This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10688.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
anonymousdsp85.62 5990.53 4679.88 9264.64 20876.35 14396.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 7962.97 16389.26 7076.84 18372.13 9492.56 4890.40 5195.76 2087.56 74
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12163.52 16187.28 9381.18 16867.26 12291.08 6789.33 6394.82 3183.42 103
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 81
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16577.66 9385.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 67
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13992.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10770.49 13393.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 106
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15478.42 9084.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 93
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6868.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11670.49 13392.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11668.85 14292.67 3296.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17273.13 11876.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 91
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
thisisatest051581.18 10984.32 11077.52 11076.73 16974.84 15885.06 11961.37 15781.05 11373.95 11188.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 86
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11688.80 8468.27 9463.22 19571.56 12770.25 20173.63 19373.66 8490.30 7886.77 8492.33 7181.95 119
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 70
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 78
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16085.65 6676.11 9785.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 69
tttt051775.86 14776.23 16375.42 12075.55 17574.06 16282.73 13360.31 16369.24 16870.24 13579.18 14358.79 21172.17 9284.49 13283.08 12491.54 7884.80 88
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10985.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15877.49 5187.38 10184.93 10491.41 8087.40 75
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10686.16 10964.03 13362.63 20073.49 11573.60 18476.12 18773.83 8288.49 9384.93 10491.36 8178.78 144
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
thisisatest053075.54 14975.95 16775.05 12475.08 17673.56 16382.15 13860.31 16369.17 16969.32 13879.02 14458.78 21272.17 9283.88 13683.08 12491.30 8384.20 95
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 95
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6567.98 14977.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 90
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8372.53 11992.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7362.53 16678.84 14794.43 7658.51 16188.66 9085.91 9390.41 9185.73 84
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 94
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 16067.67 12182.81 14383.46 11790.19 9388.48 64
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 14974.75 10783.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 104
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8852.22 19592.57 3593.69 8349.52 19588.30 9686.93 8090.03 9581.95 119
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 128
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8459.39 17090.54 5394.66 7056.46 16887.38 10184.12 11189.92 9780.74 127
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20384.63 15762.24 14889.88 9888.48 64
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8884.49 12290.70 12469.54 11287.65 9986.17 9089.87 9985.84 83
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 13975.87 9984.62 12192.23 10271.96 9686.83 10883.60 11689.83 10083.81 99
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16775.43 14369.09 14086.13 10489.38 13167.16 12385.12 12283.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10287.80 72
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7878.17 9289.38 6895.03 6478.78 3789.95 8186.33 8989.59 10385.65 85
MAR-MVS81.98 9982.92 12780.88 8085.18 8685.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11267.10 15389.85 6191.48 11671.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10792.46 30
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10881.12 125
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10774.80 15981.66 14269.59 7580.48 11946.94 20487.44 9080.63 17053.14 18586.87 10784.56 10989.12 10971.12 172
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14575.29 15382.70 13464.05 13265.45 18570.96 13277.15 16057.70 21365.89 13184.40 13381.65 13489.03 11077.67 150
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13975.57 15285.44 11361.95 15377.19 13578.97 8584.82 11882.47 16366.43 13084.09 13580.13 14789.02 11180.15 137
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11277.45 151
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9888.77 7992.58 9755.93 17186.68 10984.26 11088.92 11378.98 142
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11482.50 114
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7756.08 17888.38 8186.14 14960.49 15289.78 8285.59 9788.79 11576.68 152
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11682.57 113
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13379.85 11479.99 15258.31 17577.34 13473.85 11277.19 15982.33 16668.60 11684.67 13181.95 13088.72 11786.40 80
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11881.41 123
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11982.80 110
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10468.60 14691.94 3896.03 3665.84 13282.89 14177.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250675.32 15076.87 15873.50 13684.55 9180.37 10979.63 15873.23 5782.64 9055.41 18276.87 16245.42 22559.61 15690.35 7686.46 8688.58 12175.98 155
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9055.98 17987.50 8886.85 14659.61 15690.35 7686.46 8688.58 12175.26 161
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12384.11 97
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12482.98 108
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8574.73 10881.74 13685.44 15370.97 10384.99 12884.71 10888.29 12588.14 68
UGNet79.62 11985.91 8672.28 14373.52 17983.91 7686.64 10669.51 7779.85 12362.57 16585.82 10889.63 12853.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13876.89 14081.55 14363.64 13876.21 13872.03 12485.59 11082.97 16266.63 12679.27 16777.78 15888.14 12778.76 145
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8755.10 18487.19 9593.18 9155.65 17385.57 11783.39 11987.98 12882.40 115
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7671.47 12877.78 15383.22 16177.57 5091.24 6190.21 5287.84 12985.21 87
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 13078.84 143
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13182.09 117
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
tfpn200view972.01 16775.40 16968.06 16977.97 15676.44 14277.04 17162.67 14866.81 17750.82 20067.30 20675.67 18952.46 19185.06 12382.64 12787.41 13473.86 165
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1898.03 955.94 17089.21 8785.61 9687.36 13580.38 130
thres600view774.34 15678.43 14569.56 16080.47 13276.28 14478.65 16562.56 14977.39 13352.53 19174.03 18176.78 18455.90 17285.06 12385.19 10187.25 13674.29 163
thres20072.41 16676.00 16668.21 16878.28 15276.28 14474.94 18562.56 14972.14 15851.35 19969.59 20476.51 18554.89 17585.06 12380.51 14387.25 13671.92 171
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16377.45 13383.05 13058.92 17263.01 19664.31 16059.99 21587.57 14368.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2455.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17565.04 12187.59 5054.47 18693.16 2595.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
MVSTER68.08 18369.73 18566.16 17866.33 20670.06 17475.71 18252.36 19555.18 21458.64 17270.23 20256.72 21657.34 16579.68 16576.03 16986.61 14180.20 136
thres40073.13 16276.99 15768.62 16579.46 14174.93 15777.23 16961.23 15975.54 14152.31 19472.20 18877.10 18254.89 17582.92 14082.62 12886.57 14273.66 168
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13788.35 8777.35 3168.27 17474.29 11076.31 16579.22 17359.63 15585.02 12785.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15969.87 17681.09 14663.43 14171.66 15968.34 14871.70 18981.76 16774.98 7384.83 12983.44 11886.45 14473.22 169
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IterMVS-LS79.79 11582.56 12976.56 11681.83 12677.85 13079.90 15469.42 8078.93 12971.21 12990.47 5485.20 15570.86 10580.54 16180.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4279.59 12083.59 12374.93 12969.61 19277.05 13986.59 10755.84 18178.42 13177.29 9489.84 6295.08 6274.12 7883.05 13980.11 14886.12 14781.59 122
GBi-Net73.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
FMVSNet274.43 15579.70 13968.27 16776.76 16377.36 13475.77 17965.36 11972.28 15552.97 19081.92 13585.61 15252.73 18880.66 16079.73 14986.04 14880.37 131
ambc88.38 6091.62 1787.97 5284.48 12388.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15186.84 76
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 14079.17 12084.80 12077.40 2964.46 19068.75 14470.81 19786.57 14763.36 14681.74 15281.76 13385.86 15275.78 157
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16887.14 10060.18 16680.13 12071.75 12686.12 10593.92 8177.08 5386.56 11085.12 10285.83 15381.18 124
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10466.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
thres100view90069.86 17472.97 18166.24 17777.97 15672.49 16773.29 18959.12 17066.81 17750.82 20067.30 20675.67 18950.54 19478.24 17079.40 15185.71 15570.88 173
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13672.64 16687.47 9566.59 10480.83 11573.50 11489.32 6993.20 9067.78 11980.78 15981.64 13585.58 15676.01 154
MVS_Test76.72 13879.40 14273.60 13478.85 14974.99 15679.91 15361.56 15669.67 16672.44 12085.98 10790.78 12263.50 14478.30 16975.74 17185.33 15780.31 135
v14879.33 12382.32 13075.84 11880.14 13575.74 14881.98 13957.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15876.32 153
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17463.30 14287.29 5352.40 19391.24 5093.97 7954.85 17785.46 12081.08 13785.18 15975.76 158
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17169.07 17885.33 11764.97 12284.87 7541.95 20993.17 2487.04 14447.78 19891.09 6685.56 9885.06 16074.34 162
CANet_DTU75.04 15278.45 14471.07 14777.27 16077.96 12983.88 12658.00 17664.11 19168.67 14575.65 17488.37 13953.92 18282.05 14981.11 13684.67 16179.88 138
FMVSNet371.40 17175.20 17266.97 17475.00 17776.59 14174.29 18664.57 12462.99 19751.83 19676.05 16877.76 17951.49 19376.58 17777.03 16584.62 16279.43 141
pmmvs475.92 14577.48 15374.10 13378.21 15470.94 17084.06 12464.78 12375.13 14468.47 14784.12 12383.32 15964.74 13875.93 18179.14 15484.31 16373.77 166
baseline268.71 18068.34 18969.14 16275.69 17369.70 17776.60 17355.53 18360.13 20562.07 16866.76 20860.35 20660.77 15176.53 17974.03 17584.19 16470.88 173
GA-MVS75.01 15376.39 16173.39 13878.37 15175.66 15080.03 15158.40 17470.51 16375.85 10083.24 12876.14 18663.75 14077.28 17376.62 16783.97 16575.30 160
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12772.89 16579.56 16070.78 7169.56 16752.52 19277.37 15881.12 16942.60 20384.20 13483.93 11283.65 16670.07 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPMNet67.02 18563.99 20070.56 15371.55 18767.63 18275.81 17769.44 7959.93 20663.24 16264.32 21047.51 22459.68 15470.37 19869.64 18983.64 16768.49 182
CR-MVSNet69.56 17668.34 18970.99 14972.78 18467.63 18264.47 20867.74 9959.93 20672.30 12180.10 13956.77 21565.04 13671.64 19372.91 17983.61 16869.40 179
PMMVS61.98 19965.61 19557.74 19645.03 22051.76 21169.54 20135.05 21255.49 21355.32 18368.23 20578.39 17758.09 16270.21 19971.56 18483.42 16963.66 190
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 17079.85 11475.58 18461.34 15873.10 14873.79 11386.23 10379.61 17279.00 3680.28 16375.50 17283.41 17079.70 139
diffmvspermissive76.74 13781.61 13471.06 14875.64 17474.45 16180.68 14857.57 17777.48 13267.62 15288.95 7493.94 8061.98 14979.74 16476.18 16882.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EU-MVSNet76.48 14080.53 13871.75 14567.62 19870.30 17381.74 14154.06 18975.47 14271.01 13180.10 13993.17 9273.67 8383.73 13777.85 15782.40 17283.07 105
baseline169.62 17573.55 17865.02 18678.95 14870.39 17271.38 19562.03 15270.97 16247.95 20378.47 15168.19 19947.77 19979.65 16676.94 16682.05 17370.27 175
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18178.33 12783.12 12962.41 15163.81 19262.13 16776.67 16478.50 17671.09 10174.13 18577.47 16281.98 17470.10 176
CVMVSNet75.65 14877.62 15273.35 14071.95 18569.89 17583.04 13160.84 16269.12 17068.76 14379.92 14278.93 17573.64 8581.02 15781.01 13881.86 17583.43 102
pmmvs568.91 17874.35 17362.56 18967.45 20066.78 18671.70 19251.47 19867.17 17656.25 17782.41 13288.59 13847.21 20073.21 19174.23 17481.30 17668.03 183
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12869.04 17970.48 19676.67 3586.92 5767.80 15188.06 8464.67 20142.12 20577.60 17173.65 17679.81 17766.57 184
IterMVS73.62 15776.53 16070.23 15571.83 18677.18 13880.69 14753.22 19372.23 15666.62 15585.21 11278.96 17469.54 11276.28 18071.63 18379.45 17874.25 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16171.76 16977.18 17056.38 18067.35 17555.04 18574.63 17975.70 18862.38 14776.62 17675.97 17079.22 17975.90 156
gm-plane-assit71.56 16969.99 18473.39 13884.43 9573.21 16490.42 6851.36 19984.08 8076.00 9891.30 4837.09 22659.01 15973.65 18870.24 18779.09 18060.37 201
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21974.72 16084.05 12560.27 16581.62 10371.16 13088.21 8391.58 11369.62 11192.78 4477.48 16178.75 18173.69 167
EPNet_dtu71.90 16873.03 18070.59 15278.28 15261.64 19782.44 13664.12 13063.26 19469.74 13671.47 19182.41 16451.89 19278.83 16878.01 15577.07 18275.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19663.91 19463.17 21050.52 20168.79 17375.49 10170.78 19885.67 15163.54 14381.58 15377.20 16375.63 18385.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-mter59.39 20361.59 20756.82 19853.21 21554.82 20573.12 19126.57 21753.19 21556.31 17664.71 20960.47 20556.36 16968.69 20264.27 19775.38 18465.00 186
test-LLR62.15 19859.46 21465.29 18479.07 14652.66 20969.46 20262.93 14550.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21752.66 20969.46 20226.91 21650.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
pmmvs362.72 19568.71 18855.74 20050.74 21857.10 20270.05 19828.82 21561.57 20457.39 17471.19 19585.73 15053.96 18173.36 19069.43 19073.47 18762.55 195
CostFormer66.81 18666.94 19266.67 17672.79 18368.25 18179.55 16155.57 18265.52 18462.77 16476.98 16160.09 20756.73 16765.69 20962.35 19872.59 18869.71 178
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18964.86 19182.31 13754.45 18776.30 13778.32 9186.52 10091.58 11361.35 15076.80 17466.83 19471.70 18966.26 185
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20162.46 19675.80 17851.10 20062.27 20169.74 13674.12 18062.65 20255.64 17468.19 20362.16 20271.70 18961.57 199
PatchT66.25 18766.76 19365.67 18355.87 21460.75 19870.17 19759.00 17159.80 20872.30 12178.68 14954.12 22065.04 13671.64 19372.91 17971.63 19169.40 179
baseline69.33 17775.37 17062.28 19066.54 20466.67 18773.95 18848.07 20266.10 18059.26 17182.45 13186.30 14854.44 17874.42 18473.25 17871.42 19278.43 148
dps65.14 18864.50 19865.89 18271.41 18865.81 19071.44 19461.59 15558.56 20961.43 16975.45 17552.70 22258.06 16369.57 20064.65 19671.39 19364.77 187
SCA68.54 18167.52 19169.73 15867.79 19775.04 15476.96 17268.94 8566.41 17967.86 15074.03 18160.96 20465.55 13468.99 20165.67 19571.30 19461.54 200
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21345.81 21756.02 21758.69 17355.69 21265.17 15870.86 19671.66 19556.75 16661.11 21453.74 21371.17 19552.28 212
MIMVSNet173.40 15881.85 13363.55 18772.90 18264.37 19284.58 12253.60 19190.84 2053.92 18787.75 8696.10 3345.31 20185.37 12179.32 15270.98 19669.18 181
test20.0369.91 17376.20 16462.58 18884.01 10067.34 18475.67 18365.88 11579.98 12240.28 21382.65 13089.31 13239.63 20877.41 17273.28 17769.98 19763.40 192
Anonymous2023120667.28 18473.41 17960.12 19376.45 17263.61 19574.21 18756.52 17976.35 13642.23 20875.81 17390.47 12541.51 20674.52 18269.97 18869.83 19863.17 193
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19468.89 18078.98 16354.68 18461.63 20256.69 17571.56 19078.39 17767.69 12072.13 19272.01 18269.63 19973.02 170
testgi68.20 18276.05 16559.04 19479.99 13767.32 18581.16 14451.78 19784.91 7439.36 21473.42 18595.19 5732.79 21476.54 17870.40 18669.14 20064.55 188
TAMVS63.02 19269.30 18655.70 20170.12 19056.89 20369.63 20045.13 20570.23 16438.00 21577.79 15275.15 19142.60 20374.48 18372.81 18168.70 20157.75 208
test0.0.03 161.79 20065.33 19657.65 19779.07 14664.09 19368.51 20562.93 14561.59 20333.71 21761.58 21471.58 19733.43 21370.95 19668.68 19168.26 20258.82 204
tpm cat164.79 19162.74 20567.17 17374.61 17865.91 18976.18 17659.32 16964.88 18966.41 15671.21 19453.56 22159.17 15861.53 21358.16 20767.33 20363.95 189
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19358.62 20173.16 19060.01 16865.92 18166.19 15776.27 16659.09 20860.45 15366.58 20661.47 20467.33 20358.24 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet63.02 19269.02 18756.01 19968.20 19559.26 20070.01 19953.79 19071.56 16041.26 21271.38 19282.38 16536.38 21071.43 19567.32 19366.45 20559.83 203
FMVSNet556.37 20960.14 21151.98 20960.83 21059.58 19966.85 20742.37 20852.68 21641.33 21147.09 21854.68 21935.28 21173.88 18670.77 18565.24 20662.26 196
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21639.91 22069.12 20438.61 21156.29 21136.79 21648.84 21762.59 20363.39 14573.61 18967.66 19260.61 20763.07 194
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22766.04 18855.66 2180.17 22357.64 2102.42 22651.82 21669.42 1980.28 22364.11 21258.29 20660.02 20855.18 210
tpm62.79 19463.25 20262.26 19170.09 19153.78 20671.65 19347.31 20365.72 18376.70 9580.62 13856.40 21848.11 19764.20 21158.54 20559.70 20963.47 191
tpmrst59.42 20260.02 21258.71 19567.56 19953.10 20866.99 20651.88 19663.80 19357.68 17376.73 16356.49 21748.73 19656.47 21755.55 21059.43 21058.02 207
pmnet_mix0262.60 19670.81 18353.02 20666.56 20350.44 21362.81 21146.84 20479.13 12843.76 20787.45 8990.75 12339.85 20770.48 19757.09 20858.27 21160.32 202
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16253.57 20753.46 21954.64 18585.43 6928.81 21891.94 3896.41 2825.28 21676.80 17453.66 21457.99 21258.69 205
EPMVS56.62 20859.77 21352.94 20762.41 20950.55 21260.66 21352.83 19465.15 18841.80 21077.46 15757.28 21442.68 20259.81 21554.82 21157.23 21353.35 211
new_pmnet52.29 21263.16 20339.61 21358.89 21244.70 21848.78 22134.73 21365.88 18217.85 22273.42 18580.00 17123.06 21767.00 20562.28 20154.36 21448.81 214
E-PMN59.07 20462.79 20454.72 20267.01 20247.81 21660.44 21443.40 20672.95 15044.63 20670.42 20073.17 19458.73 16080.97 15851.98 21554.14 21542.26 217
EMVS58.97 20562.63 20654.70 20366.26 20748.71 21461.74 21242.71 20772.80 15246.00 20573.01 18771.66 19557.91 16480.41 16250.68 21753.55 21641.11 218
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21148.10 21558.02 21554.37 18872.82 15149.19 20275.32 17665.97 20037.96 20959.34 21654.66 21252.99 21751.42 213
N_pmnet54.95 21165.90 19442.18 21166.37 20543.86 21957.92 21639.79 21079.54 12517.24 22386.31 10187.91 14125.44 21564.68 21051.76 21646.33 21847.23 215
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22234.14 22248.45 22241.39 20969.11 17119.53 22163.33 21173.80 19263.56 14267.19 20461.51 20338.85 21957.38 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS248.13 21464.06 19929.55 21444.06 22136.69 22151.95 22029.97 21474.75 1468.90 22576.02 17191.24 1197.53 21973.78 18755.91 20934.87 22040.01 219
test_method22.69 21626.99 21817.67 2162.13 2244.31 22527.50 2234.53 21937.94 21924.52 22036.20 22051.40 22315.26 21829.86 21917.09 21932.07 22112.16 220
DeepMVS_CXcopyleft17.78 22320.40 2246.69 21831.41 2209.80 22438.61 21934.88 22733.78 21228.41 22023.59 22245.77 216
tmp_tt13.54 21716.73 2236.42 2248.49 2252.36 22028.69 22127.44 21918.40 22113.51 2283.70 22033.23 21836.26 21822.54 223
testmvs0.93 2181.37 2200.41 2190.36 2260.36 2270.62 2270.39 2211.48 2220.18 2282.41 2221.31 2300.41 2221.25 2221.08 2210.48 2241.68 221
test1231.06 2171.41 2190.64 2180.39 2250.48 2260.52 2280.25 2221.11 2231.37 2272.01 2231.98 2290.87 2211.43 2211.27 2200.46 2251.62 222
uanet_test0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
our_test_373.27 18070.91 17183.26 128
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
Patchmatch-RL test4.13 226
mPP-MVS93.05 395.77 43
NP-MVS78.65 130
Patchmtry56.88 20464.47 20867.74 9972.30 121