This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTMP86.03 1917.08 408
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11967.28 17179.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 40347.95 12988.01 3871.55 6586.74 5286.37 74
3Dnovator+66.72 475.84 4574.57 5379.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
SR-MVS-dyc-post74.57 5673.90 5976.58 5683.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6383.49 6559.87 4984.29 3781.36 10758.07 13973.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 17873.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
HQP_MVS74.31 5973.73 6276.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior284.22 4064.52 25
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.75 1583.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
CPTT-MVS72.78 7372.08 7774.87 8684.88 5761.41 2684.15 4377.86 18055.27 19667.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 229
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
API-MVS72.17 8471.41 8574.45 10081.95 8357.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 271
save fliter86.17 3361.30 2883.98 4779.66 14059.00 121
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
EC-MVSNet75.84 4575.87 4275.74 6978.86 14252.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
APD-MVS_3200maxsize74.96 4974.39 5576.67 5482.20 7858.24 7783.67 5183.29 7558.41 13373.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
HPM-MVS_fast74.30 6073.46 6576.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
plane_prior56.31 10283.58 5363.19 4880.48 106
QAPM70.05 12168.81 13273.78 11576.54 21553.43 15383.23 5483.48 6652.89 23565.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 223
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 15974.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
EPNet73.09 6972.16 7575.90 6575.95 22356.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer71.50 9670.38 10574.88 8578.76 14557.15 9482.79 6178.48 16651.26 25469.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
test_djsdf69.45 14267.74 15274.58 9674.57 24954.92 13382.79 6178.48 16651.26 25465.41 20383.49 16638.37 23683.24 14466.06 9969.25 26685.56 111
ACMP63.53 672.30 8171.20 9175.59 7580.28 10957.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22786.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM61.98 770.80 10869.73 11574.02 10980.59 10858.59 7482.68 6482.02 9455.46 19367.18 16884.39 14538.51 23483.17 14660.65 14876.10 16880.30 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary69.99 12368.66 13673.97 11184.94 5457.83 8082.63 6578.71 15856.28 17464.34 22484.14 14841.57 20487.06 6146.45 25878.88 12877.02 290
OPM-MVS74.73 5374.25 5676.19 6180.81 10259.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
LPG-MVS_test72.74 7471.74 7975.76 6780.22 11157.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
114514_t70.83 10669.56 11774.64 9386.21 3154.63 13682.34 7081.81 9748.22 29163.01 24385.83 11940.92 21487.10 5957.91 16479.79 11282.18 212
HQP-NCC80.66 10382.31 7162.10 6867.85 152
ACMP_Plane80.66 10382.31 7162.10 6867.85 152
HQP-MVS73.45 6572.80 6975.40 7680.66 10354.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
MSLP-MVS++73.77 6473.47 6474.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 236
RRT_MVS69.42 14367.49 16375.21 8278.01 17252.56 17282.23 7578.15 17655.84 18265.65 19885.07 13030.86 31386.83 6561.56 14470.00 25086.24 85
EPP-MVSNet72.16 8671.31 8974.71 8878.68 14849.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
test_prior462.51 1482.08 77
mvsmamba71.15 9969.54 11875.99 6377.61 18953.46 15281.95 7875.11 22557.73 14966.95 17385.96 11437.14 25287.56 4867.94 8375.49 17686.97 54
TSAR-MVS + GP.74.90 5074.15 5777.17 4982.00 8158.77 7281.80 7978.57 16258.58 13074.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
PS-MVSNAJss72.24 8271.21 9075.31 7878.50 15155.93 11281.63 8182.12 9256.24 17570.02 11385.68 12247.05 14684.34 12465.27 10974.41 18385.67 106
TEST985.58 4361.59 2481.62 8281.26 11555.65 18974.93 4388.81 5653.70 6384.68 118
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11555.86 18074.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
MG-MVS73.96 6273.89 6074.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
test_885.40 4660.96 3481.54 8581.18 11855.86 18074.81 4788.80 5853.70 6384.45 122
MAR-MVS71.51 9570.15 11075.60 7481.84 8459.39 5581.38 8682.90 8354.90 20968.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17274.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
OpenMVScopyleft61.03 968.85 15367.56 15772.70 15074.26 25653.99 14281.21 8881.34 11152.70 23662.75 24685.55 12538.86 23284.14 12648.41 24283.01 7779.97 253
DP-MVS Recon72.15 8770.73 9976.40 5886.57 2457.99 7981.15 8982.96 8157.03 15666.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
Vis-MVSNetpermissive72.18 8371.37 8774.61 9481.29 9355.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jajsoiax68.25 16866.45 18473.66 12375.62 22755.49 12580.82 9178.51 16552.33 24064.33 22584.11 14928.28 33681.81 17863.48 12570.62 23683.67 177
mvs_tets68.18 17066.36 19073.63 12675.61 22855.35 12880.77 9278.56 16352.48 23964.27 22784.10 15027.45 34281.84 17763.45 12670.56 23883.69 176
DP-MVS65.68 21463.66 22571.75 16884.93 5556.87 9980.74 9373.16 25153.06 23259.09 29082.35 18736.79 25885.94 8932.82 35069.96 25272.45 334
3Dnovator64.47 572.49 7871.39 8675.79 6677.70 18058.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
ACMH+57.40 1166.12 21064.06 21772.30 15977.79 17952.83 16680.39 9578.03 17857.30 15257.47 30482.55 18127.68 34084.17 12545.54 26869.78 25679.90 254
canonicalmvs74.67 5474.98 5073.71 12178.94 14150.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
IS-MVSNet71.57 9471.00 9573.27 13978.86 14245.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
Effi-MVS+-dtu69.64 13567.53 16075.95 6476.10 22162.29 1580.20 9876.06 20859.83 11065.26 20977.09 28441.56 20584.02 13060.60 14971.09 23381.53 222
iter_conf_final69.82 12768.02 15075.23 8179.38 12952.91 16380.11 9973.96 24354.99 20768.04 14983.59 16129.05 32887.16 5565.41 10877.62 14585.63 109
nrg03072.96 7173.01 6772.84 14675.41 23250.24 20580.02 10082.89 8458.36 13574.44 5386.73 8758.90 2380.83 20065.84 10374.46 18087.44 42
Anonymous2023121169.28 14768.47 14171.73 16980.28 10947.18 24979.98 10182.37 8954.61 21367.24 16684.01 15239.43 22482.41 16955.45 18472.83 20985.62 110
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16772.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
PVSNet_Blended_VisFu71.45 9770.39 10474.65 9282.01 8058.82 7179.93 10380.35 13355.09 20165.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
PAPM_NR72.63 7671.80 7875.13 8381.72 8553.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
LS3D64.71 22862.50 24171.34 18379.72 12355.71 11779.82 10574.72 23148.50 28856.62 30984.62 13833.59 28782.34 17029.65 37175.23 17875.97 298
UGNet68.81 15467.39 16673.06 14278.33 16054.47 13779.77 10675.40 21760.45 9263.22 23784.40 14432.71 29980.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS71.78 9071.59 8072.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
OMC-MVS71.40 9870.60 10073.78 11576.60 21353.15 15979.74 10879.78 13758.37 13468.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7176.46 21751.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
无先验79.66 11074.30 23848.40 29080.78 20253.62 19879.03 267
Effi-MVS+73.31 6772.54 7275.62 7377.87 17553.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
PAPR71.72 9370.82 9774.41 10181.20 9751.17 18979.55 11283.33 7355.81 18466.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
ACMH55.70 1565.20 22363.57 22670.07 20778.07 16952.01 18479.48 11379.69 13855.75 18656.59 31080.98 21827.12 34580.94 19642.90 29471.58 22777.25 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0569.40 14567.62 15674.73 8777.84 17751.13 19079.28 11473.71 24654.62 21268.17 14483.59 16128.68 33387.16 5565.74 10576.95 15885.91 94
ETV-MVS74.46 5873.84 6176.33 6079.27 13255.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
原ACMM279.02 116
GeoE71.01 10270.15 11073.60 12879.57 12552.17 17978.93 11778.12 17758.02 14167.76 16083.87 15552.36 7982.72 16056.90 17075.79 17185.92 93
UA-Net73.13 6872.93 6873.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
VDDNet71.81 8971.33 8873.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
v1070.21 11969.02 12873.81 11473.51 26150.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 27385.09 132
CANet_DTU68.18 17067.71 15569.59 21774.83 24046.24 25678.66 12176.85 19759.60 11163.45 23682.09 19835.25 26777.41 25659.88 15578.76 13285.14 129
v870.33 11769.28 12473.49 13173.15 26450.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 27485.28 125
alignmvs73.86 6373.99 5873.45 13378.20 16350.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
PLCcopyleft56.13 1465.09 22463.21 23370.72 19781.04 9954.87 13478.57 12377.47 18748.51 28755.71 31681.89 20033.71 28479.71 21841.66 30270.37 24177.58 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n69.01 15267.36 16873.98 11072.51 27852.65 16878.54 12581.30 11360.26 10162.67 24781.62 20543.61 18384.49 12157.01 16968.70 27584.79 141
COLMAP_ROBcopyleft52.97 1761.27 26858.81 27368.64 23174.63 24752.51 17478.42 12673.30 24949.92 27150.96 35181.51 20923.06 36479.40 22331.63 36065.85 29574.01 323
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 13868.74 13471.93 16272.47 27953.82 14478.25 12762.26 33449.78 27273.12 7686.21 10452.66 7376.79 26875.02 3968.88 27185.18 128
CLD-MVS73.33 6672.68 7075.29 8078.82 14453.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf0.1_n72.81 7272.33 7474.24 10669.89 32055.81 11578.22 12975.40 21754.17 22275.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test_fmvsmconf_n73.01 7072.59 7174.27 10571.28 30055.88 11478.21 13075.56 21454.31 22074.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
casdiffmvspermissive74.80 5174.89 5174.53 9875.59 22950.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6464.87 22663.22 23269.83 21474.79 24253.32 15778.15 13262.02 33751.20 25660.17 27383.12 17224.15 36274.20 29063.08 12772.33 21781.96 216
fmvsm_s_conf0.1_n_a69.32 14668.44 14371.96 16170.91 30453.78 14578.12 13362.30 33349.35 27673.20 7286.55 9651.99 8576.79 26874.83 4168.68 27685.32 123
F-COLMAP63.05 24860.87 26369.58 21976.99 20753.63 14878.12 13376.16 20447.97 29652.41 34681.61 20627.87 33878.11 24540.07 30866.66 29077.00 291
test_fmvsmconf0.01_n72.17 8471.50 8274.16 10767.96 33755.58 12378.06 13574.67 23254.19 22174.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
EG-PatchMatch MVS64.71 22862.87 23670.22 20377.68 18153.48 15177.99 13678.82 15453.37 23156.03 31577.41 28224.75 36084.04 12846.37 25973.42 20073.14 326
fmvsm_s_conf0.5_n69.58 13668.84 13171.79 16772.31 28352.90 16477.90 13762.43 33249.97 27072.85 8285.90 11652.21 8176.49 27475.75 3370.26 24585.97 91
dcpmvs_274.55 5775.23 4872.48 15382.34 7753.34 15577.87 13881.46 10357.80 14875.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
tttt051767.83 17865.66 20374.33 10376.69 21050.82 19677.86 13973.99 24254.54 21664.64 22282.53 18435.06 26985.50 10055.71 18069.91 25386.67 65
fmvsm_s_conf0.1_n69.41 14468.60 13771.83 16571.07 30252.88 16577.85 14062.44 33149.58 27472.97 7986.22 10351.68 9176.48 27575.53 3470.10 24886.14 86
v114470.42 11569.31 12373.76 11773.22 26250.64 19977.83 14181.43 10458.58 13069.40 12581.16 21347.53 13785.29 10764.01 11870.64 23585.34 122
CNLPA65.43 21864.02 21869.68 21578.73 14758.07 7877.82 14270.71 26951.49 24961.57 26583.58 16438.23 23970.82 30443.90 28370.10 24880.16 250
VDD-MVS72.50 7772.09 7673.75 11981.58 8649.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
v119269.97 12468.68 13573.85 11273.19 26350.94 19277.68 14481.36 10757.51 15168.95 13380.85 22345.28 16985.33 10662.97 12970.37 24185.27 126
v2v48270.50 11369.45 12273.66 12372.62 27450.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 24686.09 88
WR-MVS_H67.02 19566.92 18067.33 24777.95 17437.75 33377.57 14682.11 9362.03 7362.65 24882.48 18550.57 10379.46 22242.91 29364.01 31084.79 141
Anonymous2024052969.91 12569.02 12872.56 15180.19 11447.65 24377.56 14780.99 12255.45 19469.88 11786.76 8539.24 22882.18 17254.04 19477.10 15787.85 27
v14419269.71 13068.51 13873.33 13873.10 26550.13 20877.54 14880.64 12756.65 16168.57 13780.55 22646.87 15184.96 11362.98 12869.66 26084.89 138
baseline74.61 5574.70 5274.34 10275.70 22549.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
Fast-Effi-MVS+-dtu67.37 18565.33 20873.48 13272.94 26957.78 8277.47 15076.88 19657.60 15061.97 25876.85 28839.31 22580.49 20854.72 18970.28 24482.17 214
v192192069.47 14168.17 14773.36 13773.06 26650.10 20977.39 15180.56 12856.58 16868.59 13580.37 22844.72 17484.98 11162.47 13469.82 25585.00 134
tt080567.77 17967.24 17569.34 22274.87 23940.08 31077.36 15281.37 10655.31 19566.33 18584.65 13737.35 24782.55 16555.65 18272.28 22085.39 121
GBi-Net67.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
test167.21 18766.55 18269.19 22377.63 18443.33 28477.31 15377.83 18156.62 16465.04 21582.70 17541.85 20080.33 21047.18 25272.76 21083.92 164
FMVSNet166.70 20265.87 19969.19 22377.49 19343.33 28477.31 15377.83 18156.45 16964.60 22382.70 17538.08 24180.33 21046.08 26172.31 21983.92 164
MVS_111021_HR74.02 6173.46 6575.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
EIA-MVS71.78 9070.60 10075.30 7979.85 12053.54 15077.27 15783.26 7757.92 14566.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
v124069.24 14967.91 15173.25 14173.02 26849.82 21377.21 15880.54 12956.43 17068.34 14180.51 22743.33 18684.99 10962.03 13869.77 25884.95 137
fmvsm_l_conf0.5_n70.99 10370.82 9771.48 17571.45 29354.40 13877.18 15970.46 27148.67 28475.17 3886.86 8253.77 6176.86 26676.33 3077.51 14883.17 194
jason69.65 13468.39 14573.43 13578.27 16256.88 9877.12 16073.71 24646.53 31269.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
PAPM67.92 17666.69 18171.63 17378.09 16849.02 22577.09 16181.24 11751.04 25860.91 26983.98 15347.71 13384.99 10940.81 30579.32 12280.90 239
EI-MVSNet-Vis-set72.42 8071.59 8074.91 8478.47 15354.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 18485.83 98
PEN-MVS66.60 20466.45 18467.04 24877.11 20336.56 34677.03 16380.42 13162.95 5062.51 25384.03 15146.69 15279.07 23344.22 27763.08 32085.51 113
FIs70.82 10771.43 8468.98 22778.33 16038.14 32976.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
PS-CasMVS66.42 20866.32 19266.70 25277.60 19136.30 35176.94 16579.61 14162.36 6562.43 25583.66 15945.69 15878.37 24145.35 27463.26 31885.42 119
h-mvs3372.71 7571.49 8376.40 5881.99 8259.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23783.86 168
fmvsm_l_conf0.5_n_a70.50 11370.27 10771.18 18771.30 29954.09 14076.89 16769.87 27447.90 29774.37 5586.49 9753.07 7176.69 27175.41 3577.11 15682.76 201
thisisatest053067.92 17665.78 20174.33 10376.29 21851.03 19176.89 16774.25 23953.67 22865.59 20081.76 20335.15 26885.50 10055.94 17572.47 21486.47 71
test_040263.25 24561.01 26069.96 20880.00 11854.37 13976.86 16972.02 26054.58 21558.71 29380.79 22535.00 27084.36 12326.41 38264.71 30471.15 352
CP-MVSNet66.49 20766.41 18866.72 25077.67 18236.33 34976.83 17079.52 14362.45 6362.54 25183.47 16746.32 15478.37 24145.47 27263.43 31785.45 116
EI-MVSNet-UG-set71.92 8871.06 9474.52 9977.98 17353.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 19585.32 123
lupinMVS69.57 13768.28 14673.44 13478.76 14557.15 9476.57 17273.29 25046.19 31569.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
TranMVSNet+NR-MVSNet70.36 11670.10 11271.17 18878.64 14942.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25987.46 41
TAPA-MVS59.36 1066.60 20465.20 21070.81 19476.63 21248.75 22976.52 17480.04 13650.64 26365.24 21084.93 13239.15 22978.54 24036.77 32776.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DTE-MVSNet65.58 21665.34 20766.31 25776.06 22234.79 35776.43 17579.38 14662.55 6161.66 26383.83 15645.60 16079.15 23141.64 30460.88 33585.00 134
anonymousdsp67.00 19664.82 21373.57 12970.09 31656.13 10776.35 17677.35 19148.43 28964.99 21880.84 22433.01 29280.34 20964.66 11367.64 28384.23 154
MVP-Stereo65.41 21963.80 22270.22 20377.62 18855.53 12476.30 17778.53 16450.59 26456.47 31378.65 25939.84 22082.68 16144.10 28172.12 22272.44 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_Test72.45 7972.46 7372.42 15774.88 23848.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
IterMVS-LS69.22 15068.48 13971.43 17974.44 25249.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 25483.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何276.12 180
FMVSNet266.93 19766.31 19368.79 23077.63 18442.98 28876.11 18177.47 18756.62 16465.22 21282.17 19341.85 20080.18 21647.05 25572.72 21383.20 190
旧先验276.08 18245.32 32376.55 3265.56 33458.75 162
BH-untuned68.27 16767.29 17071.21 18579.74 12153.22 15876.06 18377.46 18957.19 15466.10 18881.61 20645.37 16883.50 14045.42 27376.68 16376.91 294
FC-MVSNet-test69.80 12970.58 10267.46 24377.61 18934.73 36076.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
PCF-MVS61.88 870.95 10469.49 12075.35 7777.63 18455.71 11776.04 18581.81 9750.30 26669.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet71.11 10071.00 9571.44 17779.20 13444.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23987.36 48
UniMVSNet (Re)70.63 11070.20 10871.89 16378.55 15045.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 23286.89 57
test_fmvsmvis_n_192070.84 10570.38 10572.22 16071.16 30155.39 12775.86 18872.21 25849.03 28073.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
EPNet_dtu61.90 26061.97 24761.68 30072.89 27039.78 31475.85 18965.62 30855.09 20154.56 33179.36 25037.59 24467.02 32639.80 31176.95 15878.25 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14868.24 16967.19 17771.40 18070.43 31047.77 24275.76 19077.03 19558.91 12267.36 16480.10 23548.60 12481.89 17560.01 15366.52 29284.53 146
test_fmvsm_n_192071.73 9271.14 9273.50 13072.52 27756.53 10175.60 19176.16 20448.11 29377.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
SixPastTwentyTwo61.65 26358.80 27570.20 20575.80 22447.22 24875.59 19269.68 27654.61 21354.11 33579.26 25227.07 34682.96 14943.27 28849.79 37380.41 246
DELS-MVS74.76 5274.46 5475.65 7277.84 17752.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FA-MVS(test-final)69.82 12768.48 13973.84 11378.44 15450.04 21075.58 19478.99 15258.16 13767.59 16182.14 19542.66 19085.63 9456.60 17176.19 16785.84 97
Baseline_NR-MVSNet67.05 19467.56 15765.50 27375.65 22637.70 33575.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 25681.60 221
OpenMVS_ROBcopyleft52.78 1860.03 27358.14 28265.69 27170.47 30944.82 27075.33 19670.86 26845.04 32456.06 31476.00 30026.89 34879.65 21935.36 33967.29 28572.60 331
xiu_mvs_v1_base_debu68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
xiu_mvs_v1_base_debi68.58 16067.28 17172.48 15378.19 16457.19 9175.28 19775.09 22651.61 24570.04 11081.41 21032.79 29579.02 23463.81 12177.31 15081.22 231
EI-MVSNet69.27 14868.44 14371.73 16974.47 25049.39 22275.20 20078.45 16959.60 11169.16 13176.51 29551.29 9482.50 16659.86 15771.45 22983.30 186
CVMVSNet59.63 27859.14 27161.08 30774.47 25038.84 32375.20 20068.74 28731.15 37458.24 29976.51 29532.39 30668.58 31749.77 22865.84 29675.81 300
ET-MVSNet_ETH3D67.96 17565.72 20274.68 9076.67 21155.62 12275.11 20274.74 23052.91 23460.03 27680.12 23433.68 28582.64 16361.86 13976.34 16585.78 99
xiu_mvs_v2_base70.52 11169.75 11472.84 14681.21 9655.63 12075.11 20278.92 15354.92 20869.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 241
K. test v360.47 27157.11 28670.56 19973.74 26048.22 23675.10 20462.55 32958.27 13653.62 34176.31 29827.81 33981.59 18147.42 24839.18 38681.88 219
Fast-Effi-MVS+70.28 11869.12 12773.73 12078.50 15151.50 18875.01 20579.46 14556.16 17768.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
DU-MVS70.01 12269.53 11971.44 17778.05 17044.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23987.37 46
FMVSNet366.32 20965.61 20468.46 23376.48 21642.34 29274.98 20777.15 19455.83 18365.04 21581.16 21339.91 21880.14 21747.18 25272.76 21082.90 199
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
PS-MVSNAJ70.51 11269.70 11672.93 14481.52 8755.79 11674.92 20879.00 15155.04 20669.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 240
MVS_111021_LR69.50 14068.78 13371.65 17278.38 15659.33 5674.82 21070.11 27358.08 13867.83 15684.68 13541.96 19876.34 27865.62 10677.54 14679.30 264
ECVR-MVScopyleft67.72 18067.51 16168.35 23579.46 12736.29 35274.79 21166.93 29858.72 12567.19 16788.05 6636.10 26081.38 18552.07 21084.25 6887.39 44
test_yl69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13169.13 12571.36 18178.37 15845.74 26174.71 21280.20 13457.91 14670.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
TransMVSNet (Re)64.72 22764.33 21665.87 26975.22 23438.56 32574.66 21475.08 22958.90 12361.79 26182.63 17851.18 9678.07 24643.63 28655.87 35680.99 238
BH-w/o66.85 19865.83 20069.90 21279.29 13052.46 17574.66 21476.65 20154.51 21764.85 21978.12 26445.59 16182.95 15043.26 28975.54 17574.27 320
PVSNet_BlendedMVS68.56 16367.72 15371.07 19177.03 20550.57 20074.50 21681.52 10053.66 22964.22 23079.72 24249.13 11782.87 15455.82 17773.92 18879.77 259
c3_l68.33 16667.56 15770.62 19870.87 30546.21 25774.47 21778.80 15656.22 17666.19 18778.53 26351.88 8681.40 18462.08 13569.04 26984.25 153
test250665.33 22164.61 21467.50 24279.46 12734.19 36474.43 21851.92 37158.72 12566.75 17788.05 6625.99 35380.92 19851.94 21284.25 6887.39 44
BH-RMVSNet68.81 15467.42 16572.97 14380.11 11752.53 17374.26 21976.29 20358.48 13268.38 14084.20 14642.59 19183.83 13346.53 25775.91 16982.56 202
NR-MVSNet69.54 13868.85 13071.59 17478.05 17043.81 28174.20 22080.86 12565.18 1462.76 24584.52 14152.35 8083.59 13950.96 22270.78 23487.37 46
UniMVSNet_ETH3D67.60 18267.07 17969.18 22677.39 19642.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24378.93 23952.16 20973.49 19786.32 80
VPA-MVSNet69.02 15169.47 12167.69 24177.42 19541.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 18284.48 148
miper_ehance_all_eth68.03 17267.24 17570.40 20270.54 30846.21 25773.98 22378.68 16055.07 20466.05 18977.80 27452.16 8381.31 18761.53 14569.32 26383.67 177
hse-mvs271.04 10169.86 11374.60 9579.58 12457.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28983.77 173
131464.61 23063.21 23368.80 22971.87 28947.46 24673.95 22578.39 17442.88 34559.97 27776.60 29438.11 24079.39 22454.84 18872.32 21879.55 260
MVS67.37 18566.33 19170.51 20175.46 23150.94 19273.95 22581.85 9641.57 35262.54 25178.57 26247.98 12885.47 10252.97 20482.05 9075.14 307
AUN-MVS68.45 16566.41 18874.57 9779.53 12657.08 9773.93 22775.23 22154.44 21866.69 17881.85 20137.10 25482.89 15262.07 13666.84 28883.75 174
OurMVSNet-221017-061.37 26758.63 27769.61 21672.05 28648.06 23873.93 22772.51 25547.23 30754.74 32880.92 22021.49 37181.24 18948.57 24156.22 35579.53 261
test111167.21 18767.14 17867.42 24479.24 13334.76 35973.89 22965.65 30758.71 12766.96 17287.95 6936.09 26180.53 20552.03 21183.79 7386.97 54
cl2267.47 18466.45 18470.54 20069.85 32146.49 25373.85 23077.35 19155.07 20465.51 20177.92 27047.64 13581.10 19261.58 14369.32 26384.01 161
TAMVS66.78 20165.27 20971.33 18479.16 13753.67 14673.84 23169.59 27852.32 24165.28 20581.72 20444.49 17777.40 25742.32 29778.66 13482.92 197
WR-MVS68.47 16468.47 14168.44 23480.20 11339.84 31373.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 26086.34 76
eth_miper_zixun_eth67.63 18166.28 19471.67 17171.60 29148.33 23573.68 23377.88 17955.80 18565.91 19278.62 26147.35 14382.88 15359.45 15966.25 29383.81 169
TR-MVS66.59 20665.07 21171.17 18879.18 13549.63 21973.48 23475.20 22352.95 23367.90 15080.33 23139.81 22183.68 13643.20 29073.56 19680.20 249
cl____67.18 19066.26 19569.94 20970.20 31345.74 26173.30 23576.83 19855.10 19965.27 20679.57 24547.39 14180.53 20559.41 16169.22 26783.53 183
DIV-MVS_self_test67.18 19066.26 19569.94 20970.20 31345.74 26173.29 23676.83 19855.10 19965.27 20679.58 24447.38 14280.53 20559.43 16069.22 26783.54 182
CDS-MVSNet66.80 20065.37 20671.10 19078.98 14053.13 16173.27 23771.07 26652.15 24264.72 22080.23 23343.56 18477.10 26045.48 27178.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs663.69 23962.82 23866.27 25970.63 30739.27 32073.13 23875.47 21652.69 23759.75 28382.30 18939.71 22277.03 26247.40 24964.35 30982.53 204
IB-MVS56.42 1265.40 22062.73 23973.40 13674.89 23752.78 16773.09 23975.13 22455.69 18758.48 29873.73 32132.86 29486.32 8250.63 22370.11 24781.10 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive70.69 10970.43 10371.46 17669.45 32548.95 22772.93 24078.46 16857.27 15371.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4268.65 15867.35 16972.56 15168.93 33150.18 20772.90 24179.47 14456.92 15869.45 12480.26 23246.29 15582.99 14864.07 11667.82 28184.53 146
miper_enhance_ethall67.11 19366.09 19770.17 20669.21 32845.98 25972.85 24278.41 17251.38 25165.65 19875.98 30351.17 9781.25 18860.82 14769.32 26383.29 188
thres100view90063.28 24462.41 24265.89 26877.31 19838.66 32472.65 24369.11 28557.07 15562.45 25481.03 21737.01 25679.17 22831.84 35673.25 20379.83 256
testdata172.65 24360.50 91
FE-MVS65.91 21263.33 23073.63 12677.36 19751.95 18572.62 24575.81 20953.70 22765.31 20478.96 25528.81 33286.39 7943.93 28273.48 19882.55 203
pm-mvs165.24 22264.97 21266.04 26572.38 28039.40 31972.62 24575.63 21255.53 19162.35 25783.18 17047.45 13976.47 27649.06 23766.54 29182.24 211
test22283.14 6858.68 7372.57 24763.45 32341.78 34867.56 16286.12 10737.13 25378.73 13374.98 311
PVSNet_Blended68.59 15967.72 15371.19 18677.03 20550.57 20072.51 24881.52 10051.91 24364.22 23077.77 27749.13 11782.87 15455.82 17779.58 11680.14 251
EU-MVSNet55.61 30754.41 31159.19 31465.41 35433.42 36972.44 24971.91 26128.81 37651.27 34973.87 32024.76 35969.08 31543.04 29158.20 34675.06 308
thres600view763.30 24362.27 24366.41 25577.18 20038.87 32272.35 25069.11 28556.98 15762.37 25680.96 21937.01 25679.00 23731.43 36373.05 20781.36 227
pmmvs-eth3d58.81 28256.31 29666.30 25867.61 33952.42 17772.30 25164.76 31343.55 33854.94 32674.19 31928.95 32972.60 29443.31 28757.21 35073.88 324
cascas65.98 21163.42 22873.64 12577.26 19952.58 17172.26 25277.21 19348.56 28561.21 26774.60 31632.57 30485.82 9250.38 22576.75 16282.52 205
VPNet67.52 18368.11 14865.74 27079.18 13536.80 34472.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27351.30 21872.97 20883.81 169
MS-PatchMatch62.42 25361.46 25365.31 27775.21 23552.10 18072.05 25474.05 24146.41 31357.42 30674.36 31734.35 27777.57 25445.62 26773.67 19266.26 369
mvs_anonymous68.03 17267.51 16169.59 21772.08 28544.57 27571.99 25575.23 22151.67 24467.06 17082.57 18054.68 5077.94 24756.56 17275.71 17386.26 84
patch_mono-269.85 12671.09 9366.16 26179.11 13854.80 13571.97 25674.31 23753.50 23070.90 10284.17 14757.63 2963.31 34066.17 9882.02 9180.38 247
tfpn200view963.18 24662.18 24566.21 26076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20379.83 256
thres40063.31 24262.18 24566.72 25076.85 20839.62 31671.96 25769.44 28156.63 16262.61 24979.83 23837.18 24979.17 22831.84 35673.25 20381.36 227
baseline163.81 23863.87 22163.62 28776.29 21836.36 34771.78 25967.29 29556.05 17964.23 22982.95 17347.11 14574.41 28747.30 25161.85 32980.10 252
baseline263.42 24161.26 25769.89 21372.55 27647.62 24471.54 26068.38 28950.11 26754.82 32775.55 30843.06 18880.96 19548.13 24567.16 28781.11 234
pmmvs461.48 26659.39 26967.76 24071.57 29253.86 14371.42 26165.34 30944.20 33259.46 28577.92 27035.90 26274.71 28543.87 28464.87 30374.71 316
1112_ss64.00 23763.36 22965.93 26779.28 13142.58 29171.35 26272.36 25746.41 31360.55 27177.89 27246.27 15673.28 29246.18 26069.97 25181.92 218
thisisatest051565.83 21363.50 22772.82 14873.75 25949.50 22071.32 26373.12 25249.39 27563.82 23276.50 29734.95 27184.84 11753.20 20375.49 17684.13 158
CostFormer64.04 23662.51 24068.61 23271.88 28845.77 26071.30 26470.60 27047.55 30164.31 22676.61 29341.63 20379.62 22149.74 22969.00 27080.42 245
tfpnnormal62.47 25261.63 25164.99 28074.81 24139.01 32171.22 26573.72 24555.22 19860.21 27280.09 23641.26 21176.98 26430.02 36968.09 27978.97 268
IterMVS62.79 25061.27 25667.35 24669.37 32652.04 18371.17 26668.24 29052.63 23859.82 28076.91 28737.32 24872.36 29552.80 20563.19 31977.66 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 23963.88 22063.14 29274.75 24331.04 37871.16 26763.64 32256.32 17259.80 28184.99 13144.51 17575.46 28239.12 31480.62 10182.92 197
IterMVS-SCA-FT62.49 25161.52 25265.40 27571.99 28750.80 19771.15 26869.63 27745.71 32160.61 27077.93 26937.45 24565.99 33255.67 18163.50 31679.42 262
Anonymous20240521166.84 19965.99 19869.40 22180.19 11442.21 29571.11 26971.31 26458.80 12467.90 15086.39 10029.83 32279.65 21949.60 23378.78 13186.33 78
Anonymous2024052155.30 30854.41 31157.96 32460.92 37741.73 29971.09 27071.06 26741.18 35348.65 36173.31 32316.93 37659.25 35642.54 29564.01 31072.90 328
tpm262.07 25860.10 26667.99 23872.79 27143.86 28071.05 27166.85 29943.14 34362.77 24475.39 31038.32 23780.80 20141.69 30168.88 27179.32 263
TDRefinement53.44 32150.72 33061.60 30164.31 35946.96 25070.89 27265.27 31141.78 34844.61 37477.98 26711.52 38866.36 33028.57 37551.59 36771.49 347
XVG-ACMP-BASELINE64.36 23462.23 24470.74 19672.35 28152.45 17670.80 27378.45 16953.84 22659.87 27981.10 21516.24 37879.32 22555.64 18371.76 22480.47 244
XVG-OURS-SEG-HR68.81 15467.47 16472.82 14874.40 25356.87 9970.59 27479.04 15054.77 21066.99 17186.01 11239.57 22378.21 24462.54 13273.33 20183.37 185
VNet69.68 13370.19 10968.16 23779.73 12241.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
GA-MVS65.53 21763.70 22471.02 19270.87 30548.10 23770.48 27674.40 23556.69 16064.70 22176.77 28933.66 28681.10 19255.42 18570.32 24383.87 167
MSDG61.81 26259.23 27069.55 22072.64 27352.63 17070.45 27775.81 20951.38 25153.70 33876.11 29929.52 32481.08 19437.70 32065.79 29774.93 312
ab-mvs66.65 20366.42 18767.37 24576.17 22041.73 29970.41 27876.14 20653.99 22465.98 19083.51 16549.48 11176.24 27948.60 24073.46 19984.14 157
EGC-MVSNET42.47 34838.48 35654.46 34274.33 25448.73 23070.33 27951.10 3740.03 4060.18 40767.78 36013.28 38366.49 32918.91 39150.36 37148.15 388
MVSTER67.16 19265.58 20571.88 16470.37 31249.70 21570.25 28078.45 16951.52 24869.16 13180.37 22838.45 23582.50 16660.19 15171.46 22883.44 184
XVG-OURS68.76 15767.37 16772.90 14574.32 25557.22 8970.09 28178.81 15555.24 19767.79 15885.81 12136.54 25978.28 24362.04 13775.74 17283.19 191
HY-MVS56.14 1364.55 23163.89 21966.55 25374.73 24441.02 30469.96 28274.43 23449.29 27761.66 26380.92 22047.43 14076.68 27244.91 27671.69 22581.94 217
AllTest57.08 29454.65 30764.39 28471.44 29449.03 22369.92 28367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
testing356.54 29755.92 29958.41 31977.52 19227.93 38669.72 28456.36 35954.75 21158.63 29677.80 27420.88 37271.75 30125.31 38462.25 32675.53 304
thres20062.20 25761.16 25965.34 27675.38 23339.99 31269.60 28569.29 28355.64 19061.87 26076.99 28537.07 25578.96 23831.28 36473.28 20277.06 289
tpmrst58.24 28558.70 27656.84 32966.97 34234.32 36269.57 28661.14 34147.17 30858.58 29771.60 33541.28 21060.41 35049.20 23562.84 32175.78 301
PatchmatchNetpermissive59.84 27558.24 28064.65 28273.05 26746.70 25269.42 28762.18 33547.55 30158.88 29271.96 33234.49 27569.16 31442.99 29263.60 31478.07 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew59.66 27759.69 26859.56 30975.19 23635.78 35469.34 28864.28 31746.88 31061.76 26275.79 30440.61 21565.20 33532.16 35271.21 23077.70 280
GG-mvs-BLEND62.34 29771.36 29837.04 34269.20 28957.33 35654.73 32965.48 37130.37 31677.82 24934.82 34074.93 17972.17 340
HyFIR lowres test65.67 21563.01 23573.67 12279.97 11955.65 11969.07 29075.52 21542.68 34663.53 23577.95 26840.43 21681.64 17946.01 26271.91 22383.73 175
UWE-MVS60.18 27259.78 26761.39 30577.67 18233.92 36769.04 29163.82 32048.56 28564.27 22777.64 27927.20 34470.40 30933.56 34776.24 16679.83 256
test_post168.67 2923.64 40432.39 30669.49 31344.17 278
testing22262.29 25661.31 25565.25 27877.87 17538.53 32668.34 29366.31 30456.37 17163.15 24177.58 28028.47 33476.18 28137.04 32576.65 16481.05 237
Test_1112_low_res62.32 25461.77 24964.00 28679.08 13939.53 31868.17 29470.17 27243.25 34159.03 29179.90 23744.08 17971.24 30343.79 28568.42 27781.25 230
tpm cat159.25 28056.95 28966.15 26272.19 28446.96 25068.09 29565.76 30640.03 36157.81 30270.56 34238.32 23774.51 28638.26 31861.50 33277.00 291
ppachtmachnet_test58.06 28855.38 30366.10 26469.51 32348.99 22668.01 29666.13 30544.50 32954.05 33670.74 34132.09 30872.34 29636.68 33056.71 35476.99 293
tpmvs58.47 28356.95 28963.03 29470.20 31341.21 30367.90 29767.23 29649.62 27354.73 32970.84 34034.14 27876.24 27936.64 33161.29 33371.64 344
testing9164.46 23263.80 22266.47 25478.43 15540.06 31167.63 29869.59 27859.06 12063.18 23978.05 26634.05 27976.99 26348.30 24375.87 17082.37 209
CL-MVSNet_self_test61.53 26460.94 26163.30 29068.95 33036.93 34367.60 29972.80 25455.67 18859.95 27876.63 29145.01 17272.22 29839.74 31262.09 32880.74 242
testing1162.81 24961.90 24865.54 27278.38 15640.76 30867.59 30066.78 30055.48 19260.13 27477.11 28331.67 31076.79 26845.53 26974.45 18179.06 265
test_vis1_n_192058.86 28159.06 27258.25 32063.76 36043.14 28767.49 30166.36 30340.22 35965.89 19471.95 33331.04 31159.75 35459.94 15464.90 30271.85 343
tpm57.34 29258.16 28154.86 33971.80 29034.77 35867.47 30256.04 36348.20 29260.10 27576.92 28637.17 25153.41 38040.76 30665.01 30176.40 297
testing9964.05 23563.29 23166.34 25678.17 16739.76 31567.33 30368.00 29158.60 12963.03 24278.10 26532.57 30476.94 26548.22 24475.58 17482.34 210
gg-mvs-nofinetune57.86 28956.43 29562.18 29872.62 27435.35 35566.57 30456.33 36050.65 26257.64 30357.10 38330.65 31476.36 27737.38 32278.88 12874.82 314
TinyColmap54.14 31451.72 32561.40 30466.84 34441.97 29666.52 30568.51 28844.81 32542.69 37975.77 30511.66 38672.94 29331.96 35456.77 35369.27 365
pmmvs556.47 29955.68 30158.86 31661.41 37236.71 34566.37 30662.75 32840.38 35853.70 33876.62 29234.56 27367.05 32540.02 31065.27 29972.83 329
CHOSEN 1792x268865.08 22562.84 23771.82 16681.49 8956.26 10566.32 30774.20 24040.53 35763.16 24078.65 25941.30 20877.80 25045.80 26474.09 18581.40 226
our_test_356.49 29854.42 31062.68 29669.51 32345.48 26666.08 30861.49 33944.11 33550.73 35569.60 35233.05 29168.15 31838.38 31756.86 35174.40 318
PM-MVS52.33 32550.19 33358.75 31762.10 36945.14 26965.75 30940.38 39443.60 33753.52 34272.65 3259.16 39465.87 33350.41 22454.18 36165.24 371
D2MVS62.30 25560.29 26568.34 23666.46 34848.42 23465.70 31073.42 24847.71 29958.16 30075.02 31230.51 31577.71 25253.96 19671.68 22678.90 269
MIMVSNet155.17 31154.31 31357.77 32670.03 31732.01 37565.68 31164.81 31249.19 27846.75 36876.00 30025.53 35664.04 33828.65 37462.13 32777.26 287
PatchMatch-RL56.25 30254.55 30961.32 30677.06 20456.07 10965.57 31254.10 36844.13 33453.49 34471.27 33925.20 35766.78 32736.52 33363.66 31361.12 373
Syy-MVS56.00 30456.23 29755.32 33674.69 24526.44 39265.52 31357.49 35450.97 25956.52 31172.18 32839.89 21968.09 31924.20 38564.59 30771.44 348
myMVS_eth3d54.86 31354.61 30855.61 33574.69 24527.31 38965.52 31357.49 35450.97 25956.52 31172.18 32821.87 37068.09 31927.70 37764.59 30771.44 348
test-LLR58.15 28758.13 28358.22 32168.57 33244.80 27165.46 31557.92 35150.08 26855.44 31969.82 34932.62 30157.44 36449.66 23173.62 19372.41 336
TESTMET0.1,155.28 30954.90 30656.42 33166.56 34643.67 28265.46 31556.27 36139.18 36453.83 33767.44 36124.21 36155.46 37548.04 24673.11 20670.13 359
test-mter56.42 30055.82 30058.22 32168.57 33244.80 27165.46 31557.92 35139.94 36255.44 31969.82 34921.92 36757.44 36449.66 23173.62 19372.41 336
SDMVSNet68.03 17268.10 14967.84 23977.13 20148.72 23165.32 31879.10 14958.02 14165.08 21382.55 18147.83 13173.40 29163.92 12073.92 18881.41 224
CR-MVSNet59.91 27457.90 28465.96 26669.96 31852.07 18165.31 31963.15 32642.48 34759.36 28674.84 31335.83 26370.75 30545.50 27064.65 30575.06 308
RPMNet61.53 26458.42 27870.86 19369.96 31852.07 18165.31 31981.36 10743.20 34259.36 28670.15 34735.37 26685.47 10236.42 33464.65 30575.06 308
USDC56.35 30154.24 31462.69 29564.74 35640.31 30965.05 32173.83 24443.93 33647.58 36377.71 27815.36 38075.05 28438.19 31961.81 33072.70 330
MDTV_nov1_ep1357.00 28872.73 27238.26 32865.02 32264.73 31444.74 32655.46 31872.48 32632.61 30370.47 30637.47 32167.75 282
ETVMVS59.51 27958.81 27361.58 30277.46 19434.87 35664.94 32359.35 34554.06 22361.08 26876.67 29029.54 32371.87 30032.16 35274.07 18678.01 279
CMPMVSbinary42.80 2157.81 29055.97 29863.32 28960.98 37547.38 24764.66 32469.50 28032.06 37346.83 36777.80 27429.50 32571.36 30248.68 23973.75 19171.21 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RPSCF55.80 30654.22 31560.53 30865.13 35542.91 29064.30 32557.62 35336.84 36758.05 30182.28 19028.01 33756.24 37237.14 32458.61 34582.44 208
XXY-MVS60.68 26961.67 25057.70 32770.43 31038.45 32764.19 32666.47 30148.05 29563.22 23780.86 22249.28 11460.47 34945.25 27567.28 28674.19 321
FMVSNet555.86 30554.93 30558.66 31871.05 30336.35 34864.18 32762.48 33046.76 31150.66 35674.73 31525.80 35464.04 33833.11 34865.57 29875.59 303
test_cas_vis1_n_192056.91 29556.71 29257.51 32859.13 38045.40 26763.58 32861.29 34036.24 36867.14 16971.85 33429.89 32156.69 36857.65 16663.58 31570.46 356
SCA60.49 27058.38 27966.80 24974.14 25848.06 23863.35 32963.23 32549.13 27959.33 28972.10 33037.45 24574.27 28844.17 27862.57 32378.05 275
Patchmtry57.16 29356.47 29459.23 31269.17 32934.58 36162.98 33063.15 32644.53 32856.83 30874.84 31335.83 26368.71 31640.03 30960.91 33474.39 319
Anonymous2023120655.10 31255.30 30454.48 34169.81 32233.94 36662.91 33162.13 33641.08 35455.18 32375.65 30632.75 29856.59 37030.32 36867.86 28072.91 327
sd_testset64.46 23264.45 21564.51 28377.13 20142.25 29462.67 33272.11 25958.02 14165.08 21382.55 18141.22 21269.88 31247.32 25073.92 18881.41 224
MIMVSNet57.35 29157.07 28758.22 32174.21 25737.18 33862.46 33360.88 34248.88 28255.29 32275.99 30231.68 30962.04 34531.87 35572.35 21675.43 306
dp51.89 32751.60 32652.77 35268.44 33532.45 37462.36 33454.57 36544.16 33349.31 36067.91 35728.87 33156.61 36933.89 34354.89 35869.24 366
EPMVS53.96 31553.69 31854.79 34066.12 35131.96 37662.34 33549.05 37844.42 33155.54 31771.33 33830.22 31856.70 36741.65 30362.54 32475.71 302
pmmvs344.92 34441.95 35153.86 34452.58 38843.55 28362.11 33646.90 38626.05 38340.63 38160.19 37911.08 39157.91 36331.83 35946.15 37760.11 374
test_vis1_n49.89 33648.69 33853.50 34853.97 38437.38 33761.53 33747.33 38428.54 37759.62 28467.10 36513.52 38252.27 38349.07 23657.52 34870.84 354
PVSNet50.76 1958.40 28457.39 28561.42 30375.53 23044.04 27961.43 33863.45 32347.04 30956.91 30773.61 32227.00 34764.76 33639.12 31472.40 21575.47 305
LCM-MVSNet-Re61.88 26161.35 25463.46 28874.58 24831.48 37761.42 33958.14 35058.71 12753.02 34579.55 24643.07 18776.80 26745.69 26577.96 14282.11 215
test20.0353.87 31754.02 31653.41 34961.47 37128.11 38561.30 34059.21 34651.34 25352.09 34777.43 28133.29 29058.55 36029.76 37060.27 34073.58 325
MDTV_nov1_ep13_2view25.89 39461.22 34140.10 36051.10 35032.97 29338.49 31678.61 270
PMMVS53.96 31553.26 32156.04 33262.60 36750.92 19461.17 34256.09 36232.81 37253.51 34366.84 36634.04 28059.93 35344.14 28068.18 27857.27 381
test_fmvs1_n51.37 32950.35 33254.42 34352.85 38637.71 33461.16 34351.93 37028.15 37863.81 23369.73 35113.72 38153.95 37851.16 21960.65 33871.59 345
WTY-MVS59.75 27660.39 26457.85 32572.32 28237.83 33261.05 34464.18 31845.95 32061.91 25979.11 25447.01 14960.88 34842.50 29669.49 26274.83 313
dmvs_testset50.16 33451.90 32444.94 36766.49 34711.78 40561.01 34551.50 37251.17 25750.30 35967.44 36139.28 22660.29 35122.38 38757.49 34962.76 372
Patchmatch-RL test58.16 28655.49 30266.15 26267.92 33848.89 22860.66 34651.07 37547.86 29859.36 28662.71 37734.02 28172.27 29756.41 17359.40 34277.30 285
test_fmvs151.32 33150.48 33153.81 34553.57 38537.51 33660.63 34751.16 37328.02 38063.62 23469.23 35416.41 37753.93 37951.01 22060.70 33769.99 360
LTVRE_ROB55.42 1663.15 24761.23 25868.92 22876.57 21447.80 24059.92 34876.39 20254.35 21958.67 29482.46 18629.44 32681.49 18342.12 29871.14 23177.46 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 153.32 32253.59 31952.50 35362.81 36629.45 38159.51 34954.11 36750.08 26854.40 33374.31 31832.62 30155.92 37330.50 36763.95 31272.15 341
UnsupCasMVSNet_eth53.16 32452.47 32255.23 33759.45 37933.39 37059.43 35069.13 28445.98 31750.35 35872.32 32729.30 32758.26 36242.02 30044.30 37974.05 322
MVS-HIRNet45.52 34344.48 34648.65 36168.49 33434.05 36559.41 35144.50 38927.03 38137.96 38850.47 39126.16 35264.10 33726.74 38159.52 34147.82 390
testgi51.90 32652.37 32350.51 35960.39 37823.55 39958.42 35258.15 34949.03 28051.83 34879.21 25322.39 36555.59 37429.24 37362.64 32272.40 338
dmvs_re56.77 29656.83 29156.61 33069.23 32741.02 30458.37 35364.18 31850.59 26457.45 30571.42 33635.54 26558.94 35837.23 32367.45 28469.87 361
PatchT53.17 32353.44 32052.33 35468.29 33625.34 39658.21 35454.41 36644.46 33054.56 33169.05 35533.32 28960.94 34736.93 32661.76 33170.73 355
WB-MVS43.26 34643.41 34742.83 37163.32 36310.32 40758.17 35545.20 38745.42 32240.44 38367.26 36434.01 28258.98 35711.96 39924.88 39459.20 375
sss56.17 30356.57 29354.96 33866.93 34336.32 35057.94 35661.69 33841.67 35058.64 29575.32 31138.72 23356.25 37142.04 29966.19 29472.31 339
test_fmvs248.69 33847.49 34352.29 35548.63 39233.06 37257.76 35748.05 38225.71 38459.76 28269.60 35211.57 38752.23 38449.45 23456.86 35171.58 346
KD-MVS_self_test55.22 31053.89 31759.21 31357.80 38327.47 38857.75 35874.32 23647.38 30350.90 35270.00 34828.45 33570.30 31040.44 30757.92 34779.87 255
UnsupCasMVSNet_bld50.07 33548.87 33653.66 34660.97 37633.67 36857.62 35964.56 31539.47 36347.38 36464.02 37527.47 34159.32 35534.69 34143.68 38067.98 368
SSC-MVS41.96 35041.99 35041.90 37262.46 3689.28 40957.41 36044.32 39043.38 33938.30 38766.45 36732.67 30058.42 36110.98 40021.91 39757.99 379
ANet_high41.38 35137.47 35853.11 35039.73 40224.45 39756.94 36169.69 27547.65 30026.04 39452.32 38612.44 38462.38 34421.80 38810.61 40372.49 333
MDA-MVSNet-bldmvs53.87 31750.81 32963.05 29366.25 34948.58 23256.93 36263.82 32048.09 29441.22 38070.48 34530.34 31768.00 32234.24 34245.92 37872.57 332
test1234.73 3756.30 3780.02 3890.01 4120.01 41456.36 3630.00 4130.01 4070.04 4080.21 4080.01 4120.00 4080.03 4080.00 4060.04 404
miper_lstm_enhance62.03 25960.88 26265.49 27466.71 34546.25 25556.29 36475.70 21150.68 26161.27 26675.48 30940.21 21768.03 32156.31 17465.25 30082.18 212
KD-MVS_2432*160053.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
miper_refine_blended53.45 31951.50 32759.30 31062.82 36437.14 33955.33 36571.79 26247.34 30555.09 32470.52 34321.91 36870.45 30735.72 33742.97 38170.31 357
LF4IMVS42.95 34742.26 34945.04 36548.30 39332.50 37354.80 36748.49 38028.03 37940.51 38270.16 3469.24 39343.89 39331.63 36049.18 37558.72 377
PMVScopyleft28.69 2236.22 35833.29 36245.02 36636.82 40435.98 35354.68 36848.74 37926.31 38221.02 39751.61 3882.88 40660.10 3529.99 40347.58 37638.99 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_043.31 2047.46 34245.64 34552.92 35167.60 34044.65 27354.06 36954.64 36441.59 35146.15 37058.75 38030.99 31258.66 35932.18 35124.81 39555.46 383
testmvs4.52 3766.03 3790.01 3900.01 4120.00 41553.86 3700.00 4130.01 4070.04 4080.27 4070.00 4130.00 4080.04 4070.00 4060.03 405
test_fmvs344.30 34542.55 34849.55 36042.83 39627.15 39153.03 37144.93 38822.03 39153.69 34064.94 3724.21 40149.63 38647.47 24749.82 37271.88 342
APD_test137.39 35734.94 36044.72 36848.88 39133.19 37152.95 37244.00 39119.49 39227.28 39358.59 3813.18 40552.84 38118.92 39041.17 38448.14 389
YYNet150.73 33248.96 33456.03 33361.10 37441.78 29851.94 37356.44 35840.94 35644.84 37267.80 35930.08 31955.08 37636.77 32750.71 36971.22 350
MDA-MVSNet_test_wron50.71 33348.95 33556.00 33461.17 37341.84 29751.90 37456.45 35740.96 35544.79 37367.84 35830.04 32055.07 37736.71 32950.69 37071.11 353
ADS-MVSNet251.33 33048.76 33759.07 31566.02 35244.60 27450.90 37559.76 34436.90 36550.74 35366.18 36926.38 34963.11 34127.17 37854.76 35969.50 363
ADS-MVSNet48.48 33947.77 34050.63 35866.02 35229.92 38050.90 37550.87 37736.90 36550.74 35366.18 36926.38 34952.47 38227.17 37854.76 35969.50 363
FPMVS42.18 34941.11 35245.39 36458.03 38241.01 30649.50 37753.81 36930.07 37533.71 38964.03 37311.69 38552.08 38514.01 39555.11 35743.09 392
N_pmnet39.35 35540.28 35336.54 37863.76 3601.62 41349.37 3780.76 41234.62 37143.61 37766.38 36826.25 35142.57 39426.02 38351.77 36665.44 370
new-patchmatchnet47.56 34147.73 34147.06 36258.81 3819.37 40848.78 37959.21 34643.28 34044.22 37568.66 35625.67 35557.20 36631.57 36249.35 37474.62 317
test_vis1_rt41.35 35239.45 35447.03 36346.65 39537.86 33147.76 38038.65 39523.10 38744.21 37651.22 38911.20 39044.08 39239.27 31353.02 36459.14 376
JIA-IIPM51.56 32847.68 34263.21 29164.61 35750.73 19847.71 38158.77 34842.90 34448.46 36251.72 38724.97 35870.24 31136.06 33653.89 36268.64 367
ambc65.13 27963.72 36237.07 34147.66 38278.78 15754.37 33471.42 33611.24 38980.94 19645.64 26653.85 36377.38 284
testf131.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
APD_test231.46 36428.89 36739.16 37441.99 39928.78 38346.45 38337.56 39614.28 39921.10 39548.96 3921.48 40947.11 38813.63 39634.56 39041.60 393
Patchmatch-test49.08 33748.28 33951.50 35764.40 35830.85 37945.68 38548.46 38135.60 36946.10 37172.10 33034.47 27646.37 39027.08 38060.65 33877.27 286
DSMNet-mixed39.30 35638.72 35541.03 37351.22 38919.66 40245.53 38631.35 40115.83 39839.80 38567.42 36322.19 36645.13 39122.43 38652.69 36558.31 378
LCM-MVSNet40.30 35335.88 35953.57 34742.24 39729.15 38245.21 38760.53 34322.23 39028.02 39250.98 3903.72 40361.78 34631.22 36538.76 38769.78 362
new_pmnet34.13 36034.29 36133.64 38052.63 38718.23 40444.43 38833.90 40022.81 38830.89 39153.18 38510.48 39235.72 40120.77 38939.51 38546.98 391
mvsany_test139.38 35438.16 35743.02 37049.05 39034.28 36344.16 38925.94 40522.74 38946.57 36962.21 37823.85 36341.16 39733.01 34935.91 38953.63 384
E-PMN23.77 36722.73 37126.90 38342.02 39820.67 40142.66 39035.70 39817.43 39410.28 40425.05 4006.42 39642.39 39510.28 40214.71 40017.63 399
EMVS22.97 36821.84 37226.36 38440.20 40119.53 40341.95 39134.64 39917.09 3959.73 40522.83 4017.29 39542.22 3969.18 40413.66 40117.32 400
test_vis3_rt32.09 36230.20 36637.76 37735.36 40627.48 38740.60 39228.29 40416.69 39632.52 39040.53 3951.96 40737.40 39933.64 34642.21 38348.39 387
CHOSEN 280x42047.83 34046.36 34452.24 35667.37 34149.78 21438.91 39343.11 39235.00 37043.27 37863.30 37628.95 32949.19 38736.53 33260.80 33657.76 380
mvsany_test332.62 36130.57 36538.77 37636.16 40524.20 39838.10 39420.63 40719.14 39340.36 38457.43 3825.06 39836.63 40029.59 37228.66 39355.49 382
test_f31.86 36331.05 36434.28 37932.33 40821.86 40032.34 39530.46 40216.02 39739.78 38655.45 3844.80 39932.36 40230.61 36637.66 38848.64 386
PMMVS227.40 36625.91 36931.87 38239.46 4036.57 41031.17 39628.52 40323.96 38520.45 39848.94 3944.20 40237.94 39816.51 39219.97 39851.09 385
wuyk23d13.32 37212.52 37515.71 38647.54 39426.27 39331.06 3971.98 4114.93 4035.18 4061.94 4060.45 41118.54 4056.81 40612.83 4022.33 403
Gipumacopyleft34.77 35931.91 36343.33 36962.05 37037.87 33020.39 39867.03 29723.23 38618.41 39925.84 3994.24 40062.73 34214.71 39451.32 36829.38 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive17.77 2321.41 36917.77 37432.34 38134.34 40725.44 39516.11 39924.11 40611.19 40113.22 40131.92 3971.58 40830.95 40310.47 40117.03 39940.62 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.43 37311.14 3764.30 3882.38 4114.40 41113.62 40016.08 4090.39 40515.89 40013.06 40215.80 3795.54 40712.63 39810.46 4042.95 402
test_method19.68 37018.10 37324.41 38513.68 4103.11 41212.06 40142.37 3932.00 40411.97 40236.38 3965.77 39729.35 40415.06 39323.65 39640.76 395
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
cdsmvs_eth3d_5k17.50 37123.34 3700.00 3910.00 4140.00 4150.00 40278.63 1610.00 4090.00 41082.18 19149.25 1150.00 4080.00 4090.00 4060.00 406
pcd_1.5k_mvsjas3.92 3775.23 3800.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 40947.05 1460.00 4080.00 4090.00 4060.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
ab-mvs-re6.49 3748.65 3770.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 41077.89 2720.00 4130.00 4080.00 4090.00 4060.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4150.00 4020.00 4130.00 4090.00 4100.00 4090.00 4130.00 4080.00 4090.00 4060.00 406
WAC-MVS27.31 38927.77 376
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
PC_three_145255.09 20184.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS86.64 2160.38 4382.70 8657.95 14478.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
IU-MVS87.77 459.15 6085.53 2553.93 22584.64 379.07 1190.87 588.37 13
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
GSMVS78.05 275
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27278.05 275
sam_mvs33.43 288
MTGPAbinary80.97 123
test_post3.55 40533.90 28366.52 328
patchmatchnet-post64.03 37334.50 27474.27 288
gm-plane-assit71.40 29741.72 30148.85 28373.31 32382.48 16848.90 238
test9_res75.28 3788.31 3283.81 169
agg_prior273.09 5587.93 4084.33 150
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
TestCases64.39 28471.44 29449.03 22367.30 29345.97 31847.16 36579.77 24017.47 37467.56 32333.65 34459.16 34376.57 295
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
新几何170.76 19585.66 4161.13 3066.43 30244.68 32770.29 10786.64 9041.29 20975.23 28349.72 23081.75 9675.93 299
旧先验183.04 7053.15 15967.52 29287.85 7144.08 17980.76 10078.03 278
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 25070.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 273
testdata272.18 29946.95 256
segment_acmp54.23 54
testdata64.66 28181.52 8752.93 16265.29 31046.09 31673.88 6287.46 7538.08 24166.26 33153.31 20278.48 13674.78 315
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior181.27 95
n20.00 413
nn0.00 413
door-mid47.19 385
lessismore_v069.91 21171.42 29647.80 24050.90 37650.39 35775.56 30727.43 34381.33 18645.91 26334.10 39280.59 243
LGP-MVS_train75.76 6780.22 11157.51 8683.40 7061.32 7966.67 17987.33 7739.15 22986.59 7167.70 8677.30 15383.19 191
test1183.47 67
door47.60 383
HQP5-MVS54.94 131
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
NP-MVS80.98 10056.05 11085.54 126
ACMMP++_ref74.07 186
ACMMP++72.16 221
Test By Simon48.33 126
ITE_SJBPF62.09 29966.16 35044.55 27664.32 31647.36 30455.31 32180.34 23019.27 37362.68 34336.29 33562.39 32579.04 266
DeepMVS_CXcopyleft12.03 38717.97 40910.91 40610.60 4107.46 40211.07 40328.36 3983.28 40411.29 4068.01 4059.74 40513.89 401