This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
FOURS186.12 3660.82 3788.18 183.61 6760.87 8781.50 16
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1690.61 1185.45 123
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1690.61 1187.62 43
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1890.87 588.23 22
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5791.15 488.23 22
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2790.98 1854.26 5790.06 1478.42 2089.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9490.50 2648.18 13587.34 5373.59 5585.71 6084.76 152
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4990.47 2853.96 6288.68 2776.48 2989.63 2087.16 57
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 134
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 7090.50 2653.20 7388.35 3174.02 5187.05 4586.13 94
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7790.58 2349.90 11488.21 3473.78 5387.03 4686.29 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7590.56 2449.80 11688.24 3374.02 5187.03 4686.32 87
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3591.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTMP86.03 1917.08 428
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7490.60 2254.85 5286.72 7177.20 2688.06 3685.74 111
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6790.03 4152.56 7988.53 2974.79 4588.34 2986.63 74
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 10190.01 4347.95 13788.01 4071.55 7386.74 5386.37 81
X-MVStestdata70.21 12967.28 18079.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 1016.49 42347.95 13788.01 4071.55 7386.74 5386.37 81
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16889.24 5442.03 20989.38 1964.07 12586.50 5789.69 3
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10590.26 3446.61 16286.55 7771.71 7185.66 6184.97 145
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 3089.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11275.10 4890.35 3147.66 14286.52 7871.64 7282.99 8384.47 158
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9379.05 2190.30 3355.54 4688.32 3273.48 5687.03 4684.83 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 13189.74 4945.43 17587.16 6072.01 6782.87 8885.14 136
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 6189.38 5255.30 4789.18 2174.19 4987.34 4486.38 79
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2790.18 1587.87 32
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10777.85 2891.42 1350.67 10887.69 4872.46 6284.53 6885.46 121
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10777.85 2891.42 1350.67 10887.69 4872.46 6284.53 6885.46 121
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8788.88 5953.72 6789.06 2368.27 8788.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 4090.38 2953.98 6090.26 1381.30 387.68 4288.77 11
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11877.31 3191.43 1249.62 11887.24 5471.99 6883.75 7885.14 136
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 10079.89 1889.38 5254.97 5085.58 10076.12 3284.94 6486.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7787.27 8755.06 4986.30 8671.78 7084.58 6689.25 5
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 3090.06 3959.47 2189.13 2278.67 1589.73 1687.03 59
SR-MVS-dyc-post74.57 6273.90 6676.58 6383.49 6759.87 5284.29 4081.36 11558.07 14973.14 8390.07 3744.74 18285.84 9468.20 8881.76 10184.03 168
RE-MVS-def73.71 7083.49 6759.87 5284.29 4081.36 11558.07 14973.14 8390.07 3743.06 19968.20 8881.76 10184.03 168
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18873.41 7686.58 10550.94 10688.54 2870.79 7789.71 1787.79 37
HQP_MVS74.31 6573.73 6976.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13986.10 12045.26 17987.21 5868.16 9080.58 11184.65 153
plane_prior284.22 4364.52 25
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 7290.25 3557.68 2989.96 1574.62 4689.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.75 1583.10 7284.15 4688.26 159.90 11378.57 2490.36 3057.51 3286.86 6877.39 2489.52 21
CPTT-MVS72.78 8172.08 8674.87 9084.88 5761.41 2684.15 4677.86 18955.27 20667.51 17488.08 6941.93 21181.85 18269.04 8680.01 11981.35 238
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12779.37 1989.76 4859.84 1687.62 5176.69 2886.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
API-MVS72.17 9471.41 9474.45 10381.95 8657.22 9284.03 4880.38 14259.89 11668.40 15182.33 19749.64 11787.83 4651.87 22684.16 7578.30 282
save fliter86.17 3361.30 2883.98 5079.66 15059.00 131
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 11086.03 12353.83 6486.36 8467.74 9386.91 5088.19 24
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2591.26 1652.51 8088.39 3079.34 890.52 1386.78 68
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9387.25 8853.13 7487.93 4271.97 6985.57 6286.66 72
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14373.71 7390.14 3645.62 16885.99 9069.64 8182.85 8985.78 105
HPM-MVS_fast74.30 6673.46 7276.80 5684.45 6059.04 6983.65 5581.05 12960.15 10970.43 11789.84 4641.09 22585.59 9967.61 9682.90 8785.77 108
plane_prior56.31 10583.58 5663.19 4880.48 114
QAPM70.05 13168.81 14473.78 11976.54 22453.43 15883.23 5783.48 7052.89 24765.90 20386.29 11441.55 21886.49 8051.01 23378.40 14881.42 232
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16974.91 5488.19 6659.15 2387.68 5073.67 5487.45 4386.57 75
EPNet73.09 7772.16 8475.90 7175.95 23256.28 10783.05 5972.39 26666.53 1065.27 21587.00 9050.40 11185.47 10562.48 14286.32 5885.94 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4888.67 2688.12 26
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 9075.27 4484.83 14360.76 1586.56 7667.86 9287.87 4186.06 96
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3891.51 1152.47 8286.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8689.97 4450.90 10787.48 5275.30 3986.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer71.50 10670.38 11674.88 8978.76 15157.15 9782.79 6478.48 17651.26 26769.49 13483.22 17843.99 19283.24 14966.06 10879.37 12784.23 163
test_djsdf69.45 15367.74 16374.58 9974.57 25754.92 13682.79 6478.48 17651.26 26765.41 21283.49 17538.37 25083.24 14966.06 10869.25 27785.56 116
ACMP63.53 672.30 9171.20 10175.59 8180.28 11457.54 8782.74 6682.84 9260.58 9465.24 21986.18 11739.25 24186.03 8966.95 10476.79 17183.22 199
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM61.98 770.80 11869.73 12674.02 11380.59 11358.59 7782.68 6782.02 10155.46 20267.18 17984.39 15638.51 24883.17 15160.65 15776.10 17880.30 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary69.99 13368.66 14873.97 11584.94 5457.83 8482.63 6878.71 16856.28 18464.34 23384.14 15941.57 21687.06 6446.45 27178.88 13777.02 302
OPM-MVS74.73 5874.25 6376.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9787.49 8047.18 15385.88 9369.47 8380.78 10783.66 188
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 10090.34 3248.48 13388.13 3772.32 6486.85 5185.78 105
LPG-MVS_test72.74 8271.74 8875.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18987.33 8539.15 24386.59 7467.70 9477.30 16483.19 201
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 12186.34 11354.92 5188.90 2572.68 6184.55 6787.76 38
114514_t70.83 11669.56 12874.64 9686.21 3154.63 13982.34 7381.81 10448.22 30663.01 25485.83 13040.92 22787.10 6257.91 17679.79 12082.18 222
HQP-NCC80.66 10882.31 7462.10 6867.85 163
ACMP_Plane80.66 10882.31 7462.10 6867.85 163
HQP-MVS73.45 7272.80 7775.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16385.54 13745.46 17386.93 6667.04 10180.35 11584.32 160
MSLP-MVS++73.77 7073.47 7174.66 9483.02 7459.29 6182.30 7781.88 10259.34 12771.59 10886.83 9345.94 16683.65 14265.09 11885.22 6381.06 245
EPP-MVSNet72.16 9671.31 9874.71 9178.68 15449.70 22382.10 7881.65 10660.40 9765.94 20185.84 12951.74 9586.37 8355.93 18879.55 12688.07 29
test_prior462.51 1482.08 79
TSAR-MVS + GP.74.90 5574.15 6477.17 5282.00 8458.77 7581.80 8078.57 17258.58 14074.32 6684.51 15455.94 4387.22 5767.11 10084.48 7185.52 117
test_prior281.75 8160.37 10075.01 5089.06 5556.22 4172.19 6588.96 24
PS-MVSNAJss72.24 9271.21 10075.31 8478.50 15755.93 11581.63 8282.12 9956.24 18570.02 12585.68 13347.05 15584.34 12965.27 11774.41 19385.67 112
TEST985.58 4361.59 2481.62 8381.26 12255.65 19874.93 5288.81 6053.70 6884.68 123
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 19074.93 5288.81 6053.70 6884.68 12375.24 4188.33 3083.65 189
MG-MVS73.96 6873.89 6774.16 11185.65 4249.69 22581.59 8581.29 12161.45 7871.05 11388.11 6751.77 9487.73 4761.05 15483.09 8185.05 141
test_885.40 4660.96 3481.54 8681.18 12555.86 19074.81 5788.80 6253.70 6884.45 127
MAR-MVS71.51 10570.15 12175.60 8081.84 8759.39 5881.38 8782.90 8954.90 22168.08 16078.70 26747.73 14085.51 10251.68 23084.17 7481.88 228
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18274.05 6888.98 5753.34 7287.92 4369.23 8588.42 2887.59 44
OpenMVScopyleft61.03 968.85 16267.56 16772.70 15674.26 26453.99 14781.21 8981.34 11952.70 24862.75 25885.55 13638.86 24684.14 13148.41 25583.01 8279.97 262
DP-MVS Recon72.15 9770.73 10976.40 6586.57 2457.99 8281.15 9082.96 8757.03 16666.78 18585.56 13444.50 18688.11 3851.77 22880.23 11883.10 205
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8574.90 5587.17 8956.46 3888.14 3672.87 5988.03 3889.00 8
Vis-MVSNetpermissive72.18 9371.37 9674.61 9781.29 9755.41 12980.90 9278.28 18560.73 9169.23 14288.09 6844.36 18882.65 16757.68 17781.75 10385.77 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jajsoiax68.25 17866.45 19473.66 12975.62 23655.49 12880.82 9378.51 17552.33 25264.33 23484.11 16028.28 35081.81 18463.48 13570.62 24783.67 186
mvs_tets68.18 18066.36 20073.63 13275.61 23755.35 13180.77 9478.56 17352.48 25164.27 23684.10 16127.45 35681.84 18363.45 13670.56 24983.69 185
DP-MVS65.68 22463.66 23571.75 17484.93 5556.87 10280.74 9573.16 26053.06 24459.09 30482.35 19636.79 27285.94 9232.82 36669.96 26372.45 349
3Dnovator64.47 572.49 8771.39 9575.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 21186.59 10442.38 20785.52 10159.59 16784.72 6582.85 210
ACMH+57.40 1166.12 22064.06 22772.30 16577.79 18552.83 17280.39 9778.03 18757.30 16257.47 31982.55 19027.68 35484.17 13045.54 28169.78 26779.90 264
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20980.23 9883.87 6060.30 10477.15 3386.56 10659.65 1782.00 17966.01 11082.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20980.23 9883.87 6060.30 10477.15 3386.56 10659.65 1782.00 17966.01 11082.12 9488.58 14
IS-MVSNet71.57 10471.00 10573.27 14578.86 14845.63 27580.22 10078.69 16964.14 3566.46 19287.36 8449.30 12185.60 9850.26 23983.71 7988.59 13
Effi-MVS+-dtu69.64 14567.53 17075.95 7076.10 23062.29 1580.20 10176.06 21759.83 11765.26 21877.09 29641.56 21784.02 13560.60 15871.09 24481.53 231
nrg03072.96 7973.01 7572.84 15275.41 24150.24 21380.02 10282.89 9158.36 14574.44 6386.73 9758.90 2480.83 20665.84 11374.46 19087.44 48
Anonymous2023121169.28 15668.47 15371.73 17580.28 11447.18 25979.98 10382.37 9654.61 22567.24 17784.01 16339.43 23882.41 17455.45 19672.83 22085.62 115
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17772.46 9886.76 9556.89 3587.86 4566.36 10688.91 2583.64 190
PVSNet_Blended_VisFu71.45 10870.39 11574.65 9582.01 8358.82 7479.93 10580.35 14355.09 21165.82 20782.16 20349.17 12482.64 16860.34 15978.62 14582.50 216
PAPM_NR72.63 8571.80 8775.13 8781.72 8953.42 15979.91 10683.28 8259.14 12966.31 19685.90 12751.86 9286.06 8757.45 17980.62 10985.91 101
LS3D64.71 23762.50 25171.34 19179.72 12855.71 12079.82 10774.72 24148.50 30356.62 32584.62 14933.59 30382.34 17529.65 38775.23 18775.97 312
UGNet68.81 16367.39 17573.06 14878.33 16654.47 14079.77 10875.40 22860.45 9663.22 24784.40 15532.71 31680.91 20551.71 22980.56 11383.81 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS71.78 10071.59 8972.32 16483.40 7046.38 26479.75 10971.08 27564.18 3272.80 9288.64 6342.58 20483.72 14057.41 18084.49 7086.86 64
OMC-MVS71.40 10970.60 11173.78 11976.60 22253.15 16379.74 11079.78 14758.37 14468.75 14686.45 11145.43 17580.60 21062.58 14077.73 15587.58 45
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19279.67 11185.08 3365.02 1975.84 3988.58 6459.42 2285.08 11172.75 6083.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
无先验79.66 11274.30 24848.40 30580.78 20853.62 21179.03 277
Effi-MVS+73.31 7572.54 8075.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10382.61 18856.44 3985.97 9163.99 12879.07 13687.25 56
GDP-MVS72.64 8471.28 9976.70 5777.72 18854.22 14479.57 11484.45 4355.30 20571.38 11186.97 9139.94 23187.00 6567.02 10379.20 13288.89 9
PAPR71.72 10370.82 10774.41 10481.20 10151.17 19579.55 11583.33 7955.81 19366.93 18484.61 15050.95 10586.06 8755.79 19179.20 13286.00 97
ACMH55.70 1565.20 23363.57 23670.07 21678.07 17652.01 18979.48 11679.69 14855.75 19556.59 32680.98 22727.12 35980.94 20242.90 30871.58 23877.25 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS74.46 6473.84 6876.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9579.46 25753.65 7187.87 4467.45 9882.91 8685.89 102
BP-MVS173.41 7372.25 8376.88 5476.68 21953.70 15179.15 11881.07 12860.66 9271.81 10487.39 8340.93 22687.24 5471.23 7581.29 10689.71 2
原ACMM279.02 119
GeoE71.01 11270.15 12173.60 13479.57 13152.17 18478.93 12078.12 18658.02 15167.76 17183.87 16652.36 8482.72 16556.90 18275.79 18185.92 100
UA-Net73.13 7672.93 7673.76 12183.58 6651.66 19378.75 12177.66 19367.75 472.61 9689.42 5049.82 11583.29 14853.61 21283.14 8086.32 87
VDDNet71.81 9971.33 9773.26 14682.80 7847.60 25578.74 12275.27 23059.59 12372.94 8989.40 5141.51 21983.91 13758.75 17282.99 8388.26 20
v1070.21 12969.02 13973.81 11873.51 27050.92 20178.74 12281.39 11360.05 11166.39 19481.83 21147.58 14485.41 10862.80 13968.86 28485.09 140
CANet_DTU68.18 18067.71 16669.59 22674.83 24946.24 26678.66 12476.85 20659.60 12063.45 24582.09 20735.25 28277.41 26459.88 16478.76 14185.14 136
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11871.53 10987.47 8156.92 3488.17 3572.18 6686.63 5688.80 10
v870.33 12769.28 13473.49 13773.15 27350.22 21478.62 12580.78 13560.79 8966.45 19382.11 20649.35 12084.98 11463.58 13468.71 28585.28 132
alignmvs73.86 6973.99 6573.45 13978.20 16950.50 21178.57 12782.43 9559.40 12576.57 3686.71 9956.42 4081.23 19665.84 11381.79 10088.62 12
PLCcopyleft56.13 1465.09 23463.21 24370.72 20681.04 10354.87 13778.57 12777.47 19648.51 30255.71 33281.89 20933.71 30079.71 22441.66 31770.37 25277.58 293
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n69.01 16167.36 17773.98 11472.51 28752.65 17478.54 12981.30 12060.26 10662.67 25981.62 21443.61 19484.49 12657.01 18168.70 28684.79 150
COLMAP_ROBcopyleft52.97 1761.27 27958.81 28768.64 24074.63 25552.51 17978.42 13073.30 25849.92 28450.96 36781.51 21823.06 37979.40 22931.63 37665.85 30674.01 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14968.74 14671.93 16872.47 28853.82 14978.25 13162.26 34949.78 28573.12 8586.21 11652.66 7876.79 27975.02 4268.88 28285.18 135
CLD-MVS73.33 7472.68 7875.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11881.04 22552.41 8387.12 6164.61 12482.49 9385.41 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf0.1_n72.81 8072.33 8274.24 10969.89 33455.81 11878.22 13375.40 22854.17 23475.00 5188.03 7253.82 6580.23 22078.08 2178.34 14986.69 70
test_fmvsmconf_n73.01 7872.59 7974.27 10871.28 31255.88 11778.21 13475.56 22454.31 23274.86 5687.80 7654.72 5380.23 22078.07 2278.48 14686.70 69
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 21278.17 13585.06 3562.80 5874.40 6487.86 7457.88 2783.61 14369.46 8482.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a69.32 15568.44 15571.96 16770.91 31653.78 15078.12 13662.30 34849.35 29173.20 8186.55 10851.99 9076.79 27974.83 4468.68 28785.32 130
F-COLMAP63.05 25860.87 27469.58 22876.99 21553.63 15478.12 13676.16 21347.97 31152.41 36281.61 21527.87 35278.11 25140.07 32366.66 30177.00 303
test_fmvsmconf0.01_n72.17 9471.50 9174.16 11167.96 35255.58 12678.06 13874.67 24254.19 23374.54 6288.23 6550.35 11380.24 21978.07 2277.46 16086.65 73
EG-PatchMatch MVS64.71 23762.87 24670.22 21277.68 19053.48 15777.99 13978.82 16453.37 24356.03 33177.41 29324.75 37684.04 13346.37 27273.42 21073.14 341
fmvsm_s_conf0.5_n69.58 14768.84 14371.79 17372.31 29352.90 16977.90 14062.43 34749.97 28372.85 9185.90 12752.21 8676.49 28575.75 3470.26 25785.97 98
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15975.49 4286.81 9462.22 1377.75 25871.09 7682.02 9786.34 83
tttt051767.83 18865.66 21374.33 10676.69 21850.82 20377.86 14273.99 25354.54 22864.64 23182.53 19335.06 28485.50 10355.71 19269.91 26486.67 71
fmvsm_s_conf0.1_n69.41 15468.60 14971.83 17171.07 31452.88 17177.85 14362.44 34649.58 28872.97 8886.22 11551.68 9676.48 28675.53 3770.10 26086.14 93
v114470.42 12569.31 13373.76 12173.22 27150.64 20677.83 14481.43 11258.58 14069.40 13781.16 22247.53 14685.29 11064.01 12770.64 24685.34 129
CNLPA65.43 22864.02 22869.68 22478.73 15358.07 8177.82 14570.71 27951.49 26261.57 27783.58 17338.23 25470.82 31543.90 29670.10 26080.16 259
fmvsm_s_conf0.5_n_373.55 7174.39 6171.03 20074.09 26751.86 19177.77 14675.60 22261.18 8378.67 2388.98 5755.88 4477.73 25978.69 1478.68 14383.50 193
VDD-MVS72.50 8672.09 8573.75 12381.58 9049.69 22577.76 14777.63 19463.21 4773.21 8089.02 5642.14 20883.32 14761.72 14982.50 9288.25 21
v119269.97 13468.68 14773.85 11673.19 27250.94 19977.68 14881.36 11557.51 16168.95 14580.85 23245.28 17885.33 10962.97 13870.37 25285.27 133
v2v48270.50 12369.45 13273.66 12972.62 28350.03 21977.58 14980.51 13959.90 11369.52 13382.14 20447.53 14684.88 12065.07 11970.17 25886.09 95
WR-MVS_H67.02 20566.92 18967.33 25677.95 18137.75 34777.57 15082.11 10062.03 7362.65 26082.48 19450.57 11079.46 22842.91 30764.01 32184.79 150
Anonymous2024052969.91 13569.02 13972.56 15780.19 11947.65 25377.56 15180.99 13155.45 20369.88 12986.76 9539.24 24282.18 17754.04 20777.10 16887.85 33
v14419269.71 14068.51 15073.33 14473.10 27450.13 21677.54 15280.64 13656.65 17168.57 14980.55 23546.87 16084.96 11662.98 13769.66 27184.89 147
baseline74.61 6174.70 5874.34 10575.70 23449.99 22077.54 15284.63 4262.73 5973.98 6987.79 7757.67 3083.82 13969.49 8282.74 9189.20 7
Fast-Effi-MVS+-dtu67.37 19565.33 21873.48 13872.94 27857.78 8677.47 15476.88 20557.60 16061.97 27076.85 30039.31 23980.49 21454.72 20170.28 25682.17 224
v192192069.47 15268.17 15973.36 14373.06 27550.10 21777.39 15580.56 13756.58 17868.59 14780.37 23744.72 18384.98 11462.47 14369.82 26685.00 142
tt080567.77 18967.24 18469.34 23174.87 24840.08 32477.36 15681.37 11455.31 20466.33 19584.65 14837.35 26282.55 17055.65 19472.28 23185.39 128
GBi-Net67.21 19766.55 19269.19 23277.63 19343.33 29677.31 15777.83 19056.62 17465.04 22482.70 18441.85 21280.33 21647.18 26572.76 22183.92 173
test167.21 19766.55 19269.19 23277.63 19343.33 29677.31 15777.83 19056.62 17465.04 22482.70 18441.85 21280.33 21647.18 26572.76 22183.92 173
FMVSNet166.70 21265.87 20969.19 23277.49 20143.33 29677.31 15777.83 19056.45 17964.60 23282.70 18438.08 25680.33 21646.08 27472.31 23083.92 173
MVS_111021_HR74.02 6773.46 7275.69 7683.01 7560.63 4077.29 16078.40 18361.18 8370.58 11685.97 12554.18 5984.00 13667.52 9782.98 8582.45 217
EIA-MVS71.78 10070.60 11175.30 8579.85 12553.54 15677.27 16183.26 8357.92 15566.49 19179.39 25952.07 8986.69 7260.05 16179.14 13585.66 113
v124069.24 15867.91 16273.25 14773.02 27749.82 22177.21 16280.54 13856.43 18068.34 15380.51 23643.33 19784.99 11262.03 14769.77 26984.95 146
fmvsm_l_conf0.5_n70.99 11370.82 10771.48 18271.45 30554.40 14277.18 16370.46 28148.67 29975.17 4686.86 9253.77 6676.86 27776.33 3177.51 15983.17 204
jason69.65 14468.39 15773.43 14178.27 16856.88 10177.12 16473.71 25646.53 32769.34 13883.22 17843.37 19679.18 23364.77 12179.20 13284.23 163
jason: jason.
PAPM67.92 18666.69 19071.63 17978.09 17549.02 23477.09 16581.24 12451.04 27060.91 28383.98 16447.71 14184.99 11240.81 32079.32 13080.90 248
EI-MVSNet-Vis-set72.42 9071.59 8974.91 8878.47 15954.02 14677.05 16679.33 15765.03 1871.68 10779.35 26152.75 7784.89 11866.46 10574.23 19485.83 104
PEN-MVS66.60 21466.45 19467.04 25777.11 21136.56 36077.03 16780.42 14162.95 5062.51 26584.03 16246.69 16179.07 23944.22 29063.08 33185.51 118
FIs70.82 11771.43 9368.98 23678.33 16638.14 34376.96 16883.59 6861.02 8667.33 17686.73 9755.07 4881.64 18554.61 20479.22 13187.14 58
PS-CasMVS66.42 21866.32 20266.70 26177.60 19936.30 36576.94 16979.61 15162.36 6562.43 26783.66 17045.69 16778.37 24745.35 28763.26 32985.42 126
h-mvs3372.71 8371.49 9276.40 6581.99 8559.58 5576.92 17076.74 20960.40 9774.81 5785.95 12645.54 17185.76 9670.41 7970.61 24883.86 177
fmvsm_l_conf0.5_n_a70.50 12370.27 11871.18 19571.30 31154.09 14576.89 17169.87 28547.90 31274.37 6586.49 10953.07 7676.69 28275.41 3877.11 16782.76 211
thisisatest053067.92 18665.78 21174.33 10676.29 22751.03 19876.89 17174.25 24953.67 24065.59 20981.76 21235.15 28385.50 10355.94 18772.47 22686.47 78
test_040263.25 25561.01 27169.96 21780.00 12354.37 14376.86 17372.02 27054.58 22758.71 30780.79 23435.00 28584.36 12826.41 39964.71 31571.15 368
CP-MVSNet66.49 21766.41 19866.72 25977.67 19136.33 36376.83 17479.52 15362.45 6362.54 26383.47 17646.32 16378.37 24745.47 28563.43 32885.45 123
EI-MVSNet-UG-set71.92 9871.06 10474.52 10277.98 18053.56 15576.62 17579.16 15864.40 2771.18 11278.95 26652.19 8784.66 12565.47 11673.57 20585.32 130
RRT-MVS71.46 10770.70 11073.74 12477.76 18749.30 23176.60 17680.45 14061.25 8268.17 15684.78 14544.64 18484.90 11764.79 12077.88 15487.03 59
lupinMVS69.57 14868.28 15873.44 14078.76 15157.15 9776.57 17773.29 25946.19 33069.49 13482.18 20043.99 19279.23 23264.66 12279.37 12783.93 172
TranMVSNet+NR-MVSNet70.36 12670.10 12371.17 19678.64 15542.97 30276.53 17881.16 12766.95 668.53 15085.42 13951.61 9783.07 15252.32 22069.70 27087.46 47
TAPA-MVS59.36 1066.60 21465.20 22070.81 20376.63 22148.75 23976.52 17980.04 14650.64 27565.24 21984.93 14239.15 24378.54 24636.77 34376.88 17085.14 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DTE-MVSNet65.58 22665.34 21766.31 26876.06 23134.79 37376.43 18079.38 15662.55 6161.66 27583.83 16745.60 16979.15 23741.64 31960.88 34685.00 142
anonymousdsp67.00 20664.82 22373.57 13570.09 33056.13 11076.35 18177.35 20048.43 30464.99 22780.84 23333.01 30980.34 21564.66 12267.64 29484.23 163
MVP-Stereo65.41 22963.80 23270.22 21277.62 19755.53 12776.30 18278.53 17450.59 27656.47 32978.65 27039.84 23482.68 16644.10 29472.12 23372.44 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_Test72.45 8872.46 8172.42 16374.88 24748.50 24376.28 18383.14 8659.40 12572.46 9884.68 14655.66 4581.12 19765.98 11279.66 12387.63 42
IterMVS-LS69.22 15968.48 15171.43 18774.44 26049.40 22976.23 18477.55 19559.60 12065.85 20681.59 21751.28 10081.58 18859.87 16569.90 26583.30 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何276.12 185
FMVSNet266.93 20766.31 20368.79 23977.63 19342.98 30176.11 18677.47 19656.62 17465.22 22182.17 20241.85 21280.18 22247.05 26872.72 22483.20 200
旧先验276.08 18745.32 33876.55 3765.56 34958.75 172
BH-untuned68.27 17767.29 17971.21 19379.74 12653.22 16276.06 18877.46 19857.19 16466.10 19881.61 21545.37 17783.50 14545.42 28676.68 17376.91 306
FC-MVSNet-test69.80 13970.58 11367.46 25277.61 19834.73 37676.05 18983.19 8460.84 8865.88 20586.46 11054.52 5680.76 20952.52 21978.12 15086.91 62
PCF-MVS61.88 870.95 11469.49 13075.35 8377.63 19355.71 12076.04 19081.81 10450.30 27869.66 13285.40 14052.51 8084.89 11851.82 22780.24 11785.45 123
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet71.11 11071.00 10571.44 18579.20 13944.13 28876.02 19182.60 9466.48 1168.20 15484.60 15156.82 3682.82 16354.62 20270.43 25087.36 54
UniMVSNet (Re)70.63 12070.20 11971.89 16978.55 15645.29 27875.94 19282.92 8863.68 4068.16 15783.59 17253.89 6383.49 14653.97 20871.12 24386.89 63
test_fmvsmvis_n_192070.84 11570.38 11672.22 16671.16 31355.39 13075.86 19372.21 26849.03 29573.28 7986.17 11851.83 9377.29 26775.80 3378.05 15183.98 171
EPNet_dtu61.90 27161.97 25761.68 31272.89 27939.78 32875.85 19465.62 32255.09 21154.56 34779.36 26037.59 25967.02 34139.80 32676.95 16978.25 283
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MGCFI-Net72.45 8873.34 7469.81 22377.77 18643.21 29975.84 19581.18 12559.59 12375.45 4386.64 10057.74 2877.94 25363.92 12981.90 9988.30 19
v14868.24 17967.19 18671.40 18870.43 32447.77 25275.76 19677.03 20458.91 13267.36 17580.10 24448.60 13281.89 18160.01 16266.52 30384.53 155
test_fmvsm_n_192071.73 10271.14 10273.50 13672.52 28656.53 10475.60 19776.16 21348.11 30877.22 3285.56 13453.10 7577.43 26374.86 4377.14 16686.55 76
SixPastTwentyTwo61.65 27458.80 28970.20 21475.80 23347.22 25875.59 19869.68 28754.61 22554.11 35179.26 26227.07 36082.96 15443.27 30249.79 38780.41 255
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19884.17 4963.76 3873.15 8282.79 18359.58 2086.80 6967.24 9986.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FA-MVS(test-final)69.82 13768.48 15173.84 11778.44 16050.04 21875.58 20078.99 16258.16 14767.59 17282.14 20442.66 20285.63 9756.60 18376.19 17785.84 103
Baseline_NR-MVSNet67.05 20467.56 16765.50 28475.65 23537.70 34975.42 20174.65 24359.90 11368.14 15883.15 18149.12 12777.20 26852.23 22169.78 26781.60 230
OpenMVS_ROBcopyleft52.78 1860.03 28658.14 29665.69 28270.47 32344.82 28075.33 20270.86 27845.04 33956.06 33076.00 31426.89 36379.65 22535.36 35567.29 29672.60 346
xiu_mvs_v1_base_debu68.58 16967.28 18072.48 15978.19 17057.19 9475.28 20375.09 23651.61 25870.04 12281.41 21932.79 31279.02 24063.81 13177.31 16181.22 240
xiu_mvs_v1_base68.58 16967.28 18072.48 15978.19 17057.19 9475.28 20375.09 23651.61 25870.04 12281.41 21932.79 31279.02 24063.81 13177.31 16181.22 240
xiu_mvs_v1_base_debi68.58 16967.28 18072.48 15978.19 17057.19 9475.28 20375.09 23651.61 25870.04 12281.41 21932.79 31279.02 24063.81 13177.31 16181.22 240
EI-MVSNet69.27 15768.44 15571.73 17574.47 25849.39 23075.20 20678.45 17959.60 12069.16 14376.51 30851.29 9982.50 17159.86 16671.45 24083.30 196
CVMVSNet59.63 29159.14 28461.08 32074.47 25838.84 33775.20 20668.74 29831.15 39358.24 31376.51 30832.39 32368.58 32849.77 24165.84 30775.81 314
ET-MVSNet_ETH3D67.96 18565.72 21274.68 9376.67 22055.62 12575.11 20874.74 24052.91 24660.03 29080.12 24333.68 30182.64 16861.86 14876.34 17585.78 105
xiu_mvs_v2_base70.52 12169.75 12572.84 15281.21 10055.63 12375.11 20878.92 16354.92 22069.96 12879.68 25247.00 15982.09 17861.60 15179.37 12780.81 250
K. test v360.47 28357.11 30170.56 20873.74 26948.22 24675.10 21062.55 34458.27 14653.62 35776.31 31227.81 35381.59 18747.42 26139.18 40281.88 228
Fast-Effi-MVS+70.28 12869.12 13873.73 12578.50 15751.50 19475.01 21179.46 15556.16 18768.59 14779.55 25553.97 6184.05 13253.34 21477.53 15885.65 114
DU-MVS70.01 13269.53 12971.44 18578.05 17744.13 28875.01 21181.51 11064.37 2868.20 15484.52 15249.12 12782.82 16354.62 20270.43 25087.37 52
FMVSNet366.32 21965.61 21468.46 24276.48 22542.34 30574.98 21377.15 20355.83 19265.04 22481.16 22239.91 23280.14 22347.18 26572.76 22182.90 209
mvsmamba68.47 17366.56 19174.21 11079.60 12952.95 16774.94 21475.48 22652.09 25560.10 28883.27 17736.54 27384.70 12259.32 17177.69 15684.99 144
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21580.97 13265.13 1575.77 4090.88 1948.63 13086.66 7377.23 2588.17 3384.81 149
PS-MVSNAJ70.51 12269.70 12772.93 15081.52 9155.79 11974.92 21579.00 16155.04 21769.88 12978.66 26947.05 15582.19 17661.61 15079.58 12480.83 249
MVS_111021_LR69.50 15168.78 14571.65 17878.38 16259.33 5974.82 21770.11 28358.08 14867.83 16784.68 14641.96 21076.34 28965.62 11577.54 15779.30 274
ECVR-MVScopyleft67.72 19067.51 17168.35 24479.46 13336.29 36674.79 21866.93 31258.72 13567.19 17888.05 7036.10 27581.38 19152.07 22384.25 7287.39 50
test_yl69.69 14169.13 13671.36 18978.37 16445.74 27174.71 21980.20 14457.91 15670.01 12683.83 16742.44 20582.87 15954.97 19879.72 12185.48 119
DCV-MVSNet69.69 14169.13 13671.36 18978.37 16445.74 27174.71 21980.20 14457.91 15670.01 12683.83 16742.44 20582.87 15954.97 19879.72 12185.48 119
TransMVSNet (Re)64.72 23664.33 22665.87 28075.22 24338.56 33974.66 22175.08 23958.90 13361.79 27382.63 18751.18 10178.07 25243.63 30055.87 36980.99 247
BH-w/o66.85 20865.83 21069.90 22179.29 13552.46 18074.66 22176.65 21054.51 22964.85 22878.12 27545.59 17082.95 15543.26 30375.54 18574.27 335
PVSNet_BlendedMVS68.56 17267.72 16471.07 19977.03 21350.57 20774.50 22381.52 10853.66 24164.22 23979.72 25149.13 12582.87 15955.82 18973.92 19879.77 269
MonoMVSNet64.15 24463.31 24166.69 26270.51 32244.12 29074.47 22474.21 25057.81 15863.03 25276.62 30438.33 25177.31 26654.22 20660.59 35178.64 280
c3_l68.33 17667.56 16770.62 20770.87 31746.21 26774.47 22478.80 16656.22 18666.19 19778.53 27451.88 9181.40 19062.08 14469.04 28084.25 162
test250665.33 23164.61 22467.50 25179.46 13334.19 38174.43 22651.92 38758.72 13566.75 18788.05 7025.99 36880.92 20451.94 22584.25 7287.39 50
BH-RMVSNet68.81 16367.42 17472.97 14980.11 12252.53 17874.26 22776.29 21258.48 14268.38 15284.20 15742.59 20383.83 13846.53 27075.91 17982.56 212
NR-MVSNet69.54 14968.85 14271.59 18078.05 17743.81 29374.20 22880.86 13465.18 1462.76 25784.52 15252.35 8583.59 14450.96 23570.78 24587.37 52
UniMVSNet_ETH3D67.60 19267.07 18869.18 23577.39 20442.29 30674.18 22975.59 22360.37 10066.77 18686.06 12237.64 25878.93 24552.16 22273.49 20786.32 87
VPA-MVSNet69.02 16069.47 13167.69 25077.42 20341.00 32074.04 23079.68 14960.06 11069.26 14184.81 14451.06 10477.58 26154.44 20574.43 19284.48 157
miper_ehance_all_eth68.03 18267.24 18470.40 21170.54 32146.21 26773.98 23178.68 17055.07 21466.05 19977.80 28552.16 8881.31 19361.53 15369.32 27483.67 186
hse-mvs271.04 11169.86 12474.60 9879.58 13057.12 9973.96 23275.25 23160.40 9774.81 5781.95 20845.54 17182.90 15670.41 7966.83 30083.77 182
131464.61 23963.21 24368.80 23871.87 30047.46 25673.95 23378.39 18442.88 36059.97 29176.60 30738.11 25579.39 23054.84 20072.32 22979.55 270
MVS67.37 19566.33 20170.51 21075.46 24050.94 19973.95 23381.85 10341.57 36762.54 26378.57 27347.98 13685.47 10552.97 21782.05 9675.14 321
AUN-MVS68.45 17566.41 19874.57 10079.53 13257.08 10073.93 23575.23 23254.44 23066.69 18881.85 21037.10 26882.89 15762.07 14566.84 29983.75 183
OurMVSNet-221017-061.37 27858.63 29169.61 22572.05 29648.06 24873.93 23572.51 26547.23 32254.74 34480.92 22921.49 38681.24 19548.57 25456.22 36879.53 271
test111167.21 19767.14 18767.42 25379.24 13834.76 37573.89 23765.65 32158.71 13766.96 18387.95 7336.09 27680.53 21152.03 22483.79 7786.97 61
cl2267.47 19466.45 19470.54 20969.85 33546.49 26373.85 23877.35 20055.07 21465.51 21077.92 28147.64 14381.10 19861.58 15269.32 27484.01 170
TAMVS66.78 21165.27 21971.33 19279.16 14253.67 15273.84 23969.59 28952.32 25365.28 21481.72 21344.49 18777.40 26542.32 31178.66 14482.92 207
WR-MVS68.47 17368.47 15368.44 24380.20 11839.84 32773.75 24076.07 21664.68 2268.11 15983.63 17150.39 11279.14 23849.78 24069.66 27186.34 83
eth_miper_zixun_eth67.63 19166.28 20471.67 17771.60 30348.33 24573.68 24177.88 18855.80 19465.91 20278.62 27247.35 15282.88 15859.45 16866.25 30483.81 178
TR-MVS66.59 21665.07 22171.17 19679.18 14049.63 22773.48 24275.20 23452.95 24567.90 16180.33 24039.81 23583.68 14143.20 30473.56 20680.20 258
fmvsm_s_conf0.1_n_269.64 14569.01 14171.52 18171.66 30251.04 19773.39 24367.14 31055.02 21875.11 4787.64 7842.94 20177.01 27275.55 3672.63 22586.52 77
fmvsm_s_conf0.5_n_269.82 13769.27 13571.46 18372.00 29751.08 19673.30 24467.79 30455.06 21675.24 4587.51 7944.02 19177.00 27375.67 3572.86 21986.31 90
cl____67.18 20066.26 20569.94 21870.20 32745.74 27173.30 24476.83 20755.10 20965.27 21579.57 25447.39 15080.53 21159.41 17069.22 27883.53 192
DIV-MVS_self_test67.18 20066.26 20569.94 21870.20 32745.74 27173.29 24676.83 20755.10 20965.27 21579.58 25347.38 15180.53 21159.43 16969.22 27883.54 191
CDS-MVSNet66.80 21065.37 21671.10 19878.98 14553.13 16573.27 24771.07 27652.15 25464.72 22980.23 24243.56 19577.10 26945.48 28478.88 13783.05 206
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs663.69 24962.82 24866.27 27070.63 31939.27 33473.13 24875.47 22752.69 24959.75 29782.30 19839.71 23677.03 27147.40 26264.35 32082.53 214
IB-MVS56.42 1265.40 23062.73 24973.40 14274.89 24652.78 17373.09 24975.13 23555.69 19658.48 31273.73 33832.86 31186.32 8550.63 23670.11 25981.10 244
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive70.69 11970.43 11471.46 18369.45 34048.95 23772.93 25078.46 17857.27 16371.69 10683.97 16551.48 9877.92 25570.70 7877.95 15387.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4268.65 16767.35 17872.56 15768.93 34650.18 21572.90 25179.47 15456.92 16869.45 13680.26 24146.29 16482.99 15364.07 12567.82 29284.53 155
miper_enhance_ethall67.11 20366.09 20770.17 21569.21 34345.98 26972.85 25278.41 18251.38 26465.65 20875.98 31751.17 10281.25 19460.82 15669.32 27483.29 198
thres100view90063.28 25462.41 25265.89 27977.31 20638.66 33872.65 25369.11 29657.07 16562.45 26681.03 22637.01 27079.17 23431.84 37273.25 21379.83 266
testdata172.65 25360.50 95
FE-MVS65.91 22263.33 24073.63 13277.36 20551.95 19072.62 25575.81 21853.70 23965.31 21378.96 26528.81 34786.39 8243.93 29573.48 20882.55 213
pm-mvs165.24 23264.97 22266.04 27672.38 29039.40 33372.62 25575.63 22155.53 20062.35 26983.18 18047.45 14876.47 28749.06 25066.54 30282.24 221
test22283.14 7158.68 7672.57 25763.45 33841.78 36367.56 17386.12 11937.13 26778.73 14274.98 325
PVSNet_Blended68.59 16867.72 16471.19 19477.03 21350.57 20772.51 25881.52 10851.91 25664.22 23977.77 28849.13 12582.87 15955.82 18979.58 12480.14 260
EU-MVSNet55.61 32354.41 32659.19 32965.41 36933.42 38672.44 25971.91 27128.81 39551.27 36573.87 33724.76 37569.08 32643.04 30558.20 35975.06 322
thres600view763.30 25362.27 25366.41 26677.18 20838.87 33672.35 26069.11 29656.98 16762.37 26880.96 22837.01 27079.00 24331.43 37973.05 21781.36 236
pmmvs-eth3d58.81 29656.31 31166.30 26967.61 35452.42 18272.30 26164.76 32843.55 35354.94 34274.19 33528.95 34472.60 30543.31 30157.21 36373.88 339
cascas65.98 22163.42 23873.64 13177.26 20752.58 17772.26 26277.21 20248.56 30061.21 28074.60 33232.57 32185.82 9550.38 23876.75 17282.52 215
VPNet67.52 19368.11 16065.74 28179.18 14036.80 35872.17 26372.83 26362.04 7267.79 16985.83 13048.88 12976.60 28451.30 23172.97 21883.81 178
MS-PatchMatch62.42 26461.46 26365.31 28875.21 24452.10 18572.05 26474.05 25246.41 32857.42 32174.36 33334.35 29277.57 26245.62 28073.67 20266.26 387
mvs_anonymous68.03 18267.51 17169.59 22672.08 29544.57 28571.99 26575.23 23251.67 25767.06 18182.57 18954.68 5477.94 25356.56 18475.71 18386.26 92
patch_mono-269.85 13671.09 10366.16 27279.11 14354.80 13871.97 26674.31 24753.50 24270.90 11484.17 15857.63 3163.31 35566.17 10782.02 9780.38 256
tfpn200view963.18 25662.18 25566.21 27176.85 21639.62 33071.96 26769.44 29256.63 17262.61 26179.83 24737.18 26479.17 23431.84 37273.25 21379.83 266
thres40063.31 25262.18 25566.72 25976.85 21639.62 33071.96 26769.44 29256.63 17262.61 26179.83 24737.18 26479.17 23431.84 37273.25 21381.36 236
baseline163.81 24863.87 23163.62 29976.29 22736.36 36171.78 26967.29 30856.05 18964.23 23882.95 18247.11 15474.41 29947.30 26461.85 34080.10 261
baseline263.42 25161.26 26769.89 22272.55 28547.62 25471.54 27068.38 30050.11 28054.82 34375.55 32243.06 19980.96 20148.13 25867.16 29881.11 243
pmmvs461.48 27759.39 28267.76 24971.57 30453.86 14871.42 27165.34 32344.20 34759.46 29977.92 28135.90 27774.71 29743.87 29764.87 31474.71 331
1112_ss64.00 24763.36 23965.93 27879.28 13642.58 30471.35 27272.36 26746.41 32860.55 28577.89 28346.27 16573.28 30346.18 27369.97 26281.92 227
thisisatest051565.83 22363.50 23772.82 15473.75 26849.50 22871.32 27373.12 26249.39 29063.82 24176.50 31034.95 28684.84 12153.20 21675.49 18684.13 167
CostFormer64.04 24662.51 25068.61 24171.88 29945.77 27071.30 27470.60 28047.55 31664.31 23576.61 30641.63 21579.62 22749.74 24269.00 28180.42 254
tfpnnormal62.47 26361.63 26164.99 29174.81 25039.01 33571.22 27573.72 25555.22 20860.21 28680.09 24541.26 22376.98 27530.02 38568.09 29078.97 278
IterMVS62.79 26061.27 26667.35 25569.37 34152.04 18871.17 27668.24 30252.63 25059.82 29476.91 29937.32 26372.36 30652.80 21863.19 33077.66 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24963.88 23063.14 30474.75 25131.04 39571.16 27763.64 33756.32 18259.80 29584.99 14144.51 18575.46 29439.12 32980.62 10982.92 207
IterMVS-SCA-FT62.49 26261.52 26265.40 28671.99 29850.80 20471.15 27869.63 28845.71 33660.61 28477.93 28037.45 26065.99 34755.67 19363.50 32779.42 272
Anonymous20240521166.84 20965.99 20869.40 23080.19 11942.21 30871.11 27971.31 27458.80 13467.90 16186.39 11229.83 33879.65 22549.60 24678.78 14086.33 85
Anonymous2024052155.30 32454.41 32657.96 33960.92 39341.73 31271.09 28071.06 27741.18 36848.65 37873.31 34016.93 39259.25 37142.54 30964.01 32172.90 343
tpm262.07 26960.10 27867.99 24772.79 28043.86 29271.05 28166.85 31343.14 35862.77 25675.39 32638.32 25280.80 20741.69 31668.88 28279.32 273
TDRefinement53.44 33750.72 34661.60 31364.31 37446.96 26070.89 28265.27 32541.78 36344.61 39177.98 27811.52 40766.36 34528.57 39151.59 38171.49 363
XVG-ACMP-BASELINE64.36 24362.23 25470.74 20572.35 29152.45 18170.80 28378.45 17953.84 23859.87 29381.10 22416.24 39579.32 23155.64 19571.76 23580.47 253
mmtdpeth60.40 28459.12 28564.27 29769.59 33748.99 23570.67 28470.06 28454.96 21962.78 25573.26 34227.00 36167.66 33458.44 17545.29 39476.16 311
XVG-OURS-SEG-HR68.81 16367.47 17372.82 15474.40 26156.87 10270.59 28579.04 16054.77 22366.99 18286.01 12439.57 23778.21 25062.54 14173.33 21183.37 195
VNet69.68 14370.19 12068.16 24679.73 12741.63 31570.53 28677.38 19960.37 10070.69 11586.63 10251.08 10377.09 27053.61 21281.69 10585.75 110
GA-MVS65.53 22763.70 23471.02 20170.87 31748.10 24770.48 28774.40 24556.69 17064.70 23076.77 30133.66 30281.10 19855.42 19770.32 25583.87 176
MSDG61.81 27359.23 28369.55 22972.64 28252.63 17670.45 28875.81 21851.38 26453.70 35476.11 31329.52 34081.08 20037.70 33665.79 30874.93 326
ab-mvs66.65 21366.42 19767.37 25476.17 22941.73 31270.41 28976.14 21553.99 23665.98 20083.51 17449.48 11976.24 29048.60 25373.46 20984.14 166
EGC-MVSNET42.47 36638.48 37454.46 35774.33 26248.73 24070.33 29051.10 3900.03 4260.18 42767.78 37813.28 40166.49 34418.91 40950.36 38548.15 406
MVSTER67.16 20265.58 21571.88 17070.37 32649.70 22370.25 29178.45 17951.52 26169.16 14380.37 23738.45 24982.50 17160.19 16071.46 23983.44 194
reproduce_monomvs62.56 26161.20 26966.62 26370.62 32044.30 28770.13 29273.13 26154.78 22261.13 28176.37 31125.63 37175.63 29358.75 17260.29 35279.93 263
XVG-OURS68.76 16667.37 17672.90 15174.32 26357.22 9270.09 29378.81 16555.24 20767.79 16985.81 13236.54 27378.28 24962.04 14675.74 18283.19 201
HY-MVS56.14 1364.55 24063.89 22966.55 26474.73 25241.02 31769.96 29474.43 24449.29 29261.66 27580.92 22947.43 14976.68 28344.91 28971.69 23681.94 226
AllTest57.08 30854.65 32264.39 29571.44 30649.03 23269.92 29567.30 30645.97 33347.16 38279.77 24917.47 38967.56 33733.65 36059.16 35676.57 307
testing356.54 31255.92 31458.41 33477.52 20027.93 40469.72 29656.36 37454.75 22458.63 31077.80 28520.88 38771.75 31225.31 40162.25 33775.53 318
thres20062.20 26861.16 27065.34 28775.38 24239.99 32669.60 29769.29 29455.64 19961.87 27276.99 29737.07 26978.96 24431.28 38073.28 21277.06 301
tpmrst58.24 29958.70 29056.84 34466.97 35734.32 37969.57 29861.14 35547.17 32358.58 31171.60 35341.28 22260.41 36549.20 24862.84 33275.78 315
PatchmatchNetpermissive59.84 28858.24 29464.65 29373.05 27646.70 26269.42 29962.18 35047.55 31658.88 30671.96 35034.49 29069.16 32542.99 30663.60 32578.07 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew59.66 29059.69 28059.56 32475.19 24535.78 37069.34 30064.28 33246.88 32561.76 27475.79 31840.61 22865.20 35032.16 36871.21 24177.70 291
GG-mvs-BLEND62.34 30971.36 31037.04 35669.20 30157.33 37154.73 34565.48 38930.37 33277.82 25634.82 35674.93 18872.17 355
HyFIR lowres test65.67 22563.01 24573.67 12879.97 12455.65 12269.07 30275.52 22542.68 36163.53 24477.95 27940.43 22981.64 18546.01 27571.91 23483.73 184
UWE-MVS60.18 28559.78 27961.39 31777.67 19133.92 38469.04 30363.82 33548.56 30064.27 23677.64 29027.20 35870.40 32033.56 36376.24 17679.83 266
test_post168.67 3043.64 42432.39 32369.49 32444.17 291
testing22262.29 26761.31 26565.25 28977.87 18238.53 34068.34 30566.31 31856.37 18163.15 25177.58 29128.47 34876.18 29237.04 34176.65 17481.05 246
Test_1112_low_res62.32 26561.77 25964.00 29879.08 14439.53 33268.17 30670.17 28243.25 35659.03 30579.90 24644.08 18971.24 31443.79 29868.42 28881.25 239
tpm cat159.25 29456.95 30466.15 27372.19 29446.96 26068.09 30765.76 32040.03 37757.81 31770.56 36038.32 25274.51 29838.26 33461.50 34377.00 303
ppachtmachnet_test58.06 30255.38 31866.10 27569.51 33848.99 23568.01 30866.13 31944.50 34454.05 35270.74 35932.09 32572.34 30736.68 34656.71 36776.99 305
tpmvs58.47 29756.95 30463.03 30670.20 32741.21 31667.90 30967.23 30949.62 28754.73 34570.84 35834.14 29376.24 29036.64 34761.29 34471.64 360
testing9164.46 24163.80 23266.47 26578.43 16140.06 32567.63 31069.59 28959.06 13063.18 24978.05 27734.05 29476.99 27448.30 25675.87 18082.37 219
CL-MVSNet_self_test61.53 27560.94 27263.30 30268.95 34536.93 35767.60 31172.80 26455.67 19759.95 29276.63 30345.01 18172.22 30939.74 32762.09 33980.74 251
testing1162.81 25961.90 25865.54 28378.38 16240.76 32267.59 31266.78 31455.48 20160.13 28777.11 29531.67 32776.79 27945.53 28274.45 19179.06 275
test_vis1_n_192058.86 29559.06 28658.25 33563.76 37543.14 30067.49 31366.36 31740.22 37565.89 20471.95 35131.04 32859.75 36959.94 16364.90 31371.85 358
tpm57.34 30658.16 29554.86 35471.80 30134.77 37467.47 31456.04 37848.20 30760.10 28876.92 29837.17 26653.41 39740.76 32165.01 31276.40 309
testing9964.05 24563.29 24266.34 26778.17 17339.76 32967.33 31568.00 30358.60 13963.03 25278.10 27632.57 32176.94 27648.22 25775.58 18482.34 220
gg-mvs-nofinetune57.86 30356.43 31062.18 31072.62 28335.35 37166.57 31656.33 37550.65 27457.64 31857.10 40130.65 33076.36 28837.38 33878.88 13774.82 328
TinyColmap54.14 33051.72 34161.40 31666.84 35941.97 30966.52 31768.51 29944.81 34042.69 39675.77 31911.66 40572.94 30431.96 37056.77 36669.27 381
pmmvs556.47 31455.68 31658.86 33161.41 38736.71 35966.37 31862.75 34340.38 37453.70 35476.62 30434.56 28867.05 34040.02 32565.27 31072.83 344
CHOSEN 1792x268865.08 23562.84 24771.82 17281.49 9356.26 10866.32 31974.20 25140.53 37363.16 25078.65 27041.30 22077.80 25745.80 27774.09 19581.40 235
our_test_356.49 31354.42 32562.68 30869.51 33845.48 27666.08 32061.49 35344.11 35050.73 37169.60 37033.05 30768.15 32938.38 33356.86 36474.40 333
mvs5depth55.64 32253.81 33361.11 31959.39 39640.98 32165.89 32168.28 30150.21 27958.11 31575.42 32517.03 39167.63 33643.79 29846.21 39174.73 330
PM-MVS52.33 34150.19 34958.75 33262.10 38445.14 27965.75 32240.38 41243.60 35253.52 35872.65 3439.16 41365.87 34850.41 23754.18 37465.24 389
D2MVS62.30 26660.29 27768.34 24566.46 36348.42 24465.70 32373.42 25747.71 31458.16 31475.02 32830.51 33177.71 26053.96 20971.68 23778.90 279
MIMVSNet155.17 32754.31 32857.77 34170.03 33132.01 39265.68 32464.81 32749.19 29346.75 38576.00 31425.53 37264.04 35328.65 39062.13 33877.26 299
PatchMatch-RL56.25 31754.55 32461.32 31877.06 21256.07 11265.57 32554.10 38444.13 34953.49 36071.27 35725.20 37366.78 34236.52 34963.66 32461.12 391
Syy-MVS56.00 31956.23 31255.32 35174.69 25326.44 41065.52 32657.49 36950.97 27156.52 32772.18 34639.89 23368.09 33024.20 40264.59 31871.44 364
myMVS_eth3d54.86 32954.61 32355.61 35074.69 25327.31 40765.52 32657.49 36950.97 27156.52 32772.18 34621.87 38568.09 33027.70 39364.59 31871.44 364
test-LLR58.15 30158.13 29758.22 33668.57 34744.80 28165.46 32857.92 36650.08 28155.44 33569.82 36732.62 31857.44 38049.66 24473.62 20372.41 351
TESTMET0.1,155.28 32554.90 32156.42 34666.56 36143.67 29465.46 32856.27 37639.18 38053.83 35367.44 37924.21 37755.46 39148.04 25973.11 21670.13 375
test-mter56.42 31555.82 31558.22 33668.57 34744.80 28165.46 32857.92 36639.94 37855.44 33569.82 36721.92 38257.44 38049.66 24473.62 20372.41 351
SDMVSNet68.03 18268.10 16167.84 24877.13 20948.72 24165.32 33179.10 15958.02 15165.08 22282.55 19047.83 13973.40 30263.92 12973.92 19881.41 233
CR-MVSNet59.91 28757.90 29965.96 27769.96 33252.07 18665.31 33263.15 34142.48 36259.36 30074.84 32935.83 27870.75 31645.50 28364.65 31675.06 322
RPMNet61.53 27558.42 29270.86 20269.96 33252.07 18665.31 33281.36 11543.20 35759.36 30070.15 36535.37 28185.47 10536.42 35064.65 31675.06 322
USDC56.35 31654.24 32962.69 30764.74 37140.31 32365.05 33473.83 25443.93 35147.58 38077.71 28915.36 39875.05 29638.19 33561.81 34172.70 345
MDTV_nov1_ep1357.00 30372.73 28138.26 34265.02 33564.73 32944.74 34155.46 33472.48 34432.61 32070.47 31737.47 33767.75 293
ETVMVS59.51 29358.81 28761.58 31477.46 20234.87 37264.94 33659.35 36054.06 23561.08 28276.67 30229.54 33971.87 31132.16 36874.07 19678.01 290
CMPMVSbinary42.80 2157.81 30455.97 31363.32 30160.98 39147.38 25764.66 33769.50 29132.06 39146.83 38477.80 28529.50 34171.36 31348.68 25273.75 20171.21 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WBMVS60.54 28160.61 27560.34 32278.00 17935.95 36864.55 33864.89 32649.63 28663.39 24678.70 26733.85 29967.65 33542.10 31370.35 25477.43 295
RPSCF55.80 32154.22 33060.53 32165.13 37042.91 30364.30 33957.62 36836.84 38458.05 31682.28 19928.01 35156.24 38837.14 34058.61 35882.44 218
XXY-MVS60.68 28061.67 26057.70 34270.43 32438.45 34164.19 34066.47 31548.05 31063.22 24780.86 23149.28 12260.47 36445.25 28867.28 29774.19 336
FMVSNet555.86 32054.93 32058.66 33371.05 31536.35 36264.18 34162.48 34546.76 32650.66 37274.73 33125.80 36964.04 35333.11 36465.57 30975.59 317
UBG59.62 29259.53 28159.89 32378.12 17435.92 36964.11 34260.81 35749.45 28961.34 27875.55 32233.05 30767.39 33938.68 33174.62 18976.35 310
test_cas_vis1_n_192056.91 30956.71 30757.51 34359.13 39745.40 27763.58 34361.29 35436.24 38567.14 18071.85 35229.89 33756.69 38457.65 17863.58 32670.46 372
SCA60.49 28258.38 29366.80 25874.14 26648.06 24863.35 34463.23 34049.13 29459.33 30372.10 34837.45 26074.27 30044.17 29162.57 33478.05 286
Patchmtry57.16 30756.47 30959.23 32769.17 34434.58 37762.98 34563.15 34144.53 34356.83 32474.84 32935.83 27868.71 32740.03 32460.91 34574.39 334
Anonymous2023120655.10 32855.30 31954.48 35669.81 33633.94 38362.91 34662.13 35141.08 36955.18 33975.65 32032.75 31556.59 38630.32 38467.86 29172.91 342
sd_testset64.46 24164.45 22564.51 29477.13 20942.25 30762.67 34772.11 26958.02 15165.08 22282.55 19041.22 22469.88 32347.32 26373.92 19881.41 233
MIMVSNet57.35 30557.07 30258.22 33674.21 26537.18 35262.46 34860.88 35648.88 29755.29 33875.99 31631.68 32662.04 36031.87 37172.35 22875.43 320
dp51.89 34351.60 34252.77 36968.44 35032.45 39162.36 34954.57 38144.16 34849.31 37767.91 37528.87 34656.61 38533.89 35954.89 37169.24 382
EPMVS53.96 33153.69 33454.79 35566.12 36631.96 39362.34 35049.05 39544.42 34655.54 33371.33 35630.22 33456.70 38341.65 31862.54 33575.71 316
pmmvs344.92 36141.95 36853.86 35952.58 40643.55 29562.11 35146.90 40426.05 40240.63 39860.19 39711.08 41057.91 37931.83 37546.15 39260.11 392
test_vis1_n49.89 35248.69 35453.50 36353.97 40137.38 35161.53 35247.33 40228.54 39659.62 29867.10 38313.52 40052.27 40049.07 24957.52 36170.84 370
PVSNet50.76 1958.40 29857.39 30061.42 31575.53 23944.04 29161.43 35363.45 33847.04 32456.91 32373.61 33927.00 36164.76 35139.12 32972.40 22775.47 319
LCM-MVSNet-Re61.88 27261.35 26463.46 30074.58 25631.48 39461.42 35458.14 36558.71 13753.02 36179.55 25543.07 19876.80 27845.69 27877.96 15282.11 225
test20.0353.87 33354.02 33153.41 36561.47 38628.11 40361.30 35559.21 36151.34 26652.09 36377.43 29233.29 30658.55 37629.76 38660.27 35373.58 340
MDTV_nov1_ep13_2view25.89 41261.22 35640.10 37651.10 36632.97 31038.49 33278.61 281
PMMVS53.96 33153.26 33756.04 34762.60 38250.92 20161.17 35756.09 37732.81 39053.51 35966.84 38434.04 29559.93 36844.14 29368.18 28957.27 399
test_fmvs1_n51.37 34550.35 34854.42 35852.85 40437.71 34861.16 35851.93 38628.15 39763.81 24269.73 36913.72 39953.95 39551.16 23260.65 34971.59 361
WTY-MVS59.75 28960.39 27657.85 34072.32 29237.83 34661.05 35964.18 33345.95 33561.91 27179.11 26447.01 15860.88 36342.50 31069.49 27374.83 327
dmvs_testset50.16 35051.90 34044.94 38566.49 36211.78 42561.01 36051.50 38851.17 26950.30 37567.44 37939.28 24060.29 36622.38 40557.49 36262.76 390
Patchmatch-RL test58.16 30055.49 31766.15 27367.92 35348.89 23860.66 36151.07 39147.86 31359.36 30062.71 39534.02 29672.27 30856.41 18559.40 35577.30 297
test_fmvs151.32 34750.48 34753.81 36053.57 40237.51 35060.63 36251.16 38928.02 39963.62 24369.23 37216.41 39453.93 39651.01 23360.70 34869.99 376
LTVRE_ROB55.42 1663.15 25761.23 26868.92 23776.57 22347.80 25059.92 36376.39 21154.35 23158.67 30882.46 19529.44 34281.49 18942.12 31271.14 24277.46 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 153.32 33853.59 33552.50 37162.81 38129.45 39859.51 36454.11 38350.08 28154.40 34974.31 33432.62 31855.92 38930.50 38363.95 32372.15 356
UnsupCasMVSNet_eth53.16 34052.47 33855.23 35259.45 39533.39 38759.43 36569.13 29545.98 33250.35 37472.32 34529.30 34358.26 37842.02 31544.30 39574.05 337
MVS-HIRNet45.52 36044.48 36248.65 37968.49 34934.05 38259.41 36644.50 40727.03 40037.96 40750.47 40926.16 36764.10 35226.74 39859.52 35447.82 408
testgi51.90 34252.37 33950.51 37760.39 39423.55 41758.42 36758.15 36449.03 29551.83 36479.21 26322.39 38055.59 39029.24 38962.64 33372.40 353
dmvs_re56.77 31156.83 30656.61 34569.23 34241.02 31758.37 36864.18 33350.59 27657.45 32071.42 35435.54 28058.94 37437.23 33967.45 29569.87 377
PatchT53.17 33953.44 33652.33 37268.29 35125.34 41458.21 36954.41 38244.46 34554.56 34769.05 37333.32 30560.94 36236.93 34261.76 34270.73 371
WB-MVS43.26 36343.41 36342.83 38963.32 37810.32 42758.17 37045.20 40545.42 33740.44 40067.26 38234.01 29758.98 37311.96 41824.88 41259.20 393
sss56.17 31856.57 30854.96 35366.93 35836.32 36457.94 37161.69 35241.67 36558.64 30975.32 32738.72 24756.25 38742.04 31466.19 30572.31 354
ttmdpeth45.56 35942.95 36453.39 36652.33 40729.15 39957.77 37248.20 39931.81 39249.86 37677.21 2948.69 41459.16 37227.31 39433.40 40971.84 359
test_fmvs248.69 35447.49 35952.29 37348.63 41133.06 38957.76 37348.05 40025.71 40359.76 29669.60 37011.57 40652.23 40149.45 24756.86 36471.58 362
KD-MVS_self_test55.22 32653.89 33259.21 32857.80 40027.47 40657.75 37474.32 24647.38 31850.90 36870.00 36628.45 34970.30 32140.44 32257.92 36079.87 265
UnsupCasMVSNet_bld50.07 35148.87 35253.66 36160.97 39233.67 38557.62 37564.56 33039.47 37947.38 38164.02 39327.47 35559.32 37034.69 35743.68 39667.98 385
mamv456.85 31058.00 29853.43 36472.46 28954.47 14057.56 37654.74 37938.81 38157.42 32179.45 25847.57 14538.70 41660.88 15553.07 37767.11 386
SSC-MVS41.96 36841.99 36741.90 39062.46 3839.28 42957.41 37744.32 40843.38 35438.30 40666.45 38532.67 31758.42 37710.98 41921.91 41557.99 397
ANet_high41.38 36937.47 37653.11 36739.73 42224.45 41556.94 37869.69 28647.65 31526.04 41452.32 40412.44 40362.38 35921.80 40610.61 42372.49 348
MDA-MVSNet-bldmvs53.87 33350.81 34563.05 30566.25 36448.58 24256.93 37963.82 33548.09 30941.22 39770.48 36330.34 33368.00 33334.24 35845.92 39372.57 347
test1234.73 3956.30 3980.02 4090.01 4320.01 43456.36 3800.00 4330.01 4270.04 4280.21 4280.01 4320.00 4280.03 4280.00 4260.04 424
miper_lstm_enhance62.03 27060.88 27365.49 28566.71 36046.25 26556.29 38175.70 22050.68 27361.27 27975.48 32440.21 23068.03 33256.31 18665.25 31182.18 222
KD-MVS_2432*160053.45 33551.50 34359.30 32562.82 37937.14 35355.33 38271.79 27247.34 32055.09 34070.52 36121.91 38370.45 31835.72 35342.97 39770.31 373
miper_refine_blended53.45 33551.50 34359.30 32562.82 37937.14 35355.33 38271.79 27247.34 32055.09 34070.52 36121.91 38370.45 31835.72 35342.97 39770.31 373
LF4IMVS42.95 36442.26 36645.04 38348.30 41232.50 39054.80 38448.49 39728.03 39840.51 39970.16 3649.24 41243.89 41131.63 37649.18 38958.72 395
PMVScopyleft28.69 2236.22 37633.29 38145.02 38436.82 42435.98 36754.68 38548.74 39626.31 40121.02 41751.61 4062.88 42660.10 3679.99 42247.58 39038.99 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVStest142.65 36539.29 37252.71 37047.26 41434.58 37754.41 38650.84 39423.35 40539.31 40574.08 33612.57 40255.09 39223.32 40328.47 41168.47 384
PVSNet_043.31 2047.46 35845.64 36152.92 36867.60 35544.65 28354.06 38754.64 38041.59 36646.15 38758.75 39830.99 32958.66 37532.18 36724.81 41355.46 401
testmvs4.52 3966.03 3990.01 4100.01 4320.00 43553.86 3880.00 4330.01 4270.04 4280.27 4270.00 4330.00 4280.04 4270.00 4260.03 425
test_fmvs344.30 36242.55 36549.55 37842.83 41627.15 40953.03 38944.93 40622.03 41153.69 35664.94 3904.21 42149.63 40347.47 26049.82 38671.88 357
APD_test137.39 37534.94 37844.72 38648.88 41033.19 38852.95 39044.00 40919.49 41227.28 41358.59 3993.18 42552.84 39818.92 40841.17 40048.14 407
dongtai34.52 37834.94 37833.26 39961.06 39016.00 42452.79 39123.78 42540.71 37239.33 40448.65 41316.91 39348.34 40512.18 41719.05 41735.44 416
YYNet150.73 34848.96 35056.03 34861.10 38941.78 31151.94 39256.44 37340.94 37144.84 38967.80 37730.08 33555.08 39336.77 34350.71 38371.22 366
MDA-MVSNet_test_wron50.71 34948.95 35156.00 34961.17 38841.84 31051.90 39356.45 37240.96 37044.79 39067.84 37630.04 33655.07 39436.71 34550.69 38471.11 369
kuosan29.62 38530.82 38426.02 40452.99 40316.22 42351.09 39422.71 42633.91 38933.99 40840.85 41415.89 39633.11 4217.59 42518.37 41828.72 418
ADS-MVSNet251.33 34648.76 35359.07 33066.02 36744.60 28450.90 39559.76 35936.90 38250.74 36966.18 38726.38 36463.11 35627.17 39554.76 37269.50 379
ADS-MVSNet48.48 35547.77 35650.63 37666.02 36729.92 39750.90 39550.87 39336.90 38250.74 36966.18 38726.38 36452.47 39927.17 39554.76 37269.50 379
FPMVS42.18 36741.11 36945.39 38258.03 39941.01 31949.50 39753.81 38530.07 39433.71 40964.03 39111.69 40452.08 40214.01 41355.11 37043.09 410
N_pmnet39.35 37340.28 37036.54 39663.76 3751.62 43349.37 3980.76 43234.62 38843.61 39466.38 38626.25 36642.57 41226.02 40051.77 38065.44 388
new-patchmatchnet47.56 35747.73 35747.06 38058.81 3989.37 42848.78 39959.21 36143.28 35544.22 39268.66 37425.67 37057.20 38231.57 37849.35 38874.62 332
test_vis1_rt41.35 37039.45 37147.03 38146.65 41537.86 34547.76 40038.65 41323.10 40744.21 39351.22 40711.20 40944.08 41039.27 32853.02 37859.14 394
JIA-IIPM51.56 34447.68 35863.21 30364.61 37250.73 20547.71 40158.77 36342.90 35948.46 37951.72 40524.97 37470.24 32236.06 35253.89 37568.64 383
ambc65.13 29063.72 37737.07 35547.66 40278.78 16754.37 35071.42 35411.24 40880.94 20245.64 27953.85 37677.38 296
testf131.46 38328.89 38739.16 39241.99 41928.78 40146.45 40337.56 41414.28 41921.10 41548.96 4101.48 42947.11 40613.63 41434.56 40641.60 411
APD_test231.46 38328.89 38739.16 39241.99 41928.78 40146.45 40337.56 41414.28 41921.10 41548.96 4101.48 42947.11 40613.63 41434.56 40641.60 411
Patchmatch-test49.08 35348.28 35551.50 37564.40 37330.85 39645.68 40548.46 39835.60 38646.10 38872.10 34834.47 29146.37 40827.08 39760.65 34977.27 298
DSMNet-mixed39.30 37438.72 37341.03 39151.22 40819.66 42045.53 40631.35 41915.83 41839.80 40267.42 38122.19 38145.13 40922.43 40452.69 37958.31 396
LCM-MVSNet40.30 37135.88 37753.57 36242.24 41729.15 39945.21 40760.53 35822.23 41028.02 41250.98 4083.72 42361.78 36131.22 38138.76 40369.78 378
new_pmnet34.13 37934.29 38033.64 39852.63 40518.23 42244.43 40833.90 41822.81 40830.89 41153.18 40310.48 41135.72 42020.77 40739.51 40146.98 409
mvsany_test139.38 37238.16 37543.02 38849.05 40934.28 38044.16 40925.94 42322.74 40946.57 38662.21 39623.85 37841.16 41533.01 36535.91 40553.63 402
E-PMN23.77 38722.73 39126.90 40242.02 41820.67 41942.66 41035.70 41617.43 41410.28 42425.05 4206.42 41642.39 41310.28 42114.71 42017.63 419
EMVS22.97 38821.84 39226.36 40340.20 42119.53 42141.95 41134.64 41717.09 4159.73 42522.83 4217.29 41542.22 4149.18 42313.66 42117.32 420
test_vis3_rt32.09 38130.20 38637.76 39535.36 42627.48 40540.60 41228.29 42216.69 41632.52 41040.53 4151.96 42737.40 41833.64 36242.21 39948.39 405
CHOSEN 280x42047.83 35646.36 36052.24 37467.37 35649.78 22238.91 41343.11 41035.00 38743.27 39563.30 39428.95 34449.19 40436.53 34860.80 34757.76 398
mvsany_test332.62 38030.57 38538.77 39436.16 42524.20 41638.10 41420.63 42719.14 41340.36 40157.43 4005.06 41836.63 41929.59 38828.66 41055.49 400
test_f31.86 38231.05 38334.28 39732.33 42821.86 41832.34 41530.46 42016.02 41739.78 40355.45 4024.80 41932.36 42230.61 38237.66 40448.64 404
PMMVS227.40 38625.91 38931.87 40139.46 4236.57 43031.17 41628.52 42123.96 40420.45 41848.94 4124.20 42237.94 41716.51 41019.97 41651.09 403
wuyk23d13.32 39212.52 39515.71 40647.54 41326.27 41131.06 4171.98 4314.93 4235.18 4261.94 4260.45 43118.54 4256.81 42612.83 4222.33 423
Gipumacopyleft34.77 37731.91 38243.33 38762.05 38537.87 34420.39 41867.03 31123.23 40618.41 41925.84 4194.24 42062.73 35714.71 41251.32 38229.38 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive17.77 2321.41 38917.77 39432.34 40034.34 42725.44 41316.11 41924.11 42411.19 42113.22 42131.92 4171.58 42830.95 42310.47 42017.03 41940.62 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.43 39311.14 3964.30 4082.38 4314.40 43113.62 42016.08 4290.39 42515.89 42013.06 42215.80 3975.54 42712.63 41610.46 4242.95 422
test_method19.68 39018.10 39324.41 40513.68 4303.11 43212.06 42142.37 4112.00 42411.97 42236.38 4165.77 41729.35 42415.06 41123.65 41440.76 413
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
cdsmvs_eth3d_5k17.50 39123.34 3900.00 4110.00 4340.00 4350.00 42278.63 1710.00 4290.00 43082.18 20049.25 1230.00 4280.00 4290.00 4260.00 426
pcd_1.5k_mvsjas3.92 3975.23 4000.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 42947.05 1550.00 4280.00 4290.00 4260.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
ab-mvs-re6.49 3948.65 3970.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 43077.89 2830.00 4330.00 4280.00 4290.00 4260.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4350.00 4220.00 4330.00 4290.00 4300.00 4290.00 4330.00 4280.00 4290.00 4260.00 426
WAC-MVS27.31 40727.77 392
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
PC_three_145255.09 21184.46 489.84 4666.68 589.41 1874.24 4791.38 288.42 16
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 434
eth-test0.00 434
ZD-MVS86.64 2160.38 4582.70 9357.95 15478.10 2590.06 3956.12 4288.84 2674.05 5087.00 49
IU-MVS87.77 459.15 6385.53 2653.93 23784.64 379.07 1190.87 588.37 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1890.70 787.65 41
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
GSMVS78.05 286
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28778.05 286
sam_mvs33.43 304
MTGPAbinary80.97 132
test_post3.55 42533.90 29866.52 343
patchmatchnet-post64.03 39134.50 28974.27 300
gm-plane-assit71.40 30941.72 31448.85 29873.31 34082.48 17348.90 251
test9_res75.28 4088.31 3283.81 178
agg_prior273.09 5887.93 4084.33 159
agg_prior85.04 5059.96 5081.04 13074.68 6084.04 133
TestCases64.39 29571.44 30649.03 23267.30 30645.97 33347.16 38279.77 24917.47 38967.56 33733.65 36059.16 35676.57 307
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 79
新几何170.76 20485.66 4161.13 3066.43 31644.68 34270.29 11986.64 10041.29 22175.23 29549.72 24381.75 10375.93 313
旧先验183.04 7353.15 16367.52 30587.85 7544.08 18980.76 10878.03 289
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26370.27 12086.61 10348.61 13186.51 7953.85 21087.96 3978.16 284
testdata272.18 31046.95 269
segment_acmp54.23 58
testdata64.66 29281.52 9152.93 16865.29 32446.09 33173.88 7187.46 8238.08 25666.26 34653.31 21578.48 14674.78 329
test1277.76 4584.52 5858.41 7883.36 7672.93 9054.61 5588.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 179
plane_prior584.01 5287.21 5868.16 9080.58 11184.65 153
plane_prior486.10 120
plane_prior356.09 11163.92 3669.27 139
plane_prior181.27 99
n20.00 433
nn0.00 433
door-mid47.19 403
lessismore_v069.91 22071.42 30847.80 25050.90 39250.39 37375.56 32127.43 35781.33 19245.91 27634.10 40880.59 252
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18987.33 8539.15 24386.59 7467.70 9477.30 16483.19 201
test1183.47 71
door47.60 401
HQP5-MVS54.94 134
BP-MVS67.04 101
HQP4-MVS67.85 16386.93 6684.32 160
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 173
NP-MVS80.98 10456.05 11385.54 137
ACMMP++_ref74.07 196
ACMMP++72.16 232
Test By Simon48.33 134
ITE_SJBPF62.09 31166.16 36544.55 28664.32 33147.36 31955.31 33780.34 23919.27 38862.68 35836.29 35162.39 33679.04 276
DeepMVS_CXcopyleft12.03 40717.97 42910.91 42610.60 4307.46 42211.07 42328.36 4183.28 42411.29 4268.01 4249.74 42513.89 421