| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 63 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 16 |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 67 | 60.87 87 | 81.50 16 | | | | | | |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 48 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 67 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 67 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 16 | 90.61 11 | 85.45 123 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 66 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 16 | 90.61 11 | 87.62 43 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 72 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 18 | 90.87 5 | 88.23 22 |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 45 | 67.01 1 | 90.33 12 | 73.16 57 | 91.15 4 | 88.23 22 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 75 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 27 | 90.98 18 | 54.26 57 | 90.06 14 | 78.42 20 | 89.02 23 | 87.69 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 72 | 62.44 64 | 72.68 94 | 90.50 26 | 48.18 135 | 87.34 53 | 73.59 55 | 85.71 60 | 84.76 152 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 49 | 90.47 28 | 53.96 62 | 88.68 27 | 76.48 29 | 89.63 20 | 87.16 57 |
|
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 65 | 65.37 13 | 78.78 22 | 90.64 21 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 134 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 24 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 47 | 62.82 55 | 73.96 70 | 90.50 26 | 53.20 73 | 88.35 31 | 74.02 51 | 87.05 45 | 86.13 94 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 50 | 62.81 57 | 73.30 77 | 90.58 23 | 49.90 114 | 88.21 34 | 73.78 53 | 87.03 46 | 86.29 91 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 48 | 62.82 55 | 73.55 75 | 90.56 24 | 49.80 116 | 88.24 33 | 74.02 51 | 87.03 46 | 86.32 87 |
|
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 82 | 60.01 49 | 86.19 17 | 83.93 54 | 73.19 1 | 77.08 35 | 91.21 17 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 6 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 25 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 27 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MTMP | | | | | | | | 86.03 19 | 17.08 428 | | | | | | | | |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 69 | 63.89 37 | 73.60 74 | 90.60 22 | 54.85 52 | 86.72 71 | 77.20 26 | 88.06 36 | 85.74 111 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 67 | 90.03 41 | 52.56 79 | 88.53 29 | 74.79 45 | 88.34 29 | 86.63 74 |
|
| XVS | | | 77.17 31 | 76.56 36 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 101 | 90.01 43 | 47.95 137 | 88.01 40 | 71.55 73 | 86.74 53 | 86.37 81 |
|
| X-MVStestdata | | | 70.21 129 | 67.28 180 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 101 | 6.49 423 | 47.95 137 | 88.01 40 | 71.55 73 | 86.74 53 | 86.37 81 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 9 | 82.40 79 | 59.92 51 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 168 | 89.24 54 | 42.03 209 | 89.38 19 | 64.07 125 | 86.50 57 | 89.69 3 |
|
| mPP-MVS | | | 76.54 39 | 75.93 44 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 97 | 62.90 52 | 71.77 105 | 90.26 34 | 46.61 162 | 86.55 77 | 71.71 71 | 85.66 61 | 84.97 145 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 30 | 89.67 18 | 86.84 65 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SR-MVS | | | 76.13 46 | 75.70 47 | 77.40 51 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 98 | 59.99 112 | 75.10 48 | 90.35 31 | 47.66 142 | 86.52 78 | 71.64 72 | 82.99 83 | 84.47 158 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 46 | 60.61 93 | 79.05 21 | 90.30 33 | 55.54 46 | 88.32 32 | 73.48 56 | 87.03 46 | 84.83 148 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 44 | 63.04 49 | 69.80 131 | 89.74 49 | 45.43 175 | 87.16 60 | 72.01 67 | 82.87 88 | 85.14 136 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 45 | 66.73 8 | 74.67 61 | 89.38 52 | 55.30 47 | 89.18 21 | 74.19 49 | 87.34 44 | 86.38 79 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 46 | 82.88 77 | 57.83 84 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 20 | 57.96 26 | 87.09 63 | 77.08 27 | 90.18 15 | 87.87 32 |
|
| reproduce-ours | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 107 | 77.85 28 | 91.42 13 | 50.67 108 | 87.69 48 | 72.46 62 | 84.53 68 | 85.46 121 |
|
| our_new_method | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 107 | 77.85 28 | 91.42 13 | 50.67 108 | 87.69 48 | 72.46 62 | 84.53 68 | 85.46 121 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 34 | 84.85 40 | 61.98 74 | 73.06 87 | 88.88 59 | 53.72 67 | 89.06 23 | 68.27 87 | 88.04 37 | 87.42 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 107 | 57.91 83 | 84.68 35 | 81.64 107 | 68.35 2 | 75.77 40 | 90.38 29 | 53.98 60 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 11 |
|
| reproduce_model | | | 76.43 41 | 76.08 41 | 77.49 48 | 83.47 69 | 60.09 47 | 84.60 36 | 82.90 89 | 59.65 118 | 77.31 31 | 91.43 12 | 49.62 118 | 87.24 54 | 71.99 68 | 83.75 78 | 85.14 136 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 37 | 83.87 60 | 60.37 100 | 79.89 18 | 89.38 52 | 54.97 50 | 85.58 100 | 76.12 32 | 84.94 64 | 86.33 85 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CS-MVS | | | 76.25 44 | 75.98 43 | 77.06 53 | 80.15 121 | 55.63 123 | 84.51 38 | 83.90 57 | 63.24 45 | 73.30 77 | 87.27 87 | 55.06 49 | 86.30 86 | 71.78 70 | 84.58 66 | 89.25 5 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 39 | 85.03 36 | 66.96 5 | 77.58 30 | 90.06 39 | 59.47 21 | 89.13 22 | 78.67 15 | 89.73 16 | 87.03 59 |
|
| SR-MVS-dyc-post | | | 74.57 62 | 73.90 66 | 76.58 63 | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 149 | 73.14 83 | 90.07 37 | 44.74 182 | 85.84 94 | 68.20 88 | 81.76 101 | 84.03 168 |
|
| RE-MVS-def | | | | 73.71 70 | | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 149 | 73.14 83 | 90.07 37 | 43.06 199 | | 68.20 88 | 81.76 101 | 84.03 168 |
|
| PHI-MVS | | | 75.87 48 | 75.36 50 | 77.41 49 | 80.62 112 | 55.91 116 | 84.28 42 | 85.78 20 | 56.08 188 | 73.41 76 | 86.58 105 | 50.94 106 | 88.54 28 | 70.79 77 | 89.71 17 | 87.79 37 |
|
| HQP_MVS | | | 74.31 65 | 73.73 69 | 76.06 69 | 81.41 94 | 56.31 105 | 84.22 43 | 84.01 52 | 64.52 25 | 69.27 139 | 86.10 120 | 45.26 179 | 87.21 58 | 68.16 90 | 80.58 111 | 84.65 153 |
|
| plane_prior2 | | | | | | | | 84.22 43 | | 64.52 25 | | | | | | | |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 65 | 61.62 23 | 84.17 45 | 86.85 6 | 63.23 46 | 73.84 72 | 90.25 35 | 57.68 29 | 89.96 15 | 74.62 46 | 89.03 22 | 87.89 30 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 9.14 | | | | 78.75 15 | | 83.10 72 | | 84.15 46 | 88.26 1 | 59.90 113 | 78.57 24 | 90.36 30 | 57.51 32 | 86.86 68 | 77.39 24 | 89.52 21 | |
|
| CPTT-MVS | | | 72.78 81 | 72.08 86 | 74.87 90 | 84.88 57 | 61.41 26 | 84.15 46 | 77.86 189 | 55.27 206 | 67.51 174 | 88.08 69 | 41.93 211 | 81.85 182 | 69.04 86 | 80.01 119 | 81.35 238 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 48 | 83.82 63 | 59.34 127 | 79.37 19 | 89.76 48 | 59.84 16 | 87.62 51 | 76.69 28 | 86.74 53 | 87.68 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| API-MVS | | | 72.17 94 | 71.41 94 | 74.45 103 | 81.95 86 | 57.22 92 | 84.03 48 | 80.38 142 | 59.89 116 | 68.40 151 | 82.33 197 | 49.64 117 | 87.83 46 | 51.87 226 | 84.16 75 | 78.30 282 |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 50 | 79.66 150 | 59.00 131 | | | | | | | |
|
| SPE-MVS-test | | | 75.62 52 | 75.31 52 | 76.56 64 | 80.63 111 | 55.13 133 | 83.88 51 | 85.22 29 | 62.05 71 | 71.49 110 | 86.03 123 | 53.83 64 | 86.36 84 | 67.74 93 | 86.91 50 | 88.19 24 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 52 | 85.16 31 | 62.88 53 | 78.10 25 | 91.26 16 | 52.51 80 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 68 |
|
| EC-MVSNet | | | 75.84 49 | 75.87 46 | 75.74 75 | 78.86 148 | 52.65 174 | 83.73 53 | 86.08 17 | 63.47 42 | 72.77 93 | 87.25 88 | 53.13 74 | 87.93 42 | 71.97 69 | 85.57 62 | 86.66 72 |
|
| APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 60 | 82.20 81 | 58.24 80 | 83.67 54 | 83.29 81 | 58.41 143 | 73.71 73 | 90.14 36 | 45.62 168 | 85.99 90 | 69.64 81 | 82.85 89 | 85.78 105 |
|
| HPM-MVS_fast | | | 74.30 66 | 73.46 72 | 76.80 56 | 84.45 60 | 59.04 69 | 83.65 55 | 81.05 129 | 60.15 109 | 70.43 117 | 89.84 46 | 41.09 225 | 85.59 99 | 67.61 96 | 82.90 87 | 85.77 108 |
|
| plane_prior | | | | | | | 56.31 105 | 83.58 56 | | 63.19 48 | | | | | | 80.48 114 | |
|
| QAPM | | | 70.05 131 | 68.81 144 | 73.78 119 | 76.54 224 | 53.43 158 | 83.23 57 | 83.48 70 | 52.89 247 | 65.90 203 | 86.29 114 | 41.55 218 | 86.49 80 | 51.01 233 | 78.40 148 | 81.42 232 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 47 | 86.67 20 | 58.36 79 | 83.22 58 | 86.93 5 | 56.91 169 | 74.91 54 | 88.19 66 | 59.15 23 | 87.68 50 | 73.67 54 | 87.45 43 | 86.57 75 |
|
| EPNet | | | 73.09 77 | 72.16 84 | 75.90 71 | 75.95 232 | 56.28 107 | 83.05 59 | 72.39 266 | 66.53 10 | 65.27 215 | 87.00 90 | 50.40 111 | 85.47 105 | 62.48 142 | 86.32 58 | 85.94 99 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 46 | 83.03 60 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 41 | 61.76 14 | 88.95 24 | 74.21 48 | 88.67 26 | 88.12 26 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 49 | 83.96 64 | 59.60 54 | 82.95 61 | 86.50 13 | 60.78 90 | 75.27 44 | 84.83 143 | 60.76 15 | 86.56 76 | 67.86 92 | 87.87 41 | 86.06 96 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 56 | 82.93 62 | 85.39 27 | 62.15 67 | 76.41 38 | 91.51 11 | 52.47 82 | 86.78 70 | 80.66 4 | 89.64 19 | 87.80 36 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 63 | 85.08 33 | 62.57 60 | 73.09 86 | 89.97 44 | 50.90 107 | 87.48 52 | 75.30 39 | 86.85 51 | 87.33 55 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVSFormer | | | 71.50 106 | 70.38 116 | 74.88 89 | 78.76 151 | 57.15 97 | 82.79 64 | 78.48 176 | 51.26 267 | 69.49 134 | 83.22 178 | 43.99 192 | 83.24 149 | 66.06 108 | 79.37 127 | 84.23 163 |
|
| test_djsdf | | | 69.45 153 | 67.74 163 | 74.58 99 | 74.57 257 | 54.92 136 | 82.79 64 | 78.48 176 | 51.26 267 | 65.41 212 | 83.49 175 | 38.37 250 | 83.24 149 | 66.06 108 | 69.25 277 | 85.56 116 |
|
| ACMP | | 63.53 6 | 72.30 91 | 71.20 101 | 75.59 81 | 80.28 114 | 57.54 87 | 82.74 66 | 82.84 92 | 60.58 94 | 65.24 219 | 86.18 117 | 39.25 241 | 86.03 89 | 66.95 104 | 76.79 171 | 83.22 199 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMM | | 61.98 7 | 70.80 118 | 69.73 126 | 74.02 113 | 80.59 113 | 58.59 77 | 82.68 67 | 82.02 101 | 55.46 202 | 67.18 179 | 84.39 156 | 38.51 248 | 83.17 151 | 60.65 157 | 76.10 178 | 80.30 257 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| AdaColmap |  | | 69.99 133 | 68.66 148 | 73.97 115 | 84.94 54 | 57.83 84 | 82.63 68 | 78.71 168 | 56.28 184 | 64.34 233 | 84.14 159 | 41.57 216 | 87.06 64 | 46.45 271 | 78.88 137 | 77.02 302 |
|
| OPM-MVS | | | 74.73 58 | 74.25 63 | 76.19 68 | 80.81 106 | 59.01 70 | 82.60 69 | 83.64 66 | 63.74 39 | 72.52 97 | 87.49 80 | 47.18 153 | 85.88 93 | 69.47 83 | 80.78 107 | 83.66 188 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PGM-MVS | | | 76.77 37 | 76.06 42 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 70 | 83.74 64 | 61.71 76 | 72.45 100 | 90.34 32 | 48.48 133 | 88.13 37 | 72.32 64 | 86.85 51 | 85.78 105 |
|
| LPG-MVS_test | | | 72.74 82 | 71.74 88 | 75.76 73 | 80.22 116 | 57.51 89 | 82.55 70 | 83.40 74 | 61.32 79 | 66.67 189 | 87.33 85 | 39.15 243 | 86.59 74 | 67.70 94 | 77.30 164 | 83.19 201 |
|
| CANet | | | 76.46 40 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 88 | 82.35 72 | 83.31 80 | 67.78 3 | 70.09 121 | 86.34 113 | 54.92 51 | 88.90 25 | 72.68 61 | 84.55 67 | 87.76 38 |
|
| 114514_t | | | 70.83 116 | 69.56 128 | 74.64 96 | 86.21 31 | 54.63 139 | 82.34 73 | 81.81 104 | 48.22 306 | 63.01 254 | 85.83 130 | 40.92 227 | 87.10 62 | 57.91 176 | 79.79 120 | 82.18 222 |
|
| HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 163 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 163 | | | | | | |
|
| HQP-MVS | | | 73.45 72 | 72.80 77 | 75.40 82 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 57 | 62.10 68 | 67.85 163 | 85.54 137 | 45.46 173 | 86.93 66 | 67.04 101 | 80.35 115 | 84.32 160 |
|
| MSLP-MVS++ | | | 73.77 70 | 73.47 71 | 74.66 94 | 83.02 74 | 59.29 61 | 82.30 77 | 81.88 102 | 59.34 127 | 71.59 108 | 86.83 93 | 45.94 166 | 83.65 142 | 65.09 118 | 85.22 63 | 81.06 245 |
|
| EPP-MVSNet | | | 72.16 96 | 71.31 98 | 74.71 91 | 78.68 154 | 49.70 223 | 82.10 78 | 81.65 106 | 60.40 97 | 65.94 201 | 85.84 129 | 51.74 95 | 86.37 83 | 55.93 188 | 79.55 126 | 88.07 29 |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 79 | | | | | | | | | |
|
| TSAR-MVS + GP. | | | 74.90 55 | 74.15 64 | 77.17 52 | 82.00 84 | 58.77 75 | 81.80 80 | 78.57 172 | 58.58 140 | 74.32 66 | 84.51 154 | 55.94 43 | 87.22 57 | 67.11 100 | 84.48 71 | 85.52 117 |
|
| test_prior2 | | | | | | | | 81.75 81 | | 60.37 100 | 75.01 50 | 89.06 55 | 56.22 41 | | 72.19 65 | 88.96 24 | |
|
| PS-MVSNAJss | | | 72.24 92 | 71.21 100 | 75.31 84 | 78.50 157 | 55.93 115 | 81.63 82 | 82.12 99 | 56.24 185 | 70.02 125 | 85.68 133 | 47.05 155 | 84.34 129 | 65.27 117 | 74.41 193 | 85.67 112 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.65 198 | 74.93 52 | 88.81 60 | 53.70 68 | 84.68 123 | | | |
|
| train_agg | | | 76.27 43 | 76.15 40 | 76.64 62 | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.86 190 | 74.93 52 | 88.81 60 | 53.70 68 | 84.68 123 | 75.24 41 | 88.33 30 | 83.65 189 |
|
| MG-MVS | | | 73.96 68 | 73.89 67 | 74.16 111 | 85.65 42 | 49.69 225 | 81.59 85 | 81.29 121 | 61.45 78 | 71.05 113 | 88.11 67 | 51.77 94 | 87.73 47 | 61.05 154 | 83.09 81 | 85.05 141 |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 86 | 81.18 125 | 55.86 190 | 74.81 57 | 88.80 62 | 53.70 68 | 84.45 127 | | | |
|
| MAR-MVS | | | 71.51 105 | 70.15 121 | 75.60 80 | 81.84 87 | 59.39 58 | 81.38 87 | 82.90 89 | 54.90 221 | 68.08 160 | 78.70 267 | 47.73 140 | 85.51 102 | 51.68 230 | 84.17 74 | 81.88 228 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CDPH-MVS | | | 76.31 42 | 75.67 48 | 78.22 37 | 85.35 48 | 59.14 65 | 81.31 88 | 84.02 51 | 56.32 182 | 74.05 68 | 88.98 57 | 53.34 72 | 87.92 43 | 69.23 85 | 88.42 28 | 87.59 44 |
|
| OpenMVS |  | 61.03 9 | 68.85 162 | 67.56 167 | 72.70 156 | 74.26 264 | 53.99 147 | 81.21 89 | 81.34 119 | 52.70 248 | 62.75 258 | 85.55 136 | 38.86 246 | 84.14 131 | 48.41 255 | 83.01 82 | 79.97 262 |
|
| DP-MVS Recon | | | 72.15 97 | 70.73 109 | 76.40 65 | 86.57 24 | 57.99 82 | 81.15 90 | 82.96 87 | 57.03 166 | 66.78 185 | 85.56 134 | 44.50 186 | 88.11 38 | 51.77 228 | 80.23 118 | 83.10 205 |
|
| balanced_conf03 | | | 76.58 38 | 76.55 37 | 76.68 59 | 81.73 88 | 52.90 169 | 80.94 91 | 85.70 23 | 61.12 85 | 74.90 55 | 87.17 89 | 56.46 38 | 88.14 36 | 72.87 59 | 88.03 38 | 89.00 8 |
|
| Vis-MVSNet |  | | 72.18 93 | 71.37 96 | 74.61 97 | 81.29 97 | 55.41 129 | 80.90 92 | 78.28 185 | 60.73 91 | 69.23 142 | 88.09 68 | 44.36 188 | 82.65 167 | 57.68 177 | 81.75 103 | 85.77 108 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| jajsoiax | | | 68.25 178 | 66.45 194 | 73.66 129 | 75.62 236 | 55.49 128 | 80.82 93 | 78.51 175 | 52.33 252 | 64.33 234 | 84.11 160 | 28.28 350 | 81.81 184 | 63.48 135 | 70.62 247 | 83.67 186 |
|
| mvs_tets | | | 68.18 180 | 66.36 200 | 73.63 132 | 75.61 237 | 55.35 131 | 80.77 94 | 78.56 173 | 52.48 251 | 64.27 236 | 84.10 161 | 27.45 356 | 81.84 183 | 63.45 136 | 70.56 249 | 83.69 185 |
|
| DP-MVS | | | 65.68 224 | 63.66 235 | 71.75 174 | 84.93 55 | 56.87 102 | 80.74 95 | 73.16 260 | 53.06 244 | 59.09 304 | 82.35 196 | 36.79 272 | 85.94 92 | 32.82 366 | 69.96 263 | 72.45 349 |
|
| 3Dnovator | | 64.47 5 | 72.49 87 | 71.39 95 | 75.79 72 | 77.70 189 | 58.99 71 | 80.66 96 | 83.15 85 | 62.24 66 | 65.46 211 | 86.59 104 | 42.38 207 | 85.52 101 | 59.59 167 | 84.72 65 | 82.85 210 |
|
| ACMH+ | | 57.40 11 | 66.12 220 | 64.06 227 | 72.30 165 | 77.79 185 | 52.83 172 | 80.39 97 | 78.03 187 | 57.30 162 | 57.47 319 | 82.55 190 | 27.68 354 | 84.17 130 | 45.54 281 | 69.78 267 | 79.90 264 |
|
| sasdasda | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 209 | 80.23 98 | 83.87 60 | 60.30 104 | 77.15 33 | 86.56 106 | 59.65 17 | 82.00 179 | 66.01 110 | 82.12 94 | 88.58 14 |
|
| canonicalmvs | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 209 | 80.23 98 | 83.87 60 | 60.30 104 | 77.15 33 | 86.56 106 | 59.65 17 | 82.00 179 | 66.01 110 | 82.12 94 | 88.58 14 |
|
| IS-MVSNet | | | 71.57 104 | 71.00 105 | 73.27 145 | 78.86 148 | 45.63 275 | 80.22 100 | 78.69 169 | 64.14 35 | 66.46 192 | 87.36 84 | 49.30 121 | 85.60 98 | 50.26 239 | 83.71 79 | 88.59 13 |
|
| Effi-MVS+-dtu | | | 69.64 145 | 67.53 170 | 75.95 70 | 76.10 230 | 62.29 15 | 80.20 101 | 76.06 217 | 59.83 117 | 65.26 218 | 77.09 296 | 41.56 217 | 84.02 135 | 60.60 158 | 71.09 244 | 81.53 231 |
|
| nrg030 | | | 72.96 79 | 73.01 75 | 72.84 152 | 75.41 241 | 50.24 213 | 80.02 102 | 82.89 91 | 58.36 145 | 74.44 63 | 86.73 97 | 58.90 24 | 80.83 206 | 65.84 113 | 74.46 190 | 87.44 48 |
|
| Anonymous20231211 | | | 69.28 156 | 68.47 153 | 71.73 175 | 80.28 114 | 47.18 259 | 79.98 103 | 82.37 96 | 54.61 225 | 67.24 177 | 84.01 163 | 39.43 238 | 82.41 174 | 55.45 196 | 72.83 220 | 85.62 115 |
|
| DPM-MVS | | | 75.47 53 | 75.00 54 | 76.88 54 | 81.38 96 | 59.16 62 | 79.94 104 | 85.71 22 | 56.59 177 | 72.46 98 | 86.76 95 | 56.89 35 | 87.86 45 | 66.36 106 | 88.91 25 | 83.64 190 |
|
| PVSNet_Blended_VisFu | | | 71.45 108 | 70.39 115 | 74.65 95 | 82.01 83 | 58.82 74 | 79.93 105 | 80.35 143 | 55.09 211 | 65.82 207 | 82.16 203 | 49.17 124 | 82.64 168 | 60.34 159 | 78.62 145 | 82.50 216 |
|
| PAPM_NR | | | 72.63 85 | 71.80 87 | 75.13 87 | 81.72 89 | 53.42 159 | 79.91 106 | 83.28 82 | 59.14 129 | 66.31 196 | 85.90 127 | 51.86 92 | 86.06 87 | 57.45 179 | 80.62 109 | 85.91 101 |
|
| LS3D | | | 64.71 237 | 62.50 251 | 71.34 191 | 79.72 128 | 55.71 120 | 79.82 107 | 74.72 241 | 48.50 303 | 56.62 325 | 84.62 149 | 33.59 303 | 82.34 175 | 29.65 387 | 75.23 187 | 75.97 312 |
|
| UGNet | | | 68.81 163 | 67.39 175 | 73.06 148 | 78.33 166 | 54.47 140 | 79.77 108 | 75.40 228 | 60.45 96 | 63.22 247 | 84.40 155 | 32.71 316 | 80.91 205 | 51.71 229 | 80.56 113 | 83.81 178 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LFMVS | | | 71.78 100 | 71.59 89 | 72.32 164 | 83.40 70 | 46.38 264 | 79.75 109 | 71.08 275 | 64.18 32 | 72.80 92 | 88.64 63 | 42.58 204 | 83.72 140 | 57.41 180 | 84.49 70 | 86.86 64 |
|
| OMC-MVS | | | 71.40 109 | 70.60 111 | 73.78 119 | 76.60 222 | 53.15 163 | 79.74 110 | 79.78 147 | 58.37 144 | 68.75 146 | 86.45 111 | 45.43 175 | 80.60 210 | 62.58 140 | 77.73 155 | 87.58 45 |
|
| casdiffmvs_mvg |  | | 76.14 45 | 76.30 39 | 75.66 77 | 76.46 226 | 51.83 192 | 79.67 111 | 85.08 33 | 65.02 19 | 75.84 39 | 88.58 64 | 59.42 22 | 85.08 111 | 72.75 60 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| æ— å…ˆéªŒ | | | | | | | | 79.66 112 | 74.30 248 | 48.40 305 | | | | 80.78 208 | 53.62 211 | | 79.03 277 |
|
| Effi-MVS+ | | | 73.31 75 | 72.54 80 | 75.62 79 | 77.87 182 | 53.64 153 | 79.62 113 | 79.61 151 | 61.63 77 | 72.02 103 | 82.61 188 | 56.44 39 | 85.97 91 | 63.99 128 | 79.07 136 | 87.25 56 |
|
| GDP-MVS | | | 72.64 84 | 71.28 99 | 76.70 57 | 77.72 188 | 54.22 144 | 79.57 114 | 84.45 43 | 55.30 205 | 71.38 111 | 86.97 91 | 39.94 231 | 87.00 65 | 67.02 103 | 79.20 132 | 88.89 9 |
|
| PAPR | | | 71.72 103 | 70.82 107 | 74.41 104 | 81.20 101 | 51.17 195 | 79.55 115 | 83.33 79 | 55.81 193 | 66.93 184 | 84.61 150 | 50.95 105 | 86.06 87 | 55.79 191 | 79.20 132 | 86.00 97 |
|
| ACMH | | 55.70 15 | 65.20 233 | 63.57 236 | 70.07 216 | 78.07 176 | 52.01 189 | 79.48 116 | 79.69 148 | 55.75 195 | 56.59 326 | 80.98 227 | 27.12 359 | 80.94 202 | 42.90 308 | 71.58 238 | 77.25 300 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ETV-MVS | | | 74.46 64 | 73.84 68 | 76.33 67 | 79.27 137 | 55.24 132 | 79.22 117 | 85.00 38 | 64.97 21 | 72.65 95 | 79.46 257 | 53.65 71 | 87.87 44 | 67.45 98 | 82.91 86 | 85.89 102 |
|
| BP-MVS1 | | | 73.41 73 | 72.25 83 | 76.88 54 | 76.68 219 | 53.70 151 | 79.15 118 | 81.07 128 | 60.66 92 | 71.81 104 | 87.39 83 | 40.93 226 | 87.24 54 | 71.23 75 | 81.29 106 | 89.71 2 |
|
| 原ACMM2 | | | | | | | | 79.02 119 | | | | | | | | | |
|
| GeoE | | | 71.01 112 | 70.15 121 | 73.60 134 | 79.57 131 | 52.17 184 | 78.93 120 | 78.12 186 | 58.02 151 | 67.76 171 | 83.87 166 | 52.36 84 | 82.72 165 | 56.90 182 | 75.79 181 | 85.92 100 |
|
| UA-Net | | | 73.13 76 | 72.93 76 | 73.76 121 | 83.58 66 | 51.66 193 | 78.75 121 | 77.66 193 | 67.75 4 | 72.61 96 | 89.42 50 | 49.82 115 | 83.29 148 | 53.61 212 | 83.14 80 | 86.32 87 |
|
| VDDNet | | | 71.81 99 | 71.33 97 | 73.26 146 | 82.80 78 | 47.60 255 | 78.74 122 | 75.27 230 | 59.59 123 | 72.94 89 | 89.40 51 | 41.51 219 | 83.91 137 | 58.75 172 | 82.99 83 | 88.26 20 |
|
| v10 | | | 70.21 129 | 69.02 139 | 73.81 118 | 73.51 270 | 50.92 201 | 78.74 122 | 81.39 113 | 60.05 111 | 66.39 194 | 81.83 211 | 47.58 144 | 85.41 108 | 62.80 139 | 68.86 284 | 85.09 140 |
|
| CANet_DTU | | | 68.18 180 | 67.71 166 | 69.59 226 | 74.83 249 | 46.24 266 | 78.66 124 | 76.85 206 | 59.60 120 | 63.45 245 | 82.09 207 | 35.25 282 | 77.41 264 | 59.88 164 | 78.76 141 | 85.14 136 |
|
| MVSMamba_PlusPlus | | | 75.75 51 | 75.44 49 | 76.67 60 | 80.84 105 | 53.06 166 | 78.62 125 | 85.13 32 | 59.65 118 | 71.53 109 | 87.47 81 | 56.92 34 | 88.17 35 | 72.18 66 | 86.63 56 | 88.80 10 |
|
| v8 | | | 70.33 127 | 69.28 134 | 73.49 137 | 73.15 273 | 50.22 214 | 78.62 125 | 80.78 135 | 60.79 89 | 66.45 193 | 82.11 206 | 49.35 120 | 84.98 114 | 63.58 134 | 68.71 285 | 85.28 132 |
|
| alignmvs | | | 73.86 69 | 73.99 65 | 73.45 139 | 78.20 169 | 50.50 211 | 78.57 127 | 82.43 95 | 59.40 125 | 76.57 36 | 86.71 99 | 56.42 40 | 81.23 196 | 65.84 113 | 81.79 100 | 88.62 12 |
|
| PLC |  | 56.13 14 | 65.09 234 | 63.21 243 | 70.72 206 | 81.04 103 | 54.87 137 | 78.57 127 | 77.47 196 | 48.51 302 | 55.71 332 | 81.89 209 | 33.71 300 | 79.71 224 | 41.66 317 | 70.37 252 | 77.58 293 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v7n | | | 69.01 161 | 67.36 177 | 73.98 114 | 72.51 287 | 52.65 174 | 78.54 129 | 81.30 120 | 60.26 106 | 62.67 259 | 81.62 214 | 43.61 194 | 84.49 126 | 57.01 181 | 68.70 286 | 84.79 150 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 279 | 58.81 287 | 68.64 240 | 74.63 255 | 52.51 179 | 78.42 130 | 73.30 258 | 49.92 284 | 50.96 367 | 81.51 218 | 23.06 379 | 79.40 229 | 31.63 376 | 65.85 306 | 74.01 338 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| fmvsm_s_conf0.5_n_a | | | 69.54 149 | 68.74 146 | 71.93 168 | 72.47 288 | 53.82 149 | 78.25 131 | 62.26 349 | 49.78 285 | 73.12 85 | 86.21 116 | 52.66 78 | 76.79 279 | 75.02 42 | 68.88 282 | 85.18 135 |
|
| CLD-MVS | | | 73.33 74 | 72.68 78 | 75.29 86 | 78.82 150 | 53.33 161 | 78.23 132 | 84.79 41 | 61.30 81 | 70.41 118 | 81.04 225 | 52.41 83 | 87.12 61 | 64.61 124 | 82.49 93 | 85.41 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| test_fmvsmconf0.1_n | | | 72.81 80 | 72.33 82 | 74.24 109 | 69.89 334 | 55.81 118 | 78.22 133 | 75.40 228 | 54.17 234 | 75.00 51 | 88.03 72 | 53.82 65 | 80.23 220 | 78.08 21 | 78.34 149 | 86.69 70 |
|
| test_fmvsmconf_n | | | 73.01 78 | 72.59 79 | 74.27 108 | 71.28 312 | 55.88 117 | 78.21 134 | 75.56 224 | 54.31 232 | 74.86 56 | 87.80 76 | 54.72 53 | 80.23 220 | 78.07 22 | 78.48 146 | 86.70 69 |
|
| casdiffmvs |  | | 74.80 56 | 74.89 57 | 74.53 101 | 75.59 238 | 50.37 212 | 78.17 135 | 85.06 35 | 62.80 58 | 74.40 64 | 87.86 74 | 57.88 27 | 83.61 143 | 69.46 84 | 82.79 90 | 89.59 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n_a | | | 69.32 155 | 68.44 155 | 71.96 167 | 70.91 316 | 53.78 150 | 78.12 136 | 62.30 348 | 49.35 291 | 73.20 81 | 86.55 108 | 51.99 90 | 76.79 279 | 74.83 44 | 68.68 287 | 85.32 130 |
|
| F-COLMAP | | | 63.05 258 | 60.87 274 | 69.58 228 | 76.99 215 | 53.63 154 | 78.12 136 | 76.16 213 | 47.97 311 | 52.41 362 | 81.61 215 | 27.87 352 | 78.11 251 | 40.07 323 | 66.66 301 | 77.00 303 |
|
| test_fmvsmconf0.01_n | | | 72.17 94 | 71.50 91 | 74.16 111 | 67.96 352 | 55.58 126 | 78.06 138 | 74.67 242 | 54.19 233 | 74.54 62 | 88.23 65 | 50.35 113 | 80.24 219 | 78.07 22 | 77.46 160 | 86.65 73 |
|
| EG-PatchMatch MVS | | | 64.71 237 | 62.87 246 | 70.22 212 | 77.68 190 | 53.48 157 | 77.99 139 | 78.82 164 | 53.37 243 | 56.03 331 | 77.41 293 | 24.75 376 | 84.04 133 | 46.37 272 | 73.42 210 | 73.14 341 |
|
| fmvsm_s_conf0.5_n | | | 69.58 147 | 68.84 143 | 71.79 173 | 72.31 293 | 52.90 169 | 77.90 140 | 62.43 347 | 49.97 283 | 72.85 91 | 85.90 127 | 52.21 86 | 76.49 285 | 75.75 34 | 70.26 257 | 85.97 98 |
|
| dcpmvs_2 | | | 74.55 63 | 75.23 53 | 72.48 159 | 82.34 80 | 53.34 160 | 77.87 141 | 81.46 111 | 57.80 159 | 75.49 42 | 86.81 94 | 62.22 13 | 77.75 258 | 71.09 76 | 82.02 97 | 86.34 83 |
|
| tttt0517 | | | 67.83 188 | 65.66 213 | 74.33 106 | 76.69 218 | 50.82 203 | 77.86 142 | 73.99 253 | 54.54 228 | 64.64 231 | 82.53 193 | 35.06 284 | 85.50 103 | 55.71 192 | 69.91 264 | 86.67 71 |
|
| fmvsm_s_conf0.1_n | | | 69.41 154 | 68.60 149 | 71.83 171 | 71.07 314 | 52.88 171 | 77.85 143 | 62.44 346 | 49.58 288 | 72.97 88 | 86.22 115 | 51.68 96 | 76.48 286 | 75.53 37 | 70.10 260 | 86.14 93 |
|
| v1144 | | | 70.42 125 | 69.31 133 | 73.76 121 | 73.22 271 | 50.64 206 | 77.83 144 | 81.43 112 | 58.58 140 | 69.40 137 | 81.16 222 | 47.53 146 | 85.29 110 | 64.01 127 | 70.64 246 | 85.34 129 |
|
| CNLPA | | | 65.43 228 | 64.02 228 | 69.68 224 | 78.73 153 | 58.07 81 | 77.82 145 | 70.71 279 | 51.49 262 | 61.57 277 | 83.58 173 | 38.23 254 | 70.82 315 | 43.90 296 | 70.10 260 | 80.16 259 |
|
| fmvsm_s_conf0.5_n_3 | | | 73.55 71 | 74.39 61 | 71.03 200 | 74.09 267 | 51.86 191 | 77.77 146 | 75.60 222 | 61.18 83 | 78.67 23 | 88.98 57 | 55.88 44 | 77.73 259 | 78.69 14 | 78.68 143 | 83.50 193 |
|
| VDD-MVS | | | 72.50 86 | 72.09 85 | 73.75 123 | 81.58 90 | 49.69 225 | 77.76 147 | 77.63 194 | 63.21 47 | 73.21 80 | 89.02 56 | 42.14 208 | 83.32 147 | 61.72 149 | 82.50 92 | 88.25 21 |
|
| v1192 | | | 69.97 134 | 68.68 147 | 73.85 116 | 73.19 272 | 50.94 199 | 77.68 148 | 81.36 115 | 57.51 161 | 68.95 145 | 80.85 232 | 45.28 178 | 85.33 109 | 62.97 138 | 70.37 252 | 85.27 133 |
|
| v2v482 | | | 70.50 123 | 69.45 132 | 73.66 129 | 72.62 283 | 50.03 219 | 77.58 149 | 80.51 139 | 59.90 113 | 69.52 133 | 82.14 204 | 47.53 146 | 84.88 120 | 65.07 119 | 70.17 258 | 86.09 95 |
|
| WR-MVS_H | | | 67.02 205 | 66.92 189 | 67.33 256 | 77.95 181 | 37.75 347 | 77.57 150 | 82.11 100 | 62.03 73 | 62.65 260 | 82.48 194 | 50.57 110 | 79.46 228 | 42.91 307 | 64.01 321 | 84.79 150 |
|
| Anonymous20240529 | | | 69.91 135 | 69.02 139 | 72.56 157 | 80.19 119 | 47.65 253 | 77.56 151 | 80.99 131 | 55.45 203 | 69.88 129 | 86.76 95 | 39.24 242 | 82.18 177 | 54.04 207 | 77.10 168 | 87.85 33 |
|
| v144192 | | | 69.71 140 | 68.51 150 | 73.33 144 | 73.10 274 | 50.13 216 | 77.54 152 | 80.64 136 | 56.65 171 | 68.57 149 | 80.55 235 | 46.87 160 | 84.96 116 | 62.98 137 | 69.66 271 | 84.89 147 |
|
| baseline | | | 74.61 61 | 74.70 58 | 74.34 105 | 75.70 234 | 49.99 220 | 77.54 152 | 84.63 42 | 62.73 59 | 73.98 69 | 87.79 77 | 57.67 30 | 83.82 139 | 69.49 82 | 82.74 91 | 89.20 7 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 195 | 65.33 218 | 73.48 138 | 72.94 278 | 57.78 86 | 77.47 154 | 76.88 205 | 57.60 160 | 61.97 270 | 76.85 300 | 39.31 239 | 80.49 214 | 54.72 201 | 70.28 256 | 82.17 224 |
|
| v1921920 | | | 69.47 152 | 68.17 159 | 73.36 143 | 73.06 275 | 50.10 217 | 77.39 155 | 80.56 137 | 56.58 178 | 68.59 147 | 80.37 237 | 44.72 183 | 84.98 114 | 62.47 143 | 69.82 266 | 85.00 142 |
|
| tt0805 | | | 67.77 189 | 67.24 184 | 69.34 231 | 74.87 248 | 40.08 324 | 77.36 156 | 81.37 114 | 55.31 204 | 66.33 195 | 84.65 148 | 37.35 262 | 82.55 170 | 55.65 194 | 72.28 231 | 85.39 128 |
|
| GBi-Net | | | 67.21 197 | 66.55 192 | 69.19 232 | 77.63 193 | 43.33 296 | 77.31 157 | 77.83 190 | 56.62 174 | 65.04 224 | 82.70 184 | 41.85 212 | 80.33 216 | 47.18 265 | 72.76 221 | 83.92 173 |
|
| test1 | | | 67.21 197 | 66.55 192 | 69.19 232 | 77.63 193 | 43.33 296 | 77.31 157 | 77.83 190 | 56.62 174 | 65.04 224 | 82.70 184 | 41.85 212 | 80.33 216 | 47.18 265 | 72.76 221 | 83.92 173 |
|
| FMVSNet1 | | | 66.70 212 | 65.87 209 | 69.19 232 | 77.49 201 | 43.33 296 | 77.31 157 | 77.83 190 | 56.45 179 | 64.60 232 | 82.70 184 | 38.08 256 | 80.33 216 | 46.08 274 | 72.31 230 | 83.92 173 |
|
| MVS_111021_HR | | | 74.02 67 | 73.46 72 | 75.69 76 | 83.01 75 | 60.63 40 | 77.29 160 | 78.40 183 | 61.18 83 | 70.58 116 | 85.97 125 | 54.18 59 | 84.00 136 | 67.52 97 | 82.98 85 | 82.45 217 |
|
| EIA-MVS | | | 71.78 100 | 70.60 111 | 75.30 85 | 79.85 125 | 53.54 156 | 77.27 161 | 83.26 83 | 57.92 155 | 66.49 191 | 79.39 259 | 52.07 89 | 86.69 72 | 60.05 161 | 79.14 135 | 85.66 113 |
|
| v1240 | | | 69.24 158 | 67.91 162 | 73.25 147 | 73.02 277 | 49.82 221 | 77.21 162 | 80.54 138 | 56.43 180 | 68.34 153 | 80.51 236 | 43.33 197 | 84.99 112 | 62.03 147 | 69.77 269 | 84.95 146 |
|
| fmvsm_l_conf0.5_n | | | 70.99 113 | 70.82 107 | 71.48 182 | 71.45 305 | 54.40 142 | 77.18 163 | 70.46 281 | 48.67 299 | 75.17 46 | 86.86 92 | 53.77 66 | 76.86 277 | 76.33 31 | 77.51 159 | 83.17 204 |
|
| jason | | | 69.65 144 | 68.39 157 | 73.43 141 | 78.27 168 | 56.88 101 | 77.12 164 | 73.71 256 | 46.53 327 | 69.34 138 | 83.22 178 | 43.37 196 | 79.18 233 | 64.77 121 | 79.20 132 | 84.23 163 |
| jason: jason. |
| PAPM | | | 67.92 186 | 66.69 190 | 71.63 179 | 78.09 175 | 49.02 234 | 77.09 165 | 81.24 124 | 51.04 270 | 60.91 283 | 83.98 164 | 47.71 141 | 84.99 112 | 40.81 320 | 79.32 130 | 80.90 248 |
|
| EI-MVSNet-Vis-set | | | 72.42 90 | 71.59 89 | 74.91 88 | 78.47 159 | 54.02 146 | 77.05 166 | 79.33 157 | 65.03 18 | 71.68 107 | 79.35 261 | 52.75 77 | 84.89 118 | 66.46 105 | 74.23 194 | 85.83 104 |
|
| PEN-MVS | | | 66.60 214 | 66.45 194 | 67.04 257 | 77.11 211 | 36.56 360 | 77.03 167 | 80.42 141 | 62.95 50 | 62.51 265 | 84.03 162 | 46.69 161 | 79.07 239 | 44.22 290 | 63.08 331 | 85.51 118 |
|
| FIs | | | 70.82 117 | 71.43 93 | 68.98 236 | 78.33 166 | 38.14 343 | 76.96 168 | 83.59 68 | 61.02 86 | 67.33 176 | 86.73 97 | 55.07 48 | 81.64 185 | 54.61 204 | 79.22 131 | 87.14 58 |
|
| PS-CasMVS | | | 66.42 218 | 66.32 202 | 66.70 261 | 77.60 199 | 36.30 365 | 76.94 169 | 79.61 151 | 62.36 65 | 62.43 267 | 83.66 170 | 45.69 167 | 78.37 247 | 45.35 287 | 63.26 329 | 85.42 126 |
|
| h-mvs33 | | | 72.71 83 | 71.49 92 | 76.40 65 | 81.99 85 | 59.58 55 | 76.92 170 | 76.74 209 | 60.40 97 | 74.81 57 | 85.95 126 | 45.54 171 | 85.76 96 | 70.41 79 | 70.61 248 | 83.86 177 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 123 | 70.27 118 | 71.18 195 | 71.30 311 | 54.09 145 | 76.89 171 | 69.87 285 | 47.90 312 | 74.37 65 | 86.49 109 | 53.07 76 | 76.69 282 | 75.41 38 | 77.11 167 | 82.76 211 |
|
| thisisatest0530 | | | 67.92 186 | 65.78 211 | 74.33 106 | 76.29 227 | 51.03 198 | 76.89 171 | 74.25 249 | 53.67 240 | 65.59 209 | 81.76 212 | 35.15 283 | 85.50 103 | 55.94 187 | 72.47 226 | 86.47 78 |
|
| test_0402 | | | 63.25 255 | 61.01 271 | 69.96 217 | 80.00 123 | 54.37 143 | 76.86 173 | 72.02 270 | 54.58 227 | 58.71 307 | 80.79 234 | 35.00 285 | 84.36 128 | 26.41 399 | 64.71 315 | 71.15 368 |
|
| CP-MVSNet | | | 66.49 217 | 66.41 198 | 66.72 259 | 77.67 191 | 36.33 363 | 76.83 174 | 79.52 153 | 62.45 63 | 62.54 263 | 83.47 176 | 46.32 163 | 78.37 247 | 45.47 285 | 63.43 328 | 85.45 123 |
|
| EI-MVSNet-UG-set | | | 71.92 98 | 71.06 104 | 74.52 102 | 77.98 180 | 53.56 155 | 76.62 175 | 79.16 158 | 64.40 27 | 71.18 112 | 78.95 266 | 52.19 87 | 84.66 125 | 65.47 116 | 73.57 205 | 85.32 130 |
|
| RRT-MVS | | | 71.46 107 | 70.70 110 | 73.74 124 | 77.76 187 | 49.30 231 | 76.60 176 | 80.45 140 | 61.25 82 | 68.17 156 | 84.78 145 | 44.64 184 | 84.90 117 | 64.79 120 | 77.88 154 | 87.03 59 |
|
| lupinMVS | | | 69.57 148 | 68.28 158 | 73.44 140 | 78.76 151 | 57.15 97 | 76.57 177 | 73.29 259 | 46.19 330 | 69.49 134 | 82.18 200 | 43.99 192 | 79.23 232 | 64.66 122 | 79.37 127 | 83.93 172 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 126 | 70.10 123 | 71.17 196 | 78.64 155 | 42.97 302 | 76.53 178 | 81.16 127 | 66.95 6 | 68.53 150 | 85.42 139 | 51.61 97 | 83.07 152 | 52.32 220 | 69.70 270 | 87.46 47 |
|
| TAPA-MVS | | 59.36 10 | 66.60 214 | 65.20 220 | 70.81 203 | 76.63 221 | 48.75 239 | 76.52 179 | 80.04 146 | 50.64 275 | 65.24 219 | 84.93 142 | 39.15 243 | 78.54 246 | 36.77 343 | 76.88 170 | 85.14 136 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DTE-MVSNet | | | 65.58 226 | 65.34 217 | 66.31 268 | 76.06 231 | 34.79 373 | 76.43 180 | 79.38 156 | 62.55 61 | 61.66 275 | 83.83 167 | 45.60 169 | 79.15 237 | 41.64 319 | 60.88 346 | 85.00 142 |
|
| anonymousdsp | | | 67.00 206 | 64.82 223 | 73.57 135 | 70.09 330 | 56.13 110 | 76.35 181 | 77.35 200 | 48.43 304 | 64.99 227 | 80.84 233 | 33.01 309 | 80.34 215 | 64.66 122 | 67.64 294 | 84.23 163 |
|
| MVP-Stereo | | | 65.41 229 | 63.80 232 | 70.22 212 | 77.62 197 | 55.53 127 | 76.30 182 | 78.53 174 | 50.59 276 | 56.47 329 | 78.65 270 | 39.84 234 | 82.68 166 | 44.10 294 | 72.12 233 | 72.44 350 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MVS_Test | | | 72.45 88 | 72.46 81 | 72.42 163 | 74.88 247 | 48.50 243 | 76.28 183 | 83.14 86 | 59.40 125 | 72.46 98 | 84.68 146 | 55.66 45 | 81.12 197 | 65.98 112 | 79.66 123 | 87.63 42 |
|
| IterMVS-LS | | | 69.22 159 | 68.48 151 | 71.43 187 | 74.44 260 | 49.40 229 | 76.23 184 | 77.55 195 | 59.60 120 | 65.85 206 | 81.59 217 | 51.28 100 | 81.58 188 | 59.87 165 | 69.90 265 | 83.30 196 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| æ–°å‡ ä½•2 | | | | | | | | 76.12 185 | | | | | | | | | |
|
| FMVSNet2 | | | 66.93 207 | 66.31 203 | 68.79 239 | 77.63 193 | 42.98 301 | 76.11 186 | 77.47 196 | 56.62 174 | 65.22 221 | 82.17 202 | 41.85 212 | 80.18 222 | 47.05 268 | 72.72 224 | 83.20 200 |
|
| 旧先验2 | | | | | | | | 76.08 187 | | 45.32 338 | 76.55 37 | | | 65.56 349 | 58.75 172 | | |
|
| BH-untuned | | | 68.27 177 | 67.29 179 | 71.21 193 | 79.74 126 | 53.22 162 | 76.06 188 | 77.46 198 | 57.19 164 | 66.10 198 | 81.61 215 | 45.37 177 | 83.50 145 | 45.42 286 | 76.68 173 | 76.91 306 |
|
| FC-MVSNet-test | | | 69.80 139 | 70.58 113 | 67.46 252 | 77.61 198 | 34.73 376 | 76.05 189 | 83.19 84 | 60.84 88 | 65.88 205 | 86.46 110 | 54.52 56 | 80.76 209 | 52.52 219 | 78.12 150 | 86.91 62 |
|
| PCF-MVS | | 61.88 8 | 70.95 114 | 69.49 130 | 75.35 83 | 77.63 193 | 55.71 120 | 76.04 190 | 81.81 104 | 50.30 278 | 69.66 132 | 85.40 140 | 52.51 80 | 84.89 118 | 51.82 227 | 80.24 117 | 85.45 123 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| UniMVSNet_NR-MVSNet | | | 71.11 110 | 71.00 105 | 71.44 185 | 79.20 139 | 44.13 288 | 76.02 191 | 82.60 94 | 66.48 11 | 68.20 154 | 84.60 151 | 56.82 36 | 82.82 163 | 54.62 202 | 70.43 250 | 87.36 54 |
|
| UniMVSNet (Re) | | | 70.63 120 | 70.20 119 | 71.89 169 | 78.55 156 | 45.29 278 | 75.94 192 | 82.92 88 | 63.68 40 | 68.16 157 | 83.59 172 | 53.89 63 | 83.49 146 | 53.97 208 | 71.12 243 | 86.89 63 |
|
| test_fmvsmvis_n_1920 | | | 70.84 115 | 70.38 116 | 72.22 166 | 71.16 313 | 55.39 130 | 75.86 193 | 72.21 268 | 49.03 295 | 73.28 79 | 86.17 118 | 51.83 93 | 77.29 267 | 75.80 33 | 78.05 151 | 83.98 171 |
|
| EPNet_dtu | | | 61.90 271 | 61.97 257 | 61.68 312 | 72.89 279 | 39.78 328 | 75.85 194 | 65.62 322 | 55.09 211 | 54.56 347 | 79.36 260 | 37.59 259 | 67.02 341 | 39.80 326 | 76.95 169 | 78.25 283 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MGCFI-Net | | | 72.45 88 | 73.34 74 | 69.81 223 | 77.77 186 | 43.21 299 | 75.84 195 | 81.18 125 | 59.59 123 | 75.45 43 | 86.64 100 | 57.74 28 | 77.94 253 | 63.92 129 | 81.90 99 | 88.30 19 |
|
| v148 | | | 68.24 179 | 67.19 186 | 71.40 188 | 70.43 324 | 47.77 252 | 75.76 196 | 77.03 204 | 58.91 132 | 67.36 175 | 80.10 244 | 48.60 132 | 81.89 181 | 60.01 162 | 66.52 303 | 84.53 155 |
|
| test_fmvsm_n_1920 | | | 71.73 102 | 71.14 102 | 73.50 136 | 72.52 286 | 56.53 104 | 75.60 197 | 76.16 213 | 48.11 308 | 77.22 32 | 85.56 134 | 53.10 75 | 77.43 263 | 74.86 43 | 77.14 166 | 86.55 76 |
|
| SixPastTwentyTwo | | | 61.65 274 | 58.80 289 | 70.20 214 | 75.80 233 | 47.22 258 | 75.59 198 | 69.68 287 | 54.61 225 | 54.11 351 | 79.26 262 | 27.07 360 | 82.96 154 | 43.27 302 | 49.79 387 | 80.41 255 |
|
| DELS-MVS | | | 74.76 57 | 74.46 60 | 75.65 78 | 77.84 184 | 52.25 183 | 75.59 198 | 84.17 49 | 63.76 38 | 73.15 82 | 82.79 183 | 59.58 20 | 86.80 69 | 67.24 99 | 86.04 59 | 87.89 30 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| FA-MVS(test-final) | | | 69.82 137 | 68.48 151 | 73.84 117 | 78.44 160 | 50.04 218 | 75.58 200 | 78.99 162 | 58.16 147 | 67.59 172 | 82.14 204 | 42.66 202 | 85.63 97 | 56.60 183 | 76.19 177 | 85.84 103 |
|
| Baseline_NR-MVSNet | | | 67.05 204 | 67.56 167 | 65.50 284 | 75.65 235 | 37.70 349 | 75.42 201 | 74.65 243 | 59.90 113 | 68.14 158 | 83.15 181 | 49.12 127 | 77.20 268 | 52.23 221 | 69.78 267 | 81.60 230 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 286 | 58.14 296 | 65.69 282 | 70.47 323 | 44.82 280 | 75.33 202 | 70.86 278 | 45.04 339 | 56.06 330 | 76.00 314 | 26.89 363 | 79.65 225 | 35.36 355 | 67.29 296 | 72.60 346 |
|
| xiu_mvs_v1_base_debu | | | 68.58 169 | 67.28 180 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 203 | 75.09 236 | 51.61 258 | 70.04 122 | 81.41 219 | 32.79 312 | 79.02 240 | 63.81 131 | 77.31 161 | 81.22 240 |
|
| xiu_mvs_v1_base | | | 68.58 169 | 67.28 180 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 203 | 75.09 236 | 51.61 258 | 70.04 122 | 81.41 219 | 32.79 312 | 79.02 240 | 63.81 131 | 77.31 161 | 81.22 240 |
|
| xiu_mvs_v1_base_debi | | | 68.58 169 | 67.28 180 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 203 | 75.09 236 | 51.61 258 | 70.04 122 | 81.41 219 | 32.79 312 | 79.02 240 | 63.81 131 | 77.31 161 | 81.22 240 |
|
| EI-MVSNet | | | 69.27 157 | 68.44 155 | 71.73 175 | 74.47 258 | 49.39 230 | 75.20 206 | 78.45 179 | 59.60 120 | 69.16 143 | 76.51 308 | 51.29 99 | 82.50 171 | 59.86 166 | 71.45 240 | 83.30 196 |
|
| CVMVSNet | | | 59.63 291 | 59.14 284 | 61.08 320 | 74.47 258 | 38.84 337 | 75.20 206 | 68.74 298 | 31.15 393 | 58.24 313 | 76.51 308 | 32.39 323 | 68.58 328 | 49.77 241 | 65.84 307 | 75.81 314 |
|
| ET-MVSNet_ETH3D | | | 67.96 185 | 65.72 212 | 74.68 93 | 76.67 220 | 55.62 125 | 75.11 208 | 74.74 240 | 52.91 246 | 60.03 290 | 80.12 243 | 33.68 301 | 82.64 168 | 61.86 148 | 76.34 175 | 85.78 105 |
|
| xiu_mvs_v2_base | | | 70.52 121 | 69.75 125 | 72.84 152 | 81.21 100 | 55.63 123 | 75.11 208 | 78.92 163 | 54.92 220 | 69.96 128 | 79.68 252 | 47.00 159 | 82.09 178 | 61.60 151 | 79.37 127 | 80.81 250 |
|
| K. test v3 | | | 60.47 283 | 57.11 301 | 70.56 208 | 73.74 269 | 48.22 246 | 75.10 210 | 62.55 344 | 58.27 146 | 53.62 357 | 76.31 312 | 27.81 353 | 81.59 187 | 47.42 261 | 39.18 402 | 81.88 228 |
|
| Fast-Effi-MVS+ | | | 70.28 128 | 69.12 138 | 73.73 125 | 78.50 157 | 51.50 194 | 75.01 211 | 79.46 155 | 56.16 187 | 68.59 147 | 79.55 255 | 53.97 61 | 84.05 132 | 53.34 214 | 77.53 158 | 85.65 114 |
|
| DU-MVS | | | 70.01 132 | 69.53 129 | 71.44 185 | 78.05 177 | 44.13 288 | 75.01 211 | 81.51 110 | 64.37 28 | 68.20 154 | 84.52 152 | 49.12 127 | 82.82 163 | 54.62 202 | 70.43 250 | 87.37 52 |
|
| FMVSNet3 | | | 66.32 219 | 65.61 214 | 68.46 242 | 76.48 225 | 42.34 305 | 74.98 213 | 77.15 203 | 55.83 192 | 65.04 224 | 81.16 222 | 39.91 232 | 80.14 223 | 47.18 265 | 72.76 221 | 82.90 209 |
|
| mvsmamba | | | 68.47 173 | 66.56 191 | 74.21 110 | 79.60 129 | 52.95 167 | 74.94 214 | 75.48 226 | 52.09 255 | 60.10 288 | 83.27 177 | 36.54 273 | 84.70 122 | 59.32 171 | 77.69 156 | 84.99 144 |
|
| MTAPA | | | 76.90 34 | 76.42 38 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 215 | 80.97 132 | 65.13 15 | 75.77 40 | 90.88 19 | 48.63 130 | 86.66 73 | 77.23 25 | 88.17 33 | 84.81 149 |
|
| PS-MVSNAJ | | | 70.51 122 | 69.70 127 | 72.93 150 | 81.52 91 | 55.79 119 | 74.92 215 | 79.00 161 | 55.04 217 | 69.88 129 | 78.66 269 | 47.05 155 | 82.19 176 | 61.61 150 | 79.58 124 | 80.83 249 |
|
| MVS_111021_LR | | | 69.50 151 | 68.78 145 | 71.65 178 | 78.38 162 | 59.33 59 | 74.82 217 | 70.11 283 | 58.08 148 | 67.83 167 | 84.68 146 | 41.96 210 | 76.34 289 | 65.62 115 | 77.54 157 | 79.30 274 |
|
| ECVR-MVS |  | | 67.72 190 | 67.51 171 | 68.35 244 | 79.46 133 | 36.29 366 | 74.79 218 | 66.93 312 | 58.72 135 | 67.19 178 | 88.05 70 | 36.10 275 | 81.38 191 | 52.07 223 | 84.25 72 | 87.39 50 |
|
| test_yl | | | 69.69 141 | 69.13 136 | 71.36 189 | 78.37 164 | 45.74 271 | 74.71 219 | 80.20 144 | 57.91 156 | 70.01 126 | 83.83 167 | 42.44 205 | 82.87 159 | 54.97 198 | 79.72 121 | 85.48 119 |
|
| DCV-MVSNet | | | 69.69 141 | 69.13 136 | 71.36 189 | 78.37 164 | 45.74 271 | 74.71 219 | 80.20 144 | 57.91 156 | 70.01 126 | 83.83 167 | 42.44 205 | 82.87 159 | 54.97 198 | 79.72 121 | 85.48 119 |
|
| TransMVSNet (Re) | | | 64.72 236 | 64.33 226 | 65.87 280 | 75.22 243 | 38.56 339 | 74.66 221 | 75.08 239 | 58.90 133 | 61.79 273 | 82.63 187 | 51.18 101 | 78.07 252 | 43.63 300 | 55.87 369 | 80.99 247 |
|
| BH-w/o | | | 66.85 208 | 65.83 210 | 69.90 221 | 79.29 135 | 52.46 180 | 74.66 221 | 76.65 210 | 54.51 229 | 64.85 228 | 78.12 275 | 45.59 170 | 82.95 155 | 43.26 303 | 75.54 185 | 74.27 335 |
|
| PVSNet_BlendedMVS | | | 68.56 172 | 67.72 164 | 71.07 199 | 77.03 213 | 50.57 207 | 74.50 223 | 81.52 108 | 53.66 241 | 64.22 239 | 79.72 251 | 49.13 125 | 82.87 159 | 55.82 189 | 73.92 198 | 79.77 269 |
|
| MonoMVSNet | | | 64.15 244 | 63.31 241 | 66.69 262 | 70.51 322 | 44.12 290 | 74.47 224 | 74.21 250 | 57.81 158 | 63.03 252 | 76.62 304 | 38.33 251 | 77.31 266 | 54.22 206 | 60.59 351 | 78.64 280 |
|
| c3_l | | | 68.33 176 | 67.56 167 | 70.62 207 | 70.87 317 | 46.21 267 | 74.47 224 | 78.80 166 | 56.22 186 | 66.19 197 | 78.53 274 | 51.88 91 | 81.40 190 | 62.08 144 | 69.04 280 | 84.25 162 |
|
| test2506 | | | 65.33 231 | 64.61 224 | 67.50 251 | 79.46 133 | 34.19 381 | 74.43 226 | 51.92 387 | 58.72 135 | 66.75 187 | 88.05 70 | 25.99 368 | 80.92 204 | 51.94 225 | 84.25 72 | 87.39 50 |
|
| BH-RMVSNet | | | 68.81 163 | 67.42 174 | 72.97 149 | 80.11 122 | 52.53 178 | 74.26 227 | 76.29 212 | 58.48 142 | 68.38 152 | 84.20 157 | 42.59 203 | 83.83 138 | 46.53 270 | 75.91 179 | 82.56 212 |
|
| NR-MVSNet | | | 69.54 149 | 68.85 142 | 71.59 180 | 78.05 177 | 43.81 293 | 74.20 228 | 80.86 134 | 65.18 14 | 62.76 257 | 84.52 152 | 52.35 85 | 83.59 144 | 50.96 235 | 70.78 245 | 87.37 52 |
|
| UniMVSNet_ETH3D | | | 67.60 192 | 67.07 188 | 69.18 235 | 77.39 204 | 42.29 306 | 74.18 229 | 75.59 223 | 60.37 100 | 66.77 186 | 86.06 122 | 37.64 258 | 78.93 245 | 52.16 222 | 73.49 207 | 86.32 87 |
|
| VPA-MVSNet | | | 69.02 160 | 69.47 131 | 67.69 250 | 77.42 203 | 41.00 320 | 74.04 230 | 79.68 149 | 60.06 110 | 69.26 141 | 84.81 144 | 51.06 104 | 77.58 261 | 54.44 205 | 74.43 192 | 84.48 157 |
|
| miper_ehance_all_eth | | | 68.03 182 | 67.24 184 | 70.40 211 | 70.54 321 | 46.21 267 | 73.98 231 | 78.68 170 | 55.07 214 | 66.05 199 | 77.80 285 | 52.16 88 | 81.31 193 | 61.53 153 | 69.32 274 | 83.67 186 |
|
| hse-mvs2 | | | 71.04 111 | 69.86 124 | 74.60 98 | 79.58 130 | 57.12 99 | 73.96 232 | 75.25 231 | 60.40 97 | 74.81 57 | 81.95 208 | 45.54 171 | 82.90 156 | 70.41 79 | 66.83 300 | 83.77 182 |
|
| 1314 | | | 64.61 239 | 63.21 243 | 68.80 238 | 71.87 300 | 47.46 256 | 73.95 233 | 78.39 184 | 42.88 360 | 59.97 291 | 76.60 307 | 38.11 255 | 79.39 230 | 54.84 200 | 72.32 229 | 79.55 270 |
|
| MVS | | | 67.37 195 | 66.33 201 | 70.51 210 | 75.46 240 | 50.94 199 | 73.95 233 | 81.85 103 | 41.57 367 | 62.54 263 | 78.57 273 | 47.98 136 | 85.47 105 | 52.97 217 | 82.05 96 | 75.14 321 |
|
| AUN-MVS | | | 68.45 175 | 66.41 198 | 74.57 100 | 79.53 132 | 57.08 100 | 73.93 235 | 75.23 232 | 54.44 230 | 66.69 188 | 81.85 210 | 37.10 268 | 82.89 157 | 62.07 145 | 66.84 299 | 83.75 183 |
|
| OurMVSNet-221017-0 | | | 61.37 278 | 58.63 291 | 69.61 225 | 72.05 296 | 48.06 248 | 73.93 235 | 72.51 265 | 47.23 322 | 54.74 344 | 80.92 229 | 21.49 386 | 81.24 195 | 48.57 254 | 56.22 368 | 79.53 271 |
|
| test1111 | | | 67.21 197 | 67.14 187 | 67.42 253 | 79.24 138 | 34.76 375 | 73.89 237 | 65.65 321 | 58.71 137 | 66.96 183 | 87.95 73 | 36.09 276 | 80.53 211 | 52.03 224 | 83.79 77 | 86.97 61 |
|
| cl22 | | | 67.47 194 | 66.45 194 | 70.54 209 | 69.85 335 | 46.49 263 | 73.85 238 | 77.35 200 | 55.07 214 | 65.51 210 | 77.92 281 | 47.64 143 | 81.10 198 | 61.58 152 | 69.32 274 | 84.01 170 |
|
| TAMVS | | | 66.78 211 | 65.27 219 | 71.33 192 | 79.16 142 | 53.67 152 | 73.84 239 | 69.59 289 | 52.32 253 | 65.28 214 | 81.72 213 | 44.49 187 | 77.40 265 | 42.32 311 | 78.66 144 | 82.92 207 |
|
| WR-MVS | | | 68.47 173 | 68.47 153 | 68.44 243 | 80.20 118 | 39.84 327 | 73.75 240 | 76.07 216 | 64.68 22 | 68.11 159 | 83.63 171 | 50.39 112 | 79.14 238 | 49.78 240 | 69.66 271 | 86.34 83 |
|
| eth_miper_zixun_eth | | | 67.63 191 | 66.28 204 | 71.67 177 | 71.60 303 | 48.33 245 | 73.68 241 | 77.88 188 | 55.80 194 | 65.91 202 | 78.62 272 | 47.35 152 | 82.88 158 | 59.45 168 | 66.25 304 | 83.81 178 |
|
| TR-MVS | | | 66.59 216 | 65.07 221 | 71.17 196 | 79.18 140 | 49.63 227 | 73.48 242 | 75.20 234 | 52.95 245 | 67.90 161 | 80.33 240 | 39.81 235 | 83.68 141 | 43.20 304 | 73.56 206 | 80.20 258 |
|
| fmvsm_s_conf0.1_n_2 | | | 69.64 145 | 69.01 141 | 71.52 181 | 71.66 302 | 51.04 197 | 73.39 243 | 67.14 310 | 55.02 218 | 75.11 47 | 87.64 78 | 42.94 201 | 77.01 272 | 75.55 36 | 72.63 225 | 86.52 77 |
|
| fmvsm_s_conf0.5_n_2 | | | 69.82 137 | 69.27 135 | 71.46 183 | 72.00 297 | 51.08 196 | 73.30 244 | 67.79 304 | 55.06 216 | 75.24 45 | 87.51 79 | 44.02 191 | 77.00 273 | 75.67 35 | 72.86 219 | 86.31 90 |
|
| cl____ | | | 67.18 200 | 66.26 205 | 69.94 218 | 70.20 327 | 45.74 271 | 73.30 244 | 76.83 207 | 55.10 209 | 65.27 215 | 79.57 254 | 47.39 150 | 80.53 211 | 59.41 170 | 69.22 278 | 83.53 192 |
|
| DIV-MVS_self_test | | | 67.18 200 | 66.26 205 | 69.94 218 | 70.20 327 | 45.74 271 | 73.29 246 | 76.83 207 | 55.10 209 | 65.27 215 | 79.58 253 | 47.38 151 | 80.53 211 | 59.43 169 | 69.22 278 | 83.54 191 |
|
| CDS-MVSNet | | | 66.80 210 | 65.37 216 | 71.10 198 | 78.98 145 | 53.13 165 | 73.27 247 | 71.07 276 | 52.15 254 | 64.72 229 | 80.23 242 | 43.56 195 | 77.10 269 | 45.48 284 | 78.88 137 | 83.05 206 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| pmmvs6 | | | 63.69 249 | 62.82 248 | 66.27 270 | 70.63 319 | 39.27 334 | 73.13 248 | 75.47 227 | 52.69 249 | 59.75 297 | 82.30 198 | 39.71 236 | 77.03 271 | 47.40 262 | 64.35 320 | 82.53 214 |
|
| IB-MVS | | 56.42 12 | 65.40 230 | 62.73 249 | 73.40 142 | 74.89 246 | 52.78 173 | 73.09 249 | 75.13 235 | 55.69 196 | 58.48 312 | 73.73 338 | 32.86 311 | 86.32 85 | 50.63 236 | 70.11 259 | 81.10 244 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| diffmvs |  | | 70.69 119 | 70.43 114 | 71.46 183 | 69.45 340 | 48.95 237 | 72.93 250 | 78.46 178 | 57.27 163 | 71.69 106 | 83.97 165 | 51.48 98 | 77.92 255 | 70.70 78 | 77.95 153 | 87.53 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| V42 | | | 68.65 167 | 67.35 178 | 72.56 157 | 68.93 346 | 50.18 215 | 72.90 251 | 79.47 154 | 56.92 168 | 69.45 136 | 80.26 241 | 46.29 164 | 82.99 153 | 64.07 125 | 67.82 292 | 84.53 155 |
|
| miper_enhance_ethall | | | 67.11 203 | 66.09 207 | 70.17 215 | 69.21 343 | 45.98 269 | 72.85 252 | 78.41 182 | 51.38 264 | 65.65 208 | 75.98 317 | 51.17 102 | 81.25 194 | 60.82 156 | 69.32 274 | 83.29 198 |
|
| thres100view900 | | | 63.28 254 | 62.41 252 | 65.89 279 | 77.31 206 | 38.66 338 | 72.65 253 | 69.11 296 | 57.07 165 | 62.45 266 | 81.03 226 | 37.01 270 | 79.17 234 | 31.84 372 | 73.25 213 | 79.83 266 |
|
| testdata1 | | | | | | | | 72.65 253 | | 60.50 95 | | | | | | | |
|
| FE-MVS | | | 65.91 222 | 63.33 240 | 73.63 132 | 77.36 205 | 51.95 190 | 72.62 255 | 75.81 218 | 53.70 239 | 65.31 213 | 78.96 265 | 28.81 347 | 86.39 82 | 43.93 295 | 73.48 208 | 82.55 213 |
|
| pm-mvs1 | | | 65.24 232 | 64.97 222 | 66.04 276 | 72.38 290 | 39.40 333 | 72.62 255 | 75.63 221 | 55.53 200 | 62.35 269 | 83.18 180 | 47.45 148 | 76.47 287 | 49.06 250 | 66.54 302 | 82.24 221 |
|
| test222 | | | | | | 83.14 71 | 58.68 76 | 72.57 257 | 63.45 338 | 41.78 363 | 67.56 173 | 86.12 119 | 37.13 267 | | | 78.73 142 | 74.98 325 |
|
| PVSNet_Blended | | | 68.59 168 | 67.72 164 | 71.19 194 | 77.03 213 | 50.57 207 | 72.51 258 | 81.52 108 | 51.91 256 | 64.22 239 | 77.77 288 | 49.13 125 | 82.87 159 | 55.82 189 | 79.58 124 | 80.14 260 |
|
| EU-MVSNet | | | 55.61 323 | 54.41 326 | 59.19 329 | 65.41 369 | 33.42 386 | 72.44 259 | 71.91 271 | 28.81 395 | 51.27 365 | 73.87 337 | 24.76 375 | 69.08 326 | 43.04 305 | 58.20 359 | 75.06 322 |
|
| thres600view7 | | | 63.30 253 | 62.27 253 | 66.41 266 | 77.18 208 | 38.87 336 | 72.35 260 | 69.11 296 | 56.98 167 | 62.37 268 | 80.96 228 | 37.01 270 | 79.00 243 | 31.43 379 | 73.05 217 | 81.36 236 |
|
| pmmvs-eth3d | | | 58.81 296 | 56.31 311 | 66.30 269 | 67.61 354 | 52.42 182 | 72.30 261 | 64.76 328 | 43.55 353 | 54.94 342 | 74.19 335 | 28.95 344 | 72.60 305 | 43.31 301 | 57.21 363 | 73.88 339 |
|
| cascas | | | 65.98 221 | 63.42 238 | 73.64 131 | 77.26 207 | 52.58 177 | 72.26 262 | 77.21 202 | 48.56 300 | 61.21 280 | 74.60 332 | 32.57 321 | 85.82 95 | 50.38 238 | 76.75 172 | 82.52 215 |
|
| VPNet | | | 67.52 193 | 68.11 160 | 65.74 281 | 79.18 140 | 36.80 358 | 72.17 263 | 72.83 263 | 62.04 72 | 67.79 169 | 85.83 130 | 48.88 129 | 76.60 284 | 51.30 231 | 72.97 218 | 83.81 178 |
|
| MS-PatchMatch | | | 62.42 264 | 61.46 263 | 65.31 288 | 75.21 244 | 52.10 185 | 72.05 264 | 74.05 252 | 46.41 328 | 57.42 321 | 74.36 333 | 34.35 292 | 77.57 262 | 45.62 280 | 73.67 202 | 66.26 387 |
|
| mvs_anonymous | | | 68.03 182 | 67.51 171 | 69.59 226 | 72.08 295 | 44.57 285 | 71.99 265 | 75.23 232 | 51.67 257 | 67.06 181 | 82.57 189 | 54.68 54 | 77.94 253 | 56.56 184 | 75.71 183 | 86.26 92 |
|
| patch_mono-2 | | | 69.85 136 | 71.09 103 | 66.16 272 | 79.11 143 | 54.80 138 | 71.97 266 | 74.31 247 | 53.50 242 | 70.90 114 | 84.17 158 | 57.63 31 | 63.31 355 | 66.17 107 | 82.02 97 | 80.38 256 |
|
| tfpn200view9 | | | 63.18 256 | 62.18 255 | 66.21 271 | 76.85 216 | 39.62 330 | 71.96 267 | 69.44 292 | 56.63 172 | 62.61 261 | 79.83 247 | 37.18 264 | 79.17 234 | 31.84 372 | 73.25 213 | 79.83 266 |
|
| thres400 | | | 63.31 252 | 62.18 255 | 66.72 259 | 76.85 216 | 39.62 330 | 71.96 267 | 69.44 292 | 56.63 172 | 62.61 261 | 79.83 247 | 37.18 264 | 79.17 234 | 31.84 372 | 73.25 213 | 81.36 236 |
|
| baseline1 | | | 63.81 248 | 63.87 231 | 63.62 299 | 76.29 227 | 36.36 361 | 71.78 269 | 67.29 308 | 56.05 189 | 64.23 238 | 82.95 182 | 47.11 154 | 74.41 299 | 47.30 264 | 61.85 340 | 80.10 261 |
|
| baseline2 | | | 63.42 251 | 61.26 267 | 69.89 222 | 72.55 285 | 47.62 254 | 71.54 270 | 68.38 300 | 50.11 280 | 54.82 343 | 75.55 322 | 43.06 199 | 80.96 201 | 48.13 258 | 67.16 298 | 81.11 243 |
|
| pmmvs4 | | | 61.48 277 | 59.39 282 | 67.76 249 | 71.57 304 | 53.86 148 | 71.42 271 | 65.34 323 | 44.20 347 | 59.46 299 | 77.92 281 | 35.90 277 | 74.71 297 | 43.87 297 | 64.87 314 | 74.71 331 |
|
| 1112_ss | | | 64.00 247 | 63.36 239 | 65.93 278 | 79.28 136 | 42.58 304 | 71.35 272 | 72.36 267 | 46.41 328 | 60.55 285 | 77.89 283 | 46.27 165 | 73.28 303 | 46.18 273 | 69.97 262 | 81.92 227 |
|
| thisisatest0515 | | | 65.83 223 | 63.50 237 | 72.82 154 | 73.75 268 | 49.50 228 | 71.32 273 | 73.12 262 | 49.39 290 | 63.82 241 | 76.50 310 | 34.95 286 | 84.84 121 | 53.20 216 | 75.49 186 | 84.13 167 |
|
| CostFormer | | | 64.04 246 | 62.51 250 | 68.61 241 | 71.88 299 | 45.77 270 | 71.30 274 | 70.60 280 | 47.55 316 | 64.31 235 | 76.61 306 | 41.63 215 | 79.62 227 | 49.74 242 | 69.00 281 | 80.42 254 |
|
| tfpnnormal | | | 62.47 263 | 61.63 261 | 64.99 291 | 74.81 250 | 39.01 335 | 71.22 275 | 73.72 255 | 55.22 208 | 60.21 286 | 80.09 245 | 41.26 223 | 76.98 275 | 30.02 385 | 68.09 290 | 78.97 278 |
|
| IterMVS | | | 62.79 260 | 61.27 266 | 67.35 255 | 69.37 341 | 52.04 188 | 71.17 276 | 68.24 302 | 52.63 250 | 59.82 294 | 76.91 299 | 37.32 263 | 72.36 306 | 52.80 218 | 63.19 330 | 77.66 292 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Vis-MVSNet (Re-imp) | | | 63.69 249 | 63.88 230 | 63.14 304 | 74.75 251 | 31.04 395 | 71.16 277 | 63.64 337 | 56.32 182 | 59.80 295 | 84.99 141 | 44.51 185 | 75.46 294 | 39.12 329 | 80.62 109 | 82.92 207 |
|
| IterMVS-SCA-FT | | | 62.49 262 | 61.52 262 | 65.40 286 | 71.99 298 | 50.80 204 | 71.15 278 | 69.63 288 | 45.71 336 | 60.61 284 | 77.93 280 | 37.45 260 | 65.99 347 | 55.67 193 | 63.50 327 | 79.42 272 |
|
| Anonymous202405211 | | | 66.84 209 | 65.99 208 | 69.40 230 | 80.19 119 | 42.21 308 | 71.11 279 | 71.31 274 | 58.80 134 | 67.90 161 | 86.39 112 | 29.83 338 | 79.65 225 | 49.60 246 | 78.78 140 | 86.33 85 |
|
| Anonymous20240521 | | | 55.30 324 | 54.41 326 | 57.96 339 | 60.92 393 | 41.73 312 | 71.09 280 | 71.06 277 | 41.18 368 | 48.65 378 | 73.31 340 | 16.93 392 | 59.25 371 | 42.54 309 | 64.01 321 | 72.90 343 |
|
| tpm2 | | | 62.07 269 | 60.10 278 | 67.99 247 | 72.79 280 | 43.86 292 | 71.05 281 | 66.85 313 | 43.14 358 | 62.77 256 | 75.39 326 | 38.32 252 | 80.80 207 | 41.69 316 | 68.88 282 | 79.32 273 |
|
| TDRefinement | | | 53.44 337 | 50.72 346 | 61.60 313 | 64.31 374 | 46.96 260 | 70.89 282 | 65.27 325 | 41.78 363 | 44.61 391 | 77.98 278 | 11.52 407 | 66.36 345 | 28.57 391 | 51.59 381 | 71.49 363 |
|
| XVG-ACMP-BASELINE | | | 64.36 243 | 62.23 254 | 70.74 205 | 72.35 291 | 52.45 181 | 70.80 283 | 78.45 179 | 53.84 238 | 59.87 293 | 81.10 224 | 16.24 395 | 79.32 231 | 55.64 195 | 71.76 235 | 80.47 253 |
|
| mmtdpeth | | | 60.40 284 | 59.12 285 | 64.27 297 | 69.59 337 | 48.99 235 | 70.67 284 | 70.06 284 | 54.96 219 | 62.78 255 | 73.26 342 | 27.00 361 | 67.66 334 | 58.44 175 | 45.29 394 | 76.16 311 |
|
| XVG-OURS-SEG-HR | | | 68.81 163 | 67.47 173 | 72.82 154 | 74.40 261 | 56.87 102 | 70.59 285 | 79.04 160 | 54.77 223 | 66.99 182 | 86.01 124 | 39.57 237 | 78.21 250 | 62.54 141 | 73.33 211 | 83.37 195 |
|
| VNet | | | 69.68 143 | 70.19 120 | 68.16 246 | 79.73 127 | 41.63 315 | 70.53 286 | 77.38 199 | 60.37 100 | 70.69 115 | 86.63 102 | 51.08 103 | 77.09 270 | 53.61 212 | 81.69 105 | 85.75 110 |
|
| GA-MVS | | | 65.53 227 | 63.70 234 | 71.02 201 | 70.87 317 | 48.10 247 | 70.48 287 | 74.40 245 | 56.69 170 | 64.70 230 | 76.77 301 | 33.66 302 | 81.10 198 | 55.42 197 | 70.32 255 | 83.87 176 |
|
| MSDG | | | 61.81 273 | 59.23 283 | 69.55 229 | 72.64 282 | 52.63 176 | 70.45 288 | 75.81 218 | 51.38 264 | 53.70 354 | 76.11 313 | 29.52 340 | 81.08 200 | 37.70 336 | 65.79 308 | 74.93 326 |
|
| ab-mvs | | | 66.65 213 | 66.42 197 | 67.37 254 | 76.17 229 | 41.73 312 | 70.41 289 | 76.14 215 | 53.99 236 | 65.98 200 | 83.51 174 | 49.48 119 | 76.24 290 | 48.60 253 | 73.46 209 | 84.14 166 |
|
| EGC-MVSNET | | | 42.47 366 | 38.48 374 | 54.46 357 | 74.33 262 | 48.73 240 | 70.33 290 | 51.10 390 | 0.03 426 | 0.18 427 | 67.78 378 | 13.28 401 | 66.49 344 | 18.91 409 | 50.36 385 | 48.15 406 |
|
| MVSTER | | | 67.16 202 | 65.58 215 | 71.88 170 | 70.37 326 | 49.70 223 | 70.25 291 | 78.45 179 | 51.52 261 | 69.16 143 | 80.37 237 | 38.45 249 | 82.50 171 | 60.19 160 | 71.46 239 | 83.44 194 |
|
| reproduce_monomvs | | | 62.56 261 | 61.20 269 | 66.62 263 | 70.62 320 | 44.30 287 | 70.13 292 | 73.13 261 | 54.78 222 | 61.13 281 | 76.37 311 | 25.63 371 | 75.63 293 | 58.75 172 | 60.29 352 | 79.93 263 |
|
| XVG-OURS | | | 68.76 166 | 67.37 176 | 72.90 151 | 74.32 263 | 57.22 92 | 70.09 293 | 78.81 165 | 55.24 207 | 67.79 169 | 85.81 132 | 36.54 273 | 78.28 249 | 62.04 146 | 75.74 182 | 83.19 201 |
|
| HY-MVS | | 56.14 13 | 64.55 240 | 63.89 229 | 66.55 264 | 74.73 252 | 41.02 317 | 69.96 294 | 74.43 244 | 49.29 292 | 61.66 275 | 80.92 229 | 47.43 149 | 76.68 283 | 44.91 289 | 71.69 236 | 81.94 226 |
|
| AllTest | | | 57.08 308 | 54.65 322 | 64.39 295 | 71.44 306 | 49.03 232 | 69.92 295 | 67.30 306 | 45.97 333 | 47.16 382 | 79.77 249 | 17.47 389 | 67.56 337 | 33.65 360 | 59.16 356 | 76.57 307 |
|
| testing3 | | | 56.54 312 | 55.92 314 | 58.41 334 | 77.52 200 | 27.93 404 | 69.72 296 | 56.36 374 | 54.75 224 | 58.63 310 | 77.80 285 | 20.88 387 | 71.75 312 | 25.31 401 | 62.25 337 | 75.53 318 |
|
| thres200 | | | 62.20 268 | 61.16 270 | 65.34 287 | 75.38 242 | 39.99 326 | 69.60 297 | 69.29 294 | 55.64 199 | 61.87 272 | 76.99 297 | 37.07 269 | 78.96 244 | 31.28 380 | 73.28 212 | 77.06 301 |
|
| tpmrst | | | 58.24 299 | 58.70 290 | 56.84 344 | 66.97 357 | 34.32 379 | 69.57 298 | 61.14 355 | 47.17 323 | 58.58 311 | 71.60 353 | 41.28 222 | 60.41 365 | 49.20 248 | 62.84 332 | 75.78 315 |
|
| PatchmatchNet |  | | 59.84 288 | 58.24 294 | 64.65 293 | 73.05 276 | 46.70 262 | 69.42 299 | 62.18 350 | 47.55 316 | 58.88 306 | 71.96 350 | 34.49 290 | 69.16 325 | 42.99 306 | 63.60 325 | 78.07 285 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WB-MVSnew | | | 59.66 290 | 59.69 280 | 59.56 324 | 75.19 245 | 35.78 370 | 69.34 300 | 64.28 332 | 46.88 325 | 61.76 274 | 75.79 318 | 40.61 228 | 65.20 350 | 32.16 368 | 71.21 241 | 77.70 291 |
|
| GG-mvs-BLEND | | | | | 62.34 309 | 71.36 310 | 37.04 356 | 69.20 301 | 57.33 371 | | 54.73 345 | 65.48 389 | 30.37 332 | 77.82 256 | 34.82 356 | 74.93 188 | 72.17 355 |
|
| HyFIR lowres test | | | 65.67 225 | 63.01 245 | 73.67 128 | 79.97 124 | 55.65 122 | 69.07 302 | 75.52 225 | 42.68 361 | 63.53 244 | 77.95 279 | 40.43 229 | 81.64 185 | 46.01 275 | 71.91 234 | 83.73 184 |
|
| UWE-MVS | | | 60.18 285 | 59.78 279 | 61.39 317 | 77.67 191 | 33.92 384 | 69.04 303 | 63.82 335 | 48.56 300 | 64.27 236 | 77.64 290 | 27.20 358 | 70.40 320 | 33.56 363 | 76.24 176 | 79.83 266 |
|
| test_post1 | | | | | | | | 68.67 304 | | | | 3.64 424 | 32.39 323 | 69.49 324 | 44.17 291 | | |
|
| testing222 | | | 62.29 267 | 61.31 265 | 65.25 289 | 77.87 182 | 38.53 340 | 68.34 305 | 66.31 318 | 56.37 181 | 63.15 251 | 77.58 291 | 28.47 348 | 76.18 292 | 37.04 341 | 76.65 174 | 81.05 246 |
|
| Test_1112_low_res | | | 62.32 265 | 61.77 259 | 64.00 298 | 79.08 144 | 39.53 332 | 68.17 306 | 70.17 282 | 43.25 356 | 59.03 305 | 79.90 246 | 44.08 189 | 71.24 314 | 43.79 298 | 68.42 288 | 81.25 239 |
|
| tpm cat1 | | | 59.25 294 | 56.95 304 | 66.15 273 | 72.19 294 | 46.96 260 | 68.09 307 | 65.76 320 | 40.03 377 | 57.81 317 | 70.56 360 | 38.32 252 | 74.51 298 | 38.26 334 | 61.50 343 | 77.00 303 |
|
| ppachtmachnet_test | | | 58.06 302 | 55.38 318 | 66.10 275 | 69.51 338 | 48.99 235 | 68.01 308 | 66.13 319 | 44.50 344 | 54.05 352 | 70.74 359 | 32.09 325 | 72.34 307 | 36.68 346 | 56.71 367 | 76.99 305 |
|
| tpmvs | | | 58.47 297 | 56.95 304 | 63.03 306 | 70.20 327 | 41.21 316 | 67.90 309 | 67.23 309 | 49.62 287 | 54.73 345 | 70.84 358 | 34.14 293 | 76.24 290 | 36.64 347 | 61.29 344 | 71.64 360 |
|
| testing91 | | | 64.46 241 | 63.80 232 | 66.47 265 | 78.43 161 | 40.06 325 | 67.63 310 | 69.59 289 | 59.06 130 | 63.18 249 | 78.05 277 | 34.05 294 | 76.99 274 | 48.30 256 | 75.87 180 | 82.37 219 |
|
| CL-MVSNet_self_test | | | 61.53 275 | 60.94 272 | 63.30 302 | 68.95 345 | 36.93 357 | 67.60 311 | 72.80 264 | 55.67 197 | 59.95 292 | 76.63 303 | 45.01 181 | 72.22 309 | 39.74 327 | 62.09 339 | 80.74 251 |
|
| testing11 | | | 62.81 259 | 61.90 258 | 65.54 283 | 78.38 162 | 40.76 322 | 67.59 312 | 66.78 314 | 55.48 201 | 60.13 287 | 77.11 295 | 31.67 327 | 76.79 279 | 45.53 282 | 74.45 191 | 79.06 275 |
|
| test_vis1_n_1920 | | | 58.86 295 | 59.06 286 | 58.25 335 | 63.76 375 | 43.14 300 | 67.49 313 | 66.36 317 | 40.22 375 | 65.89 204 | 71.95 351 | 31.04 328 | 59.75 369 | 59.94 163 | 64.90 313 | 71.85 358 |
|
| tpm | | | 57.34 306 | 58.16 295 | 54.86 354 | 71.80 301 | 34.77 374 | 67.47 314 | 56.04 378 | 48.20 307 | 60.10 288 | 76.92 298 | 37.17 266 | 53.41 397 | 40.76 321 | 65.01 312 | 76.40 309 |
|
| testing99 | | | 64.05 245 | 63.29 242 | 66.34 267 | 78.17 173 | 39.76 329 | 67.33 315 | 68.00 303 | 58.60 139 | 63.03 252 | 78.10 276 | 32.57 321 | 76.94 276 | 48.22 257 | 75.58 184 | 82.34 220 |
|
| gg-mvs-nofinetune | | | 57.86 303 | 56.43 310 | 62.18 310 | 72.62 283 | 35.35 371 | 66.57 316 | 56.33 375 | 50.65 274 | 57.64 318 | 57.10 401 | 30.65 330 | 76.36 288 | 37.38 338 | 78.88 137 | 74.82 328 |
|
| TinyColmap | | | 54.14 330 | 51.72 341 | 61.40 316 | 66.84 359 | 41.97 309 | 66.52 317 | 68.51 299 | 44.81 340 | 42.69 396 | 75.77 319 | 11.66 405 | 72.94 304 | 31.96 370 | 56.77 366 | 69.27 381 |
|
| pmmvs5 | | | 56.47 314 | 55.68 316 | 58.86 331 | 61.41 387 | 36.71 359 | 66.37 318 | 62.75 343 | 40.38 374 | 53.70 354 | 76.62 304 | 34.56 288 | 67.05 340 | 40.02 325 | 65.27 310 | 72.83 344 |
|
| CHOSEN 1792x2688 | | | 65.08 235 | 62.84 247 | 71.82 172 | 81.49 93 | 56.26 108 | 66.32 319 | 74.20 251 | 40.53 373 | 63.16 250 | 78.65 270 | 41.30 220 | 77.80 257 | 45.80 277 | 74.09 195 | 81.40 235 |
|
| our_test_3 | | | 56.49 313 | 54.42 325 | 62.68 308 | 69.51 338 | 45.48 276 | 66.08 320 | 61.49 353 | 44.11 350 | 50.73 371 | 69.60 370 | 33.05 307 | 68.15 329 | 38.38 333 | 56.86 364 | 74.40 333 |
|
| mvs5depth | | | 55.64 322 | 53.81 333 | 61.11 319 | 59.39 396 | 40.98 321 | 65.89 321 | 68.28 301 | 50.21 279 | 58.11 315 | 75.42 325 | 17.03 391 | 67.63 336 | 43.79 298 | 46.21 391 | 74.73 330 |
|
| PM-MVS | | | 52.33 341 | 50.19 349 | 58.75 332 | 62.10 384 | 45.14 279 | 65.75 322 | 40.38 412 | 43.60 352 | 53.52 358 | 72.65 343 | 9.16 413 | 65.87 348 | 50.41 237 | 54.18 374 | 65.24 389 |
|
| D2MVS | | | 62.30 266 | 60.29 277 | 68.34 245 | 66.46 363 | 48.42 244 | 65.70 323 | 73.42 257 | 47.71 314 | 58.16 314 | 75.02 328 | 30.51 331 | 77.71 260 | 53.96 209 | 71.68 237 | 78.90 279 |
|
| MIMVSNet1 | | | 55.17 327 | 54.31 328 | 57.77 341 | 70.03 331 | 32.01 392 | 65.68 324 | 64.81 327 | 49.19 293 | 46.75 385 | 76.00 314 | 25.53 372 | 64.04 353 | 28.65 390 | 62.13 338 | 77.26 299 |
|
| PatchMatch-RL | | | 56.25 317 | 54.55 324 | 61.32 318 | 77.06 212 | 56.07 112 | 65.57 325 | 54.10 384 | 44.13 349 | 53.49 360 | 71.27 357 | 25.20 373 | 66.78 342 | 36.52 349 | 63.66 324 | 61.12 391 |
|
| Syy-MVS | | | 56.00 319 | 56.23 312 | 55.32 351 | 74.69 253 | 26.44 410 | 65.52 326 | 57.49 369 | 50.97 271 | 56.52 327 | 72.18 346 | 39.89 233 | 68.09 330 | 24.20 402 | 64.59 318 | 71.44 364 |
|
| myMVS_eth3d | | | 54.86 329 | 54.61 323 | 55.61 350 | 74.69 253 | 27.31 407 | 65.52 326 | 57.49 369 | 50.97 271 | 56.52 327 | 72.18 346 | 21.87 385 | 68.09 330 | 27.70 393 | 64.59 318 | 71.44 364 |
|
| test-LLR | | | 58.15 301 | 58.13 297 | 58.22 336 | 68.57 347 | 44.80 281 | 65.46 328 | 57.92 366 | 50.08 281 | 55.44 335 | 69.82 367 | 32.62 318 | 57.44 380 | 49.66 244 | 73.62 203 | 72.41 351 |
|
| TESTMET0.1,1 | | | 55.28 325 | 54.90 321 | 56.42 346 | 66.56 361 | 43.67 294 | 65.46 328 | 56.27 376 | 39.18 380 | 53.83 353 | 67.44 379 | 24.21 377 | 55.46 391 | 48.04 259 | 73.11 216 | 70.13 375 |
|
| test-mter | | | 56.42 315 | 55.82 315 | 58.22 336 | 68.57 347 | 44.80 281 | 65.46 328 | 57.92 366 | 39.94 378 | 55.44 335 | 69.82 367 | 21.92 382 | 57.44 380 | 49.66 244 | 73.62 203 | 72.41 351 |
|
| SDMVSNet | | | 68.03 182 | 68.10 161 | 67.84 248 | 77.13 209 | 48.72 241 | 65.32 331 | 79.10 159 | 58.02 151 | 65.08 222 | 82.55 190 | 47.83 139 | 73.40 302 | 63.92 129 | 73.92 198 | 81.41 233 |
|
| CR-MVSNet | | | 59.91 287 | 57.90 299 | 65.96 277 | 69.96 332 | 52.07 186 | 65.31 332 | 63.15 341 | 42.48 362 | 59.36 300 | 74.84 329 | 35.83 278 | 70.75 316 | 45.50 283 | 64.65 316 | 75.06 322 |
|
| RPMNet | | | 61.53 275 | 58.42 292 | 70.86 202 | 69.96 332 | 52.07 186 | 65.31 332 | 81.36 115 | 43.20 357 | 59.36 300 | 70.15 365 | 35.37 281 | 85.47 105 | 36.42 350 | 64.65 316 | 75.06 322 |
|
| USDC | | | 56.35 316 | 54.24 329 | 62.69 307 | 64.74 371 | 40.31 323 | 65.05 334 | 73.83 254 | 43.93 351 | 47.58 380 | 77.71 289 | 15.36 398 | 75.05 296 | 38.19 335 | 61.81 341 | 72.70 345 |
|
| MDTV_nov1_ep13 | | | | 57.00 303 | | 72.73 281 | 38.26 342 | 65.02 335 | 64.73 329 | 44.74 341 | 55.46 334 | 72.48 344 | 32.61 320 | 70.47 317 | 37.47 337 | 67.75 293 | |
|
| ETVMVS | | | 59.51 293 | 58.81 287 | 61.58 314 | 77.46 202 | 34.87 372 | 64.94 336 | 59.35 360 | 54.06 235 | 61.08 282 | 76.67 302 | 29.54 339 | 71.87 311 | 32.16 368 | 74.07 196 | 78.01 290 |
|
| CMPMVS |  | 42.80 21 | 57.81 304 | 55.97 313 | 63.32 301 | 60.98 391 | 47.38 257 | 64.66 337 | 69.50 291 | 32.06 391 | 46.83 384 | 77.80 285 | 29.50 341 | 71.36 313 | 48.68 252 | 73.75 201 | 71.21 367 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| WBMVS | | | 60.54 281 | 60.61 275 | 60.34 322 | 78.00 179 | 35.95 368 | 64.55 338 | 64.89 326 | 49.63 286 | 63.39 246 | 78.70 267 | 33.85 299 | 67.65 335 | 42.10 313 | 70.35 254 | 77.43 295 |
|
| RPSCF | | | 55.80 321 | 54.22 330 | 60.53 321 | 65.13 370 | 42.91 303 | 64.30 339 | 57.62 368 | 36.84 384 | 58.05 316 | 82.28 199 | 28.01 351 | 56.24 388 | 37.14 340 | 58.61 358 | 82.44 218 |
|
| XXY-MVS | | | 60.68 280 | 61.67 260 | 57.70 342 | 70.43 324 | 38.45 341 | 64.19 340 | 66.47 315 | 48.05 310 | 63.22 247 | 80.86 231 | 49.28 122 | 60.47 364 | 45.25 288 | 67.28 297 | 74.19 336 |
|
| FMVSNet5 | | | 55.86 320 | 54.93 320 | 58.66 333 | 71.05 315 | 36.35 362 | 64.18 341 | 62.48 345 | 46.76 326 | 50.66 372 | 74.73 331 | 25.80 369 | 64.04 353 | 33.11 364 | 65.57 309 | 75.59 317 |
|
| UBG | | | 59.62 292 | 59.53 281 | 59.89 323 | 78.12 174 | 35.92 369 | 64.11 342 | 60.81 357 | 49.45 289 | 61.34 278 | 75.55 322 | 33.05 307 | 67.39 339 | 38.68 331 | 74.62 189 | 76.35 310 |
|
| test_cas_vis1_n_1920 | | | 56.91 309 | 56.71 307 | 57.51 343 | 59.13 397 | 45.40 277 | 63.58 343 | 61.29 354 | 36.24 385 | 67.14 180 | 71.85 352 | 29.89 337 | 56.69 384 | 57.65 178 | 63.58 326 | 70.46 372 |
|
| SCA | | | 60.49 282 | 58.38 293 | 66.80 258 | 74.14 266 | 48.06 248 | 63.35 344 | 63.23 340 | 49.13 294 | 59.33 303 | 72.10 348 | 37.45 260 | 74.27 300 | 44.17 291 | 62.57 334 | 78.05 286 |
|
| Patchmtry | | | 57.16 307 | 56.47 309 | 59.23 327 | 69.17 344 | 34.58 377 | 62.98 345 | 63.15 341 | 44.53 343 | 56.83 324 | 74.84 329 | 35.83 278 | 68.71 327 | 40.03 324 | 60.91 345 | 74.39 334 |
|
| Anonymous20231206 | | | 55.10 328 | 55.30 319 | 54.48 356 | 69.81 336 | 33.94 383 | 62.91 346 | 62.13 351 | 41.08 369 | 55.18 339 | 75.65 320 | 32.75 315 | 56.59 386 | 30.32 384 | 67.86 291 | 72.91 342 |
|
| sd_testset | | | 64.46 241 | 64.45 225 | 64.51 294 | 77.13 209 | 42.25 307 | 62.67 347 | 72.11 269 | 58.02 151 | 65.08 222 | 82.55 190 | 41.22 224 | 69.88 323 | 47.32 263 | 73.92 198 | 81.41 233 |
|
| MIMVSNet | | | 57.35 305 | 57.07 302 | 58.22 336 | 74.21 265 | 37.18 352 | 62.46 348 | 60.88 356 | 48.88 297 | 55.29 338 | 75.99 316 | 31.68 326 | 62.04 360 | 31.87 371 | 72.35 228 | 75.43 320 |
|
| dp | | | 51.89 343 | 51.60 342 | 52.77 369 | 68.44 350 | 32.45 391 | 62.36 349 | 54.57 381 | 44.16 348 | 49.31 377 | 67.91 375 | 28.87 346 | 56.61 385 | 33.89 359 | 54.89 371 | 69.24 382 |
|
| EPMVS | | | 53.96 331 | 53.69 334 | 54.79 355 | 66.12 366 | 31.96 393 | 62.34 350 | 49.05 395 | 44.42 346 | 55.54 333 | 71.33 356 | 30.22 334 | 56.70 383 | 41.65 318 | 62.54 335 | 75.71 316 |
|
| pmmvs3 | | | 44.92 361 | 41.95 368 | 53.86 359 | 52.58 406 | 43.55 295 | 62.11 351 | 46.90 404 | 26.05 402 | 40.63 398 | 60.19 397 | 11.08 410 | 57.91 379 | 31.83 375 | 46.15 392 | 60.11 392 |
|
| test_vis1_n | | | 49.89 352 | 48.69 354 | 53.50 363 | 53.97 401 | 37.38 351 | 61.53 352 | 47.33 402 | 28.54 396 | 59.62 298 | 67.10 383 | 13.52 400 | 52.27 400 | 49.07 249 | 57.52 361 | 70.84 370 |
|
| PVSNet | | 50.76 19 | 58.40 298 | 57.39 300 | 61.42 315 | 75.53 239 | 44.04 291 | 61.43 353 | 63.45 338 | 47.04 324 | 56.91 323 | 73.61 339 | 27.00 361 | 64.76 351 | 39.12 329 | 72.40 227 | 75.47 319 |
|
| LCM-MVSNet-Re | | | 61.88 272 | 61.35 264 | 63.46 300 | 74.58 256 | 31.48 394 | 61.42 354 | 58.14 365 | 58.71 137 | 53.02 361 | 79.55 255 | 43.07 198 | 76.80 278 | 45.69 278 | 77.96 152 | 82.11 225 |
|
| test20.03 | | | 53.87 333 | 54.02 331 | 53.41 365 | 61.47 386 | 28.11 403 | 61.30 355 | 59.21 361 | 51.34 266 | 52.09 363 | 77.43 292 | 33.29 306 | 58.55 376 | 29.76 386 | 60.27 353 | 73.58 340 |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 412 | 61.22 356 | | 40.10 376 | 51.10 366 | | 32.97 310 | | 38.49 332 | | 78.61 281 |
|
| PMMVS | | | 53.96 331 | 53.26 337 | 56.04 347 | 62.60 382 | 50.92 201 | 61.17 357 | 56.09 377 | 32.81 390 | 53.51 359 | 66.84 384 | 34.04 295 | 59.93 368 | 44.14 293 | 68.18 289 | 57.27 399 |
|
| test_fmvs1_n | | | 51.37 345 | 50.35 348 | 54.42 358 | 52.85 404 | 37.71 348 | 61.16 358 | 51.93 386 | 28.15 397 | 63.81 242 | 69.73 369 | 13.72 399 | 53.95 395 | 51.16 232 | 60.65 349 | 71.59 361 |
|
| WTY-MVS | | | 59.75 289 | 60.39 276 | 57.85 340 | 72.32 292 | 37.83 346 | 61.05 359 | 64.18 333 | 45.95 335 | 61.91 271 | 79.11 264 | 47.01 158 | 60.88 363 | 42.50 310 | 69.49 273 | 74.83 327 |
|
| dmvs_testset | | | 50.16 350 | 51.90 340 | 44.94 385 | 66.49 362 | 11.78 425 | 61.01 360 | 51.50 388 | 51.17 269 | 50.30 375 | 67.44 379 | 39.28 240 | 60.29 366 | 22.38 405 | 57.49 362 | 62.76 390 |
|
| Patchmatch-RL test | | | 58.16 300 | 55.49 317 | 66.15 273 | 67.92 353 | 48.89 238 | 60.66 361 | 51.07 391 | 47.86 313 | 59.36 300 | 62.71 395 | 34.02 296 | 72.27 308 | 56.41 185 | 59.40 355 | 77.30 297 |
|
| test_fmvs1 | | | 51.32 347 | 50.48 347 | 53.81 360 | 53.57 402 | 37.51 350 | 60.63 362 | 51.16 389 | 28.02 399 | 63.62 243 | 69.23 372 | 16.41 394 | 53.93 396 | 51.01 233 | 60.70 348 | 69.99 376 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 257 | 61.23 268 | 68.92 237 | 76.57 223 | 47.80 250 | 59.92 363 | 76.39 211 | 54.35 231 | 58.67 308 | 82.46 195 | 29.44 342 | 81.49 189 | 42.12 312 | 71.14 242 | 77.46 294 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test0.0.03 1 | | | 53.32 338 | 53.59 335 | 52.50 371 | 62.81 381 | 29.45 398 | 59.51 364 | 54.11 383 | 50.08 281 | 54.40 349 | 74.31 334 | 32.62 318 | 55.92 389 | 30.50 383 | 63.95 323 | 72.15 356 |
|
| UnsupCasMVSNet_eth | | | 53.16 340 | 52.47 338 | 55.23 352 | 59.45 395 | 33.39 387 | 59.43 365 | 69.13 295 | 45.98 332 | 50.35 374 | 72.32 345 | 29.30 343 | 58.26 378 | 42.02 315 | 44.30 395 | 74.05 337 |
|
| MVS-HIRNet | | | 45.52 360 | 44.48 362 | 48.65 379 | 68.49 349 | 34.05 382 | 59.41 366 | 44.50 407 | 27.03 400 | 37.96 407 | 50.47 409 | 26.16 367 | 64.10 352 | 26.74 398 | 59.52 354 | 47.82 408 |
|
| testgi | | | 51.90 342 | 52.37 339 | 50.51 377 | 60.39 394 | 23.55 417 | 58.42 367 | 58.15 364 | 49.03 295 | 51.83 364 | 79.21 263 | 22.39 380 | 55.59 390 | 29.24 389 | 62.64 333 | 72.40 353 |
|
| dmvs_re | | | 56.77 311 | 56.83 306 | 56.61 345 | 69.23 342 | 41.02 317 | 58.37 368 | 64.18 333 | 50.59 276 | 57.45 320 | 71.42 354 | 35.54 280 | 58.94 374 | 37.23 339 | 67.45 295 | 69.87 377 |
|
| PatchT | | | 53.17 339 | 53.44 336 | 52.33 372 | 68.29 351 | 25.34 414 | 58.21 369 | 54.41 382 | 44.46 345 | 54.56 347 | 69.05 373 | 33.32 305 | 60.94 362 | 36.93 342 | 61.76 342 | 70.73 371 |
|
| WB-MVS | | | 43.26 363 | 43.41 363 | 42.83 389 | 63.32 378 | 10.32 427 | 58.17 370 | 45.20 405 | 45.42 337 | 40.44 400 | 67.26 382 | 34.01 297 | 58.98 373 | 11.96 418 | 24.88 412 | 59.20 393 |
|
| sss | | | 56.17 318 | 56.57 308 | 54.96 353 | 66.93 358 | 36.32 364 | 57.94 371 | 61.69 352 | 41.67 365 | 58.64 309 | 75.32 327 | 38.72 247 | 56.25 387 | 42.04 314 | 66.19 305 | 72.31 354 |
|
| ttmdpeth | | | 45.56 359 | 42.95 364 | 53.39 366 | 52.33 407 | 29.15 399 | 57.77 372 | 48.20 399 | 31.81 392 | 49.86 376 | 77.21 294 | 8.69 414 | 59.16 372 | 27.31 394 | 33.40 409 | 71.84 359 |
|
| test_fmvs2 | | | 48.69 354 | 47.49 359 | 52.29 373 | 48.63 411 | 33.06 389 | 57.76 373 | 48.05 400 | 25.71 403 | 59.76 296 | 69.60 370 | 11.57 406 | 52.23 401 | 49.45 247 | 56.86 364 | 71.58 362 |
|
| KD-MVS_self_test | | | 55.22 326 | 53.89 332 | 59.21 328 | 57.80 400 | 27.47 406 | 57.75 374 | 74.32 246 | 47.38 318 | 50.90 368 | 70.00 366 | 28.45 349 | 70.30 321 | 40.44 322 | 57.92 360 | 79.87 265 |
|
| UnsupCasMVSNet_bld | | | 50.07 351 | 48.87 352 | 53.66 361 | 60.97 392 | 33.67 385 | 57.62 375 | 64.56 330 | 39.47 379 | 47.38 381 | 64.02 393 | 27.47 355 | 59.32 370 | 34.69 357 | 43.68 396 | 67.98 385 |
|
| mamv4 | | | 56.85 310 | 58.00 298 | 53.43 364 | 72.46 289 | 54.47 140 | 57.56 376 | 54.74 379 | 38.81 381 | 57.42 321 | 79.45 258 | 47.57 145 | 38.70 416 | 60.88 155 | 53.07 377 | 67.11 386 |
|
| SSC-MVS | | | 41.96 368 | 41.99 367 | 41.90 390 | 62.46 383 | 9.28 429 | 57.41 377 | 44.32 408 | 43.38 354 | 38.30 406 | 66.45 385 | 32.67 317 | 58.42 377 | 10.98 419 | 21.91 415 | 57.99 397 |
|
| ANet_high | | | 41.38 369 | 37.47 376 | 53.11 367 | 39.73 422 | 24.45 415 | 56.94 378 | 69.69 286 | 47.65 315 | 26.04 414 | 52.32 404 | 12.44 403 | 62.38 359 | 21.80 406 | 10.61 423 | 72.49 348 |
|
| MDA-MVSNet-bldmvs | | | 53.87 333 | 50.81 345 | 63.05 305 | 66.25 364 | 48.58 242 | 56.93 379 | 63.82 335 | 48.09 309 | 41.22 397 | 70.48 363 | 30.34 333 | 68.00 333 | 34.24 358 | 45.92 393 | 72.57 347 |
|
| test123 | | | 4.73 395 | 6.30 398 | 0.02 409 | 0.01 432 | 0.01 434 | 56.36 380 | 0.00 433 | 0.01 427 | 0.04 428 | 0.21 428 | 0.01 432 | 0.00 428 | 0.03 428 | 0.00 426 | 0.04 424 |
|
| miper_lstm_enhance | | | 62.03 270 | 60.88 273 | 65.49 285 | 66.71 360 | 46.25 265 | 56.29 381 | 75.70 220 | 50.68 273 | 61.27 279 | 75.48 324 | 40.21 230 | 68.03 332 | 56.31 186 | 65.25 311 | 82.18 222 |
|
| KD-MVS_2432*1600 | | | 53.45 335 | 51.50 343 | 59.30 325 | 62.82 379 | 37.14 353 | 55.33 382 | 71.79 272 | 47.34 320 | 55.09 340 | 70.52 361 | 21.91 383 | 70.45 318 | 35.72 353 | 42.97 397 | 70.31 373 |
|
| miper_refine_blended | | | 53.45 335 | 51.50 343 | 59.30 325 | 62.82 379 | 37.14 353 | 55.33 382 | 71.79 272 | 47.34 320 | 55.09 340 | 70.52 361 | 21.91 383 | 70.45 318 | 35.72 353 | 42.97 397 | 70.31 373 |
|
| LF4IMVS | | | 42.95 364 | 42.26 366 | 45.04 383 | 48.30 412 | 32.50 390 | 54.80 384 | 48.49 397 | 28.03 398 | 40.51 399 | 70.16 364 | 9.24 412 | 43.89 411 | 31.63 376 | 49.18 389 | 58.72 395 |
|
| PMVS |  | 28.69 22 | 36.22 376 | 33.29 381 | 45.02 384 | 36.82 424 | 35.98 367 | 54.68 385 | 48.74 396 | 26.31 401 | 21.02 417 | 51.61 406 | 2.88 426 | 60.10 367 | 9.99 422 | 47.58 390 | 38.99 415 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVStest1 | | | 42.65 365 | 39.29 372 | 52.71 370 | 47.26 414 | 34.58 377 | 54.41 386 | 50.84 394 | 23.35 405 | 39.31 405 | 74.08 336 | 12.57 402 | 55.09 392 | 23.32 403 | 28.47 411 | 68.47 384 |
|
| PVSNet_0 | | 43.31 20 | 47.46 358 | 45.64 361 | 52.92 368 | 67.60 355 | 44.65 283 | 54.06 387 | 54.64 380 | 41.59 366 | 46.15 387 | 58.75 398 | 30.99 329 | 58.66 375 | 32.18 367 | 24.81 413 | 55.46 401 |
|
| testmvs | | | 4.52 396 | 6.03 399 | 0.01 410 | 0.01 432 | 0.00 435 | 53.86 388 | 0.00 433 | 0.01 427 | 0.04 428 | 0.27 427 | 0.00 433 | 0.00 428 | 0.04 427 | 0.00 426 | 0.03 425 |
|
| test_fmvs3 | | | 44.30 362 | 42.55 365 | 49.55 378 | 42.83 416 | 27.15 409 | 53.03 389 | 44.93 406 | 22.03 411 | 53.69 356 | 64.94 390 | 4.21 421 | 49.63 403 | 47.47 260 | 49.82 386 | 71.88 357 |
|
| APD_test1 | | | 37.39 375 | 34.94 378 | 44.72 386 | 48.88 410 | 33.19 388 | 52.95 390 | 44.00 409 | 19.49 412 | 27.28 413 | 58.59 399 | 3.18 425 | 52.84 398 | 18.92 408 | 41.17 400 | 48.14 407 |
|
| dongtai | | | 34.52 378 | 34.94 378 | 33.26 399 | 61.06 390 | 16.00 424 | 52.79 391 | 23.78 425 | 40.71 372 | 39.33 404 | 48.65 413 | 16.91 393 | 48.34 405 | 12.18 417 | 19.05 417 | 35.44 416 |
|
| YYNet1 | | | 50.73 348 | 48.96 350 | 56.03 348 | 61.10 389 | 41.78 311 | 51.94 392 | 56.44 373 | 40.94 371 | 44.84 389 | 67.80 377 | 30.08 335 | 55.08 393 | 36.77 343 | 50.71 383 | 71.22 366 |
|
| MDA-MVSNet_test_wron | | | 50.71 349 | 48.95 351 | 56.00 349 | 61.17 388 | 41.84 310 | 51.90 393 | 56.45 372 | 40.96 370 | 44.79 390 | 67.84 376 | 30.04 336 | 55.07 394 | 36.71 345 | 50.69 384 | 71.11 369 |
|
| kuosan | | | 29.62 385 | 30.82 384 | 26.02 404 | 52.99 403 | 16.22 423 | 51.09 394 | 22.71 426 | 33.91 389 | 33.99 408 | 40.85 414 | 15.89 396 | 33.11 421 | 7.59 425 | 18.37 418 | 28.72 418 |
|
| ADS-MVSNet2 | | | 51.33 346 | 48.76 353 | 59.07 330 | 66.02 367 | 44.60 284 | 50.90 395 | 59.76 359 | 36.90 382 | 50.74 369 | 66.18 387 | 26.38 364 | 63.11 356 | 27.17 395 | 54.76 372 | 69.50 379 |
|
| ADS-MVSNet | | | 48.48 355 | 47.77 356 | 50.63 376 | 66.02 367 | 29.92 397 | 50.90 395 | 50.87 393 | 36.90 382 | 50.74 369 | 66.18 387 | 26.38 364 | 52.47 399 | 27.17 395 | 54.76 372 | 69.50 379 |
|
| FPMVS | | | 42.18 367 | 41.11 369 | 45.39 382 | 58.03 399 | 41.01 319 | 49.50 397 | 53.81 385 | 30.07 394 | 33.71 409 | 64.03 391 | 11.69 404 | 52.08 402 | 14.01 413 | 55.11 370 | 43.09 410 |
|
| N_pmnet | | | 39.35 373 | 40.28 370 | 36.54 396 | 63.76 375 | 1.62 433 | 49.37 398 | 0.76 432 | 34.62 388 | 43.61 394 | 66.38 386 | 26.25 366 | 42.57 412 | 26.02 400 | 51.77 380 | 65.44 388 |
|
| new-patchmatchnet | | | 47.56 357 | 47.73 357 | 47.06 380 | 58.81 398 | 9.37 428 | 48.78 399 | 59.21 361 | 43.28 355 | 44.22 392 | 68.66 374 | 25.67 370 | 57.20 382 | 31.57 378 | 49.35 388 | 74.62 332 |
|
| test_vis1_rt | | | 41.35 370 | 39.45 371 | 47.03 381 | 46.65 415 | 37.86 345 | 47.76 400 | 38.65 413 | 23.10 407 | 44.21 393 | 51.22 407 | 11.20 409 | 44.08 410 | 39.27 328 | 53.02 378 | 59.14 394 |
|
| JIA-IIPM | | | 51.56 344 | 47.68 358 | 63.21 303 | 64.61 372 | 50.73 205 | 47.71 401 | 58.77 363 | 42.90 359 | 48.46 379 | 51.72 405 | 24.97 374 | 70.24 322 | 36.06 352 | 53.89 375 | 68.64 383 |
|
| ambc | | | | | 65.13 290 | 63.72 377 | 37.07 355 | 47.66 402 | 78.78 167 | | 54.37 350 | 71.42 354 | 11.24 408 | 80.94 202 | 45.64 279 | 53.85 376 | 77.38 296 |
|
| testf1 | | | 31.46 383 | 28.89 387 | 39.16 392 | 41.99 419 | 28.78 401 | 46.45 403 | 37.56 414 | 14.28 419 | 21.10 415 | 48.96 410 | 1.48 429 | 47.11 406 | 13.63 414 | 34.56 406 | 41.60 411 |
|
| APD_test2 | | | 31.46 383 | 28.89 387 | 39.16 392 | 41.99 419 | 28.78 401 | 46.45 403 | 37.56 414 | 14.28 419 | 21.10 415 | 48.96 410 | 1.48 429 | 47.11 406 | 13.63 414 | 34.56 406 | 41.60 411 |
|
| Patchmatch-test | | | 49.08 353 | 48.28 355 | 51.50 375 | 64.40 373 | 30.85 396 | 45.68 405 | 48.46 398 | 35.60 386 | 46.10 388 | 72.10 348 | 34.47 291 | 46.37 408 | 27.08 397 | 60.65 349 | 77.27 298 |
|
| DSMNet-mixed | | | 39.30 374 | 38.72 373 | 41.03 391 | 51.22 408 | 19.66 420 | 45.53 406 | 31.35 419 | 15.83 418 | 39.80 402 | 67.42 381 | 22.19 381 | 45.13 409 | 22.43 404 | 52.69 379 | 58.31 396 |
|
| LCM-MVSNet | | | 40.30 371 | 35.88 377 | 53.57 362 | 42.24 417 | 29.15 399 | 45.21 407 | 60.53 358 | 22.23 410 | 28.02 412 | 50.98 408 | 3.72 423 | 61.78 361 | 31.22 381 | 38.76 403 | 69.78 378 |
|
| new_pmnet | | | 34.13 379 | 34.29 380 | 33.64 398 | 52.63 405 | 18.23 422 | 44.43 408 | 33.90 418 | 22.81 408 | 30.89 411 | 53.18 403 | 10.48 411 | 35.72 420 | 20.77 407 | 39.51 401 | 46.98 409 |
|
| mvsany_test1 | | | 39.38 372 | 38.16 375 | 43.02 388 | 49.05 409 | 34.28 380 | 44.16 409 | 25.94 423 | 22.74 409 | 46.57 386 | 62.21 396 | 23.85 378 | 41.16 415 | 33.01 365 | 35.91 405 | 53.63 402 |
|
| E-PMN | | | 23.77 387 | 22.73 391 | 26.90 402 | 42.02 418 | 20.67 419 | 42.66 410 | 35.70 416 | 17.43 414 | 10.28 424 | 25.05 420 | 6.42 416 | 42.39 413 | 10.28 421 | 14.71 420 | 17.63 419 |
|
| EMVS | | | 22.97 388 | 21.84 392 | 26.36 403 | 40.20 421 | 19.53 421 | 41.95 411 | 34.64 417 | 17.09 415 | 9.73 425 | 22.83 421 | 7.29 415 | 42.22 414 | 9.18 423 | 13.66 421 | 17.32 420 |
|
| test_vis3_rt | | | 32.09 381 | 30.20 386 | 37.76 395 | 35.36 426 | 27.48 405 | 40.60 412 | 28.29 422 | 16.69 416 | 32.52 410 | 40.53 415 | 1.96 427 | 37.40 418 | 33.64 362 | 42.21 399 | 48.39 405 |
|
| CHOSEN 280x420 | | | 47.83 356 | 46.36 360 | 52.24 374 | 67.37 356 | 49.78 222 | 38.91 413 | 43.11 410 | 35.00 387 | 43.27 395 | 63.30 394 | 28.95 344 | 49.19 404 | 36.53 348 | 60.80 347 | 57.76 398 |
|
| mvsany_test3 | | | 32.62 380 | 30.57 385 | 38.77 394 | 36.16 425 | 24.20 416 | 38.10 414 | 20.63 427 | 19.14 413 | 40.36 401 | 57.43 400 | 5.06 418 | 36.63 419 | 29.59 388 | 28.66 410 | 55.49 400 |
|
| test_f | | | 31.86 382 | 31.05 383 | 34.28 397 | 32.33 428 | 21.86 418 | 32.34 415 | 30.46 420 | 16.02 417 | 39.78 403 | 55.45 402 | 4.80 419 | 32.36 422 | 30.61 382 | 37.66 404 | 48.64 404 |
|
| PMMVS2 | | | 27.40 386 | 25.91 389 | 31.87 401 | 39.46 423 | 6.57 430 | 31.17 416 | 28.52 421 | 23.96 404 | 20.45 418 | 48.94 412 | 4.20 422 | 37.94 417 | 16.51 410 | 19.97 416 | 51.09 403 |
|
| wuyk23d | | | 13.32 392 | 12.52 395 | 15.71 406 | 47.54 413 | 26.27 411 | 31.06 417 | 1.98 431 | 4.93 423 | 5.18 426 | 1.94 426 | 0.45 431 | 18.54 425 | 6.81 426 | 12.83 422 | 2.33 423 |
|
| Gipuma |  | | 34.77 377 | 31.91 382 | 43.33 387 | 62.05 385 | 37.87 344 | 20.39 418 | 67.03 311 | 23.23 406 | 18.41 419 | 25.84 419 | 4.24 420 | 62.73 357 | 14.71 412 | 51.32 382 | 29.38 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MVE |  | 17.77 23 | 21.41 389 | 17.77 394 | 32.34 400 | 34.34 427 | 25.44 413 | 16.11 419 | 24.11 424 | 11.19 421 | 13.22 421 | 31.92 417 | 1.58 428 | 30.95 423 | 10.47 420 | 17.03 419 | 40.62 414 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 9.43 393 | 11.14 396 | 4.30 408 | 2.38 431 | 4.40 431 | 13.62 420 | 16.08 429 | 0.39 425 | 15.89 420 | 13.06 422 | 15.80 397 | 5.54 427 | 12.63 416 | 10.46 424 | 2.95 422 |
|
| test_method | | | 19.68 390 | 18.10 393 | 24.41 405 | 13.68 430 | 3.11 432 | 12.06 421 | 42.37 411 | 2.00 424 | 11.97 422 | 36.38 416 | 5.77 417 | 29.35 424 | 15.06 411 | 23.65 414 | 40.76 413 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| cdsmvs_eth3d_5k | | | 17.50 391 | 23.34 390 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 78.63 171 | 0.00 429 | 0.00 430 | 82.18 200 | 49.25 123 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 3.92 397 | 5.23 400 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 47.05 155 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| ab-mvs-re | | | 6.49 394 | 8.65 397 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 77.89 283 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 435 | 0.00 422 | 0.00 433 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 433 | 0.00 428 | 0.00 429 | 0.00 426 | 0.00 426 |
|
| WAC-MVS | | | | | | | 27.31 407 | | | | | | | | 27.77 392 | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| PC_three_1452 | | | | | | | | | | 55.09 211 | 84.46 4 | 89.84 46 | 66.68 5 | 89.41 18 | 74.24 47 | 91.38 2 | 88.42 16 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 60 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 45 | | 82.70 93 | 57.95 154 | 78.10 25 | 90.06 39 | 56.12 42 | 88.84 26 | 74.05 50 | 87.00 49 | |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 26 | 53.93 237 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 18 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 18 | 90.70 7 | 87.65 41 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 15 | 66.87 3 | 90.78 7 | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 27 |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 286 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 287 | | | | 78.05 286 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 304 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 3.55 425 | 33.90 298 | 66.52 343 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 391 | 34.50 289 | 74.27 300 | | | |
|
| gm-plane-assit | | | | | | 71.40 309 | 41.72 314 | | | 48.85 298 | | 73.31 340 | | 82.48 173 | 48.90 251 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 40 | 88.31 32 | 83.81 178 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 58 | 87.93 40 | 84.33 159 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 50 | | 81.04 130 | | 74.68 60 | | | 84.04 133 | | | |
|
| TestCases | | | | | 64.39 295 | 71.44 306 | 49.03 232 | | 67.30 306 | 45.97 333 | 47.16 382 | 79.77 249 | 17.47 389 | 67.56 337 | 33.65 360 | 59.16 356 | 76.57 307 |
|
| test_prior | | | | | 76.69 58 | 84.20 61 | 57.27 91 | | 84.88 39 | | | | | 86.43 81 | | | 86.38 79 |
|
| æ–°å‡ ä½•1 | | | | | 70.76 204 | 85.66 41 | 61.13 30 | | 66.43 316 | 44.68 342 | 70.29 119 | 86.64 100 | 41.29 221 | 75.23 295 | 49.72 243 | 81.75 103 | 75.93 313 |
|
| 旧先验1 | | | | | | 83.04 73 | 53.15 163 | | 67.52 305 | | | 87.85 75 | 44.08 189 | | | 80.76 108 | 78.03 289 |
|
| 原ACMM1 | | | | | 74.69 92 | 85.39 47 | 59.40 57 | | 83.42 73 | 51.47 263 | 70.27 120 | 86.61 103 | 48.61 131 | 86.51 79 | 53.85 210 | 87.96 39 | 78.16 284 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 310 | 46.95 269 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 58 | | | | |
|
| testdata | | | | | 64.66 292 | 81.52 91 | 52.93 168 | | 65.29 324 | 46.09 331 | 73.88 71 | 87.46 82 | 38.08 256 | 66.26 346 | 53.31 215 | 78.48 146 | 74.78 329 |
|
| test12 | | | | | 77.76 45 | 84.52 58 | 58.41 78 | | 83.36 76 | | 72.93 90 | | 54.61 55 | 88.05 39 | | 88.12 34 | 86.81 66 |
|
| plane_prior7 | | | | | | 81.41 94 | 55.96 114 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 101 | 56.24 109 | | | | | | 45.26 179 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 52 | | | | | 87.21 58 | 68.16 90 | 80.58 111 | 84.65 153 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 120 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 111 | | | 63.92 36 | 69.27 139 | | | | | | |
|
| plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 433 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 433 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 403 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 220 | 71.42 308 | 47.80 250 | | 50.90 392 | | 50.39 373 | 75.56 321 | 27.43 357 | 81.33 192 | 45.91 276 | 34.10 408 | 80.59 252 |
|
| LGP-MVS_train | | | | | 75.76 73 | 80.22 116 | 57.51 89 | | 83.40 74 | 61.32 79 | 66.67 189 | 87.33 85 | 39.15 243 | 86.59 74 | 67.70 94 | 77.30 164 | 83.19 201 |
|
| test11 | | | | | | | | | 83.47 71 | | | | | | | | |
|
| door | | | | | | | | | 47.60 401 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 101 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 163 | | | 86.93 66 | | | 84.32 160 |
|
| HQP3-MVS | | | | | | | | | 83.90 57 | | | | | | | 80.35 115 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 173 | | | | |
|
| NP-MVS | | | | | | 80.98 104 | 56.05 113 | | | | | 85.54 137 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 196 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 232 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 134 | | | | |
|
| ITE_SJBPF | | | | | 62.09 311 | 66.16 365 | 44.55 286 | | 64.32 331 | 47.36 319 | 55.31 337 | 80.34 239 | 19.27 388 | 62.68 358 | 36.29 351 | 62.39 336 | 79.04 276 |
|
| DeepMVS_CX |  | | | | 12.03 407 | 17.97 429 | 10.91 426 | | 10.60 430 | 7.46 422 | 11.07 423 | 28.36 418 | 3.28 424 | 11.29 426 | 8.01 424 | 9.74 425 | 13.89 421 |
|