This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2195.55 193.00 193.98 1796.01 3887.53 197.69 196.81 197.33 195.34 4
XVS91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2594.53 7195.84 15
X-MVS89.36 2890.73 4587.77 1691.50 2091.23 896.76 478.88 1787.29 5387.14 2578.98 14694.53 7176.47 5795.25 1994.28 1195.85 1493.55 16
ACMMPR91.30 492.88 1189.46 491.92 1191.61 596.60 579.46 1490.08 3088.53 1389.54 6595.57 4784.25 795.24 2094.27 1295.97 1193.85 8
MP-MVScopyleft90.84 691.95 3489.55 392.92 490.90 1996.56 679.60 1186.83 5888.75 1289.00 7394.38 7784.01 994.94 2494.34 1095.45 2493.24 23
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS90.42 1191.58 3789.05 591.77 1491.06 1396.51 778.94 1685.41 7087.67 1887.02 9695.26 5683.62 1295.01 2393.94 1595.79 1993.40 20
SteuartSystems-ACMMP90.00 1791.73 3587.97 1291.21 2990.29 2896.51 778.00 2386.33 6185.32 4088.23 8294.67 6982.08 2095.13 2293.88 1694.72 3593.59 13
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft90.63 892.40 2088.56 891.24 2891.60 696.49 977.53 2687.89 4786.87 3087.24 9496.46 2582.87 1695.59 1594.50 896.35 693.51 18
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.09 592.33 2589.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1087.00 9796.34 3083.95 1095.77 1194.72 795.81 1793.78 10
ACMM80.67 790.67 792.46 1988.57 791.35 2289.93 3296.34 1177.36 3090.17 2886.88 2987.32 9296.63 2383.32 1395.79 1094.49 996.19 992.91 26
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
anonymousdsp85.62 5990.53 4679.88 9264.64 20876.35 14396.28 1253.53 19285.63 6781.59 6992.81 3097.71 1286.88 294.56 2592.83 2496.35 693.84 9
TSAR-MVS + MP.89.67 2492.25 2886.65 2591.53 1890.98 1796.15 1373.30 5687.88 4881.83 6692.92 2995.15 6082.23 1893.58 3492.25 3394.87 2993.01 25
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVS89.85 2092.91 1086.29 2690.47 3891.34 796.04 1476.41 3991.11 1778.50 8993.44 2195.82 4281.55 2393.16 3791.90 3894.77 3293.58 15
ACMMP_NAP89.86 1991.96 3387.42 1991.00 3090.08 3096.00 1576.61 3689.28 3487.73 1790.04 5891.80 11278.71 3894.36 2893.82 1794.48 3794.32 6
CPTT-MVS89.63 2590.52 4788.59 690.95 3190.74 2195.71 1679.13 1587.70 4985.68 3880.05 14195.74 4584.77 694.28 2992.68 2695.28 2692.45 31
HFP-MVS90.32 1392.37 2287.94 1391.46 2190.91 1895.69 1779.49 1289.94 3383.50 5089.06 7294.44 7581.68 2294.17 3094.19 1395.81 1793.87 7
DPE-MVScopyleft89.81 2292.34 2486.86 2389.69 4491.00 1695.53 1876.91 3388.18 4583.43 5393.48 2095.19 5781.07 2692.75 4592.07 3694.55 3693.74 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1188.98 5192.86 295.51 1972.17 6294.95 491.27 394.11 1697.77 1184.22 896.49 495.27 596.79 293.60 12
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVScopyleft89.14 2991.25 4286.67 2491.73 1591.02 1595.50 2077.74 2484.04 8279.47 8291.48 4594.85 6681.14 2592.94 4192.20 3594.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LGP-MVS_train90.56 992.38 2188.43 990.88 3291.15 1195.35 2177.65 2586.26 6387.23 2390.45 5597.35 1783.20 1495.44 1693.41 2096.28 892.63 27
DVP-MVS++90.50 1094.18 486.21 2792.52 790.29 2895.29 2276.02 4194.24 582.82 5595.84 597.56 1576.82 5593.13 3891.20 4493.78 4597.01 1
MSP-MVS88.51 4291.36 4085.19 3990.63 3692.01 495.29 2277.52 2790.48 2680.21 7690.21 5796.08 3476.38 5988.30 9691.42 4191.12 8791.01 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft90.13 1592.26 2787.64 1791.68 1690.44 2695.22 2477.34 3290.79 2287.80 1690.42 5692.05 10879.05 3593.89 3293.59 1894.77 3294.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS88.96 3792.37 2284.99 4088.64 5489.65 3795.11 2575.98 4290.73 2380.15 7794.21 1594.51 7476.59 5692.94 4191.17 4593.46 5093.37 22
HPM-MVS++copyleft88.74 4089.54 5287.80 1592.58 685.69 6995.10 2678.01 2287.08 5587.66 1987.89 8592.07 10680.28 3090.97 6991.41 4393.17 5791.69 37
OPM-MVS89.82 2192.24 2986.99 2290.86 3389.35 3895.07 2775.91 4391.16 1686.87 3091.07 5197.29 1879.13 3493.32 3591.99 3794.12 4091.49 40
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP80.00 890.12 1692.30 2687.58 1890.83 3491.10 1294.96 2876.06 4087.47 5185.33 3988.91 7697.65 1482.13 1995.31 1793.44 1996.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net89.02 3391.44 3986.20 2894.88 189.84 3494.76 2977.45 2885.41 7074.79 10688.83 7788.90 13678.67 4096.06 795.45 496.66 395.58 2
DeepC-MVS83.59 490.37 1292.56 1887.82 1491.26 2792.33 394.72 3080.04 990.01 3184.61 4293.33 2294.22 7880.59 2792.90 4392.52 2895.69 2192.57 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8894.47 3174.22 5381.71 10081.54 7089.20 7192.87 9478.33 4390.12 7988.47 6892.51 6989.04 59
SD-MVS89.91 1892.23 3087.19 2191.31 2489.79 3594.31 3275.34 4789.26 3681.79 6792.68 3195.08 6283.88 1193.10 3992.69 2596.54 493.02 24
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+83.71 388.13 4490.00 5085.94 2986.82 7191.06 1394.26 3375.39 4688.85 4085.76 3785.74 10986.92 14578.02 4593.03 4092.21 3495.39 2592.21 34
DeepPCF-MVS81.61 687.95 4790.29 4985.22 3887.48 6590.01 3193.79 3473.54 5488.93 3883.89 4589.40 6790.84 12180.26 3190.62 7290.19 5392.36 7092.03 35
DVP-MVScopyleft89.40 2792.69 1385.56 3489.01 5089.85 3393.72 3575.42 4592.28 1180.49 7294.36 1394.87 6581.46 2492.49 4991.42 4193.27 5393.54 17
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PMVScopyleft79.51 990.23 1492.67 1487.39 2090.16 3988.75 4293.64 3675.78 4490.00 3283.70 4792.97 2892.22 10386.13 497.01 396.79 294.94 2890.96 45
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB86.82 191.55 394.43 388.19 1083.19 11286.35 6593.60 3778.79 1895.48 391.79 293.08 2697.21 2086.34 397.06 296.27 395.46 2395.56 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS89.79 2393.66 585.27 3791.32 2388.27 4693.49 3879.86 1092.75 975.37 10296.86 198.38 575.10 7195.93 894.07 1496.46 589.39 56
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5893.27 3974.59 4986.50 5983.72 4675.92 17292.39 10077.08 5391.72 5390.68 4892.57 6791.30 42
CNVR-MVS86.93 5188.98 5684.54 4490.11 4087.41 5793.23 4073.47 5586.31 6282.25 6182.96 12992.15 10476.04 6291.69 5490.69 4792.17 7391.64 39
OMC-MVS88.16 4391.34 4184.46 4686.85 7090.63 2393.01 4167.00 10390.35 2787.40 2186.86 9996.35 2977.66 4992.63 4790.84 4694.84 3091.68 38
CDPH-MVS86.66 5488.52 5984.48 4589.61 4588.27 4692.86 4272.69 6180.55 11882.71 5686.92 9893.32 8975.55 6791.00 6889.85 5693.47 4989.71 53
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4189.89 4290.70 2292.74 4374.45 5086.02 6482.16 6486.05 10691.99 11075.84 6591.16 6390.44 4993.41 5191.09 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D89.02 3391.69 3685.91 3089.72 4390.81 2092.56 4471.69 6690.83 2187.24 2289.71 6392.07 10678.37 4294.43 2792.59 2795.86 1391.35 41
ACMH+79.05 1189.62 2693.08 885.58 3288.58 5589.26 3992.18 4574.23 5293.55 882.66 5892.32 3698.35 780.29 2995.28 1892.34 3195.52 2290.43 48
WR-MVS_H88.99 3593.28 683.99 5391.92 1189.13 4091.95 4683.23 190.14 2971.92 12595.85 498.01 1071.83 9795.82 993.19 2293.07 5990.83 47
CS-MVS-test83.59 7984.86 10182.10 6983.04 11481.05 10591.58 4767.48 10272.52 15478.42 9084.75 11991.82 11178.62 4191.98 5087.54 7693.48 4884.35 93
MVS_030484.73 7086.19 8183.02 5788.32 5686.71 6291.55 4870.87 7073.79 14782.88 5485.13 11393.35 8872.55 8988.62 9187.69 7491.93 7588.05 70
ACMH78.40 1288.94 3892.62 1684.65 4286.45 7487.16 5991.47 4968.79 8795.49 289.74 693.55 1998.50 277.96 4694.14 3189.57 6193.49 4789.94 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6391.28 5071.60 6782.79 8983.48 5178.65 15093.54 8672.55 8986.49 11185.89 9592.28 7290.95 46
PCF-MVS76.59 1484.11 7485.27 9282.76 6486.12 7888.30 4591.24 5169.10 8282.36 9584.45 4377.56 15690.40 12672.91 8885.88 11683.88 11392.72 6488.53 63
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM89.14 2992.11 3285.67 3189.27 4790.61 2490.98 5279.48 1388.86 3979.80 7993.01 2793.53 8783.17 1592.75 4592.45 2991.32 8293.59 13
DTE-MVSNet88.99 3592.77 1284.59 4393.31 288.10 4990.96 5383.09 291.38 1476.21 9696.03 298.04 870.78 10695.65 1492.32 3293.18 5687.84 71
CNLPA85.50 6188.58 5781.91 7184.55 9187.52 5690.89 5463.56 13988.18 4584.06 4483.85 12691.34 11876.46 5891.27 6089.00 6691.96 7488.88 61
PEN-MVS88.86 3992.92 984.11 5292.92 488.05 5190.83 5582.67 591.04 1874.83 10595.97 398.47 370.38 10795.70 1392.43 3093.05 6088.78 62
SF-MVS87.85 4890.95 4484.22 4988.17 6087.90 5390.80 5671.80 6589.28 3482.70 5789.90 6095.37 5477.91 4791.69 5490.04 5493.95 4492.47 29
PHI-MVS86.37 5688.14 6584.30 4786.65 7387.56 5590.76 5770.16 7382.55 9289.65 784.89 11792.40 9975.97 6390.88 7089.70 5892.58 6589.03 60
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8788.62 4390.62 5864.22 12989.15 3788.05 1478.83 14893.71 8276.20 6190.11 8088.22 7194.00 4189.97 51
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Vis-MVSNetpermissive83.32 8488.12 6677.71 10677.91 15883.44 8390.58 5969.49 7881.11 11267.10 15389.85 6191.48 11671.71 9891.34 5989.37 6289.48 10590.26 49
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG88.12 4591.45 3884.23 4888.12 6190.59 2590.57 6068.60 8991.37 1583.45 5289.94 5995.14 6178.71 3891.45 5888.21 7295.96 1293.44 19
AdaColmapbinary84.15 7385.14 9583.00 5989.08 4987.14 6090.56 6170.90 6982.40 9480.41 7373.82 18384.69 15675.19 7091.58 5789.90 5591.87 7686.48 78
PS-CasMVS89.07 3293.23 784.21 5092.44 888.23 4890.54 6282.95 390.50 2575.31 10395.80 698.37 671.16 10096.30 593.32 2192.88 6190.11 50
SixPastTwentyTwo89.14 2992.19 3185.58 3284.62 8982.56 9190.53 6371.93 6491.95 1285.89 3594.22 1497.25 1985.42 595.73 1291.71 4095.08 2791.89 36
MVS_111021_HR83.95 7586.10 8381.44 7684.62 8980.29 11190.51 6468.05 9684.07 8180.38 7484.74 12091.37 11774.23 7790.37 7587.25 7890.86 8984.59 90
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6786.05 7987.69 5490.50 6570.60 7286.40 6082.33 5989.69 6492.52 9874.01 8187.53 10086.84 8389.63 10287.80 72
CP-MVSNet88.71 4192.63 1584.13 5192.39 988.09 5090.47 6682.86 488.79 4175.16 10494.87 997.68 1371.05 10296.16 693.18 2392.85 6289.64 54
MCST-MVS84.79 6986.48 7782.83 6387.30 6787.03 6190.46 6769.33 8183.14 8682.21 6381.69 13792.14 10575.09 7287.27 10384.78 10692.58 6589.30 57
gm-plane-assit71.56 16969.99 18473.39 13884.43 9573.21 16490.42 6851.36 19984.08 8076.00 9891.30 4837.09 22659.01 15973.65 18870.24 18779.09 18060.37 201
CANet82.84 9084.60 10680.78 8187.30 6785.20 7290.23 6969.00 8372.16 15778.73 8884.49 12290.70 12469.54 11287.65 9986.17 9089.87 9985.84 83
CLD-MVS82.75 9387.22 7477.54 10988.01 6285.76 6890.23 6954.52 18682.28 9682.11 6588.48 8095.27 5563.95 13989.41 8588.29 7086.45 14481.01 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS81.42 10482.11 13180.62 8687.54 6485.30 7190.18 7168.96 8481.00 11479.15 8470.45 19983.29 16067.67 12182.81 14383.46 11790.19 9388.48 64
RPSCF88.05 4692.61 1782.73 6584.24 9688.40 4490.04 7266.29 10791.46 1382.29 6088.93 7596.01 3879.38 3295.15 2194.90 694.15 3993.40 20
v7n87.11 5090.46 4883.19 5685.22 8583.69 8090.03 7368.20 9591.01 1986.71 3394.80 1098.46 477.69 4891.10 6585.98 9291.30 8388.19 66
GeoE81.92 10083.87 11879.66 9484.64 8879.87 11389.75 7465.90 11476.12 13975.87 9984.62 12192.23 10271.96 9686.83 10883.60 11689.83 10083.81 99
MVS_111021_LR83.20 8685.33 9180.73 8482.88 11778.23 12889.61 7565.23 12082.08 9781.19 7185.31 11192.04 10975.22 6989.50 8385.90 9490.24 9284.23 94
v119283.61 7885.23 9381.72 7384.05 9882.15 9489.54 7666.20 10881.38 10986.76 3291.79 4296.03 3674.88 7481.81 15180.92 13988.91 11482.50 114
v192192083.49 8284.94 9981.80 7283.78 10581.20 10389.50 7765.91 11381.64 10287.18 2491.70 4395.39 5375.85 6481.56 15480.27 14588.60 11982.80 110
v124083.57 8084.94 9981.97 7084.05 9881.27 10189.46 7866.06 11081.31 11087.50 2091.88 4195.46 5176.25 6081.16 15680.51 14388.52 12482.98 108
v14419283.43 8384.97 9881.63 7583.43 10881.23 10289.42 7966.04 11281.45 10886.40 3491.46 4695.70 4675.76 6682.14 14780.23 14688.74 11682.57 113
MAR-MVS81.98 9982.92 12780.88 8085.18 8685.85 6789.13 8069.52 7671.21 16182.25 6171.28 19388.89 13769.69 10988.71 8986.96 7989.52 10487.57 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 6989.07 8172.99 6082.45 9374.52 10985.09 11487.67 14279.24 3391.11 6490.41 5091.45 7989.45 55
v114483.22 8585.01 9681.14 7783.76 10681.60 9788.95 8265.58 11881.89 9985.80 3691.68 4495.84 4174.04 8082.12 14880.56 14288.70 11881.41 123
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 8188.84 4188.86 8368.70 8887.06 5683.60 4879.02 14490.05 12777.37 5290.88 7089.66 5993.37 5286.74 77
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS79.01 12777.98 14880.22 9186.69 7279.73 11688.80 8468.27 9463.22 19571.56 12770.25 20173.63 19373.66 8490.30 7886.77 8492.33 7181.95 119
v1083.17 8785.22 9480.78 8183.26 11182.99 8688.66 8566.49 10679.24 12783.60 4891.46 4695.47 5074.12 7882.60 14680.66 14088.53 12384.11 97
Effi-MVS+-dtu82.04 9883.39 12580.48 8985.48 8386.57 6488.40 8668.28 9369.04 17273.13 11876.26 16791.11 12074.74 7588.40 9487.76 7392.84 6384.57 91
EPNet79.36 12279.44 14179.27 9889.51 4677.20 13788.35 8777.35 3168.27 17474.29 11076.31 16579.22 17359.63 15585.02 12785.45 9986.49 14384.61 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)84.95 6788.53 5880.78 8187.82 6384.21 7588.03 8876.50 3781.18 11169.29 13992.63 3496.83 2269.07 11491.23 6289.60 6093.97 4384.00 98
PVSNet_Blended_VisFu83.00 8884.16 11581.65 7482.17 12486.01 6688.03 8871.23 6876.05 14079.54 8183.88 12583.44 15877.49 5187.38 10184.93 10491.41 8087.40 75
Baseline_NR-MVSNet82.79 9186.51 7678.44 10388.30 5775.62 15187.81 9074.97 4881.53 10466.84 15494.71 1296.46 2566.90 12591.79 5183.37 12285.83 15382.09 117
Fast-Effi-MVS+81.42 10483.82 12078.62 10182.24 12380.62 10787.72 9163.51 14073.01 14974.75 10783.80 12792.70 9673.44 8688.15 9885.26 10090.05 9483.17 104
v2v48282.20 9684.26 11179.81 9382.67 12080.18 11287.67 9263.96 13681.69 10184.73 4191.27 4996.33 3172.05 9581.94 15079.56 15087.79 13078.84 143
TPM-MVS86.18 7783.43 8487.57 9378.77 8769.75 20384.63 15762.24 14889.88 9888.48 64
Effi-MVS+82.33 9483.87 11880.52 8884.51 9481.32 10087.53 9468.05 9674.94 14579.67 8082.37 13492.31 10172.21 9185.06 12386.91 8191.18 8584.20 95
pmmvs-eth3d79.64 11882.06 13276.83 11280.05 13672.64 16687.47 9566.59 10480.83 11573.50 11489.32 6993.20 9067.78 11980.78 15981.64 13585.58 15676.01 154
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 9088.78 5383.77 7887.40 9676.75 3485.47 6868.99 14195.18 897.55 1667.13 12491.61 5689.13 6593.26 5482.95 109
CS-MVS83.57 8084.79 10382.14 6883.83 10481.48 9887.29 9766.54 10572.73 15380.05 7884.04 12493.12 9380.35 2889.50 8386.34 8894.76 3486.32 81
v882.20 9684.56 10779.45 9582.42 12181.65 9687.26 9864.27 12879.36 12681.70 6891.04 5295.75 4473.30 8782.82 14279.18 15387.74 13182.09 117
3Dnovator79.41 1082.21 9586.07 8477.71 10679.31 14384.61 7387.18 9961.02 16085.65 6676.11 9785.07 11585.38 15470.96 10487.22 10486.47 8591.66 7788.12 69
PM-MVS80.42 11283.63 12276.67 11378.04 15572.37 16887.14 10060.18 16680.13 12071.75 12686.12 10593.92 8177.08 5386.56 11085.12 10285.83 15381.18 124
NR-MVSNet82.89 8987.43 7277.59 10883.91 10283.59 8187.10 10178.35 1980.64 11668.85 14292.67 3296.50 2454.19 18087.19 10688.68 6793.16 5882.75 111
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8588.18 5983.83 7787.06 10276.47 3881.46 10770.49 13393.24 2395.56 4868.13 11790.43 7388.47 6893.78 4583.02 106
DU-MVS84.88 6888.27 6480.92 7988.30 5783.59 8187.06 10278.35 1980.64 11670.49 13392.67 3296.91 2168.13 11791.79 5189.29 6493.20 5583.02 106
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8289.79 3587.04 10474.39 5185.17 7278.92 8677.59 15593.57 8582.60 1793.23 3691.88 3989.42 10792.46 30
EG-PatchMatch MVS84.35 7287.55 7080.62 8686.38 7582.24 9386.75 10564.02 13484.24 7878.17 9289.38 6895.03 6478.78 3789.95 8186.33 8989.59 10385.65 85
UGNet79.62 11985.91 8672.28 14373.52 17983.91 7686.64 10669.51 7779.85 12362.57 16585.82 10889.63 12853.18 18488.39 9587.35 7788.28 12686.43 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
V4279.59 12083.59 12374.93 12969.61 19277.05 13986.59 10755.84 18178.42 13177.29 9489.84 6295.08 6274.12 7883.05 13980.11 14886.12 14781.59 122
FPMVS81.56 10284.04 11778.66 10082.92 11575.96 14786.48 10865.66 11784.67 7671.47 12877.78 15383.22 16177.57 5091.24 6190.21 5287.84 12985.21 87
EIA-MVS78.57 12977.90 14979.35 9787.24 6980.71 10686.16 10964.03 13362.63 20073.49 11573.60 18476.12 18773.83 8288.49 9384.93 10491.36 8178.78 144
FC-MVSNet-train79.20 12586.29 8070.94 15084.06 9777.67 13185.68 11064.11 13182.90 8852.22 19592.57 3593.69 8349.52 19588.30 9686.93 8090.03 9581.95 119
IS_MVSNet81.72 10185.01 9677.90 10586.19 7682.64 9085.56 11170.02 7480.11 12163.52 16187.28 9381.18 16867.26 12291.08 6789.33 6394.82 3183.42 103
EC-MVSNet83.70 7784.77 10482.46 6687.47 6682.79 8785.50 11272.00 6369.81 16577.66 9385.02 11689.63 12878.14 4490.40 7487.56 7594.00 4188.16 67
FA-MVS(training)78.93 12880.63 13776.93 11179.79 13975.57 15285.44 11361.95 15377.19 13578.97 8584.82 11882.47 16366.43 13084.09 13580.13 14789.02 11180.15 137
TinyColmap83.79 7686.12 8281.07 7883.42 10981.44 9985.42 11468.55 9088.71 4289.46 887.60 8792.72 9570.34 10889.29 8681.94 13189.20 10881.12 125
EPP-MVSNet82.76 9286.47 7878.45 10286.00 8084.47 7485.39 11568.42 9184.17 7962.97 16389.26 7076.84 18372.13 9492.56 4890.40 5195.76 2087.56 74
Gipumacopyleft86.47 5589.25 5483.23 5583.88 10378.78 12485.35 11668.42 9192.69 1089.03 1191.94 3896.32 3281.80 2194.45 2686.86 8290.91 8883.69 100
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FC-MVSNet-test75.91 14683.59 12366.95 17576.63 17169.07 17885.33 11764.97 12284.87 7541.95 20993.17 2487.04 14447.78 19891.09 6685.56 9885.06 16074.34 162
MSDG81.39 10684.23 11378.09 10482.40 12282.47 9285.31 11860.91 16179.73 12480.26 7586.30 10288.27 14069.67 11087.20 10584.98 10389.97 9680.67 128
thisisatest051581.18 10984.32 11077.52 11076.73 16974.84 15885.06 11961.37 15781.05 11373.95 11188.79 7889.25 13375.49 6885.98 11584.78 10692.53 6885.56 86
Fast-Effi-MVS+-dtu76.92 13677.18 15476.62 11479.55 14079.17 12084.80 12077.40 2964.46 19068.75 14470.81 19786.57 14763.36 14681.74 15281.76 13385.86 15275.78 157
DELS-MVS79.71 11683.74 12175.01 12679.31 14382.68 8984.79 12160.06 16775.43 14369.09 14086.13 10489.38 13167.16 12385.12 12283.87 11489.65 10183.57 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MIMVSNet173.40 15881.85 13363.55 18772.90 18264.37 19284.58 12253.60 19190.84 2053.92 18787.75 8696.10 3345.31 20185.37 12179.32 15270.98 19669.18 181
ambc88.38 6091.62 1787.97 5284.48 12388.64 4387.93 1587.38 9194.82 6874.53 7689.14 8883.86 11585.94 15186.84 76
pmmvs475.92 14577.48 15374.10 13378.21 15470.94 17084.06 12464.78 12375.13 14468.47 14784.12 12383.32 15964.74 13875.93 18179.14 15484.31 16373.77 166
MDA-MVSNet-bldmvs76.51 13982.87 12869.09 16350.71 21974.72 16084.05 12560.27 16581.62 10371.16 13088.21 8391.58 11369.62 11192.78 4477.48 16178.75 18173.69 167
CANet_DTU75.04 15278.45 14471.07 14777.27 16077.96 12983.88 12658.00 17664.11 19168.67 14575.65 17488.37 13953.92 18282.05 14981.11 13684.67 16179.88 138
casdiffmvs_mvgpermissive81.50 10385.70 8876.60 11582.68 11980.54 10883.50 12764.49 12783.40 8372.53 11992.15 3795.40 5265.84 13284.69 13081.89 13290.59 9081.86 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_373.27 18070.91 17183.26 128
HyFIR lowres test73.29 15974.14 17572.30 14273.08 18178.33 12783.12 12962.41 15163.81 19262.13 16776.67 16478.50 17671.09 10174.13 18577.47 16281.98 17470.10 176
IB-MVS71.28 1775.21 15177.00 15673.12 14176.76 16377.45 13383.05 13058.92 17263.01 19664.31 16059.99 21587.57 14368.64 11586.26 11482.34 12987.05 13882.36 116
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet75.65 14877.62 15273.35 14071.95 18569.89 17583.04 13160.84 16269.12 17068.76 14379.92 14278.93 17573.64 8581.02 15781.01 13881.86 17583.43 102
casdiffmvspermissive79.93 11484.11 11675.05 12481.41 13078.99 12282.95 13262.90 14781.53 10468.60 14691.94 3896.03 3665.84 13282.89 14177.07 16488.59 12080.34 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051775.86 14776.23 16375.42 12075.55 17574.06 16282.73 13360.31 16369.24 16870.24 13579.18 14358.79 21172.17 9284.49 13283.08 12491.54 7884.80 88
ET-MVSNet_ETH3D74.71 15474.19 17475.31 12279.22 14575.29 15382.70 13464.05 13265.45 18570.96 13277.15 16057.70 21365.89 13184.40 13381.65 13489.03 11077.67 150
USDC81.39 10683.07 12679.43 9681.48 12878.95 12382.62 13566.17 10987.45 5290.73 482.40 13393.65 8466.57 12783.63 13877.97 15689.00 11277.45 151
EPNet_dtu71.90 16873.03 18070.59 15278.28 15261.64 19782.44 13664.12 13063.26 19469.74 13671.47 19182.41 16451.89 19278.83 16878.01 15577.07 18275.60 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep13_2view72.96 16475.59 16869.88 15771.15 18964.86 19182.31 13754.45 18776.30 13778.32 9186.52 10091.58 11361.35 15076.80 17466.83 19471.70 18966.26 185
thisisatest053075.54 14975.95 16775.05 12475.08 17673.56 16382.15 13860.31 16369.17 16969.32 13879.02 14458.78 21272.17 9283.88 13683.08 12491.30 8384.20 95
v14879.33 12382.32 13075.84 11880.14 13575.74 14881.98 13957.06 17881.51 10679.36 8389.42 6696.42 2771.32 9981.54 15575.29 17385.20 15876.32 153
UniMVSNet_ETH3D85.39 6291.12 4378.71 9990.48 3783.72 7981.76 14082.41 693.84 664.43 15995.41 798.76 163.72 14193.63 3389.74 5789.47 10682.74 112
EU-MVSNet76.48 14080.53 13871.75 14567.62 19870.30 17381.74 14154.06 18975.47 14271.01 13180.10 13993.17 9273.67 8383.73 13777.85 15782.40 17283.07 105
Vis-MVSNet (Re-imp)76.15 14380.84 13670.68 15183.66 10774.80 15981.66 14269.59 7580.48 11946.94 20487.44 9080.63 17053.14 18586.87 10784.56 10989.12 10971.12 172
DI_MVS_plusplus_trai77.64 13379.64 14075.31 12279.87 13876.89 14081.55 14363.64 13876.21 13872.03 12485.59 11082.97 16266.63 12679.27 16777.78 15888.14 12778.76 145
test111179.67 11784.40 10874.16 13285.29 8479.56 11881.16 14473.13 5984.65 7756.08 17888.38 8186.14 14960.49 15289.78 8285.59 9788.79 11576.68 152
testgi68.20 18276.05 16559.04 19479.99 13767.32 18581.16 14451.78 19784.91 7439.36 21473.42 18595.19 5732.79 21476.54 17870.40 18669.14 20064.55 188
PatchMatch-RL76.05 14476.64 15975.36 12177.84 15969.87 17681.09 14663.43 14171.66 15968.34 14871.70 18981.76 16774.98 7384.83 12983.44 11886.45 14473.22 169
IterMVS73.62 15776.53 16070.23 15571.83 18677.18 13880.69 14753.22 19372.23 15666.62 15585.21 11278.96 17469.54 11276.28 18071.63 18379.45 17874.25 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive76.74 13781.61 13471.06 14875.64 17474.45 16180.68 14857.57 17777.48 13267.62 15288.95 7493.94 8061.98 14979.74 16476.18 16882.85 17180.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet80.04 11385.67 9073.48 13782.91 11681.11 10480.44 14966.06 11085.01 7362.53 16678.84 14794.43 7658.51 16188.66 9085.91 9390.41 9185.73 84
canonicalmvs81.22 10886.04 8575.60 11983.17 11383.18 8580.29 15065.82 11685.97 6567.98 14977.74 15491.51 11565.17 13588.62 9186.15 9191.17 8689.09 58
GA-MVS75.01 15376.39 16173.39 13878.37 15175.66 15080.03 15158.40 17470.51 16375.85 10083.24 12876.14 18663.75 14077.28 17376.62 16783.97 16575.30 160
OpenMVScopyleft75.38 1678.44 13081.39 13574.99 12780.46 13379.85 11479.99 15258.31 17577.34 13473.85 11277.19 15982.33 16668.60 11684.67 13181.95 13088.72 11786.40 80
MVS_Test76.72 13879.40 14273.60 13478.85 14974.99 15679.91 15361.56 15669.67 16672.44 12085.98 10790.78 12263.50 14478.30 16975.74 17185.33 15780.31 135
IterMVS-LS79.79 11582.56 12976.56 11681.83 12677.85 13079.90 15469.42 8078.93 12971.21 12990.47 5485.20 15570.86 10580.54 16180.57 14186.15 14684.36 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
QAPM80.43 11184.34 10975.86 11779.40 14282.06 9579.86 15561.94 15483.28 8574.73 10881.74 13685.44 15370.97 10384.99 12884.71 10888.29 12588.14 68
PVSNet_BlendedMVS76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
PVSNet_Blended76.45 14178.12 14674.49 13076.76 16378.46 12579.65 15663.26 14365.42 18673.15 11675.05 17788.96 13466.51 12882.73 14477.66 15987.61 13278.60 146
test250675.32 15076.87 15873.50 13684.55 9180.37 10979.63 15873.23 5782.64 9055.41 18276.87 16245.42 22559.61 15690.35 7686.46 8688.58 12175.98 155
ECVR-MVScopyleft79.31 12484.20 11473.60 13484.55 9180.37 10979.63 15873.23 5782.64 9055.98 17987.50 8886.85 14659.61 15690.35 7686.46 8688.58 12175.26 161
CDS-MVSNet73.07 16377.02 15568.46 16681.62 12772.89 16579.56 16070.78 7169.56 16752.52 19277.37 15881.12 16942.60 20384.20 13483.93 11283.65 16670.07 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CostFormer66.81 18666.94 19266.67 17672.79 18368.25 18179.55 16155.57 18265.52 18462.77 16476.98 16160.09 20756.73 16765.69 20962.35 19872.59 18869.71 178
Anonymous20240521184.68 10583.92 10179.45 11979.03 16267.79 9882.01 9888.77 7992.58 9755.93 17186.68 10984.26 11088.92 11378.98 142
CHOSEN 1792x268868.80 17971.09 18266.13 17969.11 19468.89 18078.98 16354.68 18461.63 20256.69 17571.56 19078.39 17767.69 12072.13 19272.01 18269.63 19973.02 170
Anonymous2023121179.37 12185.78 8771.89 14482.87 11879.66 11778.77 16463.93 13783.36 8459.39 17090.54 5394.66 7056.46 16887.38 10184.12 11189.92 9780.74 127
thres600view774.34 15678.43 14569.56 16080.47 13276.28 14478.65 16562.56 14977.39 13352.53 19174.03 18176.78 18455.90 17285.06 12385.19 10187.25 13674.29 163
FMVSNet178.20 13284.83 10270.46 15478.62 15079.03 12177.90 16667.53 10183.02 8755.10 18487.19 9593.18 9155.65 17385.57 11783.39 11987.98 12882.40 115
pmmvs680.46 11088.34 6371.26 14681.96 12577.51 13277.54 16768.83 8693.72 755.92 18093.94 1898.03 955.94 17089.21 8785.61 9687.36 13580.38 130
TransMVSNet (Re)79.05 12686.66 7570.18 15683.32 11075.99 14677.54 16763.98 13590.68 2455.84 18194.80 1096.06 3553.73 18386.27 11383.22 12386.65 13979.61 140
thres40073.13 16276.99 15768.62 16579.46 14174.93 15777.23 16961.23 15975.54 14152.31 19472.20 18877.10 18254.89 17582.92 14082.62 12886.57 14273.66 168
MS-PatchMatch71.18 17273.99 17667.89 17277.16 16171.76 16977.18 17056.38 18067.35 17555.04 18574.63 17975.70 18862.38 14776.62 17675.97 17079.22 17975.90 156
tfpn200view972.01 16775.40 16968.06 16977.97 15676.44 14277.04 17162.67 14866.81 17750.82 20067.30 20675.67 18952.46 19185.06 12382.64 12787.41 13473.86 165
SCA68.54 18167.52 19169.73 15867.79 19775.04 15476.96 17268.94 8566.41 17967.86 15074.03 18160.96 20465.55 13468.99 20165.67 19571.30 19461.54 200
baseline268.71 18068.34 18969.14 16275.69 17369.70 17776.60 17355.53 18360.13 20562.07 16866.76 20860.35 20660.77 15176.53 17974.03 17584.19 16470.88 173
tfpnnormal77.16 13584.26 11168.88 16481.02 13175.02 15576.52 17463.30 14287.29 5352.40 19391.24 5093.97 7954.85 17785.46 12081.08 13785.18 15975.76 158
pm-mvs178.21 13185.68 8969.50 16180.38 13475.73 14976.25 17565.04 12187.59 5054.47 18693.16 2595.99 4054.20 17986.37 11282.98 12686.64 14077.96 149
tpm cat164.79 19162.74 20567.17 17374.61 17865.91 18976.18 17659.32 16964.88 18966.41 15671.21 19453.56 22159.17 15861.53 21358.16 20767.33 20363.95 189
RPMNet67.02 18563.99 20070.56 15371.55 18767.63 18275.81 17769.44 7959.93 20663.24 16264.32 21047.51 22459.68 15470.37 19869.64 18983.64 16768.49 182
MDTV_nov1_ep1364.96 18964.77 19765.18 18567.08 20162.46 19675.80 17851.10 20062.27 20169.74 13674.12 18062.65 20255.64 17468.19 20362.16 20271.70 18961.57 199
GBi-Net73.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
test173.17 16077.64 15067.95 17076.76 16377.36 13475.77 17964.57 12462.99 19751.83 19676.05 16877.76 17952.73 18885.57 11783.39 11986.04 14880.37 131
FMVSNet274.43 15579.70 13968.27 16776.76 16377.36 13475.77 17965.36 11972.28 15552.97 19081.92 13585.61 15252.73 18880.66 16079.73 14986.04 14880.37 131
MVSTER68.08 18369.73 18566.16 17866.33 20670.06 17475.71 18252.36 19555.18 21458.64 17270.23 20256.72 21657.34 16579.68 16576.03 16986.61 14180.20 136
test20.0369.91 17376.20 16462.58 18884.01 10067.34 18475.67 18365.88 11579.98 12240.28 21382.65 13089.31 13239.63 20877.41 17273.28 17769.98 19763.40 192
IterMVS-SCA-FT77.23 13479.18 14374.96 12876.67 17079.85 11475.58 18461.34 15873.10 14873.79 11386.23 10379.61 17279.00 3680.28 16375.50 17283.41 17079.70 139
thres20072.41 16676.00 16668.21 16878.28 15276.28 14474.94 18562.56 14972.14 15851.35 19969.59 20476.51 18554.89 17585.06 12380.51 14387.25 13671.92 171
FMVSNet371.40 17175.20 17266.97 17475.00 17776.59 14174.29 18664.57 12462.99 19751.83 19676.05 16877.76 17951.49 19376.58 17777.03 16584.62 16279.43 141
Anonymous2023120667.28 18473.41 17960.12 19376.45 17263.61 19574.21 18756.52 17976.35 13642.23 20875.81 17390.47 12541.51 20674.52 18269.97 18869.83 19863.17 193
baseline69.33 17775.37 17062.28 19066.54 20466.67 18773.95 18848.07 20266.10 18059.26 17182.45 13186.30 14854.44 17874.42 18473.25 17871.42 19278.43 148
thres100view90069.86 17472.97 18166.24 17777.97 15672.49 16773.29 18959.12 17066.81 17750.82 20067.30 20675.67 18950.54 19478.24 17079.40 15185.71 15570.88 173
PatchmatchNetpermissive64.81 19063.74 20166.06 18169.21 19358.62 20173.16 19060.01 16865.92 18166.19 15776.27 16659.09 20860.45 15366.58 20661.47 20467.33 20358.24 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter59.39 20361.59 20756.82 19853.21 21554.82 20573.12 19126.57 21753.19 21556.31 17664.71 20960.47 20556.36 16968.69 20264.27 19775.38 18465.00 186
pmmvs568.91 17874.35 17362.56 18967.45 20066.78 18671.70 19251.47 19867.17 17656.25 17782.41 13288.59 13847.21 20073.21 19174.23 17481.30 17668.03 183
tpm62.79 19463.25 20262.26 19170.09 19153.78 20671.65 19347.31 20365.72 18376.70 9580.62 13856.40 21848.11 19764.20 21158.54 20559.70 20963.47 191
dps65.14 18864.50 19865.89 18271.41 18865.81 19071.44 19461.59 15558.56 20961.43 16975.45 17552.70 22258.06 16369.57 20064.65 19671.39 19364.77 187
baseline169.62 17573.55 17865.02 18678.95 14870.39 17271.38 19562.03 15270.97 16247.95 20378.47 15168.19 19947.77 19979.65 16676.94 16682.05 17370.27 175
gg-mvs-nofinetune72.68 16575.21 17169.73 15881.48 12869.04 17970.48 19676.67 3586.92 5767.80 15188.06 8464.67 20142.12 20577.60 17173.65 17679.81 17766.57 184
PatchT66.25 18766.76 19365.67 18355.87 21460.75 19870.17 19759.00 17159.80 20872.30 12178.68 14954.12 22065.04 13671.64 19372.91 17971.63 19169.40 179
pmmvs362.72 19568.71 18855.74 20050.74 21857.10 20270.05 19828.82 21561.57 20457.39 17471.19 19585.73 15053.96 18173.36 19069.43 19073.47 18762.55 195
MIMVSNet63.02 19269.02 18756.01 19968.20 19559.26 20070.01 19953.79 19071.56 16041.26 21271.38 19282.38 16536.38 21071.43 19567.32 19366.45 20559.83 203
TAMVS63.02 19269.30 18655.70 20170.12 19056.89 20369.63 20045.13 20570.23 16438.00 21577.79 15275.15 19142.60 20374.48 18372.81 18168.70 20157.75 208
PMMVS61.98 19965.61 19557.74 19645.03 22051.76 21169.54 20135.05 21255.49 21355.32 18368.23 20578.39 17758.09 16270.21 19971.56 18483.42 16963.66 190
test-LLR62.15 19859.46 21465.29 18479.07 14652.66 20969.46 20262.93 14550.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
TESTMET0.1,157.21 20659.46 21454.60 20450.95 21752.66 20969.46 20226.91 21650.76 21753.81 18863.11 21258.91 20952.87 18666.54 20762.34 19973.59 18561.87 197
CHOSEN 280x42056.32 21058.85 21653.36 20551.63 21639.91 22069.12 20438.61 21156.29 21136.79 21648.84 21762.59 20363.39 14573.61 18967.66 19260.61 20763.07 194
test0.0.03 161.79 20065.33 19657.65 19779.07 14664.09 19368.51 20562.93 14561.59 20333.71 21761.58 21471.58 19733.43 21370.95 19668.68 19168.26 20258.82 204
tpmrst59.42 20260.02 21258.71 19567.56 19953.10 20866.99 20651.88 19663.80 19357.68 17376.73 16356.49 21748.73 19656.47 21755.55 21059.43 21058.02 207
FMVSNet556.37 20960.14 21151.98 20960.83 21059.58 19966.85 20742.37 20852.68 21641.33 21147.09 21854.68 21935.28 21173.88 18670.77 18565.24 20662.26 196
CR-MVSNet69.56 17668.34 18970.99 14972.78 18467.63 18264.47 20867.74 9959.93 20672.30 12180.10 13956.77 21565.04 13671.64 19372.91 17983.61 16869.40 179
Patchmtry56.88 20464.47 20867.74 9972.30 121
CMPMVSbinary55.74 1871.56 16976.26 16266.08 18068.11 19663.91 19463.17 21050.52 20168.79 17375.49 10170.78 19885.67 15163.54 14381.58 15377.20 16375.63 18385.86 82
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmnet_mix0262.60 19670.81 18353.02 20666.56 20350.44 21362.81 21146.84 20479.13 12843.76 20787.45 8990.75 12339.85 20770.48 19757.09 20858.27 21160.32 202
EMVS58.97 20562.63 20654.70 20366.26 20748.71 21461.74 21242.71 20772.80 15246.00 20573.01 18771.66 19557.91 16480.41 16250.68 21753.55 21641.11 218
EPMVS56.62 20859.77 21352.94 20762.41 20950.55 21260.66 21352.83 19465.15 18841.80 21077.46 15757.28 21442.68 20259.81 21554.82 21157.23 21353.35 211
E-PMN59.07 20462.79 20454.72 20267.01 20247.81 21660.44 21443.40 20672.95 15044.63 20670.42 20073.17 19458.73 16080.97 15851.98 21554.14 21542.26 217
ADS-MVSNet56.89 20761.09 20852.00 20859.48 21148.10 21558.02 21554.37 18872.82 15149.19 20275.32 17665.97 20037.96 20959.34 21654.66 21252.99 21751.42 213
N_pmnet54.95 21165.90 19442.18 21166.37 20543.86 21957.92 21639.79 21079.54 12517.24 22386.31 10187.91 14125.44 21564.68 21051.76 21646.33 21847.23 215
MVS-HIRNet59.74 20158.74 21760.92 19257.74 21345.81 21756.02 21758.69 17355.69 21265.17 15870.86 19671.66 19556.75 16661.11 21453.74 21371.17 19552.28 212
GG-mvs-BLEND41.63 21560.36 21019.78 2150.14 22766.04 18855.66 2180.17 22357.64 2102.42 22651.82 21669.42 1980.28 22364.11 21258.29 20660.02 20855.18 210
new-patchmatchnet62.59 19773.79 17749.53 21076.98 16253.57 20753.46 21954.64 18585.43 6928.81 21891.94 3896.41 2825.28 21676.80 17453.66 21457.99 21258.69 205
PMMVS248.13 21464.06 19929.55 21444.06 22136.69 22151.95 22029.97 21474.75 1468.90 22576.02 17191.24 1197.53 21973.78 18755.91 20934.87 22040.01 219
new_pmnet52.29 21263.16 20339.61 21358.89 21244.70 21848.78 22134.73 21365.88 18217.85 22273.42 18580.00 17123.06 21767.00 20562.28 20154.36 21448.81 214
MVEpermissive41.12 1951.80 21360.92 20941.16 21235.21 22234.14 22248.45 22241.39 20969.11 17119.53 22163.33 21173.80 19263.56 14267.19 20461.51 20338.85 21957.38 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method22.69 21626.99 21817.67 2162.13 2244.31 22527.50 2234.53 21937.94 21924.52 22036.20 22051.40 22315.26 21829.86 21917.09 21932.07 22112.16 220
DeepMVS_CXcopyleft17.78 22320.40 2246.69 21831.41 2209.80 22438.61 21934.88 22733.78 21228.41 22023.59 22245.77 216
tmp_tt13.54 21716.73 2236.42 2248.49 2252.36 22028.69 22127.44 21918.40 22113.51 2283.70 22033.23 21836.26 21822.54 223
Patchmatch-RL test4.13 226
testmvs0.93 2181.37 2200.41 2190.36 2260.36 2270.62 2270.39 2211.48 2220.18 2282.41 2221.31 2300.41 2221.25 2221.08 2210.48 2241.68 221
test1231.06 2171.41 2190.64 2180.39 2250.48 2260.52 2280.25 2221.11 2231.37 2272.01 2231.98 2290.87 2211.43 2211.27 2200.46 2251.62 222
uanet_test0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
sosnet0.00 2190.00 2210.00 2200.00 2280.00 2280.00 2290.00 2240.00 2240.00 2290.00 2240.00 2310.00 2240.00 2230.00 2220.00 2260.00 223
RE-MVS-def87.10 28
9.1489.43 130
SR-MVS91.82 1380.80 795.53 49
MTAPA89.37 994.85 66
MTMP90.54 595.16 59
mPP-MVS93.05 395.77 43
NP-MVS78.65 130