| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 63 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 15 |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 66 | 60.87 86 | 81.50 16 | | | | | | |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 48 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 66 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 67 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 120 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 66 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 42 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 72 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 21 |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 45 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 21 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 75 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 18 | 54.26 56 | 90.06 14 | 78.42 19 | 89.02 23 | 87.69 38 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 71 | 62.44 64 | 72.68 91 | 90.50 26 | 48.18 134 | 87.34 53 | 73.59 52 | 85.71 60 | 84.76 149 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 46 | 90.47 28 | 53.96 61 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 56 |
|
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 64 | 65.37 13 | 78.78 22 | 90.64 21 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 131 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 23 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 46 | 62.82 55 | 73.96 67 | 90.50 26 | 53.20 72 | 88.35 31 | 74.02 48 | 87.05 45 | 86.13 91 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 49 | 62.81 57 | 73.30 74 | 90.58 23 | 49.90 113 | 88.21 34 | 73.78 50 | 87.03 46 | 86.29 88 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 47 | 62.82 55 | 73.55 72 | 90.56 24 | 49.80 115 | 88.24 33 | 74.02 48 | 87.03 46 | 86.32 85 |
|
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 82 | 60.01 49 | 86.19 17 | 83.93 53 | 73.19 1 | 77.08 34 | 91.21 17 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 6 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 25 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MTMP | | | | | | | | 86.03 19 | 17.08 424 | | | | | | | | |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 68 | 63.89 37 | 73.60 71 | 90.60 22 | 54.85 51 | 86.72 70 | 77.20 25 | 88.06 36 | 85.74 108 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 64 | 90.03 41 | 52.56 78 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 73 |
|
| XVS | | | 77.17 31 | 76.56 36 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 98 | 90.01 43 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 79 |
|
| X-MVStestdata | | | 70.21 127 | 67.28 176 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 98 | 6.49 419 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 79 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 9 | 82.40 79 | 59.92 51 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 164 | 89.24 54 | 42.03 206 | 89.38 19 | 64.07 121 | 86.50 57 | 89.69 3 |
|
| mPP-MVS | | | 76.54 39 | 75.93 44 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 96 | 62.90 52 | 71.77 102 | 90.26 34 | 46.61 161 | 86.55 76 | 71.71 68 | 85.66 61 | 84.97 142 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 64 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SR-MVS | | | 76.13 46 | 75.70 47 | 77.40 51 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 97 | 59.99 111 | 75.10 45 | 90.35 31 | 47.66 141 | 86.52 77 | 71.64 69 | 82.99 83 | 84.47 155 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 45 | 60.61 92 | 79.05 21 | 90.30 33 | 55.54 45 | 88.32 32 | 73.48 53 | 87.03 46 | 84.83 145 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 43 | 63.04 49 | 69.80 127 | 89.74 49 | 45.43 174 | 87.16 60 | 72.01 64 | 82.87 88 | 85.14 133 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 44 | 66.73 8 | 74.67 58 | 89.38 52 | 55.30 46 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 77 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 46 | 82.88 77 | 57.83 84 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 20 | 57.96 26 | 87.09 63 | 77.08 26 | 90.18 15 | 87.87 31 |
|
| reproduce-ours | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 76 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 118 |
|
| our_new_method | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 76 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 118 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 34 | 84.85 40 | 61.98 74 | 73.06 84 | 88.88 58 | 53.72 66 | 89.06 23 | 68.27 84 | 88.04 37 | 87.42 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 107 | 57.91 83 | 84.68 35 | 81.64 106 | 68.35 2 | 75.77 39 | 90.38 29 | 53.98 59 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 10 |
|
| reproduce_model | | | 76.43 41 | 76.08 41 | 77.49 48 | 83.47 69 | 60.09 47 | 84.60 36 | 82.90 88 | 59.65 117 | 77.31 30 | 91.43 12 | 49.62 117 | 87.24 54 | 71.99 65 | 83.75 78 | 85.14 133 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 37 | 83.87 59 | 60.37 99 | 79.89 18 | 89.38 52 | 54.97 49 | 85.58 99 | 76.12 31 | 84.94 64 | 86.33 83 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CS-MVS | | | 76.25 44 | 75.98 43 | 77.06 53 | 80.15 121 | 55.63 123 | 84.51 38 | 83.90 56 | 63.24 45 | 73.30 74 | 87.27 84 | 55.06 48 | 86.30 85 | 71.78 67 | 84.58 66 | 89.25 5 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 39 | 85.03 36 | 66.96 5 | 77.58 29 | 90.06 39 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 58 |
|
| SR-MVS-dyc-post | | | 74.57 62 | 73.90 65 | 76.58 62 | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 114 | 58.07 148 | 73.14 80 | 90.07 37 | 44.74 181 | 85.84 93 | 68.20 85 | 81.76 101 | 84.03 165 |
|
| RE-MVS-def | | | | 73.71 69 | | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 114 | 58.07 148 | 73.14 80 | 90.07 37 | 43.06 197 | | 68.20 85 | 81.76 101 | 84.03 165 |
|
| PHI-MVS | | | 75.87 48 | 75.36 50 | 77.41 49 | 80.62 112 | 55.91 116 | 84.28 42 | 85.78 20 | 56.08 187 | 73.41 73 | 86.58 101 | 50.94 105 | 88.54 28 | 70.79 74 | 89.71 17 | 87.79 36 |
|
| HQP_MVS | | | 74.31 65 | 73.73 68 | 76.06 68 | 81.41 94 | 56.31 105 | 84.22 43 | 84.01 51 | 64.52 25 | 69.27 135 | 86.10 116 | 45.26 178 | 87.21 58 | 68.16 87 | 80.58 111 | 84.65 150 |
|
| plane_prior2 | | | | | | | | 84.22 43 | | 64.52 25 | | | | | | | |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 65 | 61.62 23 | 84.17 45 | 86.85 6 | 63.23 46 | 73.84 69 | 90.25 35 | 57.68 29 | 89.96 15 | 74.62 43 | 89.03 22 | 87.89 29 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 9.14 | | | | 78.75 15 | | 83.10 72 | | 84.15 46 | 88.26 1 | 59.90 112 | 78.57 23 | 90.36 30 | 57.51 32 | 86.86 67 | 77.39 23 | 89.52 21 | |
|
| CPTT-MVS | | | 72.78 80 | 72.08 85 | 74.87 89 | 84.88 57 | 61.41 26 | 84.15 46 | 77.86 188 | 55.27 204 | 67.51 170 | 88.08 68 | 41.93 208 | 81.85 181 | 69.04 83 | 80.01 119 | 81.35 234 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 48 | 83.82 62 | 59.34 126 | 79.37 19 | 89.76 48 | 59.84 16 | 87.62 51 | 76.69 27 | 86.74 53 | 87.68 39 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| API-MVS | | | 72.17 92 | 71.41 93 | 74.45 102 | 81.95 86 | 57.22 92 | 84.03 48 | 80.38 141 | 59.89 115 | 68.40 147 | 82.33 193 | 49.64 116 | 87.83 46 | 51.87 222 | 84.16 75 | 78.30 278 |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 50 | 79.66 149 | 59.00 130 | | | | | | | |
|
| SPE-MVS-test | | | 75.62 52 | 75.31 52 | 76.56 63 | 80.63 111 | 55.13 133 | 83.88 51 | 85.22 29 | 62.05 71 | 71.49 107 | 86.03 119 | 53.83 63 | 86.36 83 | 67.74 90 | 86.91 50 | 88.19 23 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 52 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 16 | 52.51 79 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 67 |
|
| EC-MVSNet | | | 75.84 49 | 75.87 46 | 75.74 74 | 78.86 148 | 52.65 173 | 83.73 53 | 86.08 17 | 63.47 42 | 72.77 90 | 87.25 85 | 53.13 73 | 87.93 42 | 71.97 66 | 85.57 62 | 86.66 71 |
|
| APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 59 | 82.20 81 | 58.24 80 | 83.67 54 | 83.29 80 | 58.41 142 | 73.71 70 | 90.14 36 | 45.62 167 | 85.99 89 | 69.64 78 | 82.85 89 | 85.78 102 |
|
| HPM-MVS_fast | | | 74.30 66 | 73.46 71 | 76.80 56 | 84.45 60 | 59.04 69 | 83.65 55 | 81.05 128 | 60.15 108 | 70.43 113 | 89.84 46 | 41.09 222 | 85.59 98 | 67.61 93 | 82.90 87 | 85.77 105 |
|
| plane_prior | | | | | | | 56.31 105 | 83.58 56 | | 63.19 48 | | | | | | 80.48 114 | |
|
| QAPM | | | 70.05 129 | 68.81 140 | 73.78 118 | 76.54 223 | 53.43 157 | 83.23 57 | 83.48 69 | 52.89 243 | 65.90 199 | 86.29 110 | 41.55 215 | 86.49 79 | 51.01 229 | 78.40 146 | 81.42 228 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 47 | 86.67 20 | 58.36 79 | 83.22 58 | 86.93 5 | 56.91 168 | 74.91 51 | 88.19 65 | 59.15 23 | 87.68 50 | 73.67 51 | 87.45 43 | 86.57 74 |
|
| EPNet | | | 73.09 76 | 72.16 83 | 75.90 70 | 75.95 231 | 56.28 107 | 83.05 59 | 72.39 264 | 66.53 10 | 65.27 211 | 87.00 87 | 50.40 110 | 85.47 104 | 62.48 138 | 86.32 58 | 85.94 96 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 46 | 83.03 60 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 41 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 25 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 49 | 83.96 64 | 59.60 54 | 82.95 61 | 86.50 13 | 60.78 89 | 75.27 43 | 84.83 139 | 60.76 15 | 86.56 75 | 67.86 89 | 87.87 41 | 86.06 93 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 56 | 82.93 62 | 85.39 27 | 62.15 67 | 76.41 37 | 91.51 11 | 52.47 81 | 86.78 69 | 80.66 4 | 89.64 19 | 87.80 35 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 63 | 85.08 33 | 62.57 60 | 73.09 83 | 89.97 44 | 50.90 106 | 87.48 52 | 75.30 36 | 86.85 51 | 87.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVSFormer | | | 71.50 104 | 70.38 114 | 74.88 88 | 78.76 151 | 57.15 97 | 82.79 64 | 78.48 175 | 51.26 263 | 69.49 130 | 83.22 174 | 43.99 190 | 83.24 148 | 66.06 104 | 79.37 127 | 84.23 160 |
|
| test_djsdf | | | 69.45 149 | 67.74 159 | 74.58 98 | 74.57 256 | 54.92 136 | 82.79 64 | 78.48 175 | 51.26 263 | 65.41 208 | 83.49 171 | 38.37 246 | 83.24 148 | 66.06 104 | 69.25 273 | 85.56 113 |
|
| ACMP | | 63.53 6 | 72.30 89 | 71.20 99 | 75.59 80 | 80.28 114 | 57.54 87 | 82.74 66 | 82.84 91 | 60.58 93 | 65.24 215 | 86.18 113 | 39.25 237 | 86.03 88 | 66.95 100 | 76.79 169 | 83.22 195 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMM | | 61.98 7 | 70.80 116 | 69.73 124 | 74.02 112 | 80.59 113 | 58.59 77 | 82.68 67 | 82.02 100 | 55.46 201 | 67.18 175 | 84.39 152 | 38.51 244 | 83.17 150 | 60.65 153 | 76.10 176 | 80.30 253 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| AdaColmap |  | | 69.99 131 | 68.66 144 | 73.97 114 | 84.94 54 | 57.83 84 | 82.63 68 | 78.71 167 | 56.28 183 | 64.34 229 | 84.14 155 | 41.57 213 | 87.06 64 | 46.45 267 | 78.88 136 | 77.02 298 |
|
| OPM-MVS | | | 74.73 58 | 74.25 62 | 76.19 67 | 80.81 106 | 59.01 70 | 82.60 69 | 83.64 65 | 63.74 39 | 72.52 94 | 87.49 77 | 47.18 152 | 85.88 92 | 69.47 80 | 80.78 107 | 83.66 185 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PGM-MVS | | | 76.77 37 | 76.06 42 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 70 | 83.74 63 | 61.71 76 | 72.45 97 | 90.34 32 | 48.48 132 | 88.13 37 | 72.32 61 | 86.85 51 | 85.78 102 |
|
| LPG-MVS_test | | | 72.74 81 | 71.74 87 | 75.76 72 | 80.22 116 | 57.51 89 | 82.55 70 | 83.40 73 | 61.32 79 | 66.67 185 | 87.33 82 | 39.15 239 | 86.59 73 | 67.70 91 | 77.30 162 | 83.19 197 |
|
| CANet | | | 76.46 40 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 88 | 82.35 72 | 83.31 79 | 67.78 3 | 70.09 117 | 86.34 109 | 54.92 50 | 88.90 25 | 72.68 58 | 84.55 67 | 87.76 37 |
|
| 114514_t | | | 70.83 114 | 69.56 126 | 74.64 95 | 86.21 31 | 54.63 139 | 82.34 73 | 81.81 103 | 48.22 302 | 63.01 250 | 85.83 126 | 40.92 224 | 87.10 62 | 57.91 172 | 79.79 120 | 82.18 218 |
|
| HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 159 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 159 | | | | | | |
|
| HQP-MVS | | | 73.45 71 | 72.80 76 | 75.40 81 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 56 | 62.10 68 | 67.85 159 | 85.54 133 | 45.46 172 | 86.93 65 | 67.04 98 | 80.35 115 | 84.32 157 |
|
| MSLP-MVS++ | | | 73.77 70 | 73.47 70 | 74.66 93 | 83.02 74 | 59.29 61 | 82.30 77 | 81.88 101 | 59.34 126 | 71.59 105 | 86.83 89 | 45.94 165 | 83.65 141 | 65.09 114 | 85.22 63 | 81.06 241 |
|
| EPP-MVSNet | | | 72.16 94 | 71.31 97 | 74.71 90 | 78.68 154 | 49.70 219 | 82.10 78 | 81.65 105 | 60.40 96 | 65.94 197 | 85.84 125 | 51.74 94 | 86.37 82 | 55.93 184 | 79.55 126 | 88.07 28 |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 79 | | | | | | | | | |
|
| TSAR-MVS + GP. | | | 74.90 55 | 74.15 63 | 77.17 52 | 82.00 84 | 58.77 75 | 81.80 80 | 78.57 171 | 58.58 139 | 74.32 63 | 84.51 150 | 55.94 43 | 87.22 57 | 67.11 97 | 84.48 71 | 85.52 114 |
|
| test_prior2 | | | | | | | | 81.75 81 | | 60.37 99 | 75.01 47 | 89.06 55 | 56.22 41 | | 72.19 62 | 88.96 24 | |
|
| PS-MVSNAJss | | | 72.24 90 | 71.21 98 | 75.31 83 | 78.50 157 | 55.93 115 | 81.63 82 | 82.12 98 | 56.24 184 | 70.02 121 | 85.68 129 | 47.05 154 | 84.34 128 | 65.27 113 | 74.41 191 | 85.67 109 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 121 | 55.65 197 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 122 | | | |
|
| train_agg | | | 76.27 43 | 76.15 40 | 76.64 61 | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 121 | 55.86 189 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 122 | 75.24 38 | 88.33 30 | 83.65 186 |
|
| MG-MVS | | | 73.96 68 | 73.89 66 | 74.16 110 | 85.65 42 | 49.69 221 | 81.59 85 | 81.29 120 | 61.45 78 | 71.05 109 | 88.11 66 | 51.77 93 | 87.73 47 | 61.05 150 | 83.09 81 | 85.05 138 |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 86 | 81.18 124 | 55.86 189 | 74.81 54 | 88.80 61 | 53.70 67 | 84.45 126 | | | |
|
| MAR-MVS | | | 71.51 103 | 70.15 119 | 75.60 79 | 81.84 87 | 59.39 58 | 81.38 87 | 82.90 88 | 54.90 217 | 68.08 156 | 78.70 263 | 47.73 139 | 85.51 101 | 51.68 226 | 84.17 74 | 81.88 224 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CDPH-MVS | | | 76.31 42 | 75.67 48 | 78.22 37 | 85.35 48 | 59.14 65 | 81.31 88 | 84.02 50 | 56.32 181 | 74.05 65 | 88.98 57 | 53.34 71 | 87.92 43 | 69.23 82 | 88.42 28 | 87.59 43 |
|
| OpenMVS |  | 61.03 9 | 68.85 158 | 67.56 163 | 72.70 155 | 74.26 263 | 53.99 146 | 81.21 89 | 81.34 118 | 52.70 244 | 62.75 254 | 85.55 132 | 38.86 242 | 84.14 130 | 48.41 251 | 83.01 82 | 79.97 258 |
|
| DP-MVS Recon | | | 72.15 95 | 70.73 107 | 76.40 64 | 86.57 24 | 57.99 82 | 81.15 90 | 82.96 86 | 57.03 165 | 66.78 181 | 85.56 130 | 44.50 185 | 88.11 38 | 51.77 224 | 80.23 118 | 83.10 201 |
|
| balanced_conf03 | | | 76.58 38 | 76.55 37 | 76.68 58 | 81.73 88 | 52.90 168 | 80.94 91 | 85.70 23 | 61.12 84 | 74.90 52 | 87.17 86 | 56.46 38 | 88.14 36 | 72.87 56 | 88.03 38 | 89.00 8 |
|
| Vis-MVSNet |  | | 72.18 91 | 71.37 95 | 74.61 96 | 81.29 97 | 55.41 129 | 80.90 92 | 78.28 184 | 60.73 90 | 69.23 138 | 88.09 67 | 44.36 187 | 82.65 166 | 57.68 173 | 81.75 103 | 85.77 105 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| jajsoiax | | | 68.25 174 | 66.45 190 | 73.66 128 | 75.62 235 | 55.49 128 | 80.82 93 | 78.51 174 | 52.33 248 | 64.33 230 | 84.11 156 | 28.28 346 | 81.81 183 | 63.48 131 | 70.62 243 | 83.67 183 |
|
| mvs_tets | | | 68.18 176 | 66.36 196 | 73.63 131 | 75.61 236 | 55.35 131 | 80.77 94 | 78.56 172 | 52.48 247 | 64.27 232 | 84.10 157 | 27.45 352 | 81.84 182 | 63.45 132 | 70.56 245 | 83.69 182 |
|
| DP-MVS | | | 65.68 220 | 63.66 231 | 71.75 173 | 84.93 55 | 56.87 102 | 80.74 95 | 73.16 258 | 53.06 240 | 59.09 300 | 82.35 192 | 36.79 268 | 85.94 91 | 32.82 362 | 69.96 259 | 72.45 345 |
|
| 3Dnovator | | 64.47 5 | 72.49 85 | 71.39 94 | 75.79 71 | 77.70 188 | 58.99 71 | 80.66 96 | 83.15 84 | 62.24 66 | 65.46 207 | 86.59 100 | 42.38 204 | 85.52 100 | 59.59 163 | 84.72 65 | 82.85 206 |
|
| ACMH+ | | 57.40 11 | 66.12 216 | 64.06 223 | 72.30 164 | 77.79 185 | 52.83 171 | 80.39 97 | 78.03 186 | 57.30 161 | 57.47 315 | 82.55 186 | 27.68 350 | 84.17 129 | 45.54 277 | 69.78 263 | 79.90 260 |
|
| sasdasda | | | 74.67 59 | 74.98 55 | 73.71 125 | 78.94 146 | 50.56 205 | 80.23 98 | 83.87 59 | 60.30 103 | 77.15 32 | 86.56 102 | 59.65 17 | 82.00 178 | 66.01 106 | 82.12 94 | 88.58 13 |
|
| canonicalmvs | | | 74.67 59 | 74.98 55 | 73.71 125 | 78.94 146 | 50.56 205 | 80.23 98 | 83.87 59 | 60.30 103 | 77.15 32 | 86.56 102 | 59.65 17 | 82.00 178 | 66.01 106 | 82.12 94 | 88.58 13 |
|
| IS-MVSNet | | | 71.57 102 | 71.00 103 | 73.27 144 | 78.86 148 | 45.63 271 | 80.22 100 | 78.69 168 | 64.14 35 | 66.46 188 | 87.36 81 | 49.30 120 | 85.60 97 | 50.26 235 | 83.71 79 | 88.59 12 |
|
| Effi-MVS+-dtu | | | 69.64 142 | 67.53 166 | 75.95 69 | 76.10 229 | 62.29 15 | 80.20 101 | 76.06 216 | 59.83 116 | 65.26 214 | 77.09 292 | 41.56 214 | 84.02 134 | 60.60 154 | 71.09 240 | 81.53 227 |
|
| nrg030 | | | 72.96 78 | 73.01 74 | 72.84 151 | 75.41 240 | 50.24 209 | 80.02 102 | 82.89 90 | 58.36 144 | 74.44 60 | 86.73 93 | 58.90 24 | 80.83 205 | 65.84 109 | 74.46 188 | 87.44 47 |
|
| Anonymous20231211 | | | 69.28 152 | 68.47 149 | 71.73 174 | 80.28 114 | 47.18 255 | 79.98 103 | 82.37 95 | 54.61 221 | 67.24 173 | 84.01 159 | 39.43 234 | 82.41 173 | 55.45 192 | 72.83 217 | 85.62 112 |
|
| DPM-MVS | | | 75.47 53 | 75.00 54 | 76.88 54 | 81.38 96 | 59.16 62 | 79.94 104 | 85.71 22 | 56.59 176 | 72.46 95 | 86.76 91 | 56.89 35 | 87.86 45 | 66.36 102 | 88.91 25 | 83.64 187 |
|
| PVSNet_Blended_VisFu | | | 71.45 106 | 70.39 113 | 74.65 94 | 82.01 83 | 58.82 74 | 79.93 105 | 80.35 142 | 55.09 209 | 65.82 203 | 82.16 199 | 49.17 123 | 82.64 167 | 60.34 155 | 78.62 143 | 82.50 212 |
|
| PAPM_NR | | | 72.63 83 | 71.80 86 | 75.13 86 | 81.72 89 | 53.42 158 | 79.91 106 | 83.28 81 | 59.14 128 | 66.31 192 | 85.90 123 | 51.86 91 | 86.06 86 | 57.45 175 | 80.62 109 | 85.91 98 |
|
| LS3D | | | 64.71 233 | 62.50 247 | 71.34 188 | 79.72 128 | 55.71 120 | 79.82 107 | 74.72 239 | 48.50 299 | 56.62 321 | 84.62 145 | 33.59 299 | 82.34 174 | 29.65 383 | 75.23 185 | 75.97 308 |
|
| UGNet | | | 68.81 159 | 67.39 171 | 73.06 147 | 78.33 166 | 54.47 140 | 79.77 108 | 75.40 226 | 60.45 95 | 63.22 243 | 84.40 151 | 32.71 312 | 80.91 204 | 51.71 225 | 80.56 113 | 83.81 175 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LFMVS | | | 71.78 98 | 71.59 88 | 72.32 163 | 83.40 70 | 46.38 260 | 79.75 109 | 71.08 273 | 64.18 32 | 72.80 89 | 88.64 62 | 42.58 201 | 83.72 139 | 57.41 176 | 84.49 70 | 86.86 63 |
|
| OMC-MVS | | | 71.40 107 | 70.60 109 | 73.78 118 | 76.60 221 | 53.15 162 | 79.74 110 | 79.78 146 | 58.37 143 | 68.75 142 | 86.45 107 | 45.43 174 | 80.60 209 | 62.58 136 | 77.73 153 | 87.58 44 |
|
| casdiffmvs_mvg |  | | 76.14 45 | 76.30 39 | 75.66 76 | 76.46 225 | 51.83 190 | 79.67 111 | 85.08 33 | 65.02 19 | 75.84 38 | 88.58 63 | 59.42 22 | 85.08 110 | 72.75 57 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| æ— å…ˆéªŒ | | | | | | | | 79.66 112 | 74.30 246 | 48.40 301 | | | | 80.78 207 | 53.62 207 | | 79.03 273 |
|
| Effi-MVS+ | | | 73.31 74 | 72.54 79 | 75.62 78 | 77.87 182 | 53.64 152 | 79.62 113 | 79.61 150 | 61.63 77 | 72.02 100 | 82.61 184 | 56.44 39 | 85.97 90 | 63.99 124 | 79.07 135 | 87.25 55 |
|
| PAPR | | | 71.72 101 | 70.82 105 | 74.41 103 | 81.20 101 | 51.17 193 | 79.55 114 | 83.33 78 | 55.81 192 | 66.93 180 | 84.61 146 | 50.95 104 | 86.06 86 | 55.79 187 | 79.20 132 | 86.00 94 |
|
| ACMH | | 55.70 15 | 65.20 229 | 63.57 232 | 70.07 212 | 78.07 176 | 52.01 188 | 79.48 115 | 79.69 147 | 55.75 194 | 56.59 322 | 80.98 223 | 27.12 355 | 80.94 201 | 42.90 304 | 71.58 234 | 77.25 296 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ETV-MVS | | | 74.46 64 | 73.84 67 | 76.33 66 | 79.27 137 | 55.24 132 | 79.22 116 | 85.00 38 | 64.97 21 | 72.65 92 | 79.46 253 | 53.65 70 | 87.87 44 | 67.45 95 | 82.91 86 | 85.89 99 |
|
| BP-MVS1 | | | 73.41 72 | 72.25 82 | 76.88 54 | 76.68 218 | 53.70 150 | 79.15 117 | 81.07 127 | 60.66 91 | 71.81 101 | 87.39 80 | 40.93 223 | 87.24 54 | 71.23 72 | 81.29 106 | 89.71 2 |
|
| 原ACMM2 | | | | | | | | 79.02 118 | | | | | | | | | |
|
| GeoE | | | 71.01 110 | 70.15 119 | 73.60 133 | 79.57 131 | 52.17 183 | 78.93 119 | 78.12 185 | 58.02 150 | 67.76 167 | 83.87 162 | 52.36 83 | 82.72 164 | 56.90 178 | 75.79 179 | 85.92 97 |
|
| UA-Net | | | 73.13 75 | 72.93 75 | 73.76 120 | 83.58 66 | 51.66 191 | 78.75 120 | 77.66 192 | 67.75 4 | 72.61 93 | 89.42 50 | 49.82 114 | 83.29 147 | 53.61 208 | 83.14 80 | 86.32 85 |
|
| VDDNet | | | 71.81 97 | 71.33 96 | 73.26 145 | 82.80 78 | 47.60 251 | 78.74 121 | 75.27 228 | 59.59 122 | 72.94 86 | 89.40 51 | 41.51 216 | 83.91 136 | 58.75 168 | 82.99 83 | 88.26 19 |
|
| v10 | | | 70.21 127 | 69.02 136 | 73.81 117 | 73.51 268 | 50.92 197 | 78.74 121 | 81.39 112 | 60.05 110 | 66.39 190 | 81.83 207 | 47.58 143 | 85.41 107 | 62.80 135 | 68.86 280 | 85.09 137 |
|
| CANet_DTU | | | 68.18 176 | 67.71 162 | 69.59 222 | 74.83 248 | 46.24 262 | 78.66 123 | 76.85 205 | 59.60 119 | 63.45 241 | 82.09 203 | 35.25 278 | 77.41 262 | 59.88 160 | 78.76 140 | 85.14 133 |
|
| MVSMamba_PlusPlus | | | 75.75 51 | 75.44 49 | 76.67 59 | 80.84 105 | 53.06 165 | 78.62 124 | 85.13 32 | 59.65 117 | 71.53 106 | 87.47 78 | 56.92 34 | 88.17 35 | 72.18 63 | 86.63 56 | 88.80 9 |
|
| v8 | | | 70.33 125 | 69.28 132 | 73.49 136 | 73.15 271 | 50.22 210 | 78.62 124 | 80.78 134 | 60.79 88 | 66.45 189 | 82.11 202 | 49.35 119 | 84.98 113 | 63.58 130 | 68.71 281 | 85.28 129 |
|
| alignmvs | | | 73.86 69 | 73.99 64 | 73.45 138 | 78.20 169 | 50.50 207 | 78.57 126 | 82.43 94 | 59.40 124 | 76.57 35 | 86.71 95 | 56.42 40 | 81.23 195 | 65.84 109 | 81.79 100 | 88.62 11 |
|
| PLC |  | 56.13 14 | 65.09 230 | 63.21 239 | 70.72 202 | 81.04 103 | 54.87 137 | 78.57 126 | 77.47 195 | 48.51 298 | 55.71 328 | 81.89 205 | 33.71 296 | 79.71 223 | 41.66 313 | 70.37 248 | 77.58 289 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v7n | | | 69.01 157 | 67.36 173 | 73.98 113 | 72.51 285 | 52.65 173 | 78.54 128 | 81.30 119 | 60.26 105 | 62.67 255 | 81.62 210 | 43.61 192 | 84.49 125 | 57.01 177 | 68.70 282 | 84.79 147 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 275 | 58.81 283 | 68.64 236 | 74.63 254 | 52.51 178 | 78.42 129 | 73.30 256 | 49.92 280 | 50.96 363 | 81.51 214 | 23.06 375 | 79.40 228 | 31.63 372 | 65.85 302 | 74.01 334 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| fmvsm_s_conf0.5_n_a | | | 69.54 145 | 68.74 142 | 71.93 167 | 72.47 286 | 53.82 148 | 78.25 130 | 62.26 345 | 49.78 281 | 73.12 82 | 86.21 112 | 52.66 77 | 76.79 275 | 75.02 39 | 68.88 278 | 85.18 132 |
|
| CLD-MVS | | | 73.33 73 | 72.68 77 | 75.29 85 | 78.82 150 | 53.33 160 | 78.23 131 | 84.79 41 | 61.30 81 | 70.41 114 | 81.04 221 | 52.41 82 | 87.12 61 | 64.61 120 | 82.49 93 | 85.41 124 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test_fmvsmconf0.1_n | | | 72.81 79 | 72.33 81 | 74.24 108 | 69.89 330 | 55.81 118 | 78.22 132 | 75.40 226 | 54.17 230 | 75.00 48 | 88.03 71 | 53.82 64 | 80.23 219 | 78.08 20 | 78.34 147 | 86.69 69 |
|
| test_fmvsmconf_n | | | 73.01 77 | 72.59 78 | 74.27 107 | 71.28 308 | 55.88 117 | 78.21 133 | 75.56 222 | 54.31 228 | 74.86 53 | 87.80 75 | 54.72 52 | 80.23 219 | 78.07 21 | 78.48 144 | 86.70 68 |
|
| casdiffmvs |  | | 74.80 56 | 74.89 57 | 74.53 100 | 75.59 237 | 50.37 208 | 78.17 134 | 85.06 35 | 62.80 58 | 74.40 61 | 87.86 73 | 57.88 27 | 83.61 142 | 69.46 81 | 82.79 90 | 89.59 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n_a | | | 69.32 151 | 68.44 151 | 71.96 166 | 70.91 312 | 53.78 149 | 78.12 135 | 62.30 344 | 49.35 287 | 73.20 78 | 86.55 104 | 51.99 89 | 76.79 275 | 74.83 41 | 68.68 283 | 85.32 127 |
|
| F-COLMAP | | | 63.05 254 | 60.87 270 | 69.58 224 | 76.99 214 | 53.63 153 | 78.12 135 | 76.16 212 | 47.97 307 | 52.41 358 | 81.61 211 | 27.87 348 | 78.11 250 | 40.07 319 | 66.66 297 | 77.00 299 |
|
| test_fmvsmconf0.01_n | | | 72.17 92 | 71.50 90 | 74.16 110 | 67.96 348 | 55.58 126 | 78.06 137 | 74.67 240 | 54.19 229 | 74.54 59 | 88.23 64 | 50.35 112 | 80.24 218 | 78.07 21 | 77.46 158 | 86.65 72 |
|
| EG-PatchMatch MVS | | | 64.71 233 | 62.87 242 | 70.22 208 | 77.68 189 | 53.48 156 | 77.99 138 | 78.82 163 | 53.37 239 | 56.03 327 | 77.41 289 | 24.75 372 | 84.04 132 | 46.37 268 | 73.42 208 | 73.14 337 |
|
| fmvsm_s_conf0.5_n | | | 69.58 143 | 68.84 139 | 71.79 172 | 72.31 291 | 52.90 168 | 77.90 139 | 62.43 343 | 49.97 279 | 72.85 88 | 85.90 123 | 52.21 85 | 76.49 281 | 75.75 33 | 70.26 253 | 85.97 95 |
|
| dcpmvs_2 | | | 74.55 63 | 75.23 53 | 72.48 158 | 82.34 80 | 53.34 159 | 77.87 140 | 81.46 110 | 57.80 158 | 75.49 41 | 86.81 90 | 62.22 13 | 77.75 257 | 71.09 73 | 82.02 97 | 86.34 81 |
|
| tttt0517 | | | 67.83 184 | 65.66 209 | 74.33 105 | 76.69 217 | 50.82 199 | 77.86 141 | 73.99 251 | 54.54 224 | 64.64 227 | 82.53 189 | 35.06 280 | 85.50 102 | 55.71 188 | 69.91 260 | 86.67 70 |
|
| fmvsm_s_conf0.1_n | | | 69.41 150 | 68.60 145 | 71.83 170 | 71.07 310 | 52.88 170 | 77.85 142 | 62.44 342 | 49.58 284 | 72.97 85 | 86.22 111 | 51.68 95 | 76.48 282 | 75.53 34 | 70.10 256 | 86.14 90 |
|
| v1144 | | | 70.42 123 | 69.31 131 | 73.76 120 | 73.22 269 | 50.64 202 | 77.83 143 | 81.43 111 | 58.58 139 | 69.40 133 | 81.16 218 | 47.53 145 | 85.29 109 | 64.01 123 | 70.64 242 | 85.34 126 |
|
| CNLPA | | | 65.43 224 | 64.02 224 | 69.68 220 | 78.73 153 | 58.07 81 | 77.82 144 | 70.71 277 | 51.49 258 | 61.57 273 | 83.58 169 | 38.23 250 | 70.82 311 | 43.90 292 | 70.10 256 | 80.16 255 |
|
| VDD-MVS | | | 72.50 84 | 72.09 84 | 73.75 122 | 81.58 90 | 49.69 221 | 77.76 145 | 77.63 193 | 63.21 47 | 73.21 77 | 89.02 56 | 42.14 205 | 83.32 146 | 61.72 145 | 82.50 92 | 88.25 20 |
|
| v1192 | | | 69.97 132 | 68.68 143 | 73.85 115 | 73.19 270 | 50.94 195 | 77.68 146 | 81.36 114 | 57.51 160 | 68.95 141 | 80.85 228 | 45.28 177 | 85.33 108 | 62.97 134 | 70.37 248 | 85.27 130 |
|
| v2v482 | | | 70.50 121 | 69.45 130 | 73.66 128 | 72.62 281 | 50.03 215 | 77.58 147 | 80.51 138 | 59.90 112 | 69.52 129 | 82.14 200 | 47.53 145 | 84.88 119 | 65.07 115 | 70.17 254 | 86.09 92 |
|
| WR-MVS_H | | | 67.02 201 | 66.92 185 | 67.33 252 | 77.95 181 | 37.75 343 | 77.57 148 | 82.11 99 | 62.03 73 | 62.65 256 | 82.48 190 | 50.57 109 | 79.46 227 | 42.91 303 | 64.01 317 | 84.79 147 |
|
| Anonymous20240529 | | | 69.91 133 | 69.02 136 | 72.56 156 | 80.19 119 | 47.65 249 | 77.56 149 | 80.99 130 | 55.45 202 | 69.88 125 | 86.76 91 | 39.24 238 | 82.18 176 | 54.04 203 | 77.10 166 | 87.85 32 |
|
| v144192 | | | 69.71 137 | 68.51 146 | 73.33 143 | 73.10 272 | 50.13 212 | 77.54 150 | 80.64 135 | 56.65 170 | 68.57 145 | 80.55 231 | 46.87 159 | 84.96 115 | 62.98 133 | 69.66 267 | 84.89 144 |
|
| baseline | | | 74.61 61 | 74.70 58 | 74.34 104 | 75.70 233 | 49.99 216 | 77.54 150 | 84.63 42 | 62.73 59 | 73.98 66 | 87.79 76 | 57.67 30 | 83.82 138 | 69.49 79 | 82.74 91 | 89.20 7 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 191 | 65.33 214 | 73.48 137 | 72.94 276 | 57.78 86 | 77.47 152 | 76.88 204 | 57.60 159 | 61.97 266 | 76.85 296 | 39.31 235 | 80.49 213 | 54.72 197 | 70.28 252 | 82.17 220 |
|
| v1921920 | | | 69.47 148 | 68.17 155 | 73.36 142 | 73.06 273 | 50.10 213 | 77.39 153 | 80.56 136 | 56.58 177 | 68.59 143 | 80.37 233 | 44.72 182 | 84.98 113 | 62.47 139 | 69.82 262 | 85.00 139 |
|
| tt0805 | | | 67.77 185 | 67.24 180 | 69.34 227 | 74.87 247 | 40.08 320 | 77.36 154 | 81.37 113 | 55.31 203 | 66.33 191 | 84.65 144 | 37.35 258 | 82.55 169 | 55.65 190 | 72.28 227 | 85.39 125 |
|
| GBi-Net | | | 67.21 193 | 66.55 188 | 69.19 228 | 77.63 192 | 43.33 292 | 77.31 155 | 77.83 189 | 56.62 173 | 65.04 220 | 82.70 180 | 41.85 209 | 80.33 215 | 47.18 261 | 72.76 218 | 83.92 170 |
|
| test1 | | | 67.21 193 | 66.55 188 | 69.19 228 | 77.63 192 | 43.33 292 | 77.31 155 | 77.83 189 | 56.62 173 | 65.04 220 | 82.70 180 | 41.85 209 | 80.33 215 | 47.18 261 | 72.76 218 | 83.92 170 |
|
| FMVSNet1 | | | 66.70 208 | 65.87 205 | 69.19 228 | 77.49 200 | 43.33 292 | 77.31 155 | 77.83 189 | 56.45 178 | 64.60 228 | 82.70 180 | 38.08 252 | 80.33 215 | 46.08 270 | 72.31 226 | 83.92 170 |
|
| MVS_111021_HR | | | 74.02 67 | 73.46 71 | 75.69 75 | 83.01 75 | 60.63 40 | 77.29 158 | 78.40 182 | 61.18 83 | 70.58 112 | 85.97 121 | 54.18 58 | 84.00 135 | 67.52 94 | 82.98 85 | 82.45 213 |
|
| EIA-MVS | | | 71.78 98 | 70.60 109 | 75.30 84 | 79.85 125 | 53.54 155 | 77.27 159 | 83.26 82 | 57.92 154 | 66.49 187 | 79.39 255 | 52.07 88 | 86.69 71 | 60.05 157 | 79.14 134 | 85.66 110 |
|
| v1240 | | | 69.24 154 | 67.91 158 | 73.25 146 | 73.02 275 | 49.82 217 | 77.21 160 | 80.54 137 | 56.43 179 | 68.34 149 | 80.51 232 | 43.33 195 | 84.99 111 | 62.03 143 | 69.77 265 | 84.95 143 |
|
| fmvsm_l_conf0.5_n | | | 70.99 111 | 70.82 105 | 71.48 180 | 71.45 301 | 54.40 142 | 77.18 161 | 70.46 279 | 48.67 295 | 75.17 44 | 86.86 88 | 53.77 65 | 76.86 273 | 76.33 30 | 77.51 157 | 83.17 200 |
|
| jason | | | 69.65 141 | 68.39 153 | 73.43 140 | 78.27 168 | 56.88 101 | 77.12 162 | 73.71 254 | 46.53 323 | 69.34 134 | 83.22 174 | 43.37 194 | 79.18 232 | 64.77 117 | 79.20 132 | 84.23 160 |
| jason: jason. |
| PAPM | | | 67.92 182 | 66.69 186 | 71.63 178 | 78.09 175 | 49.02 230 | 77.09 163 | 81.24 123 | 51.04 266 | 60.91 279 | 83.98 160 | 47.71 140 | 84.99 111 | 40.81 316 | 79.32 130 | 80.90 244 |
|
| EI-MVSNet-Vis-set | | | 72.42 88 | 71.59 88 | 74.91 87 | 78.47 159 | 54.02 145 | 77.05 164 | 79.33 156 | 65.03 18 | 71.68 104 | 79.35 257 | 52.75 76 | 84.89 117 | 66.46 101 | 74.23 192 | 85.83 101 |
|
| PEN-MVS | | | 66.60 210 | 66.45 190 | 67.04 253 | 77.11 210 | 36.56 356 | 77.03 165 | 80.42 140 | 62.95 50 | 62.51 261 | 84.03 158 | 46.69 160 | 79.07 238 | 44.22 286 | 63.08 327 | 85.51 115 |
|
| FIs | | | 70.82 115 | 71.43 92 | 68.98 232 | 78.33 166 | 38.14 339 | 76.96 166 | 83.59 67 | 61.02 85 | 67.33 172 | 86.73 93 | 55.07 47 | 81.64 184 | 54.61 200 | 79.22 131 | 87.14 57 |
|
| PS-CasMVS | | | 66.42 214 | 66.32 198 | 66.70 257 | 77.60 198 | 36.30 361 | 76.94 167 | 79.61 150 | 62.36 65 | 62.43 263 | 83.66 166 | 45.69 166 | 78.37 246 | 45.35 283 | 63.26 325 | 85.42 123 |
|
| h-mvs33 | | | 72.71 82 | 71.49 91 | 76.40 64 | 81.99 85 | 59.58 55 | 76.92 168 | 76.74 208 | 60.40 96 | 74.81 54 | 85.95 122 | 45.54 170 | 85.76 95 | 70.41 76 | 70.61 244 | 83.86 174 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 121 | 70.27 116 | 71.18 192 | 71.30 307 | 54.09 144 | 76.89 169 | 69.87 283 | 47.90 308 | 74.37 62 | 86.49 105 | 53.07 75 | 76.69 278 | 75.41 35 | 77.11 165 | 82.76 207 |
|
| thisisatest0530 | | | 67.92 182 | 65.78 207 | 74.33 105 | 76.29 226 | 51.03 194 | 76.89 169 | 74.25 247 | 53.67 236 | 65.59 205 | 81.76 208 | 35.15 279 | 85.50 102 | 55.94 183 | 72.47 222 | 86.47 76 |
|
| test_0402 | | | 63.25 251 | 61.01 267 | 69.96 213 | 80.00 123 | 54.37 143 | 76.86 171 | 72.02 268 | 54.58 223 | 58.71 303 | 80.79 230 | 35.00 281 | 84.36 127 | 26.41 395 | 64.71 311 | 71.15 364 |
|
| CP-MVSNet | | | 66.49 213 | 66.41 194 | 66.72 255 | 77.67 190 | 36.33 359 | 76.83 172 | 79.52 152 | 62.45 63 | 62.54 259 | 83.47 172 | 46.32 162 | 78.37 246 | 45.47 281 | 63.43 324 | 85.45 120 |
|
| EI-MVSNet-UG-set | | | 71.92 96 | 71.06 102 | 74.52 101 | 77.98 180 | 53.56 154 | 76.62 173 | 79.16 157 | 64.40 27 | 71.18 108 | 78.95 262 | 52.19 86 | 84.66 124 | 65.47 112 | 73.57 203 | 85.32 127 |
|
| RRT-MVS | | | 71.46 105 | 70.70 108 | 73.74 123 | 77.76 187 | 49.30 227 | 76.60 174 | 80.45 139 | 61.25 82 | 68.17 152 | 84.78 141 | 44.64 183 | 84.90 116 | 64.79 116 | 77.88 152 | 87.03 58 |
|
| lupinMVS | | | 69.57 144 | 68.28 154 | 73.44 139 | 78.76 151 | 57.15 97 | 76.57 175 | 73.29 257 | 46.19 326 | 69.49 130 | 82.18 196 | 43.99 190 | 79.23 231 | 64.66 118 | 79.37 127 | 83.93 169 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 124 | 70.10 121 | 71.17 193 | 78.64 155 | 42.97 298 | 76.53 176 | 81.16 126 | 66.95 6 | 68.53 146 | 85.42 135 | 51.61 96 | 83.07 151 | 52.32 216 | 69.70 266 | 87.46 46 |
|
| TAPA-MVS | | 59.36 10 | 66.60 210 | 65.20 216 | 70.81 199 | 76.63 220 | 48.75 235 | 76.52 177 | 80.04 145 | 50.64 271 | 65.24 215 | 84.93 138 | 39.15 239 | 78.54 245 | 36.77 339 | 76.88 168 | 85.14 133 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DTE-MVSNet | | | 65.58 222 | 65.34 213 | 66.31 264 | 76.06 230 | 34.79 369 | 76.43 178 | 79.38 155 | 62.55 61 | 61.66 271 | 83.83 163 | 45.60 168 | 79.15 236 | 41.64 315 | 60.88 342 | 85.00 139 |
|
| anonymousdsp | | | 67.00 202 | 64.82 219 | 73.57 134 | 70.09 326 | 56.13 110 | 76.35 179 | 77.35 199 | 48.43 300 | 64.99 223 | 80.84 229 | 33.01 305 | 80.34 214 | 64.66 118 | 67.64 290 | 84.23 160 |
|
| MVP-Stereo | | | 65.41 225 | 63.80 228 | 70.22 208 | 77.62 196 | 55.53 127 | 76.30 180 | 78.53 173 | 50.59 272 | 56.47 325 | 78.65 266 | 39.84 230 | 82.68 165 | 44.10 290 | 72.12 229 | 72.44 346 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MVS_Test | | | 72.45 86 | 72.46 80 | 72.42 162 | 74.88 246 | 48.50 239 | 76.28 181 | 83.14 85 | 59.40 124 | 72.46 95 | 84.68 142 | 55.66 44 | 81.12 196 | 65.98 108 | 79.66 123 | 87.63 41 |
|
| IterMVS-LS | | | 69.22 155 | 68.48 147 | 71.43 184 | 74.44 259 | 49.40 225 | 76.23 182 | 77.55 194 | 59.60 119 | 65.85 202 | 81.59 213 | 51.28 99 | 81.58 187 | 59.87 161 | 69.90 261 | 83.30 192 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| æ–°å‡ ä½•2 | | | | | | | | 76.12 183 | | | | | | | | | |
|
| FMVSNet2 | | | 66.93 203 | 66.31 199 | 68.79 235 | 77.63 192 | 42.98 297 | 76.11 184 | 77.47 195 | 56.62 173 | 65.22 217 | 82.17 198 | 41.85 209 | 80.18 221 | 47.05 264 | 72.72 221 | 83.20 196 |
|
| 旧先验2 | | | | | | | | 76.08 185 | | 45.32 334 | 76.55 36 | | | 65.56 345 | 58.75 168 | | |
|
| BH-untuned | | | 68.27 173 | 67.29 175 | 71.21 190 | 79.74 126 | 53.22 161 | 76.06 186 | 77.46 197 | 57.19 163 | 66.10 194 | 81.61 211 | 45.37 176 | 83.50 144 | 45.42 282 | 76.68 171 | 76.91 302 |
|
| FC-MVSNet-test | | | 69.80 136 | 70.58 111 | 67.46 248 | 77.61 197 | 34.73 372 | 76.05 187 | 83.19 83 | 60.84 87 | 65.88 201 | 86.46 106 | 54.52 55 | 80.76 208 | 52.52 215 | 78.12 148 | 86.91 61 |
|
| PCF-MVS | | 61.88 8 | 70.95 112 | 69.49 128 | 75.35 82 | 77.63 192 | 55.71 120 | 76.04 188 | 81.81 103 | 50.30 274 | 69.66 128 | 85.40 136 | 52.51 79 | 84.89 117 | 51.82 223 | 80.24 117 | 85.45 120 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UniMVSNet_NR-MVSNet | | | 71.11 108 | 71.00 103 | 71.44 182 | 79.20 139 | 44.13 284 | 76.02 189 | 82.60 93 | 66.48 11 | 68.20 150 | 84.60 147 | 56.82 36 | 82.82 162 | 54.62 198 | 70.43 246 | 87.36 53 |
|
| UniMVSNet (Re) | | | 70.63 118 | 70.20 117 | 71.89 168 | 78.55 156 | 45.29 274 | 75.94 190 | 82.92 87 | 63.68 40 | 68.16 153 | 83.59 168 | 53.89 62 | 83.49 145 | 53.97 204 | 71.12 239 | 86.89 62 |
|
| test_fmvsmvis_n_1920 | | | 70.84 113 | 70.38 114 | 72.22 165 | 71.16 309 | 55.39 130 | 75.86 191 | 72.21 266 | 49.03 291 | 73.28 76 | 86.17 114 | 51.83 92 | 77.29 265 | 75.80 32 | 78.05 149 | 83.98 168 |
|
| EPNet_dtu | | | 61.90 267 | 61.97 253 | 61.68 308 | 72.89 277 | 39.78 324 | 75.85 192 | 65.62 318 | 55.09 209 | 54.56 343 | 79.36 256 | 37.59 255 | 67.02 337 | 39.80 322 | 76.95 167 | 78.25 279 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MGCFI-Net | | | 72.45 86 | 73.34 73 | 69.81 219 | 77.77 186 | 43.21 295 | 75.84 193 | 81.18 124 | 59.59 122 | 75.45 42 | 86.64 96 | 57.74 28 | 77.94 252 | 63.92 125 | 81.90 99 | 88.30 18 |
|
| v148 | | | 68.24 175 | 67.19 182 | 71.40 185 | 70.43 320 | 47.77 248 | 75.76 194 | 77.03 203 | 58.91 131 | 67.36 171 | 80.10 240 | 48.60 131 | 81.89 180 | 60.01 158 | 66.52 299 | 84.53 152 |
|
| test_fmvsm_n_1920 | | | 71.73 100 | 71.14 100 | 73.50 135 | 72.52 284 | 56.53 104 | 75.60 195 | 76.16 212 | 48.11 304 | 77.22 31 | 85.56 130 | 53.10 74 | 77.43 261 | 74.86 40 | 77.14 164 | 86.55 75 |
|
| SixPastTwentyTwo | | | 61.65 270 | 58.80 285 | 70.20 210 | 75.80 232 | 47.22 254 | 75.59 196 | 69.68 285 | 54.61 221 | 54.11 347 | 79.26 258 | 27.07 356 | 82.96 153 | 43.27 298 | 49.79 383 | 80.41 251 |
|
| DELS-MVS | | | 74.76 57 | 74.46 60 | 75.65 77 | 77.84 184 | 52.25 182 | 75.59 196 | 84.17 48 | 63.76 38 | 73.15 79 | 82.79 179 | 59.58 20 | 86.80 68 | 67.24 96 | 86.04 59 | 87.89 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| FA-MVS(test-final) | | | 69.82 135 | 68.48 147 | 73.84 116 | 78.44 160 | 50.04 214 | 75.58 198 | 78.99 161 | 58.16 146 | 67.59 168 | 82.14 200 | 42.66 199 | 85.63 96 | 56.60 179 | 76.19 175 | 85.84 100 |
|
| Baseline_NR-MVSNet | | | 67.05 200 | 67.56 163 | 65.50 280 | 75.65 234 | 37.70 345 | 75.42 199 | 74.65 241 | 59.90 112 | 68.14 154 | 83.15 177 | 49.12 126 | 77.20 266 | 52.23 217 | 69.78 263 | 81.60 226 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 282 | 58.14 292 | 65.69 278 | 70.47 319 | 44.82 276 | 75.33 200 | 70.86 276 | 45.04 335 | 56.06 326 | 76.00 310 | 26.89 359 | 79.65 224 | 35.36 351 | 67.29 292 | 72.60 342 |
|
| xiu_mvs_v1_base_debu | | | 68.58 165 | 67.28 176 | 72.48 158 | 78.19 170 | 57.19 94 | 75.28 201 | 75.09 234 | 51.61 254 | 70.04 118 | 81.41 215 | 32.79 308 | 79.02 239 | 63.81 127 | 77.31 159 | 81.22 236 |
|
| xiu_mvs_v1_base | | | 68.58 165 | 67.28 176 | 72.48 158 | 78.19 170 | 57.19 94 | 75.28 201 | 75.09 234 | 51.61 254 | 70.04 118 | 81.41 215 | 32.79 308 | 79.02 239 | 63.81 127 | 77.31 159 | 81.22 236 |
|
| xiu_mvs_v1_base_debi | | | 68.58 165 | 67.28 176 | 72.48 158 | 78.19 170 | 57.19 94 | 75.28 201 | 75.09 234 | 51.61 254 | 70.04 118 | 81.41 215 | 32.79 308 | 79.02 239 | 63.81 127 | 77.31 159 | 81.22 236 |
|
| EI-MVSNet | | | 69.27 153 | 68.44 151 | 71.73 174 | 74.47 257 | 49.39 226 | 75.20 204 | 78.45 178 | 59.60 119 | 69.16 139 | 76.51 304 | 51.29 98 | 82.50 170 | 59.86 162 | 71.45 236 | 83.30 192 |
|
| CVMVSNet | | | 59.63 287 | 59.14 280 | 61.08 316 | 74.47 257 | 38.84 333 | 75.20 204 | 68.74 296 | 31.15 389 | 58.24 309 | 76.51 304 | 32.39 319 | 68.58 324 | 49.77 237 | 65.84 303 | 75.81 310 |
|
| ET-MVSNet_ETH3D | | | 67.96 181 | 65.72 208 | 74.68 92 | 76.67 219 | 55.62 125 | 75.11 206 | 74.74 238 | 52.91 242 | 60.03 286 | 80.12 239 | 33.68 297 | 82.64 167 | 61.86 144 | 76.34 173 | 85.78 102 |
|
| xiu_mvs_v2_base | | | 70.52 119 | 69.75 123 | 72.84 151 | 81.21 100 | 55.63 123 | 75.11 206 | 78.92 162 | 54.92 216 | 69.96 124 | 79.68 248 | 47.00 158 | 82.09 177 | 61.60 147 | 79.37 127 | 80.81 246 |
|
| K. test v3 | | | 60.47 279 | 57.11 297 | 70.56 204 | 73.74 267 | 48.22 242 | 75.10 208 | 62.55 340 | 58.27 145 | 53.62 353 | 76.31 308 | 27.81 349 | 81.59 186 | 47.42 257 | 39.18 398 | 81.88 224 |
|
| Fast-Effi-MVS+ | | | 70.28 126 | 69.12 135 | 73.73 124 | 78.50 157 | 51.50 192 | 75.01 209 | 79.46 154 | 56.16 186 | 68.59 143 | 79.55 251 | 53.97 60 | 84.05 131 | 53.34 210 | 77.53 156 | 85.65 111 |
|
| DU-MVS | | | 70.01 130 | 69.53 127 | 71.44 182 | 78.05 177 | 44.13 284 | 75.01 209 | 81.51 109 | 64.37 28 | 68.20 150 | 84.52 148 | 49.12 126 | 82.82 162 | 54.62 198 | 70.43 246 | 87.37 51 |
|
| FMVSNet3 | | | 66.32 215 | 65.61 210 | 68.46 238 | 76.48 224 | 42.34 301 | 74.98 211 | 77.15 202 | 55.83 191 | 65.04 220 | 81.16 218 | 39.91 228 | 80.14 222 | 47.18 261 | 72.76 218 | 82.90 205 |
|
| mvsmamba | | | 68.47 169 | 66.56 187 | 74.21 109 | 79.60 129 | 52.95 166 | 74.94 212 | 75.48 224 | 52.09 251 | 60.10 284 | 83.27 173 | 36.54 269 | 84.70 121 | 59.32 167 | 77.69 154 | 84.99 141 |
|
| MTAPA | | | 76.90 34 | 76.42 38 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 213 | 80.97 131 | 65.13 15 | 75.77 39 | 90.88 19 | 48.63 129 | 86.66 72 | 77.23 24 | 88.17 33 | 84.81 146 |
|
| PS-MVSNAJ | | | 70.51 120 | 69.70 125 | 72.93 149 | 81.52 91 | 55.79 119 | 74.92 213 | 79.00 160 | 55.04 214 | 69.88 125 | 78.66 265 | 47.05 154 | 82.19 175 | 61.61 146 | 79.58 124 | 80.83 245 |
|
| MVS_111021_LR | | | 69.50 147 | 68.78 141 | 71.65 177 | 78.38 162 | 59.33 59 | 74.82 215 | 70.11 281 | 58.08 147 | 67.83 163 | 84.68 142 | 41.96 207 | 76.34 285 | 65.62 111 | 77.54 155 | 79.30 270 |
|
| ECVR-MVS |  | | 67.72 186 | 67.51 167 | 68.35 240 | 79.46 133 | 36.29 362 | 74.79 216 | 66.93 308 | 58.72 134 | 67.19 174 | 88.05 69 | 36.10 271 | 81.38 190 | 52.07 219 | 84.25 72 | 87.39 49 |
|
| test_yl | | | 69.69 138 | 69.13 133 | 71.36 186 | 78.37 164 | 45.74 267 | 74.71 217 | 80.20 143 | 57.91 155 | 70.01 122 | 83.83 163 | 42.44 202 | 82.87 158 | 54.97 194 | 79.72 121 | 85.48 116 |
|
| DCV-MVSNet | | | 69.69 138 | 69.13 133 | 71.36 186 | 78.37 164 | 45.74 267 | 74.71 217 | 80.20 143 | 57.91 155 | 70.01 122 | 83.83 163 | 42.44 202 | 82.87 158 | 54.97 194 | 79.72 121 | 85.48 116 |
|
| TransMVSNet (Re) | | | 64.72 232 | 64.33 222 | 65.87 276 | 75.22 242 | 38.56 335 | 74.66 219 | 75.08 237 | 58.90 132 | 61.79 269 | 82.63 183 | 51.18 100 | 78.07 251 | 43.63 296 | 55.87 365 | 80.99 243 |
|
| BH-w/o | | | 66.85 204 | 65.83 206 | 69.90 217 | 79.29 135 | 52.46 179 | 74.66 219 | 76.65 209 | 54.51 225 | 64.85 224 | 78.12 271 | 45.59 169 | 82.95 154 | 43.26 299 | 75.54 183 | 74.27 331 |
|
| PVSNet_BlendedMVS | | | 68.56 168 | 67.72 160 | 71.07 196 | 77.03 212 | 50.57 203 | 74.50 221 | 81.52 107 | 53.66 237 | 64.22 235 | 79.72 247 | 49.13 124 | 82.87 158 | 55.82 185 | 73.92 196 | 79.77 265 |
|
| MonoMVSNet | | | 64.15 240 | 63.31 237 | 66.69 258 | 70.51 318 | 44.12 286 | 74.47 222 | 74.21 248 | 57.81 157 | 63.03 248 | 76.62 300 | 38.33 247 | 77.31 264 | 54.22 202 | 60.59 347 | 78.64 276 |
|
| c3_l | | | 68.33 172 | 67.56 163 | 70.62 203 | 70.87 313 | 46.21 263 | 74.47 222 | 78.80 165 | 56.22 185 | 66.19 193 | 78.53 270 | 51.88 90 | 81.40 189 | 62.08 140 | 69.04 276 | 84.25 159 |
|
| test2506 | | | 65.33 227 | 64.61 220 | 67.50 247 | 79.46 133 | 34.19 377 | 74.43 224 | 51.92 383 | 58.72 134 | 66.75 183 | 88.05 69 | 25.99 364 | 80.92 203 | 51.94 221 | 84.25 72 | 87.39 49 |
|
| BH-RMVSNet | | | 68.81 159 | 67.42 170 | 72.97 148 | 80.11 122 | 52.53 177 | 74.26 225 | 76.29 211 | 58.48 141 | 68.38 148 | 84.20 153 | 42.59 200 | 83.83 137 | 46.53 266 | 75.91 177 | 82.56 208 |
|
| NR-MVSNet | | | 69.54 145 | 68.85 138 | 71.59 179 | 78.05 177 | 43.81 289 | 74.20 226 | 80.86 133 | 65.18 14 | 62.76 253 | 84.52 148 | 52.35 84 | 83.59 143 | 50.96 231 | 70.78 241 | 87.37 51 |
|
| UniMVSNet_ETH3D | | | 67.60 188 | 67.07 184 | 69.18 231 | 77.39 203 | 42.29 302 | 74.18 227 | 75.59 221 | 60.37 99 | 66.77 182 | 86.06 118 | 37.64 254 | 78.93 244 | 52.16 218 | 73.49 205 | 86.32 85 |
|
| VPA-MVSNet | | | 69.02 156 | 69.47 129 | 67.69 246 | 77.42 202 | 41.00 316 | 74.04 228 | 79.68 148 | 60.06 109 | 69.26 137 | 84.81 140 | 51.06 103 | 77.58 259 | 54.44 201 | 74.43 190 | 84.48 154 |
|
| miper_ehance_all_eth | | | 68.03 178 | 67.24 180 | 70.40 207 | 70.54 317 | 46.21 263 | 73.98 229 | 78.68 169 | 55.07 212 | 66.05 195 | 77.80 281 | 52.16 87 | 81.31 192 | 61.53 149 | 69.32 270 | 83.67 183 |
|
| hse-mvs2 | | | 71.04 109 | 69.86 122 | 74.60 97 | 79.58 130 | 57.12 99 | 73.96 230 | 75.25 229 | 60.40 96 | 74.81 54 | 81.95 204 | 45.54 170 | 82.90 155 | 70.41 76 | 66.83 296 | 83.77 179 |
|
| 1314 | | | 64.61 235 | 63.21 239 | 68.80 234 | 71.87 297 | 47.46 252 | 73.95 231 | 78.39 183 | 42.88 356 | 59.97 287 | 76.60 303 | 38.11 251 | 79.39 229 | 54.84 196 | 72.32 225 | 79.55 266 |
|
| MVS | | | 67.37 191 | 66.33 197 | 70.51 206 | 75.46 239 | 50.94 195 | 73.95 231 | 81.85 102 | 41.57 363 | 62.54 259 | 78.57 269 | 47.98 135 | 85.47 104 | 52.97 213 | 82.05 96 | 75.14 317 |
|
| AUN-MVS | | | 68.45 171 | 66.41 194 | 74.57 99 | 79.53 132 | 57.08 100 | 73.93 233 | 75.23 230 | 54.44 226 | 66.69 184 | 81.85 206 | 37.10 264 | 82.89 156 | 62.07 141 | 66.84 295 | 83.75 180 |
|
| OurMVSNet-221017-0 | | | 61.37 274 | 58.63 287 | 69.61 221 | 72.05 294 | 48.06 244 | 73.93 233 | 72.51 263 | 47.23 318 | 54.74 340 | 80.92 225 | 21.49 382 | 81.24 194 | 48.57 250 | 56.22 364 | 79.53 267 |
|
| test1111 | | | 67.21 193 | 67.14 183 | 67.42 249 | 79.24 138 | 34.76 371 | 73.89 235 | 65.65 317 | 58.71 136 | 66.96 179 | 87.95 72 | 36.09 272 | 80.53 210 | 52.03 220 | 83.79 77 | 86.97 60 |
|
| cl22 | | | 67.47 190 | 66.45 190 | 70.54 205 | 69.85 331 | 46.49 259 | 73.85 236 | 77.35 199 | 55.07 212 | 65.51 206 | 77.92 277 | 47.64 142 | 81.10 197 | 61.58 148 | 69.32 270 | 84.01 167 |
|
| TAMVS | | | 66.78 207 | 65.27 215 | 71.33 189 | 79.16 142 | 53.67 151 | 73.84 237 | 69.59 287 | 52.32 249 | 65.28 210 | 81.72 209 | 44.49 186 | 77.40 263 | 42.32 307 | 78.66 142 | 82.92 203 |
|
| WR-MVS | | | 68.47 169 | 68.47 149 | 68.44 239 | 80.20 118 | 39.84 323 | 73.75 238 | 76.07 215 | 64.68 22 | 68.11 155 | 83.63 167 | 50.39 111 | 79.14 237 | 49.78 236 | 69.66 267 | 86.34 81 |
|
| eth_miper_zixun_eth | | | 67.63 187 | 66.28 200 | 71.67 176 | 71.60 299 | 48.33 241 | 73.68 239 | 77.88 187 | 55.80 193 | 65.91 198 | 78.62 268 | 47.35 151 | 82.88 157 | 59.45 164 | 66.25 300 | 83.81 175 |
|
| TR-MVS | | | 66.59 212 | 65.07 217 | 71.17 193 | 79.18 140 | 49.63 223 | 73.48 240 | 75.20 232 | 52.95 241 | 67.90 157 | 80.33 236 | 39.81 231 | 83.68 140 | 43.20 300 | 73.56 204 | 80.20 254 |
|
| cl____ | | | 67.18 196 | 66.26 201 | 69.94 214 | 70.20 323 | 45.74 267 | 73.30 241 | 76.83 206 | 55.10 207 | 65.27 211 | 79.57 250 | 47.39 149 | 80.53 210 | 59.41 166 | 69.22 274 | 83.53 189 |
|
| DIV-MVS_self_test | | | 67.18 196 | 66.26 201 | 69.94 214 | 70.20 323 | 45.74 267 | 73.29 242 | 76.83 206 | 55.10 207 | 65.27 211 | 79.58 249 | 47.38 150 | 80.53 210 | 59.43 165 | 69.22 274 | 83.54 188 |
|
| CDS-MVSNet | | | 66.80 206 | 65.37 212 | 71.10 195 | 78.98 145 | 53.13 164 | 73.27 243 | 71.07 274 | 52.15 250 | 64.72 225 | 80.23 238 | 43.56 193 | 77.10 267 | 45.48 280 | 78.88 136 | 83.05 202 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| pmmvs6 | | | 63.69 245 | 62.82 244 | 66.27 266 | 70.63 315 | 39.27 330 | 73.13 244 | 75.47 225 | 52.69 245 | 59.75 293 | 82.30 194 | 39.71 232 | 77.03 269 | 47.40 258 | 64.35 316 | 82.53 210 |
|
| IB-MVS | | 56.42 12 | 65.40 226 | 62.73 245 | 73.40 141 | 74.89 245 | 52.78 172 | 73.09 245 | 75.13 233 | 55.69 195 | 58.48 308 | 73.73 334 | 32.86 307 | 86.32 84 | 50.63 232 | 70.11 255 | 81.10 240 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| diffmvs |  | | 70.69 117 | 70.43 112 | 71.46 181 | 69.45 336 | 48.95 233 | 72.93 246 | 78.46 177 | 57.27 162 | 71.69 103 | 83.97 161 | 51.48 97 | 77.92 254 | 70.70 75 | 77.95 151 | 87.53 45 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| V42 | | | 68.65 163 | 67.35 174 | 72.56 156 | 68.93 342 | 50.18 211 | 72.90 247 | 79.47 153 | 56.92 167 | 69.45 132 | 80.26 237 | 46.29 163 | 82.99 152 | 64.07 121 | 67.82 288 | 84.53 152 |
|
| miper_enhance_ethall | | | 67.11 199 | 66.09 203 | 70.17 211 | 69.21 339 | 45.98 265 | 72.85 248 | 78.41 181 | 51.38 260 | 65.65 204 | 75.98 313 | 51.17 101 | 81.25 193 | 60.82 152 | 69.32 270 | 83.29 194 |
|
| thres100view900 | | | 63.28 250 | 62.41 248 | 65.89 275 | 77.31 205 | 38.66 334 | 72.65 249 | 69.11 294 | 57.07 164 | 62.45 262 | 81.03 222 | 37.01 266 | 79.17 233 | 31.84 368 | 73.25 211 | 79.83 262 |
|
| testdata1 | | | | | | | | 72.65 249 | | 60.50 94 | | | | | | | |
|
| FE-MVS | | | 65.91 218 | 63.33 236 | 73.63 131 | 77.36 204 | 51.95 189 | 72.62 251 | 75.81 217 | 53.70 235 | 65.31 209 | 78.96 261 | 28.81 343 | 86.39 81 | 43.93 291 | 73.48 206 | 82.55 209 |
|
| pm-mvs1 | | | 65.24 228 | 64.97 218 | 66.04 272 | 72.38 288 | 39.40 329 | 72.62 251 | 75.63 220 | 55.53 199 | 62.35 265 | 83.18 176 | 47.45 147 | 76.47 283 | 49.06 246 | 66.54 298 | 82.24 217 |
|
| test222 | | | | | | 83.14 71 | 58.68 76 | 72.57 253 | 63.45 334 | 41.78 359 | 67.56 169 | 86.12 115 | 37.13 263 | | | 78.73 141 | 74.98 321 |
|
| PVSNet_Blended | | | 68.59 164 | 67.72 160 | 71.19 191 | 77.03 212 | 50.57 203 | 72.51 254 | 81.52 107 | 51.91 252 | 64.22 235 | 77.77 284 | 49.13 124 | 82.87 158 | 55.82 185 | 79.58 124 | 80.14 256 |
|
| EU-MVSNet | | | 55.61 319 | 54.41 322 | 59.19 325 | 65.41 365 | 33.42 382 | 72.44 255 | 71.91 269 | 28.81 391 | 51.27 361 | 73.87 333 | 24.76 371 | 69.08 322 | 43.04 301 | 58.20 355 | 75.06 318 |
|
| thres600view7 | | | 63.30 249 | 62.27 249 | 66.41 262 | 77.18 207 | 38.87 332 | 72.35 256 | 69.11 294 | 56.98 166 | 62.37 264 | 80.96 224 | 37.01 266 | 79.00 242 | 31.43 375 | 73.05 215 | 81.36 232 |
|
| pmmvs-eth3d | | | 58.81 292 | 56.31 307 | 66.30 265 | 67.61 350 | 52.42 181 | 72.30 257 | 64.76 324 | 43.55 349 | 54.94 338 | 74.19 331 | 28.95 340 | 72.60 301 | 43.31 297 | 57.21 359 | 73.88 335 |
|
| cascas | | | 65.98 217 | 63.42 234 | 73.64 130 | 77.26 206 | 52.58 176 | 72.26 258 | 77.21 201 | 48.56 296 | 61.21 276 | 74.60 328 | 32.57 317 | 85.82 94 | 50.38 234 | 76.75 170 | 82.52 211 |
|
| VPNet | | | 67.52 189 | 68.11 156 | 65.74 277 | 79.18 140 | 36.80 354 | 72.17 259 | 72.83 261 | 62.04 72 | 67.79 165 | 85.83 126 | 48.88 128 | 76.60 280 | 51.30 227 | 72.97 216 | 83.81 175 |
|
| MS-PatchMatch | | | 62.42 260 | 61.46 259 | 65.31 284 | 75.21 243 | 52.10 184 | 72.05 260 | 74.05 250 | 46.41 324 | 57.42 317 | 74.36 329 | 34.35 288 | 77.57 260 | 45.62 276 | 73.67 200 | 66.26 383 |
|
| mvs_anonymous | | | 68.03 178 | 67.51 167 | 69.59 222 | 72.08 293 | 44.57 281 | 71.99 261 | 75.23 230 | 51.67 253 | 67.06 177 | 82.57 185 | 54.68 53 | 77.94 252 | 56.56 180 | 75.71 181 | 86.26 89 |
|
| patch_mono-2 | | | 69.85 134 | 71.09 101 | 66.16 268 | 79.11 143 | 54.80 138 | 71.97 262 | 74.31 245 | 53.50 238 | 70.90 110 | 84.17 154 | 57.63 31 | 63.31 351 | 66.17 103 | 82.02 97 | 80.38 252 |
|
| tfpn200view9 | | | 63.18 252 | 62.18 251 | 66.21 267 | 76.85 215 | 39.62 326 | 71.96 263 | 69.44 290 | 56.63 171 | 62.61 257 | 79.83 243 | 37.18 260 | 79.17 233 | 31.84 368 | 73.25 211 | 79.83 262 |
|
| thres400 | | | 63.31 248 | 62.18 251 | 66.72 255 | 76.85 215 | 39.62 326 | 71.96 263 | 69.44 290 | 56.63 171 | 62.61 257 | 79.83 243 | 37.18 260 | 79.17 233 | 31.84 368 | 73.25 211 | 81.36 232 |
|
| baseline1 | | | 63.81 244 | 63.87 227 | 63.62 295 | 76.29 226 | 36.36 357 | 71.78 265 | 67.29 305 | 56.05 188 | 64.23 234 | 82.95 178 | 47.11 153 | 74.41 295 | 47.30 260 | 61.85 336 | 80.10 257 |
|
| baseline2 | | | 63.42 247 | 61.26 263 | 69.89 218 | 72.55 283 | 47.62 250 | 71.54 266 | 68.38 298 | 50.11 276 | 54.82 339 | 75.55 318 | 43.06 197 | 80.96 200 | 48.13 254 | 67.16 294 | 81.11 239 |
|
| pmmvs4 | | | 61.48 273 | 59.39 278 | 67.76 245 | 71.57 300 | 53.86 147 | 71.42 267 | 65.34 319 | 44.20 343 | 59.46 295 | 77.92 277 | 35.90 273 | 74.71 293 | 43.87 293 | 64.87 310 | 74.71 327 |
|
| 1112_ss | | | 64.00 243 | 63.36 235 | 65.93 274 | 79.28 136 | 42.58 300 | 71.35 268 | 72.36 265 | 46.41 324 | 60.55 281 | 77.89 279 | 46.27 164 | 73.28 299 | 46.18 269 | 69.97 258 | 81.92 223 |
|
| thisisatest0515 | | | 65.83 219 | 63.50 233 | 72.82 153 | 73.75 266 | 49.50 224 | 71.32 269 | 73.12 260 | 49.39 286 | 63.82 237 | 76.50 306 | 34.95 282 | 84.84 120 | 53.20 212 | 75.49 184 | 84.13 164 |
|
| CostFormer | | | 64.04 242 | 62.51 246 | 68.61 237 | 71.88 296 | 45.77 266 | 71.30 270 | 70.60 278 | 47.55 312 | 64.31 231 | 76.61 302 | 41.63 212 | 79.62 226 | 49.74 238 | 69.00 277 | 80.42 250 |
|
| tfpnnormal | | | 62.47 259 | 61.63 257 | 64.99 287 | 74.81 249 | 39.01 331 | 71.22 271 | 73.72 253 | 55.22 206 | 60.21 282 | 80.09 241 | 41.26 220 | 76.98 271 | 30.02 381 | 68.09 286 | 78.97 274 |
|
| IterMVS | | | 62.79 256 | 61.27 262 | 67.35 251 | 69.37 337 | 52.04 187 | 71.17 272 | 68.24 300 | 52.63 246 | 59.82 290 | 76.91 295 | 37.32 259 | 72.36 302 | 52.80 214 | 63.19 326 | 77.66 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Vis-MVSNet (Re-imp) | | | 63.69 245 | 63.88 226 | 63.14 300 | 74.75 250 | 31.04 391 | 71.16 273 | 63.64 333 | 56.32 181 | 59.80 291 | 84.99 137 | 44.51 184 | 75.46 290 | 39.12 325 | 80.62 109 | 82.92 203 |
|
| IterMVS-SCA-FT | | | 62.49 258 | 61.52 258 | 65.40 282 | 71.99 295 | 50.80 200 | 71.15 274 | 69.63 286 | 45.71 332 | 60.61 280 | 77.93 276 | 37.45 256 | 65.99 343 | 55.67 189 | 63.50 323 | 79.42 268 |
|
| Anonymous202405211 | | | 66.84 205 | 65.99 204 | 69.40 226 | 80.19 119 | 42.21 304 | 71.11 275 | 71.31 272 | 58.80 133 | 67.90 157 | 86.39 108 | 29.83 334 | 79.65 224 | 49.60 242 | 78.78 139 | 86.33 83 |
|
| Anonymous20240521 | | | 55.30 320 | 54.41 322 | 57.96 335 | 60.92 389 | 41.73 308 | 71.09 276 | 71.06 275 | 41.18 364 | 48.65 374 | 73.31 336 | 16.93 388 | 59.25 367 | 42.54 305 | 64.01 317 | 72.90 339 |
|
| tpm2 | | | 62.07 265 | 60.10 274 | 67.99 243 | 72.79 278 | 43.86 288 | 71.05 277 | 66.85 309 | 43.14 354 | 62.77 252 | 75.39 322 | 38.32 248 | 80.80 206 | 41.69 312 | 68.88 278 | 79.32 269 |
|
| TDRefinement | | | 53.44 333 | 50.72 342 | 61.60 309 | 64.31 370 | 46.96 256 | 70.89 278 | 65.27 321 | 41.78 359 | 44.61 387 | 77.98 274 | 11.52 403 | 66.36 341 | 28.57 387 | 51.59 377 | 71.49 359 |
|
| XVG-ACMP-BASELINE | | | 64.36 239 | 62.23 250 | 70.74 201 | 72.35 289 | 52.45 180 | 70.80 279 | 78.45 178 | 53.84 234 | 59.87 289 | 81.10 220 | 16.24 391 | 79.32 230 | 55.64 191 | 71.76 231 | 80.47 249 |
|
| mmtdpeth | | | 60.40 280 | 59.12 281 | 64.27 293 | 69.59 333 | 48.99 231 | 70.67 280 | 70.06 282 | 54.96 215 | 62.78 251 | 73.26 338 | 27.00 357 | 67.66 330 | 58.44 171 | 45.29 390 | 76.16 307 |
|
| XVG-OURS-SEG-HR | | | 68.81 159 | 67.47 169 | 72.82 153 | 74.40 260 | 56.87 102 | 70.59 281 | 79.04 159 | 54.77 219 | 66.99 178 | 86.01 120 | 39.57 233 | 78.21 249 | 62.54 137 | 73.33 209 | 83.37 191 |
|
| VNet | | | 69.68 140 | 70.19 118 | 68.16 242 | 79.73 127 | 41.63 311 | 70.53 282 | 77.38 198 | 60.37 99 | 70.69 111 | 86.63 98 | 51.08 102 | 77.09 268 | 53.61 208 | 81.69 105 | 85.75 107 |
|
| GA-MVS | | | 65.53 223 | 63.70 230 | 71.02 197 | 70.87 313 | 48.10 243 | 70.48 283 | 74.40 243 | 56.69 169 | 64.70 226 | 76.77 297 | 33.66 298 | 81.10 197 | 55.42 193 | 70.32 251 | 83.87 173 |
|
| MSDG | | | 61.81 269 | 59.23 279 | 69.55 225 | 72.64 280 | 52.63 175 | 70.45 284 | 75.81 217 | 51.38 260 | 53.70 350 | 76.11 309 | 29.52 336 | 81.08 199 | 37.70 332 | 65.79 304 | 74.93 322 |
|
| ab-mvs | | | 66.65 209 | 66.42 193 | 67.37 250 | 76.17 228 | 41.73 308 | 70.41 285 | 76.14 214 | 53.99 232 | 65.98 196 | 83.51 170 | 49.48 118 | 76.24 286 | 48.60 249 | 73.46 207 | 84.14 163 |
|
| EGC-MVSNET | | | 42.47 362 | 38.48 370 | 54.46 353 | 74.33 261 | 48.73 236 | 70.33 286 | 51.10 386 | 0.03 422 | 0.18 423 | 67.78 374 | 13.28 397 | 66.49 340 | 18.91 405 | 50.36 381 | 48.15 402 |
|
| MVSTER | | | 67.16 198 | 65.58 211 | 71.88 169 | 70.37 322 | 49.70 219 | 70.25 287 | 78.45 178 | 51.52 257 | 69.16 139 | 80.37 233 | 38.45 245 | 82.50 170 | 60.19 156 | 71.46 235 | 83.44 190 |
|
| reproduce_monomvs | | | 62.56 257 | 61.20 265 | 66.62 259 | 70.62 316 | 44.30 283 | 70.13 288 | 73.13 259 | 54.78 218 | 61.13 277 | 76.37 307 | 25.63 367 | 75.63 289 | 58.75 168 | 60.29 348 | 79.93 259 |
|
| XVG-OURS | | | 68.76 162 | 67.37 172 | 72.90 150 | 74.32 262 | 57.22 92 | 70.09 289 | 78.81 164 | 55.24 205 | 67.79 165 | 85.81 128 | 36.54 269 | 78.28 248 | 62.04 142 | 75.74 180 | 83.19 197 |
|
| HY-MVS | | 56.14 13 | 64.55 236 | 63.89 225 | 66.55 260 | 74.73 251 | 41.02 313 | 69.96 290 | 74.43 242 | 49.29 288 | 61.66 271 | 80.92 225 | 47.43 148 | 76.68 279 | 44.91 285 | 71.69 232 | 81.94 222 |
|
| AllTest | | | 57.08 304 | 54.65 318 | 64.39 291 | 71.44 302 | 49.03 228 | 69.92 291 | 67.30 303 | 45.97 329 | 47.16 378 | 79.77 245 | 17.47 385 | 67.56 333 | 33.65 356 | 59.16 352 | 76.57 303 |
|
| testing3 | | | 56.54 308 | 55.92 310 | 58.41 330 | 77.52 199 | 27.93 400 | 69.72 292 | 56.36 370 | 54.75 220 | 58.63 306 | 77.80 281 | 20.88 383 | 71.75 308 | 25.31 397 | 62.25 333 | 75.53 314 |
|
| thres200 | | | 62.20 264 | 61.16 266 | 65.34 283 | 75.38 241 | 39.99 322 | 69.60 293 | 69.29 292 | 55.64 198 | 61.87 268 | 76.99 293 | 37.07 265 | 78.96 243 | 31.28 376 | 73.28 210 | 77.06 297 |
|
| tpmrst | | | 58.24 295 | 58.70 286 | 56.84 340 | 66.97 353 | 34.32 375 | 69.57 294 | 61.14 351 | 47.17 319 | 58.58 307 | 71.60 349 | 41.28 219 | 60.41 361 | 49.20 244 | 62.84 328 | 75.78 311 |
|
| PatchmatchNet |  | | 59.84 284 | 58.24 290 | 64.65 289 | 73.05 274 | 46.70 258 | 69.42 295 | 62.18 346 | 47.55 312 | 58.88 302 | 71.96 346 | 34.49 286 | 69.16 321 | 42.99 302 | 63.60 321 | 78.07 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WB-MVSnew | | | 59.66 286 | 59.69 276 | 59.56 320 | 75.19 244 | 35.78 366 | 69.34 296 | 64.28 328 | 46.88 321 | 61.76 270 | 75.79 314 | 40.61 225 | 65.20 346 | 32.16 364 | 71.21 237 | 77.70 287 |
|
| GG-mvs-BLEND | | | | | 62.34 305 | 71.36 306 | 37.04 352 | 69.20 297 | 57.33 367 | | 54.73 341 | 65.48 385 | 30.37 328 | 77.82 255 | 34.82 352 | 74.93 186 | 72.17 351 |
|
| HyFIR lowres test | | | 65.67 221 | 63.01 241 | 73.67 127 | 79.97 124 | 55.65 122 | 69.07 298 | 75.52 223 | 42.68 357 | 63.53 240 | 77.95 275 | 40.43 226 | 81.64 184 | 46.01 271 | 71.91 230 | 83.73 181 |
|
| UWE-MVS | | | 60.18 281 | 59.78 275 | 61.39 313 | 77.67 190 | 33.92 380 | 69.04 299 | 63.82 331 | 48.56 296 | 64.27 232 | 77.64 286 | 27.20 354 | 70.40 316 | 33.56 359 | 76.24 174 | 79.83 262 |
|
| test_post1 | | | | | | | | 68.67 300 | | | | 3.64 420 | 32.39 319 | 69.49 320 | 44.17 287 | | |
|
| testing222 | | | 62.29 263 | 61.31 261 | 65.25 285 | 77.87 182 | 38.53 336 | 68.34 301 | 66.31 314 | 56.37 180 | 63.15 247 | 77.58 287 | 28.47 344 | 76.18 288 | 37.04 337 | 76.65 172 | 81.05 242 |
|
| Test_1112_low_res | | | 62.32 261 | 61.77 255 | 64.00 294 | 79.08 144 | 39.53 328 | 68.17 302 | 70.17 280 | 43.25 352 | 59.03 301 | 79.90 242 | 44.08 188 | 71.24 310 | 43.79 294 | 68.42 284 | 81.25 235 |
|
| tpm cat1 | | | 59.25 290 | 56.95 300 | 66.15 269 | 72.19 292 | 46.96 256 | 68.09 303 | 65.76 316 | 40.03 373 | 57.81 313 | 70.56 356 | 38.32 248 | 74.51 294 | 38.26 330 | 61.50 339 | 77.00 299 |
|
| ppachtmachnet_test | | | 58.06 298 | 55.38 314 | 66.10 271 | 69.51 334 | 48.99 231 | 68.01 304 | 66.13 315 | 44.50 340 | 54.05 348 | 70.74 355 | 32.09 321 | 72.34 303 | 36.68 342 | 56.71 363 | 76.99 301 |
|
| tpmvs | | | 58.47 293 | 56.95 300 | 63.03 302 | 70.20 323 | 41.21 312 | 67.90 305 | 67.23 306 | 49.62 283 | 54.73 341 | 70.84 354 | 34.14 289 | 76.24 286 | 36.64 343 | 61.29 340 | 71.64 356 |
|
| testing91 | | | 64.46 237 | 63.80 228 | 66.47 261 | 78.43 161 | 40.06 321 | 67.63 306 | 69.59 287 | 59.06 129 | 63.18 245 | 78.05 273 | 34.05 290 | 76.99 270 | 48.30 252 | 75.87 178 | 82.37 215 |
|
| CL-MVSNet_self_test | | | 61.53 271 | 60.94 268 | 63.30 298 | 68.95 341 | 36.93 353 | 67.60 307 | 72.80 262 | 55.67 196 | 59.95 288 | 76.63 299 | 45.01 180 | 72.22 305 | 39.74 323 | 62.09 335 | 80.74 247 |
|
| testing11 | | | 62.81 255 | 61.90 254 | 65.54 279 | 78.38 162 | 40.76 318 | 67.59 308 | 66.78 310 | 55.48 200 | 60.13 283 | 77.11 291 | 31.67 323 | 76.79 275 | 45.53 278 | 74.45 189 | 79.06 271 |
|
| test_vis1_n_1920 | | | 58.86 291 | 59.06 282 | 58.25 331 | 63.76 371 | 43.14 296 | 67.49 309 | 66.36 313 | 40.22 371 | 65.89 200 | 71.95 347 | 31.04 324 | 59.75 365 | 59.94 159 | 64.90 309 | 71.85 354 |
|
| tpm | | | 57.34 302 | 58.16 291 | 54.86 350 | 71.80 298 | 34.77 370 | 67.47 310 | 56.04 374 | 48.20 303 | 60.10 284 | 76.92 294 | 37.17 262 | 53.41 393 | 40.76 317 | 65.01 308 | 76.40 305 |
|
| testing99 | | | 64.05 241 | 63.29 238 | 66.34 263 | 78.17 173 | 39.76 325 | 67.33 311 | 68.00 301 | 58.60 138 | 63.03 248 | 78.10 272 | 32.57 317 | 76.94 272 | 48.22 253 | 75.58 182 | 82.34 216 |
|
| gg-mvs-nofinetune | | | 57.86 299 | 56.43 306 | 62.18 306 | 72.62 281 | 35.35 367 | 66.57 312 | 56.33 371 | 50.65 270 | 57.64 314 | 57.10 397 | 30.65 326 | 76.36 284 | 37.38 334 | 78.88 136 | 74.82 324 |
|
| TinyColmap | | | 54.14 326 | 51.72 337 | 61.40 312 | 66.84 355 | 41.97 305 | 66.52 313 | 68.51 297 | 44.81 336 | 42.69 392 | 75.77 315 | 11.66 401 | 72.94 300 | 31.96 366 | 56.77 362 | 69.27 377 |
|
| pmmvs5 | | | 56.47 310 | 55.68 312 | 58.86 327 | 61.41 383 | 36.71 355 | 66.37 314 | 62.75 339 | 40.38 370 | 53.70 350 | 76.62 300 | 34.56 284 | 67.05 336 | 40.02 321 | 65.27 306 | 72.83 340 |
|
| CHOSEN 1792x2688 | | | 65.08 231 | 62.84 243 | 71.82 171 | 81.49 93 | 56.26 108 | 66.32 315 | 74.20 249 | 40.53 369 | 63.16 246 | 78.65 266 | 41.30 217 | 77.80 256 | 45.80 273 | 74.09 193 | 81.40 231 |
|
| our_test_3 | | | 56.49 309 | 54.42 321 | 62.68 304 | 69.51 334 | 45.48 272 | 66.08 316 | 61.49 349 | 44.11 346 | 50.73 367 | 69.60 366 | 33.05 303 | 68.15 325 | 38.38 329 | 56.86 360 | 74.40 329 |
|
| mvs5depth | | | 55.64 318 | 53.81 329 | 61.11 315 | 59.39 392 | 40.98 317 | 65.89 317 | 68.28 299 | 50.21 275 | 58.11 311 | 75.42 321 | 17.03 387 | 67.63 332 | 43.79 294 | 46.21 387 | 74.73 326 |
|
| PM-MVS | | | 52.33 337 | 50.19 345 | 58.75 328 | 62.10 380 | 45.14 275 | 65.75 318 | 40.38 408 | 43.60 348 | 53.52 354 | 72.65 339 | 9.16 409 | 65.87 344 | 50.41 233 | 54.18 370 | 65.24 385 |
|
| D2MVS | | | 62.30 262 | 60.29 273 | 68.34 241 | 66.46 359 | 48.42 240 | 65.70 319 | 73.42 255 | 47.71 310 | 58.16 310 | 75.02 324 | 30.51 327 | 77.71 258 | 53.96 205 | 71.68 233 | 78.90 275 |
|
| MIMVSNet1 | | | 55.17 323 | 54.31 324 | 57.77 337 | 70.03 327 | 32.01 388 | 65.68 320 | 64.81 323 | 49.19 289 | 46.75 381 | 76.00 310 | 25.53 368 | 64.04 349 | 28.65 386 | 62.13 334 | 77.26 295 |
|
| PatchMatch-RL | | | 56.25 313 | 54.55 320 | 61.32 314 | 77.06 211 | 56.07 112 | 65.57 321 | 54.10 380 | 44.13 345 | 53.49 356 | 71.27 353 | 25.20 369 | 66.78 338 | 36.52 345 | 63.66 320 | 61.12 387 |
|
| Syy-MVS | | | 56.00 315 | 56.23 308 | 55.32 347 | 74.69 252 | 26.44 406 | 65.52 322 | 57.49 365 | 50.97 267 | 56.52 323 | 72.18 342 | 39.89 229 | 68.09 326 | 24.20 398 | 64.59 314 | 71.44 360 |
|
| myMVS_eth3d | | | 54.86 325 | 54.61 319 | 55.61 346 | 74.69 252 | 27.31 403 | 65.52 322 | 57.49 365 | 50.97 267 | 56.52 323 | 72.18 342 | 21.87 381 | 68.09 326 | 27.70 389 | 64.59 314 | 71.44 360 |
|
| test-LLR | | | 58.15 297 | 58.13 293 | 58.22 332 | 68.57 343 | 44.80 277 | 65.46 324 | 57.92 362 | 50.08 277 | 55.44 331 | 69.82 363 | 32.62 314 | 57.44 376 | 49.66 240 | 73.62 201 | 72.41 347 |
|
| TESTMET0.1,1 | | | 55.28 321 | 54.90 317 | 56.42 342 | 66.56 357 | 43.67 290 | 65.46 324 | 56.27 372 | 39.18 376 | 53.83 349 | 67.44 375 | 24.21 373 | 55.46 387 | 48.04 255 | 73.11 214 | 70.13 371 |
|
| test-mter | | | 56.42 311 | 55.82 311 | 58.22 332 | 68.57 343 | 44.80 277 | 65.46 324 | 57.92 362 | 39.94 374 | 55.44 331 | 69.82 363 | 21.92 378 | 57.44 376 | 49.66 240 | 73.62 201 | 72.41 347 |
|
| SDMVSNet | | | 68.03 178 | 68.10 157 | 67.84 244 | 77.13 208 | 48.72 237 | 65.32 327 | 79.10 158 | 58.02 150 | 65.08 218 | 82.55 186 | 47.83 138 | 73.40 298 | 63.92 125 | 73.92 196 | 81.41 229 |
|
| CR-MVSNet | | | 59.91 283 | 57.90 295 | 65.96 273 | 69.96 328 | 52.07 185 | 65.31 328 | 63.15 337 | 42.48 358 | 59.36 296 | 74.84 325 | 35.83 274 | 70.75 312 | 45.50 279 | 64.65 312 | 75.06 318 |
|
| RPMNet | | | 61.53 271 | 58.42 288 | 70.86 198 | 69.96 328 | 52.07 185 | 65.31 328 | 81.36 114 | 43.20 353 | 59.36 296 | 70.15 361 | 35.37 277 | 85.47 104 | 36.42 346 | 64.65 312 | 75.06 318 |
|
| USDC | | | 56.35 312 | 54.24 325 | 62.69 303 | 64.74 367 | 40.31 319 | 65.05 330 | 73.83 252 | 43.93 347 | 47.58 376 | 77.71 285 | 15.36 394 | 75.05 292 | 38.19 331 | 61.81 337 | 72.70 341 |
|
| MDTV_nov1_ep13 | | | | 57.00 299 | | 72.73 279 | 38.26 338 | 65.02 331 | 64.73 325 | 44.74 337 | 55.46 330 | 72.48 340 | 32.61 316 | 70.47 313 | 37.47 333 | 67.75 289 | |
|
| ETVMVS | | | 59.51 289 | 58.81 283 | 61.58 310 | 77.46 201 | 34.87 368 | 64.94 332 | 59.35 356 | 54.06 231 | 61.08 278 | 76.67 298 | 29.54 335 | 71.87 307 | 32.16 364 | 74.07 194 | 78.01 286 |
|
| CMPMVS |  | 42.80 21 | 57.81 300 | 55.97 309 | 63.32 297 | 60.98 387 | 47.38 253 | 64.66 333 | 69.50 289 | 32.06 387 | 46.83 380 | 77.80 281 | 29.50 337 | 71.36 309 | 48.68 248 | 73.75 199 | 71.21 363 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| WBMVS | | | 60.54 277 | 60.61 271 | 60.34 318 | 78.00 179 | 35.95 364 | 64.55 334 | 64.89 322 | 49.63 282 | 63.39 242 | 78.70 263 | 33.85 295 | 67.65 331 | 42.10 309 | 70.35 250 | 77.43 291 |
|
| RPSCF | | | 55.80 317 | 54.22 326 | 60.53 317 | 65.13 366 | 42.91 299 | 64.30 335 | 57.62 364 | 36.84 380 | 58.05 312 | 82.28 195 | 28.01 347 | 56.24 384 | 37.14 336 | 58.61 354 | 82.44 214 |
|
| XXY-MVS | | | 60.68 276 | 61.67 256 | 57.70 338 | 70.43 320 | 38.45 337 | 64.19 336 | 66.47 311 | 48.05 306 | 63.22 243 | 80.86 227 | 49.28 121 | 60.47 360 | 45.25 284 | 67.28 293 | 74.19 332 |
|
| FMVSNet5 | | | 55.86 316 | 54.93 316 | 58.66 329 | 71.05 311 | 36.35 358 | 64.18 337 | 62.48 341 | 46.76 322 | 50.66 368 | 74.73 327 | 25.80 365 | 64.04 349 | 33.11 360 | 65.57 305 | 75.59 313 |
|
| UBG | | | 59.62 288 | 59.53 277 | 59.89 319 | 78.12 174 | 35.92 365 | 64.11 338 | 60.81 353 | 49.45 285 | 61.34 274 | 75.55 318 | 33.05 303 | 67.39 335 | 38.68 327 | 74.62 187 | 76.35 306 |
|
| test_cas_vis1_n_1920 | | | 56.91 305 | 56.71 303 | 57.51 339 | 59.13 393 | 45.40 273 | 63.58 339 | 61.29 350 | 36.24 381 | 67.14 176 | 71.85 348 | 29.89 333 | 56.69 380 | 57.65 174 | 63.58 322 | 70.46 368 |
|
| SCA | | | 60.49 278 | 58.38 289 | 66.80 254 | 74.14 265 | 48.06 244 | 63.35 340 | 63.23 336 | 49.13 290 | 59.33 299 | 72.10 344 | 37.45 256 | 74.27 296 | 44.17 287 | 62.57 330 | 78.05 282 |
|
| Patchmtry | | | 57.16 303 | 56.47 305 | 59.23 323 | 69.17 340 | 34.58 373 | 62.98 341 | 63.15 337 | 44.53 339 | 56.83 320 | 74.84 325 | 35.83 274 | 68.71 323 | 40.03 320 | 60.91 341 | 74.39 330 |
|
| Anonymous20231206 | | | 55.10 324 | 55.30 315 | 54.48 352 | 69.81 332 | 33.94 379 | 62.91 342 | 62.13 347 | 41.08 365 | 55.18 335 | 75.65 316 | 32.75 311 | 56.59 382 | 30.32 380 | 67.86 287 | 72.91 338 |
|
| sd_testset | | | 64.46 237 | 64.45 221 | 64.51 290 | 77.13 208 | 42.25 303 | 62.67 343 | 72.11 267 | 58.02 150 | 65.08 218 | 82.55 186 | 41.22 221 | 69.88 319 | 47.32 259 | 73.92 196 | 81.41 229 |
|
| MIMVSNet | | | 57.35 301 | 57.07 298 | 58.22 332 | 74.21 264 | 37.18 348 | 62.46 344 | 60.88 352 | 48.88 293 | 55.29 334 | 75.99 312 | 31.68 322 | 62.04 356 | 31.87 367 | 72.35 224 | 75.43 316 |
|
| dp | | | 51.89 339 | 51.60 338 | 52.77 365 | 68.44 346 | 32.45 387 | 62.36 345 | 54.57 377 | 44.16 344 | 49.31 373 | 67.91 371 | 28.87 342 | 56.61 381 | 33.89 355 | 54.89 367 | 69.24 378 |
|
| EPMVS | | | 53.96 327 | 53.69 330 | 54.79 351 | 66.12 362 | 31.96 389 | 62.34 346 | 49.05 391 | 44.42 342 | 55.54 329 | 71.33 352 | 30.22 330 | 56.70 379 | 41.65 314 | 62.54 331 | 75.71 312 |
|
| pmmvs3 | | | 44.92 357 | 41.95 364 | 53.86 355 | 52.58 402 | 43.55 291 | 62.11 347 | 46.90 400 | 26.05 398 | 40.63 394 | 60.19 393 | 11.08 406 | 57.91 375 | 31.83 371 | 46.15 388 | 60.11 388 |
|
| test_vis1_n | | | 49.89 348 | 48.69 350 | 53.50 359 | 53.97 397 | 37.38 347 | 61.53 348 | 47.33 398 | 28.54 392 | 59.62 294 | 67.10 379 | 13.52 396 | 52.27 396 | 49.07 245 | 57.52 357 | 70.84 366 |
|
| PVSNet | | 50.76 19 | 58.40 294 | 57.39 296 | 61.42 311 | 75.53 238 | 44.04 287 | 61.43 349 | 63.45 334 | 47.04 320 | 56.91 319 | 73.61 335 | 27.00 357 | 64.76 347 | 39.12 325 | 72.40 223 | 75.47 315 |
|
| LCM-MVSNet-Re | | | 61.88 268 | 61.35 260 | 63.46 296 | 74.58 255 | 31.48 390 | 61.42 350 | 58.14 361 | 58.71 136 | 53.02 357 | 79.55 251 | 43.07 196 | 76.80 274 | 45.69 274 | 77.96 150 | 82.11 221 |
|
| test20.03 | | | 53.87 329 | 54.02 327 | 53.41 361 | 61.47 382 | 28.11 399 | 61.30 351 | 59.21 357 | 51.34 262 | 52.09 359 | 77.43 288 | 33.29 302 | 58.55 372 | 29.76 382 | 60.27 349 | 73.58 336 |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 408 | 61.22 352 | | 40.10 372 | 51.10 362 | | 32.97 306 | | 38.49 328 | | 78.61 277 |
|
| PMMVS | | | 53.96 327 | 53.26 333 | 56.04 343 | 62.60 378 | 50.92 197 | 61.17 353 | 56.09 373 | 32.81 386 | 53.51 355 | 66.84 380 | 34.04 291 | 59.93 364 | 44.14 289 | 68.18 285 | 57.27 395 |
|
| test_fmvs1_n | | | 51.37 341 | 50.35 344 | 54.42 354 | 52.85 400 | 37.71 344 | 61.16 354 | 51.93 382 | 28.15 393 | 63.81 238 | 69.73 365 | 13.72 395 | 53.95 391 | 51.16 228 | 60.65 345 | 71.59 357 |
|
| WTY-MVS | | | 59.75 285 | 60.39 272 | 57.85 336 | 72.32 290 | 37.83 342 | 61.05 355 | 64.18 329 | 45.95 331 | 61.91 267 | 79.11 260 | 47.01 157 | 60.88 359 | 42.50 306 | 69.49 269 | 74.83 323 |
|
| dmvs_testset | | | 50.16 346 | 51.90 336 | 44.94 381 | 66.49 358 | 11.78 421 | 61.01 356 | 51.50 384 | 51.17 265 | 50.30 371 | 67.44 375 | 39.28 236 | 60.29 362 | 22.38 401 | 57.49 358 | 62.76 386 |
|
| Patchmatch-RL test | | | 58.16 296 | 55.49 313 | 66.15 269 | 67.92 349 | 48.89 234 | 60.66 357 | 51.07 387 | 47.86 309 | 59.36 296 | 62.71 391 | 34.02 292 | 72.27 304 | 56.41 181 | 59.40 351 | 77.30 293 |
|
| test_fmvs1 | | | 51.32 343 | 50.48 343 | 53.81 356 | 53.57 398 | 37.51 346 | 60.63 358 | 51.16 385 | 28.02 395 | 63.62 239 | 69.23 368 | 16.41 390 | 53.93 392 | 51.01 229 | 60.70 344 | 69.99 372 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 253 | 61.23 264 | 68.92 233 | 76.57 222 | 47.80 246 | 59.92 359 | 76.39 210 | 54.35 227 | 58.67 304 | 82.46 191 | 29.44 338 | 81.49 188 | 42.12 308 | 71.14 238 | 77.46 290 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test0.0.03 1 | | | 53.32 334 | 53.59 331 | 52.50 367 | 62.81 377 | 29.45 394 | 59.51 360 | 54.11 379 | 50.08 277 | 54.40 345 | 74.31 330 | 32.62 314 | 55.92 385 | 30.50 379 | 63.95 319 | 72.15 352 |
|
| UnsupCasMVSNet_eth | | | 53.16 336 | 52.47 334 | 55.23 348 | 59.45 391 | 33.39 383 | 59.43 361 | 69.13 293 | 45.98 328 | 50.35 370 | 72.32 341 | 29.30 339 | 58.26 374 | 42.02 311 | 44.30 391 | 74.05 333 |
|
| MVS-HIRNet | | | 45.52 356 | 44.48 358 | 48.65 375 | 68.49 345 | 34.05 378 | 59.41 362 | 44.50 403 | 27.03 396 | 37.96 403 | 50.47 405 | 26.16 363 | 64.10 348 | 26.74 394 | 59.52 350 | 47.82 404 |
|
| testgi | | | 51.90 338 | 52.37 335 | 50.51 373 | 60.39 390 | 23.55 413 | 58.42 363 | 58.15 360 | 49.03 291 | 51.83 360 | 79.21 259 | 22.39 376 | 55.59 386 | 29.24 385 | 62.64 329 | 72.40 349 |
|
| dmvs_re | | | 56.77 307 | 56.83 302 | 56.61 341 | 69.23 338 | 41.02 313 | 58.37 364 | 64.18 329 | 50.59 272 | 57.45 316 | 71.42 350 | 35.54 276 | 58.94 370 | 37.23 335 | 67.45 291 | 69.87 373 |
|
| PatchT | | | 53.17 335 | 53.44 332 | 52.33 368 | 68.29 347 | 25.34 410 | 58.21 365 | 54.41 378 | 44.46 341 | 54.56 343 | 69.05 369 | 33.32 301 | 60.94 358 | 36.93 338 | 61.76 338 | 70.73 367 |
|
| WB-MVS | | | 43.26 359 | 43.41 359 | 42.83 385 | 63.32 374 | 10.32 423 | 58.17 366 | 45.20 401 | 45.42 333 | 40.44 396 | 67.26 378 | 34.01 293 | 58.98 369 | 11.96 414 | 24.88 408 | 59.20 389 |
|
| sss | | | 56.17 314 | 56.57 304 | 54.96 349 | 66.93 354 | 36.32 360 | 57.94 367 | 61.69 348 | 41.67 361 | 58.64 305 | 75.32 323 | 38.72 243 | 56.25 383 | 42.04 310 | 66.19 301 | 72.31 350 |
|
| ttmdpeth | | | 45.56 355 | 42.95 360 | 53.39 362 | 52.33 403 | 29.15 395 | 57.77 368 | 48.20 395 | 31.81 388 | 49.86 372 | 77.21 290 | 8.69 410 | 59.16 368 | 27.31 390 | 33.40 405 | 71.84 355 |
|
| test_fmvs2 | | | 48.69 350 | 47.49 355 | 52.29 369 | 48.63 407 | 33.06 385 | 57.76 369 | 48.05 396 | 25.71 399 | 59.76 292 | 69.60 366 | 11.57 402 | 52.23 397 | 49.45 243 | 56.86 360 | 71.58 358 |
|
| KD-MVS_self_test | | | 55.22 322 | 53.89 328 | 59.21 324 | 57.80 396 | 27.47 402 | 57.75 370 | 74.32 244 | 47.38 314 | 50.90 364 | 70.00 362 | 28.45 345 | 70.30 317 | 40.44 318 | 57.92 356 | 79.87 261 |
|
| UnsupCasMVSNet_bld | | | 50.07 347 | 48.87 348 | 53.66 357 | 60.97 388 | 33.67 381 | 57.62 371 | 64.56 326 | 39.47 375 | 47.38 377 | 64.02 389 | 27.47 351 | 59.32 366 | 34.69 353 | 43.68 392 | 67.98 381 |
|
| mamv4 | | | 56.85 306 | 58.00 294 | 53.43 360 | 72.46 287 | 54.47 140 | 57.56 372 | 54.74 375 | 38.81 377 | 57.42 317 | 79.45 254 | 47.57 144 | 38.70 412 | 60.88 151 | 53.07 373 | 67.11 382 |
|
| SSC-MVS | | | 41.96 364 | 41.99 363 | 41.90 386 | 62.46 379 | 9.28 425 | 57.41 373 | 44.32 404 | 43.38 350 | 38.30 402 | 66.45 381 | 32.67 313 | 58.42 373 | 10.98 415 | 21.91 411 | 57.99 393 |
|
| ANet_high | | | 41.38 365 | 37.47 372 | 53.11 363 | 39.73 418 | 24.45 411 | 56.94 374 | 69.69 284 | 47.65 311 | 26.04 410 | 52.32 400 | 12.44 399 | 62.38 355 | 21.80 402 | 10.61 419 | 72.49 344 |
|
| MDA-MVSNet-bldmvs | | | 53.87 329 | 50.81 341 | 63.05 301 | 66.25 360 | 48.58 238 | 56.93 375 | 63.82 331 | 48.09 305 | 41.22 393 | 70.48 359 | 30.34 329 | 68.00 329 | 34.24 354 | 45.92 389 | 72.57 343 |
|
| test123 | | | 4.73 391 | 6.30 394 | 0.02 405 | 0.01 428 | 0.01 430 | 56.36 376 | 0.00 429 | 0.01 423 | 0.04 424 | 0.21 424 | 0.01 428 | 0.00 424 | 0.03 424 | 0.00 422 | 0.04 420 |
|
| miper_lstm_enhance | | | 62.03 266 | 60.88 269 | 65.49 281 | 66.71 356 | 46.25 261 | 56.29 377 | 75.70 219 | 50.68 269 | 61.27 275 | 75.48 320 | 40.21 227 | 68.03 328 | 56.31 182 | 65.25 307 | 82.18 218 |
|
| KD-MVS_2432*1600 | | | 53.45 331 | 51.50 339 | 59.30 321 | 62.82 375 | 37.14 349 | 55.33 378 | 71.79 270 | 47.34 316 | 55.09 336 | 70.52 357 | 21.91 379 | 70.45 314 | 35.72 349 | 42.97 393 | 70.31 369 |
|
| miper_refine_blended | | | 53.45 331 | 51.50 339 | 59.30 321 | 62.82 375 | 37.14 349 | 55.33 378 | 71.79 270 | 47.34 316 | 55.09 336 | 70.52 357 | 21.91 379 | 70.45 314 | 35.72 349 | 42.97 393 | 70.31 369 |
|
| LF4IMVS | | | 42.95 360 | 42.26 362 | 45.04 379 | 48.30 408 | 32.50 386 | 54.80 380 | 48.49 393 | 28.03 394 | 40.51 395 | 70.16 360 | 9.24 408 | 43.89 407 | 31.63 372 | 49.18 385 | 58.72 391 |
|
| PMVS |  | 28.69 22 | 36.22 372 | 33.29 377 | 45.02 380 | 36.82 420 | 35.98 363 | 54.68 381 | 48.74 392 | 26.31 397 | 21.02 413 | 51.61 402 | 2.88 422 | 60.10 363 | 9.99 418 | 47.58 386 | 38.99 411 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVStest1 | | | 42.65 361 | 39.29 368 | 52.71 366 | 47.26 410 | 34.58 373 | 54.41 382 | 50.84 390 | 23.35 401 | 39.31 401 | 74.08 332 | 12.57 398 | 55.09 388 | 23.32 399 | 28.47 407 | 68.47 380 |
|
| PVSNet_0 | | 43.31 20 | 47.46 354 | 45.64 357 | 52.92 364 | 67.60 351 | 44.65 279 | 54.06 383 | 54.64 376 | 41.59 362 | 46.15 383 | 58.75 394 | 30.99 325 | 58.66 371 | 32.18 363 | 24.81 409 | 55.46 397 |
|
| testmvs | | | 4.52 392 | 6.03 395 | 0.01 406 | 0.01 428 | 0.00 431 | 53.86 384 | 0.00 429 | 0.01 423 | 0.04 424 | 0.27 423 | 0.00 429 | 0.00 424 | 0.04 423 | 0.00 422 | 0.03 421 |
|
| test_fmvs3 | | | 44.30 358 | 42.55 361 | 49.55 374 | 42.83 412 | 27.15 405 | 53.03 385 | 44.93 402 | 22.03 407 | 53.69 352 | 64.94 386 | 4.21 417 | 49.63 399 | 47.47 256 | 49.82 382 | 71.88 353 |
|
| APD_test1 | | | 37.39 371 | 34.94 374 | 44.72 382 | 48.88 406 | 33.19 384 | 52.95 386 | 44.00 405 | 19.49 408 | 27.28 409 | 58.59 395 | 3.18 421 | 52.84 394 | 18.92 404 | 41.17 396 | 48.14 403 |
|
| dongtai | | | 34.52 374 | 34.94 374 | 33.26 395 | 61.06 386 | 16.00 420 | 52.79 387 | 23.78 421 | 40.71 368 | 39.33 400 | 48.65 409 | 16.91 389 | 48.34 401 | 12.18 413 | 19.05 413 | 35.44 412 |
|
| YYNet1 | | | 50.73 344 | 48.96 346 | 56.03 344 | 61.10 385 | 41.78 307 | 51.94 388 | 56.44 369 | 40.94 367 | 44.84 385 | 67.80 373 | 30.08 331 | 55.08 389 | 36.77 339 | 50.71 379 | 71.22 362 |
|
| MDA-MVSNet_test_wron | | | 50.71 345 | 48.95 347 | 56.00 345 | 61.17 384 | 41.84 306 | 51.90 389 | 56.45 368 | 40.96 366 | 44.79 386 | 67.84 372 | 30.04 332 | 55.07 390 | 36.71 341 | 50.69 380 | 71.11 365 |
|
| kuosan | | | 29.62 381 | 30.82 380 | 26.02 400 | 52.99 399 | 16.22 419 | 51.09 390 | 22.71 422 | 33.91 385 | 33.99 404 | 40.85 410 | 15.89 392 | 33.11 417 | 7.59 421 | 18.37 414 | 28.72 414 |
|
| ADS-MVSNet2 | | | 51.33 342 | 48.76 349 | 59.07 326 | 66.02 363 | 44.60 280 | 50.90 391 | 59.76 355 | 36.90 378 | 50.74 365 | 66.18 383 | 26.38 360 | 63.11 352 | 27.17 391 | 54.76 368 | 69.50 375 |
|
| ADS-MVSNet | | | 48.48 351 | 47.77 352 | 50.63 372 | 66.02 363 | 29.92 393 | 50.90 391 | 50.87 389 | 36.90 378 | 50.74 365 | 66.18 383 | 26.38 360 | 52.47 395 | 27.17 391 | 54.76 368 | 69.50 375 |
|
| FPMVS | | | 42.18 363 | 41.11 365 | 45.39 378 | 58.03 395 | 41.01 315 | 49.50 393 | 53.81 381 | 30.07 390 | 33.71 405 | 64.03 387 | 11.69 400 | 52.08 398 | 14.01 409 | 55.11 366 | 43.09 406 |
|
| N_pmnet | | | 39.35 369 | 40.28 366 | 36.54 392 | 63.76 371 | 1.62 429 | 49.37 394 | 0.76 428 | 34.62 384 | 43.61 390 | 66.38 382 | 26.25 362 | 42.57 408 | 26.02 396 | 51.77 376 | 65.44 384 |
|
| new-patchmatchnet | | | 47.56 353 | 47.73 353 | 47.06 376 | 58.81 394 | 9.37 424 | 48.78 395 | 59.21 357 | 43.28 351 | 44.22 388 | 68.66 370 | 25.67 366 | 57.20 378 | 31.57 374 | 49.35 384 | 74.62 328 |
|
| test_vis1_rt | | | 41.35 366 | 39.45 367 | 47.03 377 | 46.65 411 | 37.86 341 | 47.76 396 | 38.65 409 | 23.10 403 | 44.21 389 | 51.22 403 | 11.20 405 | 44.08 406 | 39.27 324 | 53.02 374 | 59.14 390 |
|
| JIA-IIPM | | | 51.56 340 | 47.68 354 | 63.21 299 | 64.61 368 | 50.73 201 | 47.71 397 | 58.77 359 | 42.90 355 | 48.46 375 | 51.72 401 | 24.97 370 | 70.24 318 | 36.06 348 | 53.89 371 | 68.64 379 |
|
| ambc | | | | | 65.13 286 | 63.72 373 | 37.07 351 | 47.66 398 | 78.78 166 | | 54.37 346 | 71.42 350 | 11.24 404 | 80.94 201 | 45.64 275 | 53.85 372 | 77.38 292 |
|
| testf1 | | | 31.46 379 | 28.89 383 | 39.16 388 | 41.99 415 | 28.78 397 | 46.45 399 | 37.56 410 | 14.28 415 | 21.10 411 | 48.96 406 | 1.48 425 | 47.11 402 | 13.63 410 | 34.56 402 | 41.60 407 |
|
| APD_test2 | | | 31.46 379 | 28.89 383 | 39.16 388 | 41.99 415 | 28.78 397 | 46.45 399 | 37.56 410 | 14.28 415 | 21.10 411 | 48.96 406 | 1.48 425 | 47.11 402 | 13.63 410 | 34.56 402 | 41.60 407 |
|
| Patchmatch-test | | | 49.08 349 | 48.28 351 | 51.50 371 | 64.40 369 | 30.85 392 | 45.68 401 | 48.46 394 | 35.60 382 | 46.10 384 | 72.10 344 | 34.47 287 | 46.37 404 | 27.08 393 | 60.65 345 | 77.27 294 |
|
| DSMNet-mixed | | | 39.30 370 | 38.72 369 | 41.03 387 | 51.22 404 | 19.66 416 | 45.53 402 | 31.35 415 | 15.83 414 | 39.80 398 | 67.42 377 | 22.19 377 | 45.13 405 | 22.43 400 | 52.69 375 | 58.31 392 |
|
| LCM-MVSNet | | | 40.30 367 | 35.88 373 | 53.57 358 | 42.24 413 | 29.15 395 | 45.21 403 | 60.53 354 | 22.23 406 | 28.02 408 | 50.98 404 | 3.72 419 | 61.78 357 | 31.22 377 | 38.76 399 | 69.78 374 |
|
| new_pmnet | | | 34.13 375 | 34.29 376 | 33.64 394 | 52.63 401 | 18.23 418 | 44.43 404 | 33.90 414 | 22.81 404 | 30.89 407 | 53.18 399 | 10.48 407 | 35.72 416 | 20.77 403 | 39.51 397 | 46.98 405 |
|
| mvsany_test1 | | | 39.38 368 | 38.16 371 | 43.02 384 | 49.05 405 | 34.28 376 | 44.16 405 | 25.94 419 | 22.74 405 | 46.57 382 | 62.21 392 | 23.85 374 | 41.16 411 | 33.01 361 | 35.91 401 | 53.63 398 |
|
| E-PMN | | | 23.77 383 | 22.73 387 | 26.90 398 | 42.02 414 | 20.67 415 | 42.66 406 | 35.70 412 | 17.43 410 | 10.28 420 | 25.05 416 | 6.42 412 | 42.39 409 | 10.28 417 | 14.71 416 | 17.63 415 |
|
| EMVS | | | 22.97 384 | 21.84 388 | 26.36 399 | 40.20 417 | 19.53 417 | 41.95 407 | 34.64 413 | 17.09 411 | 9.73 421 | 22.83 417 | 7.29 411 | 42.22 410 | 9.18 419 | 13.66 417 | 17.32 416 |
|
| test_vis3_rt | | | 32.09 377 | 30.20 382 | 37.76 391 | 35.36 422 | 27.48 401 | 40.60 408 | 28.29 418 | 16.69 412 | 32.52 406 | 40.53 411 | 1.96 423 | 37.40 414 | 33.64 358 | 42.21 395 | 48.39 401 |
|
| CHOSEN 280x420 | | | 47.83 352 | 46.36 356 | 52.24 370 | 67.37 352 | 49.78 218 | 38.91 409 | 43.11 406 | 35.00 383 | 43.27 391 | 63.30 390 | 28.95 340 | 49.19 400 | 36.53 344 | 60.80 343 | 57.76 394 |
|
| mvsany_test3 | | | 32.62 376 | 30.57 381 | 38.77 390 | 36.16 421 | 24.20 412 | 38.10 410 | 20.63 423 | 19.14 409 | 40.36 397 | 57.43 396 | 5.06 414 | 36.63 415 | 29.59 384 | 28.66 406 | 55.49 396 |
|
| test_f | | | 31.86 378 | 31.05 379 | 34.28 393 | 32.33 424 | 21.86 414 | 32.34 411 | 30.46 416 | 16.02 413 | 39.78 399 | 55.45 398 | 4.80 415 | 32.36 418 | 30.61 378 | 37.66 400 | 48.64 400 |
|
| PMMVS2 | | | 27.40 382 | 25.91 385 | 31.87 397 | 39.46 419 | 6.57 426 | 31.17 412 | 28.52 417 | 23.96 400 | 20.45 414 | 48.94 408 | 4.20 418 | 37.94 413 | 16.51 406 | 19.97 412 | 51.09 399 |
|
| wuyk23d | | | 13.32 388 | 12.52 391 | 15.71 402 | 47.54 409 | 26.27 407 | 31.06 413 | 1.98 427 | 4.93 419 | 5.18 422 | 1.94 422 | 0.45 427 | 18.54 421 | 6.81 422 | 12.83 418 | 2.33 419 |
|
| Gipuma |  | | 34.77 373 | 31.91 378 | 43.33 383 | 62.05 381 | 37.87 340 | 20.39 414 | 67.03 307 | 23.23 402 | 18.41 415 | 25.84 415 | 4.24 416 | 62.73 353 | 14.71 408 | 51.32 378 | 29.38 413 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MVE |  | 17.77 23 | 21.41 385 | 17.77 390 | 32.34 396 | 34.34 423 | 25.44 409 | 16.11 415 | 24.11 420 | 11.19 417 | 13.22 417 | 31.92 413 | 1.58 424 | 30.95 419 | 10.47 416 | 17.03 415 | 40.62 410 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 9.43 389 | 11.14 392 | 4.30 404 | 2.38 427 | 4.40 427 | 13.62 416 | 16.08 425 | 0.39 421 | 15.89 416 | 13.06 418 | 15.80 393 | 5.54 423 | 12.63 412 | 10.46 420 | 2.95 418 |
|
| test_method | | | 19.68 386 | 18.10 389 | 24.41 401 | 13.68 426 | 3.11 428 | 12.06 417 | 42.37 407 | 2.00 420 | 11.97 418 | 36.38 412 | 5.77 413 | 29.35 420 | 15.06 407 | 23.65 410 | 40.76 409 |
|
| mmdepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| monomultidepth | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| test_blank | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| uanet_test | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| DCPMVS | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| cdsmvs_eth3d_5k | | | 17.50 387 | 23.34 386 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 78.63 170 | 0.00 425 | 0.00 426 | 82.18 196 | 49.25 122 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| pcd_1.5k_mvsjas | | | 3.92 393 | 5.23 396 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 47.05 154 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| sosnet-low-res | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| sosnet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| uncertanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| Regformer | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| ab-mvs-re | | | 6.49 390 | 8.65 393 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 77.89 279 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| uanet | | | 0.00 394 | 0.00 397 | 0.00 407 | 0.00 430 | 0.00 431 | 0.00 418 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 425 | 0.00 429 | 0.00 424 | 0.00 425 | 0.00 422 | 0.00 422 |
|
| WAC-MVS | | | | | | | 27.31 403 | | | | | | | | 27.77 388 | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| PC_three_1452 | | | | | | | | | | 55.09 209 | 84.46 4 | 89.84 46 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 15 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 60 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 430 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 430 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 45 | | 82.70 92 | 57.95 153 | 78.10 24 | 90.06 39 | 56.12 42 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 26 | 53.93 233 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 17 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 40 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 15 | 66.87 3 | 90.78 7 | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 26 |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 282 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 283 | | | | 78.05 282 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 300 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 131 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 3.55 421 | 33.90 294 | 66.52 339 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 387 | 34.50 285 | 74.27 296 | | | |
|
| gm-plane-assit | | | | | | 71.40 305 | 41.72 310 | | | 48.85 294 | | 73.31 336 | | 82.48 172 | 48.90 247 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 175 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 156 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 50 | | 81.04 129 | | 74.68 57 | | | 84.04 132 | | | |
|
| TestCases | | | | | 64.39 291 | 71.44 302 | 49.03 228 | | 67.30 303 | 45.97 329 | 47.16 378 | 79.77 245 | 17.47 385 | 67.56 333 | 33.65 356 | 59.16 352 | 76.57 303 |
|
| test_prior | | | | | 76.69 57 | 84.20 61 | 57.27 91 | | 84.88 39 | | | | | 86.43 80 | | | 86.38 77 |
|
| æ–°å‡ ä½•1 | | | | | 70.76 200 | 85.66 41 | 61.13 30 | | 66.43 312 | 44.68 338 | 70.29 115 | 86.64 96 | 41.29 218 | 75.23 291 | 49.72 239 | 81.75 103 | 75.93 309 |
|
| 旧先验1 | | | | | | 83.04 73 | 53.15 162 | | 67.52 302 | | | 87.85 74 | 44.08 188 | | | 80.76 108 | 78.03 285 |
|
| 原ACMM1 | | | | | 74.69 91 | 85.39 47 | 59.40 57 | | 83.42 72 | 51.47 259 | 70.27 116 | 86.61 99 | 48.61 130 | 86.51 78 | 53.85 206 | 87.96 39 | 78.16 280 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 306 | 46.95 265 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 57 | | | | |
|
| testdata | | | | | 64.66 288 | 81.52 91 | 52.93 167 | | 65.29 320 | 46.09 327 | 73.88 68 | 87.46 79 | 38.08 252 | 66.26 342 | 53.31 211 | 78.48 144 | 74.78 325 |
|
| test12 | | | | | 77.76 45 | 84.52 58 | 58.41 78 | | 83.36 75 | | 72.93 87 | | 54.61 54 | 88.05 39 | | 88.12 34 | 86.81 65 |
|
| plane_prior7 | | | | | | 81.41 94 | 55.96 114 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 101 | 56.24 109 | | | | | | 45.26 178 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 51 | | | | | 87.21 58 | 68.16 87 | 80.58 111 | 84.65 150 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 116 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 111 | | | 63.92 36 | 69.27 135 | | | | | | |
|
| plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 429 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 429 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 399 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 216 | 71.42 304 | 47.80 246 | | 50.90 388 | | 50.39 369 | 75.56 317 | 27.43 353 | 81.33 191 | 45.91 272 | 34.10 404 | 80.59 248 |
|
| LGP-MVS_train | | | | | 75.76 72 | 80.22 116 | 57.51 89 | | 83.40 73 | 61.32 79 | 66.67 185 | 87.33 82 | 39.15 239 | 86.59 73 | 67.70 91 | 77.30 162 | 83.19 197 |
|
| test11 | | | | | | | | | 83.47 70 | | | | | | | | |
|
| door | | | | | | | | | 47.60 397 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 98 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 159 | | | 86.93 65 | | | 84.32 157 |
|
| HQP3-MVS | | | | | | | | | 83.90 56 | | | | | | | 80.35 115 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 172 | | | | |
|
| NP-MVS | | | | | | 80.98 104 | 56.05 113 | | | | | 85.54 133 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 194 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 228 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 133 | | | | |
|
| ITE_SJBPF | | | | | 62.09 307 | 66.16 361 | 44.55 282 | | 64.32 327 | 47.36 315 | 55.31 333 | 80.34 235 | 19.27 384 | 62.68 354 | 36.29 347 | 62.39 332 | 79.04 272 |
|
| DeepMVS_CX |  | | | | 12.03 403 | 17.97 425 | 10.91 422 | | 10.60 426 | 7.46 418 | 11.07 419 | 28.36 414 | 3.28 420 | 11.29 422 | 8.01 420 | 9.74 421 | 13.89 417 |
|