This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 293.00 193.98 1796.01 3987.53 197.69 196.81 197.33 195.34 3
anonymousdsp85.62 6190.53 4879.88 9264.64 20376.35 13996.28 1353.53 18885.63 6981.59 7092.81 3097.71 1486.88 294.56 2692.83 2596.35 693.84 8
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 11086.35 6793.60 3778.79 1995.48 491.79 293.08 2697.21 2186.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMVScopyleft79.51 990.23 1492.67 1487.39 2190.16 3988.75 4193.64 3675.78 4490.00 3383.70 4892.97 2892.22 10386.13 497.01 396.79 294.94 3090.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 9082.56 9290.53 6471.93 6091.95 1285.89 3694.22 1497.25 2085.42 595.73 1291.71 4195.08 2891.89 37
CPTT-MVS89.63 2590.52 4988.59 790.95 3190.74 2195.71 1779.13 1587.70 5185.68 3980.05 13695.74 4684.77 694.28 3092.68 2795.28 2692.45 31
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3188.53 1489.54 6595.57 4884.25 795.24 2094.27 1395.97 1193.85 7
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5994.95 591.27 394.11 1697.77 1284.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVScopyleft90.84 691.95 3489.55 392.92 590.90 1996.56 679.60 1186.83 6088.75 1389.00 7394.38 7884.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4689.17 1187.00 9596.34 3183.95 1095.77 1194.72 895.81 1793.78 9
SD-MVS89.91 1892.23 3087.19 2291.31 2489.79 3494.31 3275.34 4789.26 3881.79 6892.68 3195.08 6283.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS90.42 1091.58 3789.05 691.77 1491.06 1396.51 778.94 1785.41 7287.67 1987.02 9495.26 5683.62 1295.01 2493.94 1695.79 1993.40 19
ACMM80.67 790.67 792.46 1988.57 891.35 2289.93 3196.34 1277.36 3190.17 2986.88 3087.32 9096.63 2483.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train90.56 992.38 2188.43 1090.88 3291.15 1195.35 2277.65 2686.26 6587.23 2490.45 5497.35 1883.20 1495.44 1693.41 2196.28 892.63 26
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5179.48 1388.86 4179.80 8093.01 2793.53 8883.17 1592.75 4692.45 3091.32 8293.59 12
ACMMPcopyleft90.63 892.40 2088.56 991.24 2891.60 696.49 977.53 2787.89 4986.87 3187.24 9296.46 2682.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++86.29 5989.10 5783.01 5985.71 8289.79 3487.04 10574.39 5185.17 7478.92 8677.59 15093.57 8682.60 1793.23 3791.88 4089.42 10692.46 30
zzz-MVS90.38 1191.35 4189.25 593.08 386.59 6496.45 1179.00 1690.23 2889.30 1085.87 10694.97 6582.54 1895.05 2394.83 795.14 2791.94 36
TSAR-MVS + MP.89.67 2492.25 2886.65 2691.53 1890.98 1796.15 1473.30 5687.88 5081.83 6792.92 2995.15 6082.23 1993.58 3592.25 3494.87 3193.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMP80.00 890.12 1692.30 2687.58 1990.83 3491.10 1294.96 2876.06 4187.47 5385.33 4088.91 7697.65 1682.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SteuartSystems-ACMMP90.00 1791.73 3587.97 1391.21 2990.29 2896.51 778.00 2486.33 6385.32 4188.23 8194.67 7082.08 2195.13 2293.88 1794.72 3693.59 12
Skip Steuart: Steuart Systems R&D Blog.
Gipumacopyleft86.47 5789.25 5683.23 5683.88 10278.78 12085.35 11568.42 8992.69 1089.03 1291.94 3796.32 3381.80 2294.45 2786.86 8290.91 8883.69 99
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS90.32 1392.37 2287.94 1491.46 2190.91 1895.69 1879.49 1289.94 3483.50 5189.06 7294.44 7681.68 2394.17 3194.19 1495.81 1793.87 6
APDe-MVS89.85 2092.91 1086.29 2790.47 3891.34 796.04 1576.41 4091.11 1778.50 8893.44 2195.82 4381.55 2493.16 3891.90 3994.77 3493.58 14
DVP-MVS89.40 2792.69 1385.56 3489.01 5089.85 3293.72 3575.42 4592.28 1180.49 7394.36 1394.87 6681.46 2592.49 5091.42 4293.27 5293.54 16
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft89.14 2991.25 4486.67 2591.73 1591.02 1595.50 2177.74 2584.04 8379.47 8391.48 4494.85 6781.14 2692.94 4192.20 3694.47 3992.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft89.81 2292.34 2486.86 2489.69 4491.00 1695.53 1976.91 3488.18 4783.43 5493.48 2095.19 5781.07 2792.75 4692.07 3794.55 3793.74 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepC-MVS83.59 490.37 1292.56 1887.82 1591.26 2792.33 394.72 3080.04 990.01 3284.61 4393.33 2294.22 7980.59 2892.90 4492.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3892.18 4574.23 5293.55 882.66 5992.32 3698.35 880.29 2995.28 1892.34 3295.52 2290.43 50
HPM-MVS++copyleft88.74 4089.54 5487.80 1692.58 785.69 7295.10 2678.01 2387.08 5787.66 2087.89 8492.07 10680.28 3090.97 7091.41 4493.17 5691.69 38
DeepPCF-MVS81.61 687.95 4890.29 5185.22 3887.48 6690.01 3093.79 3473.54 5488.93 4083.89 4689.40 6790.84 12080.26 3190.62 7390.19 5492.36 7092.03 35
RPSCF88.05 4692.61 1782.73 6684.24 9588.40 4390.04 7466.29 10591.46 1382.29 6188.93 7596.01 3979.38 3295.15 2194.90 694.15 4093.40 19
TSAR-MVS + GP.85.32 6687.41 7582.89 6390.07 4185.69 7289.07 8372.99 5782.45 9174.52 10785.09 11387.67 14179.24 3391.11 6590.41 5191.45 7989.45 57
OPM-MVS89.82 2192.24 2986.99 2390.86 3389.35 3795.07 2775.91 4391.16 1686.87 3191.07 5097.29 1979.13 3493.32 3691.99 3894.12 4191.49 41
SMA-MVScopyleft90.13 1592.26 2787.64 1891.68 1690.44 2695.22 2477.34 3390.79 2287.80 1790.42 5592.05 10879.05 3593.89 3393.59 1994.77 3494.62 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT77.23 13079.18 13874.96 12776.67 16579.85 11075.58 17961.34 15473.10 14673.79 11286.23 10179.61 16779.00 3680.28 15875.50 16783.41 16579.70 137
EG-PatchMatch MVS84.35 7487.55 7280.62 8686.38 7682.24 9486.75 10664.02 13184.24 7978.17 9089.38 6895.03 6478.78 3789.95 7986.33 8689.59 10285.65 85
ACMMP_NAP89.86 1991.96 3387.42 2091.00 3090.08 2996.00 1676.61 3789.28 3587.73 1890.04 5791.80 11178.71 3894.36 2993.82 1894.48 3894.32 5
CSCG88.12 4591.45 3884.23 4888.12 6290.59 2590.57 6168.60 8791.37 1583.45 5389.94 5895.14 6178.71 3891.45 5988.21 7495.96 1293.44 18
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3394.76 2977.45 2985.41 7274.79 10488.83 7788.90 13578.67 4096.06 795.45 496.66 395.58 1
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6390.83 2187.24 2389.71 6392.07 10678.37 4194.43 2892.59 2895.86 1391.35 42
train_agg86.67 5587.73 7185.43 3591.51 1982.72 8994.47 3174.22 5381.71 9881.54 7189.20 7192.87 9478.33 4290.12 7788.47 7092.51 6989.04 61
3Dnovator+83.71 388.13 4490.00 5285.94 2986.82 7291.06 1394.26 3375.39 4688.85 4285.76 3885.74 10886.92 14478.02 4393.03 4092.21 3595.39 2592.21 34
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7587.16 5991.47 4868.79 8595.49 389.74 693.55 1998.50 377.96 4494.14 3289.57 6393.49 4789.94 54
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xxxxxxxxxxxxxcwj88.03 4791.29 4384.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5997.72 1377.91 4591.69 5490.04 5593.95 4492.47 28
SF-MVS87.85 5090.95 4684.22 4988.17 6087.90 5290.80 5671.80 6189.28 3582.70 5789.90 5995.37 5477.91 4591.69 5490.04 5593.95 4492.47 28
v7n87.11 5290.46 5083.19 5785.22 8583.69 8390.03 7568.20 9391.01 1986.71 3494.80 1098.46 577.69 4791.10 6685.98 8991.30 8388.19 67
OMC-MVS88.16 4391.34 4284.46 4686.85 7190.63 2393.01 4167.00 10090.35 2787.40 2286.86 9796.35 3077.66 4892.63 4890.84 4794.84 3291.68 39
FPMVS81.56 10184.04 11378.66 10182.92 11275.96 14386.48 10965.66 11584.67 7871.47 12677.78 14883.22 15777.57 4991.24 6290.21 5387.84 12485.21 87
PVSNet_Blended_VisFu83.00 8784.16 11181.65 7282.17 12086.01 6888.03 9171.23 6576.05 13879.54 8283.88 12083.44 15477.49 5087.38 9884.93 10091.41 8087.40 75
PLCcopyleft76.06 1585.38 6587.46 7382.95 6285.79 8188.84 4088.86 8568.70 8687.06 5883.60 4979.02 13990.05 12677.37 5190.88 7189.66 6193.37 5186.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PM-MVS80.42 11083.63 11876.67 11378.04 15072.37 16387.14 10160.18 16280.13 11871.75 12486.12 10393.92 8277.08 5286.56 10785.12 9885.83 14881.18 122
NCCC86.74 5487.97 7085.31 3690.64 3587.25 5893.27 3974.59 4986.50 6183.72 4775.92 16692.39 10077.08 5291.72 5390.68 4992.57 6791.30 43
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3695.11 2575.98 4290.73 2380.15 7994.21 1594.51 7576.59 5492.94 4191.17 4593.46 4993.37 21
X-MVS89.36 2890.73 4787.77 1791.50 2091.23 896.76 478.88 1887.29 5587.14 2678.98 14194.53 7276.47 5595.25 1994.28 1295.85 1493.55 15
CNLPA85.50 6388.58 5981.91 6984.55 9287.52 5690.89 5463.56 13688.18 4784.06 4583.85 12191.34 11776.46 5691.27 6189.00 6891.96 7488.88 63
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2377.52 2890.48 2680.21 7890.21 5696.08 3576.38 5788.30 9391.42 4291.12 8791.01 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v124083.57 8084.94 10081.97 6884.05 9781.27 10189.46 8066.06 10881.31 10887.50 2191.88 4095.46 5276.25 5881.16 15180.51 13988.52 11982.98 107
TAPA-MVS78.00 1385.88 6088.37 6382.96 6184.69 8888.62 4290.62 5964.22 12689.15 3988.05 1578.83 14393.71 8376.20 5990.11 7888.22 7394.00 4289.97 53
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS86.93 5388.98 5884.54 4490.11 4087.41 5793.23 4073.47 5586.31 6482.25 6282.96 12492.15 10476.04 6091.69 5490.69 4892.17 7391.64 40
PHI-MVS86.37 5888.14 6784.30 4786.65 7487.56 5590.76 5870.16 7082.55 9089.65 784.89 11592.40 9975.97 6190.88 7189.70 6092.58 6589.03 62
v192192083.49 8184.94 10081.80 7083.78 10381.20 10389.50 7965.91 11181.64 10087.18 2591.70 4295.39 5375.85 6281.56 14980.27 14188.60 11682.80 109
DeepC-MVS_fast81.78 587.38 5189.64 5384.75 4189.89 4290.70 2292.74 4374.45 5086.02 6682.16 6586.05 10491.99 11075.84 6391.16 6490.44 5093.41 5091.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419283.43 8284.97 9981.63 7383.43 10681.23 10289.42 8166.04 11081.45 10686.40 3591.46 4595.70 4775.76 6482.14 14280.23 14288.74 11382.57 112
CDPH-MVS86.66 5688.52 6184.48 4589.61 4588.27 4592.86 4272.69 5880.55 11682.71 5686.92 9693.32 9075.55 6591.00 6989.85 5893.47 4889.71 55
thisisatest051581.18 10784.32 10777.52 11176.73 16474.84 15385.06 11861.37 15381.05 11173.95 11088.79 7889.25 13275.49 6685.98 11284.78 10292.53 6885.56 86
MVS_111021_LR83.20 8585.33 9280.73 8482.88 11478.23 12489.61 7765.23 11882.08 9581.19 7285.31 11092.04 10975.22 6789.50 8085.90 9190.24 9284.23 93
AdaColmapbinary84.15 7585.14 9683.00 6089.08 4987.14 6090.56 6270.90 6682.40 9280.41 7473.82 17784.69 15375.19 6891.58 5889.90 5791.87 7686.48 78
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4593.49 3879.86 1092.75 975.37 10096.86 198.38 675.10 6995.93 894.07 1596.46 589.39 58
MCST-MVS84.79 7186.48 7982.83 6487.30 6787.03 6190.46 6969.33 7983.14 8682.21 6481.69 13292.14 10575.09 7087.27 10084.78 10292.58 6589.30 59
PatchMatch-RL76.05 14076.64 15475.36 12077.84 15469.87 17181.09 14363.43 13871.66 15568.34 14671.70 18481.76 16274.98 7184.83 12683.44 11586.45 13973.22 164
v119283.61 7985.23 9481.72 7184.05 9782.15 9589.54 7866.20 10681.38 10786.76 3391.79 4196.03 3774.88 7281.81 14680.92 13588.91 11282.50 113
Effi-MVS+-dtu82.04 9783.39 12180.48 8985.48 8486.57 6688.40 8968.28 9169.04 16773.13 11776.26 16191.11 11974.74 7388.40 9087.76 7592.84 6284.57 91
ambc88.38 6291.62 1787.97 5184.48 12288.64 4587.93 1687.38 8994.82 6974.53 7489.14 8483.86 11285.94 14686.84 76
MVS_111021_HR83.95 7786.10 8581.44 7584.62 9080.29 10790.51 6568.05 9484.07 8280.38 7684.74 11691.37 11674.23 7590.37 7587.25 7890.86 8984.59 90
v1083.17 8685.22 9580.78 8183.26 10982.99 8888.66 8866.49 10479.24 12583.60 4991.46 4595.47 5174.12 7682.60 14180.66 13688.53 11884.11 96
V4279.59 11783.59 11974.93 12869.61 18777.05 13586.59 10855.84 17778.42 12977.29 9189.84 6295.08 6274.12 7683.05 13480.11 14386.12 14281.59 120
v114483.22 8485.01 9781.14 7783.76 10481.60 9888.95 8465.58 11681.89 9785.80 3791.68 4395.84 4274.04 7882.12 14380.56 13888.70 11581.41 121
TSAR-MVS + COLMAP85.51 6288.36 6482.19 6786.05 7987.69 5490.50 6670.60 6986.40 6282.33 6089.69 6492.52 9874.01 7987.53 9786.84 8389.63 10187.80 72
EIA-MVS78.57 12577.90 14479.35 9787.24 6980.71 10586.16 11064.03 13062.63 19673.49 11473.60 17876.12 18273.83 8088.49 8984.93 10091.36 8178.78 142
EU-MVSNet76.48 13680.53 13371.75 14167.62 19370.30 16881.74 13954.06 18575.47 14071.01 12980.10 13493.17 9373.67 8183.73 13277.85 15282.40 16783.07 104
ETV-MVS79.01 12477.98 14380.22 9186.69 7379.73 11388.80 8668.27 9263.22 19171.56 12570.25 19673.63 18973.66 8290.30 7686.77 8492.33 7181.95 118
CVMVSNet75.65 14477.62 14873.35 13671.95 18069.89 17083.04 12960.84 15869.12 16568.76 14179.92 13778.93 17073.64 8381.02 15281.01 13481.86 17083.43 101
Fast-Effi-MVS+81.42 10283.82 11678.62 10282.24 11980.62 10687.72 9463.51 13773.01 14774.75 10583.80 12292.70 9673.44 8488.15 9585.26 9690.05 9483.17 103
v882.20 9584.56 10579.45 9582.42 11781.65 9787.26 9964.27 12579.36 12481.70 6991.04 5195.75 4573.30 8582.82 13779.18 14887.74 12682.09 116
CS-MVS79.35 12077.74 14581.22 7685.59 8379.85 11088.78 8766.61 10267.63 17080.41 7467.82 20075.07 18773.27 8688.31 9284.36 10692.63 6481.18 122
PCF-MVS76.59 1484.11 7685.27 9382.76 6586.12 7888.30 4491.24 5069.10 8082.36 9384.45 4477.56 15190.40 12572.91 8785.88 11383.88 11092.72 6388.53 65
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030484.73 7286.19 8383.02 5888.32 5686.71 6391.55 4770.87 6773.79 14582.88 5585.13 11293.35 8972.55 8888.62 8787.69 7691.93 7588.05 70
HQP-MVS85.02 6886.41 8183.40 5589.19 4886.59 6491.28 4971.60 6482.79 8983.48 5278.65 14593.54 8772.55 8886.49 10885.89 9292.28 7290.95 47
Effi-MVS+82.33 9383.87 11480.52 8884.51 9381.32 10087.53 9668.05 9474.94 14379.67 8182.37 12992.31 10172.21 9085.06 12086.91 8191.18 8584.20 94
thisisatest053075.54 14575.95 16275.05 12375.08 17173.56 15882.15 13660.31 15969.17 16469.32 13679.02 13958.78 20872.17 9183.88 13183.08 12191.30 8384.20 94
tttt051775.86 14376.23 15875.42 11975.55 17074.06 15782.73 13160.31 15969.24 16370.24 13379.18 13858.79 20772.17 9184.49 12883.08 12191.54 7884.80 88
EPP-MVSNet82.76 9186.47 8078.45 10386.00 8084.47 7785.39 11468.42 8984.17 8062.97 16189.26 7076.84 17872.13 9392.56 4990.40 5295.76 2087.56 74
v2v48282.20 9584.26 10879.81 9382.67 11680.18 10887.67 9563.96 13381.69 9984.73 4291.27 4896.33 3272.05 9481.94 14579.56 14587.79 12578.84 141
GeoE81.92 9983.87 11479.66 9484.64 8979.87 10989.75 7665.90 11276.12 13775.87 9784.62 11792.23 10271.96 9586.83 10583.60 11389.83 9983.81 98
WR-MVS_H88.99 3593.28 583.99 5491.92 1189.13 3991.95 4683.23 190.14 3071.92 12395.85 598.01 1171.83 9695.82 993.19 2393.07 5890.83 48
Vis-MVSNetpermissive83.32 8388.12 6877.71 10777.91 15383.44 8690.58 6069.49 7681.11 11067.10 15189.85 6191.48 11571.71 9791.34 6089.37 6489.48 10490.26 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14879.33 12182.32 12675.84 11780.14 13175.74 14481.98 13757.06 17481.51 10479.36 8489.42 6696.42 2871.32 9881.54 15075.29 16885.20 15376.32 150
PS-CasMVS89.07 3293.23 784.21 5192.44 888.23 4790.54 6382.95 390.50 2575.31 10195.80 698.37 771.16 9996.30 593.32 2292.88 6090.11 52
HyFIR lowres test73.29 15474.14 17072.30 13873.08 17678.33 12383.12 12762.41 14863.81 18862.13 16576.67 15878.50 17171.09 10074.13 18077.47 15781.98 16970.10 171
CP-MVSNet88.71 4192.63 1584.13 5292.39 988.09 4990.47 6882.86 488.79 4375.16 10294.87 997.68 1571.05 10196.16 693.18 2492.85 6189.64 56
QAPM80.43 10984.34 10675.86 11679.40 13782.06 9679.86 15261.94 15083.28 8574.73 10681.74 13185.44 15070.97 10284.99 12584.71 10488.29 12088.14 68
3Dnovator79.41 1082.21 9486.07 8677.71 10779.31 13884.61 7687.18 10061.02 15685.65 6876.11 9585.07 11485.38 15170.96 10387.22 10186.47 8591.66 7788.12 69
IterMVS-LS79.79 11382.56 12576.56 11581.83 12277.85 12679.90 15169.42 7878.93 12771.21 12790.47 5385.20 15270.86 10480.54 15680.57 13786.15 14184.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4890.96 5283.09 291.38 1476.21 9496.03 398.04 970.78 10595.65 1492.32 3393.18 5587.84 71
PEN-MVS88.86 3992.92 984.11 5392.92 588.05 5090.83 5582.67 591.04 1874.83 10395.97 498.47 470.38 10695.70 1392.43 3193.05 5988.78 64
TinyColmap83.79 7886.12 8481.07 7883.42 10781.44 9985.42 11368.55 8888.71 4489.46 887.60 8692.72 9570.34 10789.29 8281.94 12889.20 10781.12 124
MAR-MVS81.98 9882.92 12380.88 8085.18 8685.85 6989.13 8269.52 7471.21 15782.25 6271.28 18888.89 13669.69 10888.71 8586.96 7989.52 10387.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSDG81.39 10484.23 11078.09 10582.40 11882.47 9385.31 11760.91 15779.73 12280.26 7786.30 10088.27 13969.67 10987.20 10284.98 9989.97 9680.67 127
MDA-MVSNet-bldmvs76.51 13582.87 12469.09 15950.71 21474.72 15584.05 12460.27 16181.62 10171.16 12888.21 8291.58 11269.62 11092.78 4577.48 15678.75 17673.69 162
CANet82.84 8984.60 10480.78 8187.30 6785.20 7590.23 7169.00 8172.16 15378.73 8784.49 11890.70 12369.54 11187.65 9686.17 8789.87 9885.84 83
IterMVS73.62 15276.53 15570.23 15171.83 18177.18 13480.69 14453.22 18972.23 15266.62 15385.21 11178.96 16969.54 11176.28 17571.63 17879.45 17374.25 159
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part187.86 4993.26 681.56 7487.23 7086.76 6290.91 5370.06 7196.50 176.74 9296.63 298.62 269.45 11392.93 4390.92 4694.98 2990.46 49
UniMVSNet (Re)84.95 6988.53 6080.78 8187.82 6484.21 7888.03 9176.50 3881.18 10969.29 13792.63 3496.83 2369.07 11491.23 6389.60 6293.97 4384.00 97
abl_679.30 9884.98 8785.78 7090.50 6666.88 10177.08 13374.02 10973.29 18189.34 13068.94 11590.49 9085.98 81
IB-MVS71.28 1775.21 14677.00 15273.12 13776.76 15877.45 12983.05 12858.92 16863.01 19264.31 15859.99 21087.57 14268.64 11686.26 11182.34 12687.05 13382.36 115
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft75.38 1678.44 12681.39 13174.99 12680.46 12979.85 11079.99 14958.31 17177.34 13273.85 11177.19 15482.33 16168.60 11784.67 12781.95 12788.72 11486.40 80
UniMVSNet_NR-MVSNet84.62 7388.00 6980.68 8588.18 5983.83 8087.06 10376.47 3981.46 10570.49 13193.24 2395.56 4968.13 11890.43 7488.47 7093.78 4683.02 105
DU-MVS84.88 7088.27 6680.92 7988.30 5783.59 8487.06 10378.35 2080.64 11470.49 13192.67 3296.91 2268.13 11891.79 5189.29 6693.20 5483.02 105
pmmvs-eth3d79.64 11582.06 12876.83 11280.05 13272.64 16187.47 9766.59 10380.83 11373.50 11389.32 6993.20 9167.78 12080.78 15481.64 13185.58 15176.01 151
CHOSEN 1792x268868.80 17471.09 17766.13 17569.11 18968.89 17578.98 15854.68 18061.63 19856.69 17371.56 18578.39 17267.69 12172.13 18772.01 17769.63 19473.02 165
DPM-MVS81.42 10282.11 12780.62 8687.54 6585.30 7490.18 7368.96 8281.00 11279.15 8570.45 19483.29 15667.67 12282.81 13883.46 11490.19 9388.48 66
IS_MVSNet81.72 10085.01 9777.90 10686.19 7782.64 9185.56 11270.02 7280.11 11963.52 15987.28 9181.18 16367.26 12391.08 6889.33 6594.82 3383.42 102
DELS-MVS79.71 11483.74 11775.01 12579.31 13882.68 9084.79 12060.06 16375.43 14169.09 13886.13 10289.38 12967.16 12485.12 11983.87 11189.65 10083.57 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TranMVSNet+NR-MVSNet85.23 6789.38 5580.39 9088.78 5383.77 8187.40 9876.75 3585.47 7068.99 13995.18 897.55 1767.13 12591.61 5789.13 6793.26 5382.95 108
Baseline_NR-MVSNet82.79 9086.51 7878.44 10488.30 5775.62 14787.81 9374.97 4881.53 10266.84 15294.71 1296.46 2666.90 12691.79 5183.37 11985.83 14882.09 116
DI_MVS_plusplus_trai77.64 12979.64 13575.31 12179.87 13476.89 13681.55 14163.64 13576.21 13672.03 12285.59 10982.97 15866.63 12779.27 16277.78 15388.14 12278.76 143
USDC81.39 10483.07 12279.43 9681.48 12478.95 11982.62 13366.17 10787.45 5490.73 482.40 12893.65 8566.57 12883.63 13377.97 15189.00 11077.45 149
PVSNet_BlendedMVS76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
PVSNet_Blended76.45 13778.12 14174.49 12976.76 15878.46 12179.65 15363.26 14065.42 18273.15 11575.05 17188.96 13366.51 12982.73 13977.66 15487.61 12778.60 144
ET-MVSNet_ETH3D74.71 14974.19 16975.31 12179.22 14075.29 14882.70 13264.05 12965.45 18170.96 13077.15 15557.70 20965.89 13184.40 12981.65 13089.03 10977.67 148
casdiffmvs79.93 11284.11 11275.05 12381.41 12678.99 11882.95 13062.90 14481.53 10268.60 14491.94 3796.03 3765.84 13282.89 13677.07 15988.59 11780.34 133
SCA68.54 17667.52 18669.73 15467.79 19275.04 14976.96 16768.94 8366.41 17567.86 14874.03 17560.96 20065.55 13368.99 19665.67 19071.30 18961.54 195
canonicalmvs81.22 10686.04 8775.60 11883.17 11183.18 8780.29 14765.82 11485.97 6767.98 14777.74 14991.51 11465.17 13488.62 8786.15 8891.17 8689.09 60
CR-MVSNet69.56 17168.34 18470.99 14572.78 17967.63 17764.47 20367.74 9759.93 20272.30 11980.10 13456.77 21165.04 13571.64 18872.91 17483.61 16369.40 174
PatchT66.25 18266.76 18865.67 17955.87 20960.75 19370.17 19259.00 16759.80 20472.30 11978.68 14454.12 21665.04 13571.64 18872.91 17471.63 18669.40 174
pmmvs475.92 14177.48 14974.10 13178.21 14970.94 16584.06 12364.78 12175.13 14268.47 14584.12 11983.32 15564.74 13775.93 17679.14 14984.31 15873.77 161
CLD-MVS82.75 9287.22 7677.54 11088.01 6385.76 7190.23 7154.52 18282.28 9482.11 6688.48 8095.27 5563.95 13889.41 8188.29 7286.45 13981.01 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS75.01 14876.39 15673.39 13478.37 14675.66 14680.03 14858.40 17070.51 15975.85 9883.24 12376.14 18163.75 13977.28 16876.62 16283.97 16075.30 156
UniMVSNet_ETH3D85.39 6491.12 4578.71 10090.48 3783.72 8281.76 13882.41 693.84 664.43 15795.41 798.76 163.72 14093.63 3489.74 5989.47 10582.74 111
MVEpermissive41.12 1951.80 20860.92 20441.16 20835.21 21734.14 21748.45 21741.39 20569.11 16619.53 21663.33 20673.80 18863.56 14167.19 19961.51 19838.85 21457.38 204
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary55.74 1871.56 16476.26 15766.08 17668.11 19163.91 18963.17 20550.52 19768.79 16875.49 9970.78 19385.67 14863.54 14281.58 14877.20 15875.63 17885.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_Test76.72 13479.40 13773.60 13278.85 14474.99 15179.91 15061.56 15269.67 16172.44 11885.98 10590.78 12163.50 14378.30 16475.74 16685.33 15280.31 134
CHOSEN 280x42056.32 20558.85 21153.36 20151.63 21139.91 21569.12 19938.61 20756.29 20736.79 21148.84 21262.59 19963.39 14473.61 18467.66 18760.61 20263.07 189
Fast-Effi-MVS+-dtu76.92 13277.18 15076.62 11479.55 13579.17 11684.80 11977.40 3064.46 18668.75 14270.81 19286.57 14563.36 14581.74 14781.76 12985.86 14775.78 153
MS-PatchMatch71.18 16773.99 17167.89 16877.16 15671.76 16477.18 16556.38 17667.35 17155.04 18074.63 17375.70 18362.38 14676.62 17175.97 16579.22 17475.90 152
diffmvs76.74 13381.61 13071.06 14475.64 16974.45 15680.68 14557.57 17377.48 13067.62 15088.95 7493.94 8161.98 14779.74 15976.18 16382.85 16680.50 128
MDTV_nov1_ep13_2view72.96 15975.59 16369.88 15371.15 18464.86 18682.31 13554.45 18376.30 13578.32 8986.52 9891.58 11261.35 14876.80 16966.83 18971.70 18466.26 180
baseline268.71 17568.34 18469.14 15875.69 16869.70 17276.60 16855.53 17960.13 20162.07 16666.76 20360.35 20260.77 14976.53 17474.03 17084.19 15970.88 168
PatchmatchNetpermissive64.81 18563.74 19666.06 17769.21 18858.62 19673.16 18560.01 16465.92 17766.19 15576.27 16059.09 20460.45 15066.58 20161.47 19967.33 19858.24 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet67.02 18063.99 19570.56 14971.55 18267.63 17775.81 17269.44 7759.93 20263.24 16064.32 20547.51 22059.68 15170.37 19369.64 18483.64 16268.49 177
EPNet79.36 11979.44 13679.27 9989.51 4677.20 13388.35 9077.35 3268.27 16974.29 10876.31 15979.22 16859.63 15285.02 12485.45 9586.49 13884.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat164.79 18662.74 20067.17 16974.61 17365.91 18476.18 17159.32 16564.88 18566.41 15471.21 18953.56 21759.17 15361.53 20858.16 20267.33 19863.95 184
gm-plane-assit71.56 16469.99 17973.39 13484.43 9473.21 15990.42 7051.36 19584.08 8176.00 9691.30 4737.09 22159.01 15473.65 18370.24 18279.09 17560.37 196
E-PMN59.07 19962.79 19954.72 19867.01 19747.81 21160.44 20943.40 20272.95 14844.63 20170.42 19573.17 19058.73 15580.97 15351.98 21054.14 21042.26 212
DCV-MVSNet80.04 11185.67 9173.48 13382.91 11381.11 10480.44 14666.06 10885.01 7562.53 16478.84 14294.43 7758.51 15688.66 8685.91 9090.41 9185.73 84
PMMVS61.98 19465.61 19057.74 19245.03 21551.76 20669.54 19635.05 20855.49 20955.32 17868.23 19978.39 17258.09 15770.21 19471.56 17983.42 16463.66 185
dps65.14 18364.50 19365.89 17871.41 18365.81 18571.44 18961.59 15158.56 20561.43 16775.45 16952.70 21858.06 15869.57 19564.65 19171.39 18864.77 182
EMVS58.97 20062.63 20154.70 19966.26 20248.71 20961.74 20742.71 20372.80 15046.00 20073.01 18271.66 19157.91 15980.41 15750.68 21253.55 21141.11 213
MVSTER68.08 17869.73 18066.16 17466.33 20170.06 16975.71 17752.36 19155.18 21058.64 17070.23 19756.72 21257.34 16079.68 16076.03 16486.61 13680.20 135
MVS-HIRNet59.74 19658.74 21260.92 18857.74 20845.81 21256.02 21258.69 16955.69 20865.17 15670.86 19171.66 19156.75 16161.11 20953.74 20871.17 19052.28 207
CostFormer66.81 18166.94 18766.67 17272.79 17868.25 17679.55 15655.57 17865.52 18062.77 16276.98 15660.09 20356.73 16265.69 20462.35 19372.59 18369.71 173
Anonymous2023121179.37 11885.78 8971.89 14082.87 11579.66 11478.77 15963.93 13483.36 8459.39 16890.54 5294.66 7156.46 16387.38 9884.12 10889.92 9780.74 126
test-mter59.39 19861.59 20256.82 19453.21 21054.82 20073.12 18626.57 21353.19 21156.31 17464.71 20460.47 20156.36 16468.69 19764.27 19275.38 17965.00 181
pmmvs680.46 10888.34 6571.26 14281.96 12177.51 12877.54 16268.83 8493.72 755.92 17693.94 1898.03 1055.94 16589.21 8385.61 9387.36 13080.38 129
Anonymous20240521184.68 10383.92 10079.45 11579.03 15767.79 9682.01 9688.77 7992.58 9755.93 16686.68 10684.26 10788.92 11178.98 140
thres600view774.34 15178.43 14069.56 15680.47 12876.28 14078.65 16062.56 14677.39 13152.53 18674.03 17576.78 17955.90 16785.06 12085.19 9787.25 13174.29 158
FMVSNet178.20 12884.83 10270.46 15078.62 14579.03 11777.90 16167.53 9983.02 8755.10 17987.19 9393.18 9255.65 16885.57 11483.39 11687.98 12382.40 114
MDTV_nov1_ep1364.96 18464.77 19265.18 18167.08 19662.46 19175.80 17351.10 19662.27 19769.74 13474.12 17462.65 19855.64 16968.19 19862.16 19771.70 18461.57 194
thres40073.13 15776.99 15368.62 16179.46 13674.93 15277.23 16461.23 15575.54 13952.31 18972.20 18377.10 17754.89 17082.92 13582.62 12586.57 13773.66 163
thres20072.41 16176.00 16168.21 16478.28 14776.28 14074.94 18062.56 14672.14 15451.35 19469.59 19876.51 18054.89 17085.06 12080.51 13987.25 13171.92 166
tfpnnormal77.16 13184.26 10868.88 16081.02 12775.02 15076.52 16963.30 13987.29 5552.40 18891.24 4993.97 8054.85 17285.46 11781.08 13385.18 15475.76 154
baseline69.33 17275.37 16562.28 18666.54 19966.67 18273.95 18348.07 19866.10 17659.26 16982.45 12686.30 14654.44 17374.42 17973.25 17371.42 18778.43 146
pm-mvs178.21 12785.68 9069.50 15780.38 13075.73 14576.25 17065.04 11987.59 5254.47 18193.16 2595.99 4154.20 17486.37 10982.98 12386.64 13577.96 147
NR-MVSNet82.89 8887.43 7477.59 10983.91 10183.59 8487.10 10278.35 2080.64 11468.85 14092.67 3296.50 2554.19 17587.19 10388.68 6993.16 5782.75 110
pmmvs362.72 19068.71 18355.74 19650.74 21357.10 19770.05 19328.82 21161.57 20057.39 17271.19 19085.73 14753.96 17673.36 18569.43 18573.47 18262.55 190
CANet_DTU75.04 14778.45 13971.07 14377.27 15577.96 12583.88 12558.00 17264.11 18768.67 14375.65 16888.37 13853.92 17782.05 14481.11 13284.67 15679.88 136
TransMVSNet (Re)79.05 12386.66 7770.18 15283.32 10875.99 14277.54 16263.98 13290.68 2455.84 17794.80 1096.06 3653.73 17886.27 11083.22 12086.65 13479.61 138
UGNet79.62 11685.91 8872.28 13973.52 17483.91 7986.64 10769.51 7579.85 12162.57 16385.82 10789.63 12753.18 17988.39 9187.35 7788.28 12186.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)76.15 13980.84 13270.68 14783.66 10574.80 15481.66 14069.59 7380.48 11746.94 19987.44 8880.63 16553.14 18086.87 10484.56 10589.12 10871.12 167
test-LLR62.15 19359.46 20965.29 18079.07 14152.66 20469.46 19762.93 14250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
TESTMET0.1,157.21 20159.46 20954.60 20050.95 21252.66 20469.46 19726.91 21250.76 21353.81 18363.11 20758.91 20552.87 18166.54 20262.34 19473.59 18061.87 192
GBi-Net73.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
test173.17 15577.64 14667.95 16676.76 15877.36 13075.77 17464.57 12262.99 19351.83 19176.05 16277.76 17452.73 18385.57 11483.39 11686.04 14380.37 130
FMVSNet274.43 15079.70 13468.27 16376.76 15877.36 13075.77 17465.36 11772.28 15152.97 18581.92 13085.61 14952.73 18380.66 15579.73 14486.04 14380.37 130
tfpn200view972.01 16275.40 16468.06 16577.97 15176.44 13877.04 16662.67 14566.81 17350.82 19567.30 20175.67 18452.46 18685.06 12082.64 12487.41 12973.86 160
EPNet_dtu71.90 16373.03 17570.59 14878.28 14761.64 19282.44 13464.12 12763.26 19069.74 13471.47 18682.41 15951.89 18778.83 16378.01 15077.07 17775.60 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet371.40 16675.20 16766.97 17075.00 17276.59 13774.29 18164.57 12262.99 19351.83 19176.05 16277.76 17451.49 18876.58 17277.03 16084.62 15779.43 139
thres100view90069.86 16972.97 17666.24 17377.97 15172.49 16273.29 18459.12 16666.81 17350.82 19567.30 20175.67 18450.54 18978.24 16579.40 14685.71 15070.88 168
FC-MVSNet-train79.20 12286.29 8270.94 14684.06 9677.67 12785.68 11164.11 12882.90 8852.22 19092.57 3593.69 8449.52 19088.30 9386.93 8090.03 9581.95 118
tpmrst59.42 19760.02 20758.71 19167.56 19453.10 20366.99 20151.88 19263.80 18957.68 17176.73 15756.49 21348.73 19156.47 21255.55 20559.43 20558.02 202
tpm62.79 18963.25 19762.26 18770.09 18653.78 20171.65 18847.31 19965.72 17976.70 9380.62 13356.40 21448.11 19264.20 20658.54 20059.70 20463.47 186
FC-MVSNet-test75.91 14283.59 11966.95 17176.63 16669.07 17385.33 11664.97 12084.87 7741.95 20493.17 2487.04 14347.78 19391.09 6785.56 9485.06 15574.34 157
baseline169.62 17073.55 17365.02 18278.95 14370.39 16771.38 19062.03 14970.97 15847.95 19878.47 14668.19 19547.77 19479.65 16176.94 16182.05 16870.27 170
pmmvs568.91 17374.35 16862.56 18567.45 19566.78 18171.70 18751.47 19467.17 17256.25 17582.41 12788.59 13747.21 19573.21 18674.23 16981.30 17168.03 178
MIMVSNet173.40 15381.85 12963.55 18372.90 17764.37 18784.58 12153.60 18790.84 2053.92 18287.75 8596.10 3445.31 19685.37 11879.32 14770.98 19169.18 176
EPMVS56.62 20359.77 20852.94 20362.41 20450.55 20760.66 20852.83 19065.15 18441.80 20577.46 15257.28 21042.68 19759.81 21054.82 20657.23 20853.35 206
CDS-MVSNet73.07 15877.02 15168.46 16281.62 12372.89 16079.56 15570.78 6869.56 16252.52 18777.37 15381.12 16442.60 19884.20 13083.93 10983.65 16170.07 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS63.02 18769.30 18155.70 19770.12 18556.89 19869.63 19545.13 20170.23 16038.00 21077.79 14775.15 18642.60 19874.48 17872.81 17668.70 19657.75 203
gg-mvs-nofinetune72.68 16075.21 16669.73 15481.48 12469.04 17470.48 19176.67 3686.92 5967.80 14988.06 8364.67 19742.12 20077.60 16673.65 17179.81 17266.57 179
Anonymous2023120667.28 17973.41 17460.12 18976.45 16763.61 19074.21 18256.52 17576.35 13442.23 20375.81 16790.47 12441.51 20174.52 17769.97 18369.83 19363.17 188
pmnet_mix0262.60 19170.81 17853.02 20266.56 19850.44 20862.81 20646.84 20079.13 12643.76 20287.45 8790.75 12239.85 20270.48 19257.09 20358.27 20660.32 197
test20.0369.91 16876.20 15962.58 18484.01 9967.34 17975.67 17865.88 11379.98 12040.28 20882.65 12589.31 13139.63 20377.41 16773.28 17269.98 19263.40 187
ADS-MVSNet56.89 20261.09 20352.00 20459.48 20648.10 21058.02 21054.37 18472.82 14949.19 19775.32 17065.97 19637.96 20459.34 21154.66 20752.99 21251.42 208
MIMVSNet63.02 18769.02 18256.01 19568.20 19059.26 19570.01 19453.79 18671.56 15641.26 20771.38 18782.38 16036.38 20571.43 19067.32 18866.45 20059.83 198
FMVSNet556.37 20460.14 20651.98 20560.83 20559.58 19466.85 20242.37 20452.68 21241.33 20647.09 21354.68 21535.28 20673.88 18170.77 18065.24 20162.26 191
DeepMVS_CXcopyleft17.78 21820.40 2196.69 21431.41 2169.80 21938.61 21434.88 22233.78 20728.41 21523.59 21745.77 211
test0.0.03 161.79 19565.33 19157.65 19379.07 14164.09 18868.51 20062.93 14261.59 19933.71 21261.58 20971.58 19333.43 20870.95 19168.68 18668.26 19758.82 199
testgi68.20 17776.05 16059.04 19079.99 13367.32 18081.16 14251.78 19384.91 7639.36 20973.42 17995.19 5732.79 20976.54 17370.40 18169.14 19564.55 183
N_pmnet54.95 20665.90 18942.18 20766.37 20043.86 21457.92 21139.79 20679.54 12317.24 21886.31 9987.91 14025.44 21064.68 20551.76 21146.33 21347.23 210
new-patchmatchnet62.59 19273.79 17249.53 20676.98 15753.57 20253.46 21454.64 18185.43 7128.81 21391.94 3796.41 2925.28 21176.80 16953.66 20957.99 20758.69 200
new_pmnet52.29 20763.16 19839.61 20958.89 20744.70 21348.78 21634.73 20965.88 17817.85 21773.42 17980.00 16623.06 21267.00 20062.28 19654.36 20948.81 209
test_method22.69 21126.99 21317.67 2122.13 2194.31 22027.50 2184.53 21537.94 21524.52 21536.20 21551.40 21915.26 21329.86 21417.09 21432.07 21612.16 215
PMMVS248.13 20964.06 19429.55 21044.06 21636.69 21651.95 21529.97 21074.75 1448.90 22076.02 16591.24 1187.53 21473.78 18255.91 20434.87 21540.01 214
tmp_tt13.54 21316.73 2186.42 2198.49 2202.36 21628.69 21727.44 21418.40 21613.51 2233.70 21533.23 21336.26 21322.54 218
test1231.06 2121.41 2140.64 2140.39 2200.48 2210.52 2230.25 2181.11 2191.37 2222.01 2181.98 2240.87 2161.43 2161.27 2150.46 2201.62 217
testmvs0.93 2131.37 2150.41 2150.36 2210.36 2220.62 2220.39 2171.48 2180.18 2232.41 2171.31 2250.41 2171.25 2171.08 2160.48 2191.68 216
GG-mvs-BLEND41.63 21060.36 20519.78 2110.14 22266.04 18355.66 2130.17 21957.64 2062.42 22151.82 21169.42 1940.28 21864.11 20758.29 20160.02 20355.18 205
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def87.10 29
9.1489.43 128
SR-MVS91.82 1380.80 795.53 50
our_test_373.27 17570.91 16683.26 126
MTAPA89.37 994.85 67
MTMP90.54 595.16 59
Patchmatch-RL test4.13 221
XVS91.28 2591.23 896.89 287.14 2694.53 7295.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7295.84 15
mPP-MVS93.05 495.77 44
NP-MVS78.65 128
Patchmtry56.88 19964.47 20367.74 9772.30 119