This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 123
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5691.15 488.23 22
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9390.50 2648.18 13487.34 5373.59 5485.71 6084.76 152
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4890.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 134
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6990.50 2653.20 7288.35 3174.02 5087.05 4586.13 94
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7690.58 2349.90 11388.21 3473.78 5287.03 4686.29 91
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7490.56 2449.80 11588.24 3374.02 5087.03 4686.32 87
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTMP86.03 1917.08 427
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7390.60 2254.85 5186.72 7177.20 2588.06 3685.74 111
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6690.03 4152.56 7888.53 2974.79 4488.34 2986.63 74
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 10090.01 4347.95 13688.01 4071.55 7286.74 5386.37 81
X-MVStestdata70.21 12867.28 17979.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 1006.49 42247.95 13688.01 4071.55 7286.74 5386.37 81
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16789.24 5442.03 20889.38 1964.07 12486.50 5789.69 3
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10490.26 3446.61 16186.55 7771.71 7085.66 6184.97 145
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4790.35 3147.66 14186.52 7871.64 7182.99 8384.47 158
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5587.03 4684.83 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 13089.74 4945.43 17487.16 6072.01 6682.87 8885.14 136
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 6089.38 5255.30 4689.18 2174.19 4887.34 4486.38 79
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 6184.53 6885.46 121
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 6184.53 6885.46 121
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8688.88 5853.72 6689.06 2368.27 8688.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6783.75 7885.14 136
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7687.27 8655.06 4886.30 8671.78 6984.58 6689.25 5
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8290.07 3744.74 18185.84 9468.20 8781.76 10184.03 168
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8290.07 3743.06 19868.20 8781.76 10184.03 168
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7586.58 10450.94 10588.54 2870.79 7689.71 1787.79 37
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13886.10 11945.26 17887.21 5868.16 8980.58 11184.65 153
plane_prior284.22 4364.52 25
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 7190.25 3557.68 2989.96 1574.62 4589.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17388.08 6841.93 21081.85 18269.04 8580.01 11981.35 237
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 15082.33 19649.64 11687.83 4651.87 22584.16 7578.30 281
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10986.03 12253.83 6386.36 8467.74 9286.91 5088.19 24
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9287.25 8753.13 7387.93 4271.97 6885.57 6286.66 72
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7290.14 3645.62 16785.99 9069.64 8082.85 8985.78 105
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11689.84 4641.09 22485.59 9967.61 9582.90 8785.77 108
plane_prior56.31 10583.58 5663.19 4880.48 114
QAPM70.05 13068.81 14373.78 11976.54 22453.43 15883.23 5783.48 7052.89 24665.90 20286.29 11341.55 21786.49 8051.01 23278.40 14781.42 231
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5388.19 6559.15 2387.68 5073.67 5387.45 4386.57 75
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21487.00 8950.40 11085.47 10562.48 14186.32 5885.94 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4788.67 2688.12 26
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14260.76 1586.56 7667.86 9187.87 4186.06 96
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8589.97 4450.90 10687.48 5275.30 3886.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26669.49 13383.22 17743.99 19183.24 14966.06 10779.37 12784.23 163
test_djsdf69.45 15267.74 16274.58 9974.57 25754.92 13682.79 6478.48 17651.26 26665.41 21183.49 17438.37 24983.24 14966.06 10769.25 27685.56 116
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21886.18 11639.25 24086.03 8966.95 10376.79 17083.22 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17884.39 15538.51 24783.17 15160.65 15676.10 17780.30 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AdaColmapbinary69.99 13268.66 14773.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23284.14 15841.57 21587.06 6446.45 27078.88 13777.02 301
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9687.49 7947.18 15285.88 9369.47 8280.78 10783.66 188
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9990.34 3248.48 13288.13 3772.32 6386.85 5185.78 105
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18887.33 8439.15 24286.59 7467.70 9377.30 16383.19 200
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 12086.34 11254.92 5088.90 2572.68 6084.55 6787.76 38
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30563.01 25385.83 12940.92 22687.10 6257.91 17579.79 12082.18 221
HQP-NCC80.66 10882.31 7462.10 6867.85 162
ACMP_Plane80.66 10882.31 7462.10 6867.85 162
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16285.54 13645.46 17286.93 6667.04 10080.35 11584.32 160
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10786.83 9245.94 16583.65 14265.09 11785.22 6381.06 244
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22282.10 7881.65 10660.40 9665.94 20085.84 12851.74 9486.37 8355.93 18779.55 12688.07 29
test_prior462.51 1482.08 79
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6584.51 15355.94 4387.22 5767.11 9984.48 7185.52 117
test_prior281.75 8160.37 9975.01 4989.06 5556.22 4172.19 6488.96 24
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12485.68 13247.05 15484.34 12965.27 11674.41 19285.67 112
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 5188.81 5953.70 6784.68 123
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 5188.81 5953.70 6784.68 12375.24 4088.33 3083.65 189
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22481.59 8581.29 12161.45 7871.05 11288.11 6651.77 9387.73 4761.05 15383.09 8185.05 141
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5688.80 6153.70 6784.45 127
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 22068.08 15978.70 26647.73 13985.51 10251.68 22984.17 7481.88 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6788.98 5753.34 7187.92 4369.23 8488.42 2887.59 44
OpenMVScopyleft61.03 968.85 16167.56 16672.70 15674.26 26453.99 14781.21 8981.34 11952.70 24762.75 25785.55 13538.86 24584.14 13148.41 25483.01 8279.97 261
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18485.56 13344.50 18588.11 3851.77 22780.23 11883.10 204
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5487.17 8856.46 3888.14 3672.87 5888.03 3889.00 8
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 14188.09 6744.36 18782.65 16757.68 17681.75 10385.77 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jajsoiax68.25 17766.45 19373.66 12975.62 23655.49 12880.82 9378.51 17552.33 25164.33 23384.11 15928.28 34981.81 18463.48 13470.62 24683.67 186
mvs_tets68.18 17966.36 19973.63 13275.61 23755.35 13180.77 9478.56 17352.48 25064.27 23584.10 16027.45 35581.84 18363.45 13570.56 24883.69 185
DP-MVS65.68 22363.66 23471.75 17484.93 5556.87 10280.74 9573.16 25953.06 24359.09 30382.35 19536.79 27185.94 9232.82 36569.96 26272.45 348
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 21086.59 10342.38 20685.52 10159.59 16684.72 6582.85 209
ACMH+57.40 1166.12 21964.06 22672.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31882.55 18927.68 35384.17 13045.54 28069.78 26679.90 263
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20880.23 9883.87 6060.30 10377.15 3286.56 10559.65 1782.00 17966.01 10982.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20880.23 9883.87 6060.30 10377.15 3286.56 10559.65 1782.00 17966.01 10982.12 9488.58 14
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27480.22 10078.69 16964.14 3566.46 19187.36 8349.30 12085.60 9850.26 23883.71 7988.59 13
Effi-MVS+-dtu69.64 14467.53 16975.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21777.09 29541.56 21684.02 13560.60 15771.09 24381.53 230
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21280.02 10282.89 9158.36 14474.44 6286.73 9658.90 2480.83 20665.84 11274.46 18987.44 48
Anonymous2023121169.28 15568.47 15271.73 17580.28 11447.18 25879.98 10382.37 9654.61 22467.24 17684.01 16239.43 23782.41 17455.45 19572.83 21985.62 115
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9786.76 9456.89 3587.86 4566.36 10588.91 2583.64 190
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20682.16 20249.17 12382.64 16860.34 15878.62 14482.50 215
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19585.90 12651.86 9186.06 8757.45 17880.62 10985.91 101
LS3D64.71 23662.50 25071.34 19179.72 12855.71 12079.82 10774.72 24048.50 30256.62 32484.62 14833.59 30282.34 17529.65 38675.23 18675.97 311
UGNet68.81 16267.39 17473.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24684.40 15432.71 31580.91 20551.71 22880.56 11383.81 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26379.75 10971.08 27464.18 3272.80 9188.64 6242.58 20383.72 14057.41 17984.49 7086.86 64
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14586.45 11045.43 17480.60 21062.58 13977.73 15487.58 45
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5983.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
无先验79.66 11274.30 24748.40 30480.78 20853.62 21079.03 276
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10282.61 18756.44 3985.97 9163.99 12779.07 13687.25 56
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 11086.97 9039.94 23087.00 6567.02 10279.20 13288.89 9
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18384.61 14950.95 10486.06 8755.79 19079.20 13286.00 97
ACMH55.70 1565.20 23263.57 23570.07 21578.07 17652.01 18979.48 11679.69 14855.75 19456.59 32580.98 22627.12 35880.94 20242.90 30771.58 23777.25 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9479.46 25653.65 7087.87 4467.45 9782.91 8685.89 102
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10387.39 8240.93 22587.24 5471.23 7481.29 10689.71 2
原ACMM279.02 119
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 17083.87 16552.36 8382.72 16556.90 18175.79 18085.92 100
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9589.42 5049.82 11483.29 14853.61 21183.14 8086.32 87
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25478.74 12275.27 22959.59 12272.94 8889.40 5141.51 21883.91 13758.75 17182.99 8388.26 20
v1070.21 12869.02 13873.81 11873.51 26950.92 20078.74 12281.39 11360.05 11066.39 19381.83 21047.58 14385.41 10862.80 13868.86 28385.09 140
CANet_DTU68.18 17967.71 16569.59 22574.83 24946.24 26578.66 12476.85 20659.60 11963.45 24482.09 20635.25 28177.41 26359.88 16378.76 14185.14 136
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10887.47 8056.92 3488.17 3572.18 6586.63 5688.80 10
v870.33 12669.28 13373.49 13773.15 27250.22 21378.62 12580.78 13560.79 8866.45 19282.11 20549.35 11984.98 11463.58 13368.71 28485.28 132
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 21078.57 12782.43 9559.40 12476.57 3586.71 9856.42 4081.23 19665.84 11281.79 10088.62 12
PLCcopyleft56.13 1465.09 23363.21 24270.72 20581.04 10354.87 13778.57 12777.47 19648.51 30155.71 33181.89 20833.71 29979.71 22441.66 31670.37 25177.58 292
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n69.01 16067.36 17673.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25881.62 21343.61 19384.49 12657.01 18068.70 28584.79 150
COLMAP_ROBcopyleft52.97 1761.27 27858.81 28668.64 23974.63 25552.51 17978.42 13073.30 25749.92 28350.96 36681.51 21723.06 37879.40 22931.63 37565.85 30574.01 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a69.54 14868.74 14571.93 16872.47 28753.82 14978.25 13162.26 34849.78 28473.12 8486.21 11552.66 7776.79 27875.02 4168.88 28185.18 135
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11781.04 22452.41 8287.12 6164.61 12382.49 9385.41 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33355.81 11878.22 13375.40 22754.17 23375.00 5088.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 31155.88 11778.21 13475.56 22354.31 23174.86 5587.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 21178.17 13585.06 3562.80 5874.40 6387.86 7357.88 2783.61 14369.46 8382.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a69.32 15468.44 15471.96 16770.91 31553.78 15078.12 13662.30 34749.35 29073.20 8086.55 10751.99 8976.79 27874.83 4368.68 28685.32 130
F-COLMAP63.05 25760.87 27369.58 22776.99 21553.63 15478.12 13676.16 21347.97 31052.41 36181.61 21427.87 35178.11 25140.07 32266.66 30077.00 302
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 35155.58 12678.06 13874.67 24154.19 23274.54 6188.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
EG-PatchMatch MVS64.71 23662.87 24570.22 21177.68 19053.48 15777.99 13978.82 16453.37 24256.03 33077.41 29224.75 37584.04 13346.37 27173.42 20973.14 340
fmvsm_s_conf0.5_n69.58 14668.84 14271.79 17372.31 29252.90 16977.90 14062.43 34649.97 28272.85 9085.90 12652.21 8576.49 28475.75 3370.26 25685.97 98
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9362.22 1377.75 25871.09 7582.02 9786.34 83
tttt051767.83 18765.66 21274.33 10676.69 21850.82 20277.86 14273.99 25254.54 22764.64 23082.53 19235.06 28385.50 10355.71 19169.91 26386.67 71
fmvsm_s_conf0.1_n69.41 15368.60 14871.83 17171.07 31352.88 17177.85 14362.44 34549.58 28772.97 8786.22 11451.68 9576.48 28575.53 3670.10 25986.14 93
v114470.42 12469.31 13273.76 12173.22 27050.64 20577.83 14481.43 11258.58 13969.40 13681.16 22147.53 14585.29 11064.01 12670.64 24585.34 129
CNLPA65.43 22764.02 22769.68 22378.73 15358.07 8177.82 14570.71 27851.49 26161.57 27683.58 17238.23 25370.82 31443.90 29570.10 25980.16 258
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22477.76 14677.63 19463.21 4773.21 7989.02 5642.14 20783.32 14761.72 14882.50 9288.25 21
v119269.97 13368.68 14673.85 11673.19 27150.94 19877.68 14781.36 11557.51 16068.95 14480.85 23145.28 17785.33 10962.97 13770.37 25185.27 133
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21877.58 14880.51 13959.90 11269.52 13282.14 20347.53 14584.88 12065.07 11870.17 25786.09 95
WR-MVS_H67.02 20466.92 18867.33 25577.95 18137.75 34677.57 14982.11 10062.03 7362.65 25982.48 19350.57 10979.46 22842.91 30664.01 32084.79 150
Anonymous2024052969.91 13469.02 13872.56 15780.19 11947.65 25277.56 15080.99 13155.45 20269.88 12886.76 9439.24 24182.18 17754.04 20677.10 16787.85 33
v14419269.71 13968.51 14973.33 14473.10 27350.13 21577.54 15180.64 13656.65 17068.57 14880.55 23446.87 15984.96 11662.98 13669.66 27084.89 147
baseline74.61 6174.70 5874.34 10575.70 23449.99 21977.54 15184.63 4262.73 5973.98 6887.79 7657.67 3083.82 13969.49 8182.74 9189.20 7
Fast-Effi-MVS+-dtu67.37 19465.33 21773.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26976.85 29939.31 23880.49 21454.72 20070.28 25582.17 223
v192192069.47 15168.17 15873.36 14373.06 27450.10 21677.39 15480.56 13756.58 17768.59 14680.37 23644.72 18284.98 11462.47 14269.82 26585.00 142
tt080567.77 18867.24 18369.34 23074.87 24840.08 32377.36 15581.37 11455.31 20366.33 19484.65 14737.35 26182.55 17055.65 19372.28 23085.39 128
GBi-Net67.21 19666.55 19169.19 23177.63 19343.33 29577.31 15677.83 19056.62 17365.04 22382.70 18341.85 21180.33 21647.18 26472.76 22083.92 173
test167.21 19666.55 19169.19 23177.63 19343.33 29577.31 15677.83 19056.62 17365.04 22382.70 18341.85 21180.33 21647.18 26472.76 22083.92 173
FMVSNet166.70 21165.87 20869.19 23177.49 20143.33 29577.31 15677.83 19056.45 17864.60 23182.70 18338.08 25580.33 21646.08 27372.31 22983.92 173
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11585.97 12454.18 5884.00 13667.52 9682.98 8582.45 216
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 19079.39 25852.07 8886.69 7260.05 16079.14 13585.66 113
v124069.24 15767.91 16173.25 14773.02 27649.82 22077.21 16180.54 13856.43 17968.34 15280.51 23543.33 19684.99 11262.03 14669.77 26884.95 146
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18271.45 30454.40 14277.18 16270.46 28048.67 29875.17 4586.86 9153.77 6576.86 27676.33 3077.51 15883.17 203
jason69.65 14368.39 15673.43 14178.27 16856.88 10177.12 16373.71 25546.53 32669.34 13783.22 17743.37 19579.18 23364.77 12079.20 13284.23 163
jason: jason.
PAPM67.92 18566.69 18971.63 17978.09 17549.02 23377.09 16481.24 12451.04 26960.91 28283.98 16347.71 14084.99 11240.81 31979.32 13080.90 247
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10679.35 26052.75 7684.89 11866.46 10474.23 19385.83 104
PEN-MVS66.60 21366.45 19367.04 25677.11 21136.56 35977.03 16680.42 14162.95 5062.51 26484.03 16146.69 16079.07 23944.22 28963.08 33085.51 118
FIs70.82 11671.43 9268.98 23578.33 16638.14 34276.96 16783.59 6861.02 8567.33 17586.73 9655.07 4781.64 18554.61 20379.22 13187.14 58
PS-CasMVS66.42 21766.32 20166.70 26077.60 19936.30 36476.94 16879.61 15162.36 6562.43 26683.66 16945.69 16678.37 24745.35 28663.26 32885.42 126
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5685.95 12545.54 17085.76 9670.41 7870.61 24783.86 177
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19571.30 31054.09 14576.89 17069.87 28447.90 31174.37 6486.49 10853.07 7576.69 28175.41 3777.11 16682.76 210
thisisatest053067.92 18565.78 21074.33 10676.29 22751.03 19776.89 17074.25 24853.67 23965.59 20881.76 21135.15 28285.50 10355.94 18672.47 22586.47 78
test_040263.25 25461.01 27069.96 21680.00 12354.37 14376.86 17272.02 26954.58 22658.71 30680.79 23335.00 28484.36 12826.41 39864.71 31471.15 367
CP-MVSNet66.49 21666.41 19766.72 25877.67 19136.33 36276.83 17379.52 15362.45 6362.54 26283.47 17546.32 16278.37 24745.47 28463.43 32785.45 123
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 11178.95 26552.19 8684.66 12565.47 11573.57 20485.32 130
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 23076.60 17580.45 14061.25 8268.17 15584.78 14444.64 18384.90 11764.79 11977.88 15387.03 59
lupinMVS69.57 14768.28 15773.44 14078.76 15157.15 9776.57 17673.29 25846.19 32969.49 13382.18 19943.99 19179.23 23264.66 12179.37 12783.93 172
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19678.64 15542.97 30176.53 17781.16 12766.95 668.53 14985.42 13851.61 9683.07 15252.32 21969.70 26987.46 47
TAPA-MVS59.36 1066.60 21365.20 21970.81 20276.63 22148.75 23876.52 17880.04 14650.64 27465.24 21884.93 14139.15 24278.54 24636.77 34276.88 16985.14 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DTE-MVSNet65.58 22565.34 21666.31 26776.06 23134.79 37276.43 17979.38 15662.55 6161.66 27483.83 16645.60 16879.15 23741.64 31860.88 34585.00 142
anonymousdsp67.00 20564.82 22273.57 13570.09 32956.13 11076.35 18077.35 20048.43 30364.99 22680.84 23233.01 30880.34 21564.66 12167.64 29384.23 163
MVP-Stereo65.41 22863.80 23170.22 21177.62 19755.53 12776.30 18178.53 17450.59 27556.47 32878.65 26939.84 23382.68 16644.10 29372.12 23272.44 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24276.28 18283.14 8659.40 12472.46 9784.68 14555.66 4481.12 19765.98 11179.66 12387.63 42
IterMVS-LS69.22 15868.48 15071.43 18774.44 26049.40 22876.23 18377.55 19559.60 11965.85 20581.59 21651.28 9981.58 18859.87 16469.90 26483.30 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
新几何276.12 184
FMVSNet266.93 20666.31 20268.79 23877.63 19342.98 30076.11 18577.47 19656.62 17365.22 22082.17 20141.85 21180.18 22247.05 26772.72 22383.20 199
旧先验276.08 18645.32 33776.55 3665.56 34858.75 171
BH-untuned68.27 17667.29 17871.21 19379.74 12653.22 16276.06 18777.46 19857.19 16366.10 19781.61 21445.37 17683.50 14545.42 28576.68 17276.91 305
FC-MVSNet-test69.80 13870.58 11267.46 25177.61 19834.73 37576.05 18883.19 8460.84 8765.88 20486.46 10954.52 5580.76 20952.52 21878.12 14986.91 62
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27769.66 13185.40 13952.51 7984.89 11851.82 22680.24 11785.45 123
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18579.20 13944.13 28776.02 19082.60 9466.48 1168.20 15384.60 15056.82 3682.82 16354.62 20170.43 24987.36 54
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27775.94 19182.92 8863.68 4068.16 15683.59 17153.89 6283.49 14653.97 20771.12 24286.89 63
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31255.39 13075.86 19272.21 26749.03 29473.28 7886.17 11751.83 9277.29 26675.80 3278.05 15083.98 171
EPNet_dtu61.90 27061.97 25661.68 31172.89 27839.78 32775.85 19365.62 32155.09 21054.56 34679.36 25937.59 25867.02 34039.80 32576.95 16878.25 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MGCFI-Net72.45 8773.34 7369.81 22277.77 18643.21 29875.84 19481.18 12559.59 12275.45 4286.64 9957.74 2877.94 25363.92 12881.90 9988.30 19
v14868.24 17867.19 18571.40 18870.43 32347.77 25175.76 19577.03 20458.91 13167.36 17480.10 24348.60 13181.89 18160.01 16166.52 30284.53 155
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30777.22 3185.56 13353.10 7477.43 26274.86 4277.14 16586.55 76
SixPastTwentyTwo61.65 27358.80 28870.20 21375.80 23347.22 25775.59 19769.68 28654.61 22454.11 35079.26 26127.07 35982.96 15443.27 30149.79 38680.41 254
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 8182.79 18259.58 2086.80 6967.24 9886.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FA-MVS(test-final)69.82 13668.48 15073.84 11778.44 16050.04 21775.58 19978.99 16258.16 14667.59 17182.14 20342.66 20185.63 9756.60 18276.19 17685.84 103
Baseline_NR-MVSNet67.05 20367.56 16665.50 28375.65 23537.70 34875.42 20074.65 24259.90 11268.14 15783.15 18049.12 12677.20 26752.23 22069.78 26681.60 229
OpenMVS_ROBcopyleft52.78 1860.03 28558.14 29565.69 28170.47 32244.82 27975.33 20170.86 27745.04 33856.06 32976.00 31326.89 36279.65 22535.36 35467.29 29572.60 345
xiu_mvs_v1_base_debu68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
xiu_mvs_v1_base68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
xiu_mvs_v1_base_debi68.58 16867.28 17972.48 15978.19 17057.19 9475.28 20275.09 23551.61 25770.04 12181.41 21832.79 31179.02 24063.81 13077.31 16081.22 239
EI-MVSNet69.27 15668.44 15471.73 17574.47 25849.39 22975.20 20578.45 17959.60 11969.16 14276.51 30751.29 9882.50 17159.86 16571.45 23983.30 195
CVMVSNet59.63 29059.14 28361.08 31974.47 25838.84 33675.20 20568.74 29731.15 39258.24 31276.51 30732.39 32268.58 32749.77 24065.84 30675.81 313
ET-MVSNet_ETH3D67.96 18465.72 21174.68 9376.67 22055.62 12575.11 20774.74 23952.91 24560.03 28980.12 24233.68 30082.64 16861.86 14776.34 17485.78 105
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21969.96 12779.68 25147.00 15882.09 17861.60 15079.37 12780.81 249
K. test v360.47 28257.11 30070.56 20773.74 26848.22 24575.10 20962.55 34358.27 14553.62 35676.31 31127.81 35281.59 18747.42 26039.18 40181.88 227
Fast-Effi-MVS+70.28 12769.12 13773.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14679.55 25453.97 6084.05 13253.34 21377.53 15785.65 114
DU-MVS70.01 13169.53 12871.44 18578.05 17744.13 28775.01 21081.51 11064.37 2868.20 15384.52 15149.12 12682.82 16354.62 20170.43 24987.37 52
FMVSNet366.32 21865.61 21368.46 24176.48 22542.34 30474.98 21277.15 20355.83 19165.04 22381.16 22139.91 23180.14 22347.18 26472.76 22082.90 208
mvsmamba68.47 17266.56 19074.21 11079.60 12952.95 16774.94 21375.48 22552.09 25460.10 28783.27 17636.54 27284.70 12259.32 17077.69 15584.99 144
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 149
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21669.88 12878.66 26847.05 15482.19 17661.61 14979.58 12480.83 248
MVS_111021_LR69.50 15068.78 14471.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16684.68 14541.96 20976.34 28865.62 11477.54 15679.30 273
ECVR-MVScopyleft67.72 18967.51 17068.35 24379.46 13336.29 36574.79 21766.93 31158.72 13467.19 17788.05 6936.10 27481.38 19152.07 22284.25 7287.39 50
test_yl69.69 14069.13 13571.36 18978.37 16445.74 27074.71 21880.20 14457.91 15570.01 12583.83 16642.44 20482.87 15954.97 19779.72 12185.48 119
DCV-MVSNet69.69 14069.13 13571.36 18978.37 16445.74 27074.71 21880.20 14457.91 15570.01 12583.83 16642.44 20482.87 15954.97 19779.72 12185.48 119
TransMVSNet (Re)64.72 23564.33 22565.87 27975.22 24338.56 33874.66 22075.08 23858.90 13261.79 27282.63 18651.18 10078.07 25243.63 29955.87 36880.99 246
BH-w/o66.85 20765.83 20969.90 22079.29 13552.46 18074.66 22076.65 21054.51 22864.85 22778.12 27445.59 16982.95 15543.26 30275.54 18474.27 334
PVSNet_BlendedMVS68.56 17167.72 16371.07 19977.03 21350.57 20674.50 22281.52 10853.66 24064.22 23879.72 25049.13 12482.87 15955.82 18873.92 19779.77 268
MonoMVSNet64.15 24363.31 24066.69 26170.51 32144.12 28974.47 22374.21 24957.81 15763.03 25176.62 30338.33 25077.31 26554.22 20560.59 35078.64 279
c3_l68.33 17567.56 16670.62 20670.87 31646.21 26674.47 22378.80 16656.22 18566.19 19678.53 27351.88 9081.40 19062.08 14369.04 27984.25 162
test250665.33 23064.61 22367.50 25079.46 13334.19 38074.43 22551.92 38658.72 13466.75 18688.05 6925.99 36780.92 20451.94 22484.25 7287.39 50
BH-RMVSNet68.81 16267.42 17372.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 15184.20 15642.59 20283.83 13846.53 26975.91 17882.56 211
NR-MVSNet69.54 14868.85 14171.59 18078.05 17743.81 29274.20 22780.86 13465.18 1462.76 25684.52 15152.35 8483.59 14450.96 23470.78 24487.37 52
UniMVSNet_ETH3D67.60 19167.07 18769.18 23477.39 20442.29 30574.18 22875.59 22260.37 9966.77 18586.06 12137.64 25778.93 24552.16 22173.49 20686.32 87
VPA-MVSNet69.02 15969.47 13067.69 24977.42 20341.00 31974.04 22979.68 14960.06 10969.26 14084.81 14351.06 10377.58 26054.44 20474.43 19184.48 157
miper_ehance_all_eth68.03 18167.24 18370.40 21070.54 32046.21 26673.98 23078.68 17055.07 21366.05 19877.80 28452.16 8781.31 19361.53 15269.32 27383.67 186
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5681.95 20745.54 17082.90 15670.41 7866.83 29983.77 182
131464.61 23863.21 24268.80 23771.87 29947.46 25573.95 23278.39 18442.88 35959.97 29076.60 30638.11 25479.39 23054.84 19972.32 22879.55 269
MVS67.37 19466.33 20070.51 20975.46 24050.94 19873.95 23281.85 10341.57 36662.54 26278.57 27247.98 13585.47 10552.97 21682.05 9675.14 320
AUN-MVS68.45 17466.41 19774.57 10079.53 13257.08 10073.93 23475.23 23154.44 22966.69 18781.85 20937.10 26782.89 15762.07 14466.84 29883.75 183
OurMVSNet-221017-061.37 27758.63 29069.61 22472.05 29548.06 24773.93 23472.51 26447.23 32154.74 34380.92 22821.49 38581.24 19548.57 25356.22 36779.53 270
test111167.21 19667.14 18667.42 25279.24 13834.76 37473.89 23665.65 32058.71 13666.96 18287.95 7236.09 27580.53 21152.03 22383.79 7786.97 61
cl2267.47 19366.45 19370.54 20869.85 33446.49 26273.85 23777.35 20055.07 21365.51 20977.92 28047.64 14281.10 19861.58 15169.32 27384.01 170
TAMVS66.78 21065.27 21871.33 19279.16 14253.67 15273.84 23869.59 28852.32 25265.28 21381.72 21244.49 18677.40 26442.32 31078.66 14382.92 206
WR-MVS68.47 17268.47 15268.44 24280.20 11839.84 32673.75 23976.07 21664.68 2268.11 15883.63 17050.39 11179.14 23849.78 23969.66 27086.34 83
eth_miper_zixun_eth67.63 19066.28 20371.67 17771.60 30248.33 24473.68 24077.88 18855.80 19365.91 20178.62 27147.35 15182.88 15859.45 16766.25 30383.81 178
TR-MVS66.59 21565.07 22071.17 19679.18 14049.63 22673.48 24175.20 23352.95 24467.90 16080.33 23939.81 23483.68 14143.20 30373.56 20580.20 257
fmvsm_s_conf0.1_n_269.64 14469.01 14071.52 18171.66 30151.04 19673.39 24267.14 30955.02 21775.11 4687.64 7742.94 20077.01 27175.55 3572.63 22486.52 77
fmvsm_s_conf0.5_n_269.82 13669.27 13471.46 18372.00 29651.08 19573.30 24367.79 30355.06 21575.24 4487.51 7844.02 19077.00 27275.67 3472.86 21886.31 90
cl____67.18 19966.26 20469.94 21770.20 32645.74 27073.30 24376.83 20755.10 20865.27 21479.57 25347.39 14980.53 21159.41 16969.22 27783.53 192
DIV-MVS_self_test67.18 19966.26 20469.94 21770.20 32645.74 27073.29 24576.83 20755.10 20865.27 21479.58 25247.38 15080.53 21159.43 16869.22 27783.54 191
CDS-MVSNet66.80 20965.37 21571.10 19878.98 14553.13 16573.27 24671.07 27552.15 25364.72 22880.23 24143.56 19477.10 26845.48 28378.88 13783.05 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs663.69 24862.82 24766.27 26970.63 31839.27 33373.13 24775.47 22652.69 24859.75 29682.30 19739.71 23577.03 27047.40 26164.35 31982.53 213
IB-MVS56.42 1265.40 22962.73 24873.40 14274.89 24652.78 17373.09 24875.13 23455.69 19558.48 31173.73 33732.86 31086.32 8550.63 23570.11 25881.10 243
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
diffmvspermissive70.69 11870.43 11371.46 18369.45 33948.95 23672.93 24978.46 17857.27 16271.69 10583.97 16451.48 9777.92 25570.70 7777.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4268.65 16667.35 17772.56 15768.93 34550.18 21472.90 25079.47 15456.92 16769.45 13580.26 24046.29 16382.99 15364.07 12467.82 29184.53 155
miper_enhance_ethall67.11 20266.09 20670.17 21469.21 34245.98 26872.85 25178.41 18251.38 26365.65 20775.98 31651.17 10181.25 19460.82 15569.32 27383.29 197
thres100view90063.28 25362.41 25165.89 27877.31 20638.66 33772.65 25269.11 29557.07 16462.45 26581.03 22537.01 26979.17 23431.84 37173.25 21279.83 265
testdata172.65 25260.50 94
FE-MVS65.91 22163.33 23973.63 13277.36 20551.95 19072.62 25475.81 21853.70 23865.31 21278.96 26428.81 34686.39 8243.93 29473.48 20782.55 212
pm-mvs165.24 23164.97 22166.04 27572.38 28939.40 33272.62 25475.63 22155.53 19962.35 26883.18 17947.45 14776.47 28649.06 24966.54 30182.24 220
test22283.14 7158.68 7672.57 25663.45 33741.78 36267.56 17286.12 11837.13 26678.73 14274.98 324
PVSNet_Blended68.59 16767.72 16371.19 19477.03 21350.57 20672.51 25781.52 10851.91 25564.22 23877.77 28749.13 12482.87 15955.82 18879.58 12480.14 259
EU-MVSNet55.61 32254.41 32559.19 32865.41 36833.42 38572.44 25871.91 27028.81 39451.27 36473.87 33624.76 37469.08 32543.04 30458.20 35875.06 321
thres600view763.30 25262.27 25266.41 26577.18 20838.87 33572.35 25969.11 29556.98 16662.37 26780.96 22737.01 26979.00 24331.43 37873.05 21681.36 235
pmmvs-eth3d58.81 29556.31 31066.30 26867.61 35352.42 18272.30 26064.76 32743.55 35254.94 34174.19 33428.95 34372.60 30443.31 30057.21 36273.88 338
cascas65.98 22063.42 23773.64 13177.26 20752.58 17772.26 26177.21 20248.56 29961.21 27974.60 33132.57 32085.82 9550.38 23776.75 17182.52 214
VPNet67.52 19268.11 15965.74 28079.18 14036.80 35772.17 26272.83 26262.04 7267.79 16885.83 12948.88 12876.60 28351.30 23072.97 21783.81 178
MS-PatchMatch62.42 26361.46 26265.31 28775.21 24452.10 18572.05 26374.05 25146.41 32757.42 32074.36 33234.35 29177.57 26145.62 27973.67 20166.26 386
mvs_anonymous68.03 18167.51 17069.59 22572.08 29444.57 28471.99 26475.23 23151.67 25667.06 18082.57 18854.68 5377.94 25356.56 18375.71 18286.26 92
patch_mono-269.85 13571.09 10266.16 27179.11 14354.80 13871.97 26574.31 24653.50 24170.90 11384.17 15757.63 3163.31 35466.17 10682.02 9780.38 255
tfpn200view963.18 25562.18 25466.21 27076.85 21639.62 32971.96 26669.44 29156.63 17162.61 26079.83 24637.18 26379.17 23431.84 37173.25 21279.83 265
thres40063.31 25162.18 25466.72 25876.85 21639.62 32971.96 26669.44 29156.63 17162.61 26079.83 24637.18 26379.17 23431.84 37173.25 21281.36 235
baseline163.81 24763.87 23063.62 29876.29 22736.36 36071.78 26867.29 30756.05 18864.23 23782.95 18147.11 15374.41 29847.30 26361.85 33980.10 260
baseline263.42 25061.26 26669.89 22172.55 28447.62 25371.54 26968.38 29950.11 27954.82 34275.55 32143.06 19880.96 20148.13 25767.16 29781.11 242
pmmvs461.48 27659.39 28167.76 24871.57 30353.86 14871.42 27065.34 32244.20 34659.46 29877.92 28035.90 27674.71 29643.87 29664.87 31374.71 330
1112_ss64.00 24663.36 23865.93 27779.28 13642.58 30371.35 27172.36 26646.41 32760.55 28477.89 28246.27 16473.28 30246.18 27269.97 26181.92 226
thisisatest051565.83 22263.50 23672.82 15473.75 26749.50 22771.32 27273.12 26149.39 28963.82 24076.50 30934.95 28584.84 12153.20 21575.49 18584.13 167
CostFormer64.04 24562.51 24968.61 24071.88 29845.77 26971.30 27370.60 27947.55 31564.31 23476.61 30541.63 21479.62 22749.74 24169.00 28080.42 253
tfpnnormal62.47 26261.63 26064.99 29074.81 25039.01 33471.22 27473.72 25455.22 20760.21 28580.09 24441.26 22276.98 27430.02 38468.09 28978.97 277
IterMVS62.79 25961.27 26567.35 25469.37 34052.04 18871.17 27568.24 30152.63 24959.82 29376.91 29837.32 26272.36 30552.80 21763.19 32977.66 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24863.88 22963.14 30374.75 25131.04 39471.16 27663.64 33656.32 18159.80 29484.99 14044.51 18475.46 29339.12 32880.62 10982.92 206
IterMVS-SCA-FT62.49 26161.52 26165.40 28571.99 29750.80 20371.15 27769.63 28745.71 33560.61 28377.93 27937.45 25965.99 34655.67 19263.50 32679.42 271
Anonymous20240521166.84 20865.99 20769.40 22980.19 11942.21 30771.11 27871.31 27358.80 13367.90 16086.39 11129.83 33779.65 22549.60 24578.78 14086.33 85
Anonymous2024052155.30 32354.41 32557.96 33860.92 39241.73 31171.09 27971.06 27641.18 36748.65 37773.31 33916.93 39159.25 37042.54 30864.01 32072.90 342
tpm262.07 26860.10 27767.99 24672.79 27943.86 29171.05 28066.85 31243.14 35762.77 25575.39 32538.32 25180.80 20741.69 31568.88 28179.32 272
TDRefinement53.44 33650.72 34561.60 31264.31 37346.96 25970.89 28165.27 32441.78 36244.61 39077.98 27711.52 40666.36 34428.57 39051.59 38071.49 362
XVG-ACMP-BASELINE64.36 24262.23 25370.74 20472.35 29052.45 18170.80 28278.45 17953.84 23759.87 29281.10 22316.24 39479.32 23155.64 19471.76 23480.47 252
mmtdpeth60.40 28359.12 28464.27 29669.59 33648.99 23470.67 28370.06 28354.96 21862.78 25473.26 34127.00 36067.66 33358.44 17445.29 39376.16 310
XVG-OURS-SEG-HR68.81 16267.47 17272.82 15474.40 26156.87 10270.59 28479.04 16054.77 22266.99 18186.01 12339.57 23678.21 25062.54 14073.33 21083.37 194
VNet69.68 14270.19 11968.16 24579.73 12741.63 31470.53 28577.38 19960.37 9970.69 11486.63 10151.08 10277.09 26953.61 21181.69 10585.75 110
GA-MVS65.53 22663.70 23371.02 20070.87 31648.10 24670.48 28674.40 24456.69 16964.70 22976.77 30033.66 30181.10 19855.42 19670.32 25483.87 176
MSDG61.81 27259.23 28269.55 22872.64 28152.63 17670.45 28775.81 21851.38 26353.70 35376.11 31229.52 33981.08 20037.70 33565.79 30774.93 325
ab-mvs66.65 21266.42 19667.37 25376.17 22941.73 31170.41 28876.14 21553.99 23565.98 19983.51 17349.48 11876.24 28948.60 25273.46 20884.14 166
EGC-MVSNET42.47 36538.48 37354.46 35674.33 26248.73 23970.33 28951.10 3890.03 4250.18 42667.78 37713.28 40066.49 34318.91 40850.36 38448.15 405
MVSTER67.16 20165.58 21471.88 17070.37 32549.70 22270.25 29078.45 17951.52 26069.16 14280.37 23638.45 24882.50 17160.19 15971.46 23883.44 193
reproduce_monomvs62.56 26061.20 26866.62 26270.62 31944.30 28670.13 29173.13 26054.78 22161.13 28076.37 31025.63 37075.63 29258.75 17160.29 35179.93 262
XVG-OURS68.76 16567.37 17572.90 15174.32 26357.22 9270.09 29278.81 16555.24 20667.79 16885.81 13136.54 27278.28 24962.04 14575.74 18183.19 200
HY-MVS56.14 1364.55 23963.89 22866.55 26374.73 25241.02 31669.96 29374.43 24349.29 29161.66 27480.92 22847.43 14876.68 28244.91 28871.69 23581.94 225
AllTest57.08 30754.65 32164.39 29471.44 30549.03 23169.92 29467.30 30545.97 33247.16 38179.77 24817.47 38867.56 33633.65 35959.16 35576.57 306
testing356.54 31155.92 31358.41 33377.52 20027.93 40369.72 29556.36 37354.75 22358.63 30977.80 28420.88 38671.75 31125.31 40062.25 33675.53 317
thres20062.20 26761.16 26965.34 28675.38 24239.99 32569.60 29669.29 29355.64 19861.87 27176.99 29637.07 26878.96 24431.28 37973.28 21177.06 300
tpmrst58.24 29858.70 28956.84 34366.97 35634.32 37869.57 29761.14 35447.17 32258.58 31071.60 35241.28 22160.41 36449.20 24762.84 33175.78 314
PatchmatchNetpermissive59.84 28758.24 29364.65 29273.05 27546.70 26169.42 29862.18 34947.55 31558.88 30571.96 34934.49 28969.16 32442.99 30563.60 32478.07 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew59.66 28959.69 27959.56 32375.19 24535.78 36969.34 29964.28 33146.88 32461.76 27375.79 31740.61 22765.20 34932.16 36771.21 24077.70 290
GG-mvs-BLEND62.34 30871.36 30937.04 35569.20 30057.33 37054.73 34465.48 38830.37 33177.82 25634.82 35574.93 18772.17 354
HyFIR lowres test65.67 22463.01 24473.67 12879.97 12455.65 12269.07 30175.52 22442.68 36063.53 24377.95 27840.43 22881.64 18546.01 27471.91 23383.73 184
UWE-MVS60.18 28459.78 27861.39 31677.67 19133.92 38369.04 30263.82 33448.56 29964.27 23577.64 28927.20 35770.40 31933.56 36276.24 17579.83 265
test_post168.67 3033.64 42332.39 32269.49 32344.17 290
testing22262.29 26661.31 26465.25 28877.87 18238.53 33968.34 30466.31 31756.37 18063.15 25077.58 29028.47 34776.18 29137.04 34076.65 17381.05 245
Test_1112_low_res62.32 26461.77 25864.00 29779.08 14439.53 33168.17 30570.17 28143.25 35559.03 30479.90 24544.08 18871.24 31343.79 29768.42 28781.25 238
tpm cat159.25 29356.95 30366.15 27272.19 29346.96 25968.09 30665.76 31940.03 37657.81 31670.56 35938.32 25174.51 29738.26 33361.50 34277.00 302
ppachtmachnet_test58.06 30155.38 31766.10 27469.51 33748.99 23468.01 30766.13 31844.50 34354.05 35170.74 35832.09 32472.34 30636.68 34556.71 36676.99 304
tpmvs58.47 29656.95 30363.03 30570.20 32641.21 31567.90 30867.23 30849.62 28654.73 34470.84 35734.14 29276.24 28936.64 34661.29 34371.64 359
testing9164.46 24063.80 23166.47 26478.43 16140.06 32467.63 30969.59 28859.06 12963.18 24878.05 27634.05 29376.99 27348.30 25575.87 17982.37 218
CL-MVSNet_self_test61.53 27460.94 27163.30 30168.95 34436.93 35667.60 31072.80 26355.67 19659.95 29176.63 30245.01 18072.22 30839.74 32662.09 33880.74 250
testing1162.81 25861.90 25765.54 28278.38 16240.76 32167.59 31166.78 31355.48 20060.13 28677.11 29431.67 32676.79 27845.53 28174.45 19079.06 274
test_vis1_n_192058.86 29459.06 28558.25 33463.76 37443.14 29967.49 31266.36 31640.22 37465.89 20371.95 35031.04 32759.75 36859.94 16264.90 31271.85 357
tpm57.34 30558.16 29454.86 35371.80 30034.77 37367.47 31356.04 37748.20 30660.10 28776.92 29737.17 26553.41 39640.76 32065.01 31176.40 308
testing9964.05 24463.29 24166.34 26678.17 17339.76 32867.33 31468.00 30258.60 13863.03 25178.10 27532.57 32076.94 27548.22 25675.58 18382.34 219
gg-mvs-nofinetune57.86 30256.43 30962.18 30972.62 28235.35 37066.57 31556.33 37450.65 27357.64 31757.10 40030.65 32976.36 28737.38 33778.88 13774.82 327
TinyColmap54.14 32951.72 34061.40 31566.84 35841.97 30866.52 31668.51 29844.81 33942.69 39575.77 31811.66 40472.94 30331.96 36956.77 36569.27 380
pmmvs556.47 31355.68 31558.86 33061.41 38636.71 35866.37 31762.75 34240.38 37353.70 35376.62 30334.56 28767.05 33940.02 32465.27 30972.83 343
CHOSEN 1792x268865.08 23462.84 24671.82 17281.49 9356.26 10866.32 31874.20 25040.53 37263.16 24978.65 26941.30 21977.80 25745.80 27674.09 19481.40 234
our_test_356.49 31254.42 32462.68 30769.51 33745.48 27566.08 31961.49 35244.11 34950.73 37069.60 36933.05 30668.15 32838.38 33256.86 36374.40 332
mvs5depth55.64 32153.81 33261.11 31859.39 39540.98 32065.89 32068.28 30050.21 27858.11 31475.42 32417.03 39067.63 33543.79 29746.21 39074.73 329
PM-MVS52.33 34050.19 34858.75 33162.10 38345.14 27865.75 32140.38 41143.60 35153.52 35772.65 3429.16 41265.87 34750.41 23654.18 37365.24 388
D2MVS62.30 26560.29 27668.34 24466.46 36248.42 24365.70 32273.42 25647.71 31358.16 31375.02 32730.51 33077.71 25953.96 20871.68 23678.90 278
MIMVSNet155.17 32654.31 32757.77 34070.03 33032.01 39165.68 32364.81 32649.19 29246.75 38476.00 31325.53 37164.04 35228.65 38962.13 33777.26 298
PatchMatch-RL56.25 31654.55 32361.32 31777.06 21256.07 11265.57 32454.10 38344.13 34853.49 35971.27 35625.20 37266.78 34136.52 34863.66 32361.12 390
Syy-MVS56.00 31856.23 31155.32 35074.69 25326.44 40965.52 32557.49 36850.97 27056.52 32672.18 34539.89 23268.09 32924.20 40164.59 31771.44 363
myMVS_eth3d54.86 32854.61 32255.61 34974.69 25327.31 40665.52 32557.49 36850.97 27056.52 32672.18 34521.87 38468.09 32927.70 39264.59 31771.44 363
test-LLR58.15 30058.13 29658.22 33568.57 34644.80 28065.46 32757.92 36550.08 28055.44 33469.82 36632.62 31757.44 37949.66 24373.62 20272.41 350
TESTMET0.1,155.28 32454.90 32056.42 34566.56 36043.67 29365.46 32756.27 37539.18 37953.83 35267.44 37824.21 37655.46 39048.04 25873.11 21570.13 374
test-mter56.42 31455.82 31458.22 33568.57 34644.80 28065.46 32757.92 36539.94 37755.44 33469.82 36621.92 38157.44 37949.66 24373.62 20272.41 350
SDMVSNet68.03 18168.10 16067.84 24777.13 20948.72 24065.32 33079.10 15958.02 15065.08 22182.55 18947.83 13873.40 30163.92 12873.92 19781.41 232
CR-MVSNet59.91 28657.90 29865.96 27669.96 33152.07 18665.31 33163.15 34042.48 36159.36 29974.84 32835.83 27770.75 31545.50 28264.65 31575.06 321
RPMNet61.53 27458.42 29170.86 20169.96 33152.07 18665.31 33181.36 11543.20 35659.36 29970.15 36435.37 28085.47 10536.42 34964.65 31575.06 321
USDC56.35 31554.24 32862.69 30664.74 37040.31 32265.05 33373.83 25343.93 35047.58 37977.71 28815.36 39775.05 29538.19 33461.81 34072.70 344
MDTV_nov1_ep1357.00 30272.73 28038.26 34165.02 33464.73 32844.74 34055.46 33372.48 34332.61 31970.47 31637.47 33667.75 292
ETVMVS59.51 29258.81 28661.58 31377.46 20234.87 37164.94 33559.35 35954.06 23461.08 28176.67 30129.54 33871.87 31032.16 36774.07 19578.01 289
CMPMVSbinary42.80 2157.81 30355.97 31263.32 30060.98 39047.38 25664.66 33669.50 29032.06 39046.83 38377.80 28429.50 34071.36 31248.68 25173.75 20071.21 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WBMVS60.54 28060.61 27460.34 32178.00 17935.95 36764.55 33764.89 32549.63 28563.39 24578.70 26633.85 29867.65 33442.10 31270.35 25377.43 294
RPSCF55.80 32054.22 32960.53 32065.13 36942.91 30264.30 33857.62 36736.84 38358.05 31582.28 19828.01 35056.24 38737.14 33958.61 35782.44 217
XXY-MVS60.68 27961.67 25957.70 34170.43 32338.45 34064.19 33966.47 31448.05 30963.22 24680.86 23049.28 12160.47 36345.25 28767.28 29674.19 335
FMVSNet555.86 31954.93 31958.66 33271.05 31436.35 36164.18 34062.48 34446.76 32550.66 37174.73 33025.80 36864.04 35233.11 36365.57 30875.59 316
UBG59.62 29159.53 28059.89 32278.12 17435.92 36864.11 34160.81 35649.45 28861.34 27775.55 32133.05 30667.39 33838.68 33074.62 18876.35 309
test_cas_vis1_n_192056.91 30856.71 30657.51 34259.13 39645.40 27663.58 34261.29 35336.24 38467.14 17971.85 35129.89 33656.69 38357.65 17763.58 32570.46 371
SCA60.49 28158.38 29266.80 25774.14 26648.06 24763.35 34363.23 33949.13 29359.33 30272.10 34737.45 25974.27 29944.17 29062.57 33378.05 285
Patchmtry57.16 30656.47 30859.23 32669.17 34334.58 37662.98 34463.15 34044.53 34256.83 32374.84 32835.83 27768.71 32640.03 32360.91 34474.39 333
Anonymous2023120655.10 32755.30 31854.48 35569.81 33533.94 38262.91 34562.13 35041.08 36855.18 33875.65 31932.75 31456.59 38530.32 38367.86 29072.91 341
sd_testset64.46 24064.45 22464.51 29377.13 20942.25 30662.67 34672.11 26858.02 15065.08 22182.55 18941.22 22369.88 32247.32 26273.92 19781.41 232
MIMVSNet57.35 30457.07 30158.22 33574.21 26537.18 35162.46 34760.88 35548.88 29655.29 33775.99 31531.68 32562.04 35931.87 37072.35 22775.43 319
dp51.89 34251.60 34152.77 36868.44 34932.45 39062.36 34854.57 38044.16 34749.31 37667.91 37428.87 34556.61 38433.89 35854.89 37069.24 381
EPMVS53.96 33053.69 33354.79 35466.12 36531.96 39262.34 34949.05 39444.42 34555.54 33271.33 35530.22 33356.70 38241.65 31762.54 33475.71 315
pmmvs344.92 36041.95 36753.86 35852.58 40543.55 29462.11 35046.90 40326.05 40140.63 39760.19 39611.08 40957.91 37831.83 37446.15 39160.11 391
test_vis1_n49.89 35148.69 35353.50 36253.97 40037.38 35061.53 35147.33 40128.54 39559.62 29767.10 38213.52 39952.27 39949.07 24857.52 36070.84 369
PVSNet50.76 1958.40 29757.39 29961.42 31475.53 23944.04 29061.43 35263.45 33747.04 32356.91 32273.61 33827.00 36064.76 35039.12 32872.40 22675.47 318
LCM-MVSNet-Re61.88 27161.35 26363.46 29974.58 25631.48 39361.42 35358.14 36458.71 13653.02 36079.55 25443.07 19776.80 27745.69 27777.96 15182.11 224
test20.0353.87 33254.02 33053.41 36461.47 38528.11 40261.30 35459.21 36051.34 26552.09 36277.43 29133.29 30558.55 37529.76 38560.27 35273.58 339
MDTV_nov1_ep13_2view25.89 41161.22 35540.10 37551.10 36532.97 30938.49 33178.61 280
PMMVS53.96 33053.26 33656.04 34662.60 38150.92 20061.17 35656.09 37632.81 38953.51 35866.84 38334.04 29459.93 36744.14 29268.18 28857.27 398
test_fmvs1_n51.37 34450.35 34754.42 35752.85 40337.71 34761.16 35751.93 38528.15 39663.81 24169.73 36813.72 39853.95 39451.16 23160.65 34871.59 360
WTY-MVS59.75 28860.39 27557.85 33972.32 29137.83 34561.05 35864.18 33245.95 33461.91 27079.11 26347.01 15760.88 36242.50 30969.49 27274.83 326
dmvs_testset50.16 34951.90 33944.94 38466.49 36111.78 42461.01 35951.50 38751.17 26850.30 37467.44 37839.28 23960.29 36522.38 40457.49 36162.76 389
Patchmatch-RL test58.16 29955.49 31666.15 27267.92 35248.89 23760.66 36051.07 39047.86 31259.36 29962.71 39434.02 29572.27 30756.41 18459.40 35477.30 296
test_fmvs151.32 34650.48 34653.81 35953.57 40137.51 34960.63 36151.16 38828.02 39863.62 24269.23 37116.41 39353.93 39551.01 23260.70 34769.99 375
LTVRE_ROB55.42 1663.15 25661.23 26768.92 23676.57 22347.80 24959.92 36276.39 21154.35 23058.67 30782.46 19429.44 34181.49 18942.12 31171.14 24177.46 293
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 153.32 33753.59 33452.50 37062.81 38029.45 39759.51 36354.11 38250.08 28054.40 34874.31 33332.62 31755.92 38830.50 38263.95 32272.15 355
UnsupCasMVSNet_eth53.16 33952.47 33755.23 35159.45 39433.39 38659.43 36469.13 29445.98 33150.35 37372.32 34429.30 34258.26 37742.02 31444.30 39474.05 336
MVS-HIRNet45.52 35944.48 36148.65 37868.49 34834.05 38159.41 36544.50 40627.03 39937.96 40650.47 40826.16 36664.10 35126.74 39759.52 35347.82 407
testgi51.90 34152.37 33850.51 37660.39 39323.55 41658.42 36658.15 36349.03 29451.83 36379.21 26222.39 37955.59 38929.24 38862.64 33272.40 352
dmvs_re56.77 31056.83 30556.61 34469.23 34141.02 31658.37 36764.18 33250.59 27557.45 31971.42 35335.54 27958.94 37337.23 33867.45 29469.87 376
PatchT53.17 33853.44 33552.33 37168.29 35025.34 41358.21 36854.41 38144.46 34454.56 34669.05 37233.32 30460.94 36136.93 34161.76 34170.73 370
WB-MVS43.26 36243.41 36242.83 38863.32 37710.32 42658.17 36945.20 40445.42 33640.44 39967.26 38134.01 29658.98 37211.96 41724.88 41159.20 392
sss56.17 31756.57 30754.96 35266.93 35736.32 36357.94 37061.69 35141.67 36458.64 30875.32 32638.72 24656.25 38642.04 31366.19 30472.31 353
ttmdpeth45.56 35842.95 36353.39 36552.33 40629.15 39857.77 37148.20 39831.81 39149.86 37577.21 2938.69 41359.16 37127.31 39333.40 40871.84 358
test_fmvs248.69 35347.49 35852.29 37248.63 41033.06 38857.76 37248.05 39925.71 40259.76 29569.60 36911.57 40552.23 40049.45 24656.86 36371.58 361
KD-MVS_self_test55.22 32553.89 33159.21 32757.80 39927.47 40557.75 37374.32 24547.38 31750.90 36770.00 36528.45 34870.30 32040.44 32157.92 35979.87 264
UnsupCasMVSNet_bld50.07 35048.87 35153.66 36060.97 39133.67 38457.62 37464.56 32939.47 37847.38 38064.02 39227.47 35459.32 36934.69 35643.68 39567.98 384
mamv456.85 30958.00 29753.43 36372.46 28854.47 14057.56 37554.74 37838.81 38057.42 32079.45 25747.57 14438.70 41560.88 15453.07 37667.11 385
SSC-MVS41.96 36741.99 36641.90 38962.46 3829.28 42857.41 37644.32 40743.38 35338.30 40566.45 38432.67 31658.42 37610.98 41821.91 41457.99 396
ANet_high41.38 36837.47 37553.11 36639.73 42124.45 41456.94 37769.69 28547.65 31426.04 41352.32 40312.44 40262.38 35821.80 40510.61 42272.49 347
MDA-MVSNet-bldmvs53.87 33250.81 34463.05 30466.25 36348.58 24156.93 37863.82 33448.09 30841.22 39670.48 36230.34 33268.00 33234.24 35745.92 39272.57 346
test1234.73 3946.30 3970.02 4080.01 4310.01 43356.36 3790.00 4320.01 4260.04 4270.21 4270.01 4310.00 4270.03 4270.00 4250.04 423
miper_lstm_enhance62.03 26960.88 27265.49 28466.71 35946.25 26456.29 38075.70 22050.68 27261.27 27875.48 32340.21 22968.03 33156.31 18565.25 31082.18 221
KD-MVS_2432*160053.45 33451.50 34259.30 32462.82 37837.14 35255.33 38171.79 27147.34 31955.09 33970.52 36021.91 38270.45 31735.72 35242.97 39670.31 372
miper_refine_blended53.45 33451.50 34259.30 32462.82 37837.14 35255.33 38171.79 27147.34 31955.09 33970.52 36021.91 38270.45 31735.72 35242.97 39670.31 372
LF4IMVS42.95 36342.26 36545.04 38248.30 41132.50 38954.80 38348.49 39628.03 39740.51 39870.16 3639.24 41143.89 41031.63 37549.18 38858.72 394
PMVScopyleft28.69 2236.22 37533.29 38045.02 38336.82 42335.98 36654.68 38448.74 39526.31 40021.02 41651.61 4052.88 42560.10 3669.99 42147.58 38938.99 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVStest142.65 36439.29 37152.71 36947.26 41334.58 37654.41 38550.84 39323.35 40439.31 40474.08 33512.57 40155.09 39123.32 40228.47 41068.47 383
PVSNet_043.31 2047.46 35745.64 36052.92 36767.60 35444.65 28254.06 38654.64 37941.59 36546.15 38658.75 39730.99 32858.66 37432.18 36624.81 41255.46 400
testmvs4.52 3956.03 3980.01 4090.01 4310.00 43453.86 3870.00 4320.01 4260.04 4270.27 4260.00 4320.00 4270.04 4260.00 4250.03 424
test_fmvs344.30 36142.55 36449.55 37742.83 41527.15 40853.03 38844.93 40522.03 41053.69 35564.94 3894.21 42049.63 40247.47 25949.82 38571.88 356
APD_test137.39 37434.94 37744.72 38548.88 40933.19 38752.95 38944.00 40819.49 41127.28 41258.59 3983.18 42452.84 39718.92 40741.17 39948.14 406
dongtai34.52 37734.94 37733.26 39861.06 38916.00 42352.79 39023.78 42440.71 37139.33 40348.65 41216.91 39248.34 40412.18 41619.05 41635.44 415
YYNet150.73 34748.96 34956.03 34761.10 38841.78 31051.94 39156.44 37240.94 37044.84 38867.80 37630.08 33455.08 39236.77 34250.71 38271.22 365
MDA-MVSNet_test_wron50.71 34848.95 35056.00 34861.17 38741.84 30951.90 39256.45 37140.96 36944.79 38967.84 37530.04 33555.07 39336.71 34450.69 38371.11 368
kuosan29.62 38430.82 38326.02 40352.99 40216.22 42251.09 39322.71 42533.91 38833.99 40740.85 41315.89 39533.11 4207.59 42418.37 41728.72 417
ADS-MVSNet251.33 34548.76 35259.07 32966.02 36644.60 28350.90 39459.76 35836.90 38150.74 36866.18 38626.38 36363.11 35527.17 39454.76 37169.50 378
ADS-MVSNet48.48 35447.77 35550.63 37566.02 36629.92 39650.90 39450.87 39236.90 38150.74 36866.18 38626.38 36352.47 39827.17 39454.76 37169.50 378
FPMVS42.18 36641.11 36845.39 38158.03 39841.01 31849.50 39653.81 38430.07 39333.71 40864.03 39011.69 40352.08 40114.01 41255.11 36943.09 409
N_pmnet39.35 37240.28 36936.54 39563.76 3741.62 43249.37 3970.76 43134.62 38743.61 39366.38 38526.25 36542.57 41126.02 39951.77 37965.44 387
new-patchmatchnet47.56 35647.73 35647.06 37958.81 3979.37 42748.78 39859.21 36043.28 35444.22 39168.66 37325.67 36957.20 38131.57 37749.35 38774.62 331
test_vis1_rt41.35 36939.45 37047.03 38046.65 41437.86 34447.76 39938.65 41223.10 40644.21 39251.22 40611.20 40844.08 40939.27 32753.02 37759.14 393
JIA-IIPM51.56 34347.68 35763.21 30264.61 37150.73 20447.71 40058.77 36242.90 35848.46 37851.72 40424.97 37370.24 32136.06 35153.89 37468.64 382
ambc65.13 28963.72 37637.07 35447.66 40178.78 16754.37 34971.42 35311.24 40780.94 20245.64 27853.85 37577.38 295
testf131.46 38228.89 38639.16 39141.99 41828.78 40046.45 40237.56 41314.28 41821.10 41448.96 4091.48 42847.11 40513.63 41334.56 40541.60 410
APD_test231.46 38228.89 38639.16 39141.99 41828.78 40046.45 40237.56 41314.28 41821.10 41448.96 4091.48 42847.11 40513.63 41334.56 40541.60 410
Patchmatch-test49.08 35248.28 35451.50 37464.40 37230.85 39545.68 40448.46 39735.60 38546.10 38772.10 34734.47 29046.37 40727.08 39660.65 34877.27 297
DSMNet-mixed39.30 37338.72 37241.03 39051.22 40719.66 41945.53 40531.35 41815.83 41739.80 40167.42 38022.19 38045.13 40822.43 40352.69 37858.31 395
LCM-MVSNet40.30 37035.88 37653.57 36142.24 41629.15 39845.21 40660.53 35722.23 40928.02 41150.98 4073.72 42261.78 36031.22 38038.76 40269.78 377
new_pmnet34.13 37834.29 37933.64 39752.63 40418.23 42144.43 40733.90 41722.81 40730.89 41053.18 40210.48 41035.72 41920.77 40639.51 40046.98 408
mvsany_test139.38 37138.16 37443.02 38749.05 40834.28 37944.16 40825.94 42222.74 40846.57 38562.21 39523.85 37741.16 41433.01 36435.91 40453.63 401
E-PMN23.77 38622.73 39026.90 40142.02 41720.67 41842.66 40935.70 41517.43 41310.28 42325.05 4196.42 41542.39 41210.28 42014.71 41917.63 418
EMVS22.97 38721.84 39126.36 40240.20 42019.53 42041.95 41034.64 41617.09 4149.73 42422.83 4207.29 41442.22 4139.18 42213.66 42017.32 419
test_vis3_rt32.09 38030.20 38537.76 39435.36 42527.48 40440.60 41128.29 42116.69 41532.52 40940.53 4141.96 42637.40 41733.64 36142.21 39848.39 404
CHOSEN 280x42047.83 35546.36 35952.24 37367.37 35549.78 22138.91 41243.11 40935.00 38643.27 39463.30 39328.95 34349.19 40336.53 34760.80 34657.76 397
mvsany_test332.62 37930.57 38438.77 39336.16 42424.20 41538.10 41320.63 42619.14 41240.36 40057.43 3995.06 41736.63 41829.59 38728.66 40955.49 399
test_f31.86 38131.05 38234.28 39632.33 42721.86 41732.34 41430.46 41916.02 41639.78 40255.45 4014.80 41832.36 42130.61 38137.66 40348.64 403
PMMVS227.40 38525.91 38831.87 40039.46 4226.57 42931.17 41528.52 42023.96 40320.45 41748.94 4114.20 42137.94 41616.51 40919.97 41551.09 402
wuyk23d13.32 39112.52 39415.71 40547.54 41226.27 41031.06 4161.98 4304.93 4225.18 4251.94 4250.45 43018.54 4246.81 42512.83 4212.33 422
Gipumacopyleft34.77 37631.91 38143.33 38662.05 38437.87 34320.39 41767.03 31023.23 40518.41 41825.84 4184.24 41962.73 35614.71 41151.32 38129.38 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive17.77 2321.41 38817.77 39332.34 39934.34 42625.44 41216.11 41824.11 42311.19 42013.22 42031.92 4161.58 42730.95 42210.47 41917.03 41840.62 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt9.43 39211.14 3954.30 4072.38 4304.40 43013.62 41916.08 4280.39 42415.89 41913.06 42115.80 3965.54 42612.63 41510.46 4232.95 421
test_method19.68 38918.10 39224.41 40413.68 4293.11 43112.06 42042.37 4102.00 42311.97 42136.38 4155.77 41629.35 42315.06 41023.65 41340.76 412
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
cdsmvs_eth3d_5k17.50 39023.34 3890.00 4100.00 4330.00 4340.00 42178.63 1710.00 4280.00 42982.18 19949.25 1220.00 4270.00 4280.00 4250.00 425
pcd_1.5k_mvsjas3.92 3965.23 3990.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 42847.05 1540.00 4270.00 4280.00 4250.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
ab-mvs-re6.49 3938.65 3960.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 42977.89 2820.00 4320.00 4270.00 4280.00 4250.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4340.00 4210.00 4320.00 4280.00 4290.00 4280.00 4320.00 4270.00 4280.00 4250.00 425
WAC-MVS27.31 40627.77 391
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4691.38 288.42 16
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 433
eth-test0.00 433
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4987.00 49
IU-MVS87.77 459.15 6385.53 2653.93 23684.64 379.07 1190.87 588.37 18
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
GSMVS78.05 285
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28678.05 285
sam_mvs33.43 303
MTGPAbinary80.97 132
test_post3.55 42433.90 29766.52 342
patchmatchnet-post64.03 39034.50 28874.27 299
gm-plane-assit71.40 30841.72 31348.85 29773.31 33982.48 17348.90 250
test9_res75.28 3988.31 3283.81 178
agg_prior273.09 5787.93 4084.33 159
agg_prior85.04 5059.96 5081.04 13074.68 5984.04 133
TestCases64.39 29471.44 30549.03 23167.30 30545.97 33247.16 38179.77 24817.47 38867.56 33633.65 35959.16 35576.57 306
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 79
新几何170.76 20385.66 4161.13 3066.43 31544.68 34170.29 11886.64 9941.29 22075.23 29449.72 24281.75 10375.93 312
旧先验183.04 7353.15 16367.52 30487.85 7444.08 18880.76 10878.03 288
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26270.27 11986.61 10248.61 13086.51 7953.85 20987.96 3978.16 283
testdata272.18 30946.95 268
segment_acmp54.23 57
testdata64.66 29181.52 9152.93 16865.29 32346.09 33073.88 7087.46 8138.08 25566.26 34553.31 21478.48 14574.78 328
test1277.76 4584.52 5858.41 7883.36 7672.93 8954.61 5488.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5287.21 5868.16 8980.58 11184.65 153
plane_prior486.10 119
plane_prior356.09 11163.92 3669.27 138
plane_prior181.27 99
n20.00 432
nn0.00 432
door-mid47.19 402
lessismore_v069.91 21971.42 30747.80 24950.90 39150.39 37275.56 32027.43 35681.33 19245.91 27534.10 40780.59 251
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18887.33 8439.15 24286.59 7467.70 9377.30 16383.19 200
test1183.47 71
door47.60 400
HQP5-MVS54.94 134
BP-MVS67.04 100
HQP4-MVS67.85 16286.93 6684.32 160
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 136
ACMMP++_ref74.07 195
ACMMP++72.16 231
Test By Simon48.33 133
ITE_SJBPF62.09 31066.16 36444.55 28564.32 33047.36 31855.31 33680.34 23819.27 38762.68 35736.29 35062.39 33579.04 275
DeepMVS_CXcopyleft12.03 40617.97 42810.91 42510.60 4297.46 42111.07 42228.36 4173.28 42311.29 4258.01 4239.74 42413.89 420