70.51 114 | 69.70 117 | 72.93 144 | 81.52 93 | 55.79 123 | 74.92 201 | 79.00 155 | 55.04 202 | 69.88 112 | 78.66 244 | 47.05 138 | 82.19 174 | 61.61 133 | 79.58 116 | 80.83 222 |
|
MVS_111021_LR | | | 69.50 137 | 68.78 132 | 71.65 168 | 78.38 155 | 59.33 61 | 74.82 203 | 70.11 266 | 58.08 140 | 67.83 150 | 84.68 122 | 41.96 190 | 76.34 266 | 65.62 98 | 77.54 142 | 79.30 246 |
|
test_yl | | | 69.69 130 | 69.13 125 | 71.36 176 | 78.37 156 | 45.74 251 | 74.71 204 | 80.20 137 | 57.91 146 | 70.01 109 | 83.83 142 | 42.44 185 | 82.87 158 | 54.97 174 | 79.72 113 | 85.48 102 |
|
DCV-MVSNet | | | 69.69 130 | 69.13 125 | 71.36 176 | 78.37 156 | 45.74 251 | 74.71 204 | 80.20 137 | 57.91 146 | 70.01 109 | 83.83 142 | 42.44 185 | 82.87 158 | 54.97 174 | 79.72 113 | 85.48 102 |
|
TransMVSNet (Re) | | | 64.72 217 | 64.33 206 | 65.87 256 | 75.22 224 | 38.56 308 | 74.66 206 | 75.08 228 | 58.90 127 | 61.79 240 | 82.63 162 | 51.18 89 | 78.07 245 | 43.63 263 | 55.87 326 | 80.99 220 |
|
BH-w/o | | | 66.85 190 | 65.83 192 | 69.90 207 | 79.29 134 | 52.46 166 | 74.66 206 | 76.65 203 | 54.51 210 | 64.85 204 | 78.12 250 | 45.59 153 | 82.95 154 | 43.26 266 | 75.54 163 | 74.27 299 |
|
PVSNet_BlendedMVS | | | 68.56 157 | 67.72 147 | 71.07 186 | 77.03 193 | 50.57 191 | 74.50 208 | 81.52 103 | 53.66 217 | 64.22 214 | 79.72 229 | 49.13 109 | 82.87 158 | 55.82 166 | 73.92 173 | 79.77 241 |
|
cl_fuxian | | | 68.33 161 | 67.56 150 | 70.62 193 | 70.87 281 | 46.21 246 | 74.47 209 | 78.80 159 | 56.22 174 | 66.19 176 | 78.53 249 | 51.88 81 | 81.40 188 | 62.08 127 | 69.04 247 | 84.25 141 |
|
BH-RMVSNet | | | 68.81 147 | 67.42 156 | 72.97 143 | 80.11 122 | 52.53 164 | 74.26 210 | 76.29 205 | 58.48 134 | 68.38 135 | 84.20 133 | 42.59 183 | 83.83 136 | 46.53 236 | 75.91 159 | 82.56 191 |
|
NR-MVSNet | | | 69.54 136 | 68.85 130 | 71.59 170 | 78.05 167 | 43.81 270 | 74.20 211 | 80.86 128 | 65.18 17 | 62.76 224 | 84.52 128 | 52.35 77 | 83.59 142 | 50.96 206 | 70.78 215 | 87.37 41 |
|
UniMVSNet_ETH3D | | | 67.60 175 | 67.07 169 | 69.18 219 | 77.39 186 | 42.29 281 | 74.18 212 | 75.59 215 | 60.37 96 | 66.77 165 | 86.06 102 | 37.64 234 | 78.93 238 | 52.16 198 | 73.49 180 | 86.32 71 |
|
VPA-MVSNet | | | 69.02 144 | 69.47 121 | 67.69 233 | 77.42 185 | 41.00 294 | 74.04 213 | 79.68 144 | 60.06 105 | 69.26 124 | 84.81 121 | 51.06 92 | 77.58 252 | 54.44 181 | 74.43 168 | 84.48 135 |
|
miper_ehance_all_eth | | | 68.03 168 | 67.24 166 | 70.40 197 | 70.54 285 | 46.21 246 | 73.98 214 | 78.68 163 | 55.07 200 | 66.05 178 | 77.80 258 | 52.16 79 | 81.31 190 | 61.53 136 | 69.32 241 | 83.67 165 |
|
hse-mvs2 | | | 71.04 105 | 69.86 114 | 74.60 101 | 79.58 131 | 57.12 105 | 73.96 215 | 75.25 220 | 60.40 93 | 74.81 45 | 81.95 180 | 45.54 154 | 82.90 155 | 70.41 61 | 66.83 268 | 83.77 161 |
|
1314 | | | 64.61 220 | 63.21 220 | 68.80 222 | 71.87 271 | 47.46 234 | 73.95 216 | 78.39 177 | 42.88 319 | 59.97 252 | 76.60 273 | 38.11 231 | 79.39 223 | 54.84 176 | 72.32 201 | 79.55 242 |
|
1121 | | | 68.53 158 | 67.16 168 | 72.63 151 | 85.64 43 | 61.14 34 | 73.95 216 | 66.46 291 | 44.61 302 | 70.28 102 | 86.68 85 | 41.42 202 | 80.78 204 | 53.62 186 | 81.79 89 | 75.97 277 |
|
MVS | | | 67.37 178 | 66.33 183 | 70.51 196 | 75.46 221 | 50.94 183 | 73.95 216 | 81.85 97 | 41.57 326 | 62.54 230 | 78.57 248 | 47.98 121 | 85.47 103 | 52.97 193 | 82.05 88 | 75.14 286 |
|
AUN-MVS | | | 68.45 160 | 66.41 180 | 74.57 103 | 79.53 133 | 57.08 106 | 73.93 219 | 75.23 221 | 54.44 211 | 66.69 166 | 81.85 182 | 37.10 243 | 82.89 156 | 62.07 128 | 66.84 267 | 83.75 162 |
|
OurMVSNet-221017-0 | | | 61.37 253 | 58.63 259 | 69.61 210 | 72.05 267 | 48.06 226 | 73.93 219 | 72.51 250 | 47.23 283 | 54.74 298 | 80.92 202 | 21.49 344 | 81.24 192 | 48.57 224 | 56.22 325 | 79.53 243 |
|
cl-mvsnet2 | | | 67.47 177 | 66.45 176 | 70.54 195 | 69.85 298 | 46.49 241 | 73.85 221 | 77.35 193 | 55.07 200 | 65.51 188 | 77.92 254 | 47.64 127 | 81.10 195 | 61.58 135 | 69.32 241 | 84.01 149 |
|
TAMVS | | | 66.78 193 | 65.27 201 | 71.33 179 | 79.16 140 | 53.67 145 | 73.84 222 | 69.59 271 | 52.32 229 | 65.28 191 | 81.72 185 | 44.49 170 | 77.40 255 | 42.32 274 | 78.66 134 | 82.92 186 |
|
WR-MVS | | | 68.47 159 | 68.47 137 | 68.44 227 | 80.20 119 | 39.84 297 | 73.75 223 | 76.07 208 | 64.68 23 | 68.11 142 | 83.63 147 | 50.39 98 | 79.14 231 | 49.78 211 | 69.66 238 | 86.34 68 |
|
eth_miper_zixun_eth | | | 67.63 174 | 66.28 186 | 71.67 167 | 71.60 273 | 48.33 223 | 73.68 224 | 77.88 181 | 55.80 184 | 65.91 181 | 78.62 247 | 47.35 135 | 82.88 157 | 59.45 150 | 66.25 272 | 83.81 156 |
|
TR-MVS | | | 66.59 198 | 65.07 203 | 71.17 183 | 79.18 138 | 49.63 209 | 73.48 225 | 75.20 223 | 52.95 221 | 67.90 144 | 80.33 215 | 39.81 213 | 83.68 139 | 43.20 267 | 73.56 179 | 80.20 230 |
|
cl-mvsnet____ | | | 67.18 182 | 66.26 187 | 69.94 204 | 70.20 290 | 45.74 251 | 73.30 226 | 76.83 200 | 55.10 196 | 65.27 192 | 79.57 232 | 47.39 133 | 80.53 208 | 59.41 152 | 69.22 245 | 83.53 171 |
|
cl-mvsnet1 | | | 67.18 182 | 66.26 187 | 69.94 204 | 70.20 290 | 45.74 251 | 73.29 227 | 76.83 200 | 55.10 196 | 65.27 192 | 79.58 231 | 47.38 134 | 80.53 208 | 59.43 151 | 69.22 245 | 83.54 170 |
|
CDS-MVSNet | | | 66.80 192 | 65.37 198 | 71.10 185 | 78.98 142 | 53.13 157 | 73.27 228 | 71.07 259 | 52.15 230 | 64.72 205 | 80.23 219 | 43.56 177 | 77.10 257 | 45.48 249 | 78.88 128 | 83.05 185 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
pmmvs6 | | | 63.69 226 | 62.82 225 | 66.27 247 | 70.63 284 | 39.27 303 | 73.13 229 | 75.47 217 | 52.69 225 | 59.75 257 | 82.30 171 | 39.71 214 | 77.03 259 | 47.40 229 | 64.35 286 | 82.53 192 |
|
IB-MVS | | 56.42 12 | 65.40 212 | 62.73 226 | 73.40 136 | 74.89 226 | 52.78 160 | 73.09 230 | 75.13 224 | 55.69 186 | 58.48 271 | 73.73 301 | 32.86 278 | 86.32 81 | 50.63 207 | 70.11 227 | 81.10 218 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
diffmvs | | | 70.69 111 | 70.43 106 | 71.46 171 | 69.45 302 | 48.95 217 | 72.93 231 | 78.46 171 | 57.27 151 | 71.69 91 | 83.97 140 | 51.48 86 | 77.92 247 | 70.70 59 | 77.95 140 | 87.53 35 |
|
V42 | | | 68.65 152 | 67.35 160 | 72.56 152 | 68.93 307 | 50.18 198 | 72.90 232 | 79.47 149 | 56.92 156 | 69.45 119 | 80.26 218 | 46.29 147 | 82.99 151 | 64.07 109 | 67.82 261 | 84.53 133 |
|
miper_enhance_ethall | | | 67.11 185 | 66.09 189 | 70.17 201 | 69.21 304 | 45.98 249 | 72.85 233 | 78.41 175 | 51.38 239 | 65.65 186 | 75.98 283 | 51.17 90 | 81.25 191 | 60.82 138 | 69.32 241 | 83.29 177 |
|
thres100view900 | | | 63.28 231 | 62.41 229 | 65.89 255 | 77.31 187 | 38.66 307 | 72.65 234 | 69.11 277 | 57.07 153 | 62.45 233 | 81.03 199 | 37.01 245 | 79.17 227 | 31.84 326 | 73.25 185 | 79.83 238 |
|
testdata1 | | | | | | | | 72.65 234 | | 60.50 91 | | | | | | | |
|
pm-mvs1 | | | 65.24 213 | 64.97 204 | 66.04 252 | 72.38 262 | 39.40 302 | 72.62 236 | 75.63 214 | 55.53 190 | 62.35 236 | 83.18 155 | 47.45 131 | 76.47 264 | 49.06 220 | 66.54 270 | 82.24 197 |
|
test222 | | | | | | 83.14 72 | 58.68 76 | 72.57 237 | 63.45 308 | 41.78 322 | 67.56 155 | 86.12 99 | 37.13 242 | | | 78.73 133 | 74.98 290 |
|
PVSNet_Blended | | | 68.59 153 | 67.72 147 | 71.19 181 | 77.03 193 | 50.57 191 | 72.51 238 | 81.52 103 | 51.91 231 | 64.22 214 | 77.77 260 | 49.13 109 | 82.87 158 | 55.82 166 | 79.58 116 | 80.14 232 |
|
EU-MVSNet | | | 55.61 286 | 54.41 289 | 59.19 296 | 65.41 328 | 33.42 340 | 72.44 239 | 71.91 254 | 28.81 348 | 51.27 319 | 73.87 300 | 24.76 334 | 69.08 297 | 43.04 268 | 58.20 319 | 75.06 287 |
|
thres600view7 | | | 63.30 230 | 62.27 230 | 66.41 244 | 77.18 189 | 38.87 305 | 72.35 240 | 69.11 277 | 56.98 155 | 62.37 235 | 80.96 201 | 37.01 245 | 79.00 236 | 31.43 333 | 73.05 190 | 81.36 210 |
|
pmmvs-eth3d | | | 58.81 264 | 56.31 277 | 66.30 246 | 67.61 314 | 52.42 168 | 72.30 241 | 64.76 301 | 43.55 313 | 54.94 296 | 74.19 298 | 28.95 308 | 72.60 279 | 43.31 264 | 57.21 321 | 73.88 303 |
|
cascas | | | 65.98 203 | 63.42 218 | 73.64 127 | 77.26 188 | 52.58 163 | 72.26 242 | 77.21 195 | 48.56 264 | 61.21 245 | 74.60 295 | 32.57 287 | 85.82 93 | 50.38 209 | 76.75 155 | 82.52 193 |
|
VPNet | | | 67.52 176 | 68.11 144 | 65.74 257 | 79.18 138 | 36.80 322 | 72.17 243 | 72.83 248 | 62.04 72 | 67.79 152 | 85.83 108 | 48.88 113 | 76.60 263 | 51.30 204 | 72.97 191 | 83.81 156 |
|
MS-PatchMatch | | | 62.42 239 | 61.46 239 | 65.31 263 | 75.21 225 | 52.10 171 | 72.05 244 | 74.05 238 | 46.41 288 | 57.42 278 | 74.36 296 | 34.35 263 | 77.57 253 | 45.62 246 | 73.67 175 | 66.26 339 |
|
mvs_anonymous | | | 68.03 168 | 67.51 154 | 69.59 211 | 72.08 266 | 44.57 264 | 71.99 245 | 75.23 221 | 51.67 232 | 67.06 161 | 82.57 164 | 54.68 49 | 77.94 246 | 56.56 161 | 75.71 162 | 86.26 75 |
|
tfpn200view9 | | | 63.18 233 | 62.18 232 | 66.21 248 | 76.85 196 | 39.62 299 | 71.96 246 | 69.44 273 | 56.63 160 | 62.61 228 | 79.83 225 | 37.18 239 | 79.17 227 | 31.84 326 | 73.25 185 | 79.83 238 |
|
thres400 | | | 63.31 229 | 62.18 232 | 66.72 240 | 76.85 196 | 39.62 299 | 71.96 246 | 69.44 273 | 56.63 160 | 62.61 228 | 79.83 225 | 37.18 239 | 79.17 227 | 31.84 326 | 73.25 185 | 81.36 210 |
|
baseline1 | | | 63.81 225 | 63.87 211 | 63.62 271 | 76.29 205 | 36.36 325 | 71.78 248 | 67.29 286 | 56.05 179 | 64.23 213 | 82.95 157 | 47.11 137 | 74.41 274 | 47.30 230 | 61.85 304 | 80.10 233 |
|
baseline2 | | | 63.42 228 | 61.26 242 | 69.89 208 | 72.55 260 | 47.62 232 | 71.54 249 | 68.38 281 | 50.11 251 | 54.82 297 | 75.55 287 | 43.06 181 | 80.96 198 | 48.13 226 | 67.16 266 | 81.11 217 |
|
pmmvs4 | | | 61.48 252 | 59.39 253 | 67.76 232 | 71.57 274 | 53.86 144 | 71.42 250 | 65.34 297 | 44.20 307 | 59.46 258 | 77.92 254 | 35.90 249 | 74.71 272 | 43.87 261 | 64.87 282 | 74.71 295 |
|
bset_n11_16_dypcd | | | 65.57 208 | 63.69 214 | 71.19 181 | 70.84 283 | 51.79 176 | 71.37 251 | 70.48 264 | 53.33 219 | 65.19 199 | 76.41 277 | 31.46 293 | 81.76 182 | 65.12 102 | 69.04 247 | 80.01 234 |
|
1112_ss | | | 64.00 224 | 63.36 219 | 65.93 254 | 79.28 135 | 42.58 279 | 71.35 252 | 72.36 252 | 46.41 288 | 60.55 248 | 77.89 256 | 46.27 148 | 73.28 277 | 46.18 239 | 69.97 229 | 81.92 203 |
|
thisisatest0515 | | | 65.83 204 | 63.50 217 | 72.82 148 | 73.75 243 | 49.50 210 | 71.32 253 | 73.12 247 | 49.39 257 | 63.82 216 | 76.50 276 | 34.95 257 | 84.84 117 | 53.20 192 | 75.49 164 | 84.13 146 |
|
CostFormer | | | 64.04 223 | 62.51 227 | 68.61 225 | 71.88 270 | 45.77 250 | 71.30 254 | 70.60 263 | 47.55 277 | 64.31 211 | 76.61 272 | 41.63 196 | 79.62 220 | 49.74 213 | 69.00 249 | 80.42 227 |
|
tfpnnormal | | | 62.47 238 | 61.63 237 | 64.99 265 | 74.81 229 | 39.01 304 | 71.22 255 | 73.72 241 | 55.22 195 | 60.21 249 | 80.09 222 | 41.26 206 | 76.98 260 | 30.02 338 | 68.09 257 | 78.97 249 |
|
IterMVS | | | 62.79 236 | 61.27 241 | 67.35 236 | 69.37 303 | 52.04 174 | 71.17 256 | 68.24 282 | 52.63 226 | 59.82 255 | 76.91 267 | 37.32 238 | 72.36 280 | 52.80 194 | 63.19 295 | 77.66 260 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Vis-MVSNet (Re-imp) | | | 63.69 226 | 63.88 210 | 63.14 276 | 74.75 230 | 31.04 347 | 71.16 257 | 63.64 307 | 56.32 170 | 59.80 256 | 84.99 118 | 44.51 168 | 75.46 269 | 39.12 291 | 80.62 99 | 82.92 186 |
|
IterMVS-SCA-FT | | | 62.49 237 | 61.52 238 | 65.40 261 | 71.99 268 | 50.80 188 | 71.15 258 | 69.63 270 | 45.71 296 | 60.61 247 | 77.93 253 | 37.45 236 | 65.99 311 | 55.67 170 | 63.50 292 | 79.42 244 |
|
Anonymous202405211 | | | 66.84 191 | 65.99 190 | 69.40 215 | 80.19 120 | 42.21 282 | 71.11 259 | 71.31 257 | 58.80 129 | 67.90 144 | 86.39 94 | 29.83 303 | 79.65 218 | 49.60 217 | 78.78 131 | 86.33 69 |
|
Anonymous20240521 | | | 55.30 287 | 54.41 289 | 57.96 304 | 60.92 348 | 41.73 287 | 71.09 260 | 71.06 260 | 41.18 327 | 48.65 330 | 73.31 303 | 16.93 348 | 59.25 331 | 42.54 272 | 64.01 287 | 72.90 308 |
|
tpm2 | | | 62.07 243 | 60.10 251 | 67.99 230 | 72.79 255 | 43.86 269 | 71.05 261 | 66.85 289 | 43.14 317 | 62.77 223 | 75.39 289 | 38.32 228 | 80.80 203 | 41.69 279 | 68.88 250 | 79.32 245 |
|
DWT-MVSNet_test | | | 61.90 245 | 59.93 252 | 67.83 231 | 71.98 269 | 46.09 248 | 71.03 262 | 69.71 267 | 50.09 252 | 58.51 270 | 70.62 317 | 30.21 300 | 77.63 251 | 49.28 218 | 67.91 258 | 79.78 240 |
|
TDRefinement | | | 53.44 299 | 50.72 307 | 61.60 286 | 64.31 333 | 46.96 238 | 70.89 263 | 65.27 299 | 41.78 322 | 44.61 342 | 77.98 251 | 11.52 355 | 66.36 309 | 28.57 343 | 51.59 336 | 71.49 323 |
|
XVG-ACMP-BASELINE | | | 64.36 222 | 62.23 231 | 70.74 191 | 72.35 263 | 52.45 167 | 70.80 264 | 78.45 172 | 53.84 215 | 59.87 254 | 81.10 197 | 16.24 349 | 79.32 224 | 55.64 171 | 71.76 206 | 80.47 226 |
|
XVG-OURS-SEG-HR | | | 68.81 147 | 67.47 155 | 72.82 148 | 74.40 238 | 56.87 108 | 70.59 265 | 79.04 154 | 54.77 205 | 66.99 162 | 86.01 103 | 39.57 215 | 78.21 243 | 62.54 124 | 73.33 183 | 83.37 173 |
|
VNet | | | 69.68 132 | 70.19 110 | 68.16 229 | 79.73 129 | 41.63 290 | 70.53 266 | 77.38 192 | 60.37 96 | 70.69 97 | 86.63 87 | 51.08 91 | 77.09 258 | 53.61 188 | 81.69 95 | 85.75 92 |
|
GA-MVS | | | 65.53 209 | 63.70 213 | 71.02 187 | 70.87 281 | 48.10 225 | 70.48 267 | 74.40 233 | 56.69 158 | 64.70 206 | 76.77 269 | 33.66 270 | 81.10 195 | 55.42 173 | 70.32 224 | 83.87 154 |
|
MSDG | | | 61.81 248 | 59.23 254 | 69.55 214 | 72.64 257 | 52.63 162 | 70.45 268 | 75.81 212 | 51.38 239 | 53.70 308 | 76.11 279 | 29.52 304 | 81.08 197 | 37.70 297 | 65.79 277 | 74.93 291 |
|
ab-mvs | | | 66.65 195 | 66.42 179 | 67.37 235 | 76.17 207 | 41.73 287 | 70.41 269 | 76.14 207 | 53.99 213 | 65.98 179 | 83.51 150 | 49.48 103 | 76.24 267 | 48.60 223 | 73.46 181 | 84.14 145 |
|
MVSTER | | | 67.16 184 | 65.58 197 | 71.88 162 | 70.37 289 | 49.70 205 | 70.25 270 | 78.45 172 | 51.52 236 | 69.16 126 | 80.37 212 | 38.45 226 | 82.50 169 | 60.19 143 | 71.46 210 | 83.44 172 |
|
XVG-OURS | | | 68.76 151 | 67.37 158 | 72.90 145 | 74.32 239 | 57.22 98 | 70.09 271 | 78.81 158 | 55.24 194 | 67.79 152 | 85.81 110 | 36.54 248 | 78.28 242 | 62.04 129 | 75.74 161 | 83.19 180 |
|
HY-MVS | | 56.14 13 | 64.55 221 | 63.89 209 | 66.55 243 | 74.73 231 | 41.02 292 | 69.96 272 | 74.43 232 | 49.29 258 | 61.66 241 | 80.92 202 | 47.43 132 | 76.68 262 | 44.91 254 | 71.69 207 | 81.94 202 |
|
AllTest | | | 57.08 277 | 54.65 286 | 64.39 268 | 71.44 275 | 49.03 213 | 69.92 273 | 67.30 284 | 45.97 293 | 47.16 334 | 79.77 227 | 17.47 346 | 67.56 303 | 33.65 319 | 59.16 316 | 76.57 274 |
|
thres200 | | | 62.20 242 | 61.16 244 | 65.34 262 | 75.38 223 | 39.99 296 | 69.60 274 | 69.29 275 | 55.64 189 | 61.87 239 | 76.99 265 | 37.07 244 | 78.96 237 | 31.28 334 | 73.28 184 | 77.06 268 |
|
tpmrst | | | 58.24 268 | 58.70 258 | 56.84 308 | 66.97 317 | 34.32 336 | 69.57 275 | 61.14 320 | 47.17 284 | 58.58 269 | 71.60 311 | 41.28 205 | 60.41 327 | 49.20 219 | 62.84 297 | 75.78 281 |
|
PatchmatchNet |  | | 59.84 260 | 58.24 262 | 64.65 267 | 73.05 251 | 46.70 240 | 69.42 276 | 62.18 316 | 47.55 277 | 58.88 265 | 71.96 310 | 34.49 261 | 69.16 296 | 42.99 269 | 63.60 291 | 78.07 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVS_0304 | | | 58.51 265 | 57.36 268 | 61.96 284 | 70.04 294 | 41.83 285 | 69.40 277 | 65.46 296 | 50.73 245 | 53.30 314 | 74.06 299 | 22.65 338 | 70.18 294 | 42.16 275 | 68.44 254 | 73.86 304 |
|
GG-mvs-BLEND | | | | | 62.34 281 | 71.36 279 | 37.04 320 | 69.20 278 | 57.33 332 | | 54.73 299 | 65.48 339 | 30.37 297 | 77.82 248 | 34.82 315 | 74.93 166 | 72.17 320 |
|
HyFIR lowres test | | | 65.67 206 | 63.01 222 | 73.67 124 | 79.97 124 | 55.65 126 | 69.07 279 | 75.52 216 | 42.68 320 | 63.53 217 | 77.95 252 | 40.43 209 | 81.64 183 | 46.01 241 | 71.91 205 | 83.73 163 |
|
test_post1 | | | | | | | | 68.67 280 | | | | 3.64 363 | 32.39 288 | 69.49 295 | 44.17 256 | | |
|
Test_1112_low_res | | | 62.32 240 | 61.77 235 | 64.00 270 | 79.08 141 | 39.53 301 | 68.17 281 | 70.17 265 | 43.25 315 | 59.03 264 | 79.90 223 | 44.08 172 | 71.24 286 | 43.79 262 | 68.42 255 | 81.25 213 |
|
tpm cat1 | | | 59.25 263 | 56.95 272 | 66.15 249 | 72.19 265 | 46.96 238 | 68.09 282 | 65.76 294 | 40.03 334 | 57.81 275 | 70.56 318 | 38.32 228 | 74.51 273 | 38.26 295 | 61.50 307 | 77.00 270 |
|
ppachtmachnet_test | | | 58.06 271 | 55.38 282 | 66.10 251 | 69.51 300 | 48.99 216 | 68.01 283 | 66.13 293 | 44.50 304 | 54.05 306 | 70.74 316 | 32.09 290 | 72.34 281 | 36.68 305 | 56.71 324 | 76.99 272 |
|
tpmvs | | | 58.47 266 | 56.95 272 | 63.03 278 | 70.20 290 | 41.21 291 | 67.90 284 | 67.23 287 | 49.62 256 | 54.73 299 | 70.84 315 | 34.14 264 | 76.24 267 | 36.64 306 | 61.29 308 | 71.64 322 |
|
CL-MVSNet_2432*1600 | | | 61.53 250 | 60.94 246 | 63.30 274 | 68.95 306 | 36.93 321 | 67.60 285 | 72.80 249 | 55.67 187 | 59.95 253 | 76.63 270 | 45.01 164 | 72.22 283 | 39.74 290 | 62.09 303 | 80.74 224 |
|
tpm | | | 57.34 275 | 58.16 263 | 54.86 315 | 71.80 272 | 34.77 333 | 67.47 286 | 56.04 338 | 48.20 270 | 60.10 250 | 76.92 266 | 37.17 241 | 53.41 349 | 40.76 284 | 65.01 281 | 76.40 276 |
|
gg-mvs-nofinetune | | | 57.86 272 | 56.43 276 | 62.18 282 | 72.62 258 | 35.35 331 | 66.57 287 | 56.33 335 | 50.65 247 | 57.64 276 | 57.10 347 | 30.65 295 | 76.36 265 | 37.38 299 | 78.88 128 | 74.82 293 |
|
TinyColmap | | | 54.14 292 | 51.72 302 | 61.40 288 | 66.84 319 | 41.97 283 | 66.52 288 | 68.51 280 | 44.81 299 | 42.69 346 | 75.77 284 | 11.66 354 | 72.94 278 | 31.96 324 | 56.77 323 | 69.27 335 |
|
pmmvs5 | | | 56.47 279 | 55.68 280 | 58.86 298 | 61.41 343 | 36.71 323 | 66.37 289 | 62.75 313 | 40.38 332 | 53.70 308 | 76.62 271 | 34.56 259 | 67.05 305 | 40.02 288 | 65.27 279 | 72.83 309 |
|
CHOSEN 1792x2688 | | | 65.08 216 | 62.84 224 | 71.82 163 | 81.49 95 | 56.26 114 | 66.32 290 | 74.20 237 | 40.53 331 | 63.16 221 | 78.65 245 | 41.30 203 | 77.80 249 | 45.80 243 | 74.09 171 | 81.40 209 |
|
our_test_3 | | | 56.49 278 | 54.42 288 | 62.68 280 | 69.51 300 | 45.48 256 | 66.08 291 | 61.49 319 | 44.11 310 | 50.73 325 | 69.60 327 | 33.05 275 | 68.15 300 | 38.38 294 | 56.86 322 | 74.40 297 |
|
PM-MVS | | | 52.33 303 | 50.19 308 | 58.75 299 | 62.10 340 | 45.14 258 | 65.75 292 | 40.38 358 | 43.60 312 | 53.52 311 | 72.65 305 | 9.16 360 | 65.87 312 | 50.41 208 | 54.18 331 | 65.24 341 |
|
D2MVS | | | 62.30 241 | 60.29 250 | 68.34 228 | 66.46 322 | 48.42 222 | 65.70 293 | 73.42 243 | 47.71 275 | 58.16 273 | 75.02 291 | 30.51 296 | 77.71 250 | 53.96 184 | 71.68 208 | 78.90 250 |
|
MIMVSNet1 | | | 55.17 290 | 54.31 291 | 57.77 306 | 70.03 295 | 32.01 344 | 65.68 294 | 64.81 300 | 49.19 259 | 46.75 337 | 76.00 280 | 25.53 331 | 64.04 316 | 28.65 342 | 62.13 302 | 77.26 266 |
|
PatchMatch-RL | | | 56.25 282 | 54.55 287 | 61.32 289 | 77.06 192 | 56.07 118 | 65.57 295 | 54.10 343 | 44.13 309 | 53.49 313 | 71.27 314 | 25.20 332 | 66.78 307 | 36.52 308 | 63.66 290 | 61.12 342 |
|
test-LLR | | | 58.15 270 | 58.13 265 | 58.22 301 | 68.57 308 | 44.80 260 | 65.46 296 | 57.92 329 | 50.08 253 | 55.44 289 | 69.82 325 | 32.62 284 | 57.44 336 | 49.66 215 | 73.62 176 | 72.41 316 |
|
TESTMET0.1,1 | | | 55.28 288 | 54.90 285 | 56.42 309 | 66.56 321 | 43.67 271 | 65.46 296 | 56.27 336 | 39.18 337 | 53.83 307 | 67.44 333 | 24.21 336 | 55.46 346 | 48.04 227 | 73.11 189 | 70.13 331 |
|
test-mter | | | 56.42 280 | 55.82 279 | 58.22 301 | 68.57 308 | 44.80 260 | 65.46 296 | 57.92 329 | 39.94 335 | 55.44 289 | 69.82 325 | 21.92 341 | 57.44 336 | 49.66 215 | 73.62 176 | 72.41 316 |
|
CR-MVSNet | | | 59.91 259 | 57.90 266 | 65.96 253 | 69.96 296 | 52.07 172 | 65.31 299 | 63.15 311 | 42.48 321 | 59.36 259 | 74.84 292 | 35.83 250 | 70.75 288 | 45.50 248 | 64.65 284 | 75.06 287 |
|
RPMNet | | | 61.53 250 | 58.42 260 | 70.86 188 | 69.96 296 | 52.07 172 | 65.31 299 | 81.36 109 | 43.20 316 | 59.36 259 | 70.15 323 | 35.37 252 | 85.47 103 | 36.42 309 | 64.65 284 | 75.06 287 |
|
USDC | | | 56.35 281 | 54.24 292 | 62.69 279 | 64.74 330 | 40.31 295 | 65.05 301 | 73.83 240 | 43.93 311 | 47.58 332 | 77.71 261 | 15.36 351 | 75.05 271 | 38.19 296 | 61.81 305 | 72.70 310 |
|
MDTV_nov1_ep13 | | | | 57.00 271 | | 72.73 256 | 38.26 310 | 65.02 302 | 64.73 302 | 44.74 300 | 55.46 288 | 72.48 306 | 32.61 286 | 70.47 289 | 37.47 298 | 67.75 262 | |
|
CMPMVS |  | 42.80 21 | 57.81 273 | 55.97 278 | 63.32 273 | 60.98 346 | 47.38 235 | 64.66 303 | 69.50 272 | 32.06 345 | 46.83 336 | 77.80 258 | 29.50 305 | 71.36 285 | 48.68 222 | 73.75 174 | 71.21 325 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
RPSCF | | | 55.80 285 | 54.22 293 | 60.53 291 | 65.13 329 | 42.91 278 | 64.30 304 | 57.62 331 | 36.84 340 | 58.05 274 | 82.28 172 | 28.01 314 | 56.24 343 | 37.14 300 | 58.61 318 | 82.44 196 |
|
XXY-MVS | | | 60.68 255 | 61.67 236 | 57.70 307 | 70.43 287 | 38.45 309 | 64.19 305 | 66.47 290 | 48.05 272 | 63.22 219 | 80.86 204 | 49.28 106 | 60.47 326 | 45.25 253 | 67.28 265 | 74.19 300 |
|
FMVSNet5 | | | 55.86 284 | 54.93 284 | 58.66 300 | 71.05 280 | 36.35 326 | 64.18 306 | 62.48 315 | 46.76 286 | 50.66 326 | 74.73 294 | 25.80 329 | 64.04 316 | 33.11 321 | 65.57 278 | 75.59 283 |
|
SCA | | | 60.49 256 | 58.38 261 | 66.80 239 | 74.14 242 | 48.06 226 | 63.35 307 | 63.23 310 | 49.13 260 | 59.33 262 | 72.10 308 | 37.45 236 | 74.27 275 | 44.17 256 | 62.57 299 | 78.05 256 |
|
Patchmtry | | | 57.16 276 | 56.47 275 | 59.23 294 | 69.17 305 | 34.58 335 | 62.98 308 | 63.15 311 | 44.53 303 | 56.83 280 | 74.84 292 | 35.83 250 | 68.71 298 | 40.03 287 | 60.91 309 | 74.39 298 |
|
Anonymous20231206 | | | 55.10 291 | 55.30 283 | 54.48 317 | 69.81 299 | 33.94 338 | 62.91 309 | 62.13 317 | 41.08 328 | 55.18 293 | 75.65 285 | 32.75 282 | 56.59 341 | 30.32 337 | 67.86 259 | 72.91 307 |
|
MIMVSNet | | | 57.35 274 | 57.07 270 | 58.22 301 | 74.21 241 | 37.18 316 | 62.46 310 | 60.88 321 | 48.88 262 | 55.29 292 | 75.99 282 | 31.68 292 | 62.04 322 | 31.87 325 | 72.35 200 | 75.43 285 |
|
dp | | | 51.89 305 | 51.60 303 | 52.77 324 | 68.44 311 | 32.45 343 | 62.36 311 | 54.57 340 | 44.16 308 | 49.31 329 | 67.91 330 | 28.87 310 | 56.61 340 | 33.89 318 | 54.89 328 | 69.24 336 |
|
EPMVS | | | 53.96 293 | 53.69 296 | 54.79 316 | 66.12 325 | 31.96 345 | 62.34 312 | 49.05 348 | 44.42 306 | 55.54 287 | 71.33 313 | 30.22 299 | 56.70 339 | 41.65 281 | 62.54 300 | 75.71 282 |
|
pmmvs3 | | | 44.92 317 | 41.95 321 | 53.86 318 | 52.58 355 | 43.55 272 | 62.11 313 | 46.90 354 | 26.05 352 | 40.63 348 | 60.19 345 | 11.08 357 | 57.91 335 | 31.83 329 | 46.15 344 | 60.11 343 |
|
PVSNet | | 50.76 19 | 58.40 267 | 57.39 267 | 61.42 287 | 75.53 220 | 44.04 268 | 61.43 314 | 63.45 308 | 47.04 285 | 56.91 279 | 73.61 302 | 27.00 323 | 64.76 314 | 39.12 291 | 72.40 199 | 75.47 284 |
|
LCM-MVSNet-Re | | | 61.88 247 | 61.35 240 | 63.46 272 | 74.58 233 | 31.48 346 | 61.42 315 | 58.14 328 | 58.71 130 | 53.02 315 | 79.55 233 | 43.07 180 | 76.80 261 | 45.69 244 | 77.96 139 | 82.11 201 |
|
test20.03 | | | 53.87 295 | 54.02 294 | 53.41 321 | 61.47 342 | 28.11 352 | 61.30 316 | 59.21 324 | 51.34 241 | 52.09 317 | 77.43 262 | 33.29 274 | 58.55 333 | 29.76 339 | 60.27 313 | 73.58 305 |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 355 | 61.22 317 | | 40.10 333 | 51.10 320 | | 32.97 277 | | 38.49 293 | | 78.61 251 |
|
PMMVS | | | 53.96 293 | 53.26 299 | 56.04 310 | 62.60 339 | 50.92 185 | 61.17 318 | 56.09 337 | 32.81 344 | 53.51 312 | 66.84 335 | 34.04 265 | 59.93 329 | 44.14 258 | 68.18 256 | 57.27 347 |
|
WTY-MVS | | | 59.75 261 | 60.39 249 | 57.85 305 | 72.32 264 | 37.83 313 | 61.05 319 | 64.18 305 | 45.95 295 | 61.91 238 | 79.11 241 | 47.01 141 | 60.88 325 | 42.50 273 | 69.49 240 | 74.83 292 |
|
Patchmatch-RL test | | | 58.16 269 | 55.49 281 | 66.15 249 | 67.92 313 | 48.89 218 | 60.66 320 | 51.07 345 | 47.86 274 | 59.36 259 | 62.71 344 | 34.02 266 | 72.27 282 | 56.41 162 | 59.40 315 | 77.30 264 |
|
LTVRE_ROB | | 55.42 16 | 63.15 234 | 61.23 243 | 68.92 221 | 76.57 202 | 47.80 228 | 59.92 321 | 76.39 204 | 54.35 212 | 58.67 267 | 82.46 168 | 29.44 306 | 81.49 187 | 42.12 276 | 71.14 212 | 77.46 262 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test0.0.03 1 | | | 53.32 300 | 53.59 297 | 52.50 325 | 62.81 338 | 29.45 350 | 59.51 322 | 54.11 342 | 50.08 253 | 54.40 303 | 74.31 297 | 32.62 284 | 55.92 344 | 30.50 336 | 63.95 289 | 72.15 321 |
|
UnsupCasMVSNet_eth | | | 53.16 302 | 52.47 300 | 55.23 313 | 59.45 350 | 33.39 341 | 59.43 323 | 69.13 276 | 45.98 292 | 50.35 328 | 72.32 307 | 29.30 307 | 58.26 334 | 42.02 278 | 44.30 346 | 74.05 301 |
|
MVS-HIRNet | | | 45.52 316 | 44.48 319 | 48.65 331 | 68.49 310 | 34.05 337 | 59.41 324 | 44.50 355 | 27.03 350 | 37.96 351 | 50.47 353 | 26.16 328 | 64.10 315 | 26.74 347 | 59.52 314 | 47.82 350 |
|
testgi | | | 51.90 304 | 52.37 301 | 50.51 330 | 60.39 349 | 23.55 359 | 58.42 325 | 58.15 327 | 49.03 261 | 51.83 318 | 79.21 240 | 22.39 339 | 55.59 345 | 29.24 341 | 62.64 298 | 72.40 318 |
|
PatchT | | | 53.17 301 | 53.44 298 | 52.33 326 | 68.29 312 | 25.34 357 | 58.21 326 | 54.41 341 | 44.46 305 | 54.56 301 | 69.05 328 | 33.32 273 | 60.94 324 | 36.93 301 | 61.76 306 | 70.73 328 |
|
sss | | | 56.17 283 | 56.57 274 | 54.96 314 | 66.93 318 | 36.32 328 | 57.94 327 | 61.69 318 | 41.67 324 | 58.64 268 | 75.32 290 | 38.72 224 | 56.25 342 | 42.04 277 | 66.19 273 | 72.31 319 |
|
DIV-MVS_2432*1600 | | | 55.22 289 | 53.89 295 | 59.21 295 | 57.80 353 | 27.47 353 | 57.75 328 | 74.32 234 | 47.38 279 | 50.90 322 | 70.00 324 | 28.45 312 | 70.30 292 | 40.44 285 | 57.92 320 | 79.87 237 |
|
UnsupCasMVSNet_bld | | | 50.07 310 | 48.87 311 | 53.66 319 | 60.97 347 | 33.67 339 | 57.62 329 | 64.56 303 | 39.47 336 | 47.38 333 | 64.02 342 | 27.47 318 | 59.32 330 | 34.69 316 | 43.68 347 | 67.98 338 |
|
ANet_high | | | 41.38 320 | 37.47 325 | 53.11 322 | 39.73 362 | 24.45 358 | 56.94 330 | 69.69 268 | 47.65 276 | 26.04 355 | 52.32 349 | 12.44 352 | 62.38 321 | 21.80 351 | 10.61 361 | 72.49 313 |
|
MDA-MVSNet-bldmvs | | | 53.87 295 | 50.81 306 | 63.05 277 | 66.25 323 | 48.58 220 | 56.93 331 | 63.82 306 | 48.09 271 | 41.22 347 | 70.48 321 | 30.34 298 | 68.00 302 | 34.24 317 | 45.92 345 | 72.57 312 |
|
test123 | | | 4.73 336 | 6.30 339 | 0.02 348 | 0.01 369 | 0.01 370 | 56.36 332 | 0.00 370 | 0.01 365 | 0.04 366 | 0.21 367 | 0.01 371 | 0.00 366 | 0.03 365 | 0.00 364 | 0.04 362 |
|
miper_lstm_enhance | | | 62.03 244 | 60.88 247 | 65.49 260 | 66.71 320 | 46.25 244 | 56.29 333 | 75.70 213 | 50.68 246 | 61.27 244 | 75.48 288 | 40.21 210 | 68.03 301 | 56.31 163 | 65.25 280 | 82.18 198 |
|
KD-MVS_2432*1600 | | | 53.45 297 | 51.50 304 | 59.30 292 | 62.82 336 | 37.14 317 | 55.33 334 | 71.79 255 | 47.34 281 | 55.09 294 | 70.52 319 | 21.91 342 | 70.45 290 | 35.72 312 | 42.97 348 | 70.31 329 |
|
miper_refine_blended | | | 53.45 297 | 51.50 304 | 59.30 292 | 62.82 336 | 37.14 317 | 55.33 334 | 71.79 255 | 47.34 281 | 55.09 294 | 70.52 319 | 21.91 342 | 70.45 290 | 35.72 312 | 42.97 348 | 70.31 329 |
|
LF4IMVS | | | 42.95 318 | 42.26 320 | 45.04 334 | 48.30 357 | 32.50 342 | 54.80 336 | 48.49 350 | 28.03 349 | 40.51 349 | 70.16 322 | 9.24 359 | 43.89 355 | 31.63 330 | 49.18 342 | 58.72 344 |
|
PMVS |  | 28.69 22 | 36.22 324 | 33.29 328 | 45.02 335 | 36.82 364 | 35.98 330 | 54.68 337 | 48.74 349 | 26.31 351 | 21.02 356 | 51.61 351 | 2.88 368 | 60.10 328 | 9.99 360 | 47.58 343 | 38.99 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PVSNet_0 | | 43.31 20 | 47.46 315 | 45.64 318 | 52.92 323 | 67.60 315 | 44.65 262 | 54.06 338 | 54.64 339 | 41.59 325 | 46.15 338 | 58.75 346 | 30.99 294 | 58.66 332 | 32.18 323 | 24.81 354 | 55.46 348 |
|
testmvs | | | 4.52 337 | 6.03 340 | 0.01 349 | 0.01 369 | 0.00 371 | 53.86 339 | 0.00 370 | 0.01 365 | 0.04 366 | 0.27 366 | 0.00 372 | 0.00 366 | 0.04 364 | 0.00 364 | 0.03 363 |
|
YYNet1 | | | 50.73 308 | 48.96 309 | 56.03 311 | 61.10 345 | 41.78 286 | 51.94 340 | 56.44 334 | 40.94 330 | 44.84 340 | 67.80 332 | 30.08 301 | 55.08 347 | 36.77 302 | 50.71 338 | 71.22 324 |
|
MDA-MVSNet_test_wron | | | 50.71 309 | 48.95 310 | 56.00 312 | 61.17 344 | 41.84 284 | 51.90 341 | 56.45 333 | 40.96 329 | 44.79 341 | 67.84 331 | 30.04 302 | 55.07 348 | 36.71 304 | 50.69 339 | 71.11 327 |
|
ADS-MVSNet2 | | | 51.33 307 | 48.76 312 | 59.07 297 | 66.02 326 | 44.60 263 | 50.90 342 | 59.76 323 | 36.90 338 | 50.74 323 | 66.18 337 | 26.38 325 | 63.11 318 | 27.17 344 | 54.76 329 | 69.50 333 |
|
ADS-MVSNet | | | 48.48 312 | 47.77 314 | 50.63 329 | 66.02 326 | 29.92 349 | 50.90 342 | 50.87 347 | 36.90 338 | 50.74 323 | 66.18 337 | 26.38 325 | 52.47 350 | 27.17 344 | 54.76 329 | 69.50 333 |
|
FPMVS | | | 42.18 319 | 41.11 322 | 45.39 333 | 58.03 352 | 41.01 293 | 49.50 344 | 53.81 344 | 30.07 347 | 33.71 352 | 64.03 340 | 11.69 353 | 52.08 351 | 14.01 356 | 55.11 327 | 43.09 352 |
|
N_pmnet | | | 39.35 322 | 40.28 323 | 36.54 338 | 63.76 334 | 1.62 369 | 49.37 345 | 0.76 369 | 34.62 343 | 43.61 344 | 66.38 336 | 26.25 327 | 42.57 356 | 26.02 349 | 51.77 335 | 65.44 340 |
|
new-patchmatchnet | | | 47.56 314 | 47.73 315 | 47.06 332 | 58.81 351 | 9.37 365 | 48.78 346 | 59.21 324 | 43.28 314 | 44.22 343 | 68.66 329 | 25.67 330 | 57.20 338 | 31.57 332 | 49.35 341 | 74.62 296 |
|
JIA-IIPM | | | 51.56 306 | 47.68 316 | 63.21 275 | 64.61 331 | 50.73 189 | 47.71 347 | 58.77 326 | 42.90 318 | 48.46 331 | 51.72 350 | 24.97 333 | 70.24 293 | 36.06 311 | 53.89 332 | 68.64 337 |
|
ambc | | | | | 65.13 264 | 63.72 335 | 37.07 319 | 47.66 348 | 78.78 160 | | 54.37 304 | 71.42 312 | 11.24 356 | 80.94 199 | 45.64 245 | 53.85 333 | 77.38 263 |
|
Patchmatch-test | | | 49.08 311 | 48.28 313 | 51.50 328 | 64.40 332 | 30.85 348 | 45.68 349 | 48.46 351 | 35.60 341 | 46.10 339 | 72.10 308 | 34.47 262 | 46.37 353 | 27.08 346 | 60.65 312 | 77.27 265 |
|
DSMNet-mixed | | | 39.30 323 | 38.72 324 | 41.03 337 | 51.22 356 | 19.66 361 | 45.53 350 | 31.35 362 | 15.83 359 | 39.80 350 | 67.42 334 | 22.19 340 | 45.13 354 | 22.43 350 | 52.69 334 | 58.31 345 |
|
LCM-MVSNet | | | 40.30 321 | 35.88 326 | 53.57 320 | 42.24 359 | 29.15 351 | 45.21 351 | 60.53 322 | 22.23 356 | 28.02 354 | 50.98 352 | 3.72 366 | 61.78 323 | 31.22 335 | 38.76 352 | 69.78 332 |
|
new_pmnet | | | 34.13 326 | 34.29 327 | 33.64 339 | 52.63 354 | 18.23 363 | 44.43 352 | 33.90 361 | 22.81 355 | 30.89 353 | 53.18 348 | 10.48 358 | 35.72 360 | 20.77 352 | 39.51 350 | 46.98 351 |
|
E-PMN | | | 23.77 328 | 22.73 332 | 26.90 342 | 42.02 360 | 20.67 360 | 42.66 353 | 35.70 359 | 17.43 357 | 10.28 363 | 25.05 359 | 6.42 362 | 42.39 357 | 10.28 359 | 14.71 358 | 17.63 357 |
|
EMVS | | | 22.97 329 | 21.84 333 | 26.36 343 | 40.20 361 | 19.53 362 | 41.95 354 | 34.64 360 | 17.09 358 | 9.73 364 | 22.83 360 | 7.29 361 | 42.22 358 | 9.18 361 | 13.66 359 | 17.32 358 |
|
CHOSEN 280x420 | | | 47.83 313 | 46.36 317 | 52.24 327 | 67.37 316 | 49.78 204 | 38.91 355 | 43.11 356 | 35.00 342 | 43.27 345 | 63.30 343 | 28.95 308 | 49.19 352 | 36.53 307 | 60.80 311 | 57.76 346 |
|
PMMVS2 | | | 27.40 327 | 25.91 330 | 31.87 341 | 39.46 363 | 6.57 366 | 31.17 356 | 28.52 363 | 23.96 353 | 20.45 357 | 48.94 354 | 4.20 365 | 37.94 359 | 16.51 353 | 19.97 356 | 51.09 349 |
|
wuyk23d | | | 13.32 333 | 12.52 336 | 15.71 345 | 47.54 358 | 26.27 354 | 31.06 357 | 1.98 368 | 4.93 362 | 5.18 365 | 1.94 365 | 0.45 370 | 18.54 363 | 6.81 363 | 12.83 360 | 2.33 361 |
|
Gipuma |  | | 34.77 325 | 31.91 329 | 43.33 336 | 62.05 341 | 37.87 312 | 20.39 358 | 67.03 288 | 23.23 354 | 18.41 358 | 25.84 358 | 4.24 364 | 62.73 319 | 14.71 355 | 51.32 337 | 29.38 356 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 17.77 23 | 21.41 330 | 17.77 335 | 32.34 340 | 34.34 365 | 25.44 356 | 16.11 359 | 24.11 364 | 11.19 360 | 13.22 360 | 31.92 356 | 1.58 369 | 30.95 361 | 10.47 358 | 17.03 357 | 40.62 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 9.43 334 | 11.14 337 | 4.30 347 | 2.38 368 | 4.40 367 | 13.62 360 | 16.08 366 | 0.39 364 | 15.89 359 | 13.06 361 | 15.80 350 | 5.54 365 | 12.63 357 | 10.46 362 | 2.95 360 |
|
test_method | | | 19.68 331 | 18.10 334 | 24.41 344 | 13.68 367 | 3.11 368 | 12.06 361 | 42.37 357 | 2.00 363 | 11.97 361 | 36.38 355 | 5.77 363 | 29.35 362 | 15.06 354 | 23.65 355 | 40.76 353 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 17.50 332 | 23.34 331 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 78.63 164 | 0.00 367 | 0.00 368 | 82.18 173 | 49.25 107 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 3.92 338 | 5.23 341 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 47.05 138 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
ab-mvs-re | | | 6.49 335 | 8.65 338 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 77.89 256 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 371 | 0.00 362 | 0.00 370 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 372 | 0.00 366 | 0.00 366 | 0.00 364 | 0.00 364 |
|
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 85 | 57.95 144 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 22 | 74.05 36 | 87.00 51 | |
|
IU-MVS | | | | | | 87.77 4 | 59.15 64 | | 85.53 25 | 53.93 214 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 33 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 30 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 12 | 64.20 32 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 256 |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 258 | | | | 78.05 256 |
|
sam_mvs | | | | | | | | | | | | | 33.43 272 | | | | |
|
MTGPA |  | | | | | | | | 80.97 125 | | | | | | | | |
|
test_post | | | | | | | | | | | | 3.55 364 | 33.90 267 | 66.52 308 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 340 | 34.50 260 | 74.27 275 | | | |
|
gm-plane-assit | | | | | | 71.40 278 | 41.72 289 | | | 48.85 263 | | 73.31 303 | | 82.48 171 | 48.90 221 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 156 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 138 |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 122 | | 74.68 48 | | | 84.04 130 | | | |
|
TestCases | | | | | 64.39 268 | 71.44 275 | 49.03 213 | | 67.30 284 | 45.97 293 | 47.16 334 | 79.77 227 | 17.47 346 | 67.56 303 | 33.65 319 | 59.16 316 | 76.57 274 |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 96 | | 84.88 36 | | | | | 86.43 78 | | | 86.38 63 |
|
æ–°å‡ ä½•1 | | | | | 70.76 190 | 85.66 41 | 61.13 35 | | 66.43 292 | 44.68 301 | 70.29 101 | 86.64 86 | 41.29 204 | 75.23 270 | 49.72 214 | 81.75 93 | 75.93 279 |
|
旧先验1 | | | | | | 83.04 75 | 53.15 155 | | 67.52 283 | | | 87.85 71 | 44.08 172 | | | 80.76 98 | 78.03 259 |
|
原ACMM1 | | | | | 74.69 94 | 85.39 49 | 59.40 59 | | 83.42 67 | 51.47 238 | 70.27 103 | 86.61 88 | 48.61 116 | 86.51 76 | 53.85 185 | 87.96 39 | 78.16 254 |
|
testdata2 | | | | | | | | | | | | | | 72.18 284 | 46.95 235 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
testdata | | | | | 64.66 266 | 81.52 93 | 52.93 158 | | 65.29 298 | 46.09 291 | 73.88 62 | 87.46 74 | 38.08 232 | 66.26 310 | 53.31 191 | 78.48 136 | 74.78 294 |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 80 | | 83.36 70 | | 72.93 78 | | 54.61 51 | 88.05 36 | | 88.12 36 | 86.81 56 |
|
plane_prior7 | | | | | | 81.41 96 | 55.96 120 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 103 | 56.24 115 | | | | | | 45.26 162 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 50 | | | | | 87.21 51 | 68.16 75 | 80.58 101 | 84.65 131 |
|
plane_prior4 | | | | | | | | | | | | 86.10 100 | | | | | |
|
plane_prior3 | | | | | | | 56.09 117 | | | 63.92 37 | 69.27 122 | | | | | | |
|
plane_prior1 | | | | | | 81.27 101 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 353 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 206 | 71.42 277 | 47.80 228 | | 50.90 346 | | 50.39 327 | 75.56 286 | 27.43 320 | 81.33 189 | 45.91 242 | 34.10 353 | 80.59 225 |
|
LGP-MVS_train | | | | | 75.76 73 | 80.22 117 | 57.51 94 | | 83.40 68 | 61.32 80 | 66.67 167 | 87.33 76 | 39.15 220 | 86.59 71 | 67.70 79 | 77.30 147 | 83.19 180 |
|
test11 | | | | | | | | | 83.47 65 | | | | | | | | |
|
door | | | | | | | | | 47.60 352 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 135 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 86 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 146 | | | 86.93 60 | | | 84.32 139 |
|
HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 156 | | | | |
|
NP-MVS | | | | | | 80.98 106 | 56.05 119 | | | | | 85.54 114 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 172 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 203 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 119 | | | | |
|
ITE_SJBPF | | | | | 62.09 283 | 66.16 324 | 44.55 265 | | 64.32 304 | 47.36 280 | 55.31 291 | 80.34 214 | 19.27 345 | 62.68 320 | 36.29 310 | 62.39 301 | 79.04 247 |
|
DeepMVS_CX |  | | | | 12.03 346 | 17.97 366 | 10.91 364 | | 10.60 367 | 7.46 361 | 11.07 362 | 28.36 357 | 3.28 367 | 11.29 364 | 8.01 362 | 9.74 363 | 13.89 359 |
|