This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 15
FOURS186.12 3660.82 3788.18 183.61 6660.87 8681.50 16
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 42
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 21
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7162.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 149
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 56
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6465.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 131
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4662.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 91
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4962.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 88
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4762.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 85
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5373.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTMP86.03 1917.08 424
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6863.89 3773.60 7190.60 2254.85 5186.72 7077.20 2588.06 3685.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 73
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 79
X-MVStestdata70.21 12767.28 17679.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 986.49 41947.95 13688.01 4071.55 7086.74 5386.37 79
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16489.24 5442.03 20689.38 1964.07 12186.50 5789.69 3
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10290.26 3446.61 16186.55 7671.71 6885.66 6184.97 142
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9759.99 11175.10 4590.35 3147.66 14186.52 7771.64 6982.99 8384.47 155
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4560.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4363.04 4969.80 12789.74 4945.43 17487.16 6072.01 6482.87 8885.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4466.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 77
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 31
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7660.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 118
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7660.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 118
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10668.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 10
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8859.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 133
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 5960.37 9979.89 1889.38 5254.97 4985.58 9976.12 3184.94 6486.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5663.24 4573.30 7487.27 8455.06 4886.30 8571.78 6784.58 6689.25 5
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 58
SR-MVS-dyc-post74.57 6273.90 6576.58 6283.49 6759.87 5284.29 4081.36 11458.07 14873.14 8090.07 3744.74 18185.84 9368.20 8581.76 10184.03 165
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11458.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 165
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10150.94 10588.54 2870.79 7489.71 1787.79 36
HQP_MVS74.31 6573.73 6876.06 6881.41 9456.31 10584.22 4384.01 5164.52 2569.27 13586.10 11645.26 17887.21 5868.16 8780.58 11184.65 150
plane_prior284.22 4364.52 25
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6777.39 2389.52 21
CPTT-MVS72.78 8072.08 8574.87 8984.88 5761.41 2684.15 4677.86 18855.27 20467.51 17088.08 6841.93 20881.85 18169.04 8380.01 11981.35 234
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6259.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
API-MVS72.17 9271.41 9374.45 10281.95 8657.22 9284.03 4880.38 14159.89 11568.40 14782.33 19349.64 11687.83 4651.87 22284.16 7578.30 278
save fliter86.17 3361.30 2883.98 5079.66 14959.00 130
SPE-MVS-test75.62 5275.31 5276.56 6380.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 11953.83 6386.36 8367.74 9086.91 5088.19 23
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 67
EC-MVSNet75.84 4975.87 4675.74 7478.86 14852.65 17383.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 71
APD-MVS_3200maxsize74.96 5474.39 6176.67 5982.20 8158.24 8083.67 5483.29 8058.41 14273.71 7090.14 3645.62 16785.99 8969.64 7882.85 8985.78 102
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12860.15 10870.43 11389.84 4641.09 22285.59 9867.61 9382.90 8785.77 105
plane_prior56.31 10583.58 5663.19 4880.48 114
QAPM70.05 12968.81 14073.78 11876.54 22353.43 15783.23 5783.48 6952.89 24365.90 19986.29 11041.55 21586.49 7951.01 22978.40 14681.42 228
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 74
EPNet73.09 7672.16 8375.90 7075.95 23156.28 10783.05 5972.39 26466.53 1065.27 21187.00 8750.40 11085.47 10462.48 13886.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 25
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 13960.76 1586.56 7567.86 8987.87 4186.06 93
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 6980.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer71.50 10470.38 11474.88 8878.76 15157.15 9782.79 6478.48 17551.26 26369.49 13083.22 17443.99 19083.24 14866.06 10479.37 12784.23 160
test_djsdf69.45 14967.74 15974.58 9874.57 25654.92 13682.79 6478.48 17551.26 26365.41 20883.49 17138.37 24683.24 14866.06 10469.25 27385.56 113
ACMP63.53 672.30 8971.20 9975.59 8080.28 11457.54 8782.74 6682.84 9160.58 9365.24 21586.18 11339.25 23786.03 8866.95 10076.79 16983.22 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM61.98 770.80 11669.73 12474.02 11280.59 11358.59 7782.68 6782.02 10055.46 20167.18 17584.39 15238.51 24483.17 15060.65 15376.10 17680.30 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary69.99 13168.66 14473.97 11484.94 5457.83 8482.63 6878.71 16756.28 18364.34 22984.14 15541.57 21387.06 6446.45 26778.88 13677.02 298
OPM-MVS74.73 5874.25 6276.19 6780.81 10659.01 7082.60 6983.64 6563.74 3972.52 9487.49 7747.18 15285.88 9269.47 8080.78 10783.66 185
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6361.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 102
LPG-MVS_test72.74 8171.74 8775.76 7280.22 11657.51 8982.55 7083.40 7361.32 7966.67 18587.33 8239.15 23986.59 7367.70 9177.30 16283.19 197
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 7967.78 370.09 11786.34 10954.92 5088.90 2572.68 5884.55 6787.76 37
114514_t70.83 11469.56 12674.64 9586.21 3154.63 13982.34 7381.81 10348.22 30263.01 25085.83 12640.92 22487.10 6257.91 17279.79 12082.18 218
HQP-NCC80.66 10882.31 7462.10 6867.85 159
ACMP_Plane80.66 10882.31 7462.10 6867.85 159
HQP-MVS73.45 7172.80 7675.40 8180.66 10854.94 13482.31 7483.90 5662.10 6867.85 15985.54 13345.46 17286.93 6567.04 9880.35 11584.32 157
MSLP-MVS++73.77 7073.47 7074.66 9383.02 7459.29 6182.30 7781.88 10159.34 12671.59 10586.83 8945.94 16583.65 14165.09 11485.22 6381.06 241
EPP-MVSNet72.16 9471.31 9774.71 9078.68 15449.70 21982.10 7881.65 10560.40 9665.94 19785.84 12551.74 9486.37 8255.93 18479.55 12688.07 28
test_prior462.51 1482.08 79
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17158.58 13974.32 6384.51 15055.94 4387.22 5767.11 9784.48 7185.52 114
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
PS-MVSNAJss72.24 9071.21 9875.31 8378.50 15755.93 11581.63 8282.12 9856.24 18470.02 12185.68 12947.05 15484.34 12865.27 11374.41 19185.67 109
TEST985.58 4361.59 2481.62 8381.26 12155.65 19774.93 4988.81 5953.70 6784.68 122
train_agg76.27 4376.15 4076.64 6185.58 4361.59 2481.62 8381.26 12155.86 18974.93 4988.81 5953.70 6784.68 12275.24 3888.33 3083.65 186
MG-MVS73.96 6873.89 6674.16 11085.65 4249.69 22181.59 8581.29 12061.45 7871.05 10988.11 6651.77 9387.73 4761.05 15083.09 8185.05 138
test_885.40 4660.96 3481.54 8681.18 12455.86 18974.81 5488.80 6153.70 6784.45 126
MAR-MVS71.51 10370.15 11975.60 7981.84 8759.39 5881.38 8782.90 8854.90 21768.08 15678.70 26347.73 13985.51 10151.68 22684.17 7481.88 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5056.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 43
OpenMVScopyleft61.03 968.85 15867.56 16372.70 15574.26 26353.99 14681.21 8981.34 11852.70 24462.75 25485.55 13238.86 24284.14 13048.41 25183.01 8279.97 258
DP-MVS Recon72.15 9570.73 10776.40 6486.57 2457.99 8281.15 9082.96 8657.03 16566.78 18185.56 13044.50 18588.11 3851.77 22480.23 11883.10 201
balanced_conf0376.58 3876.55 3776.68 5881.73 8852.90 16880.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
Vis-MVSNetpermissive72.18 9171.37 9574.61 9681.29 9755.41 12980.90 9278.28 18460.73 9069.23 13888.09 6744.36 18782.65 16657.68 17381.75 10385.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jajsoiax68.25 17466.45 19073.66 12875.62 23555.49 12880.82 9378.51 17452.33 24864.33 23084.11 15628.28 34681.81 18363.48 13170.62 24383.67 183
mvs_tets68.18 17666.36 19673.63 13175.61 23655.35 13180.77 9478.56 17252.48 24764.27 23284.10 15727.45 35281.84 18263.45 13270.56 24583.69 182
DP-MVS65.68 22063.66 23171.75 17384.93 5556.87 10280.74 9573.16 25853.06 24059.09 30082.35 19236.79 26885.94 9132.82 36269.96 25972.45 345
3Dnovator64.47 572.49 8571.39 9475.79 7177.70 18858.99 7180.66 9683.15 8462.24 6665.46 20786.59 10042.38 20485.52 10059.59 16384.72 6582.85 206
ACMH+57.40 1166.12 21664.06 22372.30 16477.79 18552.83 17180.39 9778.03 18657.30 16157.47 31582.55 18627.68 35084.17 12945.54 27769.78 26379.90 260
sasdasda74.67 5974.98 5573.71 12578.94 14650.56 20580.23 9883.87 5960.30 10377.15 3286.56 10259.65 1782.00 17866.01 10682.12 9488.58 13
canonicalmvs74.67 5974.98 5573.71 12578.94 14650.56 20580.23 9883.87 5960.30 10377.15 3286.56 10259.65 1782.00 17866.01 10682.12 9488.58 13
IS-MVSNet71.57 10271.00 10373.27 14478.86 14845.63 27180.22 10078.69 16864.14 3566.46 18887.36 8149.30 12085.60 9750.26 23583.71 7988.59 12
Effi-MVS+-dtu69.64 14267.53 16675.95 6976.10 22962.29 1580.20 10176.06 21659.83 11665.26 21477.09 29241.56 21484.02 13460.60 15471.09 24081.53 227
nrg03072.96 7873.01 7472.84 15175.41 24050.24 20980.02 10282.89 9058.36 14474.44 6086.73 9358.90 2480.83 20565.84 10974.46 18887.44 47
Anonymous2023121169.28 15268.47 14971.73 17480.28 11447.18 25579.98 10382.37 9554.61 22167.24 17384.01 15939.43 23482.41 17355.45 19272.83 21785.62 112
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9156.89 3587.86 4566.36 10288.91 2583.64 187
PVSNet_Blended_VisFu71.45 10670.39 11374.65 9482.01 8358.82 7479.93 10580.35 14255.09 20965.82 20382.16 19949.17 12382.64 16760.34 15578.62 14382.50 212
PAPM_NR72.63 8371.80 8675.13 8681.72 8953.42 15879.91 10683.28 8159.14 12866.31 19285.90 12351.86 9186.06 8657.45 17580.62 10985.91 98
LS3D64.71 23362.50 24771.34 18879.72 12855.71 12079.82 10774.72 23948.50 29956.62 32184.62 14533.59 29982.34 17429.65 38375.23 18575.97 308
UGNet68.81 15967.39 17173.06 14778.33 16654.47 14079.77 10875.40 22660.45 9563.22 24384.40 15132.71 31280.91 20451.71 22580.56 11383.81 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS71.78 9871.59 8872.32 16383.40 7046.38 26079.75 10971.08 27364.18 3272.80 8988.64 6242.58 20183.72 13957.41 17684.49 7086.86 63
OMC-MVS71.40 10770.60 10973.78 11876.60 22153.15 16279.74 11079.78 14658.37 14368.75 14286.45 10745.43 17480.60 20962.58 13677.73 15387.58 44
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7676.46 22551.83 19079.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11072.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
无先验79.66 11274.30 24648.40 30180.78 20753.62 20779.03 273
Effi-MVS+73.31 7472.54 7975.62 7877.87 18253.64 15279.62 11379.61 15061.63 7772.02 10082.61 18456.44 3985.97 9063.99 12479.07 13587.25 55
PAPR71.72 10170.82 10574.41 10381.20 10151.17 19379.55 11483.33 7855.81 19266.93 18084.61 14650.95 10486.06 8655.79 18779.20 13286.00 94
ACMH55.70 1565.20 22963.57 23270.07 21278.07 17652.01 18879.48 11579.69 14755.75 19456.59 32280.98 22327.12 35580.94 20142.90 30471.58 23477.25 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS74.46 6473.84 6776.33 6679.27 13755.24 13279.22 11685.00 3864.97 2172.65 9279.46 25353.65 7087.87 4467.45 9582.91 8685.89 99
BP-MVS173.41 7272.25 8276.88 5476.68 21853.70 15079.15 11781.07 12760.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
原ACMM279.02 118
GeoE71.01 11070.15 11973.60 13379.57 13152.17 18378.93 11978.12 18558.02 15067.76 16783.87 16252.36 8382.72 16456.90 17875.79 17985.92 97
UA-Net73.13 7572.93 7573.76 12083.58 6651.66 19178.75 12077.66 19267.75 472.61 9389.42 5049.82 11483.29 14753.61 20883.14 8086.32 85
VDDNet71.81 9771.33 9673.26 14582.80 7847.60 25178.74 12175.27 22859.59 12272.94 8689.40 5141.51 21683.91 13658.75 16882.99 8388.26 19
v1070.21 12769.02 13673.81 11773.51 26850.92 19778.74 12181.39 11260.05 11066.39 19081.83 20747.58 14385.41 10762.80 13568.86 28085.09 137
CANet_DTU68.18 17667.71 16269.59 22274.83 24846.24 26278.66 12376.85 20559.60 11963.45 24182.09 20335.25 27877.41 26259.88 16078.76 14085.14 133
MVSMamba_PlusPlus75.75 5175.44 4976.67 5980.84 10553.06 16578.62 12485.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 9
v870.33 12569.28 13273.49 13673.15 27150.22 21078.62 12480.78 13460.79 8866.45 18982.11 20249.35 11984.98 11363.58 13068.71 28185.28 129
alignmvs73.86 6973.99 6473.45 13878.20 16950.50 20778.57 12682.43 9459.40 12476.57 3586.71 9556.42 4081.23 19565.84 10981.79 10088.62 11
PLCcopyleft56.13 1465.09 23063.21 23970.72 20281.04 10354.87 13778.57 12677.47 19548.51 29855.71 32881.89 20533.71 29679.71 22341.66 31370.37 24877.58 289
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n69.01 15767.36 17373.98 11372.51 28552.65 17378.54 12881.30 11960.26 10562.67 25581.62 21043.61 19284.49 12557.01 17768.70 28284.79 147
COLMAP_ROBcopyleft52.97 1761.27 27558.81 28368.64 23674.63 25452.51 17878.42 12973.30 25649.92 28050.96 36381.51 21423.06 37579.40 22831.63 37265.85 30274.01 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14568.74 14271.93 16772.47 28653.82 14878.25 13062.26 34549.78 28173.12 8286.21 11252.66 7776.79 27575.02 3968.88 27885.18 132
CLD-MVS73.33 7372.68 7775.29 8578.82 15053.33 16078.23 13184.79 4161.30 8170.41 11481.04 22152.41 8287.12 6164.61 12082.49 9385.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10869.89 33055.81 11878.22 13275.40 22654.17 23075.00 4888.03 7153.82 6480.23 21978.08 2078.34 14786.69 69
test_fmvsmconf_n73.01 7772.59 7874.27 10771.28 30855.88 11778.21 13375.56 22254.31 22874.86 5387.80 7554.72 5280.23 21978.07 2178.48 14486.70 68
casdiffmvspermissive74.80 5674.89 5774.53 10075.59 23750.37 20878.17 13485.06 3562.80 5874.40 6187.86 7357.88 2783.61 14269.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a69.32 15168.44 15171.96 16670.91 31253.78 14978.12 13562.30 34449.35 28773.20 7886.55 10451.99 8976.79 27574.83 4168.68 28385.32 127
F-COLMAP63.05 25460.87 27069.58 22476.99 21453.63 15378.12 13576.16 21247.97 30752.41 35881.61 21127.87 34878.11 25040.07 31966.66 29777.00 299
test_fmvsmconf0.01_n72.17 9271.50 9074.16 11067.96 34855.58 12678.06 13774.67 24054.19 22974.54 5988.23 6450.35 11280.24 21878.07 2177.46 15886.65 72
EG-PatchMatch MVS64.71 23362.87 24270.22 20877.68 18953.48 15677.99 13878.82 16353.37 23956.03 32777.41 28924.75 37284.04 13246.37 26873.42 20873.14 337
fmvsm_s_conf0.5_n69.58 14368.84 13971.79 17272.31 29152.90 16877.90 13962.43 34349.97 27972.85 8885.90 12352.21 8576.49 28175.75 3370.26 25385.97 95
dcpmvs_274.55 6375.23 5372.48 15882.34 8053.34 15977.87 14081.46 11057.80 15875.49 4186.81 9062.22 1377.75 25771.09 7382.02 9786.34 81
tttt051767.83 18465.66 20974.33 10576.69 21750.82 19977.86 14173.99 25154.54 22464.64 22782.53 18935.06 28085.50 10255.71 18869.91 26086.67 70
fmvsm_s_conf0.1_n69.41 15068.60 14571.83 17071.07 31052.88 17077.85 14262.44 34249.58 28472.97 8586.22 11151.68 9576.48 28275.53 3470.10 25686.14 90
v114470.42 12369.31 13173.76 12073.22 26950.64 20277.83 14381.43 11158.58 13969.40 13381.16 21847.53 14585.29 10964.01 12370.64 24285.34 126
CNLPA65.43 22464.02 22469.68 22078.73 15358.07 8177.82 14470.71 27751.49 25861.57 27383.58 16938.23 25070.82 31143.90 29270.10 25680.16 255
VDD-MVS72.50 8472.09 8473.75 12281.58 9049.69 22177.76 14577.63 19363.21 4773.21 7789.02 5642.14 20583.32 14661.72 14582.50 9288.25 20
v119269.97 13268.68 14373.85 11573.19 27050.94 19577.68 14681.36 11457.51 16068.95 14180.85 22845.28 17785.33 10862.97 13470.37 24885.27 130
v2v48270.50 12169.45 13073.66 12872.62 28150.03 21577.58 14780.51 13859.90 11269.52 12982.14 20047.53 14584.88 11965.07 11570.17 25486.09 92
WR-MVS_H67.02 20166.92 18567.33 25277.95 18137.75 34377.57 14882.11 9962.03 7362.65 25682.48 19050.57 10979.46 22742.91 30364.01 31784.79 147
Anonymous2024052969.91 13369.02 13672.56 15680.19 11947.65 24977.56 14980.99 13055.45 20269.88 12586.76 9139.24 23882.18 17654.04 20377.10 16687.85 32
v14419269.71 13768.51 14673.33 14373.10 27250.13 21277.54 15080.64 13556.65 17068.57 14580.55 23146.87 15984.96 11562.98 13369.66 26784.89 144
baseline74.61 6174.70 5874.34 10475.70 23349.99 21677.54 15084.63 4262.73 5973.98 6687.79 7657.67 3083.82 13869.49 7982.74 9189.20 7
Fast-Effi-MVS+-dtu67.37 19165.33 21473.48 13772.94 27657.78 8677.47 15276.88 20457.60 15961.97 26676.85 29639.31 23580.49 21354.72 19770.28 25282.17 220
v192192069.47 14868.17 15573.36 14273.06 27350.10 21377.39 15380.56 13656.58 17768.59 14380.37 23344.72 18284.98 11362.47 13969.82 26285.00 139
tt080567.77 18567.24 18069.34 22774.87 24740.08 32077.36 15481.37 11355.31 20366.33 19184.65 14437.35 25882.55 16955.65 19072.28 22785.39 125
GBi-Net67.21 19366.55 18869.19 22877.63 19243.33 29277.31 15577.83 18956.62 17365.04 22082.70 18041.85 20980.33 21547.18 26172.76 21883.92 170
test167.21 19366.55 18869.19 22877.63 19243.33 29277.31 15577.83 18956.62 17365.04 22082.70 18041.85 20980.33 21547.18 26172.76 21883.92 170
FMVSNet166.70 20865.87 20569.19 22877.49 20043.33 29277.31 15577.83 18956.45 17864.60 22882.70 18038.08 25280.33 21546.08 27072.31 22683.92 170
MVS_111021_HR74.02 6773.46 7175.69 7583.01 7560.63 4077.29 15878.40 18261.18 8370.58 11285.97 12154.18 5884.00 13567.52 9482.98 8582.45 213
EIA-MVS71.78 9870.60 10975.30 8479.85 12553.54 15577.27 15983.26 8257.92 15466.49 18779.39 25552.07 8886.69 7160.05 15779.14 13485.66 110
v124069.24 15467.91 15873.25 14673.02 27549.82 21777.21 16080.54 13756.43 17968.34 14980.51 23243.33 19584.99 11162.03 14369.77 26584.95 143
fmvsm_l_conf0.5_n70.99 11170.82 10571.48 18071.45 30154.40 14277.18 16170.46 27948.67 29575.17 4486.86 8853.77 6576.86 27376.33 3077.51 15783.17 200
jason69.65 14168.39 15373.43 14078.27 16856.88 10177.12 16273.71 25446.53 32369.34 13483.22 17443.37 19479.18 23264.77 11779.20 13284.23 160
jason: jason.
PAPM67.92 18266.69 18671.63 17878.09 17549.02 23077.09 16381.24 12351.04 26660.91 27983.98 16047.71 14084.99 11140.81 31679.32 13080.90 244
EI-MVSNet-Vis-set72.42 8871.59 8874.91 8778.47 15954.02 14577.05 16479.33 15665.03 1871.68 10479.35 25752.75 7684.89 11766.46 10174.23 19285.83 101
PEN-MVS66.60 21066.45 19067.04 25377.11 21036.56 35677.03 16580.42 14062.95 5062.51 26184.03 15846.69 16079.07 23844.22 28663.08 32785.51 115
FIs70.82 11571.43 9268.98 23278.33 16638.14 33976.96 16683.59 6761.02 8567.33 17286.73 9355.07 4781.64 18454.61 20079.22 13187.14 57
PS-CasMVS66.42 21466.32 19866.70 25777.60 19836.30 36176.94 16779.61 15062.36 6562.43 26383.66 16645.69 16678.37 24645.35 28363.26 32585.42 123
h-mvs3372.71 8271.49 9176.40 6481.99 8559.58 5576.92 16876.74 20860.40 9674.81 5485.95 12245.54 17085.76 9570.41 7670.61 24483.86 174
fmvsm_l_conf0.5_n_a70.50 12170.27 11671.18 19271.30 30754.09 14476.89 16969.87 28347.90 30874.37 6286.49 10553.07 7576.69 27875.41 3577.11 16582.76 207
thisisatest053067.92 18265.78 20774.33 10576.29 22651.03 19476.89 16974.25 24753.67 23665.59 20581.76 20835.15 27985.50 10255.94 18372.47 22286.47 76
test_040263.25 25161.01 26769.96 21380.00 12354.37 14376.86 17172.02 26854.58 22358.71 30380.79 23035.00 28184.36 12726.41 39564.71 31171.15 364
CP-MVSNet66.49 21366.41 19466.72 25577.67 19036.33 35976.83 17279.52 15262.45 6362.54 25983.47 17246.32 16278.37 24645.47 28163.43 32485.45 120
EI-MVSNet-UG-set71.92 9671.06 10274.52 10177.98 18053.56 15476.62 17379.16 15764.40 2771.18 10878.95 26252.19 8684.66 12465.47 11273.57 20385.32 127
RRT-MVS71.46 10570.70 10873.74 12377.76 18749.30 22776.60 17480.45 13961.25 8268.17 15284.78 14144.64 18384.90 11664.79 11677.88 15287.03 58
lupinMVS69.57 14468.28 15473.44 13978.76 15157.15 9776.57 17573.29 25746.19 32669.49 13082.18 19643.99 19079.23 23164.66 11879.37 12783.93 169
TranMVSNet+NR-MVSNet70.36 12470.10 12171.17 19378.64 15542.97 29876.53 17681.16 12666.95 668.53 14685.42 13551.61 9683.07 15152.32 21669.70 26687.46 46
TAPA-MVS59.36 1066.60 21065.20 21670.81 19976.63 22048.75 23576.52 17780.04 14550.64 27165.24 21584.93 13839.15 23978.54 24536.77 33976.88 16885.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DTE-MVSNet65.58 22265.34 21366.31 26476.06 23034.79 36976.43 17879.38 15562.55 6161.66 27183.83 16345.60 16879.15 23641.64 31560.88 34285.00 139
anonymousdsp67.00 20264.82 21973.57 13470.09 32656.13 11076.35 17977.35 19948.43 30064.99 22380.84 22933.01 30580.34 21464.66 11867.64 29084.23 160
MVP-Stereo65.41 22563.80 22870.22 20877.62 19655.53 12776.30 18078.53 17350.59 27256.47 32578.65 26639.84 23082.68 16544.10 29072.12 22972.44 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_Test72.45 8672.46 8072.42 16274.88 24648.50 23976.28 18183.14 8559.40 12472.46 9584.68 14255.66 4481.12 19665.98 10879.66 12387.63 41
IterMVS-LS69.22 15568.48 14771.43 18474.44 25949.40 22576.23 18277.55 19459.60 11965.85 20281.59 21351.28 9981.58 18759.87 16169.90 26183.30 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何276.12 183
FMVSNet266.93 20366.31 19968.79 23577.63 19242.98 29776.11 18477.47 19556.62 17365.22 21782.17 19841.85 20980.18 22147.05 26472.72 22183.20 196
旧先验276.08 18545.32 33476.55 3665.56 34558.75 168
BH-untuned68.27 17367.29 17571.21 19079.74 12653.22 16176.06 18677.46 19757.19 16366.10 19481.61 21145.37 17683.50 14445.42 28276.68 17176.91 302
FC-MVSNet-test69.80 13670.58 11167.46 24877.61 19734.73 37276.05 18783.19 8360.84 8765.88 20186.46 10654.52 5580.76 20852.52 21578.12 14886.91 61
PCF-MVS61.88 870.95 11269.49 12875.35 8277.63 19255.71 12076.04 18881.81 10350.30 27469.66 12885.40 13652.51 7984.89 11751.82 22380.24 11785.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet71.11 10871.00 10371.44 18279.20 13944.13 28476.02 18982.60 9366.48 1168.20 15084.60 14756.82 3682.82 16254.62 19870.43 24687.36 53
UniMVSNet (Re)70.63 11870.20 11771.89 16878.55 15645.29 27475.94 19082.92 8763.68 4068.16 15383.59 16853.89 6283.49 14553.97 20471.12 23986.89 62
test_fmvsmvis_n_192070.84 11370.38 11472.22 16571.16 30955.39 13075.86 19172.21 26649.03 29173.28 7686.17 11451.83 9277.29 26575.80 3278.05 14983.98 168
EPNet_dtu61.90 26761.97 25361.68 30872.89 27739.78 32475.85 19265.62 31855.09 20954.56 34379.36 25637.59 25567.02 33739.80 32276.95 16778.25 279
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MGCFI-Net72.45 8673.34 7369.81 21977.77 18643.21 29575.84 19381.18 12459.59 12275.45 4286.64 9657.74 2877.94 25263.92 12581.90 9988.30 18
v14868.24 17567.19 18271.40 18570.43 32047.77 24875.76 19477.03 20358.91 13167.36 17180.10 24048.60 13181.89 18060.01 15866.52 29984.53 152
test_fmvsm_n_192071.73 10071.14 10073.50 13572.52 28456.53 10475.60 19576.16 21248.11 30477.22 3185.56 13053.10 7477.43 26174.86 4077.14 16486.55 75
SixPastTwentyTwo61.65 27058.80 28570.20 21075.80 23247.22 25475.59 19669.68 28554.61 22154.11 34779.26 25827.07 35682.96 15343.27 29849.79 38380.41 251
DELS-MVS74.76 5774.46 6075.65 7777.84 18452.25 18275.59 19684.17 4863.76 3873.15 7982.79 17959.58 2086.80 6867.24 9686.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FA-MVS(test-final)69.82 13568.48 14773.84 11678.44 16050.04 21475.58 19878.99 16158.16 14667.59 16882.14 20042.66 19985.63 9656.60 17976.19 17585.84 100
Baseline_NR-MVSNet67.05 20067.56 16365.50 28075.65 23437.70 34575.42 19974.65 24159.90 11268.14 15483.15 17749.12 12677.20 26652.23 21769.78 26381.60 226
OpenMVS_ROBcopyleft52.78 1860.03 28258.14 29265.69 27870.47 31944.82 27675.33 20070.86 27645.04 33556.06 32676.00 31026.89 35979.65 22435.36 35167.29 29272.60 342
xiu_mvs_v1_base_debu68.58 16567.28 17672.48 15878.19 17057.19 9475.28 20175.09 23451.61 25470.04 11881.41 21532.79 30879.02 23963.81 12777.31 15981.22 236
xiu_mvs_v1_base68.58 16567.28 17672.48 15878.19 17057.19 9475.28 20175.09 23451.61 25470.04 11881.41 21532.79 30879.02 23963.81 12777.31 15981.22 236
xiu_mvs_v1_base_debi68.58 16567.28 17672.48 15878.19 17057.19 9475.28 20175.09 23451.61 25470.04 11881.41 21532.79 30879.02 23963.81 12777.31 15981.22 236
EI-MVSNet69.27 15368.44 15171.73 17474.47 25749.39 22675.20 20478.45 17859.60 11969.16 13976.51 30451.29 9882.50 17059.86 16271.45 23683.30 192
CVMVSNet59.63 28759.14 28061.08 31674.47 25738.84 33375.20 20468.74 29631.15 38958.24 30976.51 30432.39 31968.58 32449.77 23765.84 30375.81 310
ET-MVSNet_ETH3D67.96 18165.72 20874.68 9276.67 21955.62 12575.11 20674.74 23852.91 24260.03 28680.12 23933.68 29782.64 16761.86 14476.34 17385.78 102
xiu_mvs_v2_base70.52 11969.75 12372.84 15181.21 10055.63 12375.11 20678.92 16254.92 21669.96 12479.68 24847.00 15882.09 17761.60 14779.37 12780.81 246
K. test v360.47 27957.11 29770.56 20473.74 26748.22 24275.10 20862.55 34058.27 14553.62 35376.31 30827.81 34981.59 18647.42 25739.18 39881.88 224
Fast-Effi-MVS+70.28 12669.12 13573.73 12478.50 15751.50 19275.01 20979.46 15456.16 18668.59 14379.55 25153.97 6084.05 13153.34 21077.53 15685.65 111
DU-MVS70.01 13069.53 12771.44 18278.05 17744.13 28475.01 20981.51 10964.37 2868.20 15084.52 14849.12 12682.82 16254.62 19870.43 24687.37 51
FMVSNet366.32 21565.61 21068.46 23876.48 22442.34 30174.98 21177.15 20255.83 19165.04 22081.16 21839.91 22880.14 22247.18 26172.76 21882.90 205
mvsmamba68.47 16966.56 18774.21 10979.60 12952.95 16674.94 21275.48 22452.09 25160.10 28483.27 17336.54 26984.70 12159.32 16777.69 15484.99 141
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21380.97 13165.13 1575.77 3990.88 1948.63 12986.66 7277.23 2488.17 3384.81 146
PS-MVSNAJ70.51 12069.70 12572.93 14981.52 9155.79 11974.92 21379.00 16055.04 21469.88 12578.66 26547.05 15482.19 17561.61 14679.58 12480.83 245
MVS_111021_LR69.50 14768.78 14171.65 17778.38 16259.33 5974.82 21570.11 28158.08 14767.83 16384.68 14241.96 20776.34 28565.62 11177.54 15579.30 270
ECVR-MVScopyleft67.72 18667.51 16768.35 24079.46 13336.29 36274.79 21666.93 30858.72 13467.19 17488.05 6936.10 27181.38 19052.07 21984.25 7287.39 49
test_yl69.69 13869.13 13371.36 18678.37 16445.74 26774.71 21780.20 14357.91 15570.01 12283.83 16342.44 20282.87 15854.97 19479.72 12185.48 116
DCV-MVSNet69.69 13869.13 13371.36 18678.37 16445.74 26774.71 21780.20 14357.91 15570.01 12283.83 16342.44 20282.87 15854.97 19479.72 12185.48 116
TransMVSNet (Re)64.72 23264.33 22265.87 27675.22 24238.56 33574.66 21975.08 23758.90 13261.79 26982.63 18351.18 10078.07 25143.63 29655.87 36580.99 243
BH-w/o66.85 20465.83 20669.90 21779.29 13552.46 17974.66 21976.65 20954.51 22564.85 22478.12 27145.59 16982.95 15443.26 29975.54 18374.27 331
PVSNet_BlendedMVS68.56 16867.72 16071.07 19677.03 21250.57 20374.50 22181.52 10753.66 23764.22 23579.72 24749.13 12482.87 15855.82 18573.92 19679.77 265
MonoMVSNet64.15 24063.31 23766.69 25870.51 31844.12 28674.47 22274.21 24857.81 15763.03 24876.62 30038.33 24777.31 26454.22 20260.59 34778.64 276
c3_l68.33 17267.56 16370.62 20370.87 31346.21 26374.47 22278.80 16556.22 18566.19 19378.53 27051.88 9081.40 18962.08 14069.04 27684.25 159
test250665.33 22764.61 22067.50 24779.46 13334.19 37774.43 22451.92 38358.72 13466.75 18388.05 6925.99 36480.92 20351.94 22184.25 7287.39 49
BH-RMVSNet68.81 15967.42 17072.97 14880.11 12252.53 17774.26 22576.29 21158.48 14168.38 14884.20 15342.59 20083.83 13746.53 26675.91 17782.56 208
NR-MVSNet69.54 14568.85 13871.59 17978.05 17743.81 28974.20 22680.86 13365.18 1462.76 25384.52 14852.35 8483.59 14350.96 23170.78 24187.37 51
UniMVSNet_ETH3D67.60 18867.07 18469.18 23177.39 20342.29 30274.18 22775.59 22160.37 9966.77 18286.06 11837.64 25478.93 24452.16 21873.49 20586.32 85
VPA-MVSNet69.02 15669.47 12967.69 24677.42 20241.00 31674.04 22879.68 14860.06 10969.26 13784.81 14051.06 10377.58 25954.44 20174.43 19084.48 154
miper_ehance_all_eth68.03 17867.24 18070.40 20770.54 31746.21 26373.98 22978.68 16955.07 21266.05 19577.80 28152.16 8781.31 19261.53 14969.32 27083.67 183
hse-mvs271.04 10969.86 12274.60 9779.58 13057.12 9973.96 23075.25 22960.40 9674.81 5481.95 20445.54 17082.90 15570.41 7666.83 29683.77 179
131464.61 23563.21 23968.80 23471.87 29747.46 25273.95 23178.39 18342.88 35659.97 28776.60 30338.11 25179.39 22954.84 19672.32 22579.55 266
MVS67.37 19166.33 19770.51 20675.46 23950.94 19573.95 23181.85 10241.57 36362.54 25978.57 26947.98 13585.47 10452.97 21382.05 9675.14 317
AUN-MVS68.45 17166.41 19474.57 9979.53 13257.08 10073.93 23375.23 23054.44 22666.69 18481.85 20637.10 26482.89 15662.07 14166.84 29583.75 180
OurMVSNet-221017-061.37 27458.63 28769.61 22172.05 29448.06 24473.93 23372.51 26347.23 31854.74 34080.92 22521.49 38281.24 19448.57 25056.22 36479.53 267
test111167.21 19367.14 18367.42 24979.24 13834.76 37173.89 23565.65 31758.71 13666.96 17987.95 7236.09 27280.53 21052.03 22083.79 7786.97 60
cl2267.47 19066.45 19070.54 20569.85 33146.49 25973.85 23677.35 19955.07 21265.51 20677.92 27747.64 14281.10 19761.58 14869.32 27084.01 167
TAMVS66.78 20765.27 21571.33 18979.16 14253.67 15173.84 23769.59 28752.32 24965.28 21081.72 20944.49 18677.40 26342.32 30778.66 14282.92 203
WR-MVS68.47 16968.47 14968.44 23980.20 11839.84 32373.75 23876.07 21564.68 2268.11 15583.63 16750.39 11179.14 23749.78 23669.66 26786.34 81
eth_miper_zixun_eth67.63 18766.28 20071.67 17671.60 29948.33 24173.68 23977.88 18755.80 19365.91 19878.62 26847.35 15182.88 15759.45 16466.25 30083.81 175
TR-MVS66.59 21265.07 21771.17 19379.18 14049.63 22373.48 24075.20 23252.95 24167.90 15780.33 23639.81 23183.68 14043.20 30073.56 20480.20 254
cl____67.18 19666.26 20169.94 21470.20 32345.74 26773.30 24176.83 20655.10 20765.27 21179.57 25047.39 14980.53 21059.41 16669.22 27483.53 189
DIV-MVS_self_test67.18 19666.26 20169.94 21470.20 32345.74 26773.29 24276.83 20655.10 20765.27 21179.58 24947.38 15080.53 21059.43 16569.22 27483.54 188
CDS-MVSNet66.80 20665.37 21271.10 19578.98 14553.13 16473.27 24371.07 27452.15 25064.72 22580.23 23843.56 19377.10 26745.48 28078.88 13683.05 202
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs663.69 24562.82 24466.27 26670.63 31539.27 33073.13 24475.47 22552.69 24559.75 29382.30 19439.71 23277.03 26947.40 25864.35 31682.53 210
IB-MVS56.42 1265.40 22662.73 24573.40 14174.89 24552.78 17273.09 24575.13 23355.69 19558.48 30873.73 33432.86 30786.32 8450.63 23270.11 25581.10 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive70.69 11770.43 11271.46 18169.45 33648.95 23372.93 24678.46 17757.27 16271.69 10383.97 16151.48 9777.92 25470.70 7577.95 15187.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4268.65 16367.35 17472.56 15668.93 34250.18 21172.90 24779.47 15356.92 16769.45 13280.26 23746.29 16382.99 15264.07 12167.82 28884.53 152
miper_enhance_ethall67.11 19966.09 20370.17 21169.21 33945.98 26572.85 24878.41 18151.38 26065.65 20475.98 31351.17 10181.25 19360.82 15269.32 27083.29 194
thres100view90063.28 25062.41 24865.89 27577.31 20538.66 33472.65 24969.11 29457.07 16462.45 26281.03 22237.01 26679.17 23331.84 36873.25 21179.83 262
testdata172.65 24960.50 94
FE-MVS65.91 21863.33 23673.63 13177.36 20451.95 18972.62 25175.81 21753.70 23565.31 20978.96 26128.81 34386.39 8143.93 29173.48 20682.55 209
pm-mvs165.24 22864.97 21866.04 27272.38 28839.40 32972.62 25175.63 22055.53 19962.35 26583.18 17647.45 14776.47 28349.06 24666.54 29882.24 217
test22283.14 7158.68 7672.57 25363.45 33441.78 35967.56 16986.12 11537.13 26378.73 14174.98 321
PVSNet_Blended68.59 16467.72 16071.19 19177.03 21250.57 20372.51 25481.52 10751.91 25264.22 23577.77 28449.13 12482.87 15855.82 18579.58 12480.14 256
EU-MVSNet55.61 31954.41 32259.19 32565.41 36533.42 38272.44 25571.91 26928.81 39151.27 36173.87 33324.76 37169.08 32243.04 30158.20 35575.06 318
thres600view763.30 24962.27 24966.41 26277.18 20738.87 33272.35 25669.11 29456.98 16662.37 26480.96 22437.01 26679.00 24231.43 37573.05 21581.36 232
pmmvs-eth3d58.81 29256.31 30766.30 26567.61 35052.42 18172.30 25764.76 32443.55 34954.94 33874.19 33128.95 34072.60 30143.31 29757.21 35973.88 335
cascas65.98 21763.42 23473.64 13077.26 20652.58 17672.26 25877.21 20148.56 29661.21 27674.60 32832.57 31785.82 9450.38 23476.75 17082.52 211
VPNet67.52 18968.11 15665.74 27779.18 14036.80 35472.17 25972.83 26162.04 7267.79 16585.83 12648.88 12876.60 28051.30 22772.97 21683.81 175
MS-PatchMatch62.42 26061.46 25965.31 28475.21 24352.10 18472.05 26074.05 25046.41 32457.42 31774.36 32934.35 28877.57 26045.62 27673.67 20066.26 383
mvs_anonymous68.03 17867.51 16769.59 22272.08 29344.57 28171.99 26175.23 23051.67 25367.06 17782.57 18554.68 5377.94 25256.56 18075.71 18186.26 89
patch_mono-269.85 13471.09 10166.16 26879.11 14354.80 13871.97 26274.31 24553.50 23870.90 11084.17 15457.63 3163.31 35166.17 10382.02 9780.38 252
tfpn200view963.18 25262.18 25166.21 26776.85 21539.62 32671.96 26369.44 29056.63 17162.61 25779.83 24337.18 26079.17 23331.84 36873.25 21179.83 262
thres40063.31 24862.18 25166.72 25576.85 21539.62 32671.96 26369.44 29056.63 17162.61 25779.83 24337.18 26079.17 23331.84 36873.25 21181.36 232
baseline163.81 24463.87 22763.62 29576.29 22636.36 35771.78 26567.29 30556.05 18864.23 23482.95 17847.11 15374.41 29547.30 26061.85 33680.10 257
baseline263.42 24761.26 26369.89 21872.55 28347.62 25071.54 26668.38 29850.11 27654.82 33975.55 31843.06 19780.96 20048.13 25467.16 29481.11 239
pmmvs461.48 27359.39 27867.76 24571.57 30053.86 14771.42 26765.34 31944.20 34359.46 29577.92 27735.90 27374.71 29343.87 29364.87 31074.71 327
1112_ss64.00 24363.36 23565.93 27479.28 13642.58 30071.35 26872.36 26546.41 32460.55 28177.89 27946.27 16473.28 29946.18 26969.97 25881.92 223
thisisatest051565.83 21963.50 23372.82 15373.75 26649.50 22471.32 26973.12 26049.39 28663.82 23776.50 30634.95 28284.84 12053.20 21275.49 18484.13 164
CostFormer64.04 24262.51 24668.61 23771.88 29645.77 26671.30 27070.60 27847.55 31264.31 23176.61 30241.63 21279.62 22649.74 23869.00 27780.42 250
tfpnnormal62.47 25961.63 25764.99 28774.81 24939.01 33171.22 27173.72 25355.22 20660.21 28280.09 24141.26 22076.98 27130.02 38168.09 28678.97 274
IterMVS62.79 25661.27 26267.35 25169.37 33752.04 18771.17 27268.24 30052.63 24659.82 29076.91 29537.32 25972.36 30252.80 21463.19 32677.66 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24563.88 22663.14 30074.75 25031.04 39171.16 27363.64 33356.32 18159.80 29184.99 13744.51 18475.46 29039.12 32580.62 10982.92 203
IterMVS-SCA-FT62.49 25861.52 25865.40 28271.99 29550.80 20071.15 27469.63 28645.71 33260.61 28077.93 27637.45 25665.99 34355.67 18963.50 32379.42 268
Anonymous20240521166.84 20565.99 20469.40 22680.19 11942.21 30471.11 27571.31 27258.80 13367.90 15786.39 10829.83 33479.65 22449.60 24278.78 13986.33 83
Anonymous2024052155.30 32054.41 32257.96 33560.92 38941.73 30871.09 27671.06 27541.18 36448.65 37473.31 33616.93 38859.25 36742.54 30564.01 31772.90 339
tpm262.07 26560.10 27467.99 24372.79 27843.86 28871.05 27766.85 30943.14 35462.77 25275.39 32238.32 24880.80 20641.69 31268.88 27879.32 269
TDRefinement53.44 33350.72 34261.60 30964.31 37046.96 25670.89 27865.27 32141.78 35944.61 38777.98 27411.52 40366.36 34128.57 38751.59 37771.49 359
XVG-ACMP-BASELINE64.36 23962.23 25070.74 20172.35 28952.45 18070.80 27978.45 17853.84 23459.87 28981.10 22016.24 39179.32 23055.64 19171.76 23180.47 249
mmtdpeth60.40 28059.12 28164.27 29369.59 33348.99 23170.67 28070.06 28254.96 21562.78 25173.26 33827.00 35767.66 33058.44 17145.29 39076.16 307
XVG-OURS-SEG-HR68.81 15967.47 16972.82 15374.40 26056.87 10270.59 28179.04 15954.77 21966.99 17886.01 12039.57 23378.21 24962.54 13773.33 20983.37 191
VNet69.68 14070.19 11868.16 24279.73 12741.63 31170.53 28277.38 19860.37 9970.69 11186.63 9851.08 10277.09 26853.61 20881.69 10585.75 107
GA-MVS65.53 22363.70 23071.02 19770.87 31348.10 24370.48 28374.40 24356.69 16964.70 22676.77 29733.66 29881.10 19755.42 19370.32 25183.87 173
MSDG61.81 26959.23 27969.55 22572.64 28052.63 17570.45 28475.81 21751.38 26053.70 35076.11 30929.52 33681.08 19937.70 33265.79 30474.93 322
ab-mvs66.65 20966.42 19367.37 25076.17 22841.73 30870.41 28576.14 21453.99 23265.98 19683.51 17049.48 11876.24 28648.60 24973.46 20784.14 163
EGC-MVSNET42.47 36238.48 37054.46 35374.33 26148.73 23670.33 28651.10 3860.03 4220.18 42367.78 37413.28 39766.49 34018.91 40550.36 38148.15 402
MVSTER67.16 19865.58 21171.88 16970.37 32249.70 21970.25 28778.45 17851.52 25769.16 13980.37 23338.45 24582.50 17060.19 15671.46 23583.44 190
reproduce_monomvs62.56 25761.20 26566.62 25970.62 31644.30 28370.13 28873.13 25954.78 21861.13 27776.37 30725.63 36775.63 28958.75 16860.29 34879.93 259
XVG-OURS68.76 16267.37 17272.90 15074.32 26257.22 9270.09 28978.81 16455.24 20567.79 16585.81 12836.54 26978.28 24862.04 14275.74 18083.19 197
HY-MVS56.14 1364.55 23663.89 22566.55 26074.73 25141.02 31369.96 29074.43 24249.29 28861.66 27180.92 22547.43 14876.68 27944.91 28571.69 23281.94 222
AllTest57.08 30454.65 31864.39 29171.44 30249.03 22869.92 29167.30 30345.97 32947.16 37879.77 24517.47 38567.56 33333.65 35659.16 35276.57 303
testing356.54 30855.92 31058.41 33077.52 19927.93 40069.72 29256.36 37054.75 22058.63 30677.80 28120.88 38371.75 30825.31 39762.25 33375.53 314
thres20062.20 26461.16 26665.34 28375.38 24139.99 32269.60 29369.29 29255.64 19861.87 26876.99 29337.07 26578.96 24331.28 37673.28 21077.06 297
tpmrst58.24 29558.70 28656.84 34066.97 35334.32 37569.57 29461.14 35147.17 31958.58 30771.60 34941.28 21960.41 36149.20 24462.84 32875.78 311
PatchmatchNetpermissive59.84 28458.24 29064.65 28973.05 27446.70 25869.42 29562.18 34647.55 31258.88 30271.96 34634.49 28669.16 32142.99 30263.60 32178.07 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew59.66 28659.69 27659.56 32075.19 24435.78 36669.34 29664.28 32846.88 32161.76 27075.79 31440.61 22565.20 34632.16 36471.21 23777.70 287
GG-mvs-BLEND62.34 30571.36 30637.04 35269.20 29757.33 36754.73 34165.48 38530.37 32877.82 25534.82 35274.93 18672.17 351
HyFIR lowres test65.67 22163.01 24173.67 12779.97 12455.65 12269.07 29875.52 22342.68 35763.53 24077.95 27540.43 22681.64 18446.01 27171.91 23083.73 181
UWE-MVS60.18 28159.78 27561.39 31377.67 19033.92 38069.04 29963.82 33148.56 29664.27 23277.64 28627.20 35470.40 31633.56 35976.24 17479.83 262
test_post168.67 3003.64 42032.39 31969.49 32044.17 287
testing22262.29 26361.31 26165.25 28577.87 18238.53 33668.34 30166.31 31456.37 18063.15 24777.58 28728.47 34476.18 28837.04 33776.65 17281.05 242
Test_1112_low_res62.32 26161.77 25564.00 29479.08 14439.53 32868.17 30270.17 28043.25 35259.03 30179.90 24244.08 18871.24 31043.79 29468.42 28481.25 235
tpm cat159.25 29056.95 30066.15 26972.19 29246.96 25668.09 30365.76 31640.03 37357.81 31370.56 35638.32 24874.51 29438.26 33061.50 33977.00 299
ppachtmachnet_test58.06 29855.38 31466.10 27169.51 33448.99 23168.01 30466.13 31544.50 34054.05 34870.74 35532.09 32172.34 30336.68 34256.71 36376.99 301
tpmvs58.47 29356.95 30063.03 30270.20 32341.21 31267.90 30567.23 30649.62 28354.73 34170.84 35434.14 28976.24 28636.64 34361.29 34071.64 356
testing9164.46 23763.80 22866.47 26178.43 16140.06 32167.63 30669.59 28759.06 12963.18 24578.05 27334.05 29076.99 27048.30 25275.87 17882.37 215
CL-MVSNet_self_test61.53 27160.94 26863.30 29868.95 34136.93 35367.60 30772.80 26255.67 19659.95 28876.63 29945.01 18072.22 30539.74 32362.09 33580.74 247
testing1162.81 25561.90 25465.54 27978.38 16240.76 31867.59 30866.78 31055.48 20060.13 28377.11 29131.67 32376.79 27545.53 27874.45 18979.06 271
test_vis1_n_192058.86 29159.06 28258.25 33163.76 37143.14 29667.49 30966.36 31340.22 37165.89 20071.95 34731.04 32459.75 36559.94 15964.90 30971.85 354
tpm57.34 30258.16 29154.86 35071.80 29834.77 37067.47 31056.04 37448.20 30360.10 28476.92 29437.17 26253.41 39340.76 31765.01 30876.40 305
testing9964.05 24163.29 23866.34 26378.17 17339.76 32567.33 31168.00 30158.60 13863.03 24878.10 27232.57 31776.94 27248.22 25375.58 18282.34 216
gg-mvs-nofinetune57.86 29956.43 30662.18 30672.62 28135.35 36766.57 31256.33 37150.65 27057.64 31457.10 39730.65 32676.36 28437.38 33478.88 13674.82 324
TinyColmap54.14 32651.72 33761.40 31266.84 35541.97 30566.52 31368.51 29744.81 33642.69 39275.77 31511.66 40172.94 30031.96 36656.77 36269.27 377
pmmvs556.47 31055.68 31258.86 32761.41 38336.71 35566.37 31462.75 33940.38 37053.70 35076.62 30034.56 28467.05 33640.02 32165.27 30672.83 340
CHOSEN 1792x268865.08 23162.84 24371.82 17181.49 9356.26 10866.32 31574.20 24940.53 36963.16 24678.65 26641.30 21777.80 25645.80 27374.09 19381.40 231
our_test_356.49 30954.42 32162.68 30469.51 33445.48 27266.08 31661.49 34944.11 34650.73 36769.60 36633.05 30368.15 32538.38 32956.86 36074.40 329
mvs5depth55.64 31853.81 32961.11 31559.39 39240.98 31765.89 31768.28 29950.21 27558.11 31175.42 32117.03 38767.63 33243.79 29446.21 38774.73 326
PM-MVS52.33 33750.19 34558.75 32862.10 38045.14 27565.75 31840.38 40843.60 34853.52 35472.65 3399.16 40965.87 34450.41 23354.18 37065.24 385
D2MVS62.30 26260.29 27368.34 24166.46 35948.42 24065.70 31973.42 25547.71 31058.16 31075.02 32430.51 32777.71 25853.96 20571.68 23378.90 275
MIMVSNet155.17 32354.31 32457.77 33770.03 32732.01 38865.68 32064.81 32349.19 28946.75 38176.00 31025.53 36864.04 34928.65 38662.13 33477.26 295
PatchMatch-RL56.25 31354.55 32061.32 31477.06 21156.07 11265.57 32154.10 38044.13 34553.49 35671.27 35325.20 36966.78 33836.52 34563.66 32061.12 387
Syy-MVS56.00 31556.23 30855.32 34774.69 25226.44 40665.52 32257.49 36550.97 26756.52 32372.18 34239.89 22968.09 32624.20 39864.59 31471.44 360
myMVS_eth3d54.86 32554.61 31955.61 34674.69 25227.31 40365.52 32257.49 36550.97 26756.52 32372.18 34221.87 38168.09 32627.70 38964.59 31471.44 360
test-LLR58.15 29758.13 29358.22 33268.57 34344.80 27765.46 32457.92 36250.08 27755.44 33169.82 36332.62 31457.44 37649.66 24073.62 20172.41 347
TESTMET0.1,155.28 32154.90 31756.42 34266.56 35743.67 29065.46 32456.27 37239.18 37653.83 34967.44 37524.21 37355.46 38748.04 25573.11 21470.13 371
test-mter56.42 31155.82 31158.22 33268.57 34344.80 27765.46 32457.92 36239.94 37455.44 33169.82 36321.92 37857.44 37649.66 24073.62 20172.41 347
SDMVSNet68.03 17868.10 15767.84 24477.13 20848.72 23765.32 32779.10 15858.02 15065.08 21882.55 18647.83 13873.40 29863.92 12573.92 19681.41 229
CR-MVSNet59.91 28357.90 29565.96 27369.96 32852.07 18565.31 32863.15 33742.48 35859.36 29674.84 32535.83 27470.75 31245.50 27964.65 31275.06 318
RPMNet61.53 27158.42 28870.86 19869.96 32852.07 18565.31 32881.36 11443.20 35359.36 29670.15 36135.37 27785.47 10436.42 34664.65 31275.06 318
USDC56.35 31254.24 32562.69 30364.74 36740.31 31965.05 33073.83 25243.93 34747.58 37677.71 28515.36 39475.05 29238.19 33161.81 33772.70 341
MDTV_nov1_ep1357.00 29972.73 27938.26 33865.02 33164.73 32544.74 33755.46 33072.48 34032.61 31670.47 31337.47 33367.75 289
ETVMVS59.51 28958.81 28361.58 31077.46 20134.87 36864.94 33259.35 35654.06 23161.08 27876.67 29829.54 33571.87 30732.16 36474.07 19478.01 286
CMPMVSbinary42.80 2157.81 30055.97 30963.32 29760.98 38747.38 25364.66 33369.50 28932.06 38746.83 38077.80 28129.50 33771.36 30948.68 24873.75 19971.21 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WBMVS60.54 27760.61 27160.34 31878.00 17935.95 36464.55 33464.89 32249.63 28263.39 24278.70 26333.85 29567.65 33142.10 30970.35 25077.43 291
RPSCF55.80 31754.22 32660.53 31765.13 36642.91 29964.30 33557.62 36436.84 38058.05 31282.28 19528.01 34756.24 38437.14 33658.61 35482.44 214
XXY-MVS60.68 27661.67 25657.70 33870.43 32038.45 33764.19 33666.47 31148.05 30663.22 24380.86 22749.28 12160.47 36045.25 28467.28 29374.19 332
FMVSNet555.86 31654.93 31658.66 32971.05 31136.35 35864.18 33762.48 34146.76 32250.66 36874.73 32725.80 36564.04 34933.11 36065.57 30575.59 313
UBG59.62 28859.53 27759.89 31978.12 17435.92 36564.11 33860.81 35349.45 28561.34 27475.55 31833.05 30367.39 33538.68 32774.62 18776.35 306
test_cas_vis1_n_192056.91 30556.71 30357.51 33959.13 39345.40 27363.58 33961.29 35036.24 38167.14 17671.85 34829.89 33356.69 38057.65 17463.58 32270.46 368
SCA60.49 27858.38 28966.80 25474.14 26548.06 24463.35 34063.23 33649.13 29059.33 29972.10 34437.45 25674.27 29644.17 28762.57 33078.05 282
Patchmtry57.16 30356.47 30559.23 32369.17 34034.58 37362.98 34163.15 33744.53 33956.83 32074.84 32535.83 27468.71 32340.03 32060.91 34174.39 330
Anonymous2023120655.10 32455.30 31554.48 35269.81 33233.94 37962.91 34262.13 34741.08 36555.18 33575.65 31632.75 31156.59 38230.32 38067.86 28772.91 338
sd_testset64.46 23764.45 22164.51 29077.13 20842.25 30362.67 34372.11 26758.02 15065.08 21882.55 18641.22 22169.88 31947.32 25973.92 19681.41 229
MIMVSNet57.35 30157.07 29858.22 33274.21 26437.18 34862.46 34460.88 35248.88 29355.29 33475.99 31231.68 32262.04 35631.87 36772.35 22475.43 316
dp51.89 33951.60 33852.77 36568.44 34632.45 38762.36 34554.57 37744.16 34449.31 37367.91 37128.87 34256.61 38133.89 35554.89 36769.24 378
EPMVS53.96 32753.69 33054.79 35166.12 36231.96 38962.34 34649.05 39144.42 34255.54 32971.33 35230.22 33056.70 37941.65 31462.54 33175.71 312
pmmvs344.92 35741.95 36453.86 35552.58 40243.55 29162.11 34746.90 40026.05 39840.63 39460.19 39311.08 40657.91 37531.83 37146.15 38860.11 388
test_vis1_n49.89 34848.69 35053.50 35953.97 39737.38 34761.53 34847.33 39828.54 39259.62 29467.10 37913.52 39652.27 39649.07 24557.52 35770.84 366
PVSNet50.76 1958.40 29457.39 29661.42 31175.53 23844.04 28761.43 34963.45 33447.04 32056.91 31973.61 33527.00 35764.76 34739.12 32572.40 22375.47 315
LCM-MVSNet-Re61.88 26861.35 26063.46 29674.58 25531.48 39061.42 35058.14 36158.71 13653.02 35779.55 25143.07 19676.80 27445.69 27477.96 15082.11 221
test20.0353.87 32954.02 32753.41 36161.47 38228.11 39961.30 35159.21 35751.34 26252.09 35977.43 28833.29 30258.55 37229.76 38260.27 34973.58 336
MDTV_nov1_ep13_2view25.89 40861.22 35240.10 37251.10 36232.97 30638.49 32878.61 277
PMMVS53.96 32753.26 33356.04 34362.60 37850.92 19761.17 35356.09 37332.81 38653.51 35566.84 38034.04 29159.93 36444.14 28968.18 28557.27 395
test_fmvs1_n51.37 34150.35 34454.42 35452.85 40037.71 34461.16 35451.93 38228.15 39363.81 23869.73 36513.72 39553.95 39151.16 22860.65 34571.59 357
WTY-MVS59.75 28560.39 27257.85 33672.32 29037.83 34261.05 35564.18 32945.95 33161.91 26779.11 26047.01 15760.88 35942.50 30669.49 26974.83 323
dmvs_testset50.16 34651.90 33644.94 38166.49 35811.78 42161.01 35651.50 38451.17 26550.30 37167.44 37539.28 23660.29 36222.38 40157.49 35862.76 386
Patchmatch-RL test58.16 29655.49 31366.15 26967.92 34948.89 23460.66 35751.07 38747.86 30959.36 29662.71 39134.02 29272.27 30456.41 18159.40 35177.30 293
test_fmvs151.32 34350.48 34353.81 35653.57 39837.51 34660.63 35851.16 38528.02 39563.62 23969.23 36816.41 39053.93 39251.01 22960.70 34469.99 372
LTVRE_ROB55.42 1663.15 25361.23 26468.92 23376.57 22247.80 24659.92 35976.39 21054.35 22758.67 30482.46 19129.44 33881.49 18842.12 30871.14 23877.46 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 153.32 33453.59 33152.50 36762.81 37729.45 39459.51 36054.11 37950.08 27754.40 34574.31 33032.62 31455.92 38530.50 37963.95 31972.15 352
UnsupCasMVSNet_eth53.16 33652.47 33455.23 34859.45 39133.39 38359.43 36169.13 29345.98 32850.35 37072.32 34129.30 33958.26 37442.02 31144.30 39174.05 333
MVS-HIRNet45.52 35644.48 35848.65 37568.49 34534.05 37859.41 36244.50 40327.03 39637.96 40350.47 40526.16 36364.10 34826.74 39459.52 35047.82 404
testgi51.90 33852.37 33550.51 37360.39 39023.55 41358.42 36358.15 36049.03 29151.83 36079.21 25922.39 37655.59 38629.24 38562.64 32972.40 349
dmvs_re56.77 30756.83 30256.61 34169.23 33841.02 31358.37 36464.18 32950.59 27257.45 31671.42 35035.54 27658.94 37037.23 33567.45 29169.87 373
PatchT53.17 33553.44 33252.33 36868.29 34725.34 41058.21 36554.41 37844.46 34154.56 34369.05 36933.32 30160.94 35836.93 33861.76 33870.73 367
WB-MVS43.26 35943.41 35942.83 38563.32 37410.32 42358.17 36645.20 40145.42 33340.44 39667.26 37834.01 29358.98 36911.96 41424.88 40859.20 389
sss56.17 31456.57 30454.96 34966.93 35436.32 36057.94 36761.69 34841.67 36158.64 30575.32 32338.72 24356.25 38342.04 31066.19 30172.31 350
ttmdpeth45.56 35542.95 36053.39 36252.33 40329.15 39557.77 36848.20 39531.81 38849.86 37277.21 2908.69 41059.16 36827.31 39033.40 40571.84 355
test_fmvs248.69 35047.49 35552.29 36948.63 40733.06 38557.76 36948.05 39625.71 39959.76 29269.60 36611.57 40252.23 39749.45 24356.86 36071.58 358
KD-MVS_self_test55.22 32253.89 32859.21 32457.80 39627.47 40257.75 37074.32 24447.38 31450.90 36470.00 36228.45 34570.30 31740.44 31857.92 35679.87 261
UnsupCasMVSNet_bld50.07 34748.87 34853.66 35760.97 38833.67 38157.62 37164.56 32639.47 37547.38 37764.02 38927.47 35159.32 36634.69 35343.68 39267.98 381
mamv456.85 30658.00 29453.43 36072.46 28754.47 14057.56 37254.74 37538.81 37757.42 31779.45 25447.57 14438.70 41260.88 15153.07 37367.11 382
SSC-MVS41.96 36441.99 36341.90 38662.46 3799.28 42557.41 37344.32 40443.38 35038.30 40266.45 38132.67 31358.42 37310.98 41521.91 41157.99 393
ANet_high41.38 36537.47 37253.11 36339.73 41824.45 41156.94 37469.69 28447.65 31126.04 41052.32 40012.44 39962.38 35521.80 40210.61 41972.49 344
MDA-MVSNet-bldmvs53.87 32950.81 34163.05 30166.25 36048.58 23856.93 37563.82 33148.09 30541.22 39370.48 35930.34 32968.00 32934.24 35445.92 38972.57 343
test1234.73 3916.30 3940.02 4050.01 4280.01 43056.36 3760.00 4290.01 4230.04 4240.21 4240.01 4280.00 4240.03 4240.00 4220.04 420
miper_lstm_enhance62.03 26660.88 26965.49 28166.71 35646.25 26156.29 37775.70 21950.68 26961.27 27575.48 32040.21 22768.03 32856.31 18265.25 30782.18 218
KD-MVS_2432*160053.45 33151.50 33959.30 32162.82 37537.14 34955.33 37871.79 27047.34 31655.09 33670.52 35721.91 37970.45 31435.72 34942.97 39370.31 369
miper_refine_blended53.45 33151.50 33959.30 32162.82 37537.14 34955.33 37871.79 27047.34 31655.09 33670.52 35721.91 37970.45 31435.72 34942.97 39370.31 369
LF4IMVS42.95 36042.26 36245.04 37948.30 40832.50 38654.80 38048.49 39328.03 39440.51 39570.16 3609.24 40843.89 40731.63 37249.18 38558.72 391
PMVScopyleft28.69 2236.22 37233.29 37745.02 38036.82 42035.98 36354.68 38148.74 39226.31 39721.02 41351.61 4022.88 42260.10 3639.99 41847.58 38638.99 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVStest142.65 36139.29 36852.71 36647.26 41034.58 37354.41 38250.84 39023.35 40139.31 40174.08 33212.57 39855.09 38823.32 39928.47 40768.47 380
PVSNet_043.31 2047.46 35445.64 35752.92 36467.60 35144.65 27954.06 38354.64 37641.59 36246.15 38358.75 39430.99 32558.66 37132.18 36324.81 40955.46 397
testmvs4.52 3926.03 3950.01 4060.01 4280.00 43153.86 3840.00 4290.01 4230.04 4240.27 4230.00 4290.00 4240.04 4230.00 4220.03 421
test_fmvs344.30 35842.55 36149.55 37442.83 41227.15 40553.03 38544.93 40222.03 40753.69 35264.94 3864.21 41749.63 39947.47 25649.82 38271.88 353
APD_test137.39 37134.94 37444.72 38248.88 40633.19 38452.95 38644.00 40519.49 40827.28 40958.59 3953.18 42152.84 39418.92 40441.17 39648.14 403
dongtai34.52 37434.94 37433.26 39561.06 38616.00 42052.79 38723.78 42140.71 36839.33 40048.65 40916.91 38948.34 40112.18 41319.05 41335.44 412
YYNet150.73 34448.96 34656.03 34461.10 38541.78 30751.94 38856.44 36940.94 36744.84 38567.80 37330.08 33155.08 38936.77 33950.71 37971.22 362
MDA-MVSNet_test_wron50.71 34548.95 34756.00 34561.17 38441.84 30651.90 38956.45 36840.96 36644.79 38667.84 37230.04 33255.07 39036.71 34150.69 38071.11 365
kuosan29.62 38130.82 38026.02 40052.99 39916.22 41951.09 39022.71 42233.91 38533.99 40440.85 41015.89 39233.11 4177.59 42118.37 41428.72 414
ADS-MVSNet251.33 34248.76 34959.07 32666.02 36344.60 28050.90 39159.76 35536.90 37850.74 36566.18 38326.38 36063.11 35227.17 39154.76 36869.50 375
ADS-MVSNet48.48 35147.77 35250.63 37266.02 36329.92 39350.90 39150.87 38936.90 37850.74 36566.18 38326.38 36052.47 39527.17 39154.76 36869.50 375
FPMVS42.18 36341.11 36545.39 37858.03 39541.01 31549.50 39353.81 38130.07 39033.71 40564.03 38711.69 40052.08 39814.01 40955.11 36643.09 406
N_pmnet39.35 36940.28 36636.54 39263.76 3711.62 42949.37 3940.76 42834.62 38443.61 39066.38 38226.25 36242.57 40826.02 39651.77 37665.44 384
new-patchmatchnet47.56 35347.73 35347.06 37658.81 3949.37 42448.78 39559.21 35743.28 35144.22 38868.66 37025.67 36657.20 37831.57 37449.35 38474.62 328
test_vis1_rt41.35 36639.45 36747.03 37746.65 41137.86 34147.76 39638.65 40923.10 40344.21 38951.22 40311.20 40544.08 40639.27 32453.02 37459.14 390
JIA-IIPM51.56 34047.68 35463.21 29964.61 36850.73 20147.71 39758.77 35942.90 35548.46 37551.72 40124.97 37070.24 31836.06 34853.89 37168.64 379
ambc65.13 28663.72 37337.07 35147.66 39878.78 16654.37 34671.42 35011.24 40480.94 20145.64 27553.85 37277.38 292
testf131.46 37928.89 38339.16 38841.99 41528.78 39746.45 39937.56 41014.28 41521.10 41148.96 4061.48 42547.11 40213.63 41034.56 40241.60 407
APD_test231.46 37928.89 38339.16 38841.99 41528.78 39746.45 39937.56 41014.28 41521.10 41148.96 4061.48 42547.11 40213.63 41034.56 40241.60 407
Patchmatch-test49.08 34948.28 35151.50 37164.40 36930.85 39245.68 40148.46 39435.60 38246.10 38472.10 34434.47 28746.37 40427.08 39360.65 34577.27 294
DSMNet-mixed39.30 37038.72 36941.03 38751.22 40419.66 41645.53 40231.35 41515.83 41439.80 39867.42 37722.19 37745.13 40522.43 40052.69 37558.31 392
LCM-MVSNet40.30 36735.88 37353.57 35842.24 41329.15 39545.21 40360.53 35422.23 40628.02 40850.98 4043.72 41961.78 35731.22 37738.76 39969.78 374
new_pmnet34.13 37534.29 37633.64 39452.63 40118.23 41844.43 40433.90 41422.81 40430.89 40753.18 39910.48 40735.72 41620.77 40339.51 39746.98 405
mvsany_test139.38 36838.16 37143.02 38449.05 40534.28 37644.16 40525.94 41922.74 40546.57 38262.21 39223.85 37441.16 41133.01 36135.91 40153.63 398
E-PMN23.77 38322.73 38726.90 39842.02 41420.67 41542.66 40635.70 41217.43 41010.28 42025.05 4166.42 41242.39 40910.28 41714.71 41617.63 415
EMVS22.97 38421.84 38826.36 39940.20 41719.53 41741.95 40734.64 41317.09 4119.73 42122.83 4177.29 41142.22 4109.18 41913.66 41717.32 416
test_vis3_rt32.09 37730.20 38237.76 39135.36 42227.48 40140.60 40828.29 41816.69 41232.52 40640.53 4111.96 42337.40 41433.64 35842.21 39548.39 401
CHOSEN 280x42047.83 35246.36 35652.24 37067.37 35249.78 21838.91 40943.11 40635.00 38343.27 39163.30 39028.95 34049.19 40036.53 34460.80 34357.76 394
mvsany_test332.62 37630.57 38138.77 39036.16 42124.20 41238.10 41020.63 42319.14 40940.36 39757.43 3965.06 41436.63 41529.59 38428.66 40655.49 396
test_f31.86 37831.05 37934.28 39332.33 42421.86 41432.34 41130.46 41616.02 41339.78 39955.45 3984.80 41532.36 41830.61 37837.66 40048.64 400
PMMVS227.40 38225.91 38531.87 39739.46 4196.57 42631.17 41228.52 41723.96 40020.45 41448.94 4084.20 41837.94 41316.51 40619.97 41251.09 399
wuyk23d13.32 38812.52 39115.71 40247.54 40926.27 40731.06 4131.98 4274.93 4195.18 4221.94 4220.45 42718.54 4216.81 42212.83 4182.33 419
Gipumacopyleft34.77 37331.91 37843.33 38362.05 38137.87 34020.39 41467.03 30723.23 40218.41 41525.84 4154.24 41662.73 35314.71 40851.32 37829.38 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive17.77 2321.41 38517.77 39032.34 39634.34 42325.44 40916.11 41524.11 42011.19 41713.22 41731.92 4131.58 42430.95 41910.47 41617.03 41540.62 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.43 38911.14 3924.30 4042.38 4274.40 42713.62 41616.08 4250.39 42115.89 41613.06 41815.80 3935.54 42312.63 41210.46 4202.95 418
test_method19.68 38618.10 38924.41 40113.68 4263.11 42812.06 41742.37 4072.00 42011.97 41836.38 4125.77 41329.35 42015.06 40723.65 41040.76 409
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
cdsmvs_eth3d_5k17.50 38723.34 3860.00 4070.00 4300.00 4310.00 41878.63 1700.00 4250.00 42682.18 19649.25 1220.00 4240.00 4250.00 4220.00 422
pcd_1.5k_mvsjas3.92 3935.23 3960.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 42547.05 1540.00 4240.00 4250.00 4220.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
ab-mvs-re6.49 3908.65 3930.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 42677.89 2790.00 4290.00 4240.00 4250.00 4220.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4310.00 4180.00 4290.00 4250.00 4260.00 4250.00 4290.00 4240.00 4250.00 4220.00 422
WAC-MVS27.31 40327.77 388
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 32
PC_three_145255.09 20984.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 15
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 32
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 430
eth-test0.00 430
ZD-MVS86.64 2160.38 4582.70 9257.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
IU-MVS87.77 459.15 6385.53 2653.93 23384.64 379.07 1190.87 588.37 17
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
GSMVS78.05 282
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28378.05 282
sam_mvs33.43 300
MTGPAbinary80.97 131
test_post3.55 42133.90 29466.52 339
patchmatchnet-post64.03 38734.50 28574.27 296
gm-plane-assit71.40 30541.72 31048.85 29473.31 33682.48 17248.90 247
test9_res75.28 3788.31 3283.81 175
agg_prior273.09 5587.93 4084.33 156
agg_prior85.04 5059.96 5081.04 12974.68 5784.04 132
TestCases64.39 29171.44 30249.03 22867.30 30345.97 32947.16 37879.77 24517.47 38567.56 33333.65 35659.16 35276.57 303
test_prior76.69 5784.20 6157.27 9184.88 3986.43 8086.38 77
新几何170.76 20085.66 4161.13 3066.43 31244.68 33870.29 11586.64 9641.29 21875.23 29149.72 23981.75 10375.93 309
旧先验183.04 7353.15 16267.52 30287.85 7444.08 18880.76 10878.03 285
原ACMM174.69 9185.39 4759.40 5783.42 7251.47 25970.27 11686.61 9948.61 13086.51 7853.85 20687.96 3978.16 280
testdata272.18 30646.95 265
segment_acmp54.23 57
testdata64.66 28881.52 9152.93 16765.29 32046.09 32773.88 6887.46 7938.08 25266.26 34253.31 21178.48 14474.78 325
test1277.76 4584.52 5858.41 7883.36 7572.93 8754.61 5488.05 3988.12 3486.81 65
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5187.21 5868.16 8780.58 11184.65 150
plane_prior486.10 116
plane_prior356.09 11163.92 3669.27 135
plane_prior181.27 99
n20.00 429
nn0.00 429
door-mid47.19 399
lessismore_v069.91 21671.42 30447.80 24650.90 38850.39 36975.56 31727.43 35381.33 19145.91 27234.10 40480.59 248
LGP-MVS_train75.76 7280.22 11657.51 8983.40 7361.32 7966.67 18587.33 8239.15 23986.59 7367.70 9177.30 16283.19 197
test1183.47 70
door47.60 397
HQP5-MVS54.94 134
BP-MVS67.04 98
HQP4-MVS67.85 15986.93 6584.32 157
HQP3-MVS83.90 5680.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 133
ACMMP++_ref74.07 194
ACMMP++72.16 228
Test By Simon48.33 133
ITE_SJBPF62.09 30766.16 36144.55 28264.32 32747.36 31555.31 33380.34 23519.27 38462.68 35436.29 34762.39 33279.04 272
DeepMVS_CXcopyleft12.03 40317.97 42510.91 42210.60 4267.46 41811.07 41928.36 4143.28 42011.29 4228.01 4209.74 42113.89 417